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Schur functions: Theme and variations
I. G. Macdonald
Publ. L.R.M.A. Strasbourg, 1992, 498/5-27,
Actes 28° Séminaire Lotharingien, p. 5-39.
Errata and addenda by Darij Grinberg

I will refer to the results appearing in the paper “Schur functions: Theme
and variations” by the numbers under which they appear in this paper. Page
numbering goes from 5 to 39.

I have read pages ... of the paper so far.

The list below contains both actual corrections and what I believe to be clari-
tications and pertinent comments. I have not tried to separate the former from
the latter, as I suspect that the precise boundary is in the eyes of the beholder.

B. Errata and addenda

I shall use the following notations:

e If p and g are two integers such that p < g+ 1, then [p, g] shall denote the
set of all integers m such that p < m < g. We call this set an integer interval.
It has size g — p+ 1 (so it is empty if p = g+ 1).

e For a given r € IN, we shall denote the integer interval [1,7] = {1,2,...,r}
by [r].

« If A= (a),c, jeT
finite or infinite), and if P = {p; < p2 < --- < pa} is a finite subset of S,
and if Q = {1 < g2 < --- < g} is a finite subsets of T, then sub A shall

is an arbitrary matrix (where the sets S and T may be

denote the submatrix (ﬂpi of A. For instance, if A = (a; )

1) ielw), jelp) i,jefd]
is a 4 X 4-matrix, then sub{2’4} A= P22 424 )
{23} as2 as4

Now, the actual corrections:

1. page 15, line 2: “for each &« = («ay,...,a4,) € IN"” should be “for each
= (ag,...,0n) € IN".

2. page 15, after (6.3): For a detailed proof of the fact that the quotient
sy (x| a) = Apys (x| a) /As (x| a)

is a symmetric polynomial in xy, . . ., x,, with coefficients in R, see [Grinbel8,
Corollary 9.14]. (Apply this corollary to X; = x; and P; (T) = (T | a)/\j-‘rn—].)



https://www.mat.univie.ac.at/~slc/opapers/s28macdonald.html
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3. page 16, proof of (6.6): This argument only shows thatE (x | a) -H (x | a) =
Iz (where Iz is the identity matrix with rows and columns indexed by all
integers). In order to prove that the two matrices E (x | a) and E (x | a) are
inverse to each other (i.e., in order to prove (6.6)), it must also be shown
that H(x | a)-E (x| a) = Iz.

Fortunately, there is a simple shortcut for this: Let UTz be the set of all up-
per unitriangular matrices with rows and columns indexed by all integers
(and with entries in a given base ring, which in our case is the polyno-
mial ring over Z in the variables x; for i € [n] and a; for j € Z). This set
UTz is closed under matrix multiplication, thus is a monoid. Moreover,
each matrix A € UTz can be written as I + M for some strictly upper-
triangular matrix M, and thus has an inverse A~! = (I + M)fl, which can
be computed by the formula (I +M) ™' =1 - M+ M2 - M3 + M*+ ..
(this infinite sum makes sense, since the nonzero entries of each power
M start no earlier than i steps above the main diagona. This inverse
Al =T1—-M+ M?— M?>+ M* £ .- again belongs to UTz. Hence, each
element of the monoid UTz has an inverse. Thus, UTz is a group with
respect to matrix multiplication. Since both matrices E (x | a) and H (x | a)

belong to this group UTz, we can thus conclude E (x | a) = H(x | a)~!
fromE (x| a) -H(x|a) = Iz.

4. page 17, proof of (6.7): It is worth saying that all the matrices that appear
in the proof of the first of the formulas (6.7) are understood to be n x n-
matrices.

5. page 17, proof of (6.7): Let me give a proof of the second of the formu-
las (6.7) along with the more general formula (6.9). We will need some
notations and some lemmas.

Let UTz be the set of all upper unitriangular matrices with rows and
columns indexed by all integers (and with entries in a given commuta-
tive ring). For any m € IN, we let UT,;, be the set of all upper unitriangular
m X m-matrices (again, with entries in our given commutative ring). Both
of these sets UTz and UT,, are groups (under matrix multiplication). The
following fact is easy:

Lemma B.1. Let T = [p,q] be an integer interval of size m =
g —p+1(sothat g = p +m — 1). Then, the map

UTyz — UT,,
A — subl A (1)

IThat is: For any u,v € Z and any i € N, the (u,v)-th entry of M is 0 whenever v — u < i, and
therefore the (u,v)-th entry of the infinite sum [ — M + M? — M3 + M* £ - - - is only affected
by the first v — u + 1 addends of this sum.
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is a group morphism.

Proof of Lemma It is easy to see that this map is well-defined (i.e., that
sub%A € UT,, for each A € UTz). (Indeed, more generally, any princi-
pal submatrix of an upper unitriangular matrix is again upper unitriangu-
lar.) It is clear that sub’ (Iz) = I,. It remains to show that sub’ (AB) =
subr A - subt B for all A, B € UTg.

So let A,B € UTz be arbitrary. Write these matrices A and B as A =
<aifi)i,jez and B = (biff)i,jeZ' Since T = [p,q] = [p,p+ m — 1] (because
q = p +m — 1), we thus have

T T
subTA = (ap+i71/p+j71)i,j€[m] and subTB = (bp+i*1/p+]'*1)i,je[m]
and therefore
T T
subr A - suby B = (ap—l—i—l,p—i-j—l)i/je[m] ' (bp—i-i—l,p—kj—l)i/]-e[m}
m
= Z Apti-1,p+k—10prk—1,p+j-1 (2)
k=1 ije[m]
(by the definition of matrix multiplication).
The matrix A is upper-triangular (since A € UTz), so we have
ajr =0 for all i > k. 3)
Likewise,
by =0 for all k > j. 4)
Thus, we can easily see thatif i,j € T, then
ajxbr;j =0 for all integers k ¢ T. (5)

(Proof: Let k be an integer such that k ¢ T. Thus, k ¢ T = [p,q|. Hence,
either k < p or k > g. In the former case, we have k < p < i (since
i € T = [p,q]) and therefore i > k, so that a;; = 0 (by (3)), whence
ii'/k/bk'j = 0. In the latter case, we have k > g > j (since j € T = [p,q]

=0
entails j < ¢q) and therefore by ; = 0 (by (4)), whence 4; bk,]- = 0. Hence,
~—

=0
we have proved a; by ; = 0 in both cases. Thus, (5) is proved.)
Hence, for any i,j € T, the (i, j)-th entry of the matrix AB is

Y. a; kb, (by the definition of AB)
keZ
since (5) shows that
_ Z by any addend 4; xby ; equals O unless k € T,
PkTk ] and thus we can restrict the sum to

keT
only range over the k € T
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Therefore, from T = [p, q|, we obtain

T
keT ijem]
However, each i,j € [m] satisfy
m
Y Apyictpik-1Dpik—1ptj-1
k=1
p+m—1
= Y. Apti-1kbkprj-1
k=p
——"
=L

keT
(since T=[p,p+m—1])

(here, we have substituted k for p + k — 1 in the sum)

= Z ap—|—i—1,kbk,p—|—j—1-
keT

Thus, the right hand sides of the equalities and @ are equal. Hence,

their left hand sides are also equal. In other words, subl (AB) = subl A -
sub’ B. This completes the proof of Lemma n

Lemma B.2. Let A be an invertible m x m-matrix. Let P and Q
be two subsets of [m] such that |P| = |Q]|. Let P := [m] \ P and

Q := [m] \ Q be their complements. Let }_ P be the sum of all
elements of P, and let }_ Q be the sum of all elements of Q. Then,

det <sub19 A) = (—1)EPTECQdet A - det (subg (A_1>> .

Lemma is [Grinbe20, Exercise 6.56] (with slightly different notations:
subg A is denoted SUbZE%) A there). Alternatively, it can be easily derived

from [LLPT95, (APP.1.5.2)] (since the adjugate matrix adj A of A, which is
denoted by T A in [LLPT95], is known to equal (det A) - A~'). B

Lemma B.3. Let B be an infinite matrix in UTz. Let T = [p, q] be
an integer interval. Let U and V be two subsets of T such that
|U| = |V|. Then,
u+yv T\U [ p—
det (sub‘b/[ B) = (—1)="HEV get (sustv <B 1)) .
(Note that B~! exists: Indeed, the matrix B belongs to the group
UTyz and thus has an inverse.)
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Proof of Lemma Let m be the size g — p + 1 of the interval T = [p, q].
Then, g = m + p — 1. Furthermore, Lemma [B.T| says that the map (1) is a
group morphism. Hence, (sub% B) T subt (B~1). Moreover, suby B €
UT,, (since the map has target UT;,), so that the matrix sub% B is up-
per unitriangular. Thus, det (sub% B) = 1 (since the determinant of a

triangular matrix is the product of its diagonal entries, and therefore the
determinant of a unitriangular matrix is 1).

Let A be the submatrix subl B of B. Then,

Al = (sub% B) o = sub’ (B_l) and (7)
det A = det <sub§ B) — 1. 8)

For any subset S of Z and any integer z, we let S 4+ z denote the set
{s+z | s € S}. Visually speaking, this is simply the set S shifted by
z units to the right along the number line. Clearly, |S+z| = |S| and
(S+2z)+ (—z) = S. Moreover, any two subsets S and T of Z and any
integer z satisfy

(S\T)+z=(S+2)\(T+2z), )
since the operation of adding z to each integer is a bijection.
We have
= [p.4]
=1+p—1 m+p—1] (sincep=14+p—landg=m+p—1)
= [Lm]+(p—1)
=[m]+(p—1) (since [1,m] =m). (10)

Therefore, the map i — i+ (p — 1) is a bijection from [m] to T. This bijec-
tion induces a bijection | — ]+ (p — 1) from the set of all subsets of [m]
to the set of all subsets of T. Hence, any subset S of T has the form S =
S’+ (p — 1) for a unique subset S’ C [m]. In particular, the subsets U and V
of T thus have the forms U =P+ (p—1) and V= Q+ (p — 1) for unique
subsets P, Q C [m]. Consider these P, Q. Clearly, |U| = [P+ (p —1)| = |P|
and V| = [Q+ (p — 1)| = |Q], so that |P| = U] = |V| = |QJ.

Let P := [m] \ P and Q:= [m] \ Q be the complements of P and Q within
[m]. Let }_ P be the sum of all elements of P, and let }_ Q be the sum of all
elements of Q. From U = P + (p — 1), we obtain

YU=) (P+(p—1) =) P+I[P|-(p—1)

(since the elements of P+ (p —1) are simply the |P| elements of P with
p —1 added to each). Likewise, YV =Y Q+ |Q|- (p —1). Adding these
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two equalities together, we find

YUu+Yy v=>P+|P-(p—1)+(}1Q+IQ-(p—1))
=) P+).Q+ (IPl+]Ql) - (p—1)

=[Q|+|Q]
(since |P|=|Q))

=Y. P+}.Q+ (Ql+IQ) - (p—1)

=2|Q|=0mod 2

= ZP—}—ZQmodZ.

Hence,
(—DEIEY = (—EEC, (11)

Next, we recall that A = subl B = subB;’Z} B (since T = [p, q]). Hence, for
all i,j € [m], the (i,])-th entry of A is the (i+p—1,j+ p — 1)-th entry of
B. Consequently, for any X, Y C [m], we have

subk A = subii((i; :11)) B.

Applying this to X = P and Y = Q, we obtain

subg A= subgi((lfjll)) B = subX[ B (12)
(sinceP+(p—1)=Uand Q+ (p—1) =V).

Furthermore, from P = [m] \ P, we obtain

Bt (p—1)=([m\P)+(p—1)
=(m+(p-)\(P+(p-1))  (by@

S

Similarly, Q+ (p —1) = T\ V.
However, @) says that A~ = sub? (B™1) = sub{g’g} (B71) (since T = [p, q)).

Thus, for all i,j € [m], the (i,j)-th entry of A~ listhe (i+p—1,j+p—1)-
th entry of B~!. Consequently, for any X,Y C [m], we have

s (47) ~l Y (7).

Applying this to X = Q and Y = P, we obtain

subg <A71> = subgi((;;ll)) <B71> = subRg <B71> (13)
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(since P+ (p—1)=T\Uand Q+ (p—1) =T\ V).

Now, Lemma [B.2] yields
Q 4} _ (_1\LP+EQ _ B (41
det (subp A) = (—1) de_tlA det (subQ (A ))
=(-DEEY by @)
(by (1))

_ (_1\ZU+rLVv P (a-1
= (-1) det (subQ <A )) .
In view of and (13), we can rewrite this as

det (subYI B) = (—=1)ZUTLY get <sub§§g <B_1>> .

Thus, Lemma is proved. W

Lemma B.4. Let A = ()\1,/\2, .. .,/\q) be a partition, and let N o=
</\’1, A, .. .,A;) be its conjugate partition. (The entries A; and A
are allowed to be 0.) For each i € [g], let us set a; := A; —i. For
each j € [q], let us set f; := A; —j and 5 := —1 — ;. Then,
the two sets {ay,ay,..., 0y} and {n1,72,...,7,} are disjoint, and
their union is the integer interval [—q, p — 1].

Lemma is Proposition 3.18 (f) in the detailed version of the paper
[Grinbel9] (this detailed version is downloadable from the arXiv as an
ancillary file). (Note that the y in the paper corresponds to our A/, and that
the conditions p > A1 and g > y; in the paper follow from our assumptions

A= (M Ao Ay ) and A = (A1, Aa, .., Ag), tespectively) M
Lemma B.5. Let A = (Aq,A,...,Ay) be a partition, and let A’ =
(/\’1, Ab, .. .,A;) be its conjugate partition. (The entries A; and A;
are allowed to be 0.)

Lety = (yl, Mo, ..o, ]/tq) be a partition, and let u’ = <}l/1, Wy, ..., M;)
/

be its conjugate partition. (The entries y; and y’ are allowed to

]
be 0.)
Let B = (bi,]')z.]. < € UTz be an upper unitriangular matrix. Let

L. o —1 . . .
(le])z‘,jez = B! be its inverse matrix. Then,

det (bwi, )‘J‘j>i,j€[6ﬂ

_ (_1)(/\1+)\2+...+/\q)+(V1+V2+-.,+llfi) det <Ci—)\/-—1, j_]l/-_1> N .
i I/ jelp]



https://arxiv.org/src/2004.11194v3/anc/petriesym-long.pdf
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Proof of Lemma|[B.5] Let T be the integer interval [—g, p — 1]. For eachi € [q],
letus seta; := A; —iand 7; := p; —i. For each j € [p], let us set §; := A} —j
and 77; := —1— B; and §; := ‘u;- —jand wj = —1—¢;.

Then, Lemmasays that the two sets {a1, a2, ..., a0} and {1,172, ..., 1, }
are disjoint, and their union is the integer interval [—g,p — 1]. Therefore,

the set {#1,72,...,7,} is the complement of the set {a1,a2,...,44} in the
interval [—¢, p — 1]. In other words,

ey = =0, p = 1)\ {a, a2, ..,
{moma, . mpt =] q_PT J\ {a a0, aq )
=T\ {ag,02,...,00}. (14)

The same argument (applied to u, i/, 7, d; and wj instead of A, N, a;, B;
and 7;) yields

{wlleI---/wp}:T\{rYl/(YZ/---I’Yq}- (15)

Since A is a partition, we have Ay > Ay > -+ > A; and thus A —1 >
Ay —2>--- > A;—q. Inother words, a1 > ap > -+ > a4 (sincea; = A; —1
for each 7). Hence,

{041,062,...,04[7}Z{DCq<qu,1<"'<061}. (16)
Similarly,

{rvr2 vt ={r<rvg-1<---<m}. (17)
These two equalities show that both sets {1, 72,...,7,} and {1, a2,..., a4}
have size g, so that they have the same size. In other words, {'yl, Yo, e, fyq} | =
{1, a0, a0}
Furthermore, recall that the two sets {a1,a2,...,a,} and {n1,72,...,1,}
are disjoint, and their union is the integer interval [—q,p —1]. Hence,
in particular, {ay,a2,...,a,} is a subset of [—q,p—1] = T. Similarly,
{71,72,...,74} is a subset of T as well.

Thus, Lemma(applied to—q,p—1{71,72..., 74} and {a1,22,..., 04}
instead of p, g, U and V) yields

det sub{al'az"”’%} B
{71,72,-~-,'yq}
— (_1)2{71/72#'-/)%7}+Z{D€1,Dﬁz,...,aq}
det (subT\{%'vz'""%} (B_1)> : (18)

T\{le,zxz,...,txq}

In view of and (17), we have

b{al,az,‘..,aq} B — b{“q<0€q71<-..<a1} — <b ] )
R ) R To1=ia1-) ) e g
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(since B = (birf)ijez)' Hence,
{ocl,ocz,...,txq} B
det (sub{%%m%} B | = det (bw“i’“q“f)i,je[q]
— det <b%a].> e (19)

(here, we have substituted g +1 —i and g+ 1 — j for i and j in the matrix,
which effectively rotates the matrix by 180°; this rotation does not change
the determinant, because it is a composition of a row permutation and a
column permutation with the same sign).

On the other hand, let us recall that {#1,72,...,7,} = T\ {a1,a2,...,2,}.
But A’ is a partition; thus, A} > A}, > ... > )\;, and therefore ] —1 >
Ay =2 > .-+ > A, —p. In other words, 1 > pa > .-+ > B, (since
Bj = A; —j for each j). Hence, -1 -1 < —=1—f <--- < =1—fp. In
other words, 71 < 12 < .-+ < 1p (since 7; = —1 — p; for each j). Thus,

{mm,....np} = {m <m<---<np}. Comparing this with (14), we
obtain

T\ {w,a0..., 00} = {1 <mp<---<mp}.

The same argument (applied to p, p', 7;, ; and w; instead of A, A', ;, B;
and 7;) yields

T\ {7,727} ={wi1 <wp < -+ <wp}.

In view of these two equalities, we have

™21} (po1) {wi<wy<<wp} (0 1\
subT\{le,DQ,...,qu} (B ) - Sub{171<;72<...<;7p} (B ) - (Cﬂzrw]>1’]€[p]

(since B~1 = (Ci/j)i,jez)' Thus,

™Nrr2m} (p-1)) _
det (subT\ T (B )) — det (cm,wj)iljem. (20)

Furthermore, a1 > a3 > - -+ > a, shows that the numbers aq, a,...,a, are
distinct; hence,

Z{le,zxz,...,ocq} =a;+ar+--+ag
=M-1D4+A=2)+-+(A;—9q)
(since aj = A; — i for all i)
= (M +Aa+ A — (1424 +q).

Similarly,

Y v 2 vg = (i pat - Hpg) — (1424 +4).
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Adding these two equalities together, we find

Y Aar a0, 0+ Y {2 )
=M+A+-+A) —(1+24--+9)

+ ittt — (1424 +q)
=(MtAt o+ A) + (et +pg) —2(1+2+- - +9q)

J

EO:H%d:Z
= (M +A2+- -+ Ag) + (p1+p2+ - -+ pg) mod 2.
Hence,
(_1)2{061,062,...,06q}-‘rZ{’h,’)’z,...,’M}
= (_1)()‘1+A2+"'+)‘q)+(V1+#z+'--+ﬂq) . (21)

Finally, using (I9), we can rewrite as

det (b%,,x].) el

_ \( )2{71 Yo HE{ 0,00 } det (SubT&Zi Zj Zj}} < ))

-

:(_1)Z{a1,a2,...,ﬂcq}+E{71,72,~~~,7q} A Vv
_ _1)(Al+/\2+~~-+Aq)+(y1+y2+---+uq) :det<c’7i'“’j>i,]-€[p]
(by 1)) (by (20))
_ (_1)(/\1+)\2+...+/\q) (]11+}/l2+ +,Mq) det (C w})
W) i jelp)
In view of 7; = pj—iand aj = Aj—jand 7, = -1—- B; = —1-
—~—~
=Al—i
(Mj—i) =i=Aj—Tandwj= —1— & = —1—(pj—j) =j—p -1
i i ) ] ] ] !
—~—
=pi—J

we can rewrite this as

det (b o ._-)
Ml AT ) e
Mg+ 4Ag )+ (pr+pip -+
— (—1)( 1 2 Q) (Hl H2 PQ) det <CZ—A:—1, ]-]l;-].)

This proves Lemma [ ]

Lemma B.6. Let (u;;), e[y be @ p x p-matrix. Furthermore, let

®1,&2,...,&p,B1,B2, ..., Bp be any 2p scalars. Then,

det (a;Bju; ;) Liely (Hzx,) (H,B]> -det (u; ) el

10
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Proof of Lemma |B.6| The matrix (; 51'”131')1‘]'6[;7} is obtained from the matrix
(1) e BY

e multiplying the i-th row by «; for each i € [p], and then

* multiplying the j-th column by B; for each j € [p].

Each of these operations multiplies the determinant of the matrix by the
corresponding factor a; or B;. Thus, in total, the determinant gets multi-

p p
plied by (H [Xi) (H ﬁ]> . This proves Lemma [B.6, B
i=1 j=1

Now, we can prove (6.9):
Proof of (6.9): Write the partitions A, A/, u and y’ in the forms

A= (AL Ao Ay), A= (M Ay Ay )
w= (o), W= (Wt ty)
for some p,q € IN (where, of course, the entries A;, ;., u; and ;4;. are allowed
to be 0).
Recall that
_ o i+1
H(x|a)= (h]_l (x | T a))i,jez and
— ((—1)y e . j
E(x|a) (( 1) ej_ (x | T a))i/jez
are two upper unitriangular matrices in UTz (since ¢y (x | a) = 0 and
er (x| a) = 0 whenever k < 0). From (6.6), we know that the matrix

E (x| a) is the inverse matrix of H(x | a). Hence, Lemma (applied
to B=H(x|a)and bjj = hj_; (x| T"a) and ¢;j = (—1)"¢;_; (x | Ta))
yields

ui—i+1
det (h()\j*j)*(]li*i) (x ‘ T a>>i,je[q]
_ (_1)(A1+)\2+"'+)&q)+(]11+H2+"'+Hq)

det <(—1)(j_“}_1>_(i_A§_1) (1)~ (=) <x | Tj_y}_la»i,je[p] |

In view of (Aj —j) — (#; — i) = Aj — i — j+ i and (j—y;.—1)—(i—A;—1) -

j—i

11



Errata to “Schur functions: Theme and variations” February 11, 2026

Af — ]/l;- — i+ j, we can rewrite this as

det (h/\j_i‘i_j+i <x | Tﬂi_iHa))i,]'G[ﬂﬂ

_ (_1)(A1+A2+-~-+Aq)+(y1+y2+---+yq)

M—pl—i+j j—ui—1
det(—l i~ Hj 617/7-'<x T i Ta .
( ) A pi—it] | il
In view of

det (1, (¥ TVi_i+1a>>z’,j6[li] = det (a4 (¥ | 7 _j+1a>>z’,j€[fﬂ

(since the determinant of a matrix does not change when we transpose it)
and

Ai—Wi—it] j—ui—1
det (—1) try e/\gfy;flgr]' (x ’ T I a

—
(M ]
_(_1) ( 1)] 1,]€[P]
N 1 —ui—1
= det (=) ()" ey iy (x1 7))

p p . .
M RN/ AN o j=w—1
(E( g ) (H( v > det (e)‘i"‘j_lﬂ (x R a>>i,je[p}

(by Lemma [B.6, applied to a; = (—1)/\271' and B;

'
= (—1)Vj 4 and ui,j =
j—pi—1 . .

e)\;_y}_iﬂ- <x | /7 a)), we can rewrite this as

det (hArﬂriﬂ' <x | Tyj_jﬂa))i,je[q]

_ (_1)(A1+A2+~--+Aq)+(y1+y2+---+yq)

: =i i i o
(i_l(—l))\, ) (H(—l)ﬂj ]> - det (eA;_y;_iﬂ. (x | 1a>>i/je[p]
— (_1)(A1+A2+...+Aq)+(y1+y2+...+ﬂq) (ﬁ(_l)/\;l) (ﬁ(_l)ﬂ§—]’>

i=1

-det (e ra <<x Tj_y;_la» . 22
- (7] ijelp 22

12
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However,
P P
(—1)(MAat ot Ag) (bt tg) (H A’—t’) <H )
i=1 j=1
P P
(AM+Ag+4Ag)+(ptpat-+ug )+ X (A +Z(y ]>
— (—]_) i=1 j=1
=1

7

since

\()\1+)\2++)\q)1+(}11+}12+ —|—‘1,lq +Z _Z —|—Z("M]—])

=[A| =|u| 7\/7 ]h —_—

_ A . _ 4 B P

EhE _El”; j;]
p , p ' p ) p .
=M +lul+ A - i+ Y- )
= =1 =1 =1

=|N|=|A|  =1424+p =[u|=|y] =1424-+p

=AM+ pl+ A+ A+2+ - +p)+ul+ (A +2+--+p)
=2(Al+ |+ +24+---+p)) is even.

Thus, we can rewrite as
det (h N '<x T“f_j+1a))
A pj—itj ’ ijild]
1
:1-det(e v -(x o7H a))
oo (¥ ijely
o
= det (e A (x T]_“J'_la))
i (1] Ljcly)

_ —Hi+i—1
= det (eA;_y;_iﬂ- (x | T 7 a>>

In view of (6.8), this can be rewritten as

Sr/u (x| a) = det (eAg—y;.—i+j (x | T—y}+j—1a))

This proves (6.9). R

. . / o ! .
el <smce]— pi—1l=—pi+j— 1) .

ijelp]

Applying (6.9) to u = &, we obtain the second equality in (6.7).
6. page 18, (6.9): See the previous bullet point for a proof of (6.9).

7. page 18, (6.10): Let me prove (6.10) here. We will need a simple lemma
about determinants.

13
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If p and g are two integers such that p < g+ 1, then [p, g] shall denote the
set of all integers m such that p < m < g. We call this set an integer interval.
It has size g — p+ 1 (so it is empty if p = g+ 1).

For a given r € IN, we shall denote the integer interval [1,7] = {1,2,...,r}
by [r].

Our lemma says the following;:

Lemma B.7. Let <ui'j)ij€[p]

U and V be two subsets of [p] satisfying |U| + |V| > p. Assume
that

be a p x p-matrix for some p € IN. Let

uj ;=0 forallie Uandjc V. (23)

Then, det (”i,f)i,jE[p] -

Proof of Lemma By the definition of a determinant, we have

p
det (ui'j>i,j€[p] = Y signo- [ Juioq (24)

S i=1

(where S, is the symmetric group of all permutations of [p]). Now we shall
show that each o € S, satisfies

p

Hui,(f(i) =0. (25)

i=1

(Proof: Let ¢ € Sp. Then, |0 (U)| = |U| > p — |V] (since |U| + |V| > p),
so that o (U) € [p] \V (since ¢ (U) C [p]\V would entail |o(U)| <
I[p] \ V| = p — |V|, contradicting |o (U)| > p — |V|). In other words, there
exists some j € o (U) such that j ¢ [p] \ V. Consider this j. From j € o (U),
we obtain j = o (k) for some k € U. Consider this k. Now, k € Uand j € V

(since j € [p] but j & [p] \ V). Hence, (23) (applied to i = k) yields u;; = 0.
In other words U o k) = 0 (since j = o (k)). Thus, one of the factors of the

product H U; gy is 0 (namely, the k-th factor). Hence, this whole product

is 0. This | proves 25).)
Now, (24) becomes

det ( ul] ijelp Z signo - Huw =0.

ogeSs P
(by:>

This proves Lemma |

14
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We can now prove (6.10):

Proof of (6.10). Assume that we don’t have 0 < A} — p} < n for all i. We
must prove that s, /, (x | a) = 0.

Write the partitions A and p/ as A’ = (A’l,)xé, .., /\;7) and y' = (y’l, W, ..., y;)
Then, all i > p satisfy A} = 0 and p} = 0 and therefore A] — u! =0—-0=0.
Note also that A} > A5 > A; > --- (since A’ is a partition) and p} > pj >

ps > - - (similarly). From (6.9), we obtain

—det (ey_ ;i o : 26
SA/u (x| a) € (e)‘i—”j_“’f <x T a))i,je[r’] (26)

We have assumed that we don’t have 0 < A} — i} < n for all i. In other
words, there exists some i > 1 such that we don’t have 0 < A; — ;t; < n.
Consider this i, and denote it by k. Thus, we don’t have 0 < A} — ;. < n.
Hence, we have either A, — p; < 0 or A; — p; > n. We are thus in one of
the following two cases:

Case 1: We have Aj — ;. < 0.
Case 2: We have A, — p;. > n.

Consider Case 1 first. In this case, we have A; — ;. < 0. Hence, we cannot
have k > p (since all i > p satisfy A} — ! = 0, which would yield A} — ) =
0 if we had k > p). Thus, k < p, so that k € [p].

Now, let i € [k,p] and j € [k]. Then, i > k (since i € [k, p]), so that k < i
and thus A} > A} (since A} > A, > A} > ---). Thus, A, < A;. Furthermore,
j < k (since j € [k]), so that p} > pj. Thus,

I S VI — Al
A M \:er j <A —m—k+k=A—pu <0,
S)\;( 2}4;( = <k
and therefore e,r_ ;. ; (x ] Tj’;‘ﬂ;la) = 0 (since ¢/ <x | Tfyﬁj*la) =0
L
for any ¢ < 0).
Forget that we fixed i and j. We thus have shown that

Y. (x | T‘P‘f'*f‘la) —=0 foralli € [k, p] and j € [k].

Hence, Lemma [B.7| (applied to u;; = ey ,1_;; (x | Tiﬂ}ﬂ;la)) yields that
L)

laiq
det (e ' '<x T it a>> =
Nwpity (X ijelp)

(since |[k,p]| +|[k]] = (p—k+1)+k=p+1> p). Hence, rewrites
o=~

0

——
=p—k+1 =k

as s/, (x| a) = 0. This proves (6.10) in Case 1.

15
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Let us now consider Case 2. In this case, we have A,’c — y;( > n. Hence, we
cannot have k > p (since all i > p satisfy Al — i} = 0, which would yield
A — . = 0 < nif we had k > p). Thus, k < p, so that k € [p].

Now, leti € [k] and j € [k, p]. Then, j > k (since j € [k, p]), so that k < j and
thus pj > p; (since py > py > pz > ---). Hence, i < pj. Furthermore,
i <k (since i € [k]), so that A > A;. Thus,

Ab— b — i 4+ ] >AM—u—k+k=AL—u.>n,

i H; \<7</ ] k — Mk kK~ Mk
2)\]/( SH;{ = >k
—pit+j-1 . —pij—1

and therefore ey/_yr_;.; (x | T a) = 0 (since ey <x | T i a) =0
for any ¢ > n).
Forget that we fixed i and j. We thus have shown that

CN -yl it (x | T_”;’Lj_la) =0 foralli € [k] and j € [k, p].

N

(applied to u;; = CAL it (x | Tﬂ‘;ﬂ'*la)) yields that

Hence, Lemma [B.
=0

—pitj—1
det <e T -(x T ¥ a>> =
Mg (X ijelp)

(since |[k]| + |[k, p]| =k+ (p—k+1) = p+1> p). Hence, rewrites
N

N——

=k =p—k+1
as s/, (x | a) = 0. This proves (6.10) in Case 2.
We have now proved (6.10) in both Cases 1 and 2; this completes the proof
of (6.10). W

8. page 19, proof of (6.12): In the last displayed equation of the proof, replace
“ei_i (y | T a)” by “ej_i (y | T"a)”.
9. page 19, proof of (6.13): Let me explain in some more detail how the
equality
N H(xyla)=/\H(x|a). \NH(y|"a)
yields the claim (6.13).

Indeed, a well-known corollary of the Cauchy—Binet theorem (specifically,
[Grinbe20, Corollary 7.182], or rather its version for infinite matrice%}

2The version for infinite matrices is proved in the same way as the version for finite matrices, as
long as (formal) convergence is taken care of (and that is easy when the matrices in question
are upper-triangular).
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yields
det (sub{M 22 (i (x ) H (y | 7'a)) )
= X der(sbffEE (x| 0)
et (subfyr T (),
where the sum ranges over all strictly increasing r-tuples (g1 < g2 < -+ < &)

of integers. Using (6.12)(ii), we can rewrite this as

(M—1A0—2, A1}
det (SUb{uifl,yifz,...,yﬁr} (H (xy | ﬂ)))

- det (sub (81828} (H (x| 2))
gl<82;~<gr < {m—1Lp2—2,...ur—r1} >

AM—1,A2—2,...,Ap—1
- det (sub}gl{g;fgr}z YH(©y | r"a)))

= Z det (sub?yl—l,yz—Z,...,yr—r} (H (x | a)))

S is an r-element
set of integers

- det <sub§““2*2"~'“f} (H(y | T”u)))
- ¥ det(sub{"l*“ﬂ'"""f*r} (H(x|a)))

. . {m—Lpo=2,...pr—r}
v 1s a partition
of length <r
(A —1,A—2,..., Ay —r}
-det (sub{y! 2 (H(y | v'a)) 27)
(here, we have reindexed the sum, since each r-element set S of integers can
be written uniquely in the form {v; —1,v» —2,...,v, —r} for a partition v
of length < r, and conversely, any set of the latter form is an r-element set
of integers).

However, in the second sentence of the proof of (6.13), it was said that
M=1,A2=2,.0. A —
sa/u (%Y | a) = det (sub}yi_llﬂz_zwyr_:}}: (H (xy | a))> )
Similarly, for any partition v of length < n, we have
—1,0p=2,... vy —
o (x| @) = det (sub{ll 2 % 1L (H (x| a))
and
sasv (v | t'a) = det (sub{Al_l’Az_z"”’A’_r} (H(y | T”ﬂ))) )

{n—-1v—-2,..,v,—r}
In view of these three equalities, we can rewrite as
sypyla)y=" Y suyu(xla)say(y] )

v is a partition
of length <r

= ) sypla)siylTe)

v is a partition

17
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(here, we have removed the condition “of length < r” from the sum; this
does not change the sum, since all newly introduced addends are zeroEb.
This proves (6.13).

10. page 19, the paragraph containing (6.14): Replace “Let x(), ..., x(") be”
by “Let x(1), ..., x(") be”.

11. page 19, the paragraph containing (6.14): Replace “where x(1) = (xgl), cey xﬁ?) "

by “where x()) = (xgi), .. .,xﬁ?)”.

12. page 19, (6.14): On the left hand side of (6.14), replace ”x(i), cer, x ()7 by
“r(1) (n)r
x\, L, U7

13. page 19, last paragraph: Let me explain why

Sy (x| a) =T Tha-y <x | TVi_i+1u> (28)

i>1

when A — y is a horizontal strip:

Assume that A — p is a horizontal strip. Write the partitions A and u as
A= (A, A, ., Ag) and p = (pa, 2, ..., 1), where g € N is sufficiently
large (namely, g > max (¢ (A),¢(u))). Then, for any i,j € [gq] satisfying
i > j, we have

Papyivg (x| #74a) o, (29)

(Proof: Let i,j € [q] satisfy i > j. Thus, j < i, so that A; > A; (since
AM > Ay > A3 > ---)and #j > pi (similarly). In other words, A; < Aj and
Hi < Wi

The skew partition A — u is a horizontal strip, i.e., contains no two cells
in the same column. However, if we had Hj < A;, then the two distinct
cells (i,A;) and (j,A;) would both belong to A — u (indeed, we would
have (i,A;) € A — p because of y; < pj < A; < A, and we would have
(j,Ai) € A — u because of y; < A; < Aj), which would contradict the
preceding sentence (since these two cells clearly lie in the same column).
Thus, we cannot have Hi < A;. In other words, we have Wi > A;. Hence, A; —

3Proof. Let v is a partition of length > r. We must show that s/ (x| a)sys (y| tha) =0.
Since v has length > r, we have I (v) > r. Thus, v; =1 (v) >r > max (I (A),I(p)) > 1(A) =
A} and therefore 0 > A} —v]. Hence, we don’t have 0 < A} —v] < n. Thus, we don’t have
0 < A} — v/ < nfor all i (since this inequality fails for i = 1). Thus, (6.10) (applied to v, T"a
and y instead of y, a and x) yields s, /, (v | T"a) = 0. Therefore, s, /, (x | a)sy/, (y | T"a) =0
N—

=0
as well.

18
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pi — 1 _+j<Ai—A;i—j+j =0, and therefore hy, i, (x | TVf*jJrla) =
>A; >

0 (since hy <x ] T“f*jﬂa) = 0 for any k < 0). This proves .)

Lj€lq]
triangular. Hence, its determinant is the product of its diagonal entries. In
other words,

Now, shows that the matrix (h Ni—pij—i+j <x | T”j‘j“g)) is upper-

det h)\i—ﬂj—i+j (x | T”ff]#la))

= Hh/\i—yi—i-f'i (x | Tyi_i—i_la)

9
i=1 -

ij€(q]

i (2741
(since Ai —]«ll’ —l+l:)\i —}ll‘)

1 .
=[1"-u (x | T”i_’ﬂa) :
i=1

In view of (6.8), we can rewrite this as

q .
sasu(x ] a) =] Thr—p (x | TVZ'_IHLI) . (30)
i=1

This is a finite product, but we can extend it to an infinite product over
all i > 1; this will not change the value of the product, since all the newly
inserted factors fiy,_, (x | T#~"a) for i > g will equal 1 (because if i >
g, then A; = 0 and y; = 0 and therefore A; —y; = 0 —0 = 0, so that
Ma—p; (x | TH~a) = ko (x | T 1a) = 1). Hence, can be rewritten

as
Sayu (x| a) =T Tha—y, (x \ T”i*”rla) :

i>1
This proves (28). B

14. page 19, last paragraph: At the end of the last display on this page, there
is a period. This period should be a comma.

15. page 20, proof of (6.17): Replace “As, . (x,y)” by “A;,,., (x,y|a)”. Like-
wise, replace “As, (x)” by “As, (x | a)”. Likewise, replace “A;, (y)” by

“As, (y] a)".

16. page 20, proof of (6.17): The equality

Aspn i) = X ()M Ay, (0 A3, @)
AC(m™)
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should be
Aoy la)= Y ()M Ayis, (x1a) A5, (v 0) (31)
AC(m™)
instead.
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