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A motivating example, part 1

@ Fix a positive integer n.
@ The symmetric group S, can be presented by generators
$1,52,...,S,_1 and relations
o s? =1 (the quadratic relations);
o sisj = s;s; whenever |i — j| > 1 (the 2-braid relations);
o s;sjs; = s;s;sj whenever |i — j| = 1 (the 3-braid relations).
(Coxeter presentation, aka Moore presentation).
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o s? =1 (the quadratic relations);
o sisj = s;s; whenever |i — j| > 1 (the 2-braid relations);
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An expression for w € S, is a way to write w as s;Sj, - - - Sj, -

A reduced expression for w € S, is an expression for w having
minimum length (i.e., minimum k).
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S$»S4515), 52515452, 51545251, and 5 others.
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Example: In S5, the permutation ( 3 9 1

reduced expressions



A motivating example, part 2

o Fix a positive integer n and a permutation w € S,,.
@ The braid relations give ways to transform reduced expressions
into other reduced expressions:
° - -SiSj--- > --nsisi--- for |[i—j| >1
(a 2-braid move);
@ - :5iSjSj b+ 5j5iS5j for ’I'—j‘ =1
(a 3-braid move).
These are called braid moves.

e Example:

2-braid move with i=4 and j=1
5054515 ¢ 52515452.
2543152 1 at positions 2 and 3 2515452




A motivating example, part 3

@ The natural thing to do: Define an edge-colored directed
graph Ro (w) with
o vertices = reduced expressions for w;
e an arc going from one expression & to another
expression b whenever a braid move takes 3 to b
e color each arc with a 2 if we used a 2-braid move, and a
3 if we used a 3-braid move.



A motivating example, part 4
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e Example: In S5, the permutation 3

the following Ro (w):
(The number over any edge is its color.)
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A motivating example, part 5

@ What do we see on the example?
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A motivating example, part 5

@ What do we see on the example?
2
RN
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/ ~_ \
2
54525152 2 2 52515254
()3 ()3
54515251 2 2 51525154
\\ :
/\
2 2

51545251 51525451
~—
2

o A single bidirected cycle. (Does not generalize.)
o Strongly connected. (Generalizes to arbitrary Coxeter
groups: Matsumoto-Tits theorem.)



A motivating example, part 6

@ What do we see on the example?
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o Walk down the long cycle counterclockwise.



A motivating example, part 6

@ What do we see on the example?

2
RN

2 5054515 5051545 2
/ ~—_ \
2
54525152 2 2 52515254
3( 23 3’< 23
2

2 51525154

54515251
\\ -
/\
51545251 51525451 2

2
~N~—
2

o Walk down the long cycle counterclockwise.

o The total number of 2-braid moves used is even.
o The total number of 3-braid moves used is even.



A motivating example, part 7

@ These latter observations do generalize:
For any n > 1 and any w € S,,, any directed cycle in Rq (w)
uses an even number of 2-braid relations and an even number
of 3-braid relations.

@ This was found by Bergeron, Ceballos and Labbé
(arXiv:1404.7380v2). Their proof used hyperplane
arrangement geometry.


http://www.arxiv.org/abs/1404.7380v2

Coxeter groups: recalling definitions

o Let (W,S) be a Coxeter group with Coxeter matrix
(msﬂt)(s,t)ESXS'
@ Set
M={(s,t)e SxS|s#tand ms; < c0}.

@ Recall that W has generators s (for s € S) and relations

o s> =1 forall s € S (the quadratic relations);
o sts--- = tst--- (where both sides have ms; factors)
for all (s,t) € M (the braid relations).
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M={(s,t)e SxS|s#tand ms; < c0}.

Recall that W has generators s (for s € S) and relations
o s> =1 forall s € S (the quadratic relations);
o sts--- = tst--- (where both sides have ms; factors)
for all (s,t) € M (the braid relations).
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A reduced expression for w € W is an expression for w having
minimum length (i.e., minimum k).



Coxeter groups: braid moves

@ The braid relations give ways to transform reduced expressions
into other reduced expressions:

(where both parenthesized products have m; ; factors) for

(s,t) € M.
These are called braid moves.
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Coxeter groups: braid moves

@ The braid relations give ways to transform reduced expressions
into other reduced expressions:

(sts)»—)(tst)

(where both parenthesized products have m; ; factors) for
(s,t) € M.
These are called braid moves.
@ We can again assemble the reduced expressions of a given
w € W into an edge-colored directed graph.
Examples: (courtesy Rob Edman, Victor Reiner)
o Hs (longest element);
o B3 (longest element);
o As (longest element).
But we can do better than take ms ;s as colors.
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Coxeter groups: the edge-colored digraph R (w)

@ Define an equivalence relation ~ (“simultaneous
conjugation”) on 9 as follows:

(s,t) ~ (s, 1)

<= there exists a g € W such that gsq~?

=5 and gtg”t =t
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@ For each (s, t) € 9N, we get an equivalence class
[(s, )] € M/ ~.

11/19



Coxeter groups: the edge-colored digraph R (w)

@ Define an equivalence relation ~ (“simultaneous
conjugation”) on 9 as follows:

(s,t) ~ (s, 1)

<= there exists a g € W such that gsq~?

=5 and gtg”t =t

@ For each (s, t) € 9N, we get an equivalence class
[(s,t)] € M/ ~.
@ Define an edge-colored directed graph R (w) as follows:
e vertices = reduced expressions for w;
e an arc going from one expression & to another
. . — -
expression b whenever a braid move takes & to b;
o color each arc with the equivalence class [(s, t)] if the
braid move used was

(sts)'—>(tst)

11/19



@ Theorem (Postnikov, G.). Let C be a directed cycle in the
graph R (w) for some w € W.
Let ¢ € M/ ~ be an equivalence class (under simultaneous
conjugation).
Let c°P denote the equivalence class of the opposite pair (i.e.,
if ¢ =[(s, t)], then c°? =[(t, s)]).
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@ Theorem (Postnikov, G.). Let C be a directed cycle in the
graph R (w) for some w € W.
Let ¢ € M/ ~ be an equivalence class (under simultaneous
conjugation).
Let c°P denote the equivalence class of the opposite pair (i.e.,
if ¢ =[(s, t)], then c°? =[(t, s)]).

(a)

(the number of arcs colored ¢ in C)

= (the number of arcs colored c°? in C).

(b)
(the number of arcs colored c or ¢c®® in C) =0 mod 2.

@ Note: Neither of (a) and (b) implies the other!
@ Bergeron, Ceballos, Labbé proved a special case of (b).
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Strategy of the proof, part 1

o Let T= |J wSw! (the set of reflections in W).
weWw

@ Extend the relation ~ to T (same definition).

@ Every reduced expression F =ajay---ag forw gives rise to a
list (“inversion word", aka “reflection order”)

Invs?:(tl,tg,...,tk) e Tk, where

ti=aiar---a;---aray (“up to a; and then down").
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Extend the relation ~ to T (same definition).

Every reduced expression F =ajay---ag forw gives rise to a
list (“inversion word", aka “reflection order”)

Invs?:(tl,tg,...,tk) e Tk, where

ti=aiar---a;---aray (“up to a; and then down").

braid move involving s and t —
o If Ef b,

revert a certain factor _>
then Invs 3 v : Invs b .

13/19



Strategy of the proof, part 2

braid move involving s and t —
o If El b,
then Invs ? revert a certain factor Invs Z) -
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Strategy of the proof, part 2

braid move involving s and t —

o If Ef b,
i —
then Invs? revert a certain factor InVS b )
@ Which factor? Let's say the braid move replaces some
Aj4+13j42** Aj4k = StS- -+ in El by

bit1biyo - biykx = tst---.
Then, the factor that gets reverted is in positions
i+1,i42,...,i+ k again.
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Strategy of the proof, part 2

braid move involving s and t —

o If Ef b,
i —
then Invs? revert a certain factor InVS b )
@ Which factor? Let's say the braid move replaces some
Aj4+13j42** Aj4k = StS- -+ in El by

biy1bit2 - biykx =tst---.
Then, the factor that gets reverted is in positions
i+1,i42,...,i+ k again.

@ The dihedral subgroup (s, t) has ms; reflections, and two
canonical ways to list them:

pPst = | S, sts,ststs,---, sts---s 7

2ms,+—1 factors

pts = | t, tst, tstst,---, tst---t

2ms ¢ —1 factors

(These are mutually reverse.)
14 /19



Strategy of the proof, part 3

braid move involving s and t —
o If Ef — ; b,
in positions i+1,i4+2,...,i+k
revert the word qpsﬂ,»q_1 —
then Invs @ Invs b , where

in positions i+1,i42,...,i+k
q = ajay - - - a;. (Words are conjugated letter-wise. Reverting
qps.tq " gives qprsq )

15/19
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° 1
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in positions i+1,i42,...,i+k
q = ajay - - - a;. (Words are conjugated letter-wise. Reverting
qps.tq " gives qprsq )
@ This is why we had to take ~-conjugacy classes (and not plain
pairs) as colors!
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Strategy of the proof, part 3

If braid move involving s and t —
° 1
in positions i+1,i4+2,...,i+k
revert the word qpsﬂ,»q_1 —
then Invs @ Invs b , where

in positions i+1,i42,...,i+k
q = ajay - - - a;. (Words are conjugated letter-wise. Reverting
qps.tq " gives qprsq )
@ This is why we had to take ~-conjugacy classes (and not plain
pairs) as colors!

@ Thus we can try a parity argument: Count how often a
qps,tqil appears as a subword in Invs & (either never or
once), and notice that our braid move changes this count by 1
mod 2.

15/19



Strategy of the proof, part 4

@ Complications:

o Be careful with redundant counts (counting everything
twice makes mod 2 useless).

o Subwords start out as factors, but can get broken apart
by other braid moves.

o Need to show that other braid moves never mutate our
subword (even though they can spread its letters apart /
move them together). Need some subtle
descent/length/parabolic-coset arguments.

e The ¢ = ¢c°P and ¢ # c°P cases need separate proofs at
the end.

See paper for details.

16/19



@ What happens if we replace “reduced expression” by
“expression” everywhere?

o Conjecture 1. Let C be a directed cycle in the graph £ (w)
(defined as R (w), but using all expressions) for some w € W.
Let ¢ € M/ ~ be an equivalence class (under simultaneous
conjugation).

Let c°P denote the equivalence class of the opposite pair (i.e.,
if ¢ =[(s, t)], then c°? =[(t,s)]).
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@ An attempt to explain at least part (b)...
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o Conjecture 2. For every (s, t) € M, let ;¢ € {1,—1}.
Assume that ¢;; = ¢y ¢ whenever (s,t) ~ (s’, t/) :
Cs;t = Cts for all (s,t) € M.

Let W’ be the group given by:
o Generators: the elements s € S and an extra generator q.
e Relations:

=1 for every s € S;

=1

gs = sq for every s € S;
(st)™t =1 for every (s, t) € M satisfying ¢s ¢ = 1;
(st)™t =gq for every (s, t) € M satisfying ¢;r = —1.

Then, g # 1 in W', Equivalently, this sequence is exact:
1 7,27 — 20w % 1

Si—S;

qg—1
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Assume that ¢;; = ¢y ¢ whenever (s,t) ~ (s’, t/) :
Cs;t = Cts for all (s,t) € M.

Let W’ be the group given by:
o Generators: the elements s € S and an extra generator q.

o Relations: (think spin symmetric groups!)
=1 for every s € S;
q2 =1;
gs = sq for every s € S;
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