Shuffles in the symmetric group algebra

Darij Grinberg (Drexel University) joint work with Nadia Lafrenière, Sarah Brauner, Patricia Commins, Franco Saliola

Dartmouth College, 2025-10-14, MIT, 2025-10-15

```
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/ne2025.pdf
```

papers: arXiv:2503.17580 arXiv:2212.06274 arXiv:2309.05340 arXiv:2508.00752

CHAPTER 1

Introduction

References:

- Bruce Sagan, The symmetric group, 2nd edition 2001.
- Pavel Etingof et al., Introduction to representation theory, AMS 2011, §§5.12–5.17.
- Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the group algebra of the symmetric group, ...,
 Commentationes Mathematicae Universitatis Carolinae, 2016.
- Daniel Edwin Rutherford, Substitutional Analysis, Edinburgh 1948.
- Darij Grinberg, *An introduction to the symmetric group algebra*, arXiv:2507.20706.

Finite group algebras: Basics

- Let \mathbf{k} be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- \blacksquare Let G be a finite group. (We will only use symmetric groups.)
- Let k [G] be the group algebra of G over k. Its elements are formal k-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.

Finite group algebras: Basics

- Let \mathbf{k} be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- lacktriangle Let G be a finite group. (We will only use symmetric groups.)
- Let **k** [G] be the group algebra of G over **k**. Its elements are formal **k**-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.
 - **Example:** Let G be the symmetric group S_3 on the set $\{1,2,3\}$. For $i \in \{1,2\}$, let $s_i \in S_3$ be the simple transposition that swaps i with i+1. Then, in $\mathbf{k}[G] = \mathbf{k}[S_3]$, we have

$$(1+s_1)(1-s_1)=1+s_1-s_1-s_1^2=0$$
 (since $s_1^2=1$);

Finite group algebras: Basics

- Let \mathbf{k} be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- lacktriangle Let G be a finite group. (We will only use symmetric groups.)
- Let **k** [G] be the group algebra of G over **k**. Its elements are formal **k**-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.
 - **Example:** Let G be the symmetric group S_3 on the set $\{1,2,3\}$. For $i \in \{1,2\}$, let $s_i \in S_3$ be the simple transposition that swaps i with i+1. Then, in $\mathbf{k}[G] = \mathbf{k}[S_3]$, we have

$$(1+s_1)(1-s_1)=1+s_1-s_1-s_1^2=0$$

(since $s_1^2=1$);
 $(1+s_2)(1+s_1+s_1s_2)=1+s_2+s_1+s_2s_1+s_1s_2+s_2s_1s_2$
 $=\sum_{s,s}w.$

Finite group algebras: L(a) and R(a)

 \bullet For each $a \in \mathbf{k}[G]$, we define two **k**-linear maps

$$L(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto ax$ ("left multiplication by a")

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a ").

(So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

Note: The symbol * denotes important points.

Finite group algebras: L(a) and R(a)

 \blacksquare For each $a \in \mathbf{k}[G]$, we define two \mathbf{k} -linear maps

$$L(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto ax$ ("left multiplication by a")

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a "). (So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

• Both L(a) and R(a) are endomorphisms of the free **k**-module **k** [G]. Thus, they can be viewed as $|G| \times |G|$ -matrices.

Finite group algebras: L(a) and R(a)

 \blacksquare For each $a \in \mathbf{k}[G]$, we define two \mathbf{k} -linear maps

$$L(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto ax$ ("left multiplication by a")

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a ").

(So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

- Both L(a) and R(a) are endomorphisms of the free **k**-module **k** [G]. Thus, they can be viewed as $|G| \times |G|$ -matrices.
- Hence, L(a) and R(a) are "matrix proxies" for a, allowing to apply linear algebra to studying a.
 (The reason this works is that the maps a → L(a) and a → (R(a))^T are two injective k-algebra morphisms from k[G] to the matrix ring End_k (k[G]) ≅ k|G|×|G|.)

Finite group algebras: Minimal polynomials

- * Each $a \in \mathbf{k}[G]$ has a *minimal polynomial*, i.e., a minimum-degree monic polynomial $P \in \mathbf{k}[X]$ such that P(a) = 0. It is unique when \mathbf{k} is a field. The minimal polynomial of a is also the minimal polynomial of the endomorphisms L(a) and R(a).
 - When \mathbf{k} is a field, we can also study the eigenvectors and eigenvalues of L(a) and R(a).

Finite group algebras: Minimal polynomials

- * Each $a \in \mathbf{k}[G]$ has a *minimal polynomial*, i.e., a minimum-degree monic polynomial $P \in \mathbf{k}[X]$ such that P(a) = 0. It is unique when \mathbf{k} is a field. The minimal polynomial of a is also the minimal polynomial of the endomorphisms L(a) and R(a).
 - When \mathbf{k} is a field, we can also study the eigenvectors and eigenvalues of L(a) and R(a).
 - Theorem 1.1. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, the two linear endomorphisms L(a) and R(a) are conjugate in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$ (that is, similar as matrices). (Thus, they have the same eigenstructure.)
 - This is surprisingly nontrivial!

Finite group algebras: The antipode

The antipode of the group algebra k[G] is defined to be the k-linear map

$$S: \mathbf{k}[G] o \mathbf{k}[G]$$
, $g \mapsto g^{-1}$ for each $g \in G$.

We shall write a^* for S(a).

Finite group algebras: The antipode

The antipode of the group algebra k[G] is defined to be the k-linear map

$$S: \mathbf{k}\left[G
ight]
ightarrow \mathbf{k}\left[G
ight],$$
 $g \mapsto g^{-1}$ for each $g \in G.$

We shall write a^* for S(a).

 \blacksquare **Proposition 1.2.** The antipode S is an involution:

$$a^{**} = a$$
 for all $a \in \mathbf{k}[G]$,

and a k-algebra anti-automorphism:

$$(ab)^* = b^*a^*$$
 for all $a, b \in \mathbf{k}[G]$.

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .
- Lemma 1.4. Let $a \in \mathbf{k}[G]$. Then, $L(a^*) \sim R(a)$ in End_k ($\mathbf{k}[G]$).
- *Proof:* We have $R(a) = S \circ L(a^*) \circ S$ and $S = S^{-1}$.

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .
- Lemma 1.4. Let $a \in \mathbf{k}[G]$. Then, $L(a^*) \sim R(a)$ in End_k ($\mathbf{k}[G]$).
- *Proof:* We have $R(a) = S \circ L(a^*) \circ S$ and $S = S^{-1}$.
- Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.
- Remark (Martin Lorenz). Theorem 1.1 generalizes to arbitrary finite-dimensional Frobenius algebras.

Symmetric groups: Notations

- * Let $\mathbb{N} := \{0, 1, 2, \ldots\}.$
- lpha Let $[k] := \{1, 2, \dots, k\}$ for each $k \in \mathbb{N}$.

Symmetric groups: Notations

- * Let $\mathbb{N} := \{0, 1, 2, \ldots\}.$
- * Let $[k] := \{1, 2, \dots, k\}$ for each $k \in \mathbb{N}$.
- Now, fix a positive integer n, and let S_n be the n-th symmetric group, i.e., the group of permutations of the set [n]. Multiplication in S_n is composition:

$$(\alpha\beta)(i) = (\alpha \circ \beta)(i) = \alpha(\beta(i))$$

for all $\alpha, \beta \in S_n$ and $i \in [n]$.

(Warning: SageMath has a different opinion!)

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- There is a classical theory ("Young's seminormal form") of the structure of $\mathbf{k}[S_n]$ when \mathbf{k} has characteristic 0. See:
 - Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the group algebra of the symmetric group, ..., Commentationes Mathematicae Universitatis Carolinae, 2016. (Quick and to the point.)
 - Daniel Edwin Rutherford, Substitutional Analysis,
 Edinburgh 1948. (Dated but careful and quite readable;
 perhaps the best treatment.)
 - Adriano M. Garsia, Ömer Egecioglu, Lectures in Algebraic Combinatorics, Springer 2020. (Messy but full of interesting things.)

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda\text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

 Proof: This follows from Young's seminormal form. For the shortest readable proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.

Or, for a different proof, see my introduction to the symmetric group algebra (§5.14).

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda\text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

- The structure of $\mathbf{k}[S_n]$ for $0 < \text{char } \mathbf{k} \le n$ is far less straightforward. See, e.g.,
 - Matthias Künzer, *Ties for the integral group ring of the symmetric group*, thesis 1998.

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda\text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

- The structure of $\mathbf{k}[S_n]$ for $0 < \text{char } \mathbf{k} \le n$ is far less straightforward. See, e.g.,
 - Matthias Künzer, *Ties for the integral group ring of the symmetric group*, thesis 1998.
- **Remark.** If **k** is a field of characteristic 0, then each $a \in \mathbf{k}[S_n]$ satisfies $a \sim a^*$ in $\mathbf{k}[S_n]$. But not for general **k**.
- From now on, we shall focus on concrete elements in $\mathbf{k}[S_n]$.

The YJM elements: Definition and commutativity

- * For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note.** We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.

The YJM elements: Definition and commutativity

- * For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note.** We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.
- For each $k \in [n]$, we define the k-th Young-Jucys-Murphy (YJM) element

$$J_{\mathbf{k}} := \operatorname{cyc}_{1,k} + \operatorname{cyc}_{2,k} + \cdots + \operatorname{cyc}_{k-1,k} \in \mathbf{k} [S_n].$$

• **Note.** We have $J_1 = 0$. Also, $J_k^* = J_k$ for each $k \in [n]$.

The YJM elements: Definition and commutativity

- * For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note.** We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.
- For each $k \in [n]$, we define the k-th Young-Jucys-Murphy (YJM) element

$$J_{k} := \operatorname{cyc}_{1,k} + \operatorname{cyc}_{2,k} + \cdots + \operatorname{cyc}_{k-1,k} \in \mathbf{k} \left[S_{n} \right].$$

- **Note.** We have $J_1 = 0$. Also, $J_k^* = J_k$ for each $k \in [n]$.
- **Theorem 3.1.** The YJM elements J_1, J_2, \ldots, J_n commute: We have $J_i J_j = J_j J_i$ for all i, j.
 - Proof: Easy computational exercise.

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- First proof: Study the action of J_k on each Specht module (simple S_n -module). See, e.g., G. E. Murphy, A New Construction of Young's Seminormal Representation ..., 1981 for details.
- Second proof (Igor Makhlin): Some linear algebra does the trick. Induct on k using the facts that J_k and J_{k+1} are simultaneously diagonalizable over \mathbb{C} (since they are symmetric as real matrices and commute) and satisfy $s_k J_{k+1} = J_k s_k + 1$, where $s_k := \operatorname{cyc}_{k,k+1}$. See https://mathoverflow.net/a/83493/ for details.

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \leq 3$, some factors here are redundant.)

• Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \leq 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \leq 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- **Theorem 3.3.** Assume that \mathbf{k} is a field of characteristic 0. Then, there exists a basis $(e_{S,T})$ of $\mathbf{k}[S_n]$ indexed by pairs of standard Young tableaux of the same (partition) shape called the *seminormal basis*. This basis has the property that

$$J_k e_{S,T} = c_S(k) \cdot e_{S,T},$$

where $c_S(k) = j - i$ if the number k lies in cell (i, j) of S.

Theorem 3.2. The minimal polynomial of J_k over \mathbb{Q} divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- **Theorem 3.3.** Assume that \mathbf{k} is a field of characteristic 0. Then, there exists a basis $(e_{S,T})$ of $\mathbf{k}[S_n]$ indexed by pairs of standard Young tableaux of the same (partition) shape called the *seminormal basis*. This basis has the property that

$$J_k e_{S,T} = c_S(k) \cdot e_{S,T},$$

11/66

where $c_S(k) = j - i$ if the number k lies in cell (i, j) of S.

• Moreover, each Specht module S^{λ} (= irreducible representation of S_n) is spanned by part of the seminormal basis, and thus we find the eigenvalues of J_k on that S^{λ} .

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- The seminormal basis exists only for char k = 0 (or, more generally, when n! is invertible in k).
 But Theorem 3.2 and the algebraic multiplicities transfer automatically to all rings k.
- Question. Is there a self-contained algebraic/combinatorial proof of Theorem 3.2 without linear algebra or representation theory? (Asked on MathOverflow:

https://mathoverflow.net/questions/420318/.)

• **Theorem 3.4.** For each $k \in \mathbb{N}$, we can evaluate the k-th elementary symmetric polynomial e_k at the YJM elements J_1, J_2, \ldots, J_n to obtain

$$e_k\left(J_1,J_2,\ldots,J_n
ight) = \sum_{\substack{\sigma \in S_n; \ \sigma ext{ has exactly } n-k ext{ cycles}}} \sigma$$

• Proof: Nice homework exercise (once stripped of the algebra).

• **Theorem 3.4.** For each $k \in \mathbb{N}$, we can evaluate the k-th elementary symmetric polynomial e_k at the YJM elements J_1, J_2, \ldots, J_n to obtain

$$e_k\left(J_1,J_2,\ldots,J_n
ight) = \sum_{\substack{\sigma \in \mathcal{S}_n;\ \sigma ext{ has exactly } n-k ext{ cycles}}} \sigma$$

- Proof: Nice homework exercise (once stripped of the algebra).
- There are formulas for other symmetric polynomials applied to J_1, J_2, \ldots, J_n (see Garsia/Egecioglu). There is also a general fact:

• Theorem 3.5 (Murphy).

$$\{f(J_1, J_2, \dots, J_n) \mid f \in \mathbf{k} [X_1, X_2, \dots, X_n] \text{ symmetric}\}\$$

= (center of the group algebra $\mathbf{k} [S_n]$).

• Theorem 3.5 (Murphy).

```
\{f(J_1, J_2, \dots, J_n) \mid f \in \mathbf{k} [X_1, X_2, \dots, X_n] \text{ symmetric}\}\
= (center of the group algebra \mathbf{k} [S_n]).
```

- Proof: See any of:
 - Gadi Moran, The center of $\mathbb{Z}[S_{n+1}]$..., 1992.
 - G. E. Murphy, The Idempotents of the Symmetric Group
 ..., 1983, Theorem 1.9 (for the case k = Z, but the
 general case easily follows).
 - Ceccherini-Silberstein/Scarabotti/Tolli, Representation
 Theory of the Symmetric Groups, 2010, Theorem 4.4.5
 (for the case k = Q, but the proof is easily adapted to all k).

This book also has more on the J_1, J_2, \ldots, J_n (but mind the errata).

The card shuffling point of view

• Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled 1, 2, ..., n. A permutation $\sigma \in S_n$ corresponds to the *state* in which the

cards are arranged $\sigma(1), \sigma(2), \ldots, \sigma(n)$ from top to bottom.

The card shuffling point of view

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in \mathcal{S}_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- We drop the "add up to 1" condition, and only require that $\sum_{\sigma \in S_n} a_{\sigma} > 0$. The probabilities must then be divided by $\sum_{\sigma \in S_n} a_{\sigma}$.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1, 2, \ldots, n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma(1), \sigma(2), \ldots, \sigma(n)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- We drop the "add up to 1" condition, and only require that $\sum_{\sigma \in S_n} a_{\sigma} > 0$. The probabilities must then be divided by $\sum_{\sigma \in S_n} a_{\sigma}$.
- For instance, $1+ \operatorname{cyc}_{1,2,3}$ corresponds to the random state in which the deck is sorted as 1,2,3 with probability $\frac{1}{2}$ and sorted as 2,3,1 with probability $\frac{1}{2}$.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.
- For example, if k > 1, then the right multiplication $R(J_k)$ by the YJM element J_k corresponds to swapping the k-th card with some card above it (chosen uniformly at random).

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.
- For example, if k > 1, then the right multiplication $R(J_k)$ by the YJM element J_k corresponds to swapping the k-th card with some card above it (chosen uniformly at random).
- Transposing such a matrix means time-reversing the random shuffle.

Another family of elements of $k[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}}$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in S_n} \sigma;$$

$$\mathcal{B}_{n,1} = \sum_{i=1}^{n} \operatorname{cyc}_{n,n-1,...,i};$$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

* Another family of elements of $\mathbf{k}[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} \sigma$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in \mathcal{S}_n} \sigma;$$
 $\mathcal{B}_{n,1} = \sum_{i=1}^n \operatorname{cyc}_{n,n-1,\dots,i};$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

• As a random shuffle, $\mathcal{B}_{n,k}$ (to be precise, $R(\mathcal{B}_{n,k})$) takes the bottom k cards and moves them to random positions. Its antipode $\mathcal{B}_{n,k}^*$ takes k random cards and moves them to the bottom positions.

Another family of elements of $k[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} \sigma$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in S_n} \sigma;$$

$$\mathcal{B}_{n,1} = \sum_{i=1}^{n} \operatorname{cyc}_{n,n-1,...,i};$$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

• $\mathcal{B}_n := \mathcal{B}_{n,1}$ is known as the *bottom-to-random shuffle* or the *Tsetlin library*.

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k}$$
 for each $k \in \left\{0,1,\ldots,n-1\right\}$.

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k} \qquad \quad \text{for each } k \in \left\{0,1,\ldots,n-1\right\}.$$

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i\right)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k}$$
 for each $k \in \left\{0,1,\ldots,n-1\right\}$.

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i\right)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.3 (Wallach). The minimal polynomial of \mathcal{B}_n over \mathbb{Q} is

$$\prod_{i \in \{0,1,\dots,n-2,n\}} (X-i) = (X-n) \prod_{i=0}^{n-2} (X-i).$$

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k}$$
 for each $k \in \left\{0,1,\ldots,n-1\right\}$.

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i\right)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.3 (Wallach). The minimal polynomial of \mathcal{B}_n over \mathbb{Q} is

$$\prod_{i \in \{0,1,\ldots,n-2,n\}} (X-i) = (X-n) \prod_{i=0}^{n-2} (X-i).$$

These are not hard to prove in this order. See
 https://mathoverflow.net/questions/308536 for the
 details.

• More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.

- More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.
- The antipodes

$$\mathcal{B}_{n,k}^* := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma(1) < \sigma(2) < \dots < \sigma(n-k)}} \sigma$$

of $\mathcal{B}_{n,k}$ are known as the *k-random-to-bottom shuffles* and have the same properties (since S is an algebra anti-automorphism).

- More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.
- The antipodes

$$\mathcal{B}_{n,k}^* := \sum_{\substack{\sigma \in S_n; \\ \sigma(1) < \sigma(2) < \dots < \sigma(n-k)}} \sigma$$

of $\mathcal{B}_{n,k}$ are known as the *k-random-to-bottom shuffles* and have the same properties (since S is an algebra anti-automorphism).

• Moreover, there are *top-to-random* and *random-to-top* shuffles defined in the same way but with renaming $1, 2, \ldots, n$ as $n, n-1, \ldots, 1$. They are just images of the $\mathcal{B}_{n,k}$ and $\mathcal{B}_{n,k}^*$ under the automorphism $a \mapsto w_0 a w_0^{-1}$ of $\mathbf{k}[S_n]$, where w_0 is the permutation with one-line notation $(n, n-1, \ldots, 1)$. Thus, top vs. bottom is mainly a matter of notation.

- Main references:
 - Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, 1988, Appendix.
 - Persi Diaconis, James Allen Fill and Jim Pitman, *Analysis* of Top to Random Shuffles, 1992.

Chapter 2

Random-to-random shuffles

References:

- Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized Shuffling Operators, arXiv:1102.2460.
- Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chiang, Patricia Commins, Veronica Lang, Spectrum of random-to-random shuffling in the Hecke algebra, arXiv:2407.08644.
- Sarah Brauner, Patricia Commins, Darij Grinberg, Franco Saliola, The q-deformed random-to-random family in the Hecke algebra, arXiv:2503.17580.

lacktriangle Here is a further family. For each $k \in \{0, 1, \dots, n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in S_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

 \blacksquare Here is a further family. For each $k \in \{0, 1, ..., n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in S_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

• Example: Writing permutations in one-line notation,

$$\begin{split} \mathcal{R}_{4,2} &= 6[1,2,3,4] + 5[1,2,4,3] + 5[1,3,2,4] + 4[1,3,4,2] \\ &+ 4[1,4,2,3] + 3[1,4,3,2] + 5[2,1,3,4] + 4[2,1,4,3] \\ &+ 4[2,3,1,4] + 3[2,3,4,1] + 3[2,4,1,3] + 2[2,4,3,1] \\ &+ 4[3,1,2,4] + 3[3,1,4,2] + 3[3,2,1,4] + 2[3,2,4,1] \\ &+ 2[3,4,1,2] + [3,4,2,1] + 3[4,1,2,3] + 2[4,1,3,2] \\ &+ 2[4,2,1,3] + [4,2,3,1] + [4,3,1,2]. \end{split}$$

 \blacksquare Here is a further family. For each $k \in \{0, 1, ..., n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in S_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

• Note: $\mathcal{R}_{n,0}=\operatorname{id}$ and $\mathcal{R}_{n,n-1}=n\sum_{\sigma\in\mathcal{S}_n}\sigma$ and $\mathcal{R}_{n,n}=\sum_{\sigma\in\mathcal{S}_n}\sigma$.

lacktriangle Here is a further family. For each $k \in \{0, 1, \dots, n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in \mathcal{S}_n} \mathsf{noninv}_{n-k} \left(\sigma \right) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

- Note: $\mathcal{R}_{n,0} = \text{id}$ and $\mathcal{R}_{n,n-1} = n \sum_{\sigma \in S_n} \sigma$ and $\mathcal{R}_{n,n} = \sum_{\sigma \in S_n} \sigma$.
- The card-shuffling interpretation of $\mathcal{R}_{n,k}$ is "pick any k cards from the deck and move them to k randomly chosen positions".

Random-to-random shuffles: Two surprises

* Theorem 6.1 (Reiner, Saliola, Welker). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).

Random-to-random shuffles: Two surprises

- * Theorem 6.1 (Reiner, Saliola, Welker). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- * Theorem 6.2 (Dieker, Saliola, Lafrenière). The minimal polynomial of each $\mathcal{R}_{n,k}$ over \mathbb{Q} is a product of X-i's for distinct integers i. For example, the one of $\mathcal{R}_{n,1}$ divides

$$\prod_{i=0}^{n^2} (X-i).$$

The exact factors can be given in terms of certain statistics on Young diagrams.

Random-to-random shuffles: References

- Main references: the "classics"
 - Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized Shuffling Operators, arXiv:1102.2460.
 - A.B. Dieker, F.V. Saliola, *Spectral analysis of random-to-random Markov chains*, 2018.
 - Nadia Lafrenière, Valeurs propres des opérateurs de mélanges symétrisés, thesis, 2019.

and the two recent preprints

- Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chiang, Patricia Commins, Veronica Lang, Spectrum of random-to-random shuffling in the Hecke algebra, arXiv:2407.08644.
- Sarah Brauner, Patricia Commins, Darij Grinberg, Franco Saliola, The q-deformed random-to-random family in the Hecke algebra, arXiv:2503.17580.

Random-to-random shuffles: What we do

 The "classical" proofs are complicated, technical and long. In this talk, I will outline some parts of the two recent preprints, including a simpler proof of Theorem 6.1 and most of Theorem 6.2. (The full proof of Theorem 6.2 is still long and hard.)

- The first step is a formula that is easy to prove combinatorially:
- **Proposition 6.3.** For each $k \in \{0, 1, ..., n\}$, we have

$$\mathcal{R}_{n,k} = \frac{1}{k!} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

- The first step is a formula that is easy to prove combinatorially:
- **Proposition 6.3.** For each $k \in \{0, 1, ..., n\}$, we have

$$\mathcal{R}_{n,k} = rac{1}{k!} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

• However, the $\mathcal{B}_{n,k}$ do not commute with the $\mathcal{B}_{n,k}^*$, so this is not by itself an answer.

• Let $q \in \mathbf{k}$ be a parameter. The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra*) is a q-deformation of the group algebra $\mathbf{k}[S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) T_i + q$$
 for all $i \in [n-1]$; $T_i T_j = T_j T_i$ whenever $|i-j| > 1$; $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for all $i \in [n-2]$.

We call this algebra \mathcal{H}_n .

• Let $q \in \mathbf{k}$ be a parameter. The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra*) is a q-deformation of the group algebra $\mathbf{k}[S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) T_i + q$$
 for all $i \in [n-1]$; $T_i T_j = T_j T_i$ whenever $|i-j| > 1$; $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for all $i \in [n-2]$.

We call this algebra \mathcal{H}_n .

• For q = 1, this is the group algebra $\mathbf{k}[S_n]$ (and the generator T_i is the simple transposition $s_i = \text{cyc}_{i,i+1}$).

• Let $q \in \mathbf{k}$ be a parameter. The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra*) is a q-deformation of the group algebra $\mathbf{k}[S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) T_i + q$$
 for all $i \in [n-1]$; $T_i T_j = T_j T_i$ whenever $|i-j| > 1$; $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for all $i \in [n-2]$.

We call this algebra \mathcal{H}_n .

- For q = 1, this is the group algebra $\mathbf{k}[S_n]$ (and the generator T_i is the simple transposition $s_i = \text{cyc}_{i,i+1}$).
- For general q, it still is a free **k**-module of rank n!, with a basis $(T_w)_{w \in S_n}$ indexed by permutations $w \in S_n$. The basis vectors are defined by $T_w := T_{i_1} T_{i_2} \cdots T_{i_k}$, where $s_{i_1} s_{i_2} \cdots s_{i_k}$ is a reduced expression for w. For q = 1, this T_w is just w.

• Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.

- Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.
- Almost all results of this talk hold for the Hecke algebra \mathcal{H}_n (occasionally requiring assumptions such as "q is not a root unity" for structural results). The YJM elements must be q-deformed; integers become q-integers; etc.

- Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.
- Almost all results of this talk hold for the Hecke algebra \mathcal{H}_n (occasionally requiring assumptions such as "q is not a root unity" for structural results). The YJM elements must be q-deformed; integers become q-integers; etc.

Main change: The random-to-random shuffle must now be **defined** as

$$\mathcal{R}_{n,k} := \frac{1}{[k]!_a} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

Noninversions no longer work!

- Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.
- Almost all results of this talk hold for the Hecke algebra \mathcal{H}_n (occasionally requiring assumptions such as "q is not a root unity" for structural results). The YJM elements must be q-deformed; integers become q-integers; etc.

Main change: The random-to-random shuffle must now be **defined** as

$$\mathcal{R}_{n,k} := rac{1}{[k]!_a} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

Noninversions no longer work! But we will stick to the q=1 case in this talk.

The recursion

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_n \mathcal{R}_{n,k} = \underbrace{\left(\mathcal{R}_{n-1,k} + \left(\left(n+1-k\right) + J_n\right) \mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}} \mathcal{B}_n.$$

The recursion

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_n \mathcal{R}_{n,k} = \underbrace{\left(\mathcal{R}_{n-1,k} + \left(\left(n+1-k\right) + J_n\right) \mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}} \mathcal{B}_n.$$

• The proof takes about 5 pages, relying on some more elementary computations from prior work (ca. 10–15 pages in total).

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_n \mathcal{R}_{n,k} = \underbrace{\left(\mathcal{R}_{n-1,k} + \left(\left(n+1-k\right) + J_n\right) \mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}} \mathcal{B}_n.$$

- The proof takes about 5 pages, relying on some more elementary computations from prior work (ca. 10–15 pages in total).
- This recursion does not actually compute $\mathcal{R}_{n,k}$. But it says enough about $\mathcal{R}_{n,k}$ to carry our proofs.
- Note also that $\mathcal{R}_{n,k} \in \mathcal{B}_n^* \mathbf{k} [S_n]$ by its definition (when $k \geq 1$). This makes the recursion so useful.

Commutativity of random-to-random

• Theorem 8.1 leads fairly easily to a proof of commutativity (Theorem 6.1). Indeed, inducting on n, we observe that the $\mathcal{W}_{n,k}$ s all commute by the induction hypothesis (and the easy fact that J_n commutes with everything in $\mathbf{k}[S_{n-1}]$). Thus, using $\mathcal{B}_n \mathcal{R}_{n,k} = \mathcal{W}_{n,k} \mathcal{B}_n$, we find

$$\mathcal{B}_{n} \mathcal{R}_{n,i} \mathcal{R}_{n,j} = \mathcal{W}_{n,i} \mathcal{B}_{n} \mathcal{R}_{n,j} = \mathcal{W}_{n,i} \mathcal{W}_{n,j} \mathcal{B}_{n}$$
$$= \mathcal{W}_{n,j} \mathcal{W}_{n,i} \mathcal{B}_{n} = \mathcal{W}_{n,j} \mathcal{B}_{n} \mathcal{R}_{n,i} = \mathcal{B}_{n} \mathcal{R}_{n,j} \mathcal{R}_{n,i}.$$

Remains to get rid of the \mathcal{B}_n factor at the front. Recall that all $\mathcal{R}_{n,i}$ (except for the trivial $\mathcal{R}_{n,0}$) lie in $\mathcal{B}_n^* \mathbf{k} [S_n]$. But we can WLOG assume that $\mathbf{k} = \mathbb{Q}$, and then the equality $\mathcal{B}_n \mathcal{B}_n^* a = 0$ entails $\mathcal{B}_n^* a = 0$ (positivity trick! cf. linear algebra: Ker $(A^T A) = \text{Ker } A$ for a real matrix A).

 Alternatively, the trick can be avoided (see arXiv: 2503.17580).

• Now to Theorem 6.2:

The eigenvalues of $\mathcal{R}_{n,k}$ are **nonnegative reals**, since $\mathcal{R}_{n,k}$ is represented by a positive semidefinite symmetric matrix (Proposition 6.3).

But why are they **integers**?

- Now to Theorem 6.2: The eigenvalues of $\mathcal{R}_{n,k}$ are **nonnegative reals**, since $\mathcal{R}_{n,k}$ is represented by a positive semidefinite symmetric matrix (Proposition 6.3). But why are they **integers**?
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:

- Now to Theorem 6.2:
 The eigenvalues of R_{n,k} are nonnegative reals, since R_{n,k} is represented by a positive semidefinite symmetric matrix (Proposition 6.3).

 But why are they integers?
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- An element a of a \mathbf{k} -algebra A is said to be *split* (over \mathbf{k}) if there exist some scalars $u_1, u_2, \ldots, u_n \in \mathbf{k}$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.

But why are they **integers**?

- Now to Theorem 6.2: The eigenvalues of $\mathcal{R}_{n,k}$ are **nonnegative reals**, since $\mathcal{R}_{n,k}$ is represented by a positive semidefinite symmetric matrix (Proposition 6.3).
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- * An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When \mathbf{k} is an integral domain and A is a free \mathbf{k} -module of finite rank, this is the same as saying that R(a) has all eigenvalues in \mathbf{k} .

- Now to Theorem 6.2:
 The eigenvalues of R_{n,k} are nonnegative reals, since R_{n,k} is represented by a positive semidefinite symmetric matrix (Proposition 6.3).

 But why are they integers?
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- * An element a of a \mathbf{k} -algebra A is said to be *split* (over \mathbf{k}) if there exist some scalars $u_1, u_2, \ldots, u_n \in \mathbf{k}$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When \mathbf{k} is an integral domain and A is a free \mathbf{k} -module of finite rank, this is the same as saying that R(a) has all eigenvalues in \mathbf{k} .
 - In particular, for $\mathbf{k} = \mathbb{Z}$ and $A = \mathbf{k} [S_n]$, this means that all eigenvalues of R(a) are $\in \mathbb{Z}$. This is what we want to show for $a = \mathcal{R}_{n,k}$.

- Now to Theorem 6.2:
 - The eigenvalues of $\mathcal{R}_{n,k}$ are **nonnegative reals**, since $\mathcal{R}_{n,k}$ is represented by a positive semidefinite symmetric matrix (Proposition 6.3).
 - But why are they **integers**?
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When \mathbf{k} is an integral domain and A is a free \mathbf{k} -module of finite rank, this is the same as saying that R(a) has all eigenvalues in \mathbf{k} .
 - In particular, for $\mathbf{k} = \mathbb{Z}$ and $A = \mathbf{k} [S_n]$, this means that all eigenvalues of R(a) are $\in \mathbb{Z}$. This is what we want to show for $a = \mathcal{R}_{n,k}$.
 - So we must show that $\mathcal{R}_{n,k}$ is split over \mathbb{Z} .

• We prove several general properties of split elements (nice exercises on commutative algebra!):

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- **Corollary 9.2.** A commutative subalgebra of *A* generated by split elements consists entirely of split elements.

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- * Corollary 9.2. A commutative subalgebra of A generated by split elements consists entirely of split elements.
- **Theorem 9.3.** If b, c, f are elements of A such that f is split and such that bc = fb and $c \in Ab$, then c is split.

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- * Corollary 9.2. A commutative subalgebra of A generated by split elements consists entirely of split elements.
- **Theorem 9.3.** If b, c, f are elements of A such that f is split and such that bc = fb and $c \in Ab$, then c is split.
 - Theorem 9.3 is tailored to our use:

bc = fb	$c \in Ab$			
$\mathcal{B}_n \mathcal{R}_{n,k} = \mathcal{W}_{n,k} \mathcal{B}_n$	$\mathcal{R}_{n,k} \in \mathbf{k}\left[S_n\right] \mathcal{B}_n$			

The splitness of $W_{n,k}$ follows from the splitness of the commuting elements J_n , $\mathcal{R}_{n-1,k-1}$ and $\mathcal{R}_{n-1,k}$ (induction!) by Corollary 9.2. We need the splitness of the YJM elements, which was proved (e.g.) by Murphy.

(Both times, $a, b \in A$ are arbitrary.)

Theorem 9.3 looks baroque, but in fact it easily decomposes into two particular cases:
 Corollary 9.4. If ba is split, then ab is also split.
 Corollary 9.5. If a is split and b² = ab, then b is split.

• The splitness theory proves easily that all eigenvalues of $\mathcal{R}_{n,k}$ are integers, but it does not compute them explicitly. Indeed, it produces "phantom eigenvalues" which do not actually appear.

- The splitness theory proves easily that all eigenvalues of $\mathcal{R}_{n,k}$ are integers, but it does not compute them explicitly. Indeed, it produces "phantom eigenvalues" which do not actually appear.
- With a lot more work (Specht modules, seminormal basis, Pieri rule, etc.), we have been able to compute the eigenvalues with their multiplicities fully.
- I only have time to state the main result.

• Theorem 10.1. Let $n, k \geq 0$. The eigenvalues of $R(\mathcal{R}_{n,k})$ on $\mathbf{k}[S_n]$ are the elements

$$\mathcal{E}_{\lambda \setminus \mu}(k) := \sum_{j < (\ell_1 < \ell_2 < \dots < \ell_k) \leq n} \prod_{m=1}^k (\ell_m + 1 - m + c_{\ell^{\lambda \setminus \mu}}(\ell_m))$$

for all horizontal strips $\lambda \setminus \mu$ that satisfy $\lambda \vdash n$ and $d^{\mu} \neq 0$. Here,

- d^{μ} denotes the number of desarrangement tableaux of shape μ (that is, standard tableaux of shape μ whose smallest non-descent is even);
- j is the size of μ ;
- $\mathfrak{t}^{\lambda \setminus \mu}$ is the skew tableau of shape $\lambda \setminus \mu$ obtained by filling in the boxes of $\lambda \setminus \mu$ with $j+1, j+2, \ldots, n$ from top to bottom;
- $c_{t^{\lambda \setminus \mu}}(p) = y x$ if the cell of $t^{\lambda \setminus \mu}$ containing the entry p is (x, y).

Moreover, the multiplicity of each such eigenvalue $\mathcal{E}_{\lambda\setminus\mu}(k)$ is $d^\mu f^\lambda$, where f^λ is the number of standard tableaux of shape λ (unless there are collisions).

• We have explicit formulas for specific shapes and strips:

$$\mathcal{E}_{(n)\setminus\varnothing}(k)=k!\binom{n}{k}^2;$$

$$\mathcal{E}_{(n-1,1)\setminus(j,1)}(k)=k!\binom{n-j-1}{k}\binom{n+j}{k} \qquad \text{for all } j\in[n-1].$$

But there is no such nice formula for $\mathcal{E}_{(4,1,1)\setminus(1,1)}(1)$.

Open questions

- **Question:** Any nicer formulas for the eigenvalues $\mathcal{E}_{\lambda \setminus \mu}(k)$?
- Question (Reiner): What is the dimension of the subalgebra of $\mathbb{Q}[S_n]$ generated by $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \dots, \mathcal{R}_{n,n}$?

п	1	2	3	4	5	6	7	8	9	10	11	12
dim (subalgebra)	1	2	4	7	15	30	54	95	159	257	400	613

(sequence not in the OEIS as of 2025-10-06).

The same numbers hold for the q-deformation!

Chapter 3

Somewhere-to-below shuffles

References:

- Darij Grinberg, Nadia Lafrenière, The one-sided cycle shuffles in the symmetric group algebra, Algebraic Combinatorics (2024), arXiv:2212.06274.
- Darij Grinberg, Commutator nilpotency for somewhere-to-below shuffles, arXiv:2309.05340.
- Darij Grinberg, The representation theory of somewhere-to-below shuffles, arXiv:2508.00752.

• Now to something completely different...

- Now to something completely different...
- In 2021, Nadia Lafrenière defined the *somewhere-to-below* shuffles $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ by setting

$$\mathbf{t}_{\ell} := \operatorname{cyc}_{\ell} + \operatorname{cyc}_{\ell,\ell+1} + \operatorname{cyc}_{\ell,\ell+1,\ell+2} + \cdots + \operatorname{cyc}_{\ell,\ell+1,\dots,n} \in \mathbf{k} \left[S_n \right]$$
 for each $\ell \in [n]$.

Note: $\mathbf{t}_n = \mathrm{id}$.

- Now to something completely different...
- In 2021, Nadia Lafrenière defined the *somewhere-to-below* shuffles $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ by setting

$$\mathbf{t}_{\ell} := \mathsf{cyc}_{\ell} + \mathsf{cyc}_{\ell,\ell+1} + \mathsf{cyc}_{\ell,\ell+1,\ell+2} + \dots + \mathsf{cyc}_{\ell,\ell+1,\dots,n} \in \mathbf{k} \left[S_n \right]$$
 for each $\ell \in [n]$.

- Note: $\mathbf{t}_n = \mathrm{id}$.
 - As a card shuffle, t_ℓ takes the ℓ-th card from the top and moves it further down the deck.

- Now to something completely different...
- In 2021, Nadia Lafrenière defined the *somewhere-to-below* shuffles $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ by setting

$$\mathbf{t}_{\ell} := \operatorname{cyc}_{\ell} + \operatorname{cyc}_{\ell,\ell+1} + \operatorname{cyc}_{\ell,\ell+1,\ell+2} + \cdots + \operatorname{cyc}_{\ell,\ell+1,\dots,n} \in \mathbf{k} [S_n]$$
 for each $\ell \in [n]$.

- Note: $\mathbf{t}_n = \mathrm{id}$.
 - As a card shuffle, t_ℓ takes the ℓ-th card from the top and moves it further down the deck.
 - \mathbf{t}_1 is called the *top-to-random shuffle*. Upon renaming $1, 2, \ldots, n$ as $n, n-1, \ldots, 1$, it becomes $\mathcal{B}_{n,1}$. (So it is conjugate to $\mathcal{B}_{n,1}$ by w_0 .)

Somewhere-to-below shuffles: non-commutativity

• $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ do not commute for $n \geq 3$. For n = 3, we have

$$[\boldsymbol{t}_1,\boldsymbol{t}_2] = \mathsf{cyc}_{1,2} + \mathsf{cyc}_{1,2,3} - \mathsf{cyc}_{1,3,2} - \mathsf{cyc}_{1,3} \,.$$

Somewhere-to-below shuffles: non-commutativity

• $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ do not commute for $n \geq 3$. For n = 3, we have

$$[\boldsymbol{t}_1, \boldsymbol{t}_2] = \mathsf{cyc}_{1,2} + \mathsf{cyc}_{1,2,3} - \mathsf{cyc}_{1,3,2} - \mathsf{cyc}_{1,3} \,.$$

- However, they come pretty close to commuting!
- * Theorem 20.1 (Lafreniere, G., 2022). There exists a basis of the **k**-module $\mathbf{k}[S_n]$ in which all of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \ldots, R(\mathbf{t}_n)$ are represented by upper-triangular matrices.

- This basis is not hard to define, but I haven't seen it before.
- \blacksquare For each $w \in S_n$, we let

Des
$$w := \{i \in [n-1] \mid w(i) > w(i+1)\}.$$

This is called the *descent set* of w.

- This basis is not hard to define, but I haven't seen it before.
- * For each $w \in S_n$, we let

Des
$$w := \{i \in [n-1] \mid w(i) > w(i+1)\}.$$

This is called the *descent set* of w.

st For each $i \in [n-1]$, we let $s_i := \mathsf{cyc}_{i,i+1}$.

- This basis is not hard to define, but I haven't seen it before.
- * For each $w \in S_n$, we let

Des
$$w := \{i \in [n-1] \mid w(i) > w(i+1)\}.$$

This is called the *descent set* of w.

- * For each $i \in [n-1]$, we let $s_i := \operatorname{cyc}_{i,i+1}$.
- lacksquare For each $I\subseteq [n-1]$, we let

$$G(I) :=$$
(the subgroup of S_n generated by the s_i for $i \in I$).

This is called a *Young parabolic subgroup* of S_n .

 \blacksquare For each $w \in S_n$, we let

$$\mathbf{a}_w := \sum_{\sigma \in G(\mathsf{Des}\,w)} w\sigma \in \mathbf{k}\left[S_n\right].$$

In other words, \mathbf{a}_w is obtained by breaking up the word w into maximal decreasing factors and re-sorting each factor arbitrarily (without mixing different factors).

* For each $w \in S_n$, we let

$$\mathbf{a}_w := \sum_{\sigma \in G(\mathsf{Des}\,w)} w\sigma \in \mathbf{k}\left[S_n\right].$$

In other words, \mathbf{a}_w is obtained by breaking up the word w into maximal decreasing factors and re-sorting each factor arbitrarily (without mixing different factors).

The family $(\mathbf{a}_w)_{w \in S_n}$ is a basis of $\mathbf{k}[S_n]$ (by triangularity).

* For each $w \in S_n$, we let

$$\mathbf{a}_w := \sum_{\sigma \in G(\mathsf{Des}\,w)} w \sigma \in \mathbf{k}\left[S_n\right].$$

In other words, \mathbf{a}_w is obtained by breaking up the word w into maximal decreasing factors and re-sorting each factor arbitrarily (without mixing different factors).

- lacktriangleright The family $(\mathbf{a}_w)_{w \in S_n}$ is a basis of $\mathbf{k}[S_n]$ (by triangularity).
 - For instance, for n = 3, we have

$$\begin{aligned} &\mathbf{a}_{[123]} = [123]\,; \\ &\mathbf{a}_{[132]} = [132] + [123]\,; \\ &\mathbf{a}_{[213]} = [213] + [123]\,; \\ &\mathbf{a}_{[231]} = [231] + [213]\,; \\ &\mathbf{a}_{[312]} = [312] + [132]\,; \\ &\mathbf{a}_{[312]} = [321] + [312] + [231] + [213] + [132] + [123]\,. \end{aligned}$$

Theorem 14.1 (Lafrenière, G.). For any $w \in S_n$ and $\ell \in [n]$, we have

$$\mathbf{a}_{w}\mathbf{t}_{\ell} = \mu_{w,\ell}\mathbf{a}_{w} + \sum_{\substack{v \in S_{n}; \\ v \prec w}} \lambda_{w,\ell,v}\mathbf{a}_{v}$$

for some nonnegative integer $\mu_{w,\ell}$, some integers $\lambda_{w,\ell,\nu}$ and a certain partial order \prec on S_n .

Theorem 14.1 (Lafrenière, G.). For any $w \in S_n$ and $\ell \in [n]$, we have

$$\mathbf{a}_{w}\mathbf{t}_{\ell} = \mu_{w,\ell}\mathbf{a}_{w} + \sum_{\substack{v \in S_{n}; \\ v \prec w}} \lambda_{w,\ell,v}\mathbf{a}_{v}$$

for some nonnegative integer $\mu_{w,\ell}$, some integers $\lambda_{w,\ell,\nu}$ and a certain partial order \prec on S_n .

Thus, the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \dots, R(\mathbf{t}_n)$ are upper-triangular with respect to the basis $(\mathbf{a}_w)_{w \in S_n}$.

• **Example:** For n = 4, we have

$$\mathbf{a}_{[4312]}\mathbf{t}_2 = \mathbf{a}_{[4312]} + \underbrace{\mathbf{a}_{[4321]} - \mathbf{a}_{[4231]} - \mathbf{a}_{[3241]} - \mathbf{a}_{[2143]}}_{\text{subscripts are } \prec [4312]}.$$

• **Example:** For n = 4, we have

$$\mathbf{a}_{[4312]}\mathbf{t}_2 = \mathbf{a}_{[4312]} + \underbrace{\mathbf{a}_{[4321]} - \mathbf{a}_{[4231]} - \mathbf{a}_{[3241]} - \mathbf{a}_{[2143]}}_{\text{subscripts are} \prec [4312]}.$$

• **Example:** For n = 3, the endomorphism $R(\mathbf{t}_1)$ is represented by the matrix

	a [321]	a [231]	a [132]	a [213]	a [312]	a [123]
a [321]	3	1	1		1	
$a_{[231]}$				1	-1	1
$a_{[132]}$				1		
$a_{[213]}$				1		
$a_{[312]}$					1	
$a_{[123]}$						1

(empty cells = zero entries). For instance, the last column means $\mathbf{a}_{[123]}\mathbf{t}_1 = \mathbf{a}_{[123]} + \mathbf{a}_{[231]}$.

Eigenvalues of somewhere-to-below shuffles, 1

• Corollary 14.2. The eigenvalues of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \dots, R(\mathbf{t}_n)$ and of all their linear combinations

$$R(\lambda_1\mathbf{t}_1 + \lambda_2\mathbf{t}_2 + \cdots + \lambda_n\mathbf{t}_n)$$

are integers as long as $\lambda_1, \lambda_2, \dots, \lambda_n$ are.

Eigenvalues of somewhere-to-below shuffles, 1

• Corollary 14.2. The eigenvalues of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \dots, R(\mathbf{t}_n)$ and of all their linear combinations

$$R(\lambda_1\mathbf{t}_1 + \lambda_2\mathbf{t}_2 + \cdots + \lambda_n\mathbf{t}_n)$$

are integers as long as $\lambda_1, \lambda_2, \dots, \lambda_n$ are.

• How many different eigenvalues do they have?

Eigenvalues of somewhere-to-below shuffles, 1

• **Corollary 14.2.** The eigenvalues of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \dots, R(\mathbf{t}_n)$ and of all their linear combinations

$$R(\lambda_1\mathbf{t}_1+\lambda_2\mathbf{t}_2+\cdots+\lambda_n\mathbf{t}_n)$$

are integers as long as $\lambda_1, \lambda_2, \dots, \lambda_n$ are.

- How many different eigenvalues do they have?
- $R(\mathbf{t}_1) \cong R(\mathcal{B}_{n,1})$ has only n eigenvalues: $0, 1, \ldots, n-2, n$, as we have seen before. The other $R(\mathbf{t}_{\ell})$'s have even fewer.

Eigenvalues of somewhere-to-below shuffles, 1

• Corollary 14.2. The eigenvalues of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \dots, R(\mathbf{t}_n)$ and of all their linear combinations

$$R(\lambda_1\mathbf{t}_1 + \lambda_2\mathbf{t}_2 + \cdots + \lambda_n\mathbf{t}_n)$$

are integers as long as $\lambda_1, \lambda_2, \dots, \lambda_n$ are.

- How many different eigenvalues do they have?
- $R(\mathbf{t}_1) \cong R(\mathcal{B}_{n,1})$ has only n eigenvalues: $0, 1, \ldots, n-2, n$, as we have seen before. The other $R(\mathbf{t}_{\ell})$'s have even fewer.
- But their linear combinations $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n)$ can have many more. How many?

A set S of integers is called *lacunar* if it contains no two consecutive integers (i.e., we have $s + 1 \notin S$ for all $s \in S$).

- A set S of integers is called *lacunar* if it contains no two consecutive integers (i.e., we have $s + 1 \notin S$ for all $s \in S$).
- * Theorem 15.1 (combinatorial interpretation of Fibonacci numbers, folklore). The number of lacunar subsets of [n-1] is the *Fibonacci number* f_{n+1} . (Recall: $f_0 = 0$, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$.)

- A set S of integers is called *lacunar* if it contains no two consecutive integers (i.e., we have $s + 1 \notin S$ for all $s \in S$).
- * Theorem 15.1 (combinatorial interpretation of Fibonacci numbers, folklore). The number of lacunar subsets of [n-1] is the *Fibonacci number* f_{n+1} . (Recall: $f_0 = 0$, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$.)
- **Theorem 15.2.** When $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ are generic, the endomorphism $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \dots + \lambda_n \mathbf{t}_n)$ is diagonalizable and has f_{n+1} distinct eigenvalues.

- A set S of integers is called *lacunar* if it contains no two consecutive integers (i.e., we have $s + 1 \notin S$ for all $s \in S$).
- * Theorem 15.1 (combinatorial interpretation of Fibonacci numbers, folklore). The number of lacunar subsets of [n-1] is the *Fibonacci number* f_{n+1} . (Recall: $f_0 = 0$, $f_1 = 1$, $f_p = f_{n-1} + f_{n-2}$.)
- * Theorem 15.2. When $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ are generic, the endomorphism $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \dots + \lambda_n \mathbf{t}_n)$ is diagonalizable and has f_{n+1} distinct eigenvalues.
 - Note that $f_{n+1} \ll n!$.

We prove this by finding a filtration

$$0 = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_{f_{n+1}} = \mathbf{k} \left[S_n \right]$$

of the **k**-module **k** $[S_n]$ such that each $R(\mathbf{t}_\ell)$ acts as a **scalar** on each of its quotients F_i/F_{i-1} . In matrix terms, this means bringing $R(\mathbf{t}_\ell)$ to a block-triangular form, with the diagonal blocks being "scalar times I" matrices.

- It is only natural that the quotients should correspond to the lacunar subsets of [n-1].
- Let us approach the construction of this filtration.

* For each $I \subseteq [n]$, we set

$$\operatorname{sum} I := \sum_{i \in I} i$$

st For each $I \subseteq [n]$, we set

$$\operatorname{sum} I := \sum_{i \in I} i$$

and

$$\widehat{I} := \{0\} \cup I \cup \{n+1\} \qquad \text{("enclosure" of } I\text{)}$$

and

$$I' := [n-1] \setminus (I \cup (I-1))$$
 ("non-shadow" of I)

and

$$F(I) := \{ \mathbf{q} \in \mathbf{k} [S_n] \mid \mathbf{q} s_i = \mathbf{q} \text{ for all } i \in I' \} \subseteq \mathbf{k} [S_n].$$

In probabilistic terms, F(I) consists of those random states of the deck that do not change if we swap the i-th and (i+1)-st cards from the top as long as neither i nor i+1 is in I. To put it informally: F(I) consists of those random states that are "fully shuffled" between any two consecutive \widehat{I} -positions.

• **Example:** If n = 11 and $I = \{3, 6, 7\}$, then

$$\widehat{I} := \{0\} \cup I \cup \{n+1\} = \{0, 3, 6, 7, 12\}$$

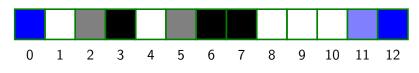
and

$$I' := [n-1] \setminus (I \cup (I-1)) = \{1,4,8,9,10\}$$

and

$$F(I) = \{ \mathbf{q} \in \mathbf{k} [S_{11}] \mid \mathbf{q} s_1 = \mathbf{q} s_4 = \mathbf{q} s_8 = \mathbf{q} s_9 = \mathbf{q} s_{10} = \mathbf{q} \}.$$

Illustrating this:



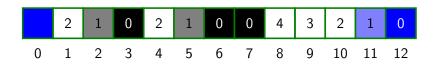
(black =
$$I$$
; grey = $I - 1$; blue = $\widehat{I} \setminus I$; lightblue = n ; white = I').

For any $\ell \in [n]$, we let $m_{I,\ell}$ be the distance from ℓ to the next-higher element of \widehat{I} . In other words,

$$m_{I,\ell} := \left(ext{smallest element of } \widehat{I} ext{ that is } \geq \ell
ight) - \ell \in \left\{ 0, 1, \ldots, n
ight\}.$$

In our above example,

$$(m_{I,1}, m_{I,2}, \ldots, m_{I,11}) = (2, 1, 0, 2, 1, 0, 0, 4, 3, 2, 1).$$



• We note that, for any $\ell \in [n]$, we have the equivalence

$$m_{I,\ell} = 0 \iff \ell \in \widehat{I} \iff \ell \in I.$$

Solution Crucial Lemma 16.1. Let $I \subseteq [n]$ and $\ell \in [n]$. Then,

$$\mathbf{qt}_{\ell} \in m_{I,\ell}\mathbf{q} + \sum_{\substack{J \subseteq [n]; \\ \text{sum } J < \text{sum } I}} F\left(J\right)$$
 for each $\mathbf{q} \in F\left(I\right)$.

• *Proof:* Expand \mathbf{qt}_{ℓ} by the definition of \mathbf{t}_{ℓ} , and break up the resulting sum into smaller bunches using the interval decomposition

$$[\ell, n] = [\ell, i_k - 1] \sqcup [i_k, i_{k+1} - 1] \sqcup [i_{k+1}, i_{k+2} - 1] \sqcup \cdots \sqcup [i_p, n]$$

(where $i_k < i_{k+1} < \cdots < i_p$ are the elements of I larger or equal to ℓ). The $[\ell, i_k - 1]$ bunch gives the $m_{I,\ell}\mathbf{q}$ term; the others live in appropriate F(J)'s.

See arXiv:2212.06274 for the details.

- * Thus, we obtain a filtration of $\mathbf{k}[S_n]$ if we label the subsets I of [n] in the order of increasing sum I and add up the respective F(I)s.
 - On each subquotient of this filtration, \mathbf{t}_{ℓ} acts as a scalar $m_{l,\ell}$.
 - Unfortunately, this filtration has 2^n , not f_{n+1} terms.

* Thus, we obtain a filtration of $\mathbf{k}[S_n]$ if we label the subsets I of [n] in the order of increasing sum I and add up the respective F(I)s.

On each subquotient of this filtration, \mathbf{t}_{ℓ} acts as a scalar $m_{I,\ell}$.

- Unfortunately, this filtration has 2^n , not f_{n+1} terms.
- Fortunately, that's because many of its terms are redundant. The ones that aren't correspond precisely to the I's that are lacunar subsets of [n-1]:
 - **Lemma 16.2.** Let $k \in \mathbb{N}$. Then,

$$\sum_{\substack{J\subseteq [n];\\ \operatorname{sum} J < k}} F\left(J\right) = \sum_{\substack{J\subseteq [n-1] \text{ is lacunar;}\\ \operatorname{sum} J < k}} F\left(J\right).$$

• *Proof:* If $J \subseteq [n]$ contains n or fails to be lacunar, then F(J) is a submodule of some F(K) with sum K < sum J. (Exercise!)

• Now, we let $Q_1, Q_2, \ldots, Q_{f_{n+1}}$ be the f_{n+1} lacunar subsets of [n-1], listed in such an order that

$$\operatorname{sum}(Q_1) \leq \operatorname{sum}(Q_2) \leq \cdots \leq \operatorname{sum}(Q_{f_{n+1}})$$
.

Then, for each $i \in [0, f_{n+1}]$, define a **k**-submodule

$$F_i := F(Q_1) + F(Q_2) + \cdots + F(Q_i)$$
 of $\mathbf{k}[S_n]$

(so that $F_0 = 0$). The resulting filtration

$$0 = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_{f_{n+1}} = \mathbf{k} \left[S_n \right]$$

(which we call the *Fibonacci filtration* of $k[S_n]$) satisfies the properties we need:

• **Theorem 16.3.** For each $i \in [f_{n+1}]$ and $\ell \in [n]$, we have

$$F_i \cdot (\mathbf{t}_{\ell} - m_{Q_i,\ell}) \subseteq F_{i-1}$$

(so that $R(\mathbf{t}_{\ell})$ acts on F_i/F_{i-1} as multiplication by $m_{Q_i,\ell}$).

• *Proof:* Lemma 16.1 + Lemma 16.2.

• Theorem 16.3. For each $i \in [f_{n+1}]$ and $\ell \in [n]$, we have

$$F_i \cdot (\mathbf{t}_{\ell} - m_{Q_i,\ell}) \subseteq F_{i-1}$$

(so that $R(\mathbf{t}_{\ell})$ acts on F_i/F_{i-1} as multiplication by $m_{Q_i,\ell}$).

- *Proof:* Lemma 16.1 + Lemma 16.2.
- **Lemma 16.4.** The quotients F_i/F_{i-1} are nontrivial for all $i \in [f_{n+1}]$.
- Proof: See below.

• Theorem 16.3. For each $i \in [f_{n+1}]$ and $\ell \in [n]$, we have

$$F_i \cdot (\mathbf{t}_{\ell} - m_{Q_i,\ell}) \subseteq F_{i-1}$$

(so that $R(\mathbf{t}_{\ell})$ acts on F_i/F_{i-1} as multiplication by $m_{Q_i,\ell}$).

- *Proof:* Lemma 16.1 + Lemma 16.2.
- **Lemma 16.4.** The quotients F_i/F_{i-1} are nontrivial for all $i \in [f_{n+1}]$.
- Proof: See below.
- **Corollary 16.5.** Let **k** be a field, and let $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbf{k}$. Then, the eigenvalues of $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \dots + \lambda_n \mathbf{t}_n)$ are the linear combinations

$$\lambda_1 m_{I,1} + \lambda_2 m_{I,2} + \dots + \lambda_n m_{I,n}$$
 for $I \subseteq [n-1]$ lacunar.

• Theorem 16.3. For each $i \in [f_{n+1}]$ and $\ell \in [n]$, we have

$$F_i \cdot (\mathbf{t}_{\ell} - m_{Q_i,\ell}) \subseteq F_{i-1}$$

(so that $R(\mathbf{t}_{\ell})$ acts on F_i/F_{i-1} as multiplication by $m_{Q_i,\ell}$).

- *Proof:* Lemma 16.1 + Lemma 16.2.
- **Lemma 16.4.** The quotients F_i/F_{i-1} are nontrivial for all $i \in [f_{n+1}]$.
- Proof: See below.
- **Corollary 16.5.** Let **k** be a field, and let $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbf{k}$. Then, the eigenvalues of $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n)$ are the linear combinations

$$\lambda_1 m_{I,1} + \lambda_2 m_{I,2} + \dots + \lambda_n m_{I,n}$$
 for $I \subseteq [n-1]$ lacunar.

- Theorem 15.2 easily follows by some linear algebra.
- More generally, this holds not just for linear combinations $\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n$ but for any noncommutative polynomials in $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$.

- The descent-destroying basis $(\mathbf{a}_w)_{w \in S_n}$ is compatible with our filtration:
- **Theorem 17.1.** For each $I \subseteq [n]$, the family $(\mathbf{a}_w)_{w \in S_n: \ I' \subseteq \mathsf{Des}\ w}$ is a basis of the **k**-module F(I).

- The descent-destroying basis $(\mathbf{a}_w)_{w \in S_n}$ is compatible with our filtration:
- **Theorem 17.1.** For each $I \subseteq [n]$, the family $(\mathbf{a}_w)_{w \in S_n: \ I' \subseteq \mathrm{Des}\ w}$ is a basis of the **k**-module F(I).
- If $w \in S_n$ is any permutation, then the Q-index of w is defined to be the **smallest** $i \in [f_{n+1}]$ such that $Q'_i \subseteq \text{Des } w$. We call this Q-index Qind w.
 - **Proposition 17.2.** Let $w \in S_n$ and $i \in [f_{n+1}]$. Then, Qind w = i if and only if $Q'_i \subseteq \text{Des } w \subseteq [n-1] \setminus Q_i$.

• **Note:** The numbering $Q_1, Q_2, \ldots, Q_{f_{n+1}}$ of the lacunar subsets of [n-1] is not unique; we just picked one. The Q-index i=Q ind w of a $w\in S_n$ depends on this numbering. However, the corresponding lacunar set Q_i does not, since Proposition 17.2 determines it canonically (it is the unique lacunar $L\subseteq [n-1]$ satisfying $L'\subseteq \mathrm{Des}\,w\subseteq [n-1]\setminus L$). Thus, think of this set Q_i as the "real" index of w. We just found i easier to work with.

("Morally", the Fibonacci filtration should be indexed by a

poset; then you need not choose any numbering.)

Theorem 17.3. For each $i \in [0, f_{n+1}]$, the **k**-module F_i is free with basis $(\mathbf{a}_w)_{w \in S_n: \text{Qind } w < i}$.

- * Theorem 17.3. For each $i \in [0, f_{n+1}]$, the **k**-module F_i is free with basis $(\mathbf{a}_w)_{w \in S_n}$; $Q_{\text{ind } w \leq i}$.
- **Corollary 17.4.** For each $i \in [f_{n+1}]$, the **k**-module F_i/F_{i-1} is free with basis $(\overline{\mathbf{a}_w})_{w \in S_n: \ \text{Oind } w = i}$.

- * Theorem 17.3. For each $i \in [0, f_{n+1}]$, the **k**-module F_i is free with basis $(\mathbf{a}_w)_{w \in S_n}$; Qind $w \leq i$.
- **Corollary 17.4.** For each $i \in [f_{n+1}]$, the **k**-module F_i/F_{i-1} is free with basis $(\overline{\mathbf{a}_w})_{w \in S_n}$: Oind w = i.
 - This yields Lemma 9.4 and also leads to Theorem 7.1, made precise as follows:
- **Theorem 17.5 (Lafrenière, G.).** For any $w \in S_n$ and $\ell \in [n]$, we have

$$\mathbf{a}_{w}\mathbf{t}_{\ell} = \mu_{w,\ell}\mathbf{a}_{w} + \sum_{\substack{v \in S_{n}; \\ \mathsf{Qind}\ v < \mathsf{Qind}\ w}} \lambda_{w,\ell,v}\mathbf{a}_{v}$$

for some nonnegative integer $\mu_{w,\ell}$ and some integers $\lambda_{w,\ell,\nu}$. Thus, the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \ldots, R(\mathbf{t}_n)$ are upper-triangular with respect to the basis $(\mathbf{a}_w)_{w \in S_n}$ as long as the permutations $w \in S_n$ are ordered by increasing Q-index.

• In Corollary 9.5, we found the eigenvalues of the endomorphism $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n)$. With Corollary 17.4, we can also find their algebraic multiplicities. To state a formula for them, we need a definition:

- In Corollary 9.5, we found the eigenvalues of the endomorphism $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n)$. With Corollary 17.4, we can also find their algebraic multiplicities. To state a formula for them, we need a definition:
- * For each $i \in [f_{n+1}]$, we set
 - $\delta_i :=$ (the number of all $w \in S_n$ satisfying Qind w = i).
- **Corollary 18.1 (informal version).** Assume that **k** is a field. Let $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbf{k}$. Then, the endomorphism $R(\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \cdots + \lambda_n \mathbf{t}_n)$ has eigenvalues

$$\lambda_I := \lambda_1 m_{I,1} + \lambda_2 m_{I,2} + \dots + \lambda_n m_{I,n}$$
 for all lacunar $I \subseteq [n-1]$

with respective multiplicities δ_i ,

where $i \in [f_{n+1}]$ is such that $I = Q_i$.

(If some λ_I happen to coincide, then their algebraic multiplicities must be added together.)

- Can we compute the δ_i explicitly? Yes!
- **Theorem 18.2.** Let $i \in [f_{n+1}]$. Then:
 - (a) Write the set Q_i in the form $Q_i=\{i_1< i_2<\cdots< i_p\}$, and set $i_0=1$ and $i_{p+1}=n+1$. Let $j_k=i_k-i_{k-1}$ for each $k\in [p+1]$. Then,

$$\delta_i = \underbrace{\binom{n}{j_1, j_2, \dots, j_{p+1}}}_{\substack{\text{multinomial} \\ \text{coefficient}}} \cdot \prod_{k=2}^{p+1} (j_k - 1).$$

- Can we compute the δ_i explicitly? Yes!
- * Theorem 18.2. Let $i \in [f_{n+1}]$. Then:
 - (a) Write the set Q_i in the form $Q_i=\{i_1< i_2<\cdots< i_p\}$, and set $i_0=1$ and $i_{p+1}=n+1$. Let $j_k=i_k-i_{k-1}$ for each $k\in [p+1]$. Then,

$$\delta_{i} = \underbrace{\binom{n}{j_{1}, j_{2}, \dots, j_{p+1}}}_{\text{multinomial coefficient}} \cdot \prod_{k=2}^{p+1} (j_{k} - 1).$$

- **(b)** We have $\delta_i \mid n!$.
- **Note.** This reminds of the hook-length formula for standard tableaux, but is much simpler.

Variants

- Most of what we said about the somewhere-to-below shuffles \mathbf{t}_{ℓ} can be extended to their antipodes \mathbf{t}_{ℓ}^* (the "below-to-somewhere shuffles"). For instance:
- **Theorem 19.1.** There exists a basis of the **k**-module $\mathbf{k}[S_n]$ in which all of the endomorphisms $R(\mathbf{t}_1^*), R(S\mathbf{t}_2^*), \ldots, R(\mathbf{t}_n^*)$ are represented by upper-triangular matrices.
- We can also use left instead of right multiplication:
- **Theorem 19.2.** There exists a basis of the **k**-module **k** $[S_n]$ in which all of the endomorphisms $L(\mathbf{t}_1), L(\mathbf{t}_2), \ldots, L(\mathbf{t}_n)$ are represented by upper-triangular matrices.
- These follow from Theorem 14.1 using dual bases and transpose matrices. No new combinatorics required!

Commutators, 1

- The simultaneous trigonalizability of the endomorphisms $R(\mathbf{t}_1), R(\mathbf{t}_2), \ldots, R(\mathbf{t}_n)$ yields that their pairwise commutators are nilpotent. Hence, the pairwise commutators $[\mathbf{t}_i, \mathbf{t}_j]$ are also nilpotent.
- **Question.** How small an exponent works in $[\mathbf{t}_i, \mathbf{t}_j]^* = 0$?
- **Theorem 20.1.** We have $[\mathbf{t}_i, \mathbf{t}_j]^{j-i+1} = 0$ for any $1 \le i \le j \le n$.
- **Theorem 20.2.** We have $[\mathbf{t}_i, \mathbf{t}_j]^{\lceil (n-j)/2 \rceil + 1} = 0$ for any $i, j \in [n]$.
 - Depending on i and j, one of the exponents is better than the other.
 - **Conjecture.** The better one is optimal! (Checked for all $n \le 12$.)

Commutators, 2

- Stronger results hold, replacing powers by products.
- Several other curious facts hold: For example,

$$\mathbf{t}_{i+1}\mathbf{t}_i = (\mathbf{t}_i - 1)\mathbf{t}_i$$
 and $\mathbf{t}_{i+2}(\mathbf{t}_i - 1) = (\mathbf{t}_i - 1)(\mathbf{t}_{i+1} - 1)$

and

$$\mathbf{t}_{n-1} \left[\mathbf{t}_i, \mathbf{t}_{n-1} \right] = 0$$
 and $\left[\mathbf{t}_i, \mathbf{t}_{n-1} \right] \left[\mathbf{t}_j, \mathbf{t}_{n-1} \right] = 0$

for all i and j.

- All this is completely elementary but surprisingly hard to prove (dozens of pages of manipulations with sums and cycles). The proofs can be found in arXiv:2309.05340.
- What is "really" going on? No idea...

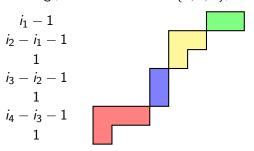
- Two natural questions:
 - The F(I) and the F_i are left ideals of $\mathbf{k}[S_n]$; how do they decompose into Specht modules?
 - 4 How do $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ act on a given Specht module?

- Two natural questions:
 - The F(I) and the F_i are left ideals of $k[S_n]$; how do they decompose into Specht modules?
 - ② How do $\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n$ act on a given Specht module?
- We can answer these.
- The answer uses symmetric functions, specifically:
- Let s_{λ} be the Schur function for a partition λ .
- Let $\frac{h_m}{m} = s_{(m)}$ be the *m*-th complete homogeneous symmetric function for each m > 0.
- Let $z_m = s_{(m-1,1)} = h_{m-1}h_1 h_m$ for each m > 1.

• For each lacunar subset I of [n-1], we define a symmetric function

$$\mathbf{z}_l := h_{i_1-1} \prod_{j=2}^k \mathbf{z}_{i_j-i_{j-1}}$$
 (over \mathbb{Z}),

where i_1, i_2, \ldots, i_k are the elements of $I \cup \{n+1\}$ in increasing order (so that $i_k = n+1$ and $I = \{i_1 < i_2 < \cdots < i_{k-1}\}$). This is a skew Schur function corresponding to a disjoint union of hooks: e.g., if n = 11 and $I = \{3, 6, 8\}$, then it is



• For each lacunar $I \subseteq [n-1]$ and each partition λ of n, we let c'_{λ} be the coefficient of s_{λ} in the Schur expansion of z_{I} . This is a Littlewood–Richardson coefficient (since z_{I} is a skew Schur function), thus $\in \mathbb{N}$.

- For each lacunar $I \subseteq [n-1]$ and each partition λ of n, we let c'_{λ} be the coefficient of s_{λ} in the Schur expansion of z_{I} . This is a Littlewood–Richardson coefficient (since z_{I} is a skew Schur function), thus $\in \mathbb{N}$.
- Theorem 21.1. Let ν be a partition. Let $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbf{k}$. Then, the shuffle $\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 + \dots + \lambda_n \mathbf{t}_n$ acts on the Specht module \mathcal{S}^{ν} as a linear map with eigenvalues

$$\lambda_1 m_{I,1} + \lambda_2 m_{I,2} + \cdots + \lambda_n m_{I,n}$$
 for all lacunar $I \subseteq [n-1]$ satisfying $c_{
u}^I
eq 0$,

and the multiplicity of each such eigenvalue is c_{ν}^{I} in the generic case.

If all these linear combinations are distinct, then this linear map is diagonalizable.

- Theorem 21.2 (lazy version). Let k be a field of characteristic 0. Let $i \in [f_{n+1}]$. As a representation of S_n , the quotient module F_i/F_{i-1} has Frobenius characteristic z_{Q_i} .
- Theorem 21.2 (careful version, true in every characteristic). Let $i \in [f_{n+1}]$. Consider the lacunar subset Q_i of [n-1]. Let i_1, i_2, \ldots, i_k be the elements of $Q_i \cup \{n+1\}$ in increasing order. Then, as representations of S_n , we have

$$F_i/F_{i-1} \cong \mathcal{H}_{i_1-1} * \mathcal{Z}_{i_2-i_1} * \mathcal{Z}_{i_3-i_2} * \cdots * \mathcal{Z}_{i_k-i_{k-1}},$$

where * means induction product (that is, $U*V = \operatorname{Ind}_{S_i \times S_j}^{S_{i+j}}(U \otimes V)$), and where \mathcal{H}_m is the trivial 1-dimensional representation of S_m , whereas \mathcal{Z}_m is the reflection representation of S_m (that is, \mathbf{k}^m modulo the span of $(1,1,\ldots,1)$).

Proofs appear in arXiv:2508.00752.

Conjectures and questions

• Question. What can be said about the **k**-subalgebra $\mathbf{k} [\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n]$ of $\mathbf{k} [S_n]$? Note:

п	1	2	3	4	5	6	7	8
$dim\left(\mathbb{Q}\left[\mathbf{t}_1,\mathbf{t}_2,\ldots,\mathbf{t}_n ight] ight)$	1	2	4	9	23	66	212	761

(this sequence is not in the OEIS as of 2025-10-08).

 Question. Do the results about commutators and representations generalize to the Hecke algebra?
 (The Fibonacci filtration and descent-destroying basis definitely do. Proofs forthcoming...)

- Sarah Brauner, Patricia Commins, Nadia Lafrenière and Franco Saliola for obvious reasons.
- the Mathematisches Forschungsinstitut Oberwolfach for the Research in Pairs program.
- Martin Lorenz, Marcelo Aguiar, Vic Reiner, Travis Scrimshaw, Theo Douvropoulos, Volkmar Welker for various ideas shared over the years.
- Alex Postnikov for the invitation (MIT).
- GaYee Park for the invitation (Dartmouth).
- you for your patience.