Multiline queues with spectral parameters

Darij Grinberg
joint work with Erik Aas and Travis Scrimshaw

15 October 2018
North Carolina State University

slides: http:

//www.cip.ifi.1lmu.de/~grinberg/algebra/ncsu2018.pdf
paper:
http://www.cip.ifi.lmu.de/~grinberg/algebra/mlqgs.pdf

http://www.cip.ifi.lmu.de/~grinberg/
https://sites.google.com/view/tscrim/home
http://www.cip.ifi.lmu.de/~grinberg/algebra/ncsu2018.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/ncsu2018.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/mlqs.pdf

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

@ Fix a positive integer n.

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

@ Fix a positive integer n.
@ For a nonnegative integer k, let [k] be the set {1,2,..., k}.

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

@ Fix a positive integer n.
@ For a nonnegative integer k, let [k] be the set {1,2,..., k}.

o We shall refer to the elements 1,2,...,n € Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

n—1 n 1 2 +«+ n—=1 n 1 2

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

@ Fix a positive integer n.
@ For a nonnegative integer k, let [k] be the set {1,2,..., k}.

@ We shall refer to the elements 1,2,....n € Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

n—1 np 1 2 -« n—1 n 1 2

@ A word means a map {sites} — {positive integers}.
If uis a word and i is a site, then u; := u (i).

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

@ For a nonnegative integer k, let [k] be the set {1,2,..., k}.
@ We shall refer to the elements 1,2,....n € Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:
n-1 n 12 -+ n=1 n 1 2
@ A word means a map {sites} — {positive integers}.

If uis a word and i is a site, then u; := u (i).
o Write ujup - - - up, for a word u (“one-line notation”).

Sites and words

@ We study a combinatorial algorithm by which queues act on
words.

@ Fix a positive integer n.
@ For a nonnegative integer k, let [k] be the set {1,2,..., k}.

@ We shall refer to the elements 1,2,....n € Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

n—1 np 1 2 -« n—1 n 1 2

@ A word means a map {sites} — {positive integers}.
If uis a word and i is a site, then u; := u (i).

o Write ujup - - - up, for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

Il
N~

i 512 3 45 1 2
= uy = --- 2 2 3312233

@ A queue means a set of sites.

@ A queue means a set of sites.

@ Draw a queue g by putting circles on all the sites i € q.

@ A queue means a set of sites.

@ Draw a queue g by putting circles on all the sites i € q.
Example: The queue {2,5} (for n = 7) is represented by

6712 34 (6B)67 1 (2

@ A queue means a set of sites.

@ Draw a queue g by putting circles on all the sites i € q.
Example: The queue {2,5} (for n = 7) is represented by

6712 34 (6B)67 1 (2

@ We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

@ A queue means a set of sites.

@ Draw a queue g by putting circles on all the sites i € q.
Example: The queue {2,5} (for n = 7) is represented by

1 (2 34 ()67

@ We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1

O O O O

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1

O O O O

7
Phase I: For each of the largest n — |q| letters of u (in
decreasing order),
o drop this letter down and add 1 to it;
o move it left until hitting some unoccupied site i ¢ g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1

O O O O

7 7
Phase I: For each of the largest n — |q| letters of u (in
decreasing order),
o drop this letter down and add 1 to it;
o move it left until hitting some unoccupied site i ¢ g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1
O)H—/O O O
7T 7 5

Phase I: For each of the largest n — |q| letters of u (in
decreasing order),
o drop this letter down and add 1 to it;
o move it left until hitting some unoccupied site i ¢ g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 66 6 1 3 3 2 1
O)H—/O O O
7T 7 4 5

Phase I: For each of the largest n — |q| letters of u (in
decreasing order),
o drop this letter down and add 1 to it;
o move it left until hitting some unoccupied site i ¢ g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1
O /(_J—/O ’_¢—J O O
7 7 4 4 5
Phase I: For each of the largest n — |q| letters of u (in
decreasing order),
o drop this letter down and add 1 to it;

o move it left until hitting some unoccupied site i ¢ g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1
o HJO Bl
7 7 4 4 5 1
Phase Il: For each of the smallest |q| letters of u (in

increasing order),
o drop this letter down;

e move it right until hitting some unoccupied site i € g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2

I
—Ojoﬁﬁ ‘

7 7 4 4 5 1 1
Phase Il: For each of the smallest |q| letters of u (in
increasing order),
o drop this letter down;
e move it right until hitting some unoccupied site i € g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 1 3 3 2 1
™ X g
ZWJHJO T T
2 7 7 4 4 5 1 1
Phase Il: For each of the smallest |q| letters of u (in
increasing order),
o drop this letter down;

e move it right until hitting some unoccupied site i € g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and q = {1,4,8,9}:

3 4 6 6 3 3 1

1 2
2 7 7 3 4 4 5 1 1
Phase Il: For each of the smallest |q| letters of u (in
increasing order),
o drop this letter down;

e move it right until hitting some unoccupied site i € g;
o place it there.

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and g = {1,4,8,9}:

W?ch (Cf

The letters on the bottom now form ¢g(u).

Action of queues on words, 1: example

@ Let g be a queue, and u a word. We shall define a word g(u).
o Algorithm:
e Draw u on top.
e Draw g as circles in the middle.
o Build g(u) letter by letter, as follows...
Example: n =9 and v = 346613321 and g = {1,4,8,9}:

W?ch (Cf

The letters on the bottom now form ¢g(u).

Proposition. Equal letters can be processed in any order.

Action of queues on words, 2: formal definition

@ Let g be a queue, and u a word. Define a word g(u) as

follows:
In the beginning, v = q(u) is a word whose letters are unset.
Choose a permutation (i1, i, ..., ip) of (1,2,...,n) such that
uyp S up <o <,
Phase I. For i =in,in-1,...,i|g+1, do the following:
Find the first site j weakly to the left (cyclically)
of i such that j ¢ g and v; is not set. Then set
vi =u; + 1.
Phase Il. Fori=iy,i,...,lq do the following:

Find the first site j weakly to the right
(cyclically) of i such that j € g and v; is not set.
Then set v; = u;.

Action of queues on words, 2: formal definition

@ Let g be a queue, and u a word. Define a word g(u) as

follows:
In the beginning, v = q(u) is a word whose letters are unset.
Choose a permutation (i1, i, ..., ip) of (1,2,...,n) such that
uyp S up <o <,
Phase I. For i =in,in-1,...,i|g+1, do the following:
Find the first site j weakly to the left (cyclically)
of i such that j ¢ g and v; is not set. Then set
vi =u; + 1.
Phase Il. Fori=iy,i,...,lq do the following:

Find the first site j weakly to the right
(cyclically) of i such that j € g and v; is not set.
Then set v; = u;.
@ Proposition.
o The resulting word v = g(u) does not depend on the
choice of permutation (i1, 2, . . ., in).
o Phase | and Phase Il can be done in parallel.

Remark on TASEP connection

@ This action of queues on words is the “generalized
Ferrari-Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Remark on TASEP connection

@ This action of queues on words is the “generalized
Ferrari-Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

@ Their motivation: compute stationary distribution of
multi-species TASEP (totally asymmetric simple exclusion
process) on a circle.

The algorithm intertwines different TASEPs, and lets one
transport the stationary distribution from one to another.

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Remark on TASEP connection

@ This action of queues on words is the “generalized
Ferrari-Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

@ Their motivation: compute stationary distribution of
multi-species TASEP (totally asymmetric simple exclusion
process) on a circle.

The algorithm intertwines different TASEPs, and lets one
transport the stationary distribution from one to another.

@ Aas and Linusson (arXiv:1501.04417, Ann. Inst. Henri
Poincaré D) later attempted to obtain explicit formulas for
steady state probabilities.

Our work proves two of their conjectures.

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).
Example: The word 1255135 has type (2,1,1,0,3,0,0,0,...).

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).
Example: The word 1255135 has type (2,1,1,0,3,0,0,0,...).

@ We omit trailing zeroes from infinite sequences.
That is, we abbreviate (my, my,..., m,,0,0,0,...) as
(ml, mp,..., mk).

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).
Example: The word 1255135 has type (2,1,1,0,3).

@ We omit trailing zeroes from infinite sequences.
That is, we abbreviate (my, my,..., m,,0,0,0,...) as
(ml, mp,..., mk).

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).
Example: The word 1255135 has type (2,1,1,0,3).

@ We omit trailing zeroes from infinite sequences.
That is, we abbreviate (my, my,..., m,,0,0,0,...) as
(ITIl7 mp,..., mk).

@ A word u is packed with ¢ classes if its type m has
mi,my,...,mg>0and my1 =myo=---=0.

Types of words

@ The type of a word u is the sequence m = (my, my, .. .),
where my = (# of all sites i such that u; = k).
Example: The word 1255135 has type (2,1,1,0,3).

@ We omit trailing zeroes from infinite sequences.
That is, we abbreviate (my, my,..., m,,0,0,0,...) as
(ITIl7 mp,..., mk).

o A word u is packed with ¢ classes if its type m has
my, ma,...,mg>0and mpp1 = myjp=---=0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

@ A MLQ (short for “multiline queue”) is a tuple of queues.

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(v) == g (qk—1 (- - (g1(u)))) -

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(u) == gk (gr-1 (- - (q1(v)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
q=1(91,92,...,qr—1) such that
lqi| = m1 + ma+ -+ my) forall /, and

n=my+mt--.

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(v) == i (gr—1 (- - (q1(u)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
q=(q1,92,--.,qe-1) such that
‘q," :ml—i—mg—i—---—l—ma(,-) for all i, and
n=my+m+---.
Example: n=6 and m=(2,3,1) and /=3 and 0 = (2,1)
(one-line notation). Then, a o-twisted MLQ of type m is an

MLQ q = (g1, g2) with |g1| = m; +my =2+ 3 =5 and
lg2| = m = 2.

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(v) == i (gr—1 (- - (q1(u)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
q=(q1,92,--.,qe-1) such that
‘q," :ml—i—mg—i—---—l—ma(,-) for all i, and
n=my+m+---.
Example: n=6 and m=(2,3,1) and /=3 and 0 = (2,1)
(one-line notation). Then, a o-twisted MLQ of type m is an

MLQ q = (g1, g2) with |g1| = m; +my =2+ 3 =5 and
|ga| = m1 =2. For example, q = ({1,3,4,5,6},{2,3})

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(u) == gk (gr-1 (- - (q1(v)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
qa= (91,92, --,qe1) such that
‘q," :ml—i—mg—i—---—l—ma(,-) for all i, and
n=my+m+---.
Example: n=6 and m=(2,3,1) and /=3 and 0 = (2,1)
(one-line notation). Then, a o-twisted MLQ of type m is an
MLQ q = (g1, g2) with |g1| = m; +my =2+ 3 =5 and

|ga| = m1 =2. For example, q = ({1,3,4,5,6},{2,3})
and q(111111) = 311222.

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(v) == i (gr—1 (- - (q1(u)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
q=(q1,92,--.,qe-1) such that
‘q," :ml—i—mg—i—---—l—ma(,-) for all i, and
n=my+m+---.
Example: n=6 and m=(2,3,1) and /=3 and 0 = (2,1)
(one-line notation). Then, a o-twisted MLQ of type m is an

MLQ q = (g1, g2) with |g1| = m; +my =2+ 3 =5 and
|ga| = m1 =2. For example, q = ({1,3,4,5,6},{4,5})

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(u) == gk (gr-1 (- - (q1(v)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
qa= (91,92, --,qe1) such that
‘q," :ml—i—mg—i—---—l—ma(,-) for all i, and
n=my+m+---.
Example: n=6 and m=(2,3,1) and /=3 and 0 = (2,1)
(one-line notation). Then, a o-twisted MLQ of type m is an
MLQ q = (g1, g2) with |g1| = m; +my =2+ 3 =5 and

|ga| = m1 =2. For example, q = ({1,3,4,5,6},{4,5})
and q(111111) = 232112,

@ A MLQ (short for “multiline queue”) is a tuple of queues.

o Ifg=1(q1,92,...,9x) is an MLQ, and u is a word, then

a(u) == gk (gr-1 (- - (q1(v)))) -
@ Let />0, and let o be a permutation of [¢ — 1].
Let m = (mq, ma,..., my) be a sequence of positive integers.
A o-twisted MLQ of type m means an MLQ
q=1(91,92,...,qr—1) such that

‘qi‘ =m-+my+---+ Mg (i) for all i, and

n=my+mt--.

@ Equivalently: A o-twisted MLQ of type m can be defined as
an MLQ q = (g1, g2, - .., qe—1) such that
o the word gq(1---1) has type m (where 1---1 is the word
whose entries all equal 1);
e we have 0 < |q0—1(1)‘ < ‘qo._1(2)‘ << ‘%—1(671)‘-

Generating functions, 1: definition

@ Now, let x1,x2,...,x, be commuting variables.

Generating functions, 1: definition

@ Now, let x1,x2,...,x, be commuting variables.

@ For any ¢ > 1, any permutation o of [¢ — 1], and any packed
word u of type m with £ classes, we define the o-spectral

weight (u),. by
(u), = Z wtq.

q is a o-twisted
MLQ of type m
satisfying u=q(1---1)

Here:
e 1---1 denotes the word whose all entries are 1.

k
o wtq:= []][xi for any MLQ q = (g1, g2, - - -, qk)-
p=lieqp

Generating functions, 1: definition

@ Now, let x1,x2,...,x, be commuting variables.
@ For any ¢ > 1, any permutation o of [¢ — 1], and any packed
word u of type m with £ classes, we define the o-spectral

weight (u),. by
(u), = Z wtq.

q is a o-twisted
MLQ of type m
satisfying u=q(1---1)

Here:

e 1---1 derllotes the word whose all entries are 1.

o wtq:= []][xi for any MLQ q = (g1, g2, - - -, qk)-

p=lieqp

Example: Recall that ({1,3,4,5,6},{4,5}) is a o-twisted
MLQ of type m for n =6 and m =(2,3,1) and £ = 3 and
o = (2,1) (one-line notation) satisfying q(111111) = 232112.
It contributes a monomial

(x1x3xaX5Xp) (XaX5) = X1X3X§X§X6 to (232112) .

Generating functions, 1: definition

@ Now, let x1,x2,...,x, be commuting variables.
@ For any ¢ > 1, any permutation o of [¢ — 1], and any packed
word u of type m with £ classes, we define the o-spectral

weight (u),. by
(u), = Z wtq.

q is a o-twisted
MLQ of type m
satisfying u=q(1---1)

Here:
e l---1 derllotes the word whose all entries are 1.
o wtq:= []][xi for any MLQ q = (g1, g2, - - -, qk)-
p=lieqp
@ Set (u) := (u),4 for the permutation id of [/ — 1].

Generating functions, 2: more examples

@ Example: For n=5, /=5 and m=(1,1,2,1), we have

<13234> = X]_X2X32X4(X12 + X1 X4 + X1 X5 + XaX5 + Xg)

Generating functions, 2: more examples

@ Example: For n=5, /=5 and m=(1,1,2,1), we have
(13234) = X1X2X32X4(X12 + X1Xa + X1X5 + Xax5 + x52)
@ Examples: For n=5,¢=5and m=(1,1,1,1,1), we have
(13245) = X1X2X§X4(X12 + x1x4 + X1 X5 + Xf + X4 X5 + xg)
- (x1x2x3 + X1X0X5 + X1X3X5 + X2X3X5),
(14235) = xyx0x2x3 (X2 x0 + xix3 + Xix5 + XEXoX3 + X2 X0X4
+ 2X12X2X5 + X]?X3X4 + 2x12X3X5 + X12X4X5
+ xlzxg + X1 X0X3X5 + X1 X0X4X5 + 2x1x2x5?
+ X1X3XaX5 + 2x1X3x52 + X1X4x§ + Xlxg’

+ X2X3X52 + XQX4X52 + xzxg + X3X4X52 + X3x§’).

The symmetry theorem, 1: statement

@ Theorem. For any ¢ > 1, any permutation o of [¢ — 1], and
any packed word u of type m with ¢ classes, we have

{u)y = (u) -

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 1: statement

@ Theorem. For any ¢ > 1, any permutation o of [¢ — 1], and
any packed word u of type m with ¢ classes, we have

{u)y = (u) -

@ This yields the “commutativity conjecture” by Arita, Ayyer,
Mallick and Prolhac on the TASEP (arXiv:1104.3752).

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 1: statement

@ Theorem. For any ¢ > 1, any permutation o of [¢ — 1], and
any packed word u of type m with ¢ classes, we have

(u)g = (u).
@ This yields the “commutativity conjecture” by Arita, Ayyer,
Mallick and Prolhac on the TASEP (arXiv:1104.3752).
@ This is proven bijectively, using a “duality transformation” on
MLQs that leaves their action on words unchanged.
@ Main lemma. If g; and g, are two queues, then there are
two queues g and g, satisfying

|QH = |2 and \qé\ = |q1] and
H X H X = H X H X
i€q; i€qb i€q i€qo

such that every word u satisfies
d1 (a2 (1)) = q1 (g2 ().

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,

otherwise a neutral symbol “o".

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:

o Encode the pair (g1, g2) as a 2n-letter word
b = (b1, b2, ..., by,) over the 3-letter alphabet {), (, o}.
Namely, for each i,

o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,

otherwise a neutral symbol “o".
Convenient example:

n=10;
q1 = {2,6,7,9};
g ={1,3,5,7,8}.

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,

o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";

o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".

Convenient example:

n=10;

q1=1{2,6,7,9};

g ={1,3,5,7,8}.
Then,
b =]0o)|(o|o)|oo|o)| (o] ()]|o)]| (o]0
i =112 |34 |5|6|7|8]|9]10

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:

o Encode the pair (g1, g2) as a 2n-letter word
b = (b1, b2, ..., by,) over the 3-letter alphabet {), (, o}.
Namely, for each i,

o let by; 1 be an opening parenthesis “(" if i € gy,

otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".

Convenient example:
n=10;
g1 ={2,6,7,9};
g ={1,3,5,7,8}.

b = o) (o o) oo o) (o () o) (o oo

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:

o Encode the pair (g1, g2) as a 2n-letter word
b = (b1, b2, ..., by,) over the 3-letter alphabet {), (, o}.
Namely, for each i,

o let by; 1 be an opening parenthesis “(" if i € gy,

otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".

Convenient example:
n=10;
g1 ={2,6,7,9};
g ={1,3,5,7,8}.
Then,
b = 0)(00)o00)(o()o)(co0o

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above

example:

b = 0)(00)o00)(o()o)(c00

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = 0)(100)1000)(0()o)(c0c0

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:

o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,

o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";

o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".

e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = 0)(100)1000)(0(2)20)(c00

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above

example:

b= o)(loo)looo)(30(2)20)3(000

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above

example:

b= 0)4(100)1000)(30(2)20)3(4000

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
o Replace the unmatched parentheses by their duals — e.g.,
if they were)’s, make them (’s.

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
o Replace the unmatched parentheses by their duals — e.g.,
if they were)’s, make them (’s.
In our above example:

b = 0)a(100)1000)(30(2)20)3(s000

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
o Replace the unmatched parentheses by their duals — e.g.,
if they were)’s, make them (’s.
In our above example:

b = 0)a(100)1000)(30(2)20)3(s000

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
o Replace the unmatched parentheses by their duals — e.g.,
if they were)’s, make them (’s.
In our above example:

b' = 0)4(100)1000((30(2)20)3(s000

The symmetry theorem, 2: idea of proof

@ The construction of ¢; and g5 is combinatorial:
o Encode the pair (g1, g2) as a 2n-letter word
b= (b1, bo, ..., bop) over the 3-letter alphabet {), (,o}.
Namely, for each i,
o let by; 1 be an opening parenthesis “(" if i € gy,
otherwise a neutral symbol “o";
o let by; be a closing parenthesis “)" if i € g,
otherwise a neutral symbol “o".
e Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
o Replace the unmatched parentheses by their duals — e.g.,
if they were)’s, make them (’s.
o Turn the resulting word b’ into two sets ¢} and g as
follows:
o gy =1{i€[n] | either b};_, or by isa “("};
o gh={i€[n] | either b};,_, or by isa “)"}.

The symmetry theorem, 3: comments

@ Note that

o if |g1| < |go|, then qj is obtained from g; by adding some
elements from g, whereas ¢} is obtained from g» by
removing these elements;

o if [q1] = |q2], then ¢} = g1 and ¢} = q2;

o if |g1] > |g2|, then g is obtained from g1 by removing
some elements, whereas g} is obtained from g» by adding
these elements.

The symmetry theorem, 3: comments

@ Note that

o if |g1| < |go|, then qj is obtained from g; by adding some
elements from g, whereas ¢} is obtained from g» by
removing these elements;

o if [q1] = |q2], then ¢} = g1 and ¢} = q2;

o if |g1] > |g2|, then g is obtained from g1 by removing
some elements, whereas g} is obtained from g» by adding
these elements.

@ This is closely connected to the Lascoux-Schiitzenberger
action of the symmetric group on words (a.k.a. the Weyl
group action on the word crystal of type A).

o Note: the map (g1, g2) — (g1, g5) is an involution.

The symmetry theorem, 3: comments

@ Note that

o if |g1| < |go|, then qj is obtained from g; by adding some
elements from g, whereas ¢} is obtained from g» by
removing these elements;

o if [q1] = |q2], then ¢} = g1 and ¢} = q2;

o if |g1] > |g2|, then g is obtained from g1 by removing
some elements, whereas g} is obtained from g» by adding
these elements.

@ This is closely connected to the Lascoux-Schiitzenberger
action of the symmetric group on words (a.k.a. the Weyl
group action on the word crystal of type A).

o Note: the map (g1, g2) — (g1, g5) is an involution.

@ Actually, it is a known object from crystal base theory: the
combinatorial R-matrix for two single columns.

A Jacobi-Trudi-like formula

@ But can we compute (u) without enumerating all MLQs?

A Jacobi-Trudi-like formula

@ But can we compute (u) without enumerating all MLQs?
@ We have a partial answer (which subsumes two conjectures by
Aas and Linusson).

A Jacobi-Trudi-like formula

@ Theorem. Let B={b; < by < --- < b} C[n].
Let vivy - - - v, be a weakly decreasing (non-cyclic) packed
word of length r with ¢ — 1 classes.
Define a word u of length n by u; = v; if i = b; for some j,
otherwise u; = £.
Then

(u) = (H X,'> det(h;_j_1+g_‘,j(X1, X2, ... ’ij))lgi,jgr'

ieB

A Jacobi-Trudi-like formula

@ Theorem. Let B={b; < by < --- < b} C[n].
Let vivy - - - v, be a weakly decreasing (non-cyclic) packed
word of length r with ¢ — 1 classes.
Define a word u of length n by u; = v; if i = b; for some j,
otherwise u; = £.
Then

<u> = (H Xi> det(hi—j—l-i-é—vj(Xl,XL s 7ij))1§i,j§r'
icB

Example: n=8and r=4and B={1<3 <4< 7} and

=4 and vivo---v, = 3321. Then,

(3432441) = (x1x3Xax7)

ho(Xl) h_l(X]_,X2,X3) h_l(Xl,X27X3,X4) h_1(X1,X2,..4,X7)
hl(Xl) ho(Xl,Xz,X3) ho(Xl,Xg,X37X4) ho(X17X27...,X7)
h2(X1) hl(Xl,Xg,Xg;) hl(Xl,Xz,X3,X4) /71(X1,X2,...,X7)
h3(x1) ha(x1,x2,x3) ho(x1,x2,x3,xa) ho(x1, %2, ..., x7)

Bonus problem

Bonus problem

Dual stable Grothendieck polynomials

Reminder on Schur functions

@ The following is not related to MLQs (or is it?), but a
conjecture I'm very curious to hear ideas about.
(And it's a Jacobi-Trudi type formula, too.)

Reminder on Schur functions

@ The following is not related to MLQs (or is it?), but a
conjecture I'm very curious to hear ideas about.
(And it's a Jacobi-Trudi type formula, too.)

@ Fix a commutative ring k.
Recall that for any skew partition A/, the (skew) Schur
function sy, is defined as the power series

tT
> x" T ¢ k[[x1, %2, x3, -]
T is an SST of shape A\/u

where “SST" is short for “semistandard Young tableau”, and
where

cont T __ number of times T contains entry k
X = Xk .

k>1

Reminder on Schur functions

@ The following is not related to MLQs (or is it?), but a
conjecture I'm very curious to hear ideas about.
(And it's a Jacobi-Trudi type formula, too.)

@ Fix a commutative ring k.
Recall that for any skew partition A/, the (skew) Schur
function sy, is defined as the power series

tT
> x" T ¢ k[[x1, %2, x3, -]
T is an SST of shape A\/u

where “SST" is short for “semistandard Young tableau”, and
where

cont T __ number of times T contains entry k
X = Xk .

k>1

@ Let us generalize this by extending the sum and introducing
extra parameters.

Dual stable Grothendieck polynomials, 1: RPPs

o A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

2] an RPP.

1]2
2|2
|24

Dual stable Grothendieck polynomials, 1: RPPs

o A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

112]2]i .0 rPP.
2 [2

(2|4
(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that

T(,))<T(i,j+1) and T(i,j) < T(i+1,))

whenever these are defined.)

Dual stable Grothendieck polynomials, 1: RPPs

@ A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

112]2]i .0 rPP.
22
|2 4

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that

T(,))<T(i,j+1) and T(i,j) < T(i+1,))

whenever these are defined.)
@ Let k be a commutative ring, and fix any elements
t1,t, t3,... € k.

Dual stable Grothendieck polynomials, 2: definition

@ Given a skew partition A\/u, we define the refined dual stable
Grothendieck polynomial gy, to be the formal power series

Z Xircont theq T c k [[Xl, X0, X3, . .]] ,
T is an RPP of shape \/u

where

ircont T __ Xnumber of columns of T containing entry k

X K

k>1
and T ber of j such that T(ij)=T(i+14)
geea T _ trlum er of j suc| a ij)=T(i+1,j
(where T (i,j) = T (i + 1,/) implies, in particular, that both
(i,j) and (i +1,/) are cells of T).
This is a formal power series in x1, x2, X3, ... (despite the
name “polynomial™).

Dual stable Grothendieck polynomials, 3: examples on x"°" 7

@ Recall:
ircont T __ number of columns of T containing entry k
X = Xk .
k>1
1 2 | ircont T 4
o If T = then x = X1Xx3. The x» has
2
2|3

exponent 4, not 5, because the two 2's in column 3 count only
once.

Dual stable Grothendieck polynomials, 3: examples on x"°" 7

@ Recall:
xircont T — Xlr:umber of
k>1
o If T = 1 2 | then x
2
213

columns of T containing entry k

reont T — x; x3x3. The xp has

exponent 4, not 5, because the two 2's in column 3 count only

once.

@ If T is an SST, then xireont T — ycont T

Dual stable Grothendieck polynomials, 3: examples on t°9 7

@ Recall that

gcea T _ H tl_‘Iumber of j such that T(ij)=T(i+1,)
i

i>1
0o If T = 1 2 | then 97 = ¢, due to
2
123
T(1,3)=T(2,3).

Dual stable Grothendieck polynomials, 3: examples on t°9 7

@ Recall that

gcea T _ H tl_‘Iumber of j such that T(ij)=T(i+1,)
i

i>1
0o If T = 1 2 | then 97 = ¢, due to
2
123

T(1,3)=T(2,3).
If T is an SST, then t<97 = 1.

In general, t9 T measures “how often” T breaks the SST
condition.

Dual stable Grothendieck polynomials, 5

o lfwesetty =thpb =tz =---=0, then E/\/M = S\/u-

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

o Ifwesetty =tp=t3="---=0, then g/, = s)/,-

o Ifwesetty =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

o Ifwesetty =tp=t3="---=0, then g/, = s)/,-

o Ifwesetty =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series gy, is symmetric in the x; (not in the t;).

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

o Ifwesetty =tp=t3="---=0, then g/, = s)/,-

o Ifwesetty =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series gy, is symmetric in the x; (not in the t;).

o Example 1: If A = (n) and p = (), then g),, = hy, the n-th
complete homogeneous symmetric function.

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

o Ifwesetty =tp=t3="---=0, then g/, = s)/,-

o Ifwesetty =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g/, is symmetric in the x; (not in the ;).

o Example 1: If A = (n) and p = (), then g),, = hy, the n-th
complete homogeneous symmetric function.

e Example 2: If A= [1,1,...,1 | and pu= (), then
—_——

n ones
&/u = en(tl,t2,. .., th1,X1,X2,3,...), where e, is the n-th

elementary symmetric function.

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

o Ifwesetty =tp=t3="---=0, then g/, = s)/,-

o Ifwesetty =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g/, is symmetric in the x; (not in the ;).

o Example 1: If A = (n) and p = (), then g),, = hy, the n-th
complete homogeneous symmetric function.

e Example 2: If A= [1,1,...,1 | and pu= (), then
—_———
. n ones i
&/u = en(tl,t2,. .., th1,X1,X2,3,...), where e, is the n-th

elementary symmetric function.
e Example 3: If A =(2,1) and = (), then

B /u= 2. XaXpXc+t1) XaXp = S(21) + t1502).
a<b; a<c a<b

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and i be
A= ((A)y, (Af),, ..., (AT)y) and
Mt = ((:u’t)l) (Mt)2 D) (Mt)N) Then,

E/\/u

= det ((e(,\r)l._i—(uf)j-i-j (x,t [(uf)j +1: (/\t)"]»lgig/v, 1§j<N> .

Here, (x,t[k : £]) denotes the alphabet

(X17X27X3a AR 3% /N5 PR tf*l)-

Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and i be
A= ((A)y, (Af),, ..., (AT)y) and
Mt = ((:u’t)l) (Mt)2 D) (Mt)N) Then,

E/\/u

= det ((e(,\r)l._i—(uf)j-i-j (x,t [(uf)j +1: (/\t)"]»lgig/v, 1§j<N> .

Here, (x,t[k : £]) denotes the alphabet
(X17X2,X3, ey by tege1, tgfl).
Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!

@ This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ¢;'s.

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and i be
A= ((A)y, (Af),, ..., (AT)y) and
Mt = ((:u’t)l) (Mt)2 D) (Mt)N) Then,

E/\/u

= det ((e(,\r)l._i—(uf)j-i-j (x,t [(uf)j +1: ()‘t)"]»lgig/v, 1§j<N> .

Here, (x,t[k : £]) denotes the alphabet
(X17X2,X3, ey by tege1, tgfl).
Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!

@ This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ¢;'s.

@ | have some even stronger conjectures, with less evidence...

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and i be
A= ((A)y, (Af),, ..., (AT)y) and
Mt = ((:u’t)l) (Mt)2 D) (Mt)N) Then,

E/\/u
= det ((e(,\r)l._i—(uf)j-i-j (x,t [(uf)j +1: ()‘t)"]»lgig/v, 1§j<N> .

Here, (x,t[k : £]) denotes the alphabet
(X17X2,X3, ey by tege1, tgfl).
Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!

@ This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ¢;'s.

@ | have some even stronger conjectures, with less evidence...

@ The case © = @ has been proven by Damir Yeliussizov in
arXiv:1601.01581.

http://www.arxiv.org/abs/1601.01581

Thank you

@ Ricky Liu for the invitation.
@ Erik Aas and Travis Scrimshaw for collaboration.

@ you for attending.

