Sign functions for reduced expressions in Coxeter groups: proof of a conjecture of Bergeron, Ceballos and Labbé

Darij Grinberg (UMN)
joint work with Alexander Postnikov (MIT)

30 October 2016 University of St. Thomas, Minneapolis

slides:

http://mit.edu/~darij/www/algebra/october06.pdf

paper: arXiv:1603.03138 or

http://mit.edu/~darij/www/algebra/bcl.pdf

- Fix a positive integer n.
- The symmetric group S_n can be presented by generators $s_1, s_2, \ldots, s_{n-1}$ and relations
 - $s_i^2 = 1$ (the quadratic relations);
 - $s_i s_i = s_i s_i$ whenever |i j| > 1 (the 2-braid relations);
 - $s_i s_j s_i = s_j s_i s_j$ whenever |i j| = 1 (the 3-braid relations).

(Coxeter presentation, aka Moore presentation).

- Fix a positive integer n.
- The symmetric group S_n can be presented by generators $s_1, s_2, \ldots, s_{n-1}$ and relations
 - $s_i^2 = 1$ (the quadratic relations);
 - $s_i s_j = s_j s_i$ whenever |i j| > 1 (the 2-braid relations);
 - $s_i s_j s_i = s_j s_i s_j$ whenever |i j| = 1 (the 3-braid relations). (Coxeter presentation, aka Moore presentation).
- An expression for $w \in S_n$ is a way to write w as $s_{i_1}s_{i_2}\cdots s_{i_k}$.
- A reduced expression for $w \in S_n$ is an expression for w having minimum length (i.e., minimum k).
- **Example:** In S_5 , the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$ has reduced expressions

 $s_2 s_4 s_1 s_2$, $s_2 s_1 s_4 s_2$, $s_1 s_4 s_2 s_1$, and 5 others.

- Fix a positive integer n and a permutation $w \in S_n$.
- The braid relations give ways to transform reduced expressions into other reduced expressions:
 - $\cdots s_i s_j \cdots \mapsto \cdots s_j s_i \cdots$ for |i j| > 1 (a 2-braid move);
 - $\cdots s_i s_j s_i \cdots \mapsto \cdots s_j s_i s_j \cdots$ for |i j| = 1 (a 3-braid move).

These are called braid moves.

• Example:

$$s_2s_4s_1s_2 \mapsto \frac{\text{2-braid move with } i=4 \text{ and } j=1}{\text{at positions 2 and 3}} s_2s_1s_4s_2.$$

- The natural thing to do: Define an edge-colored directed graph $\mathcal{R}_0(w)$ with
 - vertices = reduced expressions for w;
 - an arc going from one expression \overrightarrow{a} to another expression \overrightarrow{b} whenever a braid move takes \overrightarrow{a} to \overrightarrow{b} ;
 - color each arc with a 2 if we used a 2-braid move, and a 3 if we used a 3-braid move.

• **Example:** In S_5 , the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$ has the following $\mathcal{R}_0(w)$: (The number over any edge is its color.)

• What do we see on the example?

• What do we see on the example?

• A single bidirected cycle.

• What do we see on the example?

• A single bidirected cycle. (Does not generalize.)

• What do we see on the example?

- A single bidirected cycle. (Does not generalize.)
- Strongly connected.

• What do we see on the example?

- A single bidirected cycle. (Does not generalize.)
- Strongly connected. (Generalizes to arbitrary Coxeter groups: Matsumoto-Tits theorem.)

• What do we see on the example?

• Walk down the long cycle counterclockwise.

• What do we see on the example?

- Walk down the long cycle counterclockwise.
 - The total number of 2-braid moves used is even.
 - The total number of 3-braid moves used is even.

- These latter observations do generalize: For any $n \ge 1$ and any $w \in S_n$, any directed cycle in $\mathcal{R}_0(w)$ uses an even number of 2-braid relations and an even number of 3-braid relations.
- This was found by Bergeron, Ceballos and Labbé (arXiv:1404.7380v2). Their proof used hyperplane arrangement geometry.

Coxeter groups: recalling definitions

- Let (W, S) be a Coxeter group with Coxeter matrix $(m_{s,t})_{(s,t)\in S\times S}$.
- Set

$$\mathfrak{M} = \{(s,t) \in S \times S \mid s \neq t \text{ and } m_{s,t} < \infty\}.$$

- Recall that W has generators s (for $s \in S$) and relations
 - $s^2 = 1$ for all $s \in S$ (the quadratic relations);
 - $sts \cdots = tst \cdots$ (where both sides have $m_{s,t}$ factors) for all $(s,t) \in \mathfrak{M}$ (the *braid relations*).

Coxeter groups: recalling definitions

- Let (W, S) be a Coxeter group with Coxeter matrix $(m_{s,t})_{(s,t)\in S\times S}$.
- Set

$$\mathfrak{M} = \{(s,t) \in S \times S \mid s \neq t \text{ and } m_{s,t} < \infty\}.$$

- Recall that W has generators s (for $s \in S$) and relations
 - $s^2 = 1$ for all $s \in S$ (the quadratic relations);
 - $sts \cdots = tst \cdots$ (where both sides have $m_{s,t}$ factors) for all $(s,t) \in \mathfrak{M}$ (the *braid relations*).
- An expression for $w \in W$ is a way to write w as a product $a_1 a_2 \cdots a_k$ where $a_1, a_2, \dots, a_k \in S$.
- A reduced expression for $w \in W$ is an expression for w having minimum length (i.e., minimum k).

Coxeter groups: braid moves

 The braid relations give ways to transform reduced expressions into other reduced expressions:

$$\cdots$$
 (sts \cdots) $\cdots \mapsto \cdots$ (tst \cdots) \cdots

(where both parenthesized products have $m_{s,t}$ factors) for $(s,t) \in \mathfrak{M}$.

These are called braid moves.

Coxeter groups: braid moves

 The braid relations give ways to transform reduced expressions into other reduced expressions:

$$\cdots$$
 (sts \cdots) $\cdots \mapsto \cdots$ (tst \cdots) \cdots

(where both parenthesized products have $m_{s,t}$ factors) for $(s,t) \in \mathfrak{M}$.

These are called braid moves.

• We can again assemble the reduced expressions of a given $w \in W$ into an edge-colored directed graph.

Examples: (courtesy Rob Edman, Victor Reiner)

- H₃ (longest element);
- B₃ (longest element);
- A₃ (longest element).

But we can do better than take $m_{s,t}$'s as colors.

Coxeter groups: the edge-colored digraph $\mathcal{R}(w)$

• Define an equivalence relation \sim ("simultaneous conjugation") on ${\mathfrak M}$ as follows:

$$(s,t)\sim (s',t')$$
 \iff there exists a $g\in W$ such that $qsq^{-1}=s'$ and $qtq^{-1}=t'$.

Coxeter groups: the edge-colored digraph $\mathcal{R}(w)$

• Define an equivalence relation \sim ("simultaneous conjugation") on ${\mathfrak M}$ as follows:

$$(s,t)\sim \left(s',t'
ight)$$
 \iff there exists a $g\in W$ such that $qsq^{-1}=s'$ and $qtq^{-1}=t'$.

• For each $(s,t) \in \mathfrak{M}$, we get an equivalence class $[(s,t)] \in \mathfrak{M}/\sim$.

Coxeter groups: the edge-colored digraph $\mathcal{R}(w)$

• Define an equivalence relation \sim ("simultaneous conjugation") on ${\mathfrak M}$ as follows:

$$(s,t)\sim \left(s',t'
ight)$$
 \iff there exists a $g\in W$ such that $qsq^{-1}=s'$ and $qtq^{-1}=t'.$

- For each $(s, t) \in \mathfrak{M}$, we get an equivalence class $[(s, t)] \in \mathfrak{M}/\sim$.
- Define an edge-colored directed graph $\mathcal{R}(w)$ as follows:
 - vertices = reduced expressions for w;
 - an arc going from one expression \overrightarrow{a} to another expression \overrightarrow{b} whenever a braid move takes \overrightarrow{a} to \overrightarrow{b} ;
 - color each arc with the equivalence class [(s,t)] if the braid move used was

$$\cdots (\mathit{sts}\cdots)\cdots \mapsto \cdots (\mathit{tst}\cdots)\cdots.$$

• Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.

Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let c^{op} denote the equivalence class of the opposite pair (i.e., if c = [(s, t)], then $c^{op} = [(t, s)]$).

• Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.

Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let $c^{\rm op}$ denote the equivalence class of the opposite pair (i.e., if c=[(s,t)], then $c^{\rm op}=[(t,s)]$).

(a)

(the number of arcs colored c in C) = (the number of arcs colored c^{op} in C).

• Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.

Let $c\in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let c^{op} denote the equivalence class of the opposite pair (i.e., if c = [(s, t)], then $c^{op} = [(t, s)]$).

(a)

(the number of arcs colored c in C) = (the number of arcs colored c^{op} in C).

(b)

(the number of arcs colored c or c^{op} in C) $\equiv 0 \mod 2$.

• Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.

Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let c^{op} denote the equivalence class of the opposite pair (i.e., if c = [(s, t)], then $c^{op} = [(t, s)]$).

(a)

(the number of arcs colored
$$c$$
 in C) = (the number of arcs colored c^{op} in C).

(b)

(the number of arcs colored c or c^{op} in C) $\equiv 0 \mod 2$.

- Note: Neither of (a) and (b) implies the other!
- Bergeron, Ceballos, Labbé proved a special case of (b).

- Let $T = \bigcup_{w \in W} wSw^{-1}$ (the set of *reflections* in W).
- Extend the relation \sim to T (same definition).
- Every reduced expression $\overrightarrow{a} = a_1 a_2 \cdots a_k$ for w gives rise to a list ("inversion word", aka "reflection order")

Invs
$$\overrightarrow{a} = (t_1, t_2, \dots, t_k) \in T^k$$
, where $t_i = a_1 a_2 \cdots a_i \cdots a_2 a_1$ ("up to a_i and then down").

- Let $T = \bigcup_{w \in W} wSw^{-1}$ (the set of *reflections* in W).
- Extend the relation \sim to T (same definition).
- Every reduced expression $\overrightarrow{a} = a_1 a_2 \cdots a_k$ for w gives rise to a list ("inversion word", aka "reflection order")

Invs
$$\overrightarrow{a} = (t_1, t_2, \dots, t_k) \in T^k$$
, where $t_i = a_1 a_2 \cdots a_i \cdots a_2 a_1$ ("up to a_i and then down").

• If \overrightarrow{a} braid move involving s and t $\Rightarrow \overrightarrow{b}$, then Invs \overrightarrow{a} revert a certain factor \Rightarrow Invs \overrightarrow{b}

- If \overrightarrow{a} braid move involving s and t $\Rightarrow \overrightarrow{b}$, then Invs \overrightarrow{a} revert a certain factor \Rightarrow Invs \overrightarrow{b} .
- Which factor? Let's say the braid move replaces some $a_{i+1}a_{i+2}\cdots a_{i+k}=sts\cdots$ in \overrightarrow{a} by $b_{i+1}b_{i+2}\cdots b_{i+k}=tst\cdots$. Then, the factor that gets reverted is in positions $i+1, i+2, \ldots, i+k$ again.

- If \overrightarrow{a} braid move involving s and t $\Rightarrow \overrightarrow{b}$, then Invs \overrightarrow{a} revert a certain factor \Rightarrow Invs \overrightarrow{b} .
- Which factor? Let's say the braid move replaces some $a_{i+1}a_{i+2}\cdots a_{i+k}=sts\cdots$ in \overrightarrow{a} by $b_{i+1}b_{i+2}\cdots b_{i+k}=tst\cdots$. Then, the factor that gets reverted is in positions $i+1, i+2, \ldots, i+k$ again.
- The dihedral subgroup $\langle s,t\rangle$ has $m_{s,t}$ reflections, and two canonical ways to list them:

$$\rho_{s,t} = \left(s, sts, ststs, \cdots, \underbrace{sts\cdots s}_{2m_{s,t}-1 \text{ factors}}\right),$$

$$\rho_{t,s} = \left(t, tst, tstst, \cdots, \underbrace{tst\cdots t}_{2m_{s,t}-1 \text{ factors}}\right).$$

(These are mutually reverse.)

- If $\overrightarrow{a} = \frac{\text{braid move involving } s \text{ and } t}{\text{in positions } i+1,i+2,...,i+k} \Rightarrow \overrightarrow{b}$, then Invs $\overrightarrow{a} = \frac{\text{revert the word } q\rho_{s,t}q^{-1}}{\text{in positions } i+1,i+2,...,i+k} \Rightarrow \text{Invs } \overrightarrow{b}$, where $q = a_1a_2 \cdots a_i$. (Words are conjugated letter-wise. Reverting $q\rho_{s,t}q^{-1}$ gives $q\rho_{t,s}q^{-1}$.)
- \bullet This is why we had to take $\sim\!\!$ -conjugacy classes (and not plain pairs) as colors!

- If $\overrightarrow{a} \xrightarrow{\text{braid move involving s and t}} \overrightarrow{b} \ ,$ then Invs $\overrightarrow{a} \xrightarrow{\text{revert the word $q\rho_{s,t}q^{-1}$}} \text{Invs } \overrightarrow{b} \ ,$ where $q = a_1 a_2 \cdots a_i. \ \text{(Words are conjugated letter-wise. Reverting $q\rho_{s,t}q^{-1}$ gives $q\rho_{t,s}q^{-1}$.)}$
- This is why we had to take ~-conjugacy classes (and not plain pairs) as colors!
- Thus we can try a parity argument: Count how often a $q\rho_{s,t}q^{-1}$ appears as a subword in Invs \overrightarrow{a} (either never or once), and notice that our braid move changes this count by 1 mod 2.

• Complications:

- Be careful with redundant counts (counting everything twice makes mod 2 useless).
- Subwords start out as factors, but can get broken apart by other braid moves.
- Need to show that other braid moves never mutate our subword (even though they can spread its letters apart / move them together). Need some subtle descent/length/parabolic-coset arguments.
- The $c=c^{\mathrm{op}}$ and $c\neq c^{\mathrm{op}}$ cases need separate proofs at the end.

See paper for details.

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let c^{op} denote the equivalence class of the opposite pair (i.e., if c=[(s,t)], then $c^{\text{op}}=[(t,s)]$).

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let $c^{\rm op}$ denote the equivalence class of the opposite pair (i.e., if c=[(s,t)], then $c^{\rm op}=[(t,s)]$). (a)

(the number of arcs colored c in C) = (the number of arcs colored c^{op} in C).

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M}/\sim$ be an equivalence class (under simultaneous conjugation).

Let c^{op} denote the equivalence class of the opposite pair (i.e., if c = [(s, t)], then $c^{op} = [(t, s)]$).

(a)

(the number of arcs colored c in C) = (the number of arcs colored c^{op} in C).

(b)

(the number of arcs colored c or c^{op} in C) $\equiv 0 \mod 2$.

• An attempt to explain at least part (b)...

• Conjecture 2. For every $(s, t) \in \mathfrak{M}$, let $c_{s,t} \in \{1, -1\}$.

Assume that
$$c_{s,t} = c_{s',t'}$$
 whenever $(s,t) \sim (s',t')$; $c_{s,t} = c_{t,s}$ for all $(s,t) \in \mathfrak{M}$.

Let W' be the group given by:

- Generators: the elements $s \in S$ and an extra generator q.
- Relations:

$$s^2=1$$
 for every $s\in S$; $q^2=1$; $qs=sq$ for every $s\in S$; $(st)^{m_{s,t}}=1$ for every $(s,t)\in\mathfrak{M}$ satisfying $c_{s,t}=1$; $(st)^{m_{s,t}}=q$ for every $(s,t)\in\mathfrak{M}$ satisfying $c_{s,t}=1$.

Then, $q \neq 1$ in W'. Equivalently, this sequence is exact:

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\overline{1} \mapsto q} W' \xrightarrow{s_i \mapsto s_i} W \longrightarrow 1$$

• Conjecture 2. For every $(s, t) \in \mathfrak{M}$, let $c_{s,t} \in \{1, -1\}$.

Assume that
$$c_{s,t} = c_{s',t'}$$
 whenever $(s,t) \sim (s',t')$; $c_{s,t} = c_{t,s}$ for all $(s,t) \in \mathfrak{M}.$

Let W' be the group given by:

- Generators: the elements $s \in S$ and an extra generator q.
- Relations: (think spin symmetric groups!)

$$s^2=1$$
 for every $s\in S$; $q^2=1$; $qs=sq$ for every $s\in S$; $(st)^{m_{s,t}}=1$ for every $(s,t)\in\mathfrak{M}$ satisfying $c_{s,t}=1$; $(st)^{m_{s,t}}=q$ for every $(s,t)\in\mathfrak{M}$ satisfying $c_{s,t}=-1$.

Then, $q \neq 1$ in W'. Equivalently, this sequence is exact:

$$1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{\overline{1} \mapsto q} W' \xrightarrow{s_i \mapsto s_i} W \longrightarrow 1$$

References

- Darij Grinberg, Alexander Postnikov, Proof of a conjecture of Bergeron, Ceballos and Labbé, arXiv:1603.03138v2.
- Nantel Bergeron, Cesar Ceballos, Jean-Philippe Labbé, Fan realizations of subword complexes and multi-associahedra via Gale duality, arXiv:1404.7380v2.
- Victor Reiner, Yuval Roichman, Diameter of graphs of reduced words and galleries, Trans. Amer. Math. Soc. 365 (2013), pp. 2779–2802.

Preprint: arXiv:0906.4768v3.

References

- Darij Grinberg, Alexander Postnikov, Proof of a conjecture of Bergeron, Ceballos and Labbé, arXiv:1603.03138v2.
- Nantel Bergeron, Cesar Ceballos, Jean-Philippe Labbé, Fan realizations of subword complexes and multi-associahedra via Gale duality, arXiv:1404.7380v2.
- Victor Reiner, Yuval Roichman, Diameter of graphs of reduced words and galleries, Trans. Amer. Math. Soc. 365 (2013), pp. 2779–2802.

Preprint: arXiv:0906.4768v3.

Thanks to

- Nantel Bergeron for an invitation to York U, and Cesar Ceballos for advertising the results of 1404.7380v2 to me;
- Franco Saliola for fixing a bug in these slides;
- you for the attention!