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1. Chip-firing on digraphs
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Example:
Start with
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(The vertices drawn in red are the ones that can be fired.)
Let us fire the top vertex. 3 / 30
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Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Example:
After firing the top vertex, obtain
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Let us fire the bottom left vertex.
3 / 30



Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Example:
After then firing the bottom left vertex, get
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Let us fire the bottom right vertex thrice.
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Example:
After then firing the bottom right vertex thrice, get
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And so on... this game can (and will) go on forever.
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Another example:
Start with

1 hh
((

HH

		

0HH

		
2 hh

((
0

.

(The vertices drawn in red are the ones that can be fired.)
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Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Another example:
After firing the bottom left vertex, obtain
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

Another example:
After then firing the top left vertex, get
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No more firing is possible here; the game has terminated.
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

We see that the chip-firing game will sometimes terminate
after finitely many steps, but sometimes never will. There are
some nontrivial results (Björner, Lovasz, Shor and others):

Whether it terminates depends only on the starting
configuration (not on the choices of vertices to fire).
If it terminates, the configuration obtained in the end
depends only on the starting configuration.
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Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
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has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

A neater situation is obtained if we fix a “global sink” q (a
vertex reachable from every vertex), and disallow firing q.
Then, the game always terminates.
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Chip-firing on digraphs and the critical group

Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.
Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v , we move a chip from v to the target
of a). This is called “firing v”.

A neater situation is obtained if we fix a “global sink” q (a
vertex reachable from every vertex), and disallow firing q.
Then, the game always terminates. Again, there are
remarkable properties (see Holroyd et al., arXiv:0801.3306):

The configuration obtained in the end depends only on
the starting configuration.
“Sandpile monoid” and “sandpile group”.
Relations to Eulerian walks and to spanning trees. 3 / 30
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Chip-firing on digraphs: the matrix point of view, 1

We can describe chip-firing on a loopless digraph D via the
Laplacian of D.

Label the vertices of D by 1, 2, . . . , n.

The Laplacian of D is the n × n-matrix L whose (i , j)-th entry
is

Li ,j =

{
deg+ i , if j = i ;

−ai ,j , if j 6= i
,

where deg+ i is the outdegree of the vertex i , and ai ,j is the
number of arcs from i to j .

A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n entries (the i-th entry
being the number of chips at vertex i).

Firing the vertex i modifies such a vector by subtracting the
i-th row of L.

The same holds for the variant where we fix a global sink q
and never fire it...
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Chip-firing on digraphs: the matrix point of view, 2

We can describe chip-firing on a loopless digraph D with a
global sink q via the reduced Laplacian of D.

Label the vertices of D by 1, 2, . . . , n in such a way that the
global sink q is n.

The reduced Laplacian of D is the (n − 1)× (n − 1)-matrix L
obtained from L by removing the last row and the last column.

A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n − 1 entries (the i-th entry
being the number of chips at vertex i).
We forget the number of chips on the sink here.

Firing the vertex i modifies such a vector by subtracting the
i-th row of L.
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Nonsingular M-matrices, 1

Restating everything in terms of the Laplacian L and
forgetting about the digraph allows us to crystallize the
important parts of the argument and gain further generality.
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Nonsingular M-matrices, 2

A Z-matrix is an `× `-matrix C ∈ Z`×` whose off-diagonal
entries Ci ,j (with i 6= j) are all ≤ 0.
A nonsingular M-matrix is a Z-matrix C whose inverse C−1

exists and satisfies C−1 ≥ 0.
Here, inequalities between matrices are entrywise.

Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
a Z-matrix C , the following are equivalent:

C is a nonsingular M-matrix.
CT is a nonsingular M-matrix.
There exists a column vector x ∈ Q` with x > 0 and
Cx > 0. (Again, entrywise.)
The “generalized chip-firing game” in which we start with
a row vector r ≥ 0 and keep subtracting rows of C while
keeping the vector ≥ 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).

Actually, “depends only on the starting state” follows from
“Z-matrix”, but termination requires “nonsingular M-matrix”.

7 / 30



Nonsingular M-matrices, 2

A Z-matrix is an `× `-matrix C ∈ Z`×` whose off-diagonal
entries Ci ,j (with i 6= j) are all ≤ 0.
A nonsingular M-matrix is a Z-matrix C whose inverse C−1

exists and satisfies C−1 ≥ 0.
Here, inequalities between matrices are entrywise.
Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
a Z-matrix C , the following are equivalent:

C is a nonsingular M-matrix.
CT is a nonsingular M-matrix.
There exists a column vector x ∈ Q` with x > 0 and
Cx > 0. (Again, entrywise.)
The “generalized chip-firing game” in which we start with
a row vector r ≥ 0 and keep subtracting rows of C while
keeping the vector ≥ 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).

Actually, “depends only on the starting state” follows from
“Z-matrix”, but termination requires “nonsingular M-matrix”.

7 / 30



Nonsingular M-matrices, 2

A Z-matrix is an `× `-matrix C ∈ Z`×` whose off-diagonal
entries Ci ,j (with i 6= j) are all ≤ 0.
A nonsingular M-matrix is a Z-matrix C whose inverse C−1

exists and satisfies C−1 ≥ 0.
Here, inequalities between matrices are entrywise.
Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
a Z-matrix C , the following are equivalent:

C is a nonsingular M-matrix.
CT is a nonsingular M-matrix.
There exists a column vector x ∈ Q` with x > 0 and
Cx > 0. (Again, entrywise.)
The “generalized chip-firing game” in which we start with
a row vector r ≥ 0 and keep subtracting rows of C while
keeping the vector ≥ 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).

Actually, “depends only on the starting state” follows from
“Z-matrix”, but termination requires “nonsingular M-matrix”.

7 / 30



Nonsingular M-matrices, 2

A Z-matrix is an `× `-matrix C ∈ Z`×` whose off-diagonal
entries Ci ,j (with i 6= j) are all ≤ 0.
A nonsingular M-matrix is a Z-matrix C whose inverse C−1

exists and satisfies C−1 ≥ 0.
Here, inequalities between matrices are entrywise.
Theorem (Gabrielov, Benkart, Klivans, Reiner, ...?): For
a Z-matrix C , the following are equivalent:

C is a nonsingular M-matrix.
CT is a nonsingular M-matrix.
There exists a column vector x ∈ Q` with x > 0 and
Cx > 0. (Again, entrywise.)
The “generalized chip-firing game” in which we start with
a row vector r ≥ 0 and keep subtracting rows of C while
keeping the vector ≥ 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).

Actually, “depends only on the starting state” follows from
“Z-matrix”, but termination requires “nonsingular M-matrix”.

7 / 30



The sandpile monoid

Given a digraph D with a chosen global sink q, we can define
a finite abelian monoid as follows:

A chip configuration is a placement of finitely many chips
on the vertices of D.
(Rigorously: a nonnegative integer vector.)
Chips placed on q are ignored.
Configurations are added entrywise.
The stabilization of a configuration x is the configuration
obtained from x by repeatedly firing vertices ( 6= q) until
this no longer becomes possible. We call this stabilization
x◦.
A configuration is stable if no vertex can be fired in it.

The sandpile monoid of (D, q) is the monoid of all stable
configurations, with monoid operation given by
(f , g) 7→ (f + g)◦.
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The critical group

Given a digraph D with a chosen global sink q, we can define
a finite abelian group as follows:

If M is a finite abelian monoid, then the intersection of
all (nonempty) ideals of M is a group. (Neat exercise.)
Applied to M being the sandpile monoid of (D, q), this
yields the critical group of (D, q). (Also known as the
sandpile group.)

But again, we can also define this in terms of the Laplacian:
Namely, the critical group of (D, q) is

K (D, q) = coker
(
L
T
)

= Zn−1/
(
L
TZn−1

)
.

When D is Eulerian, this group does not depend on q (up to
iso). Thus, we call it just K (D).
When D is Eulerian, we have coker

(
LT
)

= Z︸︷︷︸
free part

⊕ K (D)︸ ︷︷ ︸
torsion part

.

Much of chip-firing theory doesn’t need a digraph. A square
matrix over Z is enough... and a nonsingular M-matrix is
particularly helpful.
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2. The critical group of a group character

2
The critical group of a group character

References:

Georgia Benkart, Caroline Klivans, Victor Reiner, Chip firing
on Dynkin diagrams and McKay quivers, arXiv:1601.06849.

Christian Gaetz, Critical groups of McKay-Cartan matrices,
honors thesis 2016.

Victor Reiner’s talk slides.
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The McKay matrix of a representation, 1

Where else can we get nonsingular M-matrices from?
Let G be a finite group.
Let S1,S2, . . . ,S`+1 be the irreps (= irreducible
representations) of G over C. Let χ1, χ2, . . . , χ`+1 be their
characters.

Fix any representation V of G over C (not necessarily
irreducible), and let χV be its character. Set
n = dimV = χV (e).
The McKay matrix of V is the (`+ 1)× (`+ 1)-matrix MV

whose (i , j)-th entry is the coefficient mi ,j in the expansion

χSi⊗V = χiχV =
`+1∑
j=1

mi ,jχj .

We define a further (`+ 1)× (`+ 1)-matrix LV (our
“Laplacian”) by LV = nI −MV .
Warning: Unlike the digraph case, the matrix LV neither has
row sums 0 nor has column sums 0!
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The McKay matrix of a representation, 2a: example

Example: The symmetric group S4 has 5 irreps
S1,S2,S3, S4,S5, corresponding to the partitions
(4) , (3, 1) , (2, 2) , (2, 1, 1) , (1, 1, 1, 1), respectively. We shall
just call them D4,D31,D22,D211,D1111 for clarity.
Their characters
χ0 = χD4 , χ1 = χD31 , χ2 = χD22 , χ3 = χD211 , χ4 = χD1111

are the rows of the following character table:



e (ij) (ij)(kl) (ijk) (ijkl)

χD4 1 1 1 1 1
χD31 3 1 0 −1 −1
χD22 2 0 −1 2 0
χD211 3 −1 0 −1 1
χD1111 1 −1 1 1 −1


(these are given by weighted counting of rim hook tableaux,
according to the Murnaghan-Nakayama rule).
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The McKay matrix of a representation, 2b: example

Example (cont’d): Let V = D31. Then, the McKay matrix
MV is

MV =


0 1 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 1 1
0 0 0 1 0


(these are Kronecker coefficients, since D31 too is irreducible).
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For example, the second row is because

χD31⊗D31 = 1χD4 + 1χD31 + 1χD22 + 1χD211 + 0χD1111 .
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The critical group of a representation

Let LV be the matrix LV with its row and column
corresponding to the trivial irrep removed. This is an
`× `-matrix.
Define the critical group K (V ) of V by K (V ) = coker

(
LV
)
.

Also, coker (LV ) ∼= Z⊕ K (V ).
That said, K (V ) is not always torsion.
In our above example,

LV =


3 −1 0 0 0
−1 2 −1 −1 0
0 −1 3 −1 0
0 −1 −1 2 −1
0 0 0 −1 3

 =⇒ LV =


2 −1 −1 0
−1 3 −1 0
−1 −1 2 −1
0 0 −1 3

 .

(Recall that the cokernel of a square matrix M ∈ ZN×N is
∼=
⊕

i (Z/miZ), where the mi are the diagonal entries in the
Smith normal form of M. This is how the above was
computed.)
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Facts on the critical group

Theorems (Benkart, Klivans, Reiner, Gaetz):
The column vector s = (dimS1, dimS2, . . . , dimS`+1)T

belongs to ker (LV ).
It spans the Z-module ker (LV ) if and only if the
G -representation V is faithful.

If the G -representation V is faithful, then LV is a
nonsingular M-matrix.
If the G -representation V is faithful, then

#K (V ) =
1

#G

∏
G -conjugacy class [g ] 6=[e]

(n − χV (g)) .

For the regular G -representation CG , we have

K (CG ) ∼= (Z/nZ)`−1 .

Here, n = dim (CG ) = #G and
` = (number of G -conjugacy classes)− 1.
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Generalizing?

How to generalize this picture?

characteristic-0 representations → modular
representations.

algebraically closed field C → any field.
finite-dimensional → arbitrary dimension.
finite group → finite-dimensional Hopf algebra.

We shall only study the two blue directions. (The others are
interesting, too!)
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3. The critical group of a Hopf algebra module

3
The critical group of a Hopf algebra module

References:

Darij Grinberg, Jia Huang, Victor Reiner, Critical groups for
Hopf algebra modules, arXiv:1704.03778.

17 / 30
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Introducing the Hopf algebra A

Let F be any algebraically closed field of any characteristic.

All F-vector spaces in the following are finite-dimensional.
dim always means F-vector space dimension.
⊗ always means ⊗F.

Let A be a finite-dimensional Hopf algebra over F. This
means:

First of all, A is an F-algebra.
Also, A is finite-dimensional as an F-vector space.

Also, A is equipped with

a comultiplication ∆ : A→ A⊗ A,
a counit ε : A→ F,
an antipode α : A→ A

satisfying certain axioms.

18 / 30



Representations of A: generalities

In the following, “A-module” means “left A-module”.

Classical results on representations of A:

There are finitely many simple A-modules
S1,S2, . . . ,S`+1,
and finitely many indecomposable projective A-modules
P1,P2, . . . ,P`+1,
and they can (and will) be labelled in such a way that Pi

is the projective cover of Si .
The left-regular A-module A decomposes as a direct sum

A ∼=
`+1⊕
i=1

PdimSi
i .

For an A-module V , if [V : Si ] denotes the multiplicity of Si
as a composition factor of V , then

[V : Si ] = dim HomA(Pi ,V ).
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Representations of A: tensor category structure

So far we have just used the F-algebra structure on A (and
the algebraic closedness of F).
What if we take into account the Hopf algebra structure too?

The Hopf algebra structure on A allows us to

make the tensor product V ⊗W of two A-modules V
and W into an A-module as well (using ∆);

define a “trivial A-module” called ε (using ε);
this trivial A-module is F as a vector space, and thus is
simple.
make the homspace Hom(V ,W ) = HomF(V ,W ) (any
unadorned Hom sign means HomF here and henceforth)
of two A-modules V and W into an A-module as well
(using ∆ and α),
and thus in particular define a “dual A-module” V ∗ of an
A-module V (without switching sides).
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Hopf algebra examples, 1: the group algebra

Example 1: Let A be the group algebra FG of a finite group
G .
This becomes a Hopf algebra by setting

ε(g) = 1,

∆(g) = g ⊗ g ,

α(g) = g−1

for all g ∈ G .
The A-modules are precisely the representations of G ; the
notions of tensor product, trivial module, etc. are the ones we
know from group representation theory.

Note that if charF = 0, then A is semisimple, so that the
theory dramatically simplifies (e.g., we have Pi = Si for all i).
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Hopf algebra examples, 0: the universal enveloping algebra

“Example 0”: This example does not really fit into our
framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra U (g) of a Lie
algebra g.
This becomes a Hopf algebra by setting

ε(x) = 0,

∆(x) = x ⊗ 1 + 1⊗ x ,

α(x) = −x

for all x ∈ g.
The A-modules are precisely the representations of g; the
notions of tensor product, trivial module, etc. are the ones we
know from Lie algebra representation theory.

Sadly, A is usually infinite-dimensional, and our theory is not
ready for this. (Restricted universal enveloping algebras in
characteristic p do work, though.)
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Hopf algebra examples, 2: the generalized Taft Hopf algebra

Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a
primitive n-th root of unity ω ∈ F. (Recall we assumed F
algebraically closed!)
As an F-algebra, the generalized Taft Hopf algebra A = Hn,m

is given by

generators g , x ;

relations gn = 1, xm = 0, xg = ωgx .
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Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a
primitive n-th root of unity ω ∈ F. (Recall we assumed F
algebraically closed!)
As an F-algebra, the generalized Taft Hopf algebra A = Hn,m

is given by

generators g , x ;

relations gn = 1, xm = 0, xg = ωgx .

More conceptual definition: A is a skew group ring

Hn,m = F[Z/nZ] n F[x ]/(xm)

for the cyclic group Z/nZ = {e, g , g2, . . . , gn−1} acting on
coefficients in a truncated polynomial algebra F[x ]/(xm), via
gxg−1 = ω−1x .
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Example 2: Fix integers m ≥ 0 and n > 0 with m | n. Fix a
primitive n-th root of unity ω ∈ F. (Recall we assumed F
algebraically closed!)
As an F-algebra, the generalized Taft Hopf algebra A = Hn,m

is given by

generators g , x ;

relations gn = 1, xm = 0, xg = ωgx .

This A has F-basis {g ix j : 0 ≤ i < n and 0 ≤ j < m}, whence
dimA = mn.
It becomes a Hopf algebra by setting

ε(g) = 1, ε(x) = 0,
∆(g) = g ⊗ g , ∆(x) = 1⊗ x + x ⊗ g ,
α(g) = g−1, α(x) = −ω−1g−1x .
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algebraically closed!)
As an F-algebra, the generalized Taft Hopf algebra A = Hn,m

is given by

generators g , x ;

relations gn = 1, xm = 0, xg = ωgx .

This A has n projective indecomposable modules, each of
dimension m, whereas its n simple modules are all
1-dimensional.
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Hopf algebra examples, 3: a weird one from Radford

Example 3: Fix integers m ≥ 0 and n > 0 such that n is even
and n lies in F×. Fix a primitive n-th root of unity ω ∈ F.
(Recall we assumed F algebraically closed!)
As an F-algebra, A is given by

generators g , x1, x2, . . . , xm;

relations gn = 1, x2i = 0,

xixj = −xjxi , gxig
−1 = ωxi .
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Example 3: Fix integers m ≥ 0 and n > 0 such that n is even
and n lies in F×. Fix a primitive n-th root of unity ω ∈ F.
(Recall we assumed F algebraically closed!)
As an F-algebra, A is given by

generators g , x1, x2, . . . , xm;

relations gn = 1, x2i = 0,

xixj = −xjxi , gxig
−1 = ωxi .

This A has F-basis
{
g ixJ : 0 ≤ i < n, J ⊆ {1, 2, . . . ,m}

}
(where xJ := xj1xj2 · · · xjk if J = {j1 < j2 < · · · < jk}), whence
dimA = n2m.
It becomes a Hopf algebra by setting

ε (g) = 1, ε (xi ) = 0,

∆ (g) = g ⊗ g , ∆ (xi ) = 1⊗ xi + xi ⊗ gn/2,

α (g) = g−1, α (xi ) = −xign/2.
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The Grothendieck ring G0 (A)

We want to define a “critical group” K (V ) of an A-module
V .

Unlike in the case of group representations, characters are not
very useful; in particular, they don’t “characterize” modules
much any more.

Instead, there is the Grothendieck group G0(A).
It is defined as the Z-module with

generators [V ] corresponding to all A-modules V (keep in
mind: finite-dimensional!),
relations [U]− [V ] + [W ] = 0 for each short exact
sequence 0→ U → V →W → 0 of A-modules.

This Z-module G0(A) has a basis ([S1], . . . , [S`+1]), due to
the Jordan-Hölder theorem.

The Z-module G0(A) becomes a ring (not always
commutative) by setting [V ] · [W ] = [V ⊗W ] and 1 = [ε].
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the Jordan-Hölder theorem.

The Z-module G0(A) becomes a ring (not always
commutative) by setting [V ] · [W ] = [V ⊗W ] and 1 = [ε].

25 / 30



The Grothendieck ring G0 (A)

We want to define a “critical group” K (V ) of an A-module
V .

Unlike in the case of group representations, characters are not
very useful; in particular, they don’t “characterize” modules
much any more.

Instead, there is the Grothendieck group G0(A).
It is defined as the Z-module with

generators [V ] corresponding to all A-modules V (keep in
mind: finite-dimensional!),
relations [U]− [V ] + [W ] = 0 for each short exact
sequence 0→ U → V →W → 0 of A-modules.

This Z-module G0(A) has a basis ([S1], . . . , [S`+1]), due to
the Jordan-Hölder theorem.
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The McKay matrix of an A-module, 1

Now, let us generalize the McKay matrix of a group
representation to the case of an A-module.

Fix any A-module V , and set n = dimV .

The McKay matrix of V is the (`+ 1)× (`+ 1)-matrix MV

whose (i , j)-th entry is the multiplicity [Sj ⊗ V : Si ] of the
simple A-module Si in (a composition series of) Sj ⊗ V .
In other words, its entries are chosen to satisfy

[Si ⊗ V ] = [Si ] [V ] =
`+1∑
j=1

(MV )i ,j [Sj ] .

More conceptually: The matrix MV represents the right
multiplication by [V ] as an endomorphism of G0 (A) with
respect to the basis ([S1], . . . , [S`+1]).

We define a further (`+ 1)× (`+ 1)-matrix LV (our
“Laplacian”) by LV = nI −MV .
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The critical group of an A-module

We want to define our critical group K (V ) in such a way that
coker (LV ) ∼= Z⊕ K (V ).
How do we pick up a canonical complement to Z ?

In matrix terms:
Consider the column vector
s = (dimS1, dimS2, . . . , dimS`+1)T . Then, set
K (V ) = s⊥/ Im (LV ), where s⊥ =

{
x ∈ Z`+1 | sTx = 0

}
.

More conceptually:
There is an augmentation map on G0(A)→ Z. This is the
ring homomorphism sending each [V ] to dimV .
Let I be its kernel.
Set K (V ) = I/G0 (A) (n − [V ]).
Note that multiplication by n − [V ] corresponds to the action
of MV , so this makes sense.
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It is tempting to again define LV by removing the trivial row
and trivial column from LV , and set K (V ) = coker

(
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)
. But

that does not work.
In matrix terms:
Consider the column vector
s = (dimS1, dimS2, . . . , dimS`+1)T . Then, set
K (V ) = s⊥/ Im (LV ), where s⊥ =

{
x ∈ Z`+1 | sTx = 0

}
.

More conceptually:
There is an augmentation map on G0(A)→ Z. This is the
ring homomorphism sending each [V ] to dimV .
Let I be its kernel.
Set K (V ) = I/G0 (A) (n − [V ]).
Note that multiplication by n − [V ] corresponds to the action
of MV , so this makes sense.

27 / 30



The critical group of an A-module

We want to define our critical group K (V ) in such a way that
coker (LV ) ∼= Z⊕ K (V ).
How do we pick up a canonical complement to Z ?
In matrix terms:
Consider the column vector
s = (dimS1, dimS2, . . . , dimS`+1)T . Then, set
K (V ) = s⊥/ Im (LV ), where s⊥ =

{
x ∈ Z`+1 | sTx = 0

}
.

More conceptually:
There is an augmentation map on G0(A)→ Z. This is the
ring homomorphism sending each [V ] to dimV .
Let I be its kernel.
Set K (V ) = I/G0 (A) (n − [V ]).
Note that multiplication by n − [V ] corresponds to the action
of MV , so this makes sense.

27 / 30



The critical group of an A-module

We want to define our critical group K (V ) in such a way that
coker (LV ) ∼= Z⊕ K (V ).
How do we pick up a canonical complement to Z ?
In matrix terms:
Consider the column vector
s = (dimS1, dimS2, . . . , dimS`+1)T . Then, set
K (V ) = s⊥/ Im (LV ), where s⊥ =

{
x ∈ Z`+1 | sTx = 0

}
.

More conceptually:
There is an augmentation map on G0(A)→ Z. This is the
ring homomorphism sending each [V ] to dimV .
Let I be its kernel.
Set K (V ) = I/G0 (A) (n − [V ]).
Note that multiplication by n − [V ] corresponds to the action
of MV , so this makes sense.

27 / 30



Facts on the critical group

Theorems (G., Huang, Reiner):
p = (dimP1, dimP2, . . . , dimP`+1)T ∈ ker (LV ),
whereas
s = (dimS1, dim S2, . . . , dimS`+1)T ∈ ker

(
(LV )T

)
.

These vectors span the respective kernels over Q if and
only if the A-module V is tensor-rich (which is our way
to say that each simple A-module appears in a
composition series of V⊗k for at least one k).

If the A-module V is tensor-rich, then LV is a
nonsingular M-matrix.
For the regular A-module A, we have

K (A) ∼= (Z/γZ)⊕ (Z/nZ)`−1 .

Here, n = dimA, γ = gcd (dimP1, dimP2, . . . , dimP`+1)
and ` = (number of simple A-modules)− 1.
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Facts on the critical group

Theorems (G., Huang, Reiner):
If A = FG is a group algebra, then MV and LV can be
diagonalized:

Fix a Brauer character χW for each A-module
W .
Given a p-regular element g ∈ G , let

s(g) =
(
χS1(g), . . . , χS`+1

(g)
)T

be the Brauer
character values of the simple FG -modules at g .
Then, s(g) is an eigenvector of (MV )T (with

eigenvalue χV (g)) and of (LV )T (with
eigenvalue n − χV (g)).
Given a p-regular element g ∈ G , let

p(g) =
(
χP1(g), . . . , χP`+1

(g)
)T

be the Brauer
character values of the indecomposable projective
FG -modules at g . Then, p(g) is an eigenvector
of MV (with eigenvalue χV (g)) and of LV (with
eigenvalue n − χV (g)).

If the A-module V is tensor-rich, then LV is a
nonsingular M-matrix.

For the regular A-module A, we have
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Facts on the critical group

Theorems (G., Huang, Reiner):
If the A-module V is tensor-rich, then LV is a
nonsingular M-matrix.
(Hence, a theory of “chip-firing” exists. We have not
studied it. It is complicated by the fact that K (V ) is not

generally isomorphic to coker
(

(LV )T
)

any more.)
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Facts on the critical group

Theorems (G., Huang, Reiner):
If the A-module V is tensor-rich, then LV is a
nonsingular M-matrix.

Actually, the following are equivalent:

(i) The matrix LV (obtained from LV by removing
the row and the column corresponding to the
trivial A-module ε) is a nonsingular M-matrix.

(ii) The matrix LV is nonsingular.
(iii) LV has rank `, so nullity 1.
(iv) The critical group K (V ) is finite.
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Facts on the critical group

Theorems (G., Huang, Reiner):
If the A-module V is tensor-rich, then LV is a
nonsingular M-matrix.
If the A-module V is tensor-rich, then

#K (V )

=
∣∣∣ γ

dimA
(product of the nonzero eigenvalues of LV )

∣∣∣ ,
where γ = gcd (dimP1, dimP2, . . . , dimP`+1).
If A = FG is a group algebra, then this can be rewritten
in a more explicit way using Brauer characters as well:

#K (V ) =
γ

#G

∏
[g ] 6=[e] is a p-regular
conjugacy class in G

(n − χV (g)) .

Also, γ is the size of the p-Sylow subgroups of G if F has
characteristic p > 0.

For the regular A-module A, we have
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Questions

We diagonalized LV and MV when A is a group algebra. Can
we do it in general?

What is the meaning of
γ = gcd (dimP1, dimP2, . . . , dimP`+1) for an arbitrary Hopf
algebra A ?
Is there a notion of “Sylow subalgebras” (presumably
subalgebras of dimension γ, which have the form
F⊕ (nilpotents) and over which A is free as a module)?

What can we say about LV when V is not tensor-rich?

What can we say about A and V if V is not tensor-rich? Does
A→ EndV factor through a quotient Hopf algebra then?

Does the theory extend to infinite-dimensional A ? (Think of
universal enveloping algebras – the finite-dimensional
A-modules can be fairly tame.)
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Thank you!

Thanks to

you all for being here,

Paul Terwilliger for the invitation,

Georgia Benkart, Pavel Etingof, Jim Humphreys, Radha
Kessar, Peter J. McNamara, Hans-Jürgen Schneider, Peter
Webb, and Sarah Witherspoon.
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