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Chip-firing on digraphs and the critical group

@ Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

o Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.

o Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v, we move a chip from v to the target
of a). This is called “firing v".

e Example:

Start with

le—————1

(The vertices drawn in red are the ones that can be fired.)
Let us fire the top vertex. 3/30
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After firing the top vertex, obtain

l<——3

Let us fire the bottom left vertex.
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@ Chip-firing on a loopless digraph D is a “solitaire game”
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definition:

o Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.

o Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
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e Example:

After then firing the bottom left vertex, get

0<——3

Let us fire the bottom right vertex thrice.
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e Example:

After then firing the bottom right vertex thrice, get

3=—0

And so on... this game can (and will) go on forever.
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@ Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

o Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.

o Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v, we move a chip from v to the target
of a). This is called “firing v".

@ Another example:

After then firing the top left vertex, get
0__ 1

01

1 1

~—
No more firing is possible here; the game has terminated.



Chip-firing on digraphs and the critical group

@ Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

o Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.

o Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v, we move a chip from v to the target
of a). This is called “firing v".

@ We see that the chip-firing game will sometimes terminate
after finitely many steps, but sometimes never will. There are
some nontrivial results (Bjorner, Lovasz, Shor and others):

o Whether it terminates depends only on the starting
configuration (not on the choices of vertices to fire).

o If it terminates, the configuration obtained in the end
depends only on the starting configuration.
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@ A neater situation is obtained if we fix a “global sink” g (a
vertex reachable from every vertex), and disallow firing g.
Then, the game always terminates.



Chip-firing on digraphs and the critical group

@ Chip-firing on a loopless digraph D is a “solitaire game”
(rigorously: rewriting system, or finite state machine). A brief
definition:

o Start with a finite (nonnegative, integer) number of
(undistinguishable) game chips on each vertex on D.

o Each move (i.e., step) consists of picking a vertex v that
has at least as many chips as it has outgoing arcs, and
“distributing” chips to its out-neighbors (i.e., for each arc
a having source v, we move a chip from v to the target
of a). This is called “firing v".

@ A neater situation is obtained if we fix a “global sink” g (a
vertex reachable from every vertex), and disallow firing g.
Then, the game always terminates.  Again, there are
remarkable properties (see Holroyd et al., arXiv:0801.3306):

o The configuration obtained in the end depends only on
the starting configuration.

e “Sandpile monoid” and “sandpile group”.

o Relations to Eulerian walks and to spanning trees. 3/30
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Chip-firing on digraphs: the matrix point of view, 1

@ We can describe chip-firing on a loopless digraph D via the
Laplacian of D.

@ Label the vertices of D by 1,2,... n.
@ The Laplacian of D is the n x n-matrix L whose (i, j)-th entry

IS
L deg™i, ifj=1;
AR CETI VA

where deg™ i is the outdegree of the vertex i, and ajj is the
number of arcs from i to j.
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Chip-firing on digraphs: the matrix point of view, 1

@ We can describe chip-firing on a loopless digraph D via the
Laplacian of D.

@ Label the vertices of D by 1,2,... n.
@ The Laplacian of D is the n x n-matrix L whose (i, j)-th entry

is
L deg™i, ifj=1;
Y ey, WA
where deg™ i is the outdegree of the vertex i, and ajj is the
number of arcs from i to j.
@ A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n entries (the i-th entry
being the number of chips at vertex 7).

30
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@ We can describe chip-firing on a loopless digraph D via the
Laplacian of D.

@ Label the vertices of D by 1,2,... n.
@ The Laplacian of D is the n x n-matrix L whose (i, j)-th entry
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. deg™i, ifj=1;
Yo —aiy, ifjAT
where deg™ i is the outdegree of the vertex i, and ajj is the
number of arcs from i to j.

@ A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n entries (the i-th entry
being the number of chips at vertex 7).

@ Firing the vertex i modifies such a vector by subtracting the
i-th row of L.



Chip-firing on digraphs: the matrix point of view, 1

@ We can describe chip-firing on a loopless digraph D via the
Laplacian of D.

@ Label the vertices of D by 1,2,... n.

@ The Laplacian of D is the n x n-matrix L whose (i, j)-th entry

is
. deg™i, ifj=1;
O T L
where deg™ i is the outdegree of the vertex i, and ajj is the
number of arcs from i to j.

@ A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n entries (the i-th entry
being the number of chips at vertex /).

@ Firing the vertex i modifies such a vector by subtracting the
i-th row of L.

@ The same holds for the variant where we fix a global sink g
and never fire it...



Chip-firing on digraphs: the matrix point of view, 2

@ We can describe chip-firing on a loopless digraph D with a
global sink g via the reduced Laplacian of D.

@ Label the vertices of D by 1,2,...,n in such a way that the
global sink g is n.

e The reduced Laplacian of D is the (n — 1) x (n — 1)-matrix L
obtained from L by removing the last row and the last column.



Chip-firing on digraphs: the matrix point of view, 2

@ We can describe chip-firing on a loopless digraph D with a
global sink g via the reduced Laplacian of D.

@ Label the vertices of D by 1,2,...,n in such a way that the
global sink g is n.

e The reduced Laplacian of D is the (n — 1) x (n — 1)-matrix L

obtained from L by removing the last row and the last column.

@ A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n — 1 entries (the i-th entry
being the number of chips at vertex /).

We forget the number of chips on the sink here.
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Chip-firing on digraphs: the matrix point of view, 2

We can describe chip-firing on a loopless digraph D with a
global sink g via the reduced Laplacian of D.

Label the vertices of D by 1,2,...,n in such a way that the
global sink g is n.

The reduced Laplacian of D is the (n — 1) x (n — 1)-matrix L
obtained from L by removing the last row and the last column.

A configuration (i.e., placement of chips on the vertices of D)
is modelled by a row vector with n — 1 entries (the i-th entry
being the number of chips at vertex /).

We forget the number of chips on the sink here.

Firing the vertex i modifies such a vector by subtracting the
i-th row of L.



Nonsingular M-matrices, 1

@ Restating everything in terms of the Laplacian L and
forgetting about the digraph allows us to crystallize the
important parts of the argument and gain further generality.



Nonsingular M-matrices, 2

e A Z-matrix is an £ x {-matrix C € Z** whose off-diagonal
entries C;; (with i # j) are all <O0.
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exists and satisfies C~1 > 0.
Here, inequalities between matrices are entrywise.



Nonsingular M-matrices, 2

e A Z-matrix is an £ x {-matrix C € Z** whose off-diagonal
entries C;; (with i # j) are all <O0.
o A nonsingular M-matrix is a Z-matrix C whose inverse C~1
exists and satisfies C~1 > 0.
Here, inequalities between matrices are entrywise.
@ Theorem (Gabrielov, Benkart, Klivans, Reiner, ...7): For
a Z-matrix C, the following are equivalent:
e C is a nonsingular M-matrix.
o CT is a nonsingular M-matrix.
o There exists a column vector x € Q¢ with x > 0 and
Cx > 0. (Again, entrywise.)
e The “generalized chip-firing game” in which we start with
a row vector r > 0 and keep subtracting rows of C while
keeping the vector > 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).



Nonsingular M-matrices, 2

e A Z-matrix is an £ x {-matrix C € Z** whose off-diagonal
entries C;; (with i # j) are all <O0.
o A nonsingular M-matrix is a Z-matrix C whose inverse C~1
exists and satisfies C~1 > 0.
Here, inequalities between matrices are entrywise.
@ Theorem (Gabrielov, Benkart, Klivans, Reiner, ...7): For
a Z-matrix C, the following are equivalent:
e C is a nonsingular M-matrix.
o CT is a nonsingular M-matrix.
o There exists a column vector x € Q¢ with x > 0 and
Cx > 0. (Again, entrywise.)
e The “generalized chip-firing game” in which we start with
a row vector r > 0 and keep subtracting rows of C while
keeping the vector > 0 is confluent (i.e., terminates, and
the final state depends only on the starting state).
@ Actually, “depends only on the starting state” follows from
“Z-matrix", but termination requires “nonsingular M-matrix”.



The sandpile monoid

@ Given a digraph D with a chosen global sink g, we can define
a finite abelian monoid as follows:
o A chip configuration is a placement of finitely many chips
on the vertices of D.
(Rigorously: a nonnegative integer vector.)
o Chips placed on g are ignored.
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@ Given a digraph D with a chosen global sink g, we can define
a finite abelian monoid as follows:

o A chip configuration is a placement of finitely many chips
on the vertices of D.

(Rigorously: a nonnegative integer vector.)

o Chips placed on g are ignored.

o Configurations are added entrywise.

o The stabilization of a configuration x is the configuration
obtained from x by repeatedly firing vertices (# q) until
this no longer becomes possible. We call this stabilization
x°.

e A configuration is stable if no vertex can be fired in it.



The sandpile monoid

@ Given a digraph D with a chosen global sink g, we can define
a finite abelian monoid as follows:

o A chip configuration is a placement of finitely many chips
on the vertices of D.

(Rigorously: a nonnegative integer vector.)

o Chips placed on g are ignored.

o Configurations are added entrywise.

o The stabilization of a configuration x is the configuration
obtained from x by repeatedly firing vertices (# q) until
this no longer becomes possible. We call this stabilization
x°.

e A configuration is stable if no vertex can be fired in it.

o The sandpile monoid of (D, q) is the monoid of all stable
configurations, with monoid operation given by

(f.g) = (f+g)°.



The critical group

@ Given a digraph D with a chosen global sink g, we can define
a finite abelian group as follows:
o If M is a finite abelian monoid, then the intersection of
all (nonempty) ideals of M is a group. (Neat exercise.)
o Applied to M being the sandpile monoid of (D, q), this
yields the critical group of (D, q). (Also known as the
sandpile group.)
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The critical group

@ Given a digraph D with a chosen global sink g, we can define
a finite abelian group as follows:
o If M is a finite abelian monoid, then the intersection of
all (nonempty) ideals of M is a group. (Neat exercise.)
o Applied to M being the sandpile monoid of (D, q), this
yields the critical group of (D, q). (Also known as the
sandpile group.)
@ But again, we can also define this in terms of the Laplacian:
Namely, the critical group of (D, q) is
K (D, q) = coker (ZT) =71/ <ZTZ”_1).
@ When D is Eulerian, this group does not depend on g (up to
iso). Thus, we call it just K (D).
@ When D is Eulerian, we have coker (L) = <Z)_/ ® K(D) .
——

free part  yorsion part
@ Much of chip-firing theory doesn’t need a digraph. A square
matrix over Z is enough... and a nonsingular M-matrix is

particularly helpful.
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The critical group of a group character

References:

@ Georgia Benkart, Caroline Klivans, Victor Reiner, Chip firing
on Dynkin diagrams and McKay quivers, arXiv:1601.06849.

o Christian Gaetz, Critical groups of McKay-Cartan matrices,
honors thesis 2016.

@ Victor Reiner’s talk slides.

10/30


https://arxiv.org/abs/1601.06849
https://arxiv.org/abs/1601.06849
http://www.mit.edu/~gaetz/docs/final_thesis.pdf
http://www.mit.edu/~gaetz/docs/final_thesis.pdf
http://www-users.math.umn.edu/~reiner/Talks/SandpilesAndHopfAlgebras.pdf

The McKay matrix of a representation, 1

@ Where else can we get nonsingular M-matrices from?

11/30



The McKay matrix of a representation, 1

@ Let G be a finite group.
Let 51,5, ..., Sp41 be the irreps (= irreducible
representations) of G over C. Let x1, x2,- .., X¢+1 be their
characters.

11/30
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@ Let G be a finite group.
Let 51,5, ..., Sp41 be the irreps (= irreducible
representations) of G over C. Let x1, x2,- .., X¢+1 be their
characters.

@ Fix any representation V of G over C (not necessarily
irreducible), and let x be its character. Set
n=dimV = yy(e).
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The McKay matrix of a representation, 1

@ Let G be a finite group.
Let 51,5, ..., Sp41 be the irreps (= irreducible
representations) of G over C. Let x1, x2,- .., X¢+1 be their
characters.

@ Fix any representation V of G over C (not necessarily
irreducible), and let x be its character. Set
n=dimV = yy(e).

@ The McKay matrix of V is the (£ + 1) x (£ + 1)-matrix My,
whose (7, j)-th entry is the coefficient m; ; in the expansion

/41

Xs@Vv = XiXv = Z mj jXj-
j=1
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The McKay matrix of a representation, 1

@ Let G be a finite group.
Let 51,5, ..., Sp41 be the irreps (= irreducible
representations) of G over C. Let x1, x2,- .., X¢+1 be their
characters.

@ Fix any representation V of G over C (not necessarily
irreducible), and let x be its character. Set
n=dimV = yy(e).

@ The McKay matrix of V is the (£ + 1) x (£ + 1)-matrix My,
whose (7, j)-th entry is the coefficient m; ; in the expansion

{+1
XS@V = XiXV = Z mj jX;-
j=1
@ We define a further (¢ + 1) x (£ + 1)-matrix Ly (our
“Laplacian”) by Ly = nl — My.
Warning: Unlike the digraph case, the matrix Ly, neither has

row sums 0 nor has column sums 0!
11 /30



The McKay matrix of a representation, 2a: example

o Example: The symmetric group G4 has 5 irreps
51,55, 53, 54, S5, corresponding to the partitions
(4),(3,1),(2,2),(2,1,1),(1,1,1,1), respectively. We shall
just call them D* D3! D22 D211 DI for clarity.
Their characters
X0 = XD%» X1 = XD31, X2 = Xp22, X3 = Xp211, X4 = Xpui1i
are the rows of the following character table:

e (i) (G)(k) (ijk)  (ijkl)
X p* 1 1 1 1 1
X p3t 3 1 0 -1 -1
X p2 2 0 -1 2 0
xpa1 | 3 —1 0 -1 1
xpuu \1 -1 1 1 -1

(these are given by weighted counting of rim hook tableaux,
according to the Murnaghan-Nakayama rule).

12 /30



The McKay matrix of a representation, 2b: example

e Example (cont'd): Let V = D3!. Then, the McKay matrix

M\/ is
01000
11110
My=1]01 0 1 0
01111
00010

(these are Kronecker coefficients, since D3! too is irreducible).

13/30



The McKay matrix of a representation, 2b: example

e Example (cont'd): Let V = D3!. Then, the McKay matrix

M\/ is
01
11
My =101
01
00

For example, the second row is because

= O = O

0

= = = O

1

o = O O O

Xp3igp3t = 1xps + 1xpa + Ixp22 + 1xpeu + Oxpun.

13/30



The McKay matrix of a representation, 2b: example

e Example (cont'd): Let V = D3!. Then, the McKay matrix

M\/ is
010
111
My=10 10
011
0 00

For example, the third row is because

= = = O

1

o = O O O

Xp2gp3t = 0xps + 1xpa + Oxp22 + 1xpeun + Oxpunr.

13/30



The McKay matrix of a representation, 2b: example

e Example (cont'd): Let V = D3!. Then, the McKay matrix

My is
My =
Hence,
Ly= _n_ | —My
=dim V=3

O O O+~ O

O FH = B =

O O+ O

00
10
10
11
10
-1 0 0 O
2 -1 -1 0
-1 3 -1 0
-1 -1 2 -1

13 /30



The critical group of a representation

o Let Ly be the matrix Ly with its row and column
corresponding to the trivial irrep removed. This is an
£ X {-matrix.
o Define the critical group K (V) of V by K (V) = coker (Lv).
@ Also, coker (Ly) =Z & K (V).
That said, K (V) is not always torsion.

14 /30



The critical group of a representation

o Let Ly be the matrix Ly with its row and column
corresponding to the trivial irrep removed. This is an
£ X {-matrix.
o Define the critical group K (V) of V by K (V) = coker (Lv).
@ Also, coker (Ly) =Z & K (V).
That said, K (V) is not always torsion.
@ In our above example,

3 -1 0 0 O
2 -1 -1 0
-1 2 -1 -1 0
— -1 3 -1 0
Ly=]10 -1 3 -1 0|=1Ly=
0 -1 -1 2 -1 -1 -1 2 -1
0 0 -1 3

0o 0o o0 -1 3

(Here, we removed the 1-st row and 1-st column, since they
index the trivial irrep.)

14 /30



The critical group of a representation

o Let Ly be the matrix Ly with its row and column
corresponding to the trivial irrep removed. This is an
£ X {-matrix.
o Define the critical group K (V) of V by K (V) = coker (Lv).
@ Also, coker (Ly) =Z & K (V).
That said, K (V) is not always torsion.
@ In our above example,

3 -1 0 0 O
2 -1 -1 0
-1 2 -1 -1 0
— -1 3 -1 0
Ly=]10 -1 3 -1 0|=1Ly=
0 -1 -1 2 -1 -1 -1 2 -1
0 0 -1 3

0o 0o o0 -1 3

Hence, K (V) = coker (Ly) = Z/4Z.

o (Recall that the cokernel of a square matrix M € ZN*N s
= @, (Z/m;Z), where the m; are the diagonal entries in the
Smith normal form of M. This is how the above was

computed.) .



Facts on the critical group

e Theorems (Benkart, Klivans, Reiner, Gaetz):
o The column vector s = (dim S1,dim S5, ..., dim Sp1)"
belongs to ker (Ly).
It spans the Z-module ker (Ly) if and only if the
G-representation V is faithful.

15/30



Facts on the critical group

e Theorems (Benkart, Klivans, Reiner, Gaetz):

o The column vector s = (dim S1,dim S5, ..., dim Sp1)"
belongs to ker (Ly).
It spans the Z-module ker (Ly) if and only if the
G-representation V is faithful.

o Actually, My and Ly can be diagonalized:
For each g € G, the vector
s(g) = (XSl (8) XS, (8),--- » XSpt1 (g)) ! (a column of
the character table of G) is an eigenvector of My (with
eigenvalue xy (g)) and of Ly (with eigenvalue

n—xv(g))
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Facts on the critical group

e Theorems (Benkart, Klivans, Reiner, Gaetz):
o If the G-representation V is faithful, then Ly is a

nonsingular M-matrix.
(Hence, a theory of “chip-firing” exists. Benkart, Klivans
and Reiner have further results on this, but much is still
unexplored.
For some groups G and representations V/, this
“chip-firing” is equivalent to actual chip-firing on certain
specific digraphs. See Benkart-Klivans-Reiner paper.)
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Facts on the critical group

e Theorems (Benkart, Klivans, Reiner, Gaetz):
o If the G-representation V is faithful, then Ly is a
nonsingular M-matrix.
o If the G-representation V is faithful, then

#K(V)=#1G 11 (n—xv (&)).

G-conjugacy class [g]#|e]
o For the regular G-representation CG, we have
K(CG) = (Z/nZ) .

Here, n = dim (CG) = #G and
¢ = (number of G-conjugacy classes) — 1.

15/30
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Generalizing?

@ How to generalize this picture?

e characteristic-0 representations — modular
representations.

o algebraically closed field C — any field.

o finite-dimensional — arbitrary dimension.

o finite group — finite-dimensional Hopf algebra.

@ We shall only study the two blue directions. (The others are
interesting, too!)

16 /30



3. The critical group of a Hopf algebra module

3

The critical group of a Hopf algebra module

References:

@ Darij Grinberg, Jia Huang, Victor Reiner, Critical groups for
Hopf algebra modules, arXiv:1704.03778.

17/30


http://www.cip.ifi.lmu.de/~grinberg/algebra/McKayTensor.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/McKayTensor.pdf

Introducing the Hopf algebra A

@ Let F be any algebraically closed field of any characteristic.
@ All F-vector spaces in the following are finite-dimensional.
dim always means F-vector space dimension.
® always means ®p.
@ Let A be a finite-dimensional Hopf algebra over F. This
means:
o First of all, A is an F-algebra.
o Also, A is finite-dimensional as an [F-vector space.
e Also, A is equipped with
e a comultiplication A : A - AR A,
e acounite: A—T,
e an antipode a: A — A
satisfying certain axioms.

18 /30



Representations of A: generalities

@ In the following, “A-module” means “left A-module”.
@ Classical results on representations of A:
o There are finitely many simple A-modules

517 527 ey SZ+11
and finitely many indecomposable projective A-modules
P17P27"‘7P€+11

and they can (and will) be labelled in such a way that P;
is the projective cover of ;.
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@ In the following, “A-module” means “left A-module”.
@ Classical results on representations of A:
o There are finitely many simple A-modules

517 527 ey SZ+11
and finitely many indecomposable projective A-modules
P17P27"‘7P€+11

and they can (and will) be labelled in such a way that P;
is the projective cover of ;.
o The left-regular A-module A decomposes as a direct sum

+1

A= (P pime
i=1

@ For an A-module V/, if [V : §;] denotes the multiplicity of S;
as a composition factor of V/, then

[V : 5i] = dimHoma(P;, V).

19/30



Representations of A: tensor category structure

@ So far we have just used the F-algebra structure on A (and
the algebraic closedness of F).
What if we take into account the Hopf algebra structure too?
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Representations of A: tensor category structure

@ So far we have just used the [F-algebra structure on A (and
the algebraic closedness of F).
What if we take into account the Hopf algebra structure too?
@ The Hopf algebra structure on A allows us to

e make the tensor product V @ W of two A-modules V
and W into an A-module as well (using A);

o define a “trivial A-module” called € (using €);
this trivial A-module is [F as a vector space, and thus is
simple.

o make the homspace Hom(V, W) = Homp(V, W) (any
unadorned Hom sign means Homp here and henceforth)
of two A-modules V and W into an A-module as well
(using A and «),
and thus in particular define a “dual A-module” V* of an
A-module V' (without switching sides).
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Hopf algebra examples, 1: the group algebra

o Example 1: Let A be the group algebra FG of a finite group

G.
This becomes a Hopf algebra by setting
(g) =1,
Alg) =g ®g,
a(g) =g

forall g € G.
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Hopf algebra examples, 1: the group algebra

o Example 1: Let A be the group algebra FG of a finite group

G.
This becomes a Hopf algebra by setting
(g) =1,
Alg)=g®e,
alg) =g
forall g € G.

The A-modules are precisely the representations of G; the
notions of tensor product, trivial module, etc. are the ones we
know from group representation theory.

Note that if char[F = 0, then A is semisimple, so that the
theory dramatically simplifies (e.g., we have P; = S; for all /).
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Hopf algebra examples, 0: the universal enveloping algebra

o “Example 0”: This example does not really fit into our
framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra U(g) of a Lie
algebra g.
This becomes a Hopf algebra by setting

e(x) =0,
Ax)=x®1+1®x,
a(x) = —x

for all x € g.
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Hopf algebra examples, 0: the universal enveloping algebra

o “Example 0”: This example does not really fit into our
framework (yet?), but is too good to omit:
Let A be the universal enveloping algebra U(g) of a Lie
algebra g.
This becomes a Hopf algebra by setting

e(x) =0,
Ax)=x®1+1®x,
a(x) = —x

for all x € g.

The A-modules are precisely the representations of g; the
notions of tensor product, trivial module, etc. are the ones we
know from Lie algebra representation theory.

Sadly, A is usually infinite-dimensional, and our theory is not
ready for this. (Restricted universal enveloping algebras in
characteristic p do work, though.)
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Hopf algebra examples, 2: the generalized Taft Hopf algebra

e Example 2: Fix integers m > 0 and n > 0 with m | n. Fix a
primitive n-th root of unity w € F. (Recall we assumed F
algebraically closed!)
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algebraically closed!)

As an [F-algebra, the generalized Taft Hopf algebra A = Hp m,

is given by
generators g, X;
relations g"=1, x™ =0, Xg = wgx.

More conceptual definition: A is a skew group ring

Hpm = F[Z/nZ] x F[x]/(x™)
for the cyclic group Z/nZ = {e,g,g°,...,g" '} acting on
coefficients in a truncated polynomial algebra F[x]/(x™), via

gxg_1 = wIx.
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e Example 2: Fix integers m > 0 and n > 0 with m | n. Fix a
primitive n-th root of unity w € F. (Recall we assumed F
algebraically closed!)

As an [F-algebra, the generalized Taft Hopf algebra A = Hp m,

is given by
generators g, X;
relations g"=1, x™ =0, Xg = wgx.

This A has F-basis {g'x/ : 0 < i< nand 0 < j < m}, whence
dim A = mn.
It becomes a Hopf algebra by setting

e(g) = 1, e(x) = 0,
Alg) = g®g, Alx) = 1x+x®g,
alg) = g% a(x) = —wlgTix
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Hopf algebra examples, 2: the generalized Taft Hopf algebra

e Example 2: Fix integers m > 0 and n > 0 with m | n. Fix a
primitive n-th root of unity w € F. (Recall we assumed F
algebraically closed!)

As an [F-algebra, the generalized Taft Hopf algebra A = Hp m,

is given by
generators g, X;
relations g"=1, x™ =0, Xg = wgx.

This A has n projective indecomposable modules, each of
dimension m, whereas its n simple modules are all
1-dimensional.
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Hopf algebra examples, 3: a weird one from Radford

o Example 3: Fix integers m > 0 and n > 0 such that n is even
and n lies in F*. Fix a primitive n-th root of unity w € F.
(Recall we assumed F algebraically closed!)
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Hopf algebra examples, 3: a weird one from Radford

o Example 3: Fix integers m > 0 and n > 0 such that n is even
and n lies in F*. Fix a primitive n-th root of unity w € F.
(Recall we assumed F algebraically closed!)

As an [F-algebra, A is given by

generators 8,X1,X2, ...y Xm,
. n__ 2
relations g'=1, xi =0,
-1
X,'Xj = —XJ'X,', 8Xi8 = WX;j.

More conceptual definition: A is a skew group ring

A(n,m) =TF[Z/nZ] x \[x, ... xml,
F

for the cyclic group Z/nZ = {e,g,g?%,...,g" 1} acting this
time on coefficients in an exterior algebra Ap[xi, ..., xm], via

-1 _
8Xi8 = WXj.
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Hopf algebra examples, 3: a weird one from Radford

o Example 3: Fix integers m > 0 and n > 0 such that n is even
and n lies in F*. Fix a primitive n-th root of unity w € F.
(Recall we assumed F algebraically closed!)

As an [F-algebra, A is given by

generators 8,X1,X2, ...y Xm,
relations g"=1, x? =0,
-1
X,'Xj = —XJ'X,', 8Xi8 = WX;j.

This A has F-basis {giXJ :0<i<n, JC{L1,2,.. .,m}}
(where x; 1= xj, xj, - - - xj, if J={j1 <jo <--- <jik}), whence

dim A = n2™.

It becomes a Hopf algebra by setting
e(g) =1, e(x;) =0,
Alg)=g®g, A(x) =1®xi +x ®g"?,
a(g)=g ", a(x) = —xg"?.
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The Grothendieck ring Gy (A)

@ We want to define a “critical group” K (V) of an A-module
V.
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@ We want to define a “critical group” K (V) of an A-module
V.

@ Unlike in the case of group representations, characters are not
very useful; in particular, they don't “characterize” modules
much any more.

@ Instead, there is the Grothendieck group Go(A).

It is defined as the Z-module with
o generators [V] corresponding to all A-modules V' (keep in
mind: finite-dimensional!),
o relations [U] — [V] 4+ [W] = 0O for each short exact
sequence 0 - U — V — W — 0 of A-modules.

@ This Z-module Gy(A) has a basis ([S1],. .., [Se+1]), due to
the Jordan-Holder theorem.

@ The Z-module Gy(A) becomes a ring (not always
commutative) by setting [V] - [W]=[V ® W] and 1 = [€].
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The McKay matrix of an A-module, 1

@ Now, let us generalize the McKay matrix of a group
representation to the case of an A-module.
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@ Fix any A-module V, and set n =dim V.

@ The McKay matrix of V is the (£ + 1) x (£ + 1)-matrix My,
whose (7, j)-th entry is the multiplicity [S; @ V : §j] of the
simple A-module S; in (a composition series of) S; @ V.

In other words, its entries are chosen to satisfy
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@ Fix any A-module V, and set n =dim V.

@ The McKay matrix of V is the (£ + 1) x (£ + 1)-matrix My,
whose (7, j)-th entry is the multiplicity [S; @ V : §j] of the
simple A-module S; in (a composition series of) S; @ V.

In other words, its entries are chosen to satisfy

/+1

[Sio VI=I[S][VI=)_ (Mv);;IS].

Jj=1

More conceptually: The matrix My represents the right
multiplication by [V] as an endomorphism of Gy (A) with
respect to the basis ([S1], ..., [Set1])-

@ We define a further (¢ + 1) x (£ + 1)-matrix Ly (our
“Laplacian™) by Ly = nl — My,.
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The critical group of an A-module

@ We want to define our critical group K (V) in such a way that
coker (Ly)=Za K (V).
How do we pick up a canonical complement to Z ?

o It is tempting to again define Ly by removing the trivial row
and trivial column from Ly, and set K (V) = coker (Ly). But

that does not work.
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The critical group of an A-module

@ We want to define our critical group K (V) in such a way that
coker (Ly)=Za K (V).
How do we pick up a canonical complement to Z ?

@ In matrix terms:
Consider the column vector
s = (dim S1,dim Sy, ..., dim Sg+1)T. Then, set
K(V)=s!/Im(Ly), where st = {x € Z**! | sTx = 0}.

@ More conceptually:
There is an augmentation map on Go(A) — Z. This is the
ring homomorphism sending each [V] to dim V.
Let / be its kernel.

@ Set K(V)=1/Go(A)(n—[V]).
Note that multiplication by n — [V] corresponds to the action
of My, so this makes sense.
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Facts on the critical group

e Theorems (G., Huang, Reiner):
o p=(dimPy,dimP,, ... dimPy1)" € ker(Ly),

whereas
s=(dimS;,dimS,, ..., dim S, 1)" € ker ((L\/)T>.
These vectors span the respective kernels over Q if and
only if the A-module V' is tensor-rich (which is our way
to say that each simple A-module appears in a
composition series of V@K for at least one k).

28 /30



Facts on the critical group

e Theorems (G., Huang, Reiner):
o If A=TG is a group algebra, then My and Ly can be
diagonalized:

o Fix a Brauer character xy, for each A-module
w.

o Given a p-regular element g € G, let
5(g) = (xs:(8): -+ x5,.,(8)) " _be the Brauer
character values of the simple FG-modules at g.
Then, s(g) is an eigenvector of (My)” (with
eigenvalue yy (g)) and of (Ly)" (with

eigenvalue n — xv (g)).
o Given a p-regular element g € G, let

p(g) = (xu(8),-- -, Xp,..(8)) " be the Brauer
character values of the indecomposable projective
FG-modules at g. Then, p(g) is an eigenvector

of My (with eigenvalue xv (g)) and of Ly (with
eigenvalue n — xv (g)). 28 /30



Facts on the critical group

e Theorems (G., Huang, Reiner):
o If the A-module V is tensor-rich, then Ly is a
nonsingular M-matrix.
(Hence, a theory of “chip-firing” exists. We have not
studied it. It is complicated by the fact that K (V) is not

generally isomorphic to coker ((L\/)T> any more.)
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Facts on the critical group

e Theorems (G., Huang, Reiner):
o If the A-module V is tensor-rich, then Ly is a
nonsingular M-matrix.
o Actually, the following are equivalent:

(i) The matrix Ly (obtained from Ly by removing
the row and the column corresponding to the
trivial A-module €) is a nonsingular M-matrix.

(ii) The matrix Ly is nonsingular.

(iii) Ly has rank ¢, so nullity 1.
(iv) The critical group K(V) is finite.

(v) The A-module V is tensor-rich.
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Facts on the critical group

e Theorems (G., Huang, Reiner):
o If the A-module V is tensor-rich, then Ly is a
nonsingular M-matrix.
o If the A-module V is tensor-rich, then

#K (V)
_ Y
~ IdimA

where v = gecd (dim Py, dim Py, ..., dim Py q).

(product of the nonzero eigenvalues of Ly/)|,
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Facts on the critical group

e Theorems (G., Huang, Reiner):
o If the A-module V is tensor-rich, then Ly is a
nonsingular M-matrix.
o If the A-module V is tensor-rich, then

#K (V)
_ g
~ IdimA
where v = gecd (dim Py, dim Py, ..., dim Py q).
If A=IFG is a group algebra, then this can be rewritten
in a more explicit way using Brauer characters as well:
#k)=2c I -xvie).

[g]#le] is a p-regular
conjugacy class in G

(product of the nonzero eigenvalues of Ly/)|,

Also, v is the size of the p-Sylow subgroups of G if F has
characteristic p > 0.
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Facts on the critical group

e Theorems (G., Huang, Reiner):
o If the A-module V is tensor-rich, then Ly is a
nonsingular M-matrix.
o For the regular A-module A, we have
K (A) = (Z/yZ) & (Z/nZ) .

Here, n = dim A, v = ged (dim Py, dim P, ..., dim Pyy1)
and ¢ = (number of simple A-modules) — 1.
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@ We diagonalized Ly and My when A is a group algebra. Can
we do it in general?
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Is there a notion of “Sylow subalgebras” (presumably
subalgebras of dimension 7, which have the form
F @ (nilpotents) and over which A is free as a module)?
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@ We diagonalized Ly and My when A is a group algebra. Can
we do it in general?

@ What is the meaning of
v = ged (dim Py, dim Ps, ..., dim Pyy1) for an arbitrary Hopf
algebra A ?
Is there a notion of “Sylow subalgebras” (presumably
subalgebras of dimension v, which have the form
F @ (nilpotents) and over which A is free as a module)?

@ What can we say about Ly when V is not tensor-rich?

@ What can we say about A and V if V is not tensor-rich? Does
A — End V factor through a quotient Hopf algebra then?

@ Does the theory extend to infinite-dimensional A ? (Think of
universal enveloping algebras — the finite-dimensional
A-modules can be fairly tame.)

29 /30



Thank youl!

Thanks to

@ you all for being here,
@ Paul Terwilliger for the invitation,

@ Georgia Benkart, Pavel Etingof, Jim Humphreys, Radha
Kessar, Peter J. McNamara, Hans-Jiirgen Schneider, Peter
Webb, and Sarah Witherspoon.
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