
Errata to “Noncommutative Schur functions” July 5, 2020

Noncommutative Schur functions and their applications
Sergey Fomin and Curtis Greene

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.6773&
rep=rep1&type=pdf (fomin greene - ncschur.ps)

version of 12 December 1996
Errata and addenda by Darij Grinberg

Contents

8. Errata 1

9. Remarks and addenda 5
9.1. Another proof of the symmetry of Fh/g . . . . . . . . . . . . . . . . 5
9.2. Some details for the proof of Lemma 3.2 . . . . . . . . . . . . . . . 6
9.3. Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.4. Proof of (j1, j2, . . . , jN) = (1, 2, . . . , N) . . . . . . . . . . . . . . . . . 25

***

The following is a list of errors and comments to the paper “Noncommutative
Schur functions and their applications” by Sergey Fomin and Curtis Greene in
the version of 12 December 1996. (This is not the version that was published
in Discrete Mathematics 306 (2006), pp. 1080–1096; but almost all of the errors
listed here exist in the published version as well. Of course, the numbering of
the pages differs from that in the published version.)

8. Errata

• Page 2, Section 1: After “the sum ranges over all semi-standard tableaux
T of shape λ”, add “with entries in {1, 2, . . . , n}”.

• Page 2, Section 1: After “For example, if λ = (3, 2)”, add “and n = 2”.

• Page 2, Section 1: After “the sum is over all semi-standard skew tableaux
T of shape λ/µ”, add “with entries in {1, 2, . . . , n}”.

• Page 4, Section 1: Replace “ui adds a box in row i” by “ui adds a box in
column i”. (This typo has been corrected in the published version of the
paper.)

• Page 4, Theorem 2: It should be said that here and in the following, the
conjugate of a partition λ is denoted by λ′.
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• Page 5, just before Theorem 1.3: I would add the following sentence right
before Theorem 1.3: “An ascent of a word w = a1a2 · · · am means an index
i ∈ {1, 2, . . . , m− 1} such that ai ≤ ai+1.”

• Page 6, the paragraph above Example 2.2: You write: “In the case of the
plactic algebra, Fh is just the Schur function sλ∗”. I think λ∗ means the
transpose of the partition λ here; but this should be explained. (It is not a
common notation for the transpose. You seem to yourself use a different
notation – namely, λ′ – later in the paper.)

• Page 6, the paragraph above Example 2.2: Replace “all standard tableaux
T” by “all standard tableaux T” (the “T” should be in mathmode).

This said, I don’t understand the whole sentence around this: How do
you manage to restrict attention to the standard tableaux? Many of the h’s
have repeated letters. I would rather prove the fact that Fh = sλ∗ using a
variation on the RSK algorithm.

• Page 7, Example 2.4: Replace “are the permutations a1 · · · an” by “are the
permutations a1 · · · an+1 ∈ Sn+1 (written here in one-line notation, i.e., such
that ai is the image of i)”.

• Page 10, (3.3): After the equality (3.3), I suggest explaining that det
(

eλ′i−µ′j+j−i (u)
)

means the determinant of the N × N-matrix
(

eλ′i−µ′j+j−i (u)
)

1≤i≤N, 1≤j≤N
,

where N is a nonnegative integer large enough to satisfy N ≥ λ1 and
N ≥ µ1.

• Page 11, proof of Lemma 3.2: “with families of lattice paths
(
π1j1 , π2j2 , . . .

)
”

→ “with families of lattice paths
(
π1j1 , π2j2 , . . . , πNjN

)
, where N is the size

of the matrix on the right hand side of (3.3)”.

Likewise, replace “
(
π1j1 , π2j2 , . . .

)
” by “

(
π1j1 , π2j2 , . . . , πNjN

)
” throughout

the rest of this proof.

• Page 11, proof of Lemma 3.2: It would be good to explain what a “lattice
path” is. Probably the simplest way to do so is the following: Let G be
the directed graph whose vertex set is Z2 and which has arcs from every
lattice point (α, β) ∈ Z2 to (α + 1, β) and to (α, β + 1) (and no further arcs).
Then, a lattice path means a (directed) path on G.

• Page 11, proof of Lemma 3.2: In the caption of Figure 1, replace “m (π21) =
5432, m (π12) = 5, m (π33) = 51” by “m (π21) = u5u4u3u2, m (π12) =
u5, m (π33) = u5u1”.

• Page 11, proof of Lemma 3.2: Replace “the expression eλ′i−µ′j+j−i (u)” by

“the expression eλ′j−µ′i+i−j (u)”.
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• Page 12, proof of Lemma 3.2: Here you write: “The corresponding two
paths must have consecutive terminal points, say Qk and Qk+1”. This claim
(and also the implicit claim that only two paths intersect in the lexicograph-
ically maximal intersection) is not completely obvious and, in my opinion,
warrants some justification. I give detailed proofs of these claims in Sub-
section 9.2 below. (Namely, these two claims are parts (a) and (b) of Lemma
9.1.)

• Page 12, proof of Lemma 3.2: After “Then m (πi,k)m
(
πj,k+1

)
may be fac-

tored as”, I’d add a footnote saying that we are abusing notation to equate
any string i1i2 · · · ik of elements of {1, 2, . . . , n} with the corresponding
product ui1ui2 · · · uik .

• Page 12, proof of Lemma 3.2: You write: “Here p labels the vertical seg-
ment in πi,k that lies just above (α, β)”. This relies on the fact that there
is a vertical segment in πi,k that lies just above (α, β) (in other words, the
path πi,k exits (α, β) in the northern direction). Again, this fact is not com-
pletely obvious; I shall prove it in Subsection 9.2 below. (Namely, this fact
is Lemma 9.1 (c).)

• Page 12, proof of Lemma 3.2: I think “A = a1a2 . . . and B = b1b2 . . .”
should be replaced by “A = . . . a2a1 and B = . . . b2b1”. (It would also be
good to mention that the “. . .” symbols here do not signify infinite strings,
but merely finite strings whose lengths are immaterial.) You should also
mention that ` (A) ≥ ` (B), where ` (C) denotes the length of a string C.

• Page 12, proof of Lemma 3.3: I don’t understand what you mean by “jeu-
de-taquin transformations” here. I give a completely elementary proof of
Lemma 3.3 in Subsection 9.3 below.

• Page 13, proof of Lemma 3.3: “by all configurations”→ “by all families of
paths”.

• Page 13, proof of Lemma 3.3: “not involving Pj, Pk, Qk, Qk+1” → “not in-
volving Pi, Pj, Qk, Qk+1”.

• Page 13, proof of Lemma 3.3: You write: “Hence we have constructed
a sign-reversing involution which leaves only terms of (3.3) correspond-
ing to non-intersecting families of paths”. This is not correct as stated.
What you have constructed is not an involution on the set of all families(
π1j1 , π2j2 , . . . , πNjN

)
of paths. The problem is that each term

W1Aper
(
u1, . . . , uα+β

)
Bes
(
u1, . . . , uα+β

)
W2

is not a single monomial corresponding to a single family of paths, but
rather a sum of such monomials for a certain set of families of paths
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(namely, for the set of all families that agree with the original family every-
where except on the initial segments of πi,k and πj,k+1). By showing that it
equals

W1Apes
(
u1, . . . , uα+β

)
Ber
(
u1, . . . , uα+β

)
W2,

you can conclude that the contributions of all these families to the determi-
nant in (3.3) cancel against the contributions of another such set of families.
This way, all terms in (3.3) contributed by intersecting families of paths are
cancelled, whereas the terms contributed by non-intersecting families of
paths are preserved. This shows that the determinant in (3.3) reduces to
the sum of the contributions of non-intersecting families; however, this
does not construct a sign-reversing involution on the single monomials in
(3.3). (Fortunately, you don’t need such an involution.)

• Page 13, proof of Lemma 3.3: After “Now the argument continues exactly
as in the commutative case.”, add “Every family

(
π1j1 , π2j2 , . . . , πNjN

)
of

non-intersecting paths πiji must have (j1, j2, . . . , jN) = (1, 2, . . . , N).” See
Subsection 9.4 below for the proof of this statement. (Namely, this state-
ment is Lemma 9.5.)

• Page 13, proof of Lemma 3.3: After “and hence of Theorem 1.1” (in the
last sentence of the proof), I would add “(since the (unique) algebra homo-
morphism from Λn to A that sends e1, e2, e3, . . . to e1 (u) , e2 (u) , e3 (u) , . . .
will send each ei (for i ∈ Z) to the corresponding ei (u) (because e0 (u) =
1 and ei (u) = 0 for all i < 0), and therefore will send each sλ/µ =

det
(

eλ′i−µ′j+j−i

)
to det

(
eλ′i−µ′j+j−i (u)

)
= Jλ/µ (u) = sλ/µ (u) (by Lemma

3.2))”.

• Page 15, proof of Theorem 1.3: After “the complete noncommutative ana-
log of the Frobenius formula (5.2)”, I would add “, namely the formula

pα (u) = sgn (α)∑
λ

χλ (α) sλ′ (u)

” (just for the sake of clarity).

• Page 18, Section 6: “a linear operator in V ⊗V”→ “a linear operator from
V ⊗V to V ⊗V”.

• Page 18, Section 6: “Now let ui act in”→ “Now let ui act on”.

• Page 18, Section 6: “by ui = I(i−1) ⊗ u⊗ I(n−i)” → “by ui = I⊗(i−1) ⊗ u⊗
I⊗(n−i)”.

• Page 18, Section 6: “an identity operator”→ “the identity operator”.
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• Page 18, Example 6.1: After “and ε is a right unit of M”, add “(that is,
ε ∈ M satisfies αε = α for each α ∈ M)”. (The notion of a right unit used
here is not very well-known.)

• Page 18, Example 6.1: After “If ε is a left unit ofM”, add “(that is, ε ∈ M
satisfies εα = α for each α ∈ M)”.

• Page 19, Lemma 6.6: I think you want to assume that the operations ∧
and ∨ are associative here. (At least, I need this assumption to prove the
sufficiency.)

• Page 20, Example 6.7: I don’t think u is well-defined as stated: the right-
hand side p · α⊗ β + (1− p) · α⊗ α is not bilinear in (α, β), so the equation
does not yield a well-defined linear map from the tensor product V ⊗ V.
(But you can salvage this definition by requiring the equation to hold only
in the case when α and β belong to a fixed basis of V.)

9. Remarks and addenda

9.1. Another proof of the symmetry of Fh/g

On page 4, you say that “Note that Fh/g is a function in the commuting variables
xi alone; we shall later demonstrate that this is indeed a symmetric function,
in the ordinary sense”. It is, in fact, easy to derive the symmetry of Fh/g from
Theorem 1.1 (or, even better, from Lemma 3.1):

Proof of the fact that Fh/g is symmetric in the xi: The relations (1.2) and (1.3) hold.
Therefore, the conditions of Lemma 3.1 are satisfied (in fact, the relations (3.2)
follow immediately from (1.2), whereas the relations (3.2) follow from (1.2) when
j − i > 1 and from (1.3) when j − i = 1). Hence, Lemma 3.1 yields that the
elements ek (u1, . . . , un) for k ∈ N commute. These elements clearly commute
with all of the x1, x2, . . . , xm. Thus, all of the elements ek (u1, . . . , un) and the
elements x1, x2, . . . , xm commute with each other. Therefore, the subalgebra of
A generated by the elements ek (u1, . . . , un) and the elements x1, x2, . . . , xm is
commutative1. Let B denote this subalgebra.

Let Z (A) denote the center of the ring A. For every t ∈ Z (A), we have

1

∏
j=n

(
1 + tuj

)
= (1 + tun) (1 + tun−1) · · · (1 + tu1)

=
n

∑
k=0

ek (u1, . . . , un) tn. (1)

1Here, A is supposed to be an algebra that contains u1, u2, . . . , un and x1, x2, . . . , xm.
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(In fact, this is a noncommutative analogue of the classical formula that
n
∏
j=1

(
1 + tαj

)
=

n
∑

k=0
ek (α1, . . . , αn) tn for any elements α1, α2, . . . , αn, t of a commutative algebra;

and it can be proven by induction over n in the same way.) Now, for every
i ∈ {1, 2, . . . , m}, we have

1

∏
j=n

(
1 + xiuj

)
=

n

∑
k=0

ek (u1, . . . , un)︸ ︷︷ ︸
∈B

xn
i︸︷︷︸
∈B

(since xi∈B)

(by (1), applied to t = xi)

∈
n

∑
k=0

BB ⊆ B.

Thus,
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
is a product of elements of B. Since B is commutative, this

shows that the order of these elements is immaterial – that is, we can reorder the

entries of the (outer) product
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
without changing its value. But

reordering the entries of the (outer) product
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
has the same effect

as permuting the variables x1, x2, . . . , xm. Therefore, we conclude that permut-

ing the variables x1, x2, . . . , xm does not change the value of
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
.

Therefore, permuting the variables x1, x2, . . . , xm does not change the value of〈
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
g, h

〉
. In other words,

〈
m
∏
i=1

1
∏
j=n

(
1 + xiuj

)
g, h

〉
is symmetric

in the x1, x2, . . . , xm. Qed.

9.2. Some details for the proof of Lemma 3.2

In this subsection, we shall give detailed proofs of three statements left unproved
in the proof of Lemma 3.2.

The notations introduced during the proof of Lemma 3.2 shall be used through-
out Subsection 9.2. We shall prove the claim “The corresponding two paths must
have consecutive terminal points, say Qk and Qk+1” made on page 12, as well as
the implicit claim that only two paths intersect in the lexicographically maximal
intersection. We shall also prove that the path that ends in Qk has a vertical
segment that lies just above (α, β).

In the following, an “intersection point” will mean a point in which (at least)
two of the paths π1j1 , π2j2 , . . . , πNjN intersect. We shall now prove the following:
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Lemma 9.1. Let X denote the intersection point (α, β) with the pair
(α + β, α− β) lexicographically maximal. Then:

(a) Exactly two of the paths π1j1 , π2j2 , . . . , πNjN intersect at X.
(b) These two paths must end at two points of the form Qk and Qk+1 for

some k ∈ {1, 2, . . . , N − 1}.
(c) The path (among these two paths) that ends in Qk contains the vertical

segment (α, β) 7→ (α, β + 1), where (α, β) = X.

Before we prove Lemma 9.1, let us introduce a notation. The depth of a lattice
point (γ, δ) ∈ Z2 will mean the sum γ + δ; it will be denoted by d ((γ, δ)).
The tilt of a lattice point (γ, δ) ∈ Z2 will mean the difference γ − δ; it will be
denoted by t ((γ, δ)). Notice that the pair (d (T) , t (T)) uniquely determines
a point T ∈ Z2. In other words, if T1 and T2 are two points in Z2 such that
(d (T1) , t (T1)) = (d (T2) , t (T2)), then

T1 = T2. (2)

Notice also that every T ∈ Z2 satisfies

t (T) ≡ d (T)mod 2. (3)

2

We have
d (Pi) = 0 for every i ∈ {1, 2, . . . , N} . (4)

3 Also,
d
(
Qj
)
= n for every j ∈ {1, 2, . . . , N} . (5)

4 Now, let us consider the directed graph G (which was defined above in my first
comment on “page 11, proof of Lemma 3.2”). If (U, V) is an arc of the directed
graph G, then

d (V) = d (U) + 1 (6)

2Proof of (3): Let T ∈ Z2. Let us write T in the form (γ, δ) for some integers γ and δ. Then,

t

 T︸︷︷︸
=(γ,δ)

 = t ((γ, δ)) = γ− δ (by the definition of t ((γ, δ))) and d

 T︸︷︷︸
=(γ,δ)

 = d ((γ, δ)) =

γ + δ (by the definition of d ((γ, δ))). Now, t (T) = γ − δ = γ + (−1)︸ ︷︷ ︸
≡1 mod 2

δ ≡ γ + δ =

d (T)mod 2. This proves (3).
3Proof of (4): Let i ∈ {1, 2, . . . , N}. Then, the definition of Pi yields Pi =(

(i− 1)− µ′i,− (i− 1) + µ′i
)
, so that

d (Pi) = d
((
(i− 1)− µ′i,− (i− 1) + µ′i

))
=
(
(i− 1)− µ′i

)
+
(
− (i− 1) + µ′i

)(
by the definition of d

((
(i− 1)− µ′i,− (i− 1) + µ′i

)))
= 0.

This proves (4).
4Proof of (5): Let j ∈ {1, 2, . . . , N}. Then, the definition of Qj yields Qj =
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5 and
t (U)− 1 ≤ t (V) ≤ t (U) + 1 (7)

6. For every i ∈ {1, 2, . . . , N} and every k ∈ {0, 1, . . . , n},

there exists exactly one point F on the path πiji such that d (F) = k. (8)

7 We shall denote this point by Fi,k. Thus, for every i ∈ {1, 2, . . . , N} and every(
n + (j− 1)− λ′j,− (j− 1) + λ′j

)
, so that

d
(
Qj
)
= d

((
n + (j− 1)− λ′j,− (j− 1) + λ′j

))
=
(

n + (j− 1)− λ′j

)
+
(
− (j− 1) + λ′j

)
(

by the definition of d
((

n + (j− 1)− λ′j,− (j− 1) + λ′j

)))
= n.

This proves (5).
5Proof of (6): Let (U, V) be an arc of the directed graph G. Write the point U in the form

U = (γ, δ). Then, V is either (γ + 1, δ) or (γ, δ + 1) (since (U, V) is an arc of G). In either of
these two cases, we have d (V) = d (U) + 1. Hence, (6) is proven.

6Proof of (7): Let (U, V) be an arc of the directed graph G. Write the point U in the form
U = (γ, δ). Then, V is either (γ + 1, δ) or (γ, δ + 1) (since (U, V) is an arc of G). We have
t (V) = t (U) + 1 in the first of these two cases, and we have t (V) = t (U)− 1 in the second
of these two cases. Thus, we have t (U)− 1 ≤ t (V) ≤ t (U) + 1 in either case. Hence, (7) is
proven.

7Proof of (8): Let i ∈ {1, 2, . . . , N}. Write the path πiji in the form (F0, F1, . . . , F`). Since the path
πiji begins at Pi and ends at Qji , we must have F0 = Pi and F` = Qji . Moreover, for every
p ∈ {0, 1, . . . , `− 1}, the pair

(
Fp, Fp+1

)
is an arc of the directed graph G (since (F0, F1, . . . , F`)

is a path in G) and thus satisfies d
(

Fp+1
)
= d

(
Fp
)
+ 1 (by (6), applied to U = Fp and

V = Fp+1).
Thus, we know that d

(
Fp+1

)
= d

(
Fp
)
+ 1 for every p ∈ {0, 1, . . . , `− 1}. In other words,

(d (F0) , d (F1) , . . . , d (F`)) is an arithmetic sequence with difference 1 (that is, d
(

Fp
)

grows
by 1 every time we increase p by 1). Thus,

d
(

Fp
)
= d (F0) + p for every p ∈ {0, 1, . . . , `} . (9)

Since d

 F0︸︷︷︸
=Pi

 = d (Pi) = 0 (by (4)), this shows that

d
(

Fp
)
= d (F0)︸ ︷︷ ︸

=0

+p = p for every p ∈ {0, 1, . . . , `} . (10)

Applying this to p = `, we obtain d (F`) = `. Thus, ` = d

 F`︸︷︷︸
=Qji

 = d
(
Qji
)
= n (by (5),

applied to j = ji).
Now, let k ∈ {0, 1, . . . , n}. Thus, k ∈ {0, 1, . . . , `} (since ` = n). Applying (10) to p = k, we

obtain d (Fk) = k. Hence, Fk is a point on the path πiji (since πiji = (F0, F1, . . . , F`)) satisfying
d (Fk) = k. In other words, Fk is a point F on the path πiji such that d (F) = k.

8
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k ∈ {0, 1, . . . , n}, we have
d (Fi,k) = k. (11)

8 Notice that for every i ∈ {1, 2, . . . , N}, every point U on the path πiji satisfies

d (U) ∈ {0, 1, . . . , n} . (12)

9.
We have

Fi,n = Qji for every i ∈ {1, 2, . . . , N} . (14)
10 Also, for every i ∈ {1, 2, . . . , N} and every k ∈ {0, 1, . . . , n− 1},

the pair (Fi,k, Fi,k+1) is an arc of the path πiji . (15)

11 Therefore, for every i ∈ {1, 2, . . . , N} and every k ∈ {0, 1, . . . , n− 1},

the pair (Fi,k, Fi,k+1) is an arc of the directed graph G. (16)

On the other hand, let F be any point on the path πiji such that d (F) = k. Then, F = Fp
for some p ∈ {0, 1, . . . , `} (since F is a point on the path πiji = (F0, F1, . . . , F`)). Consider this

p. Then, k = d

 F︸︷︷︸
=Fp

 = d
(

Fp
)
= p (by (10)), so that Fk = Fp and thus F = Fp = Fk. Now,

let us forget that we fixed F. We thus have shown that if F is any point on the path πiji such
that d (F) = k, then F = Fk. Hence, there exists at most one point F on the path πiji such that
d (F) = k. Since there exists at least one such point (namely, Fk), we can thus conclude that
there exists exactly one point F on the path πiji such that d (F) = k. This proves (8).

8Proof of (11): Let i ∈ {1, 2, . . . , N} and k ∈ {0, 1, . . . , n}. Then, Fi,k is defined as the unique
point F on the path πiji such that d (F) = k. Hence, Fi,k is a point F on the path πiji such that
d (F) = k. In other words, Fi,k belongs to the path πiji and satisfies d (Fi,k) = k. This proves
(11).

9Proof of (12): Let i ∈ {1, 2, . . . , N}. Let U be a point on the path πiji . Write the path πiji in the
form (F0, F1, . . . , F`). We can prove that

d
(

Fp
)
= p for every p ∈ {0, 1, . . . , `} . (13)

(This can be proven just as we proved (10) in our proof of (8).) Also, ` = n. (Again, this can
be proven just as in our proof of (8).)

But recall that πiji = (F0, F1, . . . , F`). Hence, U is a point on the path (F0, F1, . . . , F`) (since
U is a point on the path πiji ). In other words, there exists a p ∈ {0, 1, . . . , `} such that U = Fp.
Consider this p. We have p ∈ {0, 1, . . . , `} = {0, 1, . . . , n} (since ` = n). Now, (13) yields

d
(

Fp
)
= p. So d

 U︸︷︷︸
=Fp

 = d
(

Fp
)
= p ∈ {0, 1, . . . , n}. This proves (12).

10Proof of (14): Let i ∈ {1, 2, . . . , N}. Then, Qji is a point on the path πiji (since πiji is a path
from Pi to Qji ) and satisfies d

(
Qji
)
= n (by (5), applied to j = ji). Hence, Qji is a point F on

the path πiji such that d (F) = n. But we know (from (8), applied to k = n) that there exists
exactly one such point; and we have denoted this point by Fi,n. Therefore, Qji = Fi,n. This
proves (14).

11Proof of (15): Let i ∈ {1, 2, . . . , N}. Let k ∈ {0, 1, . . . , n− 1}. Then, both Fi,k and Fi,k+1 are well-
defined points on the path πiji (by the definition of Fi,k and Fi,k+1). From k ∈ {0, 1, . . . , n− 1},
we obtain k + 1 ∈ {1, 2, . . . , n} ⊆ {0, 1, . . . , n}.

9
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12

We have
t (Q1) < t (Q2) < · · · < t (QN) . (17)

13 Thus, the numbers t (Q1) , t (Q2) , . . . , t (QN) are pairwise distinct. Hence, the
points Q1, Q2, . . . , QN are pairwise distinct.

Let us now come to the proof of Lemma 9.1.

Proof of Lemma 9.1. Let us first observe that

every intersection point Y satisfies d (Y) ≤ d (X) . (18)

14

We know that Fi,k is the unique point F on the path πiji such that d (F) = k (according to
the definition of Fi,k). Thus, Fi,k is a point on the path πiji and satisfies d (Fi,k) = k. We have
d (Fi,k) = k 6= n = d

(
Qji
)

(because d
(
Qji
)
= n (by (5), applied to j = ji)), and thus Fi,k 6= Qji .

Therefore, Fi,k is not the terminus of the path πiji (since the terminus of the path πiji is Qji ).
Hence, the next point after Fi,k on the path πiji is well-defined. Let F′ denote this next point.

Clearly, (Fi,k, F′) is an arc of the path πiji (since F′ is the next point after Fi,k on the path
πiji ). Thus, (Fi,k, F′) is an arc of the directed graph G (since πiji is a path on this directed
graph). Hence, (6) (applied to U = Fi,k and V = F′) yields d (F′) = d (Fi,k)︸ ︷︷ ︸

=k

+1 = k + 1. Also,

F′ lies on πiji . Hence, F′ is a point F on the path πiji such that d (F) = k + 1. But we know
that there exists exactly one such point F (according to (8), applied to k + 1 instead of k), and
we have denoted this point F by Fi,k+1. Hence, F′ is Fi,k+1. Thus, (Fi,k, Fi,k+1) is an arc of the
path πiji (since (Fi,k, F′) is an arc of the path πiji ). This proves (15).

12Proof of (16): Let i ∈ {1, 2, . . . , N}. Let k ∈ {0, 1, . . . , n− 1}. Then, (15) shows that the pair
(Fi,k, Fi,k+1) is an arc of the path πiji . Thus, the pair (Fi,k, Fi,k+1) is an arc of the directed graph
G (since πiji is a path on this directed graph). This proves (16).

13Proof of (17): Let j ∈ {1, 2, . . . , N − 1}. We will now show that t
(
Qj
)
< t

(
Qj+1

)
.

The definition of Qj yields Qj =
(

n + (j− 1)− λ′j,− (j− 1) + λ′j

)
, so that t

(
Qj
)

=

t
((

n + (j− 1)− λ′j,− (j− 1) + λ′j

))
=

(
n + (j− 1)− λ′j

)
−
(
− (j− 1) + λ′j

)
= n +

2 (j− 1) − 2λ′j. The same argument (applied to j + 1 instead of j) yields t
(
Qj+1

)
=

n + 2 ((j + 1)− 1) − 2λ′j+1. But λ′ is a partition, and thus we have λ′1 ≥ λ′2 ≥ λ′3 ≥ · · · .
Hence, λ′j ≥ λ′j+1. Now,

t
(
Qj
)
= n + 2

 j︸︷︷︸
<j+1

−1

− 2 λ′j︸︷︷︸
≥λ′j+1

< n + 2 ((j + 1)− 1)− 2λ′j+1 = t
(
Qj+1

)
.

Let us now forget that we fixed j. We thus have proven that t
(
Qj
)
< t

(
Qj+1

)
for every

j ∈ {1, 2, . . . , N − 1}. In other words, t (Q1) < t (Q2) < · · · < t (QN). This proves (17).
14Proof of (18): We know (from the definition of X) that X is the intersection point (α, β) with the

pair (α + β, α− β) lexicographically maximal. In other words, X is the intersection point
(α, β) with the pair (d ((α, β)) , t ((α, β))) lexicographically maximal (because every point
(α, β) ∈ Z2 satisfies d ((α, β)) = α + β and t ((α, β)) = α− β). Hence, every intersection point
Y satisfies (d (X) , t (X)) ≥ (d (Y) , t (Y)) in lexicographic order. Thus, every intersection
point Y satisfies d (X) ≥ d (Y). This proves (18).

10
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If k ∈ {0, 1, . . . , n} is such that k > d (X), then any two distinct elements u and
v of {1, 2, . . . , N} satisfy

t (Fu,k) 6= t (Fv,k) . (19)
15 Moreover, if k ∈ {0, 1, . . . , n} and if u and v are two elements of {1, 2, . . . , N},
then

t (Fv,k) 6= t (Fu,k) + 1. (20)
16

But recall that (j1, j2, . . . , jN) is a permutation of {1, 2, . . . , N}. Denote this
permutation by j. Thus,

j (i) = ji for every i ∈ {1, 2, . . . , N} . (21)

Now, for every j ∈ {1, 2, . . . , N − 1}, we have

t
(

Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
for every k ∈ {d (X) , d (X) + 1, . . . , n} . (22)

17 Consequently, if k ∈ {0, 1, . . . , n} is such that k > d (X), then

t
(

Fj−1(1),k

)
< t

(
Fj−1(2),k

)
< · · · < t

(
Fj−1(N),k

)
. (23)

15Proof of (19): Let k ∈ {0, 1, . . . , n} be such that k > d (X). Let u and v be two distinct elements
of {1, 2, . . . , N}. We need to prove (19).

Assume the contrary. Thus, (19) does not hold. In other words, t (Fu,k) = t (Fv,k). But
d (Fu,k) = k (by (11), applied to i = u) and d (Fv,k) = k (by (11), applied to i = v). Hence,

d (Fu,k) = k = d (Fv,k). Altogether,

d (Fu,k)︸ ︷︷ ︸
=d(Fv,k)

, t (Fu,k)︸ ︷︷ ︸
=t(Fv,k)

 = (d (Fv,k) , t (Fv,k)). Thus, (2) (ap-

plied to T1 = Fu,k and T2 = Fv,k) yields Fu,k = Fv,k.
But Fu,k is the unique point F on the path πuju such that d (F) = k (according to the

definition of Fu,k). Hence, Fu,k is a point F on the path πuju such that d (F) = k. In particular,
Fu,k is a point on the path πuju . Similarly, Fv,k is a point on the path πvjv . In other words,
Fu,k is a point on the path πvjv (since Fu,k = Fv,k). The point Fu,k thus lies on both paths
πuju and πvjv . Hence, Fu,k is a point in which (at least) two of the paths π1j1 , π2j2 , . . . , πNjN
intersect (namely, the paths πuju and πvjv ). In other words, Fu,k is an intersection (since u and
v are distinct). Hence, (18) (applied to Y = Fu,k) yields d (Fu,k) ≤ d (X). But this contradicts
d (Fu,k) = k > d (X). This contradiction proves that our assumption was wrong. Thus, (19)
is proven.

16Proof of (20): Let k ∈ {0, 1, . . . , n}, and let u and v be two elements of {1, 2, . . . , N}. We need to
prove that (20) holds.

Assume the contrary. Thus, (20) does not hold. Thus, we have t (Fv,k) = t (Fu,k) + 1. But
(3) (applied to T = Fv,k) yields t (Fv,k) ≡ d (Fv,k)mod 2. Hence, d (Fv,k) ≡ t (Fv,k) = t (Fu,k) +
1 mod 2. But d (Fv,k) = k (by (11), applied to i = v) and thus k = d (Fv,k) ≡ t (Fu,k) + 1 mod 2.
However, (3) (applied to T = Fu,k) yields t (Fu,k) ≡ d (Fu,k)mod 2. Also, d (Fu,k) = k (by
(11), applied to i = u), so that t (Fu,k) ≡ d (Fu,k) = k mod 2. Thus, k ≡ t (Fu,k)︸ ︷︷ ︸

≡k mod 2

+1 mod 2 ≡

k + 1 mod 2. Subtracting k from this congruence, we obtain 0 ≡ 1 mod 2, which is absurd.
Hence, we have obtained a contradiction. Thus, our assumption was wrong, and (20) is
proven.

17Proof of (22): Let j ∈ {1, 2, . . . , N − 1}. Set u = j−1 (j) and v = j−1 (j + 1). We need to prove

11
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18

Next, we notice that
d (X) ∈ {0, 1, . . . , n− 1} . (24)

(22).
Let us (for the sake of contradiction) assume the contrary. Thus, not every k ∈
{d (X) , d (X) + 1, . . . , n} satisfies t

(
Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
. In other words, not ev-

ery k ∈ {d (X) , d (X) + 1, . . . , n} satisfies t (Fu,k) ≤ t (Fv,k) (because u = j−1 (j) and
v = j−1 (j + 1)). In other words, there exists a k ∈ {d (X) , d (X) + 1, . . . , n} such that
t (Fu,k) > t (Fv,k). Let ` be the highest such k. Thus, ` is a k ∈ {d (X) , d (X) + 1, . . . , n}
such that t (Fu,k) > t (Fv,k). Hence, ` belongs to {d (X) , d (X) + 1, . . . , n} and satisfies
t (Fu,`) > t (Fv,`). We have t (Fu,`) ≥ t (Fv,`) + 1 (since t (Fu,`) and t (Fv,`) are integers and
satisfy t (Fu,`) > t (Fv,`)). In other words, t (Fv,`) + 1 ≤ t (Fu,`).

Let us first assume (for the sake of contradiction) that ` = n. Then, Fu,` = Fu,n = Qju (by
(14), applied to i = u). But the definition of j (u) yields j (u) = ju, so that ju = j (u) = j
(since u = j−1 (j)) and thus Qju = Qj. Also, from ` = n, we obtain Fv,` = Fv,n = Qjv (by (14),
applied to i = v). But the definition of j (v) yields j (v) = jv, so that jv = j (v) = j + 1 (since

v = j−1 (j + 1)) and thus Qjv = Qj+1. But t
(
Qj
)
< t

(
Qj+1

)
(by (17)). Now, t

 Fu,`︸︷︷︸
=Qju=Qj

 =

t
(
Qj
)
< t

(
Qj+1

)
contradicts t (Fu,`) > t

 Fv,`︸︷︷︸
=Qjv=Qj+1

 = t
(
Qj+1

)
. This contradiction proves

that our assumption (that ` = n) was wrong. Hence, we cannot have ` = n.
We have d (X) ∈ {0, 1, . . . , n} (by (12), applied to U = X), thus 0 ≤ d (X). We have

` ∈ {d (X) , d (X) + 1, . . . , n}, thus d (X) ≤ ` ≤ n. Thus, ` < n (since ` ≤ n but not ` = n)
and 0 ≤ d (X) ≤ `. Hence, 0 ≤ ` < n, so that ` ∈ {0, 1, . . . , n− 1} and thus ` + 1 ∈
{1, 2, . . . , n} ⊆ {0, 1, . . . , n}, so that ` + 1 ≤ n. Moreover, ` + 1 ∈ {d (X) , d (X) + 1, . . . , n}
(since d (X) ≤ ` ≤ `+ 1 and `+ 1 ≤ n).

But ` ∈ {0, 1, . . . , n− 1}. Thus, (16) (applied to k = u and i = `) shows that the
pair (Fu,`, Fu,`+1) is an arc of the directed graph G. Therefore, (7) (applied to U = Fu,`
and V = Fu,`+1) shows that t (Fu,`) − 1 ≤ t (Fu,`+1) ≤ t (Fu,`) + 1. The same argument
(but with every u replaced by v) yields t (Fv,`) − 1 ≤ t (Fv,`+1) ≤ t (Fv,`) + 1. Thus,
t (Fv,`+1) ≤ t (Fv,`) + 1 ≤ t (Fu,`) ≤ t (Fu,`+1) + 1 (since t (Fu,`) − 1 ≤ t (Fu,`+1)). Com-
bined with t (Fv,`+1) 6= t (Fu,`+1) + 1 (which is a consequence of (20), applied to `+ 1 instead
of k), this yields t (Fv,`+1) < t (Fu,`+1) + 1. Since t (Fv,`+1) and t (Fu,`+1) + 1 are integers, this
yields t (Fv,`+1) ≤ (t (Fu,`+1) + 1)− 1 = t (Fu,`+1).

We have d (X) ≤ ` < `+ 1 and thus `+ 1 > d (X). Hence, (19) (applied to k = `+ 1) yields
t (Fu,`+1) 6= t (Fv,`+1). In other words, t (Fv,`+1) 6= t (Fu,`+1). Combined with t (Fv,`+1) ≤
t (Fu,`+1), this yields t (Fv,`+1) < t (Fu,`+1). In other words, t (Fu,`+1) > t (Fv,`+1). Hence,
`+ 1 is a k ∈ {d (X) , d (X) + 1, . . . , n} such that t (Fu,k) > t (Fv,k). Since the highest such k
is ` (by the definition of `), this yields that `+ 1 ≤ `. But this contradicts `+ 1 > `. This
contradiction shows that our assumption was wrong. Hence, (22) is proven.

18Proof of (23): Let k ∈ {0, 1, . . . , n} be such that k > d (X). Let j ∈ {1, 2, . . . , N − 1}.
Since k ≥ d (X) (because k > d (X)) and k ≤ n (since k ∈ {0, 1, . . . , n}), we have k ∈
{d (X) , d (X) + 1, . . . , n}. Hence, (22) yields t

(
Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
. But j

(
j−1 (j)

)
=

j 6= j + 1 = j
(
j−1 (j + 1)

)
, so that j−1 (j) 6= j−1 (j + 1). In other words, the positive integers

j−1 (j) and j−1 (j + 1) are distinct. Thus, (19) (applied to u = j−1 (j) and v = j−1 (j + 1))

12
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19 Now, if u ∈ {1, 2, . . . , N} and v ∈ {1, 2, . . . , N} are such that Fu,d(X) = Fv,d(X),
then

j (v) ≤ j (u) + 1. (25)
20

yields t
(

Fj−1(j),k

)
6= t

(
Fj−1(j+1),k

)
. Combined with t

(
Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
, this yields

t
(

Fj−1(j),k

)
< t

(
Fj−1(j+1),k

)
.

Now, let us forget that we fixed j ∈ {1, 2, . . . , N − 1}. Thus, we have shown that

t
(

Fj−1(j),k

)
< t

(
Fj−1(j+1),k

)
for every j ∈ {1, 2, . . . , N − 1}. In other words, t

(
Fj−1(1),k

)
<

t
(

Fj−1(2),k

)
< · · · < t

(
Fj−1(N),k

)
. This proves (23).

19Proof of (24): The point X is an intersection point (in fact, X is the intersection point (α, β) with
the pair (α + β, α− β) lexicographically maximal). In other words, X is a point in which (at
least) two of the paths π1j1 , π2j2 , . . . , πNjN intersect. In other words, at least two of the paths
π1j1 , π2j2 , . . . , πNjN intersect at X. In other words, there exist two distinct elements u and v of
{1, 2, . . . , N} such that the paths πuju and πvjv intersect at X. Consider these u and v. We can
WLOG assume that j (u) ≤ j (v) (since otherwise, we can just switch u with v). Assume this.
We have u 6= v (since u and v are distinct), and thus j (u) 6= j (v) (since j is injective (since j is
a permutation)). Thus, j (u) < j (v) (since j (u) ≤ j (v)).

The point X lies on the path πuju (since the paths πuju and πvjv intersect at X). Hence, (12)
(applied to i = u and U = X) yields d (X) ∈ {0, 1, . . . , n}.

We now assume (for the sake of contradiction) that d (X) = n.
Recall that there exists exactly one point F on the path πuju such that d (F) = n (according

to (8), applied to i = u and k = n); this point is denoted by Fu,n. Thus, Fu,n is the unique
point F on the path πuju such that d (F) = n. Since X is a point F on the path πuju such that
d (F) = n (because X lies on the path πuju and satisfies d (X) = n), this yields that X is Fu,n.
In other words, X = Fu,n. But (14) (applied to i = u) yields Fu,n = Qju . But the definition of
j yields j (u) = ju. Hence, Qj(u) = Qju , so that X = Fu,n = Qju = Qj(u). The same argument
(but with u replaced by v) yields X = Qj(v).

But (17) yields t (Q1) < t (Q2) < · · · < t (QN). In other words, if a ∈ {1, 2, . . . , N} and
b ∈ {1, 2, . . . , N} satisfy a < b, then t (Qa) < t (Qb). Applying this to a = j (u) and b = j (v),

we obtain t
(

Qj(u)

)
< t

(
Qj(v)

)
(since j (u) < j (v)). But this contradicts t

 Qj(u)︸ ︷︷ ︸
=X=Qj(v)

 =

t
(

Qj(v)

)
. This contradiction proves that our assumption (that d (X) = n) was wrong. Hence,

we cannot have d (X) = n. In other words, we have d (X) 6= n. Combined with d (X) ∈
{0, 1, . . . , n}, this yields d (X) ∈ {0, 1, . . . , n} \ {n} = {0, 1, . . . , n− 1}. This proves (24).

20Proof of (25): Let u ∈ {1, 2, . . . , N} and v ∈ {1, 2, . . . , N} be such that Fu,d(X) = Fv,d(X). We need
to prove that (25) holds.

In fact, let us assume the contrary. Then, (25) does not hold. In other words, j (v) >
j (u) + 1. Hence, j (v) > j (u) + 1 > j (u), so that j (v) 6= j (u) and thus v 6= u. Hence, u 6= v.

We have j (u) ∈ {1, 2, . . . , N}, thus j (u) ≥ 1. We have j (v) ∈ {1, 2, . . . , N}, thus j (v) ≤ N.
Hence, N ≥ j (v) > j (u) + 1 > j (u), and thus j (u) < N. Therefore, j (u) ∈ {1, 2, . . . , N − 1}
(since j (u) ≥ 1).
> j (u), we conclude that j (u) + 1 ∈ {1, 2, . . . , N} (since both j (v) and j (u) belong to
{1, 2, . . . , N}). Hence, j−1 (j (u) + 1) is a well-defined element of {1, 2, . . . , N}. Denote this
element by w. Thus, w = j−1 (j (u) + 1).

From (24), we obtain d (X) ∈ {0, 1, . . . , n− 1}, thus d (X)+ 1 ∈ {1, 2, . . . , n} ⊆ {0, 1, . . . , n}.
Let k = d (X) + 1. Then, k = d (X) + 1 ∈ {0, 1, . . . , n} and k = d (X) + 1 > d (X). Thus, (23)

13
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We now proceed to the proofs of the three parts of Lemma 9.1:
(a) We know that X is an intersection point. Hence, (at least) two of the paths

π1j1 , π2j2 , . . . , πNjN intersect at X. Therefore, in order to prove Lemma 9.1 (a),
we only need to show that no more than two of the paths π1j1 , π2j2 , . . . , πNjN
intersect at X. Let us prove this.

Indeed, let us assume the contrary (for the sake of contradiction). Thus, more
than two of the paths π1j1 , π2j2 , . . . , πNjN intersect at X. Hence, at least three
of the paths π1j1 , π2j2 , . . . , πNjN intersect at X. In other words, at least three of
the paths π1j1 , π2j2 , . . . , πNjN pass through X. In other words, there exist three
pairwise distinct elements u, v and w of {1, 2, . . . , N} such that the paths πuju ,
πvjv and πwjw pass through X. Consider these u, v and w. We can assume WLOG
that j (u) ≤ j (v) ≤ j (w) (since otherwise, we can just permute u, v and w).
Assume this. The map j is a permutation, and thus injective. Hence, j (u) 6= j (v)

yields t
(

Fj−1(1),k

)
< t

(
Fj−1(2),k

)
< · · · < t

(
Fj−1(N),k

)
. In other words, any a ∈ {1, 2, . . . , N}

and b ∈ {1, 2, . . . , N} satisfying a < b must satisfy

t
(

Fj−1(a),k

)
< t

(
Fj−1(b),k

)
. (26)

We know (from (16), applied to u and d (X) instead of i and k) that the pair(
Fu,d(X), Fu,d(X)+1

)
is an arc of the directed graph G. Hence, (7) (applied to (U, V) =(

Fu,d(X), Fu,d(X)+1

)
) yields t

(
Fu,d(X)

)
− 1 ≤ t

(
Fu,d(X)+1

)
≤ t

(
Fu,d(X)

)
+ 1. In other words,

t
(

Fu,d(X)

)
− 1 ≤ t (Fu,k) ≤ t

(
Fu,d(X)

)
+ 1

(since k = d (X) + 1). The same argument (but with u replaced by v) yields

t
(

Fv,d(X)

)
− 1 ≤ t (Fv,k) ≤ t

(
Fv,d(X)

)
+ 1.

Hence, t (Fv,k) ≤ t
(

Fv,d(X)

)
+ 1, so that t

(
Fv,d(X)

)
≥ t (Fv,k) − 1, so that t

Fu,d(X)︸ ︷︷ ︸
=Fv,d(X)

 =

t
(

Fv,d(X)

)
≥ t (Fv,k)− 1. But from t

(
Fu,d(X)

)
− 1 ≤ t (Fu,k), we obtain t (Fu,k) ≥ t

(
Fu,d(X)

)
−

1, so that t (Fu,k) + 1 ≥ t
(

Fu,d(X)

)
≥ t (Fv,k)− 1.

On the other hand, j (u) < j (u) + 1. Hence, (26) (applied to a = j (u) and b = j (u) + 1)
yields t

(
Fj−1(j(u)),k

)
< t

(
Fj−1(j(u)+1),k

)
. In other words, t (Fu,k) < t (Fw,k) (since j−1 (j (u)) =

u and j−1 (j (u) + 1) = w). Thus, t (Fu,k) ≤ t (Fw,k)− 1 (since t (Fu,k) and t (Fw,k) are integers).
Thus, t (Fu,k) + 1 ≤ t (Fw,k), so that t (Fw,k) ≥ t (Fu,k) + 1 ≥ t (Fv,k)− 1.

But we know that j (v) > j (u) + 1, so that j (u) + 1 < j (v). Hence, (26) (applied to
a = j (u)+ 1 and b = j (v)) yields t

(
Fj−1(j(u)+1),k

)
< t

(
Fj−1(j(v)),k

)
. In other words, t (Fw,k) <

t (Fv,k) (since j−1 (j (u) + 1) = w and j−1 (j (v)) = v). Thus, t (Fw,k) ≤ t (Fv,k) − 1 (since
t (Fw,k) and t (Fv,k) are integers). Combined with t (Fw,k) ≥ t (Fv,k)− 1, this yields t (Fw,k) =
t (Fv,k)− 1. That is, t (Fv,k) = t (Fw,k) + 1.

But (20) (applied to w instead of u) yields t (Fv,k) 6= t (Fw,k) + 1. This contradicts t (Fv,k) =
t (Fw,k) + 1. This contradiction shows that our assumption was wrong. Hence, (25) is proven.
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(since u 6= v (since u, v and w are pairwise distinct)), so that j (u) < j (v) (since
j (u) ≤ j (v)). Thus, j (u) ≤ j (v)− 1 (since j (u) and j (v) are integers). In other
words, j (u) + 1 ≤ j (v).

From (24), we obtain d (X) ∈ {0, 1, . . . , n− 1} ⊆ {0, 1, . . . , n}. Thus, there
exists exactly one point F on the path πuju such that d (F) = d (X) (according
to (8), applied to i = u and k = d (X)); this point is denoted by Fu,d(X). Thus,
Fu,d(X) is the unique point F on the path πuju such that d (F) = d (X). Since X
is a point F on the path πuju such that d (F) = d (X) (because X lies on the path
πuju and satisfies d (X) = d (X)), this yields that X is Fu,d(X). In other words,
X = Fu,d(X). The same reasoning (applied to v instead of u) yields X = Fv,d(X).
Thus, Fu,d(X) = X = Fv,d(X). Hence, (25) yields j (v) ≤ j (u) + 1. Combined with
j (u) + 1 ≤ j (v), this yields j (v) = j (u) + 1. The same argument (but applied to
w instead of v) shows that j (w) = j (u) + 1. Thus, j (v) = j (u) + 1 = j (w), so
that v = w (since the map j is injective). But the integers u, v and w are pairwise
distinct. Thus, v 6= w. This contradicts v = w. This contradiction proves that
our assumption was wrong. Hence, we have shown that no more than two of
the paths π1j1 , π2j2 , . . . , πNjN intersect at X. This completes the proof of Lemma
9.1 (a).

(b) We know from Lemma 9.1 (a) that exactly two of the paths π1j1 , π2j2 , . . . , πNjN
intersect at X. We now must show that these two paths must end at two points
of the form Qk and Qk+1 for some k ∈ {1, 2, . . . , N − 1}.

Let πuju and πvjv be these two paths, with u and v being distinct elements
of {1, 2, . . . , N}. Thus, the two paths πuju and πvjv intersect at X. In other
words, the two paths πuju and πvjv pass through X. We can assume WLOG that
j (u) ≤ j (v) (since otherwise, we can just permute u and v). Assume this. The
map j is a permutation, and thus injective. Hence, j (u) 6= j (v) (since u 6= v
(since u and v are distinct)). Now, we have j (v) = j (u) + 1. (This can be proven
in exactly the same manner as we proved it in the proof of Lemma 9.1 (a).) The
definition of j yields j (u) = ju and j (v) = jv. Thus, jv = j (v) = j (u)︸︷︷︸

=ju

+1 = ju+ 1.

But the path πuju ends at the point Qju (according to the definition of this path).
The path πvjv ends at the point Qjv (according to the definition of this path). In
other words, the path πvjv ends at the point Qju+1 (since jv = ju + 1). Hence, the
paths πuju and πvjv end at the points Qju and Qju+1. Hence, the paths πuju and
πvjv end at two points of the form Qk and Qk+1 for some k ∈ {1, 2, . . . , N − 1}
(namely, for k = ju).

Now, recall that exactly two of the paths π1j1 , π2j2 , . . . , πNjN intersect at X –
namely, the two paths πuju and πvjv . We have shown that these two paths πuju
and πvjv end at two points of the form Qk and Qk+1 for some k ∈ {1, 2, . . . , N − 1}.
In other words, Lemma 9.1 (b) is proven.

(c) Let (α, β) = X.
We know from Lemma 9.1 (a) that exactly two of the paths π1j1 , π2j2 , . . . , πNjN

intersect at X. Lemma 9.1 (b) furthermore shows that these two paths must end
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at two points of the form Qk and Qk+1 for some k ∈ {1, 2, . . . , N − 1}. Let πuju
and πvjv be these two paths, labelled in such a way that πuju ends at Qk whereas
πvjv ends at Qk+1 (where k is as in the previous sentence). Furthermore, consider
the k ∈ {1, 2, . . . , N − 1} for which this holds. From k ∈ {1, 2, . . . , N − 1}, we
obtain k ∈ {1, 2, . . . , N} and k + 1 ∈ {1, 2, . . . , N}.

The path πuju ends at the point Qju (according to the definition of this path).
In other words, (

the point at which the path πuju ends
)
= Qju .

On the other hand,(
the point at which the path πuju ends

)
= Qk

(since the path πuju ends at Qk). Comparing these two equalities, we obtain
Qju = Qk. From this, we obtain ju = k (since the points Q1, Q2, . . . , QN are
pairwise distinct). The definition of j yields j (u) = ju = k. Hence, u = j−1 (k).

Furthermore, the path πvjv ends at the point Qjv (according to the definition
of this path). In other words,(

the point at which the path πvjv ends
)
= Qjv .

On the other hand,(
the point at which the path πvjv ends

)
= Qk+1

(since the path πvjv ends at Qk+1). Comparing these two equalities, we obtain
Qjv = Qk+1. From this, we obtain jv = k + 1 (since the points Q1, Q2, . . . , QN
are pairwise distinct). The definition of j yields j (v) = jv = k + 1. Hence,
v = j−1 (k + 1).

Now, (24) yields d (X) ∈ {0, 1, . . . , n− 1}, whence d (X) + 1 ∈ {1, 2, . . . , n} ⊆
{0, 1, . . . , n}. Hence, (23) (applied to d (X) + 1 instead of k) shows that

t
(

Fj−1(1),d(X)+1

)
< t

(
Fj−1(2),d(X)+1

)
< · · · < t

(
Fj−1(N),d(X)+1

)
(since d (X) + 1 > d (X)). In other words,

t
(

Fj−1(r),d(X)+1

)
< t

(
Fj−1(r+1),d(X)+1

)
for each r ∈ {1, 2, . . . , N − 1}. Applying this to r = k, we obtain

t
(

Fj−1(k),d(X)+1

)
< t

(
Fj−1(k+1),d(X)+1

)
.

In view of u = j−1 (k) and v = j−1 (k + 1), we can rewrite this as

t
(

Fu,d(X)+1

)
< t

(
Fv,d(X)+1

)
. (27)
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On the other hand, we have X = Fu,d(X). (This can be shown in the same way
as we proved it during the proof of Lemma 9.1 (a).) Hence, Fu,d(X) = X = (α, β)
(since we have set (α, β) = X).

Recall that d (X) ∈ {0, 1, . . . , n− 1}. Hence, (16) (applied to u and d (X) in-
stead of i and k) yields that the pair

(
Fu,d(X), Fu,d(X)+1

)
is an arc of the directed

graph G. In other words, the pair
(
(α, β) , Fu,d(X)+1

)
is an arc of the directed

graph G (since Fu,d(X) = (α, β)). In other words, the directed graph G has an arc
from (α, β) to Fu,d(X)+1.

But the only arcs of G that start in (α, β) are ((α, β) , (α + 1, β)) and ((α, β) , (α, β + 1))
(by the definition of G). Hence, the only points Y such that the directed graph G
has an arc from (α, β) to Y are (α + 1, β) and (α, β + 1). Thus, the point Fu,d(X)+1
must be one of these two points (α + 1, β) and (α, β + 1) (since the directed
graph G has an arc from (α, β) to Fu,d(X)+1). In other words, we have either
Fu,d(X)+1 = (α + 1, β) or Fu,d(X)+1 = (α, β + 1).

Recall that the pair
(
(α, β) , Fu,d(X)+1

)
is an arc of the directed graph G. The

same argument (applied to v instead of u) shows that the pair
(
(α, β) , Fv,d(X)+1

)
is an arc of the directed graph G. Hence, (7) (applied to (α, β) and Fv,d(X)+1
instead of U and V) shows that

t ((α, β))− 1 ≤ t
(

Fv,d(X)+1

)
≤ t ((α, β)) + 1.

Hence, (27) becomes

t
(

Fu,d(X)+1

)
< t

(
Fv,d(X)+1

)
≤ t ((α, β))︸ ︷︷ ︸

=α−β
(by the definition of t((α,β)))

+1

= α− β + 1 = (α + 1)− β. (28)

However, if we had Fu,d(X)+1 = (α + 1, β), then we would have

t

Fu,d(X)+1︸ ︷︷ ︸
=(α+1,β)

 = t ((α + 1, β)) = (α + 1)− β

(by the definition of t ((α + 1, β))), which would contradict (28). Hence, we
cannot have Fu,d(X)+1 = (α + 1, β). Thus, we have Fu,d(X)+1 = (α, β + 1) (since
we have either Fu,d(X)+1 = (α + 1, β) or Fu,d(X)+1 = (α, β + 1)).

But (15) (applied to u and d (X) instead of i and k) shows that the pair(
Fu,d(X), Fu,d(X)+1

)
is an arc of the path πuju . In view of Fu,d(X) = (α, β) and

Fu,d(X)+1 = (α, β + 1), we can rewrite this as follows: The pair ((α, β) , (α, β + 1))
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is an arc of the path πuju . In other words, the path πuju contains the vertical
segment (α, β) 7→ (α, β + 1).

Now, let us recall that exactly two of the paths π1j1 , π2j2 , . . . , πNjN intersect at
X, and these two paths are πuju and πvjv . Among these two paths, the one that
ends in Qk is πuju (since we have labelled them by πuju and πvjv in such a way
that πuju ends at Qk whereas πvjv ends at Qk+1). In other words, the path (among
the two paths discussed in Lemma 9.1 (b)) that ends in Qk is πuju . As we have
just shown, this path πuju contains the vertical segment (α, β) 7→ (α, β + 1). In
other words, the path (among the two paths discussed in Lemma 9.1 (b)) that
ends in Qk contains the vertical segment (α, β) 7→ (α, β + 1) (because this path is
πuju). This proves Lemma 9.1 (c).

9.3. Proof of Lemma 3.3

As promised above, let me give a self-contained proof of Lemma 3.3. First, I will
rewrite this lemma in a more self-contained fashion:

Lemma 9.2. Let u1, u2, . . . , un be n elements of an associative algebra A which
satisfy the relations (1.2). In this lemma, “letters” will always mean elements
of {1, 2, . . . , n}, and “strings” will always mean finite words composed of these
letters. Let A = aα . . . a2a1 and B = bβ . . . b2b1 be two strings such that α ≥ β.
Let X = x1x2 . . . xϕ and Y = y1y2 · · · yψ be two further strings. Let p be a
letter. Assume that

aα > aα−1 > · · · > a1 > p > x1 > x2 > · · · > xϕ,
bβ > bβ−1 > · · · > b1 > p, and

(ai ≤ bi for every i ∈ {1, 2, . . . , β}) .

Let A = uaα · · · ua2ua1 , B = ubβ
· · · ub2ub1 , p = up, X = ux1ux2 · · · uxϕ and

Y = uy1uy2 · · · uyψ . Then, ApXBY = ApBXY in A.

Note that you denote the elements A, B, p, X and Y of A (defined in Lemma
9.2) by A, B, p, X and Y, but I want to avoid this abuse of notation. I have also
renamed your algebra A as A, since the letter A is used for one of the strings.
Thus, Lemma 9.2 yields the claim ApXBY = ApBXY of your Lemma 3.3.

It thus remains to prove Lemma 9.2. Before we do so, we shall show two
lemmas:

Lemma 9.3. Let u1, u2, . . . , un be n elements of an associative algebra A which
satisfy the relations

ujuiuk = ujukui for all i < j < k. (29)

In this lemma, “letters” will always mean elements of {1, 2, . . . , n}, and
“strings” will always mean finite words composed of these letters. Let a and
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b be two letters such that b > a. Let V = v1v2 . . . vγ be a string such that

a > v1 > v2 > · · · > vγ.

Let a = ua, b = ub and V = uv1uv2 · · · uvγ . Then, aVb = abV in A.

Proof of Lemma 9.3. If γ = 0, then

V = uv1uv2 · · · uvγ = uv1uv2 · · · uv0 (since γ = 0)

= (empty product) = 1.

Hence, if γ = 0, then aVb = abV is obviously true (because a V︸︷︷︸
=1

b = ab and

ab V︸︷︷︸
=1

= ab). Thus, for the rest of this proof, we can WLOG assume that γ 6= 0.

Assume this. Thus, γ ≥ 1 (since γ 6= 0 and γ ∈ N). Therefore, 1 ∈ {1, 2, . . . , γ}.
Hence, v1 is well-defined.

From a > v1 > v2 > · · · > vγ, we obtain a > v1 (since 1 ∈ {1, 2, . . . , γ}).
Hence, v1 < a < b (since b > a). Thus, (29) (applied to i = v1, j = a and k = b)
yields uauv1ub = uaubuv1 .

We shall prove that every ρ ∈ {1, 2, . . . , γ} satisfies

a
(

uv1uv2 · · · uvρ

)
b = ab

(
uv1uv2 · · · uvρ

)
. (30)

[Proof of (30): We will prove (30) by induction over ρ:
Induction base: Comparing

a︸︷︷︸
=ua

(uv1uv2 · · · uv1)︸ ︷︷ ︸
=uv1

b︸︷︷︸
=ub

= uauv1ub = uaubuv1

with
a︸︷︷︸

=ua

b︸︷︷︸
=ub

(uv1uv2 · · · uv1)︸ ︷︷ ︸
=uv1

= uaubuv1 ,

we obtain a (uv1uv2 · · · uv1) b = ab (uv1uv2 · · · uv1). In other words, (30) holds for
ρ = 1. This completes the induction base.

Induction step: Let r ∈ {1, 2, . . . , γ− 1}. Assume (as the induction hypothesis)
that (30) holds for ρ = r. We must prove that (30) holds for ρ = r + 1.

Recall that a > v1 > v2 > · · · > vγ. Hence, a > vh for every h ∈ {1, 2, . . . , γ}.
Applying this to h = r, we obtain a > vr. Hence, b > a > vr. On the other hand,
vr > vr+1 (since v1 > v2 > · · · > vγ), so that vr+1 < vr < b (since b > vr). Thus,
(29) (applied to i = vr+1, j = vr and k = b) yields uvr uvr+1ub = uvr ubuvr+1 .

Recall that we assumed that (30) holds for ρ = r. In other words, we have

a (uv1uv2 · · · uvr) b = ab (uv1uv2 · · · uvr) . (31)
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Now, comparing

a
(
uv1uv2 · · · uvr+1

)︸ ︷︷ ︸
=(uv1 uv2 ···uvr−1)uvr uvr+1

b︸︷︷︸
=ub

= a
(
uv1uv2 · · · uvr−1

)
uvr uvr+1ub︸ ︷︷ ︸
=uvr ubuvr+1

= a
(
uv1uv2 · · · uvr−1

)
uvr︸ ︷︷ ︸

=uv1 uv2 ···uvr

ub︸︷︷︸
=b

(since b=ub)

uvr+1

= a (uv1uv2 · · · uvr) b︸ ︷︷ ︸
=ab(uv1 uv2 ···uvr)

(by (31))

uvr+1

= ab (uv1uv2 · · · uvr) uvr+1︸ ︷︷ ︸
=uv1 uv2 ···uvr+1

= ab
(
uv1uv2 · · · uvr+1

)
.

In other words, (30) holds for ρ = r+ 1. This completes the induction step. Thus,
(30) is proved by induction.]

We have γ ∈ {1, 2, . . . , γ} (since γ ≥ 1). Hence, (30) (applied to ρ = γ) yields

a
(
uv1uv2 · · · uvγ

)
b = ab

(
uv1uv2 · · · uvγ

)
.

In view of V = uv1uv2 · · · uvγ , this rewrites as aVb = abV. This proves Lemma
9.3.

Our second lemma is a stronger version of Lemma 9.2:

Lemma 9.4. Let u1, u2, . . . , un be n elements of an associative algebra A which
satisfy the relations (29). In this lemma, “letters” will always mean elements of
{1, 2, . . . , n}, and “strings” will always mean finite words composed of these
letters. Let A = aα . . . a2a1 and B = bβ . . . b2b1 be two strings such that α ≥
β− 1. Let X = x1x2 . . . xϕ be a further string. Let p be a letter. Assume that

aα > aα−1 > · · · > a1 > p > x1 > x2 > · · · > xϕ,
bβ > bβ−1 > · · · > b1 > p, and

(ai ≤ bi for every i ∈ {1, 2, . . . , β− 1}) .

Let A = uaα · · · ua2ua1 , B = ubβ
· · · ub2ub1 , p = up, and X = ux1ux2 · · · uxϕ .

Then, ApXB = ApBX in A.

Proof of Lemma 9.4. Let us extend the α-tuple (aα, aα−1, . . . , a1) to an (α + 1)-tuple
(aα, aα−1, . . . , a1, a0) by setting a0 = p. Thus, a0, a1, . . . , aα are well-defined letters.
In other words, aj is a well-defined letter for each j ∈ {0, 1, . . . , α}.

But recall that we have the chain of inequalities

aα > aα−1 > · · · > a1 > p > x1 > x2 > · · · > xϕ.
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In view of a0 = p, this rewrites as

aα > aα−1 > · · · > a1 > a0 > x1 > x2 > · · · > xϕ. (32)

Also, p = up = ua0 (since p = a0).
From α ≥ β− 1, we obtain β− 1 ≤ α, thus {0, 1, . . . , β− 1} ⊆ {0, 1, . . . , α}.
We have

A︸︷︷︸
=uaα ···ua2 ua1

p︸︷︷︸
=ua0

= (uaα · · · ua2ua1) ua0 = uaα · · · ua1ua0

=
(

uaα · · · uaβ+1uaβ

) (
uaβ−1uaβ−2 · · · ua0

)
(33)

(since α ≥ β− 1).
If i ∈ {0, 1, . . . , β}, then the numbers i− 1, i− 2, . . . , 0 are elements of {0, 1, . . . , β− 1}

and thus are elements of {0, 1, . . . , α} (since {0, 1, . . . , β− 1} ⊆ {0, 1, . . . , α}).
Hence, if i ∈ {0, 1, . . . , β}, then ai−1, ai−2, . . . , a0 are well-defined letters (since aj
is a well-defined letter for each j ∈ {0, 1, . . . , α}). Thus, for each i ∈ {0, 1, . . . , β},
we can define an element Ai of A by

Ai = uai−1uai−2 · · · ua0 .

Consider this Ai.
The definition of Aβ yields Aβ = uaβ−1uaβ−2 · · · ua0 . Hence,(

uaα · · · uaβ+1uaβ

)
Aβ︸︷︷︸

=uaβ−1 uaβ−2 ···ua0

=
(

uaα · · · uaβ+1uaβ

) (
uaβ−1uaβ−2 · · · ua0

)
= Ap (by (33)) . (34)

For each i ∈ {0, 1, . . . , β}, we set

Bi = ubi ubi−1
· · · ub1 .

Thus,
B0 = ub0ub0−1 · · · ub1 = (empty product) = 1

and
Bβ = ubβ

ubβ−1
· · · ub1 = ubβ

· · · ub2ub1 = B

(since B = ubβ
· · · ub2ub1).

We now claim that
AiXBi = AiBiX (35)

for each i ∈ {0, 1, . . . , β}.
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[Proof of (35): We shall prove (35) by induction on i:
Induction base: Comparing A0X B0︸︷︷︸

=1

= A0X with A0 B0︸︷︷︸
=1

X = A0X, we obtain

A0XB0 = A0B0X. In other words, (35) holds for i = 0. This completes the
induction base.

Induction step: Let s ∈ {0, 1, . . . , β− 1}. Assume (as the induction hypothesis)
that (35) holds for i = s. We must prove that (35) holds for i = s + 1.

We have assumed that (35) holds for i = s. In other words, we have

AsXBs = AsBsX. (36)

It is easy to see that as < bs+1
21. Thus, bs+1 > as. Also, s ∈ {0, 1, . . . , β− 1}

shows that s ≤ β− 1 ≤ α.
The definition of As yields As = uas−1uas−2 · · · ua0 . The definition of As+1 yields

As+1 = ua(s+1)−1ua(s+1)−2 · · · ua0 = uas uas−1 · · · ua0 (since (s + 1)− 1 = s)

= uas

(
uas−1uas−2 · · · ua0

)︸ ︷︷ ︸
=As

(since As=uas−1 uas−2 ···ua0 )

= uas As. (37)

The definition of Bs yields Bs = ubs ubs−1 · · · ub1 . The definition of Bs+1 yields

Bs+1 = ubs+1ub(s+1)−1
· · · ub1 = ubs+1ubs · · · ub1 = ubs+1

(
ubs ubs−1 · · · ub1

)︸ ︷︷ ︸
=Bs

(since Bs=ubs ubs−1
···ub1

)

= ubs+1Bs. (38)

From (32), we obtain aα > aα−1 > · · · > a1 > a0. Since s ≤ α, this yields
as > as−1 > as−2 > · · · > a0.

21Proof. We are in one of the following two cases:
Case 1: We have s = 0.
Case 2: We have s 6= 0.
Let us first consider Case 1. In this case, we have s = 0. Hence, as = a0 = p. Also, s = 0,

so that 0 = s ∈ {0, 1, . . . , β− 1}, so that 0 ≤ β− 1 and thus β ≥ 1. Hence, 1 ∈ {1, 2, . . . , β},
so that b1 is well-defined. From bβ > bβ−1 > · · · > b1 > p, we thus obtain b1 > p. But s = 0,
so that s + 1 = 1 and therefore bs+1 = b1 > p = as (since as = p). Thus, as < bs+1. Hence,
as < bs+1 is proved in Case 1.

Let us now consider Case 2. In this case, we have s 6= 0. Combining this with s ∈
{0, 1, . . . , β− 1}, we obtain s ∈ {0, 1, . . . , β− 1} \ {0} = {1, 2, . . . , β− 1}.

We assumed that (ai ≤ bi for every i ∈ {1, 2, . . . , β− 1}). Applying this to i = s, we obtain
as ≤ bs (since s ∈ {1, 2, . . . , β− 1}). But from bβ > bβ−1 > · · · > b1 > p, we obtain
bβ > bβ−1 > · · · > b1. In other words, bi+1 > bi for each i ∈ {1, 2, . . . , β− 1}. Applying
this to i = s, we obtain bs+1 > bs (since s ∈ {1, 2, . . . , β− 1}). Hence, bs < bs+1, so that
as ≤ bs < bs+1. Thus, as < bs+1 is proved in Case 2.

We have now proved as < bs+1 in both Cases 1 and 2. Since these two Cases cover all
possibilities, we thus conclude that as < bs+1 always holds.
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Now, let V1 be the string defined by V1 = as−1as−2 · · · a0. This string satisfies
as > as−1 > as−2 > · · · > a0 and As = uas−1uas−2 · · · ua0 . Hence, Lemma 9.3
(applied to γ = s and V = V1 and (v1, v2, . . . , vγ) = (as−1, as−2, . . . , a0) and
a = as and b = bs+1 and V = As and a = uas and b = ubs+1) yields

uas Asubs+1 = uas ubs+1As (39)

(since uas = uas and ubs+1 = ubs+1).
Furthermore, let us define a (s + ϕ)-tuple

(
v1, v2, . . . , vs+ϕ

)
of letters by(

v1, v2, . . . , vs+ϕ

)
=
(
as−1, as−2, . . . , a0, x1, x2, . . . , xϕ

)
.

Let V be the string defined by V = v1v2 · · · vs+ϕ. Combining as > as−1 > as−2 >
· · · > a0 with a0 > x1 > x2 > · · · > xϕ (which follows from (32)), we see that

as > as−1 > as−2 > · · · > a0 > x1 > x2 > · · · > xϕ.

In view of
(
v1, v2, . . . , vs+ϕ

)
=
(
as−1, as−2, . . . , a0, x1, x2, . . . , xϕ

)
, we can rewrite

this as
as > v1 > v2 > · · · > vs > vs+1 > vs+2 > · · · > vs+ϕ.

In other words,
as > v1 > v2 > · · · > vs+ϕ.

Moreover, from
(
v1, v2, . . . , vs+ϕ

)
=
(
as−1, as−2, . . . , a0, x1, x2, . . . , xϕ

)
, we obtain

uv1uv2 · · · uvs+ϕ = uas−1uas−2 · · · ua0ux1ux2 · · · uxϕ .

Comparing this with

As︸︷︷︸
=uas−1 uas−2 ···ua0

X︸︷︷︸
=ux1 ux2 ···uxϕ

= uas−1uas−2 · · · ua0ux1ux2 · · · uxϕ ,

we obtain
AsX = uv1uv2 · · · uvs+ϕ .

Hence, Lemma 9.3 (applied to γ = s + ϕ and a = as and b = bs+1 and V = AsX
and a = uas and b = ubs+1) yields

uas AsXubs+1 = uas ubs+1AsX (40)

(since uas = uas and ubs+1 = ubs+1). Now,

As+1︸ ︷︷ ︸
=uas As
(by (37))

X Bs+1︸︷︷︸
=ubs+1

Bs

(by (38))

= uas AsXubs+1︸ ︷︷ ︸
=uas ubs+1

AsX
(by (40))

Bs = uas ubs+1 AsXBs︸ ︷︷ ︸
=AsBsX
(by (36))

= uas ubs+1AsBsX.
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Comparing this with

As+1︸ ︷︷ ︸
=uas As
(by (37))

Bs+1︸︷︷︸
=ubs+1

Bs

(by (38))

X = uas Asubs+1︸ ︷︷ ︸
=uas ubs+1

As

(by (39))

BsX = uas ubs+1AsBsX,

we obtain As+1XBs+1 = As+1Bs+1X. In other words, (35) holds for i = s+ 1. This
completes the induction step. Hence, the induction proof of (35) is complete.]

Now, (35) (applied to i = β) yields

AβXBβ = AβBβX.

Hence, (
uaα · · · uaβ+1uaβ

)
AβXBβ︸ ︷︷ ︸
=AβBβX

=
(

uaα · · · uaβ+1uaβ

)
Aβ︸ ︷︷ ︸

=Ap
(by (34))

Bβ︸︷︷︸
=B

X = ApBX.

Therefore,
ApBX =

(
uaα · · · uaβ+1uaβ

)
Aβ︸ ︷︷ ︸

=Ap
(by (34))

X Bβ︸︷︷︸
=B

= ApXB.

This proves Lemma 9.4.

Proof of Lemma 9.2. We assumed that u1, u2, . . . , un satisfy the relations (1.2). Thus,
in particular, the second equality of (1.2) is satisfied. In other words, we have

ujuiuk = ujukui for all i < j ≤ k satisfying |i− k| ≥ 2.

Hence, in particular, we have

ujuiuk = ujukui for all i < j < k

(because every three letters i, j, k satisfying i < j < k satisfy |i− k| ≥ 2 22). In
other words, u1, u2, . . . , un satisfy the relations (29). From α ≥ β, we obtain α ≥
β ≥ β− 1. Furthermore, we have assumed that (ai ≤ bi for every i ∈ {1, 2, . . . , β});
thus, (ai ≤ bi for every i ∈ {1, 2, . . . , β− 1}). Hence, Lemma 9.4 yields ApXB =
ApBX in A. Hence, ApXB︸ ︷︷ ︸

=ApBX

Y = ApBXY. This proves Lemma 9.2.

22Proof. Let i, j, k be three letters satisfying i < j < k. We must prove that |i− k| ≥ 2.
We have i < j and thus i ≤ j − 1 (since i and j are integers). We have j < k and thus

j ≤ k − 1 (since j and k are integers). Now, i ≤ j︸︷︷︸
≤k−1

−1 ≤ (k− 1) − 1 = k − 2, so that

i− k ≤ −2 < 0 and therefore |i− k| = − (i− k)︸ ︷︷ ︸
≤−2

≥ − (−2) = 2. Qed.
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9.4. Proof of (j1, j2, . . . , jN) = (1, 2, . . . , N)

The notations introduced during the proof of Lemma 3.2 shall be used through-
out Subsection 9.4. We want to show the following lemma:

Lemma 9.5. Let
(
π1j1 , π2j2 , . . . , πNjN

)
be a non-intersecting family of lattice

paths, where each πiji is a path from Pi to Qj. Then, (j1, j2, . . . , jN) =
(1, 2, . . . , N).

This lemma is used to link the left hand side of (3.3) with the terms on the
right hand side of (3.3) that survive the cancellation.

Lemma 9.5 is a particular case of Proposition 2 in math.stackexchange ques-
tion #2870640 ( https://math.stackexchange.com/questions/2870640 ), but let
us give a self-contained proof here.

Proof of Lemma 9.5. We shall use the notations introduced in Subsection 9.2. (In
particular, we will use the points Fi,k defined in Subsection 9.2.)

The following arguments mirror some of the arguments made at the beginning
of the proof of Lemma 9.1 (but we are having it somewhat easier now, since the
family

(
π1j1 , π2j2 , . . . , πNjN

)
is non-intersecting).

If k ∈ {0, 1, . . . , n}, then any two distinct elements u and v of {1, 2, . . . , N}
satisfy

t (Fu,k) 6= t (Fv,k) . (41)
23 Moreover, if k ∈ {0, 1, . . . , n} and if u and v are two elements of {1, 2, . . . , N},
then

t (Fv,k) 6= t (Fu,k) + 1. (42)
24

23Proof of (41): Let k ∈ {0, 1, . . . , n}. Let u and v be two distinct elements of {1, 2, . . . , N}. We
need to prove (41).

Assume the contrary. Thus, (41) does not hold. In other words, t (Fu,k) = t (Fv,k). But
d (Fu,k) = k (by (11), applied to i = u) and d (Fv,k) = k (by (11), applied to i = v). Hence,

d (Fu,k) = k = d (Fv,k). Altogether,

d (Fu,k)︸ ︷︷ ︸
=d(Fv,k)

, t (Fu,k)︸ ︷︷ ︸
=t(Fv,k)

 = (d (Fv,k) , t (Fv,k)). Thus, (2) (ap-

plied to T1 = Fu,k and T2 = Fv,k) yields Fu,k = Fv,k.
But Fu,k is the unique point F on the path πuju such that d (F) = k (according to the defini-

tion of Fu,k). Hence, Fu,k is a point F on the path πuju such that d (F) = k. In particular, Fu,k
is a point on the path πuju . Similarly, Fv,k is a point on the path πvjv . In other words, Fu,k is a
point on the path πvjv (since Fu,k = Fv,k). The point Fu,k thus lies on both paths πuju and πvjv .
Hence, Fu,k is a point in which (at least) two of the paths π1j1 , π2j2 , . . . , πNjN intersect (namely,
the paths πuju and πvjv ). Thus, (at least) two of the paths π1j1 , π2j2 , . . . , πNjN intersect. But no
two of the paths π1j1 , π2j2 , . . . , πNjN intersect (since the family

(
π1j1 , π2j2 , . . . , πNjN

)
is non-

intersecting). The previous two sentences contradict each other. This contradiction proves
that our assumption was wrong. Thus, (41) is proven.

24Proof of (42): This statement is precisely (20), and can be proved in the exact same way as (20)
was proved.
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But recall that (j1, j2, . . . , jN) is a permutation of {1, 2, . . . , N}. Denote this
permutation by j. Thus,

j (i) = ji for every i ∈ {1, 2, . . . , N} . (43)

Now, for every j ∈ {1, 2, . . . , N − 1}, we have

t
(

Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
for every k ∈ {0, 1, . . . , n} . (44)

25 Consequently, if k ∈ {0, 1, . . . , n}, then

t
(

Fj−1(1),k

)
< t

(
Fj−1(2),k

)
< · · · < t

(
Fj−1(N),k

)
. (45)

25Proof of (44): Let j ∈ {1, 2, . . . , N − 1}. Set u = j−1 (j) and v = j−1 (j + 1). We need to prove
(44).

Let us (for the sake of contradiction) assume the contrary. Thus, not every k ∈ {0, 1, . . . , n}
satisfies t

(
Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
. In other words, not every k ∈ {0, 1, . . . , n} satisfies

t (Fu,k) ≤ t (Fv,k) (because u = j−1 (j) and v = j−1 (j + 1)). In other words, there exists
a k ∈ {0, 1, . . . , n} such that t (Fu,k) > t (Fv,k). Let ` be the highest such k. Thus, ` is a
k ∈ {0, 1, . . . , n} such that t (Fu,k) > t (Fv,k). Hence, ` belongs to {0, 1, . . . , n} and satisfies
t (Fu,`) > t (Fv,`). We have t (Fu,`) ≥ t (Fv,`) + 1 (since t (Fu,`) and t (Fv,`) are integers and
satisfy t (Fu,`) > t (Fv,`)). In other words, t (Fv,`) + 1 ≤ t (Fu,`).

Let us first assume (for the sake of contradiction) that ` = n. Then, Fu,` = Fu,n = Qju (by
(14), applied to i = u). But the definition of j (u) yields j (u) = ju, so that ju = j (u) = j
(since u = j−1 (j)) and thus Qju = Qj. Also, from ` = n, we obtain Fv,` = Fv,n = Qjv (by (14),
applied to i = v). But the definition of j (v) yields j (v) = jv, so that jv = j (v) = j + 1 (since

v = j−1 (j + 1)) and thus Qjv = Qj+1. But t
(
Qj
)
< t

(
Qj+1

)
(by (17)). Now, t

 Fu,`︸︷︷︸
=Qju=Qj

 =

t
(
Qj
)
< t

(
Qj+1

)
contradicts t (Fu,`) > t

 Fv,`︸︷︷︸
=Qjv=Qj+1

 = t
(
Qj+1

)
. This contradiction proves

that our assumption (that ` = n) was wrong. Hence, we cannot have ` = n.
Thus, ` < n (since ` ≤ n but not ` = n) and 0 ≤ ` (since ` ∈ {0, 1, . . . , n}). Hence, 0 ≤ ` < n,

so that ` ∈ {0, 1, . . . , n− 1} and thus ` + 1 ∈ {1, 2, . . . , n} ⊆ {0, 1, . . . , n}. Therefore, (41)
(applied to k = `+ 1) yields t (Fu,`+1) 6= t (Fv,`+1). In other words, t (Fv,`+1) 6= t (Fu,`+1).

But ` ∈ {0, 1, . . . , n− 1}. Thus, (16) (applied to k = u and i = `) shows that the
pair (Fu,`, Fu,`+1) is an arc of the directed graph G. Therefore, (7) (applied to U = Fu,`
and V = Fu,`+1) shows that t (Fu,`) − 1 ≤ t (Fu,`+1) ≤ t (Fu,`) + 1. The same argument
(but with every u replaced by v) yields t (Fv,`) − 1 ≤ t (Fv,`+1) ≤ t (Fv,`) + 1. Thus,
t (Fv,`+1) ≤ t (Fv,`) + 1 ≤ t (Fu,`) ≤ t (Fu,`+1) + 1 (since t (Fu,`) − 1 ≤ t (Fu,`+1)). Com-
bined with t (Fv,`+1) 6= t (Fu,`+1) + 1 (which is a consequence of (42), applied to `+ 1 instead
of k), this yields t (Fv,`+1) < t (Fu,`+1) + 1. Since t (Fv,`+1) and t (Fu,`+1) + 1 are integers, this
yields t (Fv,`+1) ≤ (t (Fu,`+1) + 1)− 1 = t (Fu,`+1).

Combined with t (Fv,`+1) 6= t (Fu,`+1), this yields t (Fv,`+1) < t (Fu,`+1). In other words,
t (Fu,`+1) > t (Fv,`+1). Hence, `+ 1 is a k ∈ {0, 1, . . . , n} such that t (Fu,k) > t (Fv,k). Since
the highest such k is ` (by the definition of `), this yields that `+ 1 ≤ `. But this contradicts
`+ 1 > `. This contradiction shows that our assumption was wrong. Hence, (44) is proven.
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26

Now, let us show a chain of inequalities analogous to (17). Namely, we have

t (P1) < t (P2) < · · · < t (PN) . (46)

27

On the other hand, we have

Fi,0 = Pi for every i ∈ {1, 2, . . . , N} . (47)

28 Hence, using (45), we can easily see that

t
(

Pj−1(1)

)
< t

(
Pj−1(2)

)
< · · · < t

(
Pj−1(N)

)
. (48)

29

26Proof of (45): Let k ∈ {0, 1, . . . , n}. Let j ∈ {1, 2, . . . , N − 1}. Now, (44) yields t
(

Fj−1(j),k

)
≤

t
(

Fj−1(j+1),k

)
. But j

(
j−1 (j)

)
= j 6= j + 1 = j

(
j−1 (j + 1)

)
, so that j−1 (j) 6= j−1 (j + 1). In

other words, the positive integers j−1 (j) and j−1 (j + 1) are distinct. Thus, (41) (applied
to u = j−1 (j) and v = j−1 (j + 1)) yields t

(
Fj−1(j),k

)
6= t

(
Fj−1(j+1),k

)
. Combined with

t
(

Fj−1(j),k

)
≤ t

(
Fj−1(j+1),k

)
, this yields t

(
Fj−1(j),k

)
< t

(
Fj−1(j+1),k

)
.

Now, let us forget that we fixed j ∈ {1, 2, . . . , N − 1}. Thus, we have shown that
t
(

Fj−1(j),k

)
< t

(
Fj−1(j+1),k

)
for every j ∈ {1, 2, . . . , N − 1}. In other words, t

(
Fj−1(1),k

)
<

t
(

Fj−1(2),k

)
< · · · < t

(
Fj−1(N),k

)
. This proves (45).

27Proof of (46): Let i ∈ {1, 2, . . . , N − 1}. We will now show that t (Pi) < t (Pi+1).
The definition of Pi yields Pi =

(
(i− 1)− µ′i,− (i− 1) + µ′i

)
, so that t (Pi) =

t
((
(i− 1)− µ′i,− (i− 1) + µ′i

))
=
(
(i− 1)− µ′i

)
−
(
− (i− 1) + µ′i

)
= 2 (i− 1) − 2µ′i. The

same argument (applied to i + 1 instead of i) yields t (Pi+1) = 2 ((i + 1)− 1)− 2µ′i+1. But µ′

is a partition, and thus we have µ′1 ≥ µ′2 ≥ µ′3 ≥ · · · . Hence, µ′i ≥ µ′i+1. Now,

t (Pi) = 2

 i︸︷︷︸
<i+1

−1

− 2 µ′i︸︷︷︸
≥µ′i+1

< 2 ((i + 1)− 1)− 2µ′i+1 = t (Pi+1) .

Let us now forget that we fixed i. We thus have proven that t (Pi) < t (Pi+1) for every
i ∈ {1, 2, . . . , N − 1}. In other words, t (P1) < t (P2) < · · · < t (PN). This proves (46).

28Proof of (47): Let i ∈ {1, 2, . . . , N}. Then, Pi is a point on the path πiji (since πiji is a path from
Pi to Qji ) and satisfies d (Pi) = 0 (by (4)). Hence, Pi is a point F on the path πiji such that
d (F) = 0. But we know (from (8), applied to k = 0) that there exists exactly one such point;
and we have denoted this point by Fi,0. Therefore, Pi = Fi,0. This proves (47).

29Proof of (48): Applying (45) to k = 0, we obtain

t
(

Fj−1(1),0

)
< t

(
Fj−1(2),0

)
< · · · < t

(
Fj−1(N),0

)
(49)

(since 0 ∈ {0, 1, . . . , n}).
Now, fix ` ∈ {1, 2, . . . , N − 1}. Then, t

(
Fj−1(`),0

)
< t

(
Fj−1(`+1),0

)
(because of (49)). But

` ∈ {1, 2, . . . , N − 1} ⊆ {1, 2, . . . , N}, so that j−1 (`) ∈ {1, 2, . . . , N}; hence, (47) (applied to
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Now, let us fix some k ∈ {1, 2, . . . , N − 1}. We shall show that j (k) ≤ j (k + 1).
Indeed, assume the contrary. Thus, j (k) > j (k + 1). Set u = j (k) and v =

j (k + 1). Thus, u = j (k) > j (k + 1) = v (since v = j (k + 1)), so that v < u.
Furthermore, j−1 (v) = k + 1 (since v = j (k + 1)) and j−1 (u) = k (since u =
j (k)).

But (48) yields t
(

Pj−1(p)

)
< t

(
Pj−1(q)

)
whenever p and q are two elements

of {1, 2, . . . , N} satisfying p < q. Applying this to p = v and q = u, we obtain
t
(

Pj−1(v)

)
< t

(
Pj−1(u)

)
(since v < u). This rewrites as t (Pk+1) < t (Pk) (since

j−1 (v) = k + 1 and j−1 (u) = k).
But (46) yields t (Pk) < t (Pk+1). This contradicts t (Pk+1) < t (Pk). This contra-

diction shows that our assumption was false. Hence, j (k) ≤ j (k + 1) is proven.
Now, forget that we fixed k. We thus have shown that j (k) ≤ j (k + 1) for each

k ∈ {1, 2, . . . , N − 1}. In other words, j (1) ≤ j (2) ≤ · · · ≤ j (N).
But it is well-known (and easy to see) that the only permutation σ of {1, 2, . . . , N}

that satisfies σ (1) ≤ σ (2) ≤ · · · ≤ σ (N) is the identity permutation id. In other
words, if σ is a permutation of {1, 2, . . . , N} that satisfies σ (1) ≤ σ (2) ≤ · · · ≤
σ (N), then σ = id. Applying this to σ = j, we obtain j = id (since j is a per-
mutation of {1, 2, . . . , N} that satisfies j (1) ≤ j (2) ≤ · · · ≤ j (N)). Hence, each
i ∈ {1, 2, . . . , N} satisfies

j︸︷︷︸
=id

(i) = id (i) = i

and therefore i = j (i) = ji (by the definition of j). In other words, (1, 2, . . . , N) =
(j1, j2, . . . , jN). This proves Lemma 9.5.

i = j−1 (`)) yields Fj−1(`),0 = Pj−1(`). Also, from ` ∈ {1, 2, . . . , N − 1}, we obtain ` + 1 ∈
{1, 2, . . . , N}, so that j−1 (`+ 1) ∈ {1, 2, . . . , N}; hence, (47) (applied to i = j−1 (`+ 1)) yields
Fj−1(`+1),0 = Pj−1(`+1).

Now, recall that t
(

Fj−1(`),0

)
< t

(
Fj−1(`+1),0

)
. This rewrites as t

(
Pj−1(`)

)
< t

(
Pj−1(`+1)

)
(since Fj−1(`),0 = Pj−1(`) and Fj−1(`+1),0 = Pj−1(`+1)).

Forget that we fixed `. We thus have proved that t
(

Pj−1(`)

)
< t

(
Pj−1(`+1)

)
for each

` ∈ {1, 2, . . . , N − 1}. In other words,

t
(

Pj−1(1)

)
< t

(
Pj−1(2)

)
< · · · < t

(
Pj−1(N)

)
.

This proves (48).
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