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CHAPTER 1

Introduction
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Finite group algebras: Basics

° Let k be any commutative ring. (Usually Z, Q or a
polynomial ring.)

° Let G be a finite group. (We will only use symmetric groups.)

© Let k[G] be the group algebra of G over k. Its elements are
formal k-linear combinations of elements of G. The
multiplication is inherited from G and extended bilinearly.
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Finite group algebras: Basics

° Let k be any commutative ring. (Usually Z, Q or a
polynomial ring.)
° Let G be a finite group. (We will only use symmetric groups.)

© Let k[G] be the group algebra of G over k. Its elements are
formal k-linear combinations of elements of G. The
multiplication is inherited from G and extended bilinearly.

o Example: Let G be the symmetric group S3 on the set
{1,2,3}. For i € {1,2}, let s; € 53 be the simple transposition
that swaps i with i + 1. Then, in k[G] = k[S3], we have

(1+s)(1—s)=1+s —5—s=0

(since s? = 1);
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Finite group algebras: Basics

° Let k be any commutative ring. (Usually Z, Q or a
polynomial ring.)
° Let G be a finite group. (We will only use symmetric groups.)

© Let k[G] be the group algebra of G over k. Its elements are
formal k-linear combinations of elements of G. The
multiplication is inherited from G and extended bilinearly.

o Example: Let G be the symmetric group S3 on the set
{1,2,3}. For i € {1,2}, let s; € 53 be the simple transposition
that swaps i with i + 1. Then, in k[G] = k[S3], we have

(1+s1)(1—s1))=1+5 —5—5=0
(since s? = 1);

(1+s)(1+s1+518)=1+s+s + 551+ s15+ 9515

:ZW‘

weSs
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Finite group algebras: L(a) and R (a)

© For each a € k[G], we define two k-linear maps
L(a): k[G] = k[G],

X — ax (“left multiplication by a")
and
R(a) : k[G] — k[G],
X — xa (“right multiplication by a").

(So L(a)(x) = ax and R (a) (x) = xa.)

Note: The symbol ° denotes important points.

4/66



Finite group algebras: L(a) and R (a)

© For each a € k[G], we define two k-linear maps
L(a): k[G] = k[G],

X — ax (“left multiplication by a")
and
R(a) : k[G] — k[G],
X — xa (“right multiplication by a").

(So L(a)(x) = ax and R(a)(x) = xa.)

@ Both L(a) and R (a) are endomorphisms of the free k-module
k [G]. Thus, they can be viewed as |G| x |G|-matrices.
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Finite group algebras: L(a) and R (a)

© For cach a € k[G], we define two k-linear maps
L(a): k[G] = k[G],

X — ax (“left multiplication by a")
and
R(a): k[G] — k|[G],
X — xa (“right multiplication by a").

(So L(a)(x) = ax and R(a)(x) = xa.)

@ Both L(a) and R (a) are endomorphisms of the free k-module
k [G]. Thus, they can be viewed as |G| x |G|-matrices.

@ Hence, L(a) and R (a) are “matrix proxies” for a, allowing to
apply linear algebra to studying a.
(The reason this works is that the maps a — L (a) and
ar (R(a))" are two injective k-algebra morphisms from k [G] to
the matrix ring Endy (k [G]) = k!¢IxI¢1 )
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Finite group algebras: Minimal polynomials

° Each a € k[G] has a minimal polynomial, i.e., a
minimum-degree monic polynomial P € k [X] such that
P (a) = 0. It is unique when k is a field.
The minimal polynomial of a is also the minimal polynomial
of the endomorphisms L (a) and R (a).
@ When k is a field, we can also study the eigenvectors and
eigenvalues of L (a) and R (a).
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Finite group algebras: Minimal polynomials

° Each a € k[G] has a minimal polynomial, i.e., a
minimum-degree monic polynomial P € k [X] such that
P(a) = 0. It is unique when k is a field.

The minimal polynomial of a is also the minimal polynomial
of the endomorphisms L (a) and R (a).

@ When k is a field, we can also study the eigenvectors and
eigenvalues of L (a) and R (a).

@ Theorem 1.1. Assume that k is a field. Let a € k[G]. Then,
the two linear endomorphisms L (a) and R (a) are conjugate in
Endg (k[G]) (that is, similar as matrices).

(Thus, they have the same eigenstructure.)

@ This is surprisingly nontrivial!
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Finite group algebras: The antipode

© The antipode of the group algebra k[G] is defined to be the
k-linear map

S:k[G] = k[G],
g— gt for each g € G.

We shall write a* for S (a).
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Finite group algebras: The antipode

© The antipode of the group algebra k[G] is defined to be the
k-linear map

S:k[G] = k[G],
g— gt for each g € G.

We shall write a* for S (a).
e Proposition 1.2. The antipode S is an involution:

*k

a*=a for all a € k[G],

and a k-algebra anti-automorphism:

(ab)" = b*a* for all a,b € k[G].
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Finite group algebras: Proof of Theorem 1.1

@ Lemma 1.3. Assume that k is a field. Let a € k[G]. Then,
L(a) ~ L(a*) in Endg (k[G]).

® Proof: Consider the standard basis (g),c¢ of k[G]. The
matrices representing the endomorphisms L (a) and L (a*) in
this basis are mutual transposes. But the Taussky—Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT
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Finite group algebras: Proof of Theorem 1.1

@ Lemma 1.3. Assume that k is a field. Let a € k[G]. Then,
L(a) ~ L(a*) in Endg (k[G]).

® Proof: Consider the standard basis (g),c¢ of k[G]. The
matrices representing the endomorphisms L (a) and L (a*) in
this basis are mutual transposes. But the Taussky—Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT

o Lemma 1.4. Let a € k[G]. Then, L(a*) ~ R(a) in
Endy (k[G]).
@ Proof: We have R(a) = SolL(a*)oSand S=S5"1
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Finite group algebras: Proof of Theorem 1.1

Lemma 1.3. Assume that k is a field. Let a € k[G]. Then,
L(a) ~ L(a*) in Endg (k[G]).

Proof: Consider the standard basis (g),c¢ of k[G]. The
matrices representing the endomorphisms L (a) and L (a*) in
this basis are mutual transposes. But the Taussky—Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT

Lemma 1.4. Let a € k[G]. Then, L(a*) ~ R(a) in

Endg (k[G]).

Proof: We have R(a) =SoL(a*)oSand S=S"1

Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.
Remark (Martin Lorenz). Theorem 1.1 generalizes to
arbitrary finite-dimensional Frobenius algebras.
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Symmetric groups: Notations

© LetN:={0,12. .}
© Lot [k] :={1,2,... k} for each k € N.
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Symmetric groups: Notations

© Let N:={0,1,2,...}.

© Let [k]:={1,2,... k} for each k € N.

° Now, fix a positive integer n, and let S, be the n-th symmetric
group, i.e., the group of permutations of the set [n].
Multiplication in S, is composition:

(aB) (i) = (a0 B) (i) = a (B (/)

forall a,8 € Sy and i € [n].

(Warning: SageMath has a different opinion!)
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Symmetric group algebras

@ What can we say about the group algebra k [S,] that doesn’t
hold for arbitrary k [G]?

@ There is a classical theory (“Young's seminormal form™) of
the structure of k [S,] when k has characteristic 0. See:

e Murray Bremner, Sara Madariaga, Luiz A. Peresi,
Structure theory for the group algebra of the symmetric
group, ..., Commentationes Mathematicae Universitatis
Carolinae, 2016. (Quick and to the point.)

e Daniel Edwin Rutherford, Substitutional Analysis,
Edinburgh 1948. (Dated but careful and quite readable;
perhaps the best treatment.)

e Adriano M. Garsia, Omer Egecioglu, Lectures in
Algebraic Combinatorics, Springer 2020. (Messy but full
of interesting things.)
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Symmetric group algebras

@ What can we say about the group algebra k [S,] that doesn’t
hold for arbitrary k [G]?

@ Theorem 2.1 (Artin—Wedderburn—Young). If k is a field of
characteristic 0, then

k [Sn] = H M¢ex (k) (as k-algebras) ,

A is a partition of n matrix ring

where f* is the number of standard Young tableaux of shape
A

@ Proof: This follows from Young's seminormal form. For the
shortest readable proof, see Theorem 1.45 in
Bremner/Madariaga/Peresi.
Or, for a different proof, see my introduction to the symmetric
group algebra (§5.14).
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Symmetric group algebras

@ What can we say about the group algebra k [S,] that doesn’t
hold for arbitrary k [G]?

@ Theorem 2.1 (Artin—~Wedderburn—Young). If k is a field of
characteristic 0, then

k [Sn] = H Mex (k) (as k-algebras) ,

A is a partition of n o
matrix ring

where f* is the number of standard Young tableaux of shape
A
@ The structure of k [S,] for 0 < chark < n is far less
straightforward. See, e.g.,
o Matthias Kiinzer, Ties for the integral group ring of the
symmetric group, thesis 1998.
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Symmetric group algebras

What can we say about the group algebra k [S,] that doesn't
hold for arbitrary k [G]?

Theorem 2.1 (Artin—~Wedderburn—Young). If k is a field of
characteristic 0, then

k [Sn] = H Mex (k) (as k-algebras) ,

A is a partition of n matrix ring

where f* is the number of standard Young tableaux of shape
A
The structure of k [S,] for 0 < chark < n is far less
straightforward. See, e.g.,
o Matthias Kiinzer, Ties for the integral group ring of the
symmetric group, thesis 1998.
Remark. If k is a field of characteristic 0, then each
a € k[S,] satisfies a ~ a* in k[S,].
But not for general k.
From now on, we shall focus on concrete elements in k [S,].
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The YJM elements: Definition and commutativity

© For any distinct elements i1, iz, . . . , ik of [n], let cyc
the permutation in S, that cyclically permutes
i1+ o+ i3 ---— i — i and leaves all other elements of
[n] unchanged.

be

11502050k

@ Note. We have cyc; = id, whereas cyc; ; is the transposition

tij-
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The YJM elements: Definition and commutativity

For any distinct elements i1, io, . .., ik of [n], let cyc be
the permutation in S, that cyclically permutes
i1+ o+ i3 ---— i — i and leaves all other elements of

[n] unchanged.

11502050k

Note. We have cyc; = id, whereas cyc; ; is the transposition
tij-

For each k € [n], we define the k-th Young—Jucys—Murphy
(YIM) element

Ji = CyCy k +CYCo j+ - +CYCy_1 4 € k[Si]-

Note. We have J; = 0. Also, J; = Ji for each k € [n].
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The YJM elements: Definition and commutativity

© For any distinct elements i1, iz, . . . , ik of [n], let cyc be
the permutation in S, that cyclically permutes
i1+ o+ i3 ---— i — i and leaves all other elements of

[n] unchanged.

11502050k

@ Note. We have cyc; = id, whereas cyc; ; is the transposition
tij-
© For each k € [n], we define the k-th Young—Jucys—Murphy
(YIM) element

Ji = CyCy k +CYCo j+ - +CYCy_1 4 € k[Si]-

@ Note. We have J; = 0. Also, J; = Ji for each k € [n].

° Theorem 3.1. The YJM elements Ji, J, ..., J, commute:
We have J;J; = J;J; for all i, ;.

@ Proof: Easy computational exercise.
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides
k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1

(For k < 3, some factors here are redundant.)
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides
k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1
(For k < 3, some factors here are redundant.)

@ First proof: Study the action of Ji on each Specht module
(simple S,-module). See, e.g., G. E. Murphy, A New
Construction of Young's Seminormal Representation ..., 1981
for details.

@ Second proof (Igor Makhlin): Some linear algebra does the
trick. Induct on k using the facts that Jx and Ji,1 are
simultaneously diagonalizable over C (since they are
symmetric as real matrices and commute) and satisfy
skJk+1 = Jksk + 1, where s; := cycy 411 See
https://mathoverflow.net/a/83493/ for details.
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides
k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1
(For k < 3, some factors here are redundant.)
@ Thus, the eigenvalues of J, are —k+1,—k+2,... . k—1
(except for 0 when k < 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides
k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1
(For k < 3, some factors here are redundant.)

@ Thus, the eigenvalues of J, are —k+1,—k+2,... . k—1
(except for 0 when k < 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:

@ Theorem 3.3. Assume that k is a field of characteristic 0.
Then, there exists a basis (es 1) of k[S,] indexed by pairs of
standard Young tableaux of the same (partition) shape called
the seminormal basis. This basis has the property that

Jxes T =cs (k) -es T,

where cs (k) = j — i if the number k lies in cell (i,/) of S.
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides
k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1
(For k < 3, some factors here are redundant.)

@ Thus, the eigenvalues of J, are —k+1,—k+2,... . k—1
(except for 0 when k < 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:

@ Theorem 3.3. Assume that k is a field of characteristic 0.
Then, there exists a basis (es 1) of k[S,] indexed by pairs of
standard Young tableaux of the same (partition) shape called
the seminormal basis. This basis has the property that

Jres T =cs (k) -es T,
where cs (k) = j — i if the number k lies in cell (i,/) of S.
@ Moreover, each Specht module SA (= irreducible
representation of S,,) is spanned by part of the seminormal
basis, and thus we find the eigenvalues of J, on that S, 11/66
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The YJM elements: Eigenvalues

° Theorem 3.2. The minimal polynomial of J, over Q divides

k—1
[[] X=-=X-k+1)(X—k+2)---(X+k-1).
i=—k+1
(For k < 3, some factors here are redundant.)

@ Thus, the eigenvalues of J, are —k+1,—k+2,... . k—1
(except for 0 when k < 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:

@ The seminormal basis exists only for chark = 0 (or, more
generally, when n! is invertible in k).

But Theorem 3.2 and the algebraic multiplicities transfer
automatically to all rings k.

@ Question. Is there a self-contained algebraic/combinatorial
proof of Theorem 3.2 without linear algebra or representation
theory? (Asked on MathOverflow:
https://mathoverflow.net/questions/420318/ .)
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Symmetric polynomials in the YJM elements, 1

@ Theorem 3.4. For each k € N, we can evaluate the k-th
elementary symmetric polynomial e, at the YJM elements
S, b, ..., J, to obtain

ex (J1, 2y, Jn) = > 0.

0ESy;
o has exactly n—k cycles

@ Proof: Nice homework exercise (once stripped of the algebra).
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Symmetric polynomials in the YJM elements, 1

@ Theorem 3.4. For each k € N, we can evaluate the k-th
elementary symmetric polynomial e, at the YJM elements
S, b, ..., J, to obtain

ex (J1, 2y, Jn) = > 0.

0ESy;
o has exactly n—k cycles

@ Proof: Nice homework exercise (once stripped of the algebra).

@ There are formulas for other symmetric polynomials applied to
Ji, b, ..., Jy (see Garsia/Egecioglu).
There is also a general fact:
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Symmetric polynomials in the YJM elements, 2

@ Theorem 3.5 (Murphy).
{f(h,t2y...,dn) | fEK[X,Xo,...,Xs] symmetric}
= (center of the group algebra k[S,]) .
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Symmetric polynomials in the YJM elements, 2

@ Theorem 3.5 (Murphy).
{f(h,t2y...,dn) | fEK[X,Xo,...,Xs] symmetric}
= (center of the group algebra k[S,]) .

@ Proof: See any of:

o Gadi Moran, The center of Z[Sp11] ..., 1992.

o G. E. Murphy, The Idempotents of the Symmetric Group
..., 1983, Theorem 1.9 (for the case k = Z, but the
general case easily follows).

o Ceccherini-Silberstein/Scarabotti/Tolli, Representation
Theory of the Symmetric Groups, 2010, Theorem 4.4.5
(for the case k = Q, but the proof is easily adapted to all
k).

This book also has more on the Ji, J, ..., J, (but mind
the errata).
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The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:

Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the

cards are arranged 0 (1),0(2),...,0(n) from top to bottom.
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The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

@ A random state is an element Y a,o of R[S,] whose
oE€S,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.

14 /66



The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

@ A random state is an element Y a,o of R[S,] whose
oE€S,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.
@ We drop the “add up to 1" condition, and only require that

> as > 0. The probabilities must then be divided by
CTGSn

> ag.

O'ESn
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The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

@ A random state is an element Y a,o of R[S,] whose
oE€S,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.
@ We drop the “add up to 1" condition, and only require that

> as > 0. The probabilities must then be divided by
CTGSn

> ag.
O'GSn
@ For instance, 1+ cyc, 5 3 corresponds to the random state in

which the deck is sorted as 1,2, 3 with probability % and

1
sorted as 2, 3,1 with probability 5
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The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

@ A random state is an element Y a,o of R[S,] whose
oE€S,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.

@ An R-vector space endomorphism of R [S,], such as L(a) or
R (a) for some a € R[S,], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.
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The card shuffling point of view

@ Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.
A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

@ A random state is an element Y a,o of R[S,] whose
og€ES,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.

@ An R-vector space endomorphism of R [S,], such as L(a) or
R (a) for some a € R[S,], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.

@ For example, if k > 1, then the right multiplication R (Jx) by
the YJM element Ji corresponds to swapping the k-th card
with some card above it (chosen uniformly at random).
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The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2,...,n.

A permutation o € S, corresponds to the state in which the
cards are arranged 0 (1),0(2),...,0(n) from top to bottom.

A random state is an element ) a,o of R[S,] whose
og€ES,
coefficients a, € R are nonnegative and add up to 1. This is

interpreted as a distribution on the n! possible states, where
a, is the probability for the deck to be in state o.

An R-vector space endomorphism of R [S,], such as L(a) or
R (a) for some a € R[S,], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.
For example, if k > 1, then the right multiplication R (Jx) by
the YJM element Ji corresponds to swapping the k-th card
with some card above it (chosen uniformly at random).
Transposing such a matrix means time-reversing the random
shuffle.
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Bottom-to-random and random-to-bottom shuffles: definitions

Another family of elements of k[S,] are the
k-bottom-to-random shuffles

Bk = Z o

0ESn;
o~ 1)<o 1 (2)< <o (n—k)

defined for all k € {0,1,...,n}. Thus,
Bn,n = Bn,nfl = Z g,

oES,

n
Bn,l = E CYCh on—1,..,i1
i=1

Bno =id.
We set B, := B 1.
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Bottom-to-random and random-to-bottom shuffles: definitions

© Another family of elements of k [S,] are the
k-bottom-to-random shuffles

Bk = Z o

0ESn;
o~ 1)<o 1 (2)< <o (n—k)

defined for all k € {0,1,...,n}. Thus,

Bn,n = Bn,nfl = Z g,

oES,

n
Bn,l = E CYCh on—1,..,i1
i=1

Bno =id.
We set B, := B 1.
@ As a random shuffle, B, x (to be precise, R (B, x)) takes the
bottom k cards and moves them to random positions.

Its antipode B’ , takes k random cards and moves them to

the bottom positions. 15/ 66



Bottom-to-random and random-to-bottom shuffles: definitions

Another family of elements of k[S,] are the
k-bottom-to-random shuffles

Bk = Z o

0ESn;
o~ 1)<o 1 (2)< <o (n—k)

defined for all k € {0,1,...,n}. Thus,
Bn,n = Bn,nfl = Z g,

oES,

n
Bn,l = E CYCh on—1,..,i1
i=1

Bno =id.

We set B, := B 1.
@ B, := Bp1 is known as the bottom-to-random shuffle or the
Tsetlin library.
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Bottom-to-random and random-to-bottom shuffles: facts

@ Theorem 5.1 (Diaconis, Fill, Pitman). We have

Bhk+1 = (Bn — k) Bp« for each k € {0,1,...,n—1}.
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Bhk+1 = (Bn — k) Bp« for each k € {0,1,...,n—1}.
o Corollary 5.2. The n+ 1 elements B,o,B8n1,...,Bnn
commute and are polynomials in B, namely

k—1
Bn,k:H(Bn—i) for each k € {0,1,...,n}.
i=0
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@ Theorem 5.1 (Diaconis, Fill, Pitman). We have
Bhk+1 = (Bn — k) Bp« for each k € {0,1,...,n—1}.
o Corollary 5.2. The n+ 1 elements B,o,B8n1,...,Bnn
commute and are polynomials in B, namely

k—1
Bn,k:H(Bn—i) for each k € {0,1,...,n}.
i=0

@ Theorem 5.3 (Wallach). The minimal polynomial of B,
over Q is

n—2
11 X=i=X-n][Xx-1.
i=0

i€{0,1,...,n—2,n}
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Bottom-to-random and random-to-bottom shuffles: facts

@ Theorem 5.1 (Diaconis, Fill, Pitman). We have
Bhk+1 = (Bn — k) Bp« for each k € {0,1,...,n—1}.
o Corollary 5.2. The n+ 1 elements B,o,B8n1,...,Bnn
commute and are polynomials in B, namely
k—1
Bn,k:H(Bn—i) for each k € {0,1,...,n}.
i=0
@ Theorem 5.3 (Wallach). The minimal polynomial of B,
over Q is

n—2
11 X=i=X-n][Xx-1.
i=0

i€{0,1,...,n—2,n}

@ These are not hard to prove in this order. See
https://mathoverflow.net/questions/308536 for the

details.
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Bottom-to-random and random-to-bottom shuffles: more

@ More can be said: in particular, the multiplicities of the
eigenvalues 0,1,...,n—2,n of R(B,) over Q are known.
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* R
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0ESn;
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of B, « are known as the k-random-to-bottom shuffles and
have the same properties (since S is an algebra
anti-automorphism).
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Bottom-to-random and random-to-bottom shuffles: more

@ More can be said: in particular, the multiplicities of the
eigenvalues 0,1,...,n—2,n of R(B,) over Q are known.

@ The antipodes

nk = Z a
0ESn;
o(1)<o(2)<--<o(n—k)
of B, « are known as the k-random-to-bottom shuffles and
have the same properties (since S is an algebra
anti-automorphism).

@ Moreover, there are top-to-random and random-to-top
shuffles defined in the same way but with renaming 1,2, ..., n
as n,n—1,...,1. They are just images of the B, s and B;k
under the automorphism a — woaw; * of k [S,], where wg is
the permutation with one-line notation (n,n—1,...,1).
Thus, top vs. bottom is mainly a matter of notation.
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Bottom-to-random and random-to-bottom shuffles: references

@ Main references:

e Nolan R. Wallach, Lie Algebra Cohomology and
Holomorphic Continuation of Generalized Jacquet
Integrals, 1988, Appendix.

e Persi Diaconis, James Allen Fill and Jim Pitman, Analysis
of Top to Random Shuffles, 1992.
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https://doi.org/10.2969/aspm/01410123
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf

CHAPTER 2

Random-to-random shuffles

References:

@ Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.

@ llani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chiang,
Patricia Commins, Veronica Lang, Spectrum of
random-to-random shuffling in the Hecke algebra,
arXiv:2407.08644.

@ Sarah Brauner, Patricia Commins, Darij Grinberg, Franco
Saliola, The g-deformed random-to-random family in the
Hecke algebra, arXiv:2503.17580.
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Random-to-random shuffles: Definition

° Here is a further family. For each k € {0,1,...,n}, we let
Rk = Z noninv,_x (o) - o,
UESn

where noninv,,_ (o) denotes the number of (n — k)-element
subsets of [n] on which o is increasing. This is called the
k-random-to-random shuffle.
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Random-to-random shuffles: Definition

° Here is a further family. For each k € {0,1,...,n}, we let
Rk = Z noninv,_x (o) - o,
UGSn

where noninv,,_ (o) denotes the number of (n — k)-element
subsets of [n] on which o is increasing. This is called the
k-random-to-random shuffle.

o Example: Writing permutations in one-line notation,

Rap =6[1,2,3,4] +5[1,2,4,3] +5[1,3,2,4] + 4[1, 3,4, 2]
+4[1,4,2,3] +3[1,4,3,2] + 5[2,1,3,4] + 4[2,1,4, 3]
+4[2,3,1,4] + 3[2,3,4,1] + 3[2,4,1,3] + 2[2,4, 3,1]
+4[3,1,2,4] +3[3,1,4,2] + 3[3,2,1,4] + 2[3,2,4,1]
+2[3,4,1,2] +[3,4,2,1] + 3[4,1,2,3] + 2[4,1,3, 2]
+2[4,2,1,3] + [4,2,3,1] + [4,3, 1, 2].
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Random-to-random shuffles: Definition

° Here is a further family. For each k € {0,1,...,n}, we let

Rk = Z noninv,_x (o) - o,
o€S,
where noninv,,_ (o) denotes the number of (n — k)-element
subsets of [n] on which o is increasing. This is called the
k-random-to-random shuffle.

@ Note: R,po=idand Rpp-1=n ), cand R,,= > o.
Uesn O'GSn
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Random-to-random shuffles: Definition

° Here is a further family. For each k € {0,1,...,n}, we let

Rk = Z noninv,_x (o) - o,
o€S,
where noninv,,_ (o) denotes the number of (n — k)-element
subsets of [n] on which o is increasing. This is called the
k-random-to-random shuffle.
@ Note: R,po=idand Rpp-1=n ), cand R,,= > o.

o€S 0€S,
@ The card-shuffling interpretation of R,  is “pick any k cards

from the deck and move them to k randomly chosen
positions” .
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Random-to-random shuffles: Two surprises

© Theorem 6.1 (Reiner, Saliola, Welker). The n+1
elements R0, Rn1,--.,Rnn commute (but are not
polynomials in R, 1 in general).
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Random-to-random shuffles: Two surprises

© Theorem 6.1 (Reiner, Saliola, Welker). The n+1
elements R0, Rn1,--.,Rnn commute (but are not
polynomials in R, 1 in general).

© Theorem 6.2 (Dieker, Saliola, Lafreniére). The minimal
polynomial of each R, x over Q is a product of X —i's for
distinct integers /. For example, the one of R, divides

The exact factors can be given in terms of certain statistics on
Young diagrams.
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Random-to-random shuffles: References

@ Main references: the “classics”

e Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.
o A.B. Dieker, F.V. Saliola, Spectral analysis of
random-to-random Markov chains, 2018.
o Nadia Lafreniére, Valeurs propres des opérateurs de
mélanges symétrisés, thesis, 2019.
and the two recent preprints

o llani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui
Chiang, Patricia Commins, Veronica Lang, Spectrum of
random-to-random shuffling in the Hecke algebra,
arXiv:2407.08644.

e Sarah Brauner, Patricia Commins, Darij Grinberg, Franco
Saliola, The g-deformed random-to-random family in the
Hecke algebra, arXiv:2503.17580.
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Random-to-random shuffles: What we do

@ The “classical” proofs are complicated, technical and long.
In this talk, | will outline some parts of the two recent
preprints, including a simpler proof of Theorem 6.1 and most
of Theorem 6.2. (The full proof of Theorem 6.2 is still long
and hard.)
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@ The first step is a formula that is easy to prove
combinatorially:
© Proposition 6.3. For each k € {0,1,...,n}, we have

1 *
Rn,k - H N Bn,k Bmk.
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@ The first step is a formula that is easy to prove
combinatorially:

© Proposition 6.3. For each k € {0,1,...,n}, we have

1
Rn,k — H . :7/( Bn,k-

@ However, the B, , do not commute with the B} ,, so this is
not by itself an answer.
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The Hecke algebra, 1

@ Let g € k be a parameter.
The n-th Hecke algebra (or Iwahori-Hecke algebra) is a
g-deformation of the group algebra k [S,].

It has generators Ty, To,..., Th—1 and relations
T2=(q—1T:+q forall i € [n—1];
TiT,=T;T; whenever |i —j| > 1,
TiTipaTi=TiaTiTiva forall i € [n—2].

We call this algebra .

25/66



The Hecke algebra, 1

@ Let g € k be a parameter.
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g-deformation of the group algebra k [S,].

It has generators Ty, To,..., Th—1 and relations
T2=(q—1T:+q forall i € [n—1];
TiT,=T;T; whenever |i —j| > 1,
TiTipaTi=TiaTiTiva forall i € [n—2].

We call this algebra .

@ For g = 1, this is the group algebra k[S,] (and the generator
T; is the simple transposition s; = cyc,-,,-+1).
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The Hecke algebra, 1

@ Let g € k be a parameter.
The n-th Hecke algebra (or Iwahori—-Hecke algebra) is a
g-deformation of the group algebra k [S,].

It has generators Ty, To,..., Th—1 and relations
T2=(q—1T:+q forall i € [n—1];
TiT,=T;T; whenever |i —j| > 1,
TiTipaTi=TiaTiTiva forall i € [n—2].

We call this algebra .

@ For g = 1, this is the group algebra k[S,] (and the generator
T; is the simple transposition s; = cyc; ;. 1).

@ For general g, it still is a free k-module of rank n!, with a
basis (Tw),cs, indexed by permutations w € S,. The basis
vectors are defined by T, := T, T}, --- Tj,, where s;s;, - - - 5,
is a reduced expression for w. For g = 1, this T, is just w.
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The Hecke algebra, 2

@ Much of the theory of k [S,] exists in a subtler form for H,,.
Sometimes, the added difficulty brings the best proofs to light.
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° Almost all results of this talk hold for the Hecke algebra
Hn (occasionally requiring assumptions such as “g is not a
root unity” for structural results). The YJM elements must be
g-deformed; integers become g-integers; etc.
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@ Much of the theory of k [S,] exists in a subtler form for H,.
Sometimes, the added difficulty brings the best proofs to light.

° Almost all results of this talk hold for the Hecke algebra
Hn (occasionally requiring assumptions such as “g is not a
root unity” for structural results). The YJM elements must be
g-deformed; integers become g-integers; etc.

Main change: The random-to-random shuffle must now be

defined as 1
Rmk = m . n,k B”7k'

Noninversions no longer work!
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The Hecke algebra, 2

@ Much of the theory of k [S,] exists in a subtler form for H,.
Sometimes, the added difficulty brings the best proofs to light.

° Almost all results of this talk hold for the Hecke algebra
Hn (occasionally requiring assumptions such as “g is not a
root unity” for structural results). The YJM elements must be
g-deformed; integers become g-integers; etc.

Main change: The random-to-random shuffle must now be

defined as 1

Rmk = m . :,k Bn,k-
Noninversions no longer work!
But we will stick to the g = 1 case in this talk.
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The recursion

© Theorem 8.1 (Brauner-Commins—G.-Saliola 2025, based
on Axelrod-Freed—Brauner—Chiang—Commins—Lang
2024). For any 1 < k < n, we have
Bn Rn’k — (Rnflik + ((n + 1 - k) + Jn) Rnfl,kfl) Bn.

=Wk
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The recursion

© Theorem 8.1 (Brauner-Commins—G.-Saliola 2025, based
on Axelrod-Freed—Brauner—Chiang—Commins—Lang
2024). For any 1 < k < n, we have
Bn Rn’k — (Rnflik + ((n + 1 - k) + Jn) Rnfl,kfl) Bn.

=Wk

@ The proof takes about 5 pages, relying on some more
elementary computations from prior work (ca. 10-15 pages in
total).
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The recursion

© Theorem 8.1 (Brauner-Commins—G.-Saliola 2025, based
on Axelrod-Freed—Brauner—Chiang—Commins—Lang
2024). For any 1 < k < n, we have
Bn Rn’k — (Rnflik + ((n + 1 - k) + Jn) Rnfl,kfl) Bn.

=Wk

@ The proof takes about 5 pages, relying on some more
elementary computations from prior work (ca. 10-15 pages in
total).

@ This recursion does not actually compute R, x. But it says
enough about R, x to carry our proofs.

@ Note also that R, x € Bj k[Sp] by its definition (when k > 1).
This makes the recursion so useful.

27 /66



Commutativity of random-to-random

@ Theorem 8.1 leads fairly easily to a proof of commutativity
(Theorem 6.1).
Indeed, inducting on n, we observe that the W, ,s all
commute by the induction hypothesis (and the easy fact that
Jn commutes with everything in k [S,_1]). Thus, using
BnRnk = Whk Bn, we find

Bn Rn,i ij = Wn,i Bn 7—'\J'n,j = Wn,i Wn,j Bn
= Wn,j Wmi Bn = Wn,j Bn Rn,i = Bn Rn,j Rn,i-

Remains to get rid of the B, factor at the front. Recall that
all Ry, (except for the trivial R, 0) lie in B} k [Sn]. But we
can WLOG assume that k = Q, and then the equality
B, B}, a = 0 entails B}, a = 0 (positivity trick! cf. linear
algebra: Ker (ATA) = Ker A for a real matrix A).

@ Alternatively, the trick can be avoided (see
arXiv:2503.17580).
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The approach to eigenvalues, 1

@ Now to Theorem 6.2:

The eigenvalues of R, x are nonnegative reals, since R,  is

represented by a positive semidefinite symmetric matrix
(Proposition 6.3).

But why are they integers?
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distinct) such that [ (a — u;) = 0.
i=1

29/66



The approach to eigenvalues, 1

@ Now to Theorem 6.2:
The eigenvalues of R, x are nonnegative reals, since R,  is
represented by a positive semidefinite symmetric matrix
(Proposition 6.3).
But why are they integers?
@ We have a theory of “split elements” that can help answer
such questions in general. Here is an outline:
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° When k is an integral domain and A is a free k-module of
finite rank, this is the same as saying that R (a) has all
eigenvalues in k.
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The approach to eigenvalues, 1

@ Now to Theorem 6.2:
The eigenvalues of R, x are nonnegative reals, since R,  is
represented by a positive semidefinite symmetric matrix
(Proposition 6.3).
But why are they integers?
@ We have a theory of “split elements” that can help answer
such questions in general. Here is an outline:
© An element a of a k-algebra A is said to be split (over k) if
there exist some scalars vy, us, ..., u, € k (not necessarily
n
distinct) such that [] (a — u;) = 0.
i=1
° When k is an integral domain and A is a free k-module of
finite rank, this is the same as saying that R (a) has all
eigenvalues in k.
@ In particular, for k = Z and A = k [S,], this means that all
eigenvalues of R (a) are € Z. This is what we want to show
for a= TR, .
@ So we must show that R, « is split over Z. 20 /66



General theory of split elements, 1

@ We prove several general properties of split elements (nice
exercises on commutative algebral):
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@ We prove several general properties of split elements (nice
exercises on commutative algebral):
° Theorem 9.1. If two commuting elements a, b € A are split,
then both a + b and ab are split.
° Corollary 9.2. A commutative subalgebra of A generated by
split elements consists entirely of split elements.
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@ We prove several general properties of split elements (nice
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° Theorem 9.1. If two commuting elements a, b € A are split,
then both a + b and ab are split.

° Corollary 9.2. A commutative subalgebra of A generated by
split elements consists entirely of split elements.

° Theorem 9.3. If b, ¢, f are elements of A such that f is split
and such that bc = fb and ¢ € Ab, then c is split.
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General theory of split elements, 1

@ We prove several general properties of split elements (nice

exercises on commutative algebral):

° Theorem 9.1. If two commuting elements a, b € A are split,
then both a + b and ab are split.

° Corollary 9.2. A commutative subalgebra of A generated by
split elements consists entirely of split elements.

e Theorem 9.3. If b, ¢, f are elements of A such that f is split
and such that bc = fb and ¢ € Ab, then c is split.

@ Theorem 9.3 is tailored to our use:
bc = 1b cec Ab
Bn Rn,k = Wn,k Bn Rn,k €k [Sn] Bn

The splitness of W, i follows from the splitness of the
commuting elements J,, Rp_1 k-1 and R,_1 « (induction!)
by Corollary 9.2. We need the splitness of the YJM elements,
which was proved (e.g.) by Murphy.
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General theory of split elements, 2

@ Theorem 9.3 looks baroque, but in fact it easily decomposes
into two particular cases:
Corollary 9.4. If ba is split, then ab is also split.
Corollary 9.5. If a is split and b?> = ab, then b is split.
(Both times, a, b € A are arbitrary.)
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Formulas for eigenvalues, 1

@ The splitness theory proves easily that all eigenvalues of R, «
are integers, but it does not compute them explicitly. Indeed,
it produces “phantom eigenvalues” which do not actually
appear.
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Formulas for eigenvalues, 1

@ The splitness theory proves easily that all eigenvalues of R, «
are integers, but it does not compute them explicitly. Indeed,
it produces “phantom eigenvalues” which do not actually
appear.

@ With a lot more work (Specht modules, seminormal basis,
Pieri rule, etc.), we have been able to compute the
eigenvalues with their multiplicities fully.

@ | only have time to state the main result.

32/66



Formulas for eigenvalues, 2

@ Theorem 10.1. Let n, k > 0. The eigenvalues of R (R, ) on k[S,]
are the elements

k
Enu(k) = Z (U +1—=m+con (b))

J<(t1<by< <y )<n m=1

for all horizontal strips A\ p that satisfy A - n and d* # 0. Here,

o d* denotes the number of desarrangement tableaux of shape p
(that is, standard tableaux of shape y whose smallest
non-descent is even);

o j is the size of y;

o t"\* is the skew tableau of shape A\ x obtained by filling in
the boxes of A\ p with j+ 1,7+ 2,...,n from top to bottom;

o cons (p) =y — x if the cell of t*\* containing the entry p is
(x,)-

Moreover, the multiplicity of each such eigenvalue &£y, (k) is dmfA,
where f* is the number of standard tableaux of shape A (unless
there are collisions).
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Formulas for eigenvalues, 3

@ We have explicit formulas for specific shapes and strips:

2
n
Emna (k) = k!(k> :
i .
Enrn gy (K) = k! (" p ) (” ;{“) for all j € [n—1].

But there is no such nice formula for £4 1,1)\(1,1)(1)-
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Open questions

@ Question: Any nicer formulas for the eigenvalues &y, , (k) ?

@ Question (Reiner): What is the dimension of the subalgebra
of Q[S,] generated by R0, Rn1,.--,Rnn?

n 112|3|4]5 6 7 8 9 10 11 12

dim (subalgebra) || 1 | 2 | 4 | 7 | 15 | 30 | 54 | 95 | 159 | 257 | 400 | 613

(sequence not in the OEIS as of 2025-10-06).
The same numbers hold for the g-deformation!
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Chapter 3

CHAPTER 3

Somewhere-to-below shuffles

References:

@ Darij Grinberg, Nadia Lafreniere, The one-sided cycle shuffles
in the symmetric group algebra, Algebraic Combinatorics
(2024), arXiv:2212.06274.

@ Darij Grinberg, Commutator nilpotency for
somewhere-to-below shuffles, arXiv:2309.05340.

@ Darij Grinberg, The representation theory of
somewhere-to-below shuffles, arXiv:2508.00752.
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@ Now to something completely different...

° In 2021, Nadia Lafreniere defined the somewhere-to-below
shuffles t1,to, . .., t, by setting

ty = cycp+Cycp i1 +CYCopp1 40t CYCoppr € K[Sh]

for each ¢ € [n].
© Note: t, =id.
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Somewhere-to-below shuffles: introduction

@ Now to something completely different...

° In 2021, Nadia Lafreniere defined the somewhere-to-below
shuffles t1,to, . .., t, by setting

ty = cycy+eycp i1 +CYCr 140t T CYCpp1 0 € K[Sh]

for each ¢ € [n].
© Note: t, =id.
@ As a card shuffle, t; takes the ¢-th card from the top and
moves it further down the deck.
@ t; is called the top-to-random shuffle. Upon renaming
1,2,....,nasn,n—1,...,1, it becomes B,1. (So it is
conjugate to Bp1 by wp.)
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Somewhere-to-below shuffles: non-commutativity

@ ti,ty,...,t, do not commute for n > 3. For n = 3, we have

[t1,t2] = CyCyp +CyCyp3 —CyCy 35 —CyCy 3.
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Somewhere-to-below shuffles: non-commutativity

@ t1,t,...,t, do not commute for n > 3. For n = 3, we have

[t1,to] = CyCyp +CyCyp3 —CyCy 35 —CyCy 3.

@ However, they come pretty close to commuting!
© Theorem 20.1 (Lafreniere, G., 2022). There exists a basis
of the k-module k [S,,] in which all of the endomorphisms
R(t1),R(t2),..., R(ty) are represented by upper-triangular
matrices.
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The descent-destroying basis, 1

@ This basis is not hard to define, but | haven't seen it before.
° For each w € S,,, we let

Desw:={ie[n—-1] | w(i)>w(i+1)}.

This is called the descent set of w.
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The descent-destroying basis, 1

@ This basis is not hard to define, but | haven't seen it before.
° For each w € S,,, we let

Desw:={ie[n—-1] | w(i)>w(i+1)}.

This is called the descent set of w.
© For each i € [n— 1], we let s5; := cyc; ;4.
© Foreach I C [n—1], we let

G (/) := (the subgroup of S, generated by the s; for i € /).

This is called a Young parabolic subgroup of Sp,.
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The descent-destroying basis, 2

© Foreach w € S, we let
a, = Z wo € k[Sp].
o€ G(Des w)

In other words, a,, is obtained by breaking up the word w into
maximal decreasing factors and re-sorting each factor
arbitrarily (without mixing different factors).
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The descent-destroying basis, 2

© Foreach w € S, we let
a, = Z wo € k[Sp].
o€ G(Des w)

In other words, a,, is obtained by breaking up the word w into
maximal decreasing factors and re-sorting each factor
arbitrarily (without mixing different factors).
© The family (ay,),,cs, is a basis of k[S,] (by triangularity).
@ For instance, for n = 3, we have

a[123] = [123];

a3y = [132] + [123];

ap3 = [213] + [123];

apsy = [231] + [213];

azyo) = [312] + [132];

apy = [321] + [312] + [231] + [213] + [132] + [123].
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The descent-destroying basis, 3

© Theorem 14.1 (Lafreniére, G.). For any w € S, and
¢ € [n], we have

awtfzzﬂwjaw'+ E: Awlmav

VESy;
v=<w

for some nonnegative integer (1, ¢, some integers A\, ,, and a
certain partial order < on S,,.
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The descent-destroying basis, 3

© Theorem 14.1 (Lafreniére, G.). For any w € S, and
¢ € [n], we have

ayty = Hw @w + Z )\w,&vav
VESy;
v<w
for some nonnegative integer (1, ¢, some integers A\, ,, and a
certain partial order < on S,,.
Thus, the endomorphisms R (t1), R (t2),..., R(t,) are

upper-triangular with respect to the basis (aw),,cs, -
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The descent-destroying basis, 4

o Example: For n = 4, we have

apa3121t2 = Apa312] + A[a321] — A4231] — A[3241] — A[2143] -

subscripts are <[4312]
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The descent-destroying basis, 4

o Example: For n = 4, we have

apa3121t2 = Apa312] + A[a321] — A4231] — A[3241] — A[2143] -

subscripts are <[4312]

e Example: For n = 3, the endomorphism R (t;) is represented
by the matrix

a[321] Q[231] 9[132] 9[213] 9Q[312] 9[123]

a[321]
a[231]
a132]
a[213]
a[312]
a[123]

3 1 1 1
-1 1

1

(empty cells = zero entries). For instance, the last column
means a[123]t1 = 3[123] + 3[231].
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Eigenvalues of somewhere-to-below shuffles, 1

@ Corollary 14.2. The eigenvalues of the endomorphisms
R(t1),R(t2),...,R(t,) and of all their linear combinations

R(A1t1 + Aotz + - + Apty)

are integers as long as A1, Ap, ..., A, are.
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R(A1t1 + Aotz + - + Apty)

are integers as long as A1, Ap, ..., A, are.
@ How many different eigenvalues do they have?

@ R(t1) = R(Bna) has only n eigenvalues: 0,1,...,n—2,n, as
we have seen before. The other R (ty)'s have even fewer.
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Eigenvalues of somewhere-to-below shuffles, 1

@ Corollary 14.2. The eigenvalues of the endomorphisms
R(t1),R(t2),...,R(t,) and of all their linear combinations

R(A1t1 + Aotz + - + Apty)

are integers as long as A1, Ap, ..., A, are.
@ How many different eigenvalues do they have?

@ R(t1) = R(Bna) has only n eigenvalues: 0,1,...,n—2,n, as
we have seen before. The other R (ty)'s have even fewer.

@ But their linear combinations R (A1t + Aoty + -+ + Aptp)
can have many more. How many?

43 /66



Lacunar sets and Fibonacci numbers

° A set S of integers is called /acunar if it contains no two
consecutive integers (i.e., we have s+ 1 ¢ S for all s € S).
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consecutive integers (i.e., we have s +1 ¢ S for all s € S).

© Theorem 15.1 (combinatorial interpretation of Fibonacci
numbers, folklore). The number of lacunar subsets of
[n — 1] is the Fibonacci number f, 1.
(Recall: fo =0, L =1, fo="f_1+ fn,Q.)
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consecutive integers (i.e., we have s +1 ¢ S for all s € S).
© Theorem 15.1 (combinatorial interpretation of Fibonacci
numbers, folklore). The number of lacunar subsets of
[n — 1] is the Fibonacci number fny1.
(Recall: fo =0, L =1, fo="f_1+ fn,2.)

© Theorem 15.2. When A1, Az, ..., A, € C are generic, the
endomorphism R (A1t1 + Aato + - - 4+ Apt,,) is diagonalizable
and has f,1 distinct eigenvalues.
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Lacunar sets and Fibonacci numbers

° A set S of integers is called /acunar if it contains no two
consecutive integers (i.e., we have s +1 ¢ S for all s € S).
© Theorem 15.1 (combinatorial interpretation of Fibonacci
numbers, folklore). The number of lacunar subsets of
[n — 1] is the Fibonacci number fny1.
(Recall: fo =0, L =1, fo="f_1+ fn,2.)

© Theorem 15.2. When A1, Az, ..., A, € C are generic, the
endomorphism R (A1t1 + Aato + - - 4+ Apt,,) is diagonalizable
and has f,1 distinct eigenvalues.

@ Note that f,41 < nl.
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The Fibonacci filtration, 1

° We prove this by finding a filtration
0=FCFHRCFRC---CF, =k[S)]

of the k-module k [S,] such that each R (t;) acts as a scalar
on each of its quotients F;/F;_1. In matrix terms, this means
bringing R (t;) to a block-triangular form, with the diagonal
blocks being “scalar times /" matrices.

@ It is only natural that the quotients should correspond to the
lacunar subsets of [n — 1].

@ Let us approach the construction of this filtration.
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The Fibonacci filtration, 2

© For each | C [n], we set

suml::Zi

i€l
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The Fibonacci filtration, 2

© For each | C [n], we set

suml::Zi

i€l
and
I={0}ulu{n+1} (“enclosure” of I)
and
I":'=[n—=1\ (U (l -1)) (“non-shadow” of /)
and

F(l):={aek[S)) | asi=qforallie '} Ck[S,].

In probabilistic terms, F (/) consists of those random states of
the deck that do not change if we swap the i-th and (i + 1)-st
cards from the top as long as neither i nor i +1isin /. To
put it informally: F (/) consists of those random states that

are “fully shuffled” between any two consecutive /-positions.
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The Fibonacaci filtration, 3

e Example: If n =11 and /| = {3,6,7}, then
I={0}ulu{n+1}={0,3,6,7,12}

and
I":=[n—1]\(lU(l -1))={1,4,8,9,10}

and
F(l)={ack[Su] | qas1 =qss =qss = qsg = qs10 = q} .

Illustrating this:

o 1 2 3 4 5 6 7 8 9 10 11 12

(black = I; grey =1 —1, blue = 7'\ /;
lightblue = n; white = /).
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The Fibonacci filtration, 4

© For any ¢ € [n], we let m;, be the distance from / to the
next-higher element of /. In other words,

my = <sma|lest element of | that is > €> —e€{0,1,...,n}.

In our above example,

(ml,ly m/,27 ey ml711): (25 17 07 27 17 07 07 47 37 27 1)

Y [ [
1 2 3 4 5

0 6 7 8 9 10 11 12

@ We note that, for any ¢ € [n], we have the equivalence

~

me=0 <= [lcl < [lcl.
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The Fibonacci filtration, 5

© Crucial Lemma 16.1. Let / C [n] and ¢ € [n]. Then,

qt, € myq + Z F(J) foreachqe F (/).

JC|n];
sum J<sum /

Think of these as
“lower-order terms”
@ Proof: Expand qt, by the definition of ty, and break up the
resulting sum into smaller bunches using the interval
decomposition

[6, n] = [E, i — 1] LJ [I'k7 ik+1 — 1] L [ik+1, k42 — 1] U---u [ip, n]

(where iy < ig41 < --- < i, are the elements of / larger or
equal to ¢). The [¢, ix — 1] bunch gives the m; ¢q term; the
others live in appropriate F (J)'s

See arXiv:2212.06274 for the details.
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The Fibonacci filtration, 6

© Thus, we obtain a filtration of k[S,] if we label the subsets /
of [n] in the order of increasing sum/ and add up the
respective F (/)s.
On each subquotient of this filtration, t, acts as a scalar my .

@ Unfortunately, this filtration has 2", not f,;1 terms.
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The Fibonacci filtration, 6

© Thus, we obtain a filtration of k[S,] if we label the subsets /
of [n] in the order of increasing sum/ and add up the
respective F (/)s.
On each subquotient of this filtration, t, acts as a scalar my .
@ Unfortunately, this filtration has 2", not f,;1 terms.

° Fortunately, that's because many of its terms are redundant.
The ones that aren't correspond precisely to the /'s that are
lacunar subsets of [n — 1]:

@ Lemma 16.2. Let Kk € N. Then,

Y FU)= > F(J).

JC[n]; JC[n—1] is lacunar;
sum J<k sum J<k

@ Proof: If J C [n] contains n or fails to be lacunar, then F (J)
is a submodule of some F (K) with sum K < sum J.
(Exercise!)
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The Fibonacci filtration, 7

@ Now, we let Q1, @2, ..., Qf, , be the f,11 lacunar subsets of
[n — 1], listed in such an order that

sum (Q1) <sum (@) <--- <sum(Qf,,,) -
Then, for each i € [0, f,+1], define a k-submodule
Fii=F(Q)+F(Q)+ - +F(Q)  of k[S]
(so that Fp = 0). The resulting filtration
0=FCFARCFRC---CF =k[S)]

(which we call the Fibonacci filtration of k [S,]) satisfies the
properties we need:
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The Fibonacci filtration, 8

@ Theorem 16.3. For each i € [f,41] and ¢ € [n], we have
Fi-(ty—mgq,r) C Fi—1

(so that R (t;) acts on Fj/F;_1 as multiplication by mq, ¢).
@ Proof: Lemma 16.1 4+ Lemma 16.2.
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(so that R (t;) acts on Fj/F;_1 as multiplication by mq, ¢).

@ Proof: Lemma 16.1 4+ Lemma 16.2.

e Lemma 16.4. The quotients F;/F;_1 are nontrivial for all
i€ [fn+1].

@ Proof: See below.
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@ Proof: Lemma 16.1 4+ Lemma 16.2.
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° Corollary 16.5. Let k be a field, and let A1, Ao, ..., A, € k.

Then, the eigenvalues of R (A1t; + Aoto + -+ + Ant,) are the
linear combinations

Atmpg+Xomyo+ -+ Apmy for I C [n— 1] lacunar.
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The Fibonacci filtration, 8

@ Theorem 16.3. For each i € [f,41] and ¢ € [n], we have
Fi-(ty—mgq,r) C Fi—1

(so that R (t;) acts on Fj/F;_1 as multiplication by mq, ¢).

@ Proof: Lemma 16.1 4+ Lemma 16.2.

e Lemma 16.4. The quotients F;/F;_1 are nontrivial for all
i € [fn+1].

@ Proof: See below.

° Corollary 16.5. Let k be a field, and let A1, Ao, ..., A, € k.

Then, the eigenvalues of R (A1t; + Aoto + -+ + Ant,) are the
linear combinations

Atmpg+Xomyo+ -+ Apmy for I C [n— 1] lacunar.

@ Theorem 15.2 easily follows by some linear algebra.
@ More generally, this holds not just for linear combinations
A1t1 + doto + - - - + Apt, but for any noncommutative

polynomials in t,to, ..., t,.
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Back to the basis, 1

@ The descent-destroying basis (aw),cs is compatible with our
filtration:

© Theorem 17.1. For each | C [n], the family
(@w)wes,: 1/CDesw IS @ basis of the k-module F (/).
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Back to the basis, 1

@ The descent-destroying basis (aw),cs is compatible with our
filtration:
© Theorem 17.1. For each | C [n], the family
(@w)wes,: 1/CDesw IS @ basis of the k-module F (/).
° If w e S, is any permutation, then the Q-index of w is
defined to be the smallest i € [f,11] such that Q! C Desw.
We call this Q-index Qind w.

@ Proposition 17.2. Let w € S, and i € [f,+1]. Then,
Qindw =/ if and only if Q' C Desw C [n—1]\ Q;.
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Back to the basis, 2

@ Note: The numbering Q1, Q2,.. ., an+1 of the lacunar
subsets of [n — 1] is not unique; we just picked one. The
Q-index i = Qindw of a w € S,, depends on this numbering.
However, the corresponding lacunar set @; does not, since
Proposition 17.2 determines it canonically (it is the unique
lacunar L C [n — 1] satisfying L’ C Desw C [n— 1]\ L).
Thus, think of this set Q; as the “real” index of w. We just
found i easier to work with.

(“Morally”, the Fibonacci filtration should be indexed by a
poset; then you need not choose any numbering.)
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Back to the basis, 3

° Theorem 17.3. For each i € [0, f,11], the k-module F; is free
with basis (aw),,cs,. Qindw<i-
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© Corollary 17.4. For each i € [f,11], the k-module F;/F;_1 is
free with basis (aw),,cs.. Qind w=i-
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Back to the basis, 3

° Theorem 17.3. For each i € [0, f,11], the k-module F; is free
with basis (aw),,cs,. Qindw<i-
© Corollary 17.4. For each i € [f,11], the k-module F;/F;_1 is
free with basis (aw),,cs.. Qind w=i-
@ This yields Lemma 9.4 and also leads to Theorem 7.1, made
precise as follows:

© Theorem 17.5 (Lafreniere, G.). For any w € S, and
¢ € [n], we have

awty = pywaw + Z Aw,f,vav
vESy;
Qind v<Qind w
for some nonnegative integer (1, o and some integers \,, /.
Thus, the endomorphisms R (t1), R (t2),..., R (t,) are
upper-triangular with respect to the basis (aw), s, as long as
the permutations w € S, are ordered by increasing Q-index.
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The multiplicities, 1

@ In Corollary 9.5, we found the eigenvalues of the

endomorphism R (A1t1 + Aoto + - - - 4+ Apt,). With Corollary

17.4, we can also find their algebraic multiplicities. To state a
formula for them, we need a definition:
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The multiplicities, 1

@ In Corollary 9.5, we found the eigenvalues of the
endomorphism R (A1t1 + Aoto + - - - 4+ Apt,). With Corollary
17.4, we can also find their algebraic multiplicities. To state a
formula for them, we need a definition:

° For each i € [fy4+1], we set

;i := (the number of all w € S, satisfying Qindw = i).

© Corollary 18.1 (informal version). Assume that k is a field.
Let A1, A2,..., Ay € k. Then, the endomorphism
R (A1t1 + Aoty + - -+ + Apt,) has eigenvalues
A= Aimpy+Aampz + o+ Aamy
for all lacunar | C [n— 1]
with respective multiplicities 0;,
where i € [f,11] is such that | = Q.
(If some \; happen to coincide, then their algebraic

multiplicities must be added together.)
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The multiplicities, 2

@ Can we compute the d; explicitly? Yes!
© Theorem 18.2. Let j € [f,11]. Then:
(a) Write the set Q; in the form Q; = {i1 < ib <--- < ip},
and set ip =1 and ipy1 = n+ 1. Let jx = ix — ix—1 for
each k € [p+1]. Then,

p p+1
S </ . : ) ~ Jk—1).
' 1,025 -5 )p+1 lg( )

Vv
multinomial
coefficient
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The multiplicities, 2

@ Can we compute the d; explicitly? Yes!
© Theorem 18.2. Let j € [f,11]. Then:
(a) Write the set Q; in the form Q; = {i1 < ib <--- < ip},
and set ip =1 and ipy1 = n+ 1. Let jx = ix — ix—1 for
each k € [p+1]. Then,

p p+1
S </ . : ) ~ Jk—1).
' 1,025 -5 )p+1 lg( )

Vv
multinomial
coefficient

(b) We have ¢; | n!.

@ Note. This reminds of the hook-length formula for standard
tableaux, but is much simpler.
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@ Most of what we said about the somewhere-to-below shuffles
ty can be extended to their antipodes t; (the
“below-to-somewhere shuffles"). For instance:

@ Theorem 19.1. There exists a basis of the k-module k [S,] in
which all of the endomorphisms R (t]), R (St}),..., R(t})
are represented by upper-triangular matrices.

@ We can also use left instead of right multiplication:

@ Theorem 19.2. There exists a basis of the k-module k [S,] in
which all of the endomorphisms L (t1),L(t2),...,L(t,) are
represented by upper-triangular matrices.

@ These follow from Theorem 14.1 using dual bases and
transpose matrices. No new combinatorics required!
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Commutators, 1

@ The simultaneous trigonalizability of the endomorphisms
R(t1),R(t2),..., R(t,) yields that their pairwise
commutators are mIpotent. Hence, the pairwise commutators
[ti, t;] are also nilpotent.
@ Question. How small an exponent works in [t;, t;]" =0 ?
© Theorem 20.1. We have [t,~,tj-]j_“rl = 0 for any
1<i<j<n
© Theorem 20.2. We have [t;, t;] [(n=D/21+1 — 0 for any
i,j € [n].
@ Depending on i and j, one of the exponents is better than the
other.

Conjecture. The better one is optimal! (Checked for all
n<12.)
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Commutators, 2

° Stronger results hold, replacing powers by products.

° Several other curious facts hold: For example,

tit = (t,' — 1) t; and tiso (t,' — 1) = (t,' — 1) (t,'+1 — 1)
and
th-1 [t,',t,,,l] =0 and [t,',t,,,l] [tj,tnfl] =0

for all i and j.

@ All this is completely elementary but surprisingly hard to prove
(dozens of pages of manipulations with sums and cycles). The
proofs can be found in arXiv:2309.05340.

@ What is “really” going on? No idea...
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Representations, 1

@ Two natural questions:

© The F (/) and the F; are left ideals of k[S,]; how do they
decompose into Specht modules?
@ How do ty,ty,...,t, act on a given Specht module?
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Representations, 1

@ Two natural questions:

© The F (/) and the F; are left ideals of k[S,]; how do they
decompose into Specht modules?
@ How do ty,ty,...,t, act on a given Specht module?

We can answer these.
The answer uses symmetric functions, specifically:
Let s\ be the Schur function for a partition A.

Let hm = S(m) be the m-th complete homogeneous symmetric
function for each m > 0.

o Let z,, = S(m—1,1) = hm_1h1 — hyy, for each m > 1.
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Representations, 2

@ For each lacunar subset I of [n — 1], we define a symmetric

function
k
z = hjy_1 1_[2,-],,-1.71 (over Z),
J=2
where i1, i, . . ., ik are the elements of /U {n+ 1} in increasing

order (sothat ix =n+1land I ={ih <h <- <ix_1}).
This is a skew Schur function corresponding to a disjoint
union of hooks: e.g., if n =11 and | = {3,6,8}, then it is

h—1

b — i —1
1

i —ip—1
1

is— iy — 1
1
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Representations, 3

@ For each lacunar | C [n — 1] and each partition A of n, we let
c/’\ be the coefficient of sy in the Schur expansion of z.
This is a Littlewood—Richardson coefficient (since z; is a skew
Schur function), thus € N.
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Representations, 3

@ For each lacunar | C [n — 1] and each partition A of n, we let
c/’\ be the coefficient of sy in the Schur expansion of z.
This is a Littlewood—Richardson coefficient (since z; is a skew
Schur function), thus € N,

@ Theorem 21.1. Let v be a partition. Let A1, Ao, ..., A, € k.
Then, the shuffle Ait; + Aoto + - - - + Apt, acts on the Specht
module S as a linear map with eigenvalues

A1myy+ Aamya + o+ Apmy
for all lacunar | C [n — 1] satisfying ¢/ # 0,
and the multiplicity of each such eigenvalue is ¢/ in the
generic case.

If all these linear combinations are distinct, then this linear
map is diagonalizable.
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Representations, 4

@ Theorem 21.2 (lazy version). Let k be a field of
characteristic 0. Let i € [f,11]. As a representation of S, the
quotient module F;/F;_1 has Frobenius characteristic zq,.

e Theorem 21.2 (careful version, true in every
characteristic). Let i € [f,11]. Consider the lacunar subset
Qi of [n —1]. Let i1, fp, ..., ik be the elements of Q;U{n+ 1}
in increasing order. Then, as representations of S,,, we have

Fi/Fiia 2 Hi1% Zi_jy x Z; ok Z;

3—ip * Ie—ik_19

where x means induction product (that is,

UxV = |nd§;;j5j (U® V)), and where H, is the trivial
1-dimensional representation of S,,, whereas Z,, is the
reflection representation of Sp, (that is, k” modulo the span

of (1,1,...,1)).

@ Proofs appear in arXiv:2508.00752.
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Conjectures and questions

@ Question. What can be said about the k-subalgebra
k[ti,to,...,t,] of k[S,] ? Note:

n 1/2(3[4]5|6/| 7 | 8
dim (Q[ty,ta,....ta]) | 1] 24|09 ]23]|66 212|761

(this sequence is not in the OEIS as of 2025-10-08).

@ Question. Do the results about commutators and
representations generalize to the Hecke algebra?
(The Fibonacci filtration and descent-destroying basis
definitely do. Proofs forthcoming...)
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