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Schur functions: Theme and variations
I. G. Macdonald

Publ. I.R.M.A. Strasbourg, 1992, 498/S–27,
Actes 28e Séminaire Lotharingien, p. 5-39.

Errata and addenda by Darij Grinberg

I will refer to the results appearing in the paper “Schur functions: Theme
and variations” by the numbers under which they appear in this paper. Page
numbering goes from 5 to 39.

I have read pages ... of the paper so far.
The list below contains both actual corrections and what I believe to be clari-

fications and pertinent comments. I have not tried to separate the former from
the latter, as I suspect that the precise boundary is in the eyes of the beholder.

B. Errata and addenda

I shall use the following notations:

• If p and q are two integers such that p ≤ q + 1, then [p, q] shall denote the
set of all integers m such that p ≤ m ≤ q. We call this set an integer interval.
It has size q − p + 1 (so it is empty if p = q + 1).

• For a given r ∈ N, we shall denote the integer interval [1, r] = {1, 2, . . . , r}
by [r].

• If A =
(
ai,j
)

i∈S, j∈T is an arbitrary matrix (where the sets S and T may be
finite or infinite), and if P = {p1 < p2 < · · · < pα} is a finite subset of S,
and if Q =

{
q1 < q2 < · · · < qβ

}
is a finite subsets of T, then subQ

P A shall

denote the submatrix
(

api,qj

)
i∈[α], j∈[β]

of A. For instance, if A =
(
ai,j
)

i,j∈[4]

is a 4 × 4-matrix, then sub{2,4}
{2,3} A =

(
a2,2 a2,4
a3,2 a3,4

)
.

Now, the actual corrections:

1. page 15, line 2: “for each α = (α1, . . . , αr) ∈ Nn” should be “for each
α = (α1, . . . , αn) ∈ Nn”.

2. page 15, after (6.3): For a detailed proof of the fact that the quotient

sλ (x | a) = Aλ+δ (x | a)⧸Aδ (x | a)

is a symmetric polynomial in x1, . . . , xn with coefficients in R, see [Grinbe18,
Corollary 9.14]. (Apply this corollary to Xi = xi and Pj (T) = (T | a)λj+n−j.)
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3. page 16, proof of (6.6): This argument only shows that E (x | a) ·H (x | a) =
IZ (where IZ is the identity matrix with rows and columns indexed by all
integers). In order to prove that the two matrices E (x | a) and E (x | a) are
inverse to each other (i.e., in order to prove (6.6)), it must also be shown
that H (x | a) · E (x | a) = IZ.

Fortunately, there is a simple shortcut for this: Let UTZ be the set of all up-
per unitriangular matrices with rows and columns indexed by all integers
(and with entries in a given base ring, which in our case is the polyno-
mial ring over Z in the variables xi for i ∈ [n] and aj for j ∈ Z). This set
UTZ is closed under matrix multiplication, thus is a monoid. Moreover,
each matrix A ∈ UTZ can be written as I + M for some strictly upper-
triangular matrix M, and thus has an inverse A−1 = (I + M)−1, which can
be computed by the formula (I + M)−1 = I − M + M2 − M3 + M4 ± · · ·
(this infinite sum makes sense, since the nonzero entries of each power
Mi start no earlier than i steps above the main diagonal1). This inverse
A−1 = I − M + M2 − M3 + M4 ± · · · again belongs to UTZ. Hence, each
element of the monoid UTZ has an inverse. Thus, UTZ is a group with
respect to matrix multiplication. Since both matrices E (x | a) and H (x | a)
belong to this group UTZ, we can thus conclude E (x | a) = H (x | a)−1

from E (x | a) · H (x | a) = IZ.

4. page 17, proof of (6.7): It is worth saying that all the matrices that appear
in the proof of the first of the formulas (6.7) are understood to be n × n-
matrices.

5. page 17, proof of (6.7): Let me give a proof of the second of the formu-
las (6.7) along with the more general formula (6.9). We will need some
notations and some lemmas.

Let UTZ be the set of all upper unitriangular matrices with rows and
columns indexed by all integers (and with entries in a given commuta-
tive ring). For any m ∈ N, we let UTm be the set of all upper unitriangular
m × m-matrices (again, with entries in our given commutative ring). Both
of these sets UTZ and UTm are groups (under matrix multiplication). The
following fact is easy:

Lemma B.1. Let T = [p, q] be an integer interval of size m =
q − p + 1 (so that q = p + m − 1). Then, the map

UTZ → UTm,

A 7→ subT
T A (1)

1That is: For any u, v ∈ Z and any i ∈ N, the (u, v)-th entry of Mi is 0 whenever v − u < i, and
therefore the (u, v)-th entry of the infinite sum I − M + M2 − M3 + M4 ± · · · is only affected
by the first v − u + 1 addends of this sum.
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is a group morphism.

Proof of Lemma B.1. It is easy to see that this map is well-defined (i.e., that
subT

T A ∈ UTm for each A ∈ UTZ). (Indeed, more generally, any princi-
pal submatrix of an upper unitriangular matrix is again upper unitriangu-
lar.) It is clear that subT

T (IZ) = Im. It remains to show that subT
T (AB) =

subT
T A · subT

T B for all A, B ∈ UTZ.

So let A, B ∈ UTZ be arbitrary. Write these matrices A and B as A =(
ai,j
)

i,j∈Z
and B =

(
bi,j
)

i,j∈Z
. Since T = [p, q] = [p, p + m − 1] (because

q = p + m − 1), we thus have

subT
T A =

(
ap+i−1,p+j−1

)
i,j∈[m]

and subT
T B =

(
bp+i−1,p+j−1

)
i,j∈[m]

and therefore

subT
T A · subT

T B =
(
ap+i−1,p+j−1

)
i,j∈[m]

·
(
bp+i−1,p+j−1

)
i,j∈[m]

=

(
m

∑
k=1

ap+i−1,p+k−1bp+k−1,p+j−1

)
i,j∈[m]

(2)

(by the definition of matrix multiplication).

The matrix A is upper-triangular (since A ∈ UTZ), so we have

ai,k = 0 for all i > k. (3)

Likewise,
bk,j = 0 for all k > j. (4)

Thus, we can easily see that if i, j ∈ T, then

ai,kbk,j = 0 for all integers k /∈ T. (5)

(Proof: Let k be an integer such that k /∈ T. Thus, k /∈ T = [p, q]. Hence,
either k < p or k > q. In the former case, we have k < p ≤ i (since
i ∈ T = [p, q]) and therefore i > k, so that ai,k = 0 (by (3)), whence
ai,k︸︷︷︸
=0

bk,j = 0. In the latter case, we have k > q ≥ j (since j ∈ T = [p, q]

entails j ≤ q) and therefore bk,j = 0 (by (4)), whence ai,k bk,j︸︷︷︸
=0

= 0. Hence,

we have proved ai,kbk,j = 0 in both cases. Thus, (5) is proved.)

Hence, for any i, j ∈ T, the (i, j)-th entry of the matrix AB is

∑
k∈Z

ai,kbk,j (by the definition of AB)

= ∑
k∈T

ai,kbk,j


since (5) shows that

any addend ai,kbk,j equals 0 unless k ∈ T,
and thus we can restrict the sum to

only range over the k ∈ T

 .
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Therefore, from T = [p, q], we obtain

subT
T (AB) =

(
∑
k∈T

ap+i−1,kbk,p+j−1

)
i,j∈[m]

. (6)

However, each i, j ∈ [m] satisfy

m

∑
k=1

ap+i−1,p+k−1bp+k−1,p+j−1

=
p+m−1

∑
k=p︸ ︷︷ ︸
= ∑

k∈T
(since T=[p,p+m−1])

ap+i−1,kbk,p+j−1

(here, we have substituted k for p + k − 1 in the sum)

= ∑
k∈T

ap+i−1,kbk,p+j−1.

Thus, the right hand sides of the equalities (2) and (6) are equal. Hence,
their left hand sides are also equal. In other words, subT

T (AB) = subT
T A ·

subT
T B. This completes the proof of Lemma B.1. ■

Lemma B.2. Let A be an invertible m × m-matrix. Let P and Q
be two subsets of [m] such that |P| = |Q|. Let P̃ := [m] \ P and
Q̃ := [m] \ Q be their complements. Let ∑ P be the sum of all
elements of P, and let ∑ Q be the sum of all elements of Q. Then,

det
(

subQ
P A

)
= (−1)∑ P+∑ Q det A · det

(
subP̃

Q̃

(
A−1

))
.

Lemma B.2 is [Grinbe20, Exercise 6.56] (with slightly different notations:
subQ

P A is denoted subw(Q)
w(P) A there). Alternatively, it can be easily derived

from [LLPT95, (APP.1.5.2)] (since the adjugate matrix adj A of A, which is
denoted by † A in [LLPT95], is known to equal (det A) · A−1). ■

Lemma B.3. Let B be an infinite matrix in UTZ. Let T = [p, q] be
an integer interval. Let U and V be two subsets of T such that
|U| = |V|. Then,

det
(

subV
U B
)
= (−1)∑ U+∑ V det

(
subT\U

T\V

(
B−1

))
.

(Note that B−1 exists: Indeed, the matrix B belongs to the group
UTZ and thus has an inverse.)
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Proof of Lemma B.3. Let m be the size q − p + 1 of the interval T = [p, q].
Then, q = m + p − 1. Furthermore, Lemma B.1 says that the map (1) is a

group morphism. Hence,
(

subT
T B
)−1

= subT
T
(

B−1). Moreover, subT
T B ∈

UTm (since the map (1) has target UTm), so that the matrix subT
T B is up-

per unitriangular. Thus, det
(

subT
T B
)

= 1 (since the determinant of a
triangular matrix is the product of its diagonal entries, and therefore the
determinant of a unitriangular matrix is 1).

Let A be the submatrix subT
T B of B. Then,

A−1 =
(

subT
T B
)−1

= subT
T

(
B−1

)
and (7)

det A = det
(

subT
T B
)
= 1. (8)

For any subset S of Z and any integer z, we let S + z denote the set
{s + z | s ∈ S}. Visually speaking, this is simply the set S shifted by
z units to the right along the number line. Clearly, |S + z| = |S| and
(S + z) + (−z) = S. Moreover, any two subsets S and T of Z and any
integer z satisfy

(S \ T) + z = (S + z) \ (T + z) , (9)

since the operation of adding z to each integer is a bijection.

We have

T = [p, q]
= [1 + p − 1, m + p − 1] (since p = 1 + p − 1 and q = m + p − 1)
= [1, m] + (p − 1)
= [m] + (p − 1) (since [1, m] = m) . (10)

Therefore, the map i 7→ i + (p − 1) is a bijection from [m] to T. This bijec-
tion induces a bijection J 7→ J + (p − 1) from the set of all subsets of [m]
to the set of all subsets of T. Hence, any subset S of T has the form S =
S′+(p − 1) for a unique subset S′ ⊆ [m]. In particular, the subsets U and V
of T thus have the forms U = P + (p − 1) and V = Q + (p − 1) for unique
subsets P, Q ⊆ [m]. Consider these P, Q. Clearly, |U| = |P + (p − 1)| = |P|
and |V| = |Q + (p − 1)| = |Q|, so that |P| = |U| = |V| = |Q|.
Let P̃ := [m] \ P and Q̃ := [m] \ Q be the complements of P and Q within
[m]. Let ∑ P be the sum of all elements of P, and let ∑ Q be the sum of all
elements of Q. From U = P + (p − 1), we obtain

∑ U = ∑ (P + (p − 1)) = ∑ P + |P| · (p − 1)

(since the elements of P + (p − 1) are simply the |P| elements of P with
p − 1 added to each). Likewise, ∑ V = ∑ Q + |Q| · (p − 1). Adding these
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two equalities together, we find

∑ U + ∑ V =
(
∑ P + |P| · (p − 1)

)
+
(
∑ Q + |Q| · (p − 1)

)
= ∑ P + ∑ Q + (|P|+ |Q|)︸ ︷︷ ︸

=|Q|+|Q|
(since |P|=|Q|)

· (p − 1)

= ∑ P + ∑ Q + (|Q|+ |Q|)︸ ︷︷ ︸
=2|Q|≡0 mod 2

· (p − 1)

≡ ∑ P + ∑ Q mod 2.

Hence,
(−1)∑ U+∑ V = (−1)∑ P+∑ Q . (11)

Next, we recall that A = subT
T B = sub[p,q]

[p,q] B (since T = [p, q]). Hence, for
all i, j ∈ [m], the (i, j)-th entry of A is the (i + p − 1, j + p − 1)-th entry of
B. Consequently, for any X, Y ⊆ [m], we have

subY
X A = subY+(p−1)

X+(p−1) B.

Applying this to X = P and Y = Q, we obtain

subQ
P A = subQ+(p−1)

P+(p−1) B = subV
U B (12)

(since P + (p − 1) = U and Q + (p − 1) = V).

Furthermore, from P̃ = [m] \ P, we obtain

P̃ + (p − 1) = ([m] \ P) + (p − 1)
= ([m] + (p − 1))︸ ︷︷ ︸

=T

\ (P + (p − 1))︸ ︷︷ ︸
=U

(by (9))

= T \ U.

Similarly, Q̃ + (p − 1) = T \ V.

However, (7) says that A−1 = subT
T
(

B−1) = sub[p,q]
[p,q]

(
B−1) (since T = [p, q]).

Thus, for all i, j ∈ [m], the (i, j)-th entry of A−1 is the (i + p − 1, j + p − 1)-
th entry of B−1. Consequently, for any X, Y ⊆ [m], we have

subY
X

(
A−1

)
= subY+(p−1)

X+(p−1)

(
B−1

)
.

Applying this to X = Q̃ and Y = P̃, we obtain

subP̃
Q̃

(
A−1

)
= subP̃+(p−1)

Q̃+(p−1)

(
B−1

)
= subT\U

T\V

(
B−1

)
(13)
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(since P̃ + (p − 1) = T \ U and Q̃ + (p − 1) = T \ V).

Now, Lemma B.2 yields

det
(

subQ
P A

)
= (−1)∑ P+∑ Q︸ ︷︷ ︸

=(−1)∑ U+∑ V

(by (11))

det A︸ ︷︷ ︸
=1

(by (8))

·det
(

subP̃
Q̃

(
A−1

))

= (−1)∑ U+∑ V · det
(

subP̃
Q̃

(
A−1

))
.

In view of (12) and (13), we can rewrite this as

det
(

subV
U B
)
= (−1)∑ U+∑ V det

(
subT\U

T\V

(
B−1

))
.

Thus, Lemma B.3 is proved. ■

Lemma B.4. Let λ =
(
λ1, λ2, . . . , λq

)
be a partition, and let λ′ =(

λ′
1, λ′

2, . . . , λ′
p

)
be its conjugate partition. (The entries λi and λ′

j

are allowed to be 0.) For each i ∈ [q], let us set αi := λi − i. For
each j ∈ [q], let us set β j := λ′

j − j and ηj := −1 − β j. Then,
the two sets

{
α1, α2, . . . , αq

}
and

{
η1, η2, . . . , ηp

}
are disjoint, and

their union is the integer interval [−q, p − 1].

Lemma B.4 is Proposition 3.18 (f) in the detailed version of the paper
[Grinbe19] (this detailed version is downloadable from the arXiv as an
ancillary file). (Note that the µ in the paper corresponds to our λ′, and that
the conditions p ≥ λ1 and q ≥ µ1 in the paper follow from our assumptions
λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
and λ =

(
λ1, λ2, . . . , λq

)
, respectively.) ■

Lemma B.5. Let λ =
(
λ1, λ2, . . . , λq

)
be a partition, and let λ′ =(

λ′
1, λ′

2, . . . , λ′
p

)
be its conjugate partition. (The entries λi and λ′

j
are allowed to be 0.)

Let µ =
(
µ1, µ2, . . . , µq

)
be a partition, and let µ′ =

(
µ′

1, µ′
2, . . . , µ′

p

)
be its conjugate partition. (The entries µi and µ′

j are allowed to
be 0.)

Let B =
(
bi,j
)

i,j∈Z
∈ UTZ be an upper unitriangular matrix. Let(

ci,j
)

i,j∈Z
= B−1 be its inverse matrix. Then,

det
(

bµi−i, λj−j

)
i,j∈[q]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq) det
(

ci−λ′
i−1, j−µ′

j−1

)
i,j∈[p]

.
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Proof of Lemma B.5. Let T be the integer interval [−q, p − 1]. For each i ∈ [q],
let us set αi := λi − i and γi := µi − i. For each j ∈ [p], let us set β j := λ′

j − j
and ηj := −1 − β j and δj := µ′

j − j and ωj := −1 − δj.

Then, Lemma B.4 says that the two sets
{

α1, α2, . . . , αq
}

and
{

η1, η2, . . . , ηp
}

are disjoint, and their union is the integer interval [−q, p − 1]. Therefore,
the set

{
η1, η2, . . . , ηp

}
is the complement of the set

{
α1, α2, . . . , αq

}
in the

interval [−q, p − 1]. In other words,{
η1, η2, . . . , ηp

}
= [−q, p − 1]︸ ︷︷ ︸

=T

\
{

α1, α2, . . . , αq
}

= T \
{

α1, α2, . . . , αq
}

. (14)

The same argument (applied to µ, µ′, γi, δj and ωj instead of λ, λ′, αi, β j
and ηj) yields {

ω1, ω2, . . . , ωp
}
= T \

{
γ1, γ2, . . . , γq

}
. (15)

Since λ is a partition, we have λ1 ≥ λ2 ≥ · · · ≥ λq and thus λ1 − 1 >
λ2 − 2 > · · · > λq − q. In other words, α1 > α2 > · · · > αq (since αi = λi − i
for each i). Hence,{

α1, α2, . . . , αq
}
=
{

αq < αq−1 < · · · < α1
}

. (16)

Similarly, {
γ1, γ2, . . . , γq

}
=
{

γq < γq−1 < · · · < γ1
}

. (17)

These two equalities show that both sets
{

γ1, γ2, . . . , γq
}

and
{

α1, α2, . . . , αq
}

have size q, so that they have the same size. In other words,
∣∣{γ1, γ2, . . . , γq

}∣∣ =∣∣{α1, α2, . . . , αq
}∣∣.

Furthermore, recall that the two sets
{

α1, α2, . . . , αq
}

and
{

η1, η2, . . . , ηp
}

are disjoint, and their union is the integer interval [−q, p − 1]. Hence,
in particular,

{
α1, α2, . . . , αq

}
is a subset of [−q, p − 1] = T. Similarly,{

γ1, γ2, . . . , γq
}

is a subset of T as well.

Thus, Lemma B.3 (applied to −q, p− 1,
{

γ1, γ2, . . . , γq
}

and
{

α1, α2, . . . , αq
}

instead of p, q, U and V) yields

det
(

sub{α1,α2,...,αq}
{γ1,γ2,...,γq} B

)
= (−1)∑{γ1,γ2,...,γq}+∑{α1,α2,...,αq}

det
(

sub
T\{γ1,γ2,...,γq}
T\{α1,α2,...,αq}

(
B−1

))
. (18)

In view of (16) and (17), we have

sub{α1,α2,...,αq}
{γ1,γ2,...,γq} B = sub{αq<αq−1<···<α1}

{γq<γq−1<···<γ1} B =
(

bγq+1−i,αq+1−j

)
i,j∈[q]

8
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(since B =
(
bi,j
)

i,j∈Z
). Hence,

det
(

sub{α1,α2,...,αq}
{γ1,γ2,...,γq} B

)
= det

(
bγq+1−i,αq+1−j

)
i,j∈[q]

= det
(

bγi,αj

)
i,j∈[q]

(19)

(here, we have substituted q + 1 − i and q + 1 − j for i and j in the matrix,
which effectively rotates the matrix by 180◦; this rotation does not change
the determinant, because it is a composition of a row permutation and a
column permutation with the same sign).

On the other hand, let us recall that
{

η1, η2, . . . , ηp
}
= T \

{
α1, α2, . . . , αq

}
.

But λ′ is a partition; thus, λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
p and therefore λ′

1 − 1 >

λ′
2 − 2 > · · · > λ′

p − p. In other words, β1 > β2 > · · · > βp (since
β j = λ′

j − j for each j). Hence, −1 − β1 < −1 − β2 < · · · < −1 − βp. In
other words, η1 < η2 < · · · < ηp (since ηj = −1 − β j for each j). Thus,{

η1, η2, . . . , ηp
}

=
{

η1 < η2 < · · · < ηp
}

. Comparing this with (14), we
obtain

T \
{

α1, α2, . . . , αq
}
=
{

η1 < η2 < · · · < ηp
}

.

The same argument (applied to µ, µ′, γi, δj and ωj instead of λ, λ′, αi, β j
and ηj) yields

T \
{

γ1, γ2, . . . , γq
}
=
{

ω1 < ω2 < · · · < ωp
}

.

In view of these two equalities, we have

sub
T\{γ1,γ2,...,γq}
T\{α1,α2,...,αq}

(
B−1

)
= sub{ω1<ω2<···<ωp}

{η1<η2<···<ηp}
(

B−1
)
=
(

cηi,ωj

)
i,j∈[p]

(since B−1 =
(
ci,j
)

i,j∈Z
). Thus,

det
(

sub
T\{γ1,γ2,...,γq}
T\{α1,α2,...,αq}

(
B−1

))
= det

(
cηi,ωj

)
i,j∈[p]

. (20)

Furthermore, α1 > α2 > · · · > αq shows that the numbers α1, α2, . . . , αq are
distinct; hence,

∑
{

α1, α2, . . . , αq
}
= α1 + α2 + · · ·+ αq

= (λ1 − 1) + (λ2 − 2) + · · ·+
(
λq − q

)
(since αi = λi − i for all i)

=
(
λ1 + λ2 + · · ·+ λq

)
− (1 + 2 + · · ·+ q) .

Similarly,

∑
{

γ1, γ2, . . . , γq
}
=
(
µ1 + µ2 + · · ·+ µq

)
− (1 + 2 + · · ·+ q) .

9
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Adding these two equalities together, we find

∑
{

α1, α2, . . . , αq
}
+ ∑

{
γ1, γ2, . . . , γq

}
=
(
λ1 + λ2 + · · ·+ λq

)
− (1 + 2 + · · ·+ q)

+
(
µ1 + µ2 + · · ·+ µq

)
− (1 + 2 + · · ·+ q)

=
(
λ1 + λ2 + · · ·+ λq

)
+
(
µ1 + µ2 + · · ·+ µq

)
− 2 (1 + 2 + · · ·+ q)︸ ︷︷ ︸

≡0 mod 2

≡
(
λ1 + λ2 + · · ·+ λq

)
+
(
µ1 + µ2 + · · ·+ µq

)
mod 2.

Hence,

(−1)∑{α1,α2,...,αq}+∑{γ1,γ2,...,γq}

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq) . (21)

Finally, using (19), we can rewrite (18) as

det
(

bγi,αj

)
i,j∈[q]

= (−1)∑{γ1,γ2,...,γq}+∑{α1,α2,...,αq}︸ ︷︷ ︸
=(−1)∑{α1,α2,...,αq}+∑{γ1,γ2,...,γq}

=(−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)

(by (21))

det
(

sub
T\{γ1,γ2,...,γq}
T\{α1,α2,...,αq}

(
B−1

))
︸ ︷︷ ︸

=det
(

cηi ,ωj

)
i,j∈[p]

(by (20))

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq) det
(

cηi,ωj

)
i,j∈[p]

.

In view of γi = µi − i and αj = λj − j and ηi = −1 − βi︸︷︷︸
=λ′

i−i

= −1 −

(
λ′

i − i
)
= i − λ′

i − 1 and ωj = −1 − δj︸︷︷︸
=µ′

j−j

= −1 −
(

µ′
j − j

)
= j − µ′

j − 1,

we can rewrite this as

det
(

bµi−i, λj−j

)
i,j∈[q]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq) det
(

ci−λ′
i−1, j−µ′

j−1

)
i,j∈[p]

.

This proves Lemma B.5. ■

Lemma B.6. Let
(
ui,j
)

i,j∈[p] be a p × p-matrix. Furthermore, let
α1, α2, . . . , αp, β1, β2, . . . , βp be any 2p scalars. Then,

det
(
αiβ jui,j

)
i,j∈[p] =

(
p

∏
i=1

αi

)(
p

∏
j=1

β j

)
· det

(
ui,j
)

i,j∈[p] .

10



Errata to “Schur functions: Theme and variations” February 11, 2026

Proof of Lemma B.6. The matrix
(
αiβ jui,j

)
i,j∈[p] is obtained from the matrix(

ui,j
)

i,j∈[p] by

• multiplying the i-th row by αi for each i ∈ [p], and then

• multiplying the j-th column by β j for each j ∈ [p].

Each of these operations multiplies the determinant of the matrix by the
corresponding factor αi or β j. Thus, in total, the determinant gets multi-

plied by
( p

∏
i=1

αi

)( p
∏
j=1

β j

)
. This proves Lemma B.6. ■

Now, we can prove (6.9):

Proof of (6.9): Write the partitions λ, λ′, µ and µ′ in the forms

λ =
(
λ1, λ2, . . . , λq

)
, λ′ =

(
λ′

1, λ′
2, . . . , λ′

p

)
,

µ =
(
µ1, µ2, . . . , µq

)
, µ′ =

(
µ′

1, µ′
2, . . . , µ′

p

)
for some p, q ∈ N (where, of course, the entries λi, λ′

j, µi and µ′
j are allowed

to be 0).

Recall that

H (x | a) =
(

hj−i

(
x | τi+1a

))
i,j∈Z

and

E (x | a) =
(
(−1)j−i ej−i

(
x | τ ja

))
i,j∈Z

are two upper unitriangular matrices in UTZ (since e0 (x | a) = 0 and
ek (x | a) = 0 whenever k < 0). From (6.6), we know that the matrix
E (x | a) is the inverse matrix of H (x | a). Hence, Lemma B.5 (applied
to B = H (x | a) and bi,j = hj−i

(
x | τi+1a

)
and ci,j = (−1)j−i ej−i

(
x | τ ja

)
)

yields

det
(

h(λj−j)−(µi−i)

(
x | τµi−i+1a

))
i,j∈[q]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)

det
(
(−1)

(
j−µ′

j−1
)
−(i−λ′

i−1) e(
j−µ′

j−1
)
−(i−λ′

i−1)

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

.

In view of
(
λj − j

)
− (µi − i) = λj −µi − j+ i and

(
j − µ′

j − 1
)
−
(
i − λ′

i − 1
)
=

11
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λ′
i − µ′

j − i + j, we can rewrite this as

det
(

hλj−µi−j+i

(
x | τµi−i+1a

))
i,j∈[q]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)

det
(
(−1)λ′

i−µ′
j−i+j eλ′

i−µ′
j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

.

In view of

det
(

hλj−µi−j+i

(
x | τµi−i+1a

))
i,j∈[q]

= det
(

hλi−µj−i+j

(
x | τµj−j+1a

))
i,j∈[q]

(since the determinant of a matrix does not change when we transpose it)
and

det

 (−1)λ′
i−µ′

j−i+j︸ ︷︷ ︸
=(−1)λ′i−i

(−1)
µ′j−j

eλ′
i−µ′

j−i+j

(
x | τ

j−µ′
j−1a

)
i,j∈[p]

= det
(
(−1)λ′

i−i (−1)µ′
j−j eλ′

i−µ′
j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

=

(
p

∏
i=1

(−1)λ′
i−i

)(
p

∏
j=1

(−1)µ′
j−j

)
· det

(
eλ′

i−µ′
j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

(by Lemma B.6, applied to αi = (−1)λ′
i−i and β j = (−1)µ′

j−j and ui,j =

eλ′
i−µ′

j−i+j

(
x | τ

j−µ′
j−1a

)
), we can rewrite this as

det
(

hλi−µj−i+j

(
x | τµj−j+1a

))
i,j∈[q]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)(
p

∏
i=1

(−1)λ′
i−i

)(
p

∏
j=1

(−1)µ′
j−j

)
· det

(
eλ′

i−µ′
j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

= (−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)
(

p

∏
i=1

(−1)λ′
i−i

)(
p

∏
j=1

(−1)µ′
j−j

)
· det

(
eλ′

i−µ′
j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

. (22)

12
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However,

(−1)(λ1+λ2+···+λq)+(µ1+µ2+···+µq)
(

p

∏
i=1

(−1)λ′
i−i

)(
p

∏
j=1

(−1)µ′
j−j

)

= (−1)
(λ1+λ2+···+λq)+(µ1+µ2+···+µq)+

p
∑

i=1
(λ′

i−i)+
p
∑

j=1

(
µ′

j−j
)

= 1,

since

(
λ1 + λ2 + · · ·+ λq

)︸ ︷︷ ︸
=|λ|

+
(
µ1 + µ2 + · · ·+ µq

)︸ ︷︷ ︸
=|µ|

+
p

∑
i=1

(
λ′

i − i
)

︸ ︷︷ ︸
=

p
∑

i=1
λ′

i−
p
∑

i=1
i

+
p

∑
j=1

(
µ′

j − j
)

︸ ︷︷ ︸
=

p
∑

j=1
µ′

j−
p
∑

j=1
j

= |λ|+ |µ|+
p

∑
i=1

λ′
i︸ ︷︷ ︸

=|λ′|=|λ|

−
p

∑
i=1

i︸︷︷︸
=1+2+···+p

+
p

∑
j=1

µ′
j︸ ︷︷ ︸

=|µ′|=|µ|

−
p

∑
j=1

j︸︷︷︸
=1+2+···+p

= |λ|+ |µ|+ |λ|+ (1 + 2 + · · ·+ p) + |µ|+ (1 + 2 + · · ·+ p)
= 2 (|λ|+ |µ|+ (1 + 2 + · · ·+ p)) is even.

Thus, we can rewrite (22) as

det
(

hλi−µj−i+j

(
x | τµj−j+1a

))
i,j∈[q]

= 1 · det
(

eλ′
i−µ′

j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

= det
(

eλ′
i−µ′

j−i+j

(
x | τ

j−µ′
j−1a

))
i,j∈[p]

= det
(

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

))
i,j∈[p]

(
since j − µ′

j − 1 = −µ′
j + j − 1

)
.

In view of (6.8), this can be rewritten as

sλ/µ (x | a) = det
(

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

))
i,j∈[p]

.

This proves (6.9). ■

Applying (6.9) to µ = ∅, we obtain the second equality in (6.7).

6. page 18, (6.9): See the previous bullet point for a proof of (6.9).

7. page 18, (6.10): Let me prove (6.10) here. We will need a simple lemma
about determinants.

13
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If p and q are two integers such that p ≤ q + 1, then [p, q] shall denote the
set of all integers m such that p ≤ m ≤ q. We call this set an integer interval.
It has size q − p + 1 (so it is empty if p = q + 1).

For a given r ∈ N, we shall denote the integer interval [1, r] = {1, 2, . . . , r}
by [r].

Our lemma says the following:

Lemma B.7. Let
(
ui,j
)

i,j∈[p] be a p× p-matrix for some p ∈ N. Let
U and V be two subsets of [p] satisfying |U|+ |V| > p. Assume
that

ui,j = 0 for all i ∈ U and j ∈ V. (23)

Then, det
(
ui,j
)

i,j∈[p] = 0.

Proof of Lemma B.7. By the definition of a determinant, we have

det
(
ui,j
)

i,j∈[p] = ∑
σ∈Sp

sign σ ·
p

∏
i=1

ui,σ(i) (24)

(where Sp is the symmetric group of all permutations of [p]). Now we shall
show that each σ ∈ Sp satisfies

p

∏
i=1

ui,σ(i) = 0. (25)

(Proof: Let σ ∈ Sp. Then, |σ (U)| = |U| > p − |V| (since |U|+ |V| > p),
so that σ (U) ̸⊆ [p] \ V (since σ (U) ⊆ [p] \ V would entail |σ (U)| ≤
|[p] \ V| = p − |V|, contradicting |σ (U)| > p − |V|). In other words, there
exists some j ∈ σ (U) such that j /∈ [p] \V. Consider this j. From j ∈ σ (U),
we obtain j = σ (k) for some k ∈ U. Consider this k. Now, k ∈ U and j ∈ V
(since j ∈ [p] but j /∈ [p] \ V). Hence, (23) (applied to i = k) yields uk,j = 0.
In other words, uk,σ(k) = 0 (since j = σ (k)). Thus, one of the factors of the

product
p

∏
i=1

ui,σ(i) is 0 (namely, the k-th factor). Hence, this whole product

is 0. This proves (25).)

Now, (24) becomes

det
(
ui,j
)

i,j∈[p] = ∑
σ∈Sp

sign σ ·
p

∏
i=1

ui,σ(i)︸ ︷︷ ︸
=0

(by (24))

= 0.

This proves Lemma B.7. ■

14
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We can now prove (6.10):

Proof of (6.10). Assume that we don’t have 0 ≤ λ′
i − µ′

i ≤ n for all i. We
must prove that sλ/µ (x | a) = 0.

Write the partitions λ′ and µ′ as λ′ =
(

λ′
1, λ′

2, . . . , λ′
p

)
and µ′ =

(
µ′

1, µ′
2, . . . , µ′

p

)
.

Then, all i > p satisfy λ′
i = 0 and µ′

i = 0 and therefore λ′
i − µ′

i = 0 − 0 = 0.
Note also that λ′

1 ≥ λ′
2 ≥ λ′

3 ≥ · · · (since λ′ is a partition) and µ′
1 ≥ µ′

2 ≥
µ′

3 ≥ · · · (similarly). From (6.9), we obtain

sλ/µ (x | a) = det
(

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

))
i,j∈[p]

. (26)

We have assumed that we don’t have 0 ≤ λ′
i − µ′

i ≤ n for all i. In other
words, there exists some i ≥ 1 such that we don’t have 0 ≤ λ′

i − µ′
i ≤ n.

Consider this i, and denote it by k. Thus, we don’t have 0 ≤ λ′
k − µ′

k ≤ n.
Hence, we have either λ′

k − µ′
k < 0 or λ′

k − µ′
k > n. We are thus in one of

the following two cases:

Case 1: We have λ′
k − µ′

k < 0.

Case 2: We have λ′
k − µ′

k > n.

Consider Case 1 first. In this case, we have λ′
k − µ′

k < 0. Hence, we cannot
have k > p (since all i > p satisfy λ′

i − µ′
i = 0, which would yield λ′

k − µ′
k =

0 if we had k > p). Thus, k ≤ p, so that k ∈ [p].

Now, let i ∈ [k, p] and j ∈ [k]. Then, i ≥ k (since i ∈ [k, p]), so that k ≤ i
and thus λ′

k ≥ λ′
i (since λ′

1 ≥ λ′
2 ≥ λ′

3 ≥ · · · ). Thus, λ′
i ≤ λ′

k. Furthermore,
j ≤ k (since j ∈ [k]), so that µ′

j ≥ µ′
k. Thus,

λ′
i︸︷︷︸

≤λ′
k

− µ′
j︸︷︷︸

≥µ′
k

− i︸︷︷︸
≥k

+ j︸︷︷︸
≤k

≤ λ′
k − µ′

k − k + k = λ′
k − µ′

k < 0,

and therefore eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
= 0 (since eℓ

(
x | τ

−µ′
j+j−1a

)
= 0

for any ℓ < 0).

Forget that we fixed i and j. We thus have shown that

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
= 0 for all i ∈ [k, p] and j ∈ [k] .

Hence, Lemma B.7 (applied to ui,j = eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
) yields that

det
(

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

))
i,j∈[p]

= 0

(since |[k, p]|︸ ︷︷ ︸
=p−k+1

+ |[k]|︸︷︷︸
=k

= (p − k + 1) + k = p + 1 > p). Hence, (26) rewrites

as sλ/µ (x | a) = 0. This proves (6.10) in Case 1.
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Let us now consider Case 2. In this case, we have λ′
k − µ′

k > n. Hence, we
cannot have k > p (since all i > p satisfy λ′

i − µ′
i = 0, which would yield

λ′
k − µ′

k = 0 ≤ n if we had k > p). Thus, k ≤ p, so that k ∈ [p].

Now, let i ∈ [k] and j ∈ [k, p]. Then, j ≥ k (since j ∈ [k, p]), so that k ≤ j and
thus µ′

k ≥ µ′
j (since µ′

1 ≥ µ′
2 ≥ µ′

3 ≥ · · · ). Hence, µ′
j ≤ µ′

k. Furthermore,
i ≤ k (since i ∈ [k]), so that λ′

i ≥ λ′
k. Thus,

λ′
i︸︷︷︸

≥λ′
k

− µ′
j︸︷︷︸

≤µ′
k

− i︸︷︷︸
≤k

+ j︸︷︷︸
≥k

≥ λ′
k − µ′

k − k + k = λ′
k − µ′

k > n,

and therefore eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
= 0 (since eℓ

(
x | τ

−µ′
j+j−1a

)
= 0

for any ℓ > n).

Forget that we fixed i and j. We thus have shown that

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
= 0 for all i ∈ [k] and j ∈ [k, p] .

Hence, Lemma B.7 (applied to ui,j = eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

)
) yields that

det
(

eλ′
i−µ′

j−i+j

(
x | τ

−µ′
j+j−1a

))
i,j∈[p]

= 0

(since |[k]|︸︷︷︸
=k

+ |[k, p]|︸ ︷︷ ︸
=p−k+1

= k + (p − k + 1) = p + 1 > p). Hence, (26) rewrites

as sλ/µ (x | a) = 0. This proves (6.10) in Case 2.

We have now proved (6.10) in both Cases 1 and 2; this completes the proof
of (6.10). ■

8. page 19, proof of (6.12): In the last displayed equation of the proof, replace
“ej−k

(
y | τn+ja

)
” by “ej−i

(
y | τn+ja

)
”.

9. page 19, proof of (6.13): Let me explain in some more detail how the
equality ∧r

H (x, y | a) =
∧r

H (x | a) .
∧r

H (y | τna)

yields the claim (6.13).

Indeed, a well-known corollary of the Cauchy–Binet theorem (specifically,
[Grinbe20, Corollary 7.182], or rather its version for infinite matrices2)

2The version for infinite matrices is proved in the same way as the version for finite matrices, as
long as (formal) convergence is taken care of (and that is easy when the matrices in question
are upper-triangular).
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yields

det
(

sub{λ1−1,λ2−2,...,λr−r}
{µ1−1,µ2−2,...,µr−r} (H (x | a) · H (y | τna))

)
= ∑

g1<g2<···<gr

det
(

sub{g1,g2,...,gr}
{µ1−1,µ2−2,...,µr−r} (H (x | a))

)
· det

(
sub{λ1−1,λ2−2,...,λr−r}

{g1,g2,...,gr} (H (y | τna))
)

,

where the sum ranges over all strictly increasing r-tuples (g1 < g2 < · · · < gr)
of integers. Using (6.12)(ii), we can rewrite this as

det
(

sub{λ1−1,λ2−2,...,λr−r}
{µ1−1,µ2−2,...,µr−r} (H (xy | a))

)
= ∑

g1<g2<···<gr

det
(

sub{g1,g2,...,gr}
{µ1−1,µ2−2,...,µr−r} (H (x | a))

)
· det

(
sub{λ1−1,λ2−2,...,λr−r}

{g1,g2,...,gr} (H (y | τna))
)

= ∑
S is an r-element

set of integers

det
(

subS
{µ1−1,µ2−2,...,µr−r} (H (x | a))

)
· det

(
sub{λ1−1,λ2−2,...,λr−r}

S (H (y | τna))
)

= ∑
ν is a partition
of length ≤r

det
(

sub{ν1−1,ν2−2,...,νr−r}
{µ1−1,µ2−2,...,µr−r} (H (x | a))

)

· det
(

sub{λ1−1,λ2−2,...,λr−r}
{ν1−1,ν2−2,...,νr−r} (H (y | τna))

)
(27)

(here, we have reindexed the sum, since each r-element set S of integers can
be written uniquely in the form {ν1 − 1, ν2 − 2, . . . , νr − r} for a partition ν
of length ≤ r, and conversely, any set of the latter form is an r-element set
of integers).

However, in the second sentence of the proof of (6.13), it was said that

sλ/µ (x, y | a) = det
(

sub{λ1−1,λ2−2,...,λr−r}
{µ1−1,µ2−2,...,µr−r} (H (xy | a))

)
.

Similarly, for any partition ν of length ≤ n, we have

sν/µ (x | a) = det
(

sub{ν1−1,ν2−2,...,νr−r}
{µ1−1,µ2−2,...,µr−r} (H (x | a))

)
and

sλ/ν (y | τna) = det
(

sub{λ1−1,λ2−2,...,λr−r}
{ν1−1,ν2−2,...,νr−r} (H (y | τna))

)
.

In view of these three equalities, we can rewrite (27) as

sλ/µ (x, y | a) = ∑
ν is a partition
of length ≤r

sν/µ (x | a) sλ/ν (y | τna)

= ∑
ν is a partition

sν/µ (x | a) sλ/ν (y | τna)
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(here, we have removed the condition “of length ≤ r” from the sum; this
does not change the sum, since all newly introduced addends are zero3).
This proves (6.13).

10. page 19, the paragraph containing (6.14): Replace “Let x(i), . . . , x(n) be”
by “Let x(1), . . . , x(n) be”.

11. page 19, the paragraph containing (6.14): Replace “where x(i) =
(

x(1)1 , . . . , x(i)ri

)
”

by “where x(i) =
(

x(i)1 , . . . , x(i)ri

)
”.

12. page 19, (6.14): On the left hand side of (6.14), replace “x(i), . . . , x(n)” by
“x(1), . . . , x(n)”.

13. page 19, last paragraph: Let me explain why

sλ/µ (x | a) = ∏
i≥1

hλi−µi

(
x | τµi−i+1a

)
(28)

when λ − µ is a horizontal strip:

Assume that λ − µ is a horizontal strip. Write the partitions λ and µ as
λ =

(
λ1, λ2, . . . , λq

)
and µ =

(
µ1, µ2, . . . , µq

)
, where q ∈ N is sufficiently

large (namely, q ≥ max (ℓ (λ) , ℓ (µ))). Then, for any i, j ∈ [q] satisfying
i > j, we have

hλi−µj−i+j

(
x | τµj−j+1a

)
= 0. (29)

(Proof: Let i, j ∈ [q] satisfy i > j. Thus, j < i, so that λj ≥ λi (since
λ1 ≥ λ2 ≥ λ3 ≥ · · · ) and µj ≥ µi (similarly). In other words, λi ≤ λj and
µi ≤ µj.

The skew partition λ − µ is a horizontal strip, i.e., contains no two cells
in the same column. However, if we had µj < λi, then the two distinct
cells (i, λi) and (j, λi) would both belong to λ − µ (indeed, we would
have (i, λi) ∈ λ − µ because of µi ≤ µj < λi ≤ λi, and we would have
(j, λi) ∈ λ − µ because of µj < λi ≤ λj), which would contradict the
preceding sentence (since these two cells clearly lie in the same column).
Thus, we cannot have µj < λi. In other words, we have µj ≥ λi. Hence, λi −

3Proof. Let ν is a partition of length > r. We must show that sν/µ (x | a) sλ/ν (y | τna) = 0.
Since ν has length > r, we have l (ν) > r. Thus, ν′1 = l (ν) > r ≥ max (l (λ) , l (µ)) ≥ l (λ) =

λ′
1 and therefore 0 > λ′

1 − ν′1. Hence, we don’t have 0 ≤ λ′
1 − ν′1 ≤ n. Thus, we don’t have

0 ≤ λ′
i − ν′i ≤ n for all i (since this inequality fails for i = 1). Thus, (6.10) (applied to ν, τna

and y instead of µ, a and x) yields sλ/ν (y | τna) = 0. Therefore, sν/µ (x | a) sλ/ν (y | τna)︸ ︷︷ ︸
=0

= 0

as well.
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µj︸︷︷︸
≥λi

− i︸︷︷︸
>j

+ j < λi −λi − j+ j = 0, and therefore hλi−µj−i+j

(
x | τµj−j+1a

)
=

0 (since hk

(
x | τµj−j+1a

)
= 0 for any k < 0). This proves (29).)

Now, (29) shows that the matrix
(

hλi−µj−i+j

(
x | τµj−j+1a

))
i,j∈[q]

is upper-

triangular. Hence, its determinant is the product of its diagonal entries. In
other words,

det
(

hλi−µj−i+j

(
x | τµj−j+1a

))
i,j∈[q]

=
q

∏
i=1

hλi−µi−i+i

(
x | τµi−i+1a

)
︸ ︷︷ ︸

=hλi−µi(x|τµi−i+1a)
(since λi−µi−i+i=λi−µi)

=
q

∏
i=1

hλi−µi

(
x | τµi−i+1a

)
.

In view of (6.8), we can rewrite this as

sλ/µ (x | a) =
q

∏
i=1

hλi−µi

(
x | τµi−i+1a

)
. (30)

This is a finite product, but we can extend it to an infinite product over
all i ≥ 1; this will not change the value of the product, since all the newly
inserted factors hλi−µi

(
x | τµi−i+1a

)
for i > q will equal 1 (because if i >

q, then λi = 0 and µi = 0 and therefore λi − µi = 0 − 0 = 0, so that
hλi−µi

(
x | τµi−i+1a

)
= h0

(
x | τµi−i+1a

)
= 1). Hence, (30) can be rewritten

as
sλ/µ (x | a) = ∏

i≥1
hλi−µi

(
x | τµi−i+1a

)
.

This proves (28). ■

14. page 19, last paragraph: At the end of the last display on this page, there
is a period. This period should be a comma.

15. page 20, proof of (6.17): Replace “Aδm+n (x, y)” by “Aδm+n (x, y | a)”. Like-
wise, replace “Aδn (x)” by “Aδn (x | a)”. Likewise, replace “Aδm (y)” by
“Aδm (y | a)”.

16. page 20, proof of (6.17): The equality

Aδm+n (x, y) = ∑
λ⊂(mn)

(−1)|λ̂| Aλ+δn (x) A
λ̂′+δm

(y)
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should be

Aδm+n (x, y | a) = ∑
λ⊂(mn)

(−1)|λ̂| Aλ+δn (x | a) A
λ̂′+δm

(y | a) (31)

instead.
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