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0.1. Version

ver:S
These notes are not exactly what Lusztig did in class! I have sometimes ”recon-

structed” proofs on my own (as Lusztig goes too fast for me to LaTeX everything on
the fly), added remarks, moved things around, etc.

0.2. Introduction

The best textbook on the subject of Lie algebras is
Nicolas Bourbaki, Groupes et algèbres de Lie.
Another useful source is
James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Third

Printing 1980.
We will not follow any of these texts, but will distribute some notes during classes.
There will be 10 homework sheets, 1 quiz and 1 final project (write about some topic

not covered in class).
The study of Lie algebras is one part of Lie theory; the other is Lie groups. These

two parts are naturally related, Lie algebras being a kind of ”shadow” (more precisely,
linearization) of Lie groups; but Lie algebras can be studied using purely algebraic
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methods, whereas Lie groups require analysis and geometry (or algebraic geometry).
Hence, we are going to study Lie algebras independently of Lie groups in this course,
and we will not make use of any geometry or analysis.

[Historical remarks omitted.]

0.3. Definition of Lie algebras

Let k be a field. (Eventually we will restrict ourselves to the case when k is the field
of complex numbers, but as for now any field will do.)

A k-algebra will mean a k-vector space A endowed with a bilinear map A× A → A
(called the product), which will be denoted by (a, b) 7→ ab (or, occasionally, by (a, b) 7→
a · b). This is the least restrictive of all common definitions of k-algebras; most texts
require certain properties to hold for this bilinear map in order for A to be a k-algebra.
We will, however, not require any further properties in the definition of k-algebra.
Instead we define two more restrictive notions:

• An associative k-algebra will mean a k-algebra A which satisfies (ab) c = a (bc)
for any a ∈ A, b ∈ A and c ∈ A. (Note that, unlike many authors, we don’t
require associative k-algebras to have a unity.)

• A Lie algebra will mean a k-algebra A which satisfies
a (bc) + b (ca) + c (ab) = 0 (the so-called Jacobi identity)

for all a ∈ A, b ∈ A and c ∈ A;
aa = 0 for all a ∈ A.

(1)

A quick consequence of the definition of a Lie algebra:

Proposition 1. If a and b are two elements of some Lie algebra, then ab = −ba.

Proof of Proposition 1. Let a and b be two elements of some Lie algebra.
By the second condition in the definition of a Lie algebra, we have aa = 0, bb = 0 and

(a + b) (a + b) = 0. But by the bilinearity condition, (a + b) (a + b) = aa+ab+ba+bb,
so that (a + b) (a + b) = 0 becomes aa+ab+ ba+ bb = 0. In view of aa = 0 and bb = 0,
this simplifies to ab + ba = 0, so that ab = −ba, and thus Proposition 1 is proven.

Note that, as our proof of Proposition 1 has shown, Proposition 1 follows from the
second condition in the definition of a Lie algebra (along with the bilinearity of the
product), without using the Jacobi identity. If char k 6= 2, then the second condition
in the definition of a Lie algebra can actually be replaced by Proposition 1 (because
applying Proposition 1 to b = a, we get aa = −aa, so that 2aa = 0, which yields aa = 0
if char k 6= 2).

It is easy to obtain a Lie algebra from any associative algebra:

Proposition 2. If A is an associative algebra, then we can define a new ”product”
[·, ·] on A by

[a, b] = ab− ba for all a ∈ A and b ∈ A.

The vector space A, endowed with this ”product” (not the product of the associative
algebra A), is then a Lie algebra.
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Proof of Proposition 2. The Jacobi identity holds, because for all a ∈ A, b ∈ A and
c ∈ A, we have

[a, [b, c]] + [b, [c, a]] + [c, [a, b]]

= a (bc− cb)− (bc− cb) a

+ b (ca− ac)− (ca− ac) b

+ c (ab− ba)− (ab− ba) c

= abc− acb− bca + cba

+ bca− bac− cab + acb

+ cab− cba− abc + bac

= 0 (since all terms cancel out) .

The second condition is also satisfied, since every a ∈ A satisfies [a, a] = aa− aa = 0.
Thus, A is a Lie algebra. Proposition 2 is proven.

Convention 3. In the future, we are always going to denote the product of a Lie
algebra by (a, b) 7→ [a, b] rather than (a, b) 7→ ab (or (a, b) 7→ a · b). This will save
us a lot of confusion, since the notation (a, b) 7→ ab is often used for the product
of an associative algebra, and if we have an associative algebra structure and a Lie
algebra structure on the same vector space, we must use different notations for the
products of these two structures, lest they get confused.

According to Convention 3, the axioms (1) of a Lie algebra rewrite as follows:
[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (the so-called Jacobi identity)

for all a ∈ A, b ∈ A and c ∈ A;
[a, a] = 0 for all a ∈ A.

(2)

And Proposition 1 rewrites as follows: If a and b are two elements of some Lie algebra,
then

[a, b] = − [b, a] . (3)

Convention 4. We will refer to the product of a Lie algebra as a ”bracket” (or
”Lie bracket”) rather than as a ”product”. (Thus, for example, in the situation of
Proposition 2, the ”product of A” means the product of the associative algebra A,
whereas the ”bracket of A” means the bracket of the Lie algebra A.

Here is an example of the construction of Proposition 2:

Definition 5. Let V be a vector space over k. Then, the associative algebra End V
(whose product is the composition of maps) becomes a Lie algebra according to
Proposition 2. This Lie algebra End V is also denoted by gl (V ) (usually to distin-
guish it from the associative algebra End V ).

Definition 6. If dim V < ∞, then the subspace {A ∈ End V | Tr A = 0} of End V
is also a Lie algebra with the bracket [A, B] = AB − BA (since Tr (AB −BA) = 0
for any matrices A and B). Note that this subspace is not a subalgebra of the
associative algebra End V .
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Here come some boilerplate definitions that the reader has probably already seen
for groups, rings and commutative algebras. We formulate them for general algebras,
although we will mainly use them for Lie algebras. Note that, since we will be talking
about general algebras in these definitions, we will denote the product by (a, b) 7→ ab
(or (a, b) 7→ a · b), but when applying the definitions to Lie algebras, this notation
should be replaced by (a, b) 7→ [a, b].

Definition 7. Let A and A′ be two k-algebras.
(a) A k-algebra homomorphism from A to A′ means a k-linear map f : A → A′

such that
f (ab) = f (a) f (b) for all a ∈ A and b ∈ A.

(b) A k-algebra isomorphism from A to A′ means a k-algebra homomorphism
from A to A′ which is a k-vector space isomorphism at the same time. Equivalently,
a k-algebra isomorphism from A to A′ means a k-algebra homomorphism from A to
A′ which has an inverse, which also is a k-algebra homomorphism.

At this place, it is useful to point out that our k-algebras are not required to have a
unity even when they are associative; thus, k-algebra homomorphisms aren’t required
to preserve unities either (even when these exist).

Definition 8. Let A be a k-algebra. A k-subalgebra of A means a k-vector subspace
B of A such that

ab ∈ B for any a ∈ B and b ∈ B.

If A is a Lie algebra, then k-subalgebras of A are called k-Lie subalgebras of A.

Definition 9. Let A be a k-algebra. An ideal of A means a k-vector subspace I of
A such that

ab ∈ I for any a ∈ I and b ∈ A

and
ab ∈ I for any a ∈ A and b ∈ I.

Note that every ideal of a k-algebra is clearly a subalgebra of it as well.

Proposition 10. If V is a finite-dimensional vector space of k, then the sub-
space {A ∈ End V | Tr A = 0} of End V is an ideal of the Lie algebra End V , since
Tr (AB −BA) = 0 for any matrices A and B. (But it is not an ideal of the associa-
tive algebra End V .)

Proposition 11. Let A be an algebra, and let I be an ideal of A. Then, there exists
a unique k-algebra structure on the k-vector space A�I which satisfies

(a + I) (b + I) = ab + I for any a ∈ A and b ∈ A. (4)

Proof of Proposition 11. For every x ∈ A�I and y ∈ A�I, define an element
xy ∈ A�I as follows: Write x in the form x = a + I for some a ∈ A (this is possible
since x ∈ A�I). Write y in the form y = b + I for some b ∈ A (this is possible since
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y ∈ A�I). Then, the value of ab (generally) depends on the particular choice of a
and b, but the value of ab + I only depends on the values of x and y and not on the
choice of a and b 1. Hence, we can define the element xy to be ab + I. This defines
a product (x, y) 7→ xy on A�I. This product is immediately seen to satisfy (4), and
is easily seen to be bilinear. Thus, there exists a k-algebra structure on the k-vector
space A�I which satisfies (4). This structure is also easily seen to be unique, and thus
Proposition 11 is proven.

Definition 12. Let A be an algebra, and let I be an ideal of A.
(a) According to Proposition 11, there exists a unique k-algebra structure on the

k-vector space A�I which satisfies

(a + I) (b + I) = ab + I for any a ∈ I and b ∈ I.

This makes A�I into a k-algebra. This algebra is called the quotient algebra of A
modulo the ideal I.

(b) It is easy to see that A�I is associative if A is associative, and that A�I is
a Lie algebra if A is a Lie algebra.

Proposition 13. Let A and A′ be two k-algebras. Let f : A → A′ be a k-algebra
homomorphism. Then, Ker f is an ideal of A′.

The proof of Proposition 13 is very easy and left to the reader (who has probably
already seen it in the commutative case anyway). Proposition 13 has something like a
converse:

Proposition 14. Let A be a k-algebra. Let I be an ideal of A. Then, the canonical
projection A → A�I is a k-algebra homomorphism, and its kernel is I.

This, again, can be proven by the reader.
Let us now give some further examples of Lie algebras:

Proposition 15. Let V be a vector space, and let (·, ·) : V × V → k be a bilinear
form. Let L be the vector space

{A ∈ End V | (Ax, y) + (x, Ay) = 0 for all x, y ∈ V } .

1Proof. Let us write x not only in the form x = a + I, but also in the form x = a′ + I for some
(possibly different) a′ ∈ A. Besides, let us write y not only in the form y = b + I, but also in the
form y = b′ + I for some (possibly different) b′ ∈ A. Then, if we can show that ab + I = a′b′ + I,
then we are done (because this will show that ab + I only depends on the values of x and y and
not on the choice of a and b).

Since a+I = x = a′+I, we have a−a′ ∈ I. Similarly, b−b′ ∈ I. Since I is an ideal, (a− a′) b ∈ I
(since a− a′ ∈ I and b ∈ A) and a′ (b− b′) ∈ I (since a′ ∈ A and b− b′ ∈ I). Thus,

ab− a′b′ = (ab− a′b)︸ ︷︷ ︸
=(a−a′)b

+(a′b− a′b′)︸ ︷︷ ︸
=a′(b−b′)

= (a− a′) b︸ ︷︷ ︸
∈I

+ a′ (b− b′)︸ ︷︷ ︸
∈I

∈ I + I = I (since I is a k-vector space) ,

so that ab + I = a′b′ + I, qed.
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This is easily seen to be a vector subspace of End V . But actually, L is a Lie
subalgebra of the Lie algebra End V (although not a subalgebra of the associative
algebra End V in general).

Proof of Proposition 15. Let A ∈ L and B ∈ L. We now have to prove that
AB −BA ∈ L.

Notice that
(Ax, y) + (x, Ay) = 0 for all x, y ∈ V (5)

(since A ∈ L), and

(Bx, y) + (x, By) = 0 for all x, y ∈ V. (6)

But in fact, for any x, y ∈ V , we have

((AB −BA) x, y) + (x, (AB −BA) y)

= (A (B (x))−B (A (x)) , y) + (x, A (B (y))−B (A (y)))

= (A (B (x)) , y)︸ ︷︷ ︸
=−(B(x),A(y))

(by (5), applied to B(x)
instead of x)

− (B (A (x)) , y)︸ ︷︷ ︸
=−(B(x),A(y))

(by (6), applied to A(x)
instead of x)

+ (x, A (B (y)))︸ ︷︷ ︸
=−(A(x),B(y))

(by (5), applied to B(y)
instead of y)

− (x, B (A (y)))︸ ︷︷ ︸
=−(B(x),A(y))

(by (6), applied to A(y)
instead of y)

= − (B (x) , A (y)) + (B (x) , A (y))− (A (x) , B (y)) + (A (x) , B (y)) = 0,

so that AB −BA ∈ L (by the definition of L). Thus, Proposition 15 is proven.
Many other examples of Lie algebras are given by the following fact:

Proposition 16. Let A be a k-algebra. A linear map d : A → A is called a
derivation if it satisfies

d (xy) = d (x) · y + x · d (y) for all x ∈ A and y ∈ A. (7)

(The condition (7) is called the Leibniz rule.) Let Der A be the set of all derivations
A → A.

Now, any d ∈ Der A and any d′ ∈ Der A satisfy dd′ − d′d ∈ Der A. Thus, Der A
becomes a Lie algebra.

Proof of Proposition 16. We only have to prove that any d ∈ Der A and any d′ ∈
Der A satisfy dd′ − d′d ∈ Der A. To prove this, let d ∈ Der A and d′ ∈ Der A. Then,
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any x ∈ A and y ∈ A satisfy

(dd′ − d′d) (xy) = d (d′ (xy))︸ ︷︷ ︸
=d′(x)·y+x·d′(y)

(by (7), applied to d′

instead of d)

−d′ (d (xy))︸ ︷︷ ︸
=d(x)·y+x·d(y)

(by (7))

= d (d′ (x) · y + x · d′ (y))− d′ (d (x) · y + x · d (y))

= d (d′ (x) · y)︸ ︷︷ ︸
=d(d′(x))·y+d′(x)·d(y)
(by (7), applied to d′(x)

instead of x)

+ d (x · d′ (y))︸ ︷︷ ︸
=d(x)·d′(y)+x·d(d′(y))
(by (7), applied to d′(y)

instead of y)

− d′ (d (x) · y)︸ ︷︷ ︸
=d′(d(x))·y+d(x)·d′(y)
(by (7), applied to d′

and d(x) instead of d and x)

− d′ (x · d (y))︸ ︷︷ ︸
=d′(x)·d(y)+x·d′(d(y))
(by (7), applied to d′

and d(y) instead of d and y)

= (d (d′ (x)) · y + d′ (x) · d (y)) + (d (x) · d′ (y) + x · d (d′ (y)))

− (d′ (d (x)) · y + d (x) · d′ (y))− (d′ (x) · d (y) + x · d′ (d (y)))

= d (d′ (x)) · y − d′ (d (x)) · y︸ ︷︷ ︸
=(d(d′(x))−d′(d(x)))·y

+ x · d (d′ (y))− x · d′ (d (y))︸ ︷︷ ︸
=x·(d(d′(y))−d′(d(y)))

= (d (d′ (x))− d′ (d (x)))︸ ︷︷ ︸
=(dd′−d′d)(x)

·y + x · (d (d′ (y))− d′ (d (y)))︸ ︷︷ ︸
=(dd′−d′d)(y)

= (dd′ − d′d) (x) · y + x · (dd′ − d′d) (y) .

In other words, dd′ − d′d is a derivation, so that dd′ − d′d ∈ Der A. This proves
Proposition 16.

Now, what happens to the construction of Proposition 16 if A itself is a Lie algebra?

Proposition 17. Let L be a k-Lie algebra. As we know from Proposition 16, the
space Der L is a Lie algebra.

Now, for every x ∈ L, define a map ad (x) : L → L by

ad (x) (y) = [x, y] for all y ∈ L.

Then:
(a) The map ad (x) is a derivation for every x ∈ L.
(b) The map L → Der L, x 7→ ad (x) is a Lie algebra homomorphism.
(c) The kernel of the map L → Der L, x 7→ ad (x) is the ideal

{x ∈ L | [x, y] = 0 for all y ∈ L}

of L. This kernel is denoted by ZL and called the center of L.
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Proof of Proposition 17. (a) Let x ∈ L. Then, for any y ∈ L and z ∈ L, we have

ad (x) ([y, z])

= [x, [y, z]] = −


y, [z, x]︸︷︷︸

=−[x,z]
(by (3))

 + [z, [x, y]]


(since the Jacobi identity says that [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0)

=

y, [x, z]︸︷︷︸
=ad(x)(z)

− [z, [x, y]]︸ ︷︷ ︸
=−[[x,y],z]

(by (3))

= [y, ad (x) (z)] +

 [x, y]︸︷︷︸
=ad(x)(y)

, z


= [y, ad (x) (z)] + [ad (x) (y) , z] .

This means that ad (x) is a derivation, so that Proposition 17 (a) is proven.
(b) We must prove that ad ([y, z]) = [ad (y) , ad (z)] for any y ∈ L and z ∈ L. But

this is clear, since every w ∈ L satisfies

ad ([y, z]) (w) = [[y, z] , w] = − [w, [y, z]] (by (3))

= [y, [z, w]] +

z, [w, y]︸ ︷︷ ︸
=−[y,w]
(by (3))


(since the Jacobi identity says that [w, [y, z]] + [y, [z, w]] + [z, [w, y]] = 0)

= [y, [z, w]]︸ ︷︷ ︸
=ad(y)([z,w])

− [z, [y, w]]︸ ︷︷ ︸
=ad(z)([y,w])

= ad (y) ([z, w])︸ ︷︷ ︸
=ad(z)(w)

− ad (z) ([y, w])︸ ︷︷ ︸
=ad(y)(w)

= ad (y) (ad (z) (w))− ad (z) (ad (y) (w)) = [ad (y) , ad (z)] (w) .

Thus, Proposition 17 (b) is proven.
(c) The kernel of the map L → Der L, x 7→ ad (x) is clearly the set

{x ∈ L | ad (x) = 0} =

x ∈ L | ad (x) (y)︸ ︷︷ ︸
=[x,y]

= 0 for all y ∈ L


= {x ∈ L | [x, y] = 0 for all y ∈ L} .

This is an ideal of L (since the map L → Der L, x 7→ ad (x) is a Lie algebra homo-
morphism according to part (b), and thus its kernel is an ideal by Proposition 13).
Proposition 17 (c) is proven.

For another example of Lie algebras, we consider flags of subspaces:

Proposition 18. Let V be a vector space of dimension n.
Let V0 ⊆ V1 ⊆ ... ⊆ Vn be a sequence of subspaces of V of dimensions 0, 1, ..., n,

respectively (this means that dim Vi = i for every i ∈ {0, 1, ..., n}).
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Let
t = {A ∈ End V | AVi ⊆ Vi for all i}

and
n = {A ∈ End V | AVi ⊆ Vi−1 for all i = 1, 2, ..., n} .

Then, t and n are Lie subalgebras of End V , and n is an ideal of t.

Proof of Proposition 18. To prove that t is a Lie subalgebra of End V , we need to
show that AB −BA ∈ t for any A ∈ t and any B ∈ t.

This is easy: If A ∈ t and B ∈ t, then AVi ⊆ Vi and BVi ⊆ Vi for every i (by the
very definition of t), so that

(AB −BA) Vi ⊆ A BVi︸︷︷︸
⊆Vi

−B AVi︸︷︷︸
⊆Vi

⊆ AVi︸︷︷︸
⊆Vi

− BVi︸︷︷︸
⊆Vi

⊆ Vi − Vi ⊆ Vi for every i,

and thus AB −BA ∈ t (by the definition of t).
Thus we have shown that t is a Lie subalgebra of End V .
Next let us prove that n is an ideal of t. First of all,

n = {A ∈ End V | AVi ⊆ Vi−1 for all i = 1, 2, ..., n}
⊆ {A ∈ End V | AVi ⊆ Vi for all i = 1, 2, ..., n}(

because every A ∈ End V which satisfies AVi ⊆ Vi−1 for all i = 1, 2, ..., n
must also satisfy AVi ⊆ Vi for all i = 1, 2, ..., n (since AVi−1 ⊆ Vi)

)
= {A ∈ End V | AVi ⊆ Vi for all i = 1, 2, ..., n, and also AV0 ⊆ V0}(

because the assertion that AV0 ⊆ V0 is a tautology
(since V0 has dimension 0 and thus V0 = 0)

)
= {A ∈ End V | AVi ⊆ Vi for all i} = t.

Now, every A ∈ t and B ∈ n satisfy AB − BA ∈ n. 2 Hence, n is an ideal of t. In
particular, this yields that n is a Lie subalgebra of t (since every ideal is a subalgebra),
thus a Lie subalgebra of End V . Proposition 18 is now completely proven.

Note that the Lie subalgebras t and n of Proposition 18 can be described in more
familiar terms if we choose a basis (e1, e2, ..., en) of V which satisfies

Vi = 〈e1, e2, ..., ei〉 for all i

(such a basis can easily be chosen by recursion: first choose a basis (e1) of V1, then
extend it to a basis (e1, e2) of V2, then extend it to a basis (e1, e2, e3) of V3, etc.). In fact,
having chosen such a basis, we can identify End V with the ring of n×n matrices over
k. Now, t is the space of all upper-triangular n × n matrices, while n is the subspace
of all strictly upper-triangular n× n matrices.

2Proof. Let A ∈ t and B ∈ n. Then, AVi ⊆ Vi for all i (by the definition of t, since A ∈ t), and
BVi ⊆ Vi−1 for all i = 1, 2, ..., n (by the definition of n, since B ∈ n). Since AVi ⊆ Vi for all i, we
also have AVi−1 ⊆ Vi−1 for all i = 1, 2, ..., n. Now, for all i = 1, 2, ..., n, we have

(AB −BA) Vi ⊆ A BVi︸︷︷︸
⊆Vi−1

−B AVi︸︷︷︸
⊆Vi

⊆ AVi−1︸ ︷︷ ︸
⊆Vi−1

− BVi︸︷︷︸
⊆Vi−1

⊆ Vi−1 − Vi−1 ⊆ Vi−1.

Hence, by the definition of n, we have AB −BA ∈ n.
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0.4. Simple Lie algebras

Simple Lie algebras are not called this way because they are particularly simple to
write down or to classify. They are called ”simple” since they are the building blocks
for more complicated Lie algebras.

Definition 19. A Lie algebra L is said to be simple if it satisfies the following two
conditions:

1) We have L 6= 0.
2) If I is an ideal of L, then I = 0 or I = L.

It is pretty clear that the Lie algebra k (with Lie bracket given by [a, b] = 0 for all
a ∈ k and b ∈ k) is simple. But this is not a particularly interesting example of a
simple Lie algebra. Here is the first interesting one:

Proposition 20. Let

L =

{(
a b
c d

)
∈ M2 (k) | a, b, c, d ∈ k; a + d = 0

}
.

If char k 6= 2, then L is a simple Lie algebra.

Proof of Proposition 20. First, clearly L 6= 0.
Define three elements

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

An easy computation gives

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Assume that char k 6= 2.
Now, suppose I is a nonzero ideal of L. In order to show that L is simple, we must

prove that I = L.
Since I 6= 0, there exists some nonzero x ∈ L. Consider this x and write it in the

form x = ae+ bf +ch with a, b, c ∈ k not all zero. Since I is an ideal, we have [e, x] ∈ I

(since x ∈ I) and thus [e, [e, x]] ∈ I. But a simple computation gives

e, [e, x]︸︷︷︸
=bh−2ce

 =

[e, bh− 2ce] = 2be, so that 2be ∈ I and thus be ∈ I (here we are using char k 6= 2).

Similarly, we can show that [f, [f, x]] ∈ I but also

f, [f, x]︸ ︷︷ ︸
=ah+2cf

 = [f, ah + 2cf ] = 2af ,

so that 2af ∈ I and hence af ∈ I (again because of char k 6= 2).

If a 6= 0, then af ∈ I becomes f ∈ I and thus h = [e, f ] ∈ I and thus e =
1

2
[h, e] ∈ I,

so that I = L.

If b 6= 0, then be ∈ I becomes e ∈ I and thus h = [e, f ] ∈ I and thus e =
1

2
[h, e] ∈ I,

so that I = L.
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Hence, we are done in each of the cases a 6= 0 and b 6= 0. Let us finish the remaining
case now: the case when both a and b are 0. In this case, x = ch, so that ch = I and

thus h ∈ I (since c 6= 0), which yields e =
1

2
[h, e] ∈ I and f = −1

2
[h, f ] ∈ I, and again

we get I = L. Hence we have obtained I = L in each possible case, and Proposition
20 is proven.

Note that the simple Lie algebra L of Proposition 20 is a very important one: it
appears as a ”building block” in many other Lie algebras, and this is the key to the
analysis of these Lie algebras.

0.5. A lemma on nilpotent derivations

We record a lemma for future use.

Lemma 21. Assume that k has characteristic 0. Let A be a k-algebra (not neces-
sarily associative). Let d : A → A be a derivation. Assume that dn = 0 for some
n ≥ 0. Define a map ed : A → A by

edx = x + dx +
d2x

2!
+

d3x

3!
+ ... =

∑
n∈N

dnx

n!
for every x ∈ A.

Then, ed is an algebra isomorphism.

Proof of Lemma 21. [...]

0.6. Normalizers

Definition 22. Let L be a Lie algebra. Let K ⊆ L be a vector subspace. Then, we
define the normalizer NL (K) of K in L to be the subspace

{x ∈ L | [x, y] ∈ K for every y ∈ K}

of L.

Proposition 23. Let L be a Lie algebra. Let K ⊆ L be a vector subspace. Then,
NL (K) is a Lie subalgebra of L.

Proof of Proposition 23. Let x ∈ NL (K) and x′ ∈ NL (K). Then, [x, y] ∈ K for every
y ∈ K, and [x′, y] ∈ K for every y ∈ K (both by the definition of NL (K)). Hence,

[[x, x′] , y] = [[x, y] , x′] + [x, [x′, y]]

[...]

0.7. Solvable and nilpotent Lie algebras

First of all, a definition:
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Definition 24. Let L be a Lie algebra. Let I and I ′ be two vector subspaces of L.
Then, [I, I ′] will denote the vector subspace of L spanned by all elements [x, x′] with
x ∈ I and x′ ∈ I ′.

Proposition 25. Let L be a Lie algebra. Let I and I ′ be two ideals of L. Then,
[I, I ′] is an ideal of L.

Proof of Proposition 25. [...]

Definition 26. Let L be a Lie algebra. We define a sequence of ideals(
L(0), L(1), L(2), ...

)
of L by induction: Let

L(0) = L, L(1) =
[
L(0), L(0)

]
, L(2) =

[
L(1), L(1)

]
,

L(3) =
[
L(2), L(2)

]
, ...,

L(i) =
[
L(i−1), L(i−1)

]
for all i ≥ 1.

Then, by induction (using Proposition 25) we see that L(i) is indeed an ideal of L
for every i ∈ N. Hence, L(i) ⊇

[
L, L(i)

]
⊇

[
L(i), L(i)

]
= L(i+1) for every i ∈ N. In

other words, L(0) ⊇ L(1) ⊇ L(2) ⊇ ....
The Lie algebra L is said to be solvable if L(i) = 0 for some i.
The Lie algebra L is said to be abelian if L(1) = 0, i. e., if [x, y] = 0 for all x ∈ L

and y ∈ L.

Definition 27. Let L be a Lie algebra. We define a sequence of ideals (L0, L1, L2, ...)
of L by induction: Let

L0 = L, L1 =
[
L, L0

]
, L2 =

[
L, L1

]
,

L3 =
[
L, L2

]
, ...,

Li =
[
L, Li−1

]
for all i ≥ 1.

Then, by induction (using Proposition 25) we see that Li is indeed an ideal of L
for every i ∈ N. Hence, Li ⊇ [L, Li] = Li+1 for every i ∈ N. In other words,
L0 ⊇ L1 ⊇ L2 ⊇ ....

The Lie algebra L is said to be nilpotent if Li = 0 for some i.

Proposition 28. Let L be a Lie algebra.
(a) Every i ∈ N satisfies L(i) ⊆ Li. Moreover, L(0) = L0 and L(1) = L1.
(b) If L is nilpotent, then L is also solvable.

Proof of Proposition 28. (a) This is easily proven by induction over i: If we know

that L(i−1) ⊆ Li−1, then L(i) =

L(i−1)︸ ︷︷ ︸
⊆L

, L(i−1)︸ ︷︷ ︸
⊆Li−1

 ⊆ [L, Li−1] = Li.

(b) If L is nilpotent, then Li = 0 for some i (by the definition of ”nilpotent”),
thus L(i) = 0 for some i (namely, for the same i, by Proposition 28 (a)), and thus L
is solvable (by the definition of ”solvable”). The proof of Proposition 28 (b) is thus
complete.

Here is an example of solvable and nilpotent Lie algebras:
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Proposition 29. Let V be a vector space with dim V = n.
Let V0 ⊆ V1 ⊆ ... ⊆ Vn be a sequence of subspaces of V of dimensions 0, 1, ..., n,

respectively (this means that dim Vi = i for every i ∈ {0, 1, ..., n}).
Consider the Lie algebras t and n defined in Proposition 18. Then, t is solvable,

and n is nilpotent.

Proof of Proposition 29. a) The Lie algebra n is nilpotent.
Proof. [...]
b) We have [t, t] ⊆ n.
[...]
In general, t is not nilpotent in Proposition 29.
Let us formulate some basic facts about solvable and nilpotent Lie algebras:

Proposition 30. Let L be a Lie algebra, and L′ a Lie subalgebra of L. Then,
L′(i) ⊆ L(i) for every i ∈ N (this is proven by induction). Hence, L′ is solvable if L
is solvable.

Proposition 31. Let L be a Lie algebra, and I an ideal of L. Then, L�I is solvable
if L is solvable.

Proposition 32. Let L be a Lie algebra, and I an ideal of L. If I and L�I are
both solvable, then L is solvable.

Proof of Proposition 32. [...]
Note that we cannot replace ”solvable” by ”nilpotent” in Proposition 32.

Proposition 33. Let L be a Lie algebra. Let I and J be ideals. Assume that both
I and J are solvable (as Lie algebras). Then, I +J is also a solvable Lie algebra and
an ideal of L.

Proof of Proposition 33. [...]

Corollary 34. Let L be a Lie algebra. If dim L < ∞, then there is a unique ideal
of L which contains every solvable ideal of L. This ideal itself is solvable.

Proof of Corollary 34. Let I be a solvable ideal of L of maximum dimension. Let I ′

be a solvable ideal of L. By Proposition 33, it is clear that I + I ′ is a solvable ideal of
L. Since I already has maximum dimension and I + I ′ ⊇ I, we must have I + I ′ = I,
thus I ′ ⊆ I. Hence, I contains every solvable ideal of L. This proves the existence.
The uniqueness is clear. This proves Corollary 34.

Definition 35. Let L be a Lie algebra.
(a) The unique ideal of L which contains every solvable ideal of L is called the

radical of L and denoted by rad L.
(b) We say that L is semisimple if rad L = 0.

We continue with basic properties of nilpotent Lie algebras:
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Proposition 36. Let L be a Lie algebra, and L′ a Lie subalgebra of L. Then,
L′i ⊆ Li for every i ∈ N (this is proven by induction). Hence, L′ is nilpotent if L is
nilpotent.

Proposition 37. Let L be a Lie algebra, and I an ideal of L. Then, L�I is nilpotent
if L is nilpotent.

Proposition 38. Let L be a Lie algebra. Assume that L�Z (L) nilpotent. Then,
L is nilpotent.

Proof of Proposition 38. [...]

Theorem 39 (Engel’s Theorem). (1) Let L be a Lie algebra such that dim L < ∞.
Let V be a vector space such that 0 < dim V < ∞. Let ρ : L → End V be a Lie
algebra homomorphism such that ρ (x) : V → V is nilpotent for all x ∈ L. Then
there exists some v ∈ V � {0} such that ρ (x) (v) = 0 for all x ∈ L.

(2) Let L be a Lie algebra such that dim L < ∞. Assume that ad (x) : L → L is
nilpotent for every x ∈ L. Then, L is nilpotent.

Before we prove this, a lemma:

Lemma 40. Let V be a vector space with dim V < ∞. Let x : V → V be a nilpotent
endomorphism. Consider x as an element of gl (V ). Then, ad (x) : gl (V ) → gl (V )
is also nilpotent.

We have ad (x) (y) = xy − yx for every y ∈ gl (V ).
Thus, we can write the map ad in the form ad = T − S, where T : gl (V ) → gl (V )

is the map sending every y to xy, and S : gl (V ) → gl (V ) is the map sending every y
to yx. Then, every y ∈ gl (V ) satisfies T ny = x (x (... (xy)))︸ ︷︷ ︸

n times

= xny for every n ∈ N.

Thus, T is nilpotent (since x is nilpotent). Similarly, S is nilpotent. Also, TS = ST is
very easy to see (since every y ∈ gl (V ) satisfies TSy = xyx = STy).

Since T and S are nilpotent and commute (TS = ST ), their difference T − S also is
nilpotent.3 In other words, [...]

Proof of Theorem 39. (1) [...]

0.8. Homework sheet #1

Exercise 41 (1.1). Let V be a vector space of dimension n. Show that the derived
algebra of the Lie algebra of endomorphisms of V is exactly the set of endomorphisms
with trace zero.

3Proof. This is a particular case of a known fact that if α and β are two commuting nilpo-
tent elements of an associative algebra, then α − β also is nilpotent. (To prove this fact,
pick n ∈ N and m ∈ N satisfying αn = 0 and βm = 0, and notice that (α− β)n+m−1 =
n+m−1∑

k=0

(
n + m− 1

k

)
(−1)n+m−1−k

αkβn+m−1−k by the binomial formula. Each addend on the

right hand side either contains an αn or a βm, and thus is 0 in both cases. Hence, (α− β)n+m−1 =
0, so that α− β is nilpotent, qed.)
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Exercise 42 (1.2). Let V be a vector space of dimension n. Show that the centre
of the Lie algebra of endomorphisms of V is the subset consisting of scalar multiples
of the identity.

Exercise 43 (1.3). Let L be a Lie algebra. Show that L is solvable if and only if
there exists a sequence of subalgebras L = L0, L1, L2, ..., Lk = 0 such that Li+1 is
an ideal of Li and Li�Li+1 is abelian for i = 0, 1, ..., k − 1.

Exercise 44 (1.4). Let L be a nilpotent Lie algebra such that L 6= 0. Show that L
has some ideal of codimension 1.
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