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The following is a list of errors and comments to the paper “Noncommutative
Schur functions and their applications” by Sergey Fomin and Curtis Greene in
the version of 12 December 1996. (This is not the version that was published
in Discrete Mathematics 306 (2006), pp. 1080-1096; but almost all of the errors
listed here exist in the published version as well. Of course, the numbering of
the pages differs from that in the published version.)

8. Errata

Page 2, Section 1: After “the sum ranges over all semi-standard tableaux
T of shape A”, add “with entries in {1,2,...,n}".

Page 2, Section 1: After “For example, if A = (3,2)”, add “and n = 2”.

Page 2, Section 1: After “the sum is over all semi-standard skew tableaux
T of shape A/p”, add “with entries in {1,2,...,n}".

Page 4, Section 1: Replace “u; adds a box in row i” by “u; adds a box in
column i”. (This typo has been corrected in the published version of the

paper.)

Page 4, Theorem 2: It should be said that here and in the following, the
conjugate of a partition A is denoted by A’
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¢ Page 5, just before Theorem 1.3: I would add the following sentence right
before Theorem 1.3: “An ascent of a word w = ajas - - - 4, means an index
i€{1,2,...,m—1} such thata; <a;.1.”

* Page 6, the paragraph above Example 2.2: You write: “In the case of the
plactic algebra, Fj, is just the Schur function s)«”. I think A* means the
transpose of the partition A here; but this should be explained. (It is not a
common notation for the transpose. You seem to yourself use a different
notation — namely, A’ — later in the paper.)

* Page 6, the paragraph above Example 2.2: Replace “all standard tableaux
T” by “all standard tableaux T” (the “T” should be in mathmode).

This said, I don’t understand the whole sentence around this: How do
you manage to restrict attention to the standard tableaux? Many of the h’s
have repeated letters. I would rather prove the fact that F;, = s, using a
variation on the RSK algorithm.

e Page 7, Example 2.4: Replace “are the permutations a; - - - a,” by “are the
permutations a; - - - 4,41 € S, 11 (written here in one-line notation, i.e., such
that g; is the image of 7)”.

* Page 10, (3.3): After the equality (3.3), I suggest explaining that det <e A i (u))
i Fj
means the determinant of the N x N-matrix (e Nyl i (u)) ,
iH 1<i<N, 1<j<N
where N is a nonnegative integer large enough to satisfy N > A; and
N > Ui

* Page 11, proof of Lemma 3.2: “with families of lattice paths (71;,, 772}, . ..)”
— “with families of lattice paths (711}, 77pj,, . - ., TN, ), where N is the size
of the matrix on the right hand side of (3.3)”.

Likewise, replace “(71j,, 702j,, .. .)" by “(71j,, )y, - - ., Tnjy )" throughout
the rest of this proof.

e Page 11, proof of Lemma 3.2: It would be good to explain what a “lattice
path” is. Probably the simplest way to do so is the following: Let G be
the directed graph whose vertex set is Z? and which has arcs from every
lattice point (&, B) € Z? to (a + 1, ) and to («, B + 1) (and no further arcs).
Then, a lattice path means a (directed) path on G.

* Page 11, proof of Lemma 3.2: In the caption of Figure 1, replace “m (7p1) =
5432, m () = 5, m(msz) = 51”7 by “m (7121) = usuguzuy, m(mwp) =
Us, m (7'[33) = M5Z/l1".

e Page 11, proof of Lemma 3.2: Replace “the expression CAl—pl i (u)” by

“ : 4
the expression e Nl (u)”.
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e Page 12, proof of Lemma 3.2: Here you write: “The corresponding two
paths must have consecutive terminal points, say Qx and Q. 1”. This claim
(and also the implicit claim that only two paths intersect in the lexicograph-
ically maximal intersection) is not completely obvious and, in my opinion,
warrants some justification. I give detailed proofs of these claims in Sub-
section[9.2below. (Namely, these two claims are parts (a) and (b) of Lemma

1)

* Page 12, proof of Lemma 3.2: After “Then m (77;) m (7Tjx41) may be fac-
tored as”, I'd add a footnote saying that we are abusing notation to equate
any string iyi - - - iy of elements of {1,2,...,n} with the corresponding
product u; u;, - - - ;..

¢ Page 12, proof of Lemma 3.2: You write: “Here p labels the vertical seg-
ment in 7 that lies just above («, )”. This relies on the fact that there
is a vertical segment in 7;; that lies just above («, ) (in other words, the
path ;. exits («, B) in the northern direction). Again, this fact is not com-
pletely obvious; I shall prove it in Subsection below. (Namely, this fact

is Lemma [9.1] (¢).)

e Page 12, proof of Lemma 3.2: I think “A = ajay... and B = b1by...”
should be replaced by “A = ...aa; and B = ...byby”. (It would also be
good to mention that the “...” symbols here do not signify infinite strings,
but merely finite strings whose lengths are immaterial.) You should also
mention that ¢ (A) > ¢ (B), where ¢ (C) denotes the length of a string C.

* Page 12, proof of Lemma 3.3: I don’t understand what you mean by “jeu-
de-taquin transformations” here. I give a completely elementary proof of
Lemma 3.3 in Subsection 0.3 below.

* Page 13, proof of Lemma 3.3: “by all configurations” — “by all families of
paths”.

* Page 13, proof of Lemma 3.3: “not involving P;, P, O, Qk+1” — “not in-
VOlVing Pi/ 1:)]'/ Qk/ Qk-‘rl”'

¢ Page 13, proof of Lemma 3.3: You write: “Hence we have constructed
a sign-reversing involution which leaves only terms of (3.3) correspond-
ing to non-intersecting families of paths”. This is not correct as stated.
What you have constructed is not an involution on the set of all families
(711 17 TWjps e s 7TN]'N) of paths. The problem is that each term

WlAper (l/ll,. cey uaﬂg) Bes (ul, ey utx—|—ﬁ) W2

is not a single monomial corresponding to a single family of paths, but
rather a sum of such monomials for a certain set of families of paths
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(namely, for the set of all families that agree with the original family every-
where except on the initial segments of 77, and 77, 1). By showing that it
equals

WiApes (11, ..., gy p) Ber (11, ..., 1ty g) Wo,

you can conclude that the contributions of all these families to the determi-
nant in (3.3) cancel against the contributions of another such set of families.
This way, all terms in (3.3) contributed by intersecting families of paths are
cancelled, whereas the terms contributed by non-intersecting families of
paths are preserved. This shows that the determinant in (3.3) reduces to
the sum of the contributions of non-intersecting families; however, this
does not construct a sign-reversing involution on the single monomials in
(3.3). (Fortunately, you don’t need such an involution.)

¢ Page 13, proof of Lemma 3.3: After “Now the argument continues exactly
as in the commutative case.”, add “Every family (7r1j1, T0jys -+ s ﬂNjN) of
non-intersecting paths 71;;, must have (j1,j2,...,jn) = (1,2,...,N).” See
Subsection 9.4 below for the proof of this statement. (Namely, this state-
ment is Lemma [9.5])

e Page 13, proof of Lemma 3.3: After “and hence of Theorem 1.1” (in the
last sentence of the proof), I would add “(since the (unique) algebra homo-
morphism from A, to A that sends e, ep,¢e3,... to e (u), ez (u),e3(u),...
will send each ¢; (for i € Z) to the corresponding e; (u) (because ey (u) =
1 and ¢;(u) = 0 for all i < 0), and therefore will send each s),, =

det (eM_P,}Jr]-_i) to det <€)\;_y}+]’_i (u)> = Ja/u (w) =)/, (u) (by Lemma
3.2))".

¢ Page 15, proof of Theorem 1.3: After “the complete noncommutative ana-
log of the Frobenius formula (5.2)”, I would add “, namely the formula

pa () = sgn (« Zm @) sy (

” (just for the sake of clarity).

e Page 18, Section 6: “a linear operator in V ® V” — “a linear operator from
VeVt VeV

¢ Page 18, Section 6: “Now let u; act in” — “Now let u; act on”.

e Page 18, Section 6: “by u; = "D @ u@ I")” — “by u; = I*(-D @u®
I®(n—i)n.

* Page 18, Section 6: “an identity operator” — “the identity operator”.
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e Page 18, Example 6.1: After “and € is a right unit of M”, add “(that is,
€ € M satisties e = a for each « € M)”. (The notion of a right unit used
here is not very well-known.)

e Page 18, Example 6.1: After “If € is a left unit of M”, add “(that is, e € M
satisfies ex = « for each a« € M)”.

e Page 19, Lemma 6.6: I think you want to assume that the operations A
and V are associative here. (At least, I need this assumption to prove the
sufficiency.)

¢ Page 20, Example 6.7: I don’t think u is well-defined as stated: the right-
hand side p-a ® B+ (1 — p) - « ® a is not bilinear in («, §), so the equation
does not yield a well-defined linear map from the tensor product V @ V.
(But you can salvage this definition by requiring the equation to hold only
in the case when « and 8 belong to a fixed basis of V.)

9. Remarks and addenda

9.1. Another proof of the symmetry of F,/,

On page 4, you say that “Note that F, /. is a function in the commuting variables
x; alone; we shall later demonstrate that this is indeed a symmetric function,
in the ordinary sense”. It is, in fact, easy to derive the symmetry of F,/, from
Theorem 1.1 (or, even better, from Lemma 3.1):

Proof of the fact that Fy,, is symmetric in the x;: The relations (1.2) and (1.3) hold.
Therefore, the conditions of Lemma 3.1 are satisfied (in fact, the relations (3.2)
follow immediately from (1.2), whereas the relations (3.2) follow from (1.2) when
j—i > 1and from (1.3) when j —i = 1). Hence, Lemma 3.1 yields that the
elements ey (11, ...,u,) for k € IN commute. These elements clearly commute
with all of the x1,x,...,xy. Thus, all of the elements e (uq,...,u,) and the
elements x1,x3,...,x,; commute with each other. Therefore, the subalgebra of
A generated by the elements e (u1,...,u,) and the elements xq,xp,..., Xy is
commutativeﬂ Let B denote this subalgebra.
Let Z (A) denote the center of the ring A. For every t € Z (A), we have

(14 tuj) = (14 tup) (1 + tup_q) - - (14 tuy)

1
=n

]
n

=Y e (ur,... un)t". (1)
k=0
1Here, A is supposed to be an algebra that contains w1, uy, ..., u, and xq,x2, ..., Xp.
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n
(In fact, this is a noncommutative analogue of the classical formula that [T (14 ta;) =
j=1

Z ex (a1, ..., o) t" for any elements aq,ay,...,a,,t of a commutative algebra;

and it can be proven by induction over n in the same way.)) Now, for every
ie€{1,2,...,m}, we have

1
TT (14 xu) Z ex (ug,... u Xt (by (1), applied to t = x;)
i—n %/—/ ~—
€B €B
(since x;€B)
n
€ ) BBCB.

k=0

Thus, H H (1 + xlu]) is a product of elements of B. Since B is commutative, this
i=1j=n
shows that the order of these elements is immaterial — that is, we can reorder the

entries of the (outer) product H H (1 + xlu]) without changing its value. But
i=1j=n

reordering the entries of the (outer) product H ]_[ (1 + x; u]) has the same effect
i=1j=n
as permuting the variables x1,x2,..., x;. Therefore, we conclude that permut-

ing the variables x1,xy,...,x; does not change the value of H H (14 xuj).
i=1j=n
Therefore, permuting the variables x1, x3, ..., x;; does not change the value of

<H [T (1+ xuj) g,h>. In other words, <H [T (1 + xu) g,h> is symmetric

i=1j=n i=1j=n
in the xq,x7,..., x;. Qed.

9.2. Some details for the proof of Lemma 3.2

In this subsection, we shall give detailed proofs of three statements left unproved
in the proof of Lemma 3.2.

The notations introduced during the proof of Lemma 3.2 shall be used through-
out Subsection[9.2] We shall prove the claim “The corresponding two paths must
have consecutive terminal points, say Qy and Q1" made on page 12, as well as
the implicit claim that only two paths intersect in the lexicographically maximal
intersection. We shall also prove that the path that ends in Qy has a vertical
segment that lies just above («, ).

In the following, an “intersection point” will mean a point in which (at least)
two of the paths 7y, 712j,, . . ., 7Tnj,, intersect. We shall now prove the following:
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Lemma 9.1. Let X denote the intersection point (a,f) with the pair
(« + B, — B) lexicographically maximal. Then:

(@) Exactly two of the paths 7y, 712),, . . ., TN, intersect at X.

(b) These two paths must end at two points of the form Qy and Q. for
some k € {1,2,...,N —1}.

(c) The path (among these two paths) that ends in Qj contains the vertical
segment («, B) — (a, B+ 1), where (a, ) = X.

Before we prove Lemma let us introduce a notation. The depth of a lattice
point (y,8) € Z?* will mean the sum v + J; it will be denoted by d ((-y,9)).
The tilt of a lattice point (v,6) € Z? will mean the difference y — &; it will be
denoted by t((,d)). Notice that the pair (d(T),t(T)) uniquely determines
a point T € Z2. In other words, if T; and T, are two points in Z? such that

(d(Th),t(T1)) = (d(T2),t(T2)), then
Ty = T». (2)

Notice also that every T € Z? satisfies

t(T) =d(T)mod?2. (3)
A
We have
d(P)=0 foreveryie€ {1,2,...,N}. (4)
ﬁAlso,
d(Q)) =n forevery j € {1,2,...,N}. (5)

E|Now, let us consider the directed graph G (which was defined above in my first
comment on “page 11, proof of Lemma 3.2”). If (U, V) is an arc of the directed
graph G, then

d(V)=d(U)+1 ©6)

2Proof of (3): Let T € Z2. Let us write T in the form (7,d) for some integers y and &. Then,

t (\T/ =t((7,9)) = v — ¢ (by the definition of t ((y,4))) and d (\T/) =d((v,9)) =
:('Yré) :(7r5)

v+ 6 (by the definition of d ((7,6))). Now, t(T) = v -0 = v+ (-1) § = v+ =
S~

=1mod2
d (T) mod 2. This proves .

3Proof of : Let i € {1,2,...,N}. Then, the definition of P; yields P, =
((i—1)—pl,— (i—1) 4 u}), so that

d(P) =d(((=1) —pi, = (=) +pi)) = ((=1) =) + (= (1) +p})
(by the definition of d (((i — 1) — uj, — (i — 1) + 1))
= 0.

This proves (4).
4Proof of : Let j € {1,2...,N}. Then, the definition of Q; yields Q; =
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Pland
t(U)—-1<t(V)<t(U)+1 (7)

ﬂ Foreveryi € {1,2,...,N} and every k € {0,1,...,n},
there exists exactly one point F on the path 71, such that d (F) = k. (8)

|Z|We shall denote this point by F; ;. Thus, for every i € {1,2,..., N} and every

(= 1) = A= (= 1) + A7), so that

d(@)=d((n+G-1)=M=G=-1+M)) = (n+G-1 =)+ (= G-1)+2})
(by the definition of d ((n—l— (=1 —A,— (j—l)—|—/\;-)))

=n.

This proves (5).

5Proof of (6): Let (U, V) be an arc of the directed graph G. Write the point U in the form
U = (v,6). Then, V is either (y+1,6) or (7,6 + 1) (since (U, V) is an arc of G). In either of
these two cases, we have d (V) = d (U) + 1. Hence, (6) is proven.

®Proof of @ Let (U, V) be an arc of the directed graph G. Write the point U in the form
U = (v,9). Then, V is either (y+1,8) or (7,6 + 1) (since (U, V) is an arc of G). We have
t(V) = t(U) + 1 in the first of these two cases, and we have t (V) = t (U) — 1 in the second
of these two cases. Thus, we have t (U) —1 < t(V) < t(U) + 1 in either case. Hence, (7) is
proven.

7 Proof of : Leti € {1,2,...,N}. Write the path 77;;, in the form (Fy, Fi, ..., F;). Since the path
7, begins at P; and ends at Q;,, we must have Fy = P; and F, = Q;,. Moreover, for every
p €{0,1,...,¢ -1}, the pair (F,, F,41) is an arc of the directed graph G (since (Fy, Fy, ..., F;)
is a path in G) and thus satisfies d (F,41) = d(F,) +1 (by @, applied to U = F, and
V = FP+1)’

Thus, we know that d (F,41) = d (F,) + 1 for every p € {0,1,...,£ —1}. In other words,

(d(Fy),d(F),...,d(F)) is an arithmetic sequence with difference 1 (that is, d (F,) grows
by 1 every time we increase p by 1). Thus,

d(F,) =d(F)+p forevery p € {0,1,...,(}. )

Sinced | Fy | =d(P;) =0 (by (4)), this shows that
—~

=P;

d(F) = S(Pol—kp =p for every p € {0,1,...,¢}. (10)
—0

Applying this to p = £, we obtain d (F;) = £. Thus, { =d | F, | =d(Q;) = n (by (5),
N
=Q;

applied to j = jj). 1
Now, let k € {0,1,...,n}. Thus, k € {0,1,...,¢} (since £ = n). Applying to p =k, we
obtain d (Fx) = k. Hence, F; is a point on the path 7;;, (since 7;;, = (Fo, Fy, ..., F;)) satisfying

d (Fy) = k. In other words, F; is a point F on the path 7;;, such that d (F) = k.
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ke{0,1,...,n}, we have

d(F;) = k. (11)
ﬂNotice that for every i € {1,2,..., N}, every point U on the path 7;;, satisfies
dU) €{0,1,...,n}. (12)
Pl
We have
F,=Qj foreveryi € {1,2,...,N}. (14)

Also, foreveryi € {1,2,...,N} and every k € {0,1,...,n — 1},
the pair (Fix, Fijx+1) is an arc of the path 7;;.. (15)
ETherefore, forevery i€ {1,2,...,N} and every k € {0,1,...,n — 1},

the pair (Fjy, Fjx+1) is an arc of the directed graph G. (16)

On the other hand, let F be any point on the path 7t;;, such that d (F) = k. Then, F = F,
for some p € {0,1,...,¢} (since F is a point on the path 7t;;, = (Fo, Fy, ..., F;)). Consider this

p. Then, k =d \1—:_/ =d (F,) = p (by (10)), so that F, = F, and thus F = F, = F,. Now,
:FP

let us forget that we fixed F. We thus have shown that if F is any point on the path 7;;, such
that d (F) = k, then F = F;. Hence, there exists at most one point F on the path 7;;, such that
d (F) = k. Since there exists at least one such point (namely, Fy), we can thus conclude that
there exists exactly one point F on the path 7;;, such that d (F) = k. This proves .

8Proof of : Leti € {1,2,...,N} and k € {0,1,...,n}. Then, F;; is defined as the unique
point F on the path 7;;, such that d (F) = k. Hence, F;x is a point F on the path 7;;, such that
d (F) = k. In other words, F;x belongs to the path 7;;, and satisfies d (F;x) = k. This proves
(T1).

9Pof :Leti€ {1,2,...,N}. Let U be a point on the path 7;;,. Write the path 77;;, in the
form (Fy, Fy, ..., F;). We can prove that

d(F,)=p forevery p € {0,1,...,(}. (13)

(This can be proven just as we proved in our proof of (8).) Also, £ = n. (Again, this can
be proven just as in our proof of (8).)

But recall that 77, = (Fo,F1,...,Fy). Hence, U is a point on the path (F, Fy, ..., Fy) (since
U is a point on the path 77;;,). In other words, there exists a p € {0,1,..., ¢} such that U = F,,.
Consider this p. We have p € {0,1,...,¢} = {0,1,...,n} (since £ = n). Now, yields

d(F,) =p.Sod U =d (Fy) = p €{0,1,...,n}. This proves (12).

:Pp

10Proof of : Leti € {1,2,...,N}. Then, Qj, is a point on the path 7;;, (since 77;;, is a path
from P; to Qj;) and satisfies d (sz.) =n (by , applied to j = j;). Hence, Q, is a point F on
the path 77;;, such that d (F) = n. But we know (from , applied to k = n) that there exists
exactly one such point; and we have denoted this point by F; . Therefore, Q;, = F;,. This
proves (14).

1 proof of (15): Leti € {1,2,...,N}. Letk € {0,1,...,n — 1}. Then, both Fix and Fj ;1 are well-
defined points on the path 77;;; (by the definition of F; and F;y1). Fromk € {0,1,...,n — 1},
we obtaink+1 € {1,2,...,n} C€{0,1,...,n}.
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M
We have

t(Q1) <t(Q2) <--- <t(Qn)- (17)

[3] Thus, the numbers t (Q;),t(Qz),...,t(Qn) are pairwise distinct. Hence, the
points Q1,Qy, ..., Qn are pairwise distinct.
Let us now come to the proof of Lemma

Proof of Lemma Let us first observe that

every intersection point Y satisfies d (Y) < d (X). (18)

[

We know that F; is the unique point F on the path 7;; such that d (F) = k (according to
the definition of F;x). Thus, F;; is a point on the path 77;;, and satisfies d (Fix) = k. We have
d(Fix) =k #n=d(Qj) (because d (Q;,) = n (by , applied to j = j;)), and thus Fj; # Q;..
Therefore, F; is not the terminus of the path 77;;; (since the terminus of the path 775, is Q;.).
Hence, the next point after F;; on the path 71;; is well-defined. Let F’ denote this next point.

Clearly, (F;x, F') is an arc of the path 77;;, (since F’ is the next point after F;; on the path
7). Thus, (Fix, F') is an arc of the directed graph G (since 7ij; is a path on this directed
graph). Hence, (ﬁ) (applied to U = Fj and V = F') yields d (F') = d (F;x) +1 = k+ 1. Also,

k

F' lies on 77;;,. Hence, F' is a point F on the path 7;;; such that d (F) = k + 1. But we know
that there exists exactly one such point F (according to (8), applied to k + 1 instead of k), and
we have denoted this point F by F; ;1. Hence, F’ is F;s;1. Thus, (Fi, Fix41) is an arc of the
path 7;; (since (F;x, F') is an arc of the path 7;;). This proves .

12Proof of :Leti € {1,2,...,N}. Letk € {0,1,...,n—1}. Then, shows that the pair
(Fik, Fi 1) is an arc of the path 77;;,. Thus, the pair (Fj, Fix11) is an arc of the directed graph
G (since 71, is a path on this directed graph). This proves .

13Proofof: Letj e {1,2,...,N —1}. We will now show that t (Q;) < t(Qjt1).

The definition of Q; yields Q; = (n—i—(j—l) —/\;,—(j—l)—i—/\;-), so that t(Qj) =

t((n+(j—1)—A;,—(j—1)+A;)) - (n+(j—1)—A;) - (—(j—1)+A;) = n+
2(j—1) —2A}. The same argument (applied to j+ 1 instead of j) yields t(Qj11) =
n+2((j+1)—1)—2A;;. But A’ is a partition, and thus we have A} > A5 > Az > ---.

/ /!
Hence, )‘j > )\Hl. Now,

tQ)=n+2| j 1| -2 A <n+2((+1)—1)—2A,; =t(Qj1).

~ ~—

<j+1 2/\;‘+1
Let us now forget that we fixed j. We thus have proven that t (Qj) < t(Qj41) for every
j€{1,2,...,N—1}. In other words, t (Q1) < t(Q2) < --- < t(Qn). This proves (17).

14 Proof of : We know (from the definition of X) that X is the intersection point (&, f) with the
pair (a + B, & — B) lexicographically maximal. In other words, X is the intersection point
(a, B) with the pair (d ((«,B)),t((a,B))) lexicographically maximal (because every point
(a, B) € Z? satisfies d ((x,8)) = a + B and t((«, B)) = & — B). Hence, every intersection point
Y satisfies (d (X),t(X)) > (d(Y),t(Y)) in lexicographic order. Thus, every intersection
point Y satisfies d (X) > d (Y). This proves .

10
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Ifk € {0,1,...,n} is such that k > d (X), then any two distinct elements u and
vof {1,2,...,N} satisfy
t (Fuk) # t(Fo) - (19)
E Moreover, if k € {0,1,...,n} and if u and v are two elements of {1,2,...,N},
then
t(Fox) 7 t(Fe) + 1. (20)
4]
But recall that (j1,/2,...,jn) is a permutation of {1,2,...,N}. Denote this
permutation by j. Thus,

j(i)=7ji foreveryi c {1,2,...,N}. (21)
Now, for every j € {1,2,...,N — 1}, we have
t(Bge) <t (g for every k € {d (X),d (X) +1,...,n}. (22)
[7| Consequently, if k € {0,1,...,n} is such that k > d (X), then
t () <t(Fage) < <t(Fapnk) - (23)

15Proof of : Let k € {0,1,...,n} be such that k > d (X). Let u and v be two distinct elements
of {1,2,...,N}. We need to prove (19).

Assume the contrary. Thus, (19) does not hold. In other words, t(F,x) = t(F,). But

d (F,x) = k (by (11), applied to i = u) and d (F,x) = k (by (11), applied to i = v). Hence,

d(F,x) = k = d(F,x). Altogether, d(Fu,k)IESFu,k) = (d (Fyx),t(Fox)). Thus, (2) (ap-

:d(Pn,k) :t(Fu,k)
pliedto Ty = F,, and T = F, ;) yields F,, , = F, .

But F, is the unique point F on the path 7m,;, such that d (F) = k (according to the
definition of F, ;). Hence, F, s is a point F on the path 7,;, such that d (F) = k. In particular,
Fy is a point on the path 7,;,. Similarly, F,x is a point on the path 7, . In other words,
Fy is a point on the path 7, (since F x = F,). The point F,; thus lies on both paths
Ttyj, and 7t,j,. Hence, F,  is a point in which (at least) two of the paths 71y;,, 72),, . .., 7Tnjy
intersect (namely, the paths 7,,;, and 71y;,). In other words, F, x is an intersection (since u and
v are distinct). Hence, (applied to Y = F, ;) yields d (F, ;) < d (X). But this contradicts
d (Fyx) = k > d(X). This contradiction proves that our assumption was wrong. Thus, (19)
is proven.

16Proofof(lZZ)]) Letk € {0,1,...,n}, and let u and v be two elements of {1,2,...,N}. We need to
prove that (20) holds.

Assume the contrary. Thus, (20) does not hold. Thus, we have t (F, ;) =
(@) (applied to T = F, ) yields FU k) =d (F,x)mod2. Hence, d (Fyx) =t (Fo ) =t (Fux) +
1mod 2. But d( Fyx) = k (by (11), applied to i = v) and thus k = d (F, ;) = t(Fuk) + 1mod?2.
However, (apphed to T = F,y) yields t (F, ;) = d(F,x) mod?2. "Also, d(F,x) = k (by
(11), applied to i = u), so that t(F,x) = d (F,x) = kmod2. Thus, k = t(F,x) +1mod2 =

\“,_/

=kmod 2
k+1mod2. Subtracting k from this congruence, we obtain 0 = 1mod 2, which is absurd.

Hence, we have obtained a contradiction. Thus, our assumption was wrong, and is
proven.
7Proof of 22): Let j € {1,2,...,N—1}. Setu = j ! (j) and v = j~* (j+1). We need to prove

t(Fyx) + 1. But

11
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[

Next, we notice that
d(X)e{0,1,...,n—1}. (24)

@2).

Let us (for the sake of contradiction) assume the contrary. Thus, not every k ¢
{d(X),d(X)+1,...,n} satisfies t(Fj—l(]‘)’k) < t(F]'—l(];Fl)’k). In other words, not ev-

ery k € {d(X),d(X)+1,...,n} satisfies t(F,x) < t(F,x) (because u = j~!(j) and
v = j71(j+1)). In other words, there exists a k € {d(X),d(X)+1,...,n} such that
t(Fyx) > t(Fyx). Let £ be the highest such k. Thus, ¢isa k € {d(X),d(X)+1,...,n}
such that t(F,;) > t(F,x). Hence, ¢ belongs to {d(X),d(X)+1,...,n} and satisfies
t(Fyr) > t(F, ) We have t(F, ;) > t(F,,) + 1 (since t(F,,) and t(F, ) are integers and
satisfy t (F, /) > t (Fy,¢))- In other words, t (F, ;) +1 < t(F, 0.

Let us flrst assume (for the sake of contradiction) that £ = n. Then, F,y = Fy» = Qj, (by
apphed to i = u). But the definition of j (u) yields j (u) = j,, so that j, = j(u) =j
(smce u=j 1 (j)) and thus Qj, = Q. Also, from ¢ = n, we obtain F, ; = Fyn = Q]U (by .,
applied to i = v). But the definition of] (v) yields j (v) = jy, so that j, =j(v) =j+ 1 (since

o =j ' (j+1)) and thus Qj, = Qjs+1- But t (Qj) < t(Qjs1) (by (17)). Now, t |  F, =
=Q=Q;

t(Qj) < t(Qj41) contradicts t (F,¢) > t Iy = t(Qj+1). This contradiction proves

~~
=Qj,=Qj+1
that our assumption (that ¢ = n) was wrong. Hence, we cannot have ¢ = n.

We have d (X) € {0,1,...,n} (by ([12), applied to U = X), thus 0 < d(X). We have
e {d(X),d(X)+1,...,n}, thus d (X) < ¢ < n. Thus, { < n (since £ < n but not £ = n)
and 0 < d(X) < ¢. Hence, 0 < ¢ < n,so that £ € {0,1,...,n—1} and thus { +1 €
{1,2,...,n} € {0,1,...,n}, so that £+ 1 < n. Moreover, { +1 € {d(X),d(X)+1,...,n}
(sinced (X) <¢<{+1and ¢+1 <n)

But £ € {0,1,...,n—1}. Thus, (16) (applied to k = u and i = ¢) shows that the
pair (F,, F,, £+1) is an arc of the dlrected graph G. Therefore, (7) (apphed toU = F,y
and V = F, /1) shows that t(F, ) —1 < t(F, 1) < t(Fy,¢) + 1. The same argument
(but with every u replaced by n) yields t(Fy¢) =1 < t(Fyrq1) < t(Fop) + 1. Thus,
HFypir) < o) 12 E(By) S E(Fy) 1 Gince () =1 < (). Com:
bined with t (F,, /+1) # t(Fy41) + 1 (which is a consequence of (20), applied to £ + 1 instead
of k), this yields t (F, s41) < t (Fy¢41) + 1. Since t (F, ;1) and t ( u£+1) + 1 are integers, this
yields t (Fy ¢41) < (t(Fyeq1) +1) — 1= t(Fy 1)

We have d (X) < ¢ < {+1and thus £+ 1 > d (X). Hence, (19) (applied to k = ¢+ 1) yields
t (Fyr+1) # t(Fops1). In other words, t(Fyp11) # t(Fy¢+1). Combined with t(F, 1) <
t (Fy¢+1), this yields t (F,¢11) < t(Fy¢+1). In other words, t(F,s41) > t(F,41). Hence,
l+1lisak e {d(X),d(X)+1,...,n} such that t (F,x) > t(F,j). Since the highest such k
is ¢ (by the definition of /), this yields that £ +1 < € But th1s contradicts £+ 1 > ¢. This
contradiction shows that our assumptlon was wrong. Hence, is proven.

18Proof of (.) Let k € {0,1,...,n} be such that k > d(X). Letj € {1,2,...,N—1}.
Since k > d (X) (because k > d (X)) and k < n (since k € {0,1,...,n}), we have k €

{d(X),d(X) +1,...,1}. Hence, (22) yields t (ijl(j)lk) < t(Bragans)- Butj (i) =
j#j+1=j(G1(+1)),sothatj ! (j) # ] 1(j+1). In other words, the positive integers
j~'(j) and j~!(j+1) are distinct. Thus, (19) (applied to u = j~!(j) and v = j~1 (j + 1))

12
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Now, if u € {1,2,...,N} and v € {1,2,..., N} are such that Fyax) = Foax),
then
j(o) <j(w+1 (25)

&

yields t (Fj—l(j)k) #t (ijl(]-H)/k). Combined with t (ijl(]')/k) <t (F‘j—l(j+1)’k), this yields

t(Fge) <t (Frl(m),k)
Now, let us forget that we fixed j € {1,2,...,N—1}. Thus, we have shown that
t(qu(]-),k) < t(Pi—l(j+1),k) for every j € {1,2,...,N —1}. In other words, t<Fj*1(l),k) <

t (Pj—l(z)’k) <-ee <t (ijl(N),k) This proves .

9Proof of : The point X is an intersection point (in fact, X is the intersection point («, ) with
the pair (« + B,a — ) lexicographically maximal). In other words, X is a point in which (at
least) two of the paths 71y;,, 72j,, . .., 7Tnjy, intersect. In other words, at least two of the paths
Ty, T02jy, - - -, TINj,, intersect at X. In other words, there exist two distinct elements u and v of
{1,2,..., N} such that the paths 7t,,;, and 71, intersect at X. Consider these u and v. We can
WLOG assume that j (u) < j (v) (since otherwise, we can just switch u with v). Assume this.
We have u # v (since u and v are distinct), and thus j (1) # j (v) (since j is injective (since j is
a permutation)). Thus, j (1) < j (v) (since j (u) <j(v)).

The point X lies on the path 7,;, (since the paths 7,;, and 7, intersect at X). Hence, (12)
(applied toi = uand U = X) yields d (X) € {0,1,...,n}.

We now assume (for the sake of contradiction) that d (X) = n.

Recall that there exists exactly one point F on the path 7, such that d (F) = n (according
to (8), applied to i = u and k = n); this point is denoted by F, . Thus, F, is the unique
point F on the path 71, such that d (F) = n. Since X is a point F on the path 7, such that
d (F) = n (because X lies on the path 77, and satisfies d (X) = n), this yields that X is F.
In other words, X = F, ;. But (applied to i = u) yields F,» = Qj,. But the definition of
j yields j (u) = ju. Hence, Qj,) = Qj,, so that X = F,» = Qj, = Qj(y)- The same argument
(but with u replaced by v) yields X = Qi(t’)‘

But yields t(Q1) < t(Q2) < --- < t(Qn). In other words, if a € {1,2,...,N} and
be{l,2..., N} satisfy a < b, then t (Qq) < t(Qp). Applying this to a = j (u) and b = j (v),

we obtain t (Qj(u)) <t (Q]-(D)) (since j (1) < j(v)). But this contradicts t | Qj()
~——
=X=Qjv)
t (Q]-(U)). This contradiction proves that our assumption (that d (X) = 1) was wrong. Hence,

we cannot have d (X) = n. In other words, we have d (X) # n. Combined with d (X) €
{0,1,...,n}, this yields d (X) € {0,1,...,n} \ {n} = {0,1,...,n — 1}. This proves (24).
20proof of (25): Letu € {1,2,...,N}and v € {1,2,..., N} be such that Fuax) = Fo,a(x)- We need

to prove that holds.

In fact, let us assume the contrary. Then, does not hold. In other words, j(v) >
j (u) +1. Hence, j (v) >j (1) +1 > j(u), so that j (v) # j (u) and thus v # u. Hence, u # v.

We have j (u) € {1,2,...,N}, thusj (u) > 1. We have j (v) € {1,2,...,N}, thus j(v) < N.
Hence, N > j(v) > j(u)+1>j(u), and thus j (u) < N. Therefore, j (u) € {1,2,...,N—1}
(since j (u) > 1).

> j(u), we conclude that j (u) +1 € {1,2,...,N} (since both j(v) and j (u) belong to
{1,2,...,N}). Hence, i1 (j (u) +1) is a well-defined element of {1,2,...,N}. Denote this
element by . Thus, v = j =1 (j (u) + 1).

From (24), we obtaind (X) € {0,1,...,n — 1}, thusd (X) +1 € {1,2,...,n} € {0,1,...,n}.
Letk=d(X)+1 Then, k=d(X)+1€{0,1,...,n}and k =d (X)+1 > d (X). Thus,

13
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We now proceed to the proofs of the three parts of Lemma

(a) We know that X is an intersection point. Hence, (at least) two of the paths
Ty, T0jys - -+ TNy intersect at X. Therefore, in order to prove Lemma (a),
we only need to show that no more than two of the paths Ty, T0jys -+ 1+ TNy
intersect at X. Let us prove this.

Indeed, let us assume the contrary (for the sake of contradiction). Thus, more
than two of the paths 0y, T02jy, - - - TINj, intersect at X. Hence, at least three
of the paths Tt1j,, T2jy, - - -, TINjy intersect at X. In other words, at least three of
the paths Ty, T02jys -+ -, TTNjy PSS through X. In other words, there exist three
pairwise distinct elements u, v and w of {1,2,..., N} such that the paths TCyjis
Ttyj, and 7Ty, pass through X. Consider these u, v and tv. We can assume WLOG
that j (u) < j(v) < j(to) (since otherwise, we can just permute u, v and ).
Assume this. The map j is a permutation, and thus injective. Hence, j (u) # j (v)

yields t <Fj—1(1),k) <t (Fj—l(z),k> <--e <t <Fj*1(N),k)- In other words, any a € {1,2,...,N}
and b € {1,2,..., N} satisfying a < b must satisfy

t (ﬁ‘*%a),k) <t (Fj—l(b)’k) . (26)

We know (from (16), applied to u and d(X) instead of i and k) that the pair
(Fu,d(X)/Fu,d(X) +1) is an arc of the directed graph G. Hence, (applied to (U, V) =

(Fu,d(X)/ Fu,d(X)+1)) yields t (Fu,d(X)) —-1<t (Fu,d(X)Jrl) <t (Fu,d(X)) + 1. In other words,

t (R,d(x)) —1<t(Fy) <t (Fu,d(X)) +1

(since k = d (X) + 1). The same argument (but with u replaced by v) yields

t (Fn,d(X)) —1<t(Fy) <t (Fn,d(X)) +1.

Hence, t(F,x) < t (Pn,d(X)) + 1, so that t(FU,d(X)> > t(Fox) — 1, sothat t | Fqx) | =

N——

=Fya(x)
t (Fn,d(X)) > t(Fyy) — 1. But from t (Fu,d(x)) —1 < t(Fuy), we obtain t (F, ) > t (Fu,d(X)) -
1,50 that t (F ) +1 > t (Fu,d(x)) > t(Fop) — 1.
On the other hand, j (1) < j (1) + 1. Hence, (applied to a = j(u) and b = j (u) + 1)
yields t (qu(j(u)),k) <t (Pj—l(j(u)+1),k). In other words, t (F, ;) < t(Fy ) (since j=! (j (u)) =
uand j ! (j (u) +1) = w). Thus, t (Fx) < t(Fpx) — 1 (since t (F, ;) and t (F,, ) are integers).

Thus, t (Fu,k) +1<t (Fm,k)r so that t (Fm,k) >t (Fu,k) +1>t (Fn,k) —-1.

But we know that j(v) > j(u)+1, so that j(u) +1 < j(v). Hence, (26) (applied to
a=j(u)+land b =j(v))yieldst (Fj—l(j(u)+l),k) <t (Fj—l(j(n)),k). In other words, t (F, ) <
t(Fpx) (since j71(j(u)+1) = w and j 1 (j(v)) = v). Thus, t(Fyui) < t(Fyx) — 1 (since
t (Fp k) and t (F, i) are integers). Combined with t (Fy, x) > t (F, ;) — 1, this yields t (Fy ) =
t (Fb,k) — 1. That is, t (Pn,k) =t (Fm,k) + 1.

But (applied to v instead of u) yields t (F, x) # t (Fyx) + 1. This contradicts t (F, ) =
t (Fy k) + 1. This contradiction shows that our assumption was wrong. Hence, is proven.

14
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(since u # v (since u, v and w are pairwise distinct)), so that j (u) < j (v) (since
j(u) <j(v)). Thus, j(u) <j(v)—1 (since j(u) and j (v) are integers). In other
words, j (u) +1 < j (o).

From , we obtain d (X) € {0,1,...,n—1} C {0,1,...,n}. Thus, there
exists exactly one point F on the path 77,;, such that d (F) = d (X) (according
to (8), applied to i = u and k = d (X)); this point is denoted by F, 4(x). Thus,
F,q(x) is the unique point F on the path 71,j, such that d (F) = d (X). Since X
is a point F on the path 77,;, such that d (F) = d (X) (because X lies on the path
m,j, and satisfies d (X) = d (X)), this yields that X is F, 4(x). In other words,
X = F,q(x)- The same reasoning (applied to v instead of u) yields X = F, 4(x).-
Thus, F, 4(x) = X = F, a(x)- Hence, yields j (v) <j(u) + 1. Combined with
j(u)+1<j(v),this yields j (v) = j (u) + 1. The same argument (but applied to
to instead of v) shows that j (w) = j (u) + 1. Thus, j(v) = j(u) +1 = j (), so
that v = v (since the map j is injective). But the integers u, v and tv are pairwise
distinct. Thus, v # w. This contradicts v = w. This contradiction proves that
our assumption was wrong. Hence, we have shown that no more than two of
the paths 71y, 712),, . . ., 7N, intersect at X. This completes the proof of Lemma
(a).

(b) We know from Lemma(9.1|(a) that exactly two of the paths 7y, 712j,, . . ., 7Tnj,,
intersect at X. We now must show that these two paths must end at two points
of the form Qy and Qg4 for some k € {1,2,...,N —1}.

Let 7y, and 7, be these two paths, with u and v being distinct elements
of {1,2,...,N}. Thus, the two paths Tj, and 7ty;, intersect at X. In other
words, the two paths 7,;, and 71, pass through X. We can assume WLOG that
j(u) <j(v) (since otherwise, we can just permute u and v). Assume this. The
map j is a permutation, and thus injective. Hence, j (1) # j(v) (since u # v
(since u and v are distinct)). Now, we have j (v) = j (u) + 1. (This can be proven
in exactly the same manner as we proved it in the proof of Lemma 9.1/ (a).) The
definition of j yields j (u) = j, and j (v) = j,. Thus, j, =j (v) = w—i—l =ju+1

=iy
But the path 7,;, ends at the point Q;, (according to the definition of this path).
The path 7, ends at the point Q;, (according to the definition of this path). In
other words, the path 71, ends at the point Q11 (since j, = ju +1). Hence, the
paths 7m;, and 7, end at the points Q;, and Qj, ;1. Hence, the paths m,;, and
Ttyj, end at two points of the form Qy and Q4 for some k € {1,2,...,N — 1}
(namely, for k = j,).

Now, recall that exactly two of the paths 71y;,, 73j,, . . ., 7Ty, intersect at X —
namely, the two paths 7,;, and 71,;,. We have shown that these two paths 7,
and 71,;, end at two points of the form Qy and Q4 forsomek € {1,2,...,N —1}.
In other words, Lemma [9.1| (b) is proven.

(o) Let (¢, B) = X.

We know from Lemma (a) that exactly two of the paths 71y;,, 712, . . ., 7Ny
intersect at X. Lemma 9.1 (b) furthermore shows that these two paths must end
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at two points of the form Qy and Q. for some k € {1,2,...,N —1}. Let Tlj,
and 71, be these two paths, labelled in such a way that 7,;, ends at Q; whereas
Ttyj, ends at Qg1 (where k is as in the previous sentence). Furthermore, consider
the k € {1,2,...,N — 1} for which this holds. From k € {1,2,...,N —1}, we
obtaink € {1,2,...,N} and k+1€ {1,2,...,N}.

The path m,j, ends at the point Q;, (according to the definition of this path).
In other words,

(the point at which the path 7,;, ends) = Qj, .
On the other hand,
(the point at which the path 7,j, ends) = Qx

(since the path 7m,;, ends at Qi). Comparing these two equalities, we obtain
Qj, = Q- From this, we obtain j, = k (since the points Q1,Q>,...,Qn are
pairwise distinct). The definition of j yields j (u) = j, = k. Hence, u = j ! (k).

Furthermore, the path 7,;, ends at the point Q;, (according to the definition
of this path). In other words,

(the point at which the path 71,;, ends) = Qj, .
On the other hand,
(the point at which the path 7,;, ends) = Qx4

(since the path 77y, ends at Qi 1). Comparing these two equalities, we obtain
Qj, = Qk41- From this, we obtain j, = k + 1 (since the points Q1,Q>,...,Qn
are pairwise distinct). The definition of j yields j(v) = j, = k+ 1. Hence,
b=j"1(k+1).

Now, yields d (X) € {0,1,...,n—1}, whence d (X) +1 € {1,2,...,n} C
{0,1,...,n}. Hence, (applied to d (X) + 1 instead of k) shows that

t <Fj71(1),d(x)+1> <t <Fj*1(2),d(X)+1> <o <t (ijl(N),d(X)—i—l)

(since d (X) +1 > d (X)). In other words,

t (ijl(r),d(x)ﬂ) <t (ijl(r+1),d(x)+1>
for each r € {1,2,...,N — 1}. Applying this to r = k, we obtain
t(Frwacom) <t (Fragmacn)

In view of u = j~! (k) and v = j~! (k + 1), we can rewrite this as

t (Pu,d(X)+1> <t <Fu,d(X)—|—1> : (27)

16
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On the other hand, we have X = F, 4(x). (This can be shown in the same way
as we proved it during the proof of Lemma 9.1/ (a).) Hence, F, 4x) = X = (&, B)
(since we have set («, ) = X).

Recall that d (X) € {0,1,...,n—1}. Hence, (applied to u and d (X) in-

stead of i and k) yields that the pair (Fu,d( x)r Fu,a(x) +1> is an arc of the directed

graph G. In other words, the pair (((x, B), Fiacx) +1) is an arc of the directed
graph G (since F, 4(x) = (&, B)). In other words, the directed graph G has an arc

from (a, B) to Fyq(x)+1-

But the only arcs of G that startin («, §) are ((«,8), («+1,B8)) and ((«,B), (&, B+ 1))
(by the definition of G). Hence, the only points Y such that the directed graph G
has an arc from (a, B) to Y are (« +1, ) and (a, B +1). Thus, the point F, 4(x)+1
must be one of these two points («+1,8) and («,f+ 1) (since the directed
graph G has an arc from (a, ) to F,q(x)1+1)- In other words, we have either

Fyaxy+1 = (@ +1,B) or Fgqx)+1 = (&, B+ 1).
Recall that the pair ((oc, B), Fuax) +1> is an arc of the directed graph G. The

same argument (applied to v instead of 1) shows that the pair ((zx, B) ., Fya(x) +1>

is an arc of the directed graph G. Hence, @) (applied to (a,8) and F, q(x)+1
instead of U and V) shows that

t((@B) =1 <t (Faer) < t((aB) +1.

Hence, becomes

t (Fu,d(X)+1) <t (Pn,d(X)+1) < t((“/ﬁ)l +1
(by the deﬁ:i(:i;r‘?of t((x,B)))
=a—B+1=(a+1)—p. (28)

However, if we had F, 4(x)4+1 = (¢ + 1, 8), then we would have

t| Faxysr | =t((@+1p)) = (a+1) -
——

—(@+1,p)

(by the definition of t((« +1,p))), which would contradict (28). Hence, we
cannot have F, 4(x)41 = (¢ +1,B). Thus, we have F, q(x)11 = (a,f+1) (since
we have either F, q(x)41 = (¢ +1,B) or F, gx)+1 = (&, B +1)).

But (applied to u and d(X) instead of i and k) shows that the pair
(Fu,d(X)rFu,d(X)+1> is an arc of the path 7,;,. In view of F, 4qx) = (a,8) and
Fa(x)+1 = (&, B + 1), we can rewrite this as follows: The pair ((«, ), (¢, 8+ 1))

17
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is an arc of the path 71,;,. In other words, the path m,;, contains the vertical
segment («a,B) — (a, f+1).

Now, let us recall that exactly two of the paths s T2jys + -+ TNy intersect at
X, and these two paths are 7,;, and 71,;,. Among these two paths, the one that
ends in Qy is 7y, (since we have labelled them by 7,;, and 7, in such a way
that 7,,j, ends at Qy whereas 71, ends at Q). In other words, the path (among
the two paths discussed in Lemma (b)) that ends in Qy is 7yj,. As we have
just shown, this path 7, contains the vertical segment (a,8) — (a,f+1). In
other words, the path (among the two paths discussed in Lemma (b)) that
ends in Qy contains the vertical segment («, B) — («, f + 1) (because this path is
7,j,)- This proves Lemma 9.1] (c). O

9.3. Proof of Lemma 3.3

As promised above, let me give a self-contained proof of Lemma 3.3. First, I will
rewrite this lemma in a more self-contained fashion:

Lemma 9.2. Let uy, uy, ..., u, be n elements of an associative algebra 2 which
satisfy the relations (1.2). In this lemma, “letters” will always mean elements
of {1,2,...,n}, and “strings” will always mean finite words composed of these
letters. Let A = a,...a2a1 and B = bg...byby be two strings such that a > B.
Let X = x1x2...xp and Y = yqy2- - - yy be two further strings. Let p be a
letter. Assume that

Ay > 0p—1 > "> 01 > P > X1 > X2 > > X,
bﬁ>bﬁ_1>"'>b1>p, and
(a; < b;foreveryie {1,2,...,B}).

Let A = ug, -+ -uguy, B = Upy - Upy Uy, P = Up, X = Uylix, + - Uy, and
Y = uy,uy, - - - uy,. Then, ApXBY = ApBXY in 2.

Note that you denote the elements A, B, p, X and Y of  (defined in Lemma
by A, B, p, X and Y, but I want to avoid this abuse of notation. I have also
renamed your algebra A as 2, since the letter A is used for one of the strings.
Thus, Lemma [9.2] yields the claim ApXBY = ApBXY of your Lemma 3.3.

It thus remains to prove Lemma Before we do so, we shall show two
lemmas:

Lemma 9.3. Let uy, uy, ..., u, be n elements of an associative algebra 2 which
satisfy the relations

Ujlil = Ujlgl; foralli <j<k. (29)

In this lemma, “letters” will always mean elements of {1,2,...,n}, and
“strings” will always mean finite words composed of these letters. Let a and

18
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b be two letters such that b > a. Let V = v10,... v, be a string such that
a>0] >0 > > V.

Leta=1u;, b=uyand V = uyuy, - -- Uy, Then, aVb = abV in 2.

Proof of Lemma If v =0, then

V = Uy Uy, - Uy, = Up, Uy, ** U, (since ¥ = 0)

= (empty product) = 1.

Hence, if v = 0, then aVb = abV is obviously true (because a_V b = ab and
=1
ab _V = ab). Thus, for the rest of this proof, we can WLOG assume that 7y # 0.
=1
Assume this. Thus, ¥ > 1 (since v # 0 and y € N). Therefore, 1 € {1,2,...,7}.
Hence, v, is well-defined.

Froma > vy > v; > --- > vy, we obtain a > vy (since 1 € {1,2,...,7}).
Hence, v; < a < b (since b > a). Thus, (applied to i = vy, j = a and k = b)
yields iy, up = ugupiiy, .

We shall prove that every p € {1,2,...,v} satisfies

a(uvluvz---uvp)b =ab (uvluUZ---uvp> . (30)

[Proof of (30): We will prove by induction over p:
Induction base: Comparing

a \(uvluvi-r- . ”01), b = Uy Uy = Uglipliy,
=Ugy :uvl =Uyp
with
a b \(leuvz Uy ) = Ugllplipy,

=Ug =Up =iy,

we obtain a (uy, Uy, - - - Uy, ) b = ab (Uy Uy, - - - ULy, ). In other words, holds for
p = 1. This completes the induction base.

Induction step: Let v € {1,2,...,v —1}. Assume (as the induction hypothesis)
that holds for p = r. We must prove that holds for p =r+ 1.

Recall that a > v; > vy > --- > v,. Hence, a > v, for every h € {1,2,...,7}.
Applying this to h = r, we obtain a > v,. Hence, b > a > v,. On the other hand,
Uy > Uy (since v; > vp > -+ - > v,), so that v, < v, < b (since b > v;). Thus,
(applied to i = v,41, j = v, and k = b) yields uy,uy, 1y = iy Uplly, ;-

Recall that we assumed that holds for p = r. In other words, we have

a (Up Uy, - - Uy,) b = ab (Up, Uy, - - - Uy, ) . (31)
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Now, comparing

a Suvl Upy « - uvr+1>) \b;/ =a (uvluvz T uvrfl) Uy, Uy, 4 ”B

~~

:ub

_ =y, Uyl
_(”01”02'“”%71)“vr'””r+1 ortbTor

—a (uvluvz e uvrfl) uvL up Uy, 4

-~

(since_ b=uy;)

=a (uvluvz T uvr) }Jluvr+1
:ab(uv1 uvz-uuz,,)
(by @1))

= ab (uvluvz T uvr) Uy, @ = ab (uvluvz T uvr+1) .

(.

:uvl uvZ Uy,

-~

:l,[,vl uvz ...uvr+1

In other words, holds for p = r + 1. This completes the induction step. Thus,
is proved by induction.]
We have v € {1,2,...,7} (since v > 1). Hence, (applied to p = ) yields

a (U tiy, - - -y, ) b = ab (Uy Uy, - - - Uy, ) .

In view of V = uy Uy, - - - Uy, , this rewrites as aVb = abV. This proves Lemma

0.3 O

Our second lemma is a stronger version of Lemma

Lemma 9.4. Let uy, up, ..., u, be n elements of an associative algebra 2 which
satisfy the relations (29). In this lemma, “letters” will always mean elements of
{1,2,...,n}, and “strings” will always mean finite words composed of these
letters. Let A = a,...a2a1 and B = bg...byby be two strings such that a >
B—1. Let X = x1x2...xp be a further string. Let p be a letter. Assume that

Ay > Qg1 > " >01>P>X] > X > > Xg,
blg>b[3_1>"'>b1>]9, and
(a; < b;foreveryie {1,2,...,—1}).

Let A = ug, -~ tgylia, B = Upg =~ - UpUp,, P = Up, and X = ity Uy, -+ Uy
Then, ApXB = ApBX in .

s

Proof of Lemma Let us extend the a-tuple (aq,a4—1,...,41) to an (a + 1)-tuple
(An,a4-1,...,a1,0a0) by setting ag = p. Thus, ag, ay, ..., a, are well-defined letters.
In other words, 4; is a well-defined letter for each j € {0,1,...,a}.

But recall that we have the chain of inequalities

ll,x>lla_1>"'>ﬂ1>ﬁ>X1>X2>"'>x¢.
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In view of ap = p, this rewrites as
Ay > Qg1 > -+ >01>00 > X1 > X2 >0 > Xg. (32)

Also, p = up = g, (since p = ag).
From « > § — 1, we obtain p — 1 < w, thus {0,1,...,—1} C{0,1,...,a}.
We have
A p

~~
:uﬂa...uazuul =M¢10

= (Ua -+ uazum) Ugy = Ugy * * * Ugy Ug
— (uatx A uuﬂ+1ua‘8> (uaﬁiluuﬂiz R ua()) (33)

(since w > B —1).

Ifi € {0,1,...,B}, then the numbersi—1,i—2,...,0are elements of {0,1,..., 8 —1}
and thus are elements of {0,1,...,a} (since {0,1,...,—1} C {0,1,...,a}).
Hence, if i € {0,1,...,B8}, then a; _1,a; 5,...,a9 are well-defined letters (since aj
is a well-defined letter for each j € {0,1,...,a}). Thus, for eachi € {0,1,...,B},
we can define an element A; of 2 by

Aj = Ug; jUg; "+ Ugy.

Consider this A;.
The definition of Ag yields Ag = Uay Uag 5 Ugg- Hence,

Ug, **Ugy, U A
( a a‘3+1 51‘3> ‘B
:”“/571”“,572"'”“0
- (”““ o u”ﬁ+1u“ﬁ> (u”ﬁflu”ﬁ% o ”“0>
= Ap (by ) . (34)

For eachi € {0,1,...,B}, we set

Bi = UpUp, | - Up,-

Thus,
Bo = uy,up, , - - - up, = (empty product) =1

and
Bg = UpgUpy y + o Upy = Upy - Upy Uy = B
(since B = Upy " " Up,Up, )-
We now claim that
A;XB; = A;B;X (35)

foreachi € {0,1,...,B}.
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[Proof of (35): We shall prove by induction on i:
Induction base: Comparing AgX By = ApX with Ay By X = ApX, we obtain

=1 =1
ApXBy = ApByoX. In other words, holds for i = 0. This completes the
induction base.
Induction step: Let s € {0,1,...,B8 —1}. Assume (as the induction hypothesis)
that holds for i = s. We must prove that holds for i = s + 1.
We have assumed that holds for i = s. In other words, we have

ASXBS — AsBSx. (36)
It is easy to see that a5 < bs41 @ Thus, bsy1 > as. Also, s € {0,1,...,p—1}

shows thats < —1 < a.
The definition of A yields As = u,,_ us, , - - - ug,. The definition of Ay yields

As1 = Uagqy 1Masyr) o Uag = Uaslagy ~ " Uag (since (s+1)—1=s5)
— uas (uasiluas_z ct Mao) — uasAs. (37)
—A.

(since As:uaS_1 Ua,_, ~--uﬂ0)
The definition of Bs yields Bs = up uy_, - - - up,. The definition of Bs 1 yields

Bsi1 = Ubg 1 Wb(gyqy_q " By = Uy Ubs " Upy = Upyyy (ubsubs—l T ubl)

N

NV
=B,
(since Bs=upup | --up,)

= uy B (38)

s4+1 5"

From (32), we obtain a, > a,-1 > --- > a; > ap. Since s < a, this yields
As > Ag_1 > Ag_p > + -+ > 4.

21 Proof. We are in one of the following two cases:

Case 1: We have s = 0.

Case 2: We have s # 0.

Let us first consider Case 1. In this case, we have s = 0. Hence, a5 = a9 = p. Also, s =0,
sothat0 =s € {0,1,...,—1},s0that 0 < f—1 and thus 8 > 1. Hence, 1 € {1,2,...,B},
so that by is well-defined. From bg > bg_1 > --- > by > p, we thus obtain b; > p. Buts =0,
so that s + 1 = 1 and therefore bs;;1 = b1 > p = 4, (since a; = p). Thus, a; < by 1. Hence,
as < bgyq is proved in Case 1.

Let us now consider Case 2. In this case, we have s # 0. Combining this with s &
{0,1,...,8—1}, we obtains € {0,1,...,—1}\ {0} ={1,2,...,p—1}.

We assumed that (a; < b; for every i € {1,2,...,8 —1}). Applying this to i = s, we obtain
as < bs (since s € {1,2,...,—1}). But from bg > bg1 > --- > by > p, we obtain
bg > bg_1 > -+ > by. In other words, b;11 > b; for each i € {1,2,...,8—1}. Applying
this to i = s, we obtain bs;1 > bs (since s € {1,2,...,8—1}). Hence, bs < bs;1, so that
as < bs < bgyq. Thus, as < b1 is proved in Case 2.

We have now proved as < bsyq in both Cases 1 and 2. Since these two Cases cover all
possibilities, we thus conclude that a; < by always holds.
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Now, let V; be the string defined by Vi = a;_1a5_5 - - - ap. This string satisfies
As > As_1 > As_p > -+ > ag and Ag = U, Ug, , - Ug,. Hence, Lemma
(applied to vy = s and V = V; and (v1,v2,...,0,) = (as_1,85—2,...,40) and
a=asand b =bs;1and V = A; and a = u,, and b = u,_, ) yields

Uag Asip, = UgUp  As (39)

s+1

(since ug, = g, and uy | = Uy, ).
Furthermore, let us define a (s + ¢)-tuple (v1,vy,...,0s1) of letters by

(01,02,. . 'IUS+§0) = (llsfl,as_z,. .., a0,X1,X%X2,.. .,xq,) .

Let V be the string defined by V = v10; - - - 051 . Combining a5 > a;_1 > as_» >
-+ > a9 with ag > x1 > xp > - -+ > x4 (which follows from ), we see that

s > 51 > A5 >+ >0g > X] > X2 >+ > Xg.

In view of (v1,vy,...,0s1¢) = (As-1,85-2,...,00,X1,X2,...,Xy), We can rewrite
this as
s > 01 > Vg > o0 >0 > Vgyq > Vsin > > Usig.

In other words,
115>’01 >02> A >Z)5_|_¢.

Moreover, from (v1,02,...,0s49) = (s-1,85—2,...,80,%1,X2,...,Xg), We obtain

Up Uy »+ " Ung,y = Uag_Uag o »+ - UggUx Uxy == - Uy,

Comparing this with

As X — ua571 ua572 tt e uaouxluxz A uxq),

=Ug,_qUa,_oUag FUxq Uy Uxg

we obtain
Asx = u'z;luvz c uvs+¢.

Hence, Lemma 9.3| (applied to v = s+ ¢ and a = a5, and b = by and V = AX
and a = u,, and b = u;,_ ) yields
uasAqub

= ugup_  AsX (40)

s+1 s+1

(since ug, = g, and uy = uy_ ;). Now,

AS+1 X BS+1 — MaSASXl/lstrl BS — uasubs+1 ASXBS — uasubs+lAsB5X.

=g As =y Bs =y, AX =AsB;X
by D by G8) (by ) (by (36))
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Comparing this with

AS+1 BS+1 X — uasASubs+1 Bsx — uasubs+1AsBSx,
N —_——

=uasAs :ubs+l Bs “HasUpg g As
Gy G7) my (8)) (by %)

we obtain A 1XBs; 1 = As;1Bs1X. In other words, holds fori = s+ 1. This
completes the induction step. Hence, the induction proof of is complete.]

Now, (applied to i = B) yields
AgXBj = AgBpX.

Hence,

<uaa . uaﬁJrluaﬁ) éBXBﬁ = (uaa . uaﬁ+1uaﬁ> A‘BE/‘B_/X = APBX

=AgBgX —Ap =B
(by (34))
Therefore,
ApBX = (uaa - u%uaﬁ) AsX By = ApXB.
N - —~—
(by @4)
This proves Lemma O

Proof of Lemma We assumed that uy, uy, . .., u, satisfy the relations (1.2). Thus,
in particular, the second equality of (1.2) is satisfied. In other words, we have

Uil = UjUgl; for all i < j < k satistying ‘Z — k| > 2.
Hence, in particular, we have
Uil = Ujlil; forall i < ] <k

(because every three letters i, j, k satisfying i < j < k satisfy |i — k| > 2 E[) In
other words, uy,uy,...,u, satisty the relations . From « > 8, we obtain & >
B > B —1. Furthermore, we have assumed that (a; < b; for every i € {1,2,...,8});
thus, (a; < b; for every i € {1,2,..., 5 —1}). Hence, Lemma 9.4] yields ApXB =

ApBX in 2. Hence, ApXBY = ApBXY. This proves Lemma N
N——"
=ApBX

22Proof. Let i, j, k be three letters satisfying i < j < k. We must prove that |i — k| > 2.
We have i < j and thus i < j—1 (since i and j are integers). We have j < k and thus
j < k—1 (since j and k are integers). Now, i < j —1 < (k—1)—1 = k—2, so that
~~

<k-1

i—k < —2 < 0and therefore [i —k| = — (i —k) > — (—2) = 2. Qed.
~——

<-2
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9.4. Proof of (jl,jz,. . -/jN) = (1,2,. . ,N)

The notations introduced during the proof of Lemma 3.2 shall be used through-
out Subsection We want to show the following lemma:

Lemma 9.5. Let (714, 70j,, ..., 7Tnj,) be a non-intersecting family of lattice
paths, where each TTij; is a path from P; to Qj. Then, (j1,j2,.-.,jN) =
(1,2,...,N).

This lemma is used to link the left hand side of (3.3) with the terms on the
right hand side of (3.3) that survive the cancellation.

Lemma [9.5|is a particular case of Proposition 2 in math.stackexchange ques-
tion #2870640 ( https://math.stackexchange.com/questions/2870640 ), but let
us give a self-contained proof here.

Proof of Lemma We shall use the notations introduced in Subsection (In
particular, we will use the points F;; defined in Subsection [9.2])

The following arguments mirror some of the arguments made at the beginning
of the proof of Lemma 9.1 (but we are having it somewhat easier now, since the
family (711, 702j,, - - -, 7TNjy ) 1S NON-intersecting).

If k € {0,1,...,n}, then any two distinct elements u and v of {1,2,...,N}
satisfy

t(Fux) # t(Fox) - (41)

Moreover, if k € {0,1,...,n} and if u and v are two elements of {1,2,...,N},
then

t(Fox) # t(Fux) + 1. (42)
23Proof of : Let k € {0,1,...,n}. Let u and v be two distinct elements of {1,2,...,N}. We

need to prove (41).
Assume the contrary. Thus, does not hold. In other words, t(F,;) = t(F,x). But

d (Fyx) = k (by (11), applied to i = u) and d (F,x) = k (by (11), applied to i = v). Hence,

d(Fyx) = k = d(F, ). Altogether, | d (Fyx), t(Fux) | = (d(Fox),t(Fox)). Thus, (2) (ap-
—— ——
zd(Fu,k> zt(Fu,k)

plied to Ty = F, x and T = F, ) yields F, x = F .

But F, x is the unique point F on the path 7,;, such that d (F) = k (according to the defini-
tion of F, ;). Hence, F, x is a point F on the path 7, such that d (F) = k. In particular, F,
is a point on the path 7, . Similarly, F, x is a point on the path 77y;,. In other words, Fx is a
point on the path 71, (since F, x = F, ). The point F, s thus lies on both paths 71,j, and 71, .
Hence, F, x is a point in which (at least) two of the paths 71y;,, 72j,, . . ., 7Tnj intersect (namely,
the paths 7,,;, and 7y;,). Thus, (at least) two of the paths 71y;,, 72j,, . . ., 7Ty intersect. But no
two of the paths 71y, 712j,, . . ., 7Tnj,, intersect (since the family (7114, 71),, ..., 7TNj, ) is non-
intersecting). The previous two sentences contradict each other. This contradiction proves
that our assumption was wrong. Thus, (41) is proven.

24Proof of [42): This statement is precisely (20), and can be proved in the exact same way as
was proved.
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But recall that (ji,j»,...,jn) is a permutation of {1,2,...,N}. Denote this
permutation by j. Thus,

j (i) =ji foreveryie€ {1,2,...,N}. (43)

Now, for every j € {1,2,...,N — 1}, we have

t <F]-_1(]-)’k> <t <Fj_1(]~+1),k> for every k € {0,1,...,n}. (44)

Consequently, if k € {0,1,...,n}, then

t (ijl(l),k> <t (ijl(z),k> <--e <Kt (ijl(N),k> . (45)

25Proofof: Letj € {1,2,...,N—1}. Setu=j ! (j)and v = j~!(j+1). We need to prove

ED.

Let us (for the sake of contradiction) assume the contrary. Thus, not every k € {0,1,...,n}
satisfies t(F'fl(‘) ) (F 1 ]+1)k) In other words, not every k € {0,1,...,n} satisfies

t(Fux) < t(Fyx) (because u = j~!(j) and v = j7!1(j+1)). In other words, there exists
ak € {0,1,...,n} such that t(F,;) > t(F,x). Let ¢ be the highest such k. Thus, / is a
k € {0,1,. n} such that t (F, ) t (Fy ). Hence, ¢ belongs to {0,1,...,n} and satisfies
t(Fyr) > t( ). We have t ( ug) > t(F, ) +1 (since t(F, ) and t(F, /) are integers and
satisfy t (F, ¢) > t (Fy ¢)). In other words, t ( For) +1 < t(F, )

Let us ﬁrst assume (for the sake of contradiction) that £ = n. Then, F,y = Fy» = Qj, (by
(14), apphed to i = u). But the definition of j (u) yields j (u) = jy, so that j, = j(u) =j
(smce u=j 1 (j)) and thus Qj, = Qj- Also, from ¢ = n, we obtain F, y = Fy = Q]U (by .,
applied to i = v). But the definition of] (v) yields j (v) = jy, so that j, = j(v) =j+ 1 (since

v=j ! (j+1)) and thus Q;, = Qj;1. But t(Q;) < t(Qjs1) (by (17)). Now, t | F,, =

S~
=Qju=0;
t(Qj) < t(Qjs1) contradicts t(F, ¢) >t Fyy = t(Qj+1). This contradiction proves
~—
=Qj,=Qj11

that our assumption (that ¢ = n) was wrong. Hence, we cannot have ¢ = n.

Thus, ¢ < n (since ¢ < nbutnot ¢ = n)and 0 < ¢ (since ¢ € {0,1,...,n}). Hence,0 < ¢ < n,
so that £ € {0,1,...,n—1} and thus /+1 € {1,2,...,n} € {0,1,...,n}. Therefore, (41)
(applied to k = ¢ + 1) yields t (Fy ¢11) # t(Fy41)- In other words, t (F, s+1) 7 t (Fye11)-

But / € {0,1,...,n—1}. Thus, (applied to k = u and i = ¢) shows that the
pair (Fy ¢, Fyoi1) is an arc of the directed graph G. Therefore, (applied to U = F,,
and V = F, /1) shows that t(F, ) —1 < t(F, 1) < t(Fy¢) + 1. The same argument
(but with every u replaced by v) yields t(F,,) —1 < t(Fyp41) < t(Fpy) + 1. Thus,
t(For1) < t(Foy) +1 < t(Fyy) < t(Fyq1) +1 (since t(Fye) =1 < t(Fy 1)) Com-
bined with t (F, gH) # t(Fy011) + 1 (which is a consequence of (42} ., applied to ¢ + 1 instead
of k), this yields t (F, y+1) < t (Fs41) + 1. Since t (F, p41) and t (F, ¢41) + 1 are integers, this
yields t (Fy 1) < (t (Fupq1) +1) =1 =t (Fy 1)

Combined with t(F, s+1) # t(F,s+1), this yields t(F, s41) < t(F,¢+1). In other words,
t (Fyry1) > t(Fyp41). Hence, £ +1isak € {0,1,...,n} such that t (F, ;) > t(F,x). Since
the highest such k is ¢ (by the definition of ¢), this yields that £ + 1 < ¢. But this contradicts
¢+ 1 > {. This contradiction shows that our assumption was wrong. Hence, is proven.
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P

Now, let us show a chain of inequalities analogous to (17). Namely, we have
t(P) <t(P) <---<t(Py). (46)

On the other hand, we have
Fo=P for everyi € {1,2,...,N}. (47)

@ Hence, using @, we can easily see that

t(Pa) <t(Pe) < <t(Bg)- (48)
26 Proof of (@: Let k € {0,1,...,n}. Letj € {1,2,...,N —1}. Now, 1} yields t <F-,1(j) k) <

t<Fj—1(j+l),k)' Butj (7' () =j#j+1=jG G+ )) so that j=! (j) # 1‘1 (J+1)
other words, the positive 1ntegers j~1(j) and j~' (j+1) are distinct. Thus, (apphed
tou = j!(j) and v = j71(j+1)) yields t(F 1)k ) (F 1 (1) k ) Combined with
t (F]—l(]),k) S t (ijl (j+1) ) thlS ylelds t (F 1 ) <t ( ]+1

Now, let us forget that we fixed j € {1 2 -1} Thus, we have shown that
t(ijl(]'),k) < t(Fj—l(]‘+l)’k) for every j € {1,2,...,N— 1}. In other words, t(Fj—l(l)/k) <

t (ijl(z)/k) <<t (ijl(N) k) This proves

27 Proof of : Letie {1,2,.. —1}. We will now show that t (P;) < t(Piy1).
The definition of P y1e1ds P = (((—1)—wu,—(—1)+u}), so that t(P) =

t(((=1)—pp— (=D +u) = ((—1)—p) — (= (-1 +p) = 2(—1) —2u;. The
same argument (applied to i + 1 instead of z) ylelds t(Piy1) =2((i+1) —1) —2puj, ;. But p/
is a partition, and thus we have ;41 > pt2 > ;43 > . Hence, yi > ptl- Iy Now,

t(R) =2 (@—1) 2 <241 = 1) =2y = t(Pry).
< >Hii
Let us now forget that we fixed i. We thus have proven that t(P;) < t(P;4q1) for every

i€{l1,2,...,N—1}. In other words, t (P;) < t(P;) < --- < t(Py). This proves .

2Proof of (47): Leti € {1,2,...,N}. Then, P is a point on the path 7j, (since 715, is a path from
P to Q;, and satisfies d( ) = 0 (by (4)). Hence, P; is a point F on the path 7;;, such that
d (F) = 0. But we know (from (8), applied to k = 0) that there exists exactly one such point;
and we have denoted thlS point by F;o. Therefore, P; = F; . This proves (4

2 Proof of (.) Applying (45) to k = 0, we obtain

t (Fifl(l)/O) <t (1:1'*1(2),0) <<t (Ijj*l(N),O) (49)
(since 0 € {0,1,...,n}).

Now, fix ¢ € {1,2,...,N —1}. Then, t(P -1 ) < t(F “1(04+1),0 ) (because of .) But
¢te{1,2...,.N-1} C {1,2,...,N}, so tha’c]’1 () € {1,2,...,N}; hence, @ (applied to
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Now, let us fix some k € {1,2,...,N — 1}. We shall show thatj (k) <j(k+1).

Indeed, assume the contrary. Thus, j (k) > j(k+1). Setu = j(k) and v =
j(k+1). Thus, u = j(k) > j(k+1) = v (since v = j(k+1)), so that v < u.
Furthermore, j~! (v) = k+ 1 (since v = j(k+1)) and j~' (u) = k (since u =
j (K))-

But yields t(ijl(p)> < t(Pj71(q)> whenever p and g are two elements
of {1,2,...,N} satisfying p < q. Applying this to p = v and q = u, we obtain
t(ijl(n)> < t<P]-71(u)> (since v < u). This rewrites as t(Px;1) < t(P) (since

i (o) =k+1andj!(u) =k).

But yields t (P;) < t (Pyy1). This contradicts t (P, 1) < t (Pg). This contra-
diction shows that our assumption was false. Hence, j (k) <j (k+ 1) is proven.

Now, forget that we fixed k. We thus have shown that j (k) < j (k+ 1) for each
ke {1,2,...,N—1}. In other words, j (1) <j(2) <--- <j(N).

But it is well-known (and easy to see) that the only permutation o of {1,2,..., N}
that satisfies 0 (1) < ¢ (2) < --- < ¢ (N) is the identity permutation id. In other
words, if o is a permutation of {1,2,..., N} that satisfies 0 (1) < ¢ (2) < --- <
o (N), then o = id. Applying this to ¢ = j, we obtain j = id (since j is a per-
mutation of {1,2,..., N} that satisfies j (1) < j(2) < --- <j(N)). Hence, each
i€{1,2,...,N} satisfies

=id
and therefore i = j (i) = j; (by the definition of j). In other words, (1,2,...,N)
(j1,j2,---,jn)- This proves Lemma

Ol

i =j 1(¢)) yields Fg0 = Py Also, from ¢ € {1,2,...,N —1}, we obtain £/ +1 €
{1,2,...,N},sothatj~ ! (¢ +1) € {1,2,...,N}; hence, @ (applied to i = j~1 (£ + 1)) yields
E1pi1y,0 = B0y

Now, recall that t (Fj—l([),o) <t (F‘j—l(£+1),o). This rewrites as t (ijl(@) <t (Pj—l([+1))
(since Fj-1(¢y o = P-1(p) and F-1(y,1) 0 = P-1(041))-

Forget that we fixed ¢. We thus have proved that t(ij(@) < t<Pj71(g +l)> for each
¢e{1,2,...,N—1}. In other words,

t (ijl(l)) <t (IDj—l(z)> AERERG / (ijl(N)> .

This proves (48).
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