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%k >k k

One of the central concepts in the theory of symmetric functions are the Littlewood—
Richardson coefficients cil‘,v: the coefficients when a product s,s, of two Schur func-
tions is expanded back in the Schur basis (5)),.p,- Various properties of these
coefficients have been found, among them combinatorial interpretations, vanishing
results, bounds and symmetries (i.e., equalities between C;)),v for different A, p, v). A
recent overview of the latter can be found in [BriRos20].

In [PelRes20], Pelletier and Ressayre conjectured a further symmetry of Littlewood-
Richardson coefficients. Unless the classical ones, it is a partial symmetry (i.e., it
does not cover every Littlewood-Richardson coefficient); it is furthermore much
less simple to state, to the extent that Pelletier and Ressayre have conjectured its
existence while leaving open the question which exact coefficients it matches up.
In this paper, we answer this question and prove the conjecture thus concretized.

The conjecture, in its original (unconcrete) form, can be stated as follows: Let
n > 2, and consider the set Par [1] of all partitions having length < n. Let a and b be
two nonnegative integers, and define the two partitions « = (a + b,a"2) and p =
(a4 b,b"2) (where ¢" "2 means ¢,c, .. ., ¢, as usual in partition combinatorics). Fix

N——
n—2 times

another partition y € Par [n]. Then, the families (cfx"y) Parf] and (c‘g#) Parf]
"/ wePar(n "/ wePar|n

of Littlewood-Richardson coefficients seem to be identical up to permutation. (We
can restate this in terms of Schur polynomials in the n variables x1, xy, ..., x;; this
then becomes the claim that the products s, (x1,x2,...,%u) - 54 (X1,X2,...,X,) and
Sp (x1,%2,...,%u) - Sy (X1, X2, ..., Xy), when expanded in the basis of Schur polyno-
mials, have the same multiset of coefficients.)

Pelletier and Ressayre have proved this conjecture for n = 3 (see [PelRes20,
Corollary 2]) and in some further cases. We shall prove it in full generality, and
construct what is essentially a bijection ¢ : Par [n] — Par [n] that makes it explicit
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w o C‘P(‘U)
“H B
a bijection Par [n] — Par [n], but rather a bijection from Z" to Z", and it will satisfy
Coy = Cg,(ym with the understanding that ¢/, = cg, = 0 when w ¢ Par [n]. (Here,
Par [n] is understood to be a subset of Z" by identifying each partition A € Par []
with the n-tuple (A1, Ay, ..., Ay).)

We will define this bijection ¢ by explicit (if somewhat intricate) formulas that
“mingle” the entries of the partition it is being applied to with those of yu (as well
as a and b) using the min and + operators. These formulas are best understood
in the birational picture, in which these min and + operators are generalized to
the addition and the multiplication of an arbitrary semifield. (Our proof does
not require this generality, but the birational picture has the advantage of greater
familiarity and better notational support. It also reveals a connection with a known
birational map known as a “birational R-matrix” (see Section |5.4{ for details), which
throws some light on the otherwise rather mysterious bijection.)

Another ingredient of our proof is an explicit formula for s, (x1, x2,...,x,) for
the above-mentioned partition «.

(i.e., that satisfies c for each w € Par [n]). To be fully precise, ¢ will not be
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1. Notations

We will use the following notations (most of which are also used in [GriRei20),

§2.1]):
e Welet N ={0,1,2,...}.

* We fix a commutative ring k; we will use this k as the base ring in what
follows.
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* A weak composition means an infinite sequence of nonnegative integers that
contains only finitely many nonzero entries (i.e., a sequence (a1, a2,a3,...) €
IN* such that all but finitely many i € {1,2,3,...} satisfy a; = 0).

e We let WC denote the set of all weak compositions.

¢ For any weak composition & and any positive integer i, we let «; denote the i-
th entry of « (so that « = (a1, ap, a3, ...)). More generally, we use this notation
whenever « is an infinite sequence of any kind of objects.

* The size |a| of a weak composition « is defined to be a1 +ap + a3+ --- € N.

* A partition means a weak composition whose entries weakly decrease (i.e., a
weak composition & satisfying a1 > ap > a3 > ---).

¢ We let Par denote the set of all partitions.

¢ We will sometimes omit trailing zeroes from partitions: i.e., a partition A =
(A1, A2, Az, . ..) will be identified with the k-tuple (A1, A, ..., Ax) whenever k €
IN satisfies A1 = Agpyo = Agy3 = -+ - = 0. For example, (3,2,1,0,0,0,...) =
(3,2,1) = (3,2,1,0).

As a consequence of this, an n-tuple (A1,Ay,...,A;) € Z" (for any given
n € IN) is a partition if and only if it satisfies Ay > Ay > --- > A, > 0.

* A part of a partition A means a nonzero entry of A. For example, the parts of
the partition (3,1,1) = (3,1,1,0,0,0,...) are 3,1, 1.

* The length of a partition A means the smallest k € IN such that Ay 1 = Apyp =
Akrz = -+ = 0. Equivalently, the length of a partition A is the number of
parts of A (counted with multiplicity). This length is denoted by ¢ (A). For
example, ¢ ((4,2,0,0)) =¢((4,2)) =2and ¢((5,1,1)) = 3.

e We will use the notation m* for “m,m, ..., m” in partitions and tuples (when-
N ——

k times

ever m € N and k € IN). (For example, (2,1%) = (2,1,1,1,1).)

e We let A denote the ring of symmetric functions in infinitely many vari-
ables x1,x7,x3,... over k. This is a subring of the ring k[[x1,xp, x3,...]] of
formal power series. To be more specific, A consists of all power series in
k [[x1, x2, x3,...]] that are symmetric (i.e., invariant under permutations of the
variables) and of bounded degree (see [GriRei20, §2.1] for the precise meaning
of this).

* A monomial shall mean a formal expression of the form x]'x32x3° - - with
« € WC. Formal power series are formal infinite k-linear combinations of
such monomials.

e For any weak composition «, we let x* denote the monomial x]x52x3° - - .
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e The degree of a monomial x* is defined to be |«|.

We shall use the symmetric functions h, and s, in A as defined in [GriRei20,
Sections 2.1 and 2.2]. Let us briefly recall how they are defined:

* For each n € Z, we define the complete homogeneous symmetric function h, € A

by
— _ It
e L wmeone— O
i <in<--<iy *EWC;
|a|=n

Thus, hp =1 and h,, = 0 for all n < 0.

* For each partition A, we define the Schur function s, € A by

S\ = ZXT/

where the sum ranges over all semistandard tableaux T of shape A, and where
xt denotes the monomial obtained by multiplying the x; for all entries i of T.
We refer the reader to [GriRei2(, Definition 2.2.1] or to [Stanle01, §7.10] for
the details of this definition and further descriptions of the Schur functions.

The family (s)),cpyy i @ basis of the k-module A, and is known as the Schur
basis. It is easy to see that each n € IN satisfies s(,,) = hy.

* We shall use the Littlewood—Richardson coefficients Cﬁﬂf (for A, u,v € Par), as de-
fined in [GriRei20, Definition 2.5.8], in [Stanle01, §7.15] or in [Egge19, Chapter
10]. One of their defining properties is the following fact (see, e.g., [GriRei20,
(2.5.6)] or [Stanle01, (7.64)] or [Eggel9, (10.1)]): Any two partitions u,v € Par
satisfy

A
SuSu =3, CuySh- (1)
A€Par

2. The theorem

Convention 2.1.

(a) For the rest of this paper, we fix a positive integer n.

(b) Let Par [n] be the set of all partitions having length < n. In other words,

Par[n] = {A € Par | A = (Aq,Ap,..., Ay)} = ParNIN”
={(Ap,Ay,... Ap)€Z" | Ay >N > > A >0}
(where we are using our convention that trailing zeroes can be omitted

from partitions, so that a partition of length < 7 can always be identified
with an n-tuple).
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(c) A family (u;);c of objects (e.g., of numbers) is said to be n-periodic if each
j € Z satisfies u; = ujy,. BEquivalently, a family (u;);. of objects is n-
periodic if and only if it has the property that

(u]- = ujy whenever j and j are two integers satisfying j = j’ mod n) .

Thus, an n-periodic family (u;);., is uniquely determined by the n entries
ui,uy,...,u, (because for any integer j, we have uj = uj, where | is the
unique element of {1,2,...,n} that is congruent to j modulo n).

Example 2.2. If n = 3, then both partitions (3,2) and (3,2,2) belong to Par [n],
while the partition (3,2,2,2) does not. The n-tuples (4,2,1) and (3,3,0) are
partitions, while the n-tuples (1,0, —1) and (2,0,1) are not.

If ¢ is an n-th root of unity, then the family (gi)i <z Of complex numbers is
n-periodic.

We can now state our main theorem, which is a concretization of [PelRes20, Con-
jecture 1]:

Theorem 2.3. Assume that n > 2. Leta, b € IN.
Define the two partitions « = (a4 b,a"2) and g = (a+b,b"2).
Fix any partition y € Par [n].
Define a map ¢ : Z" — Z" as follows:
Let w € Z". Define an n-tuple v = (vq,va,...,Vy) € Z" by

Vi =w; —a foreachi € {1,2,...,n},

where w; means the i-th entry of w.

For each i € Z, we let i# denote the unique element of {1,2,...,n} congruent
to i modulo n.

For each j € Z, set

T = min { (V(]'Jrl)# + V(jy2) R V(j+k)#)
+ (V(j+k+1)# T Utk T+ Pl(j+n—1)#>
| ke {0,1,...,n—1}}.

Define an n-tuple 7 = (1,12, ...,4n) € Z" by setting

i = Hig+ <P‘(i—1)# + T(z'—1)#> - (V(i+1)# + T(i+1)#> foreachi e {1,2,...,n}.

Let ¢ (w) be the n-tuple (71 +b,12+0b,...,1,+b) € Z". Thus, we have de-
fined a map ¢ : Z" — Z".
Then:
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(a) The map ¢ is a bijection.

(b) We have

w _ 9(w)
wH B
Here, we are using the convention that every n-tuple w € Z" that is not a
partition satisfies ¢;/, = 0 and c‘é’ w =0

c for each w € Z".

This theorem will be proved at the end of this paper, after we have shown several
(often seemingly unrelated, yet eventually useful) results.

Example 2.4. Let n = 4 and a = 1 and b = 4. The partitions « and  defined in
Theoremthen take the forms o = (1+4,1%) = (5,1,1) and B = (1 +4,4%) =
(5,4,4).

Let y € Par[n] be the partition (2,1) = (2,1,0,0). Let w € Par[n] be the
partition (5,3,2) = (5,3,2,0). We shall compute the n-tuple ¢ (w) defined in
Theorem 2.3

Indeed, the n-tuple v from Theorem 2.3|is

v= (w1 —a,w,—a,ws—a,wy—a)=(5-13-12-10-1)= (4,2,1,-1).
The integers i# from Theorem [2.3| form an n-periodic family
(i#)icy = (..., O, 14 2#,3# 44,54, 6#,7#,...) = (...,4,1,2,3,4,1,2,3,...).

The integers 7; (for j € Z) from Theorem [2.3|are given by

7| = min { (1/2# +vsgt+ -+ U(k+1)#) + <7/‘(k+2)# t Wz Tt }44#>
| ke{0,1,2,3}}
= min {pog + sy + Man, Vo + s+ Hag, Vop + Vas + Hag, Vop + Usg + Vag}
=min{uo+us+pus, V2o+pus+ps, Va+vz+ps, Vo+vz+va}
=min{1+0+0, 2+0+0, 24140, 24+1+4+(-1)}
—min{1,2,3,2} =1

Tp) = min { (1/3# + v+ + U(k+2)#> + <7/‘(k+3)# T Hkray Tt #5#)
| ke{0,1,2,3}}
= min {pzs + pan + YUss, Vg + Pap + Uss, Vg Vag + Uss,  Usp + Vag + Usy )
=min{pz+pus+p1, vs+ps+u1, vs+uvs+p, v3+uvg+uv}
=min{04+0+2, 14+0+2, 1+ (-1)+2, 1+ (—-1)+4}
=min{2,3,2,4} =2
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and
T3 = min { (1/4# +vsg+ -+ V(k+3)#) + (P‘(k+4)# t W5y Tt ﬂs#)
| ke {0,1,2,3}}
= min {pigs + pPss + Pe#, Vas + Hse + Mo, Vag + Uss + Mes,  Vag + Vsy + Ves}
=min{pg+p1+po, vat+pr+p, Vat+vi+pa, vatvrt+in}
=min{0+2+1, (-1)4+2+1, (-1)+4+1, (-1)+4+2}
— min {3,2,4,5} =2
and
T4 = min { (V5# + Vg -+ V(k+4)#) + <7/‘(k+5)# T Hetep+ -t Pl7#>
| ke {0,1,2,3}}
= min {5y + pep + Uzs,  Vsk + ek + Urs,  Usy + Ver + Uza,  Usk + Ve + Uzg}
=min{py +po+p3, vi+p2tps, vi+va+ps, vit+i2+vs}
—min{2+1+0, 4+14+0, 44+2+0, 4+2+1}
=min {3,5,6,7} =3

and

- c_
T = Tj whenever j = j' mod 4

(the latter equality follows from the n-periodicity of the family (i#),.,). Thus,
the n-tuple ¥ = (1,12, ..., 1) from Theorem [2.3is given by

= T — T =2 0+3)—(2+2)=1
m Mg + | Mo + Tox <V2#+ 2#) +(0+3)—(2+2)

:]/2:2 :'L'z:z

Mo = Mo + | Mg + T | — ( Vg + T ) =1+2+1)-(1+2)=1
~— — =~ —~

—up=1 =2 =n=1 =1=1 =13=2
and
= T — v T =0 1+2)—((-1 3)=1
13 Mz + | Mot + Tow 4+ Tan +(1+2)—((—1)+3)
:]4320 :’42:1 =T2:2 =Vp=— =T4:3
and
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son = (1,1,1,-3). Hence, ¢ (w) = (1+b,1+b,1+b,-3+b) = (5,5,5,1)
(since b = 4) ThlS is a partition. Theorem (b) now yields ¢ g( w) , that is,
Egi’fg 1) = CE?ZZ;?Z 1 And indeed, this equality holds (both of its sides being

equal to 1).

Question 2.5. Can the bijection ¢ in Theorem [2.3|be defined in a more “intuitive”
way, similar to (e.g.) jeu-de-taquin or the RSK correspondence? (Of course, there
is no tableau being transformed here, just a partition, but this should make this
construction easier.)

3. A birational involution

The leading role in our proof of Theorem [2.3| will be played by a certain piecewise-
linear involution (which is similar to the bijection ¢ in Theorem but without
the shifting by —a and b). For the sake of convenience, we prefer to study this
involution in a more general setting, in which the operations min, + and — are
replaced by the structure operations +, - and / of a semifield. This kind of gener-
alization is called detropicalization (or birational lifting, or tropicalization in the older
combinatorial literature); see, e.g., [KirillO1], [NouYam02], [EinProl3, Sections 5
and 9] or [Roby15, §4.2] for examples of this procedure (although our use of it will
be conceptually simpler).

3.1. Semifields

We recall some basic definitions from basic abstract algebra (mostly to avoid con-
fusion arising from slight terminological differences):

* A semigroup means a pair (S, ), where S is a set and where * is an associative
binary operation on S. We do not require this operation * to have a neutral
element. We usually write the operation * infix (i.e., we write a * b instead of
% (a,b) when a,b € S).

e A semigroup (S, *) is said to be abelian if the operation * is commutative (i.e.,
we haveaxb =bx*a foralla,b € S).

* A monoid means a triple (S, *,¢), where (S, %) is a semigroup and where e is a
neutral element for the operation x (that is, e is an element of S that satisfies
exa =axe =a for each a € S). Usually, the monoid (S, ,e) is equated with
the semigroup (S, *) because the neutral element is uniquely determined by
S and *.

e If (S,%,e) is a monoid and 4 is an element of S, then an inverse of a (with
respect to *) means an element b of S satisfying a*b = bxa = e. Such an
inverse of a is always unique when it exists.
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* A group means a monoid (S, *,¢) such that each element of S has an inverse
(with respect to *).

We next recall the definition of a semifield (more precisely, the one we will be
using, as there are many competing ones):

Definition 3.1. A semifield means a set K endowed with

¢ two binary operations called “addition” and “multiplication”, and denoted
by + and -, respectively, and both written infix (i.e., we writea+band a-b
instead of + (a,b) and - (a,b)), and

¢ an element called “unity” and denoted by 1

such that (K, +) is an abelian semigroup and (K, -, 1) is an abelian group, and
such that the following axiom is satisfied:

e Distributivity: We havea- (b+c¢) = (a-b)+ (a-c)and (a+b)-c=(a-c) +
(b-c)foralla e K,beKandc € K.

Thus, a semifield is similar to a field, except that it has no additive inverses
and no zero element, but, on the other hand, has multiplicative inverses for all its
elements (not just the nonzero ones).

Example 3.2. Let Q. be the set of all positive rational numbers. Then, Q4 (en-
dowed with its standard addition and multiplication and the number 1) is a
semifield.

Example 3.3. Let (A, %, ¢) be any totally ordered abelian group (whose operation
is * and whose neutral element is ¢). Then, A becomes a semifield if we endow
it with the “addition” min (that is, we set a + b := min {a, b} for all a,b € A), the
“multiplication” * (that is, we seta-b :=axb for all a,b € A), and the “unity”
e. This semifield (A, min, ,e) is called the min tropical semifield of (A, *,e).

Convention 3.4. All conventions that are typically used for fields will be used
for semifields as well, to the extent they apply. Specifically:

¢ If K is a semifield, and if a,b € K, then a - b shall be abbreviated by ab.

¢ We shall use the standard “PEMDAS” convention that multiplication-like
operations have higher precedence than addition-like operations; thus, e.g.,
the expression “ab + ac” must be understood as “(ab) + (ac)” (and not, for
example, as “a (b +a) ¢”).

e If K is a semifield, then the inverse of any element b € K in the abelian
group (K, -, 1) will be denoted by b~!. Note that this inverse is always
defined (unlike when K is a field).
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e If Kis a semifield, and if 2, b € K, then the product ab~! will be denoted by
a/b and by %. Note that this is always defined (unlike when K is a field).

* Finite products [] a; of elements of a semifield are defined in the same way
i€l
as in commutative rings. The same applies to finite sums ) a; as long as
icl
they are nonempty (i.e., as long as I # &). The empty sum is not defined
in a semifield, since there is no zero element.

3.2. The birational involution

For the rest of Section 3, we agree to the following two conventions:

Convention 3.5. We fix a positive integer n and a semifield K. We also fix an
n-tuple u € K"

Convention 3.6. If 2 € K" is an n-tuple, and if i € Z, then g; shall denote the '-th
entry of a, where 7’ is the unique element of {1,2,...,n} satisfying i’ = imod n.
Thus, each n-tuple a € K" satisfies a = (ay,ay,...,a,) and a; = a;,, for each
i € Z. Therefore, if a € K" is any n-tuple, then the family (a;),. is n-periodic.

We shall soon use the letter x for an n-tuple in K"; thus, x1,x3,. .., x, will be the
entries of this n-tuple. This has nothing to do with the indeterminates x1, xp, x3, . ..
from Section [l (that unfortunately use the same letters); we actually forget all
conventions from Section (1| (apart from IN = {0,1,2,...}) for the entire Section

The following is obvious:

Lemma 3.7. If a € K" is any n-tuple, then ay a5 - - - ax, = a1az - - - a, for each
keZ.

Proof of Lemma[3.7} Let a € K" be an n-tuple. For each k € Z, we set by =
Ak410k42 * * - Ak NOW, it is easy to see that

by = bpi1 foreachp € Z (2)
M In other words,

1 Proof of : Let p € Z. Recall that the family (4;);. is n-periodic (by Convention 3.6). In other
words, we have

aj = ay whenever j and j are two integers satisfying j = j' mod n.

Applying thisto j = p+1and j/ = p+n+1, we obtain a, 1 = a,4,11 (since p+1=p+n+
1mod n).
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In other words, all of the elements ...,b_»,b_1,bo, by, by, ... are equal. Hence, by =
by for each k € Z. Thus, for each k € Z, we have

10542 " -~ Okyn = bi (since by = dk1k+2** * Aktn)
= bo = Ap+140+2 - A0+n (by the definition of bo)
=aay - ay.
This proves Lemma O

Definition 3.8. We define a map £, : K" — K" as follows:
Let x € K" be an n-tuple. For each j € Z and r € IN, define an element ¢, ; € K
by
,
b= Z Xj1Xj+2 o Xk Uikt 1Ujrk+2 " Ujtr -

k:O ~\~ ~\~

k r
=1L %+ = AL
Define y € K" by setting
Ui_1ty_1i—
yi:u,wM foreachi € {1,2,...,n}.
Xit1tn—1,i+1
Set f, (x) = y.

Example 3.9. Set n = 4 for this example. Let x € K" be an n-tuple; thus,
x = (x1,x2,x3,x4). Let us see what the definition of f, (x) in Definition boﬂs
down to in this case.

Let us first compute the elements t,,_1; = f3; from Definition The defini-
tion of t3 yields

3

t30 = Z X0+1X0+42 * * * X0+k * UO4+k+1U0+k+2 " * U043
k=0

3
= lexz...xk.uk+1uk+2...u3
k=0

= U UpU3 + X1UpU3 + X1X2U3 + X1X2X3.

The definition of b, yields

bp = Ap+1p+2 " Aptn = Ap+1 (ap+2”p+3 ce aern) = Ap+n+1 (‘Zp+2ap+3 s aern) .
——
=p+n+1
The definition of b, 1 yields
bpt1 = A(p1)118(p+1)+2 " A(p+1)+n = Ap+28p43 " Bpintl

= (ap+2ap+3 e 'ap+n) Ap+n+1 = Ap+n+1 (ap+2ap+3 e 'ap+n) .

Comparing these two equalities, we obtain b, = b, 1. This proves @)
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Similarly,

t31 = UpUzly + XpUsUy + XoX3Ug + X2X3X4;
t32 = Uslgls + X3UgUs + X3X4U5 + X3X4X5
= U3U4U] + X3U4U] + X3X4U7 + X3X4X]
(since us = u3 and x5 = x7) ;
t33 = UglsU + XqUsUe + X4X5Ue + X4X5X6
= UgU U + X4U U + X4X1UD + X4X1X2
(since us = 11 and x5 = x7 and ug = up and xg = x7) .

We don’t need to compute any further £3 s, since we can easily see that
t3,; = t3,; for any integers j and j satisfying j = j' mod 4. (3)

Thus, in particular, t34 = t30 and t35 = t3,1.
Now, let us compute the 4-tuple y € K" = K* from Definition By its
definition, we have

B ui-1f31-1 uotso ugts o
Yi=ur—————— = U = ur:
X1+1£3,1+41 X2t32 X2t32
(since 1y = uy)
uy (Uqupuz + X1Ups 4+ X1XU3 + X1X2X3)

xp (Uzugtiy + X3Uglly + X3X417 + X3X4X7)

:ul-

(by our formulas for t3 and f35). Similar computations lead to

U1 (UpUzU4 + XoUsU4 + X2X3Ug + X2X3X4

UgUgUp + XgUqUp + XaX1U + X4X1X7)
Uzlglly + X3Ugly + X3X4U71 + X3X4X7)

7

y2:u2.

1 (
X3(
}/3=M3'Zig ;
3 (
xl(

7

UUpU3 + XqUoU3 + X1X2U3 + X1X2X3
UgUqUp + XqU U + Xg4X1UD + X4X1X2
Uplzlly + XpUslly + XpX3lg + X2X3X4)

u

y4:u4.

Of course, knowing one of these four equalities is enough; the expression for
Yi+1 is obtained from the expression for y; by shifting all indices (other than the
“3”s that were originally “n — 1”s) forward by 1.

Remark 3.10. Instead of assuming K to be a semifield, we could have assumed
that K is an infinite field. In that case, the f, in Definition 3.8 would be a bira-
tional map instead of a map in the usual sense of this word, since the denomi-
nators x;;1t,_1;+1 in the definition of y can be zero. Everything we say below
about f, would nevertheless still hold on the level of birational maps.

The map f,, we just defined has the following properties:
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Theorem 3.11.

(@) The map £, is an involution (i.e., we have f, o f, = id).

(b) Let x € K" and y € K" be such that y = £, (x). Then,
ylyz...yn.xlxz...xn = (uluz...un)z.
(c) Let x € K" and y € K" be such that y = f, (x). Then,

(u'+x~)( ! + ! )—(u~+ -)< ! + ! )
1 l Uit1 X1 Ty Uit Yit+1

for eachi € Z.

(d) Let x € K" and y € K" be such that y = £, (x). Then,
n n

uitxi Uity

IR e

-1 X =1 Wi

Theorem will be crucial for us; but before we can prove it, we will need a
few lemmas.

Lemma 3.12. Let x € K" be an n-tuple. Let f,; and y be as in Definition
Then:

(@) We have t,; = t, i for any r € IN and any two integers j and j’ satisfying
j = jmodn. In other words, for each r € IN, the family (tr,j)]. oy 18 11-
periodic.

(b) We have ty; =1 for each j € Z.

(c) For each r € N and j € Z, we have
Xjtyj+ Ujlljpq - U = Fri1,j—1-
(d) For eachr € N and j € Z, we have
Ujtriityj + Xjp1Xjp2  Xjprp1 = bry1 )
(e) Foreacha € Z and b € Z, we have
Xatp—1,a +Up—1tn—1p—1 = Xptp—1p + Ua—1tn—1,a—1-

(f) For each i € Z, we have

Xit1tn—1i41 + Uim1tp—1i-1 = (% +u;) ty_1;.
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(g) For each j € Z and each positive integer g, we have
bn1j+q+1 - Xja2Xj43 - Xjpg1 T Uity jtg—1j41 = tn1j41lq,)-

(h) For each i € Z, we have

CUiitp—1,i1

yi = U; .
Xig1tn—1,i+1

Now, for each j € Z and r € N, let us define an element t;,]- € K by

r
/ JE—
k:O -~ N -~
r

k
= " = IT wujy
il;Ily]+l i=k+1 /

(This is precisely how t, ; was defined, except that we are using y in place of x
now.) Then:

(i) For each j € Z and g € IN, we have

/
fa, _ bijn ) tq,j

UipiUjp - Ujpg  Ep1jig+1 Xj42Xj43 Xjgg+1
(j) For each j € Z, we have

/
Bt tee1j41X

uluz...un xlxz...xn

(k) For each i € Z, we have

/
uiat, 14
Xj=Uj —————

i° ] 7 .
Yit1ty 141

Proof of Lemma The proof of this lemma is long but unsophisticated: Each part
follows by rather straightforward computations (and, in the cases of parts (g) and
(i), an induction on gq) from the previously proven parts. We shall show the details,
but a computationally inclined reader may have a better time reconstructing them
independently

ZWe note that the hardest parts of the proof — namely, the proofs of parts (g), (i), (j) and (k) — can
be sidestepped entirely, as these parts will only be used in the proof of Theorem [3.11] (a), but we
will give an alternative proof of Theorem (a) later on (in Remark [3.16), which avoids using
them.
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Letr € N. Let j € Z. We shall show thatt,; =t,,.
Indeed, Convention [3.6| yields that the family (u;);., is n-periodic. Thus, u; =
Ui, for each i € Z. In other words,

Uiy = U for each i € Z. 4)

Likewise,
Xitn = Xj for each i € Z. (5)
Now, the definition of tyj yields

r
bri= ) Xjy1Xjip - Xjtk* Ujrk+1Ujrk+2 " Ujpr

k=0 ~~ ~~
|k ﬁ
=11 xj4; = Ujyi
i=1 s i=k+1 /

The same argument (applied to j 4 n instead of j) yields

r k r
brjn =3 | ] Xjtnti | 11 jtnti
k=0 | i=1 S~ i=k+1 S~
=X (j+i)+n =HU(j+i)+n
=Xj+i =HUjti
by @, (by (@),
applied to j+i instead of i) applied to j+i instead of i)
r k r
= 3 (T ) - ( 1T ).
k=0 \i=1 i=k+1

Comparing these two equalities, we obtain t,; = t, ;.

Now, forget that we fixed j. We thus have shown that t,; = ¢, ;,, for each j € Z.
In other words, the family (t‘,,]')].eZ is n-periodic. In other words, we have t,; = t, i
for any two integers j and j' satisfying j = ;' mod n. This proves Lemma (a).

(b) Let j € Z. The definition of f; yields

0

boj = ) Xj41Xj 2 Xjak - Ujrks1Ujake2 o Uit
k=0

= Xj+1Xj42 Xj0 " Ujp0+1Uj+0+2 - - Uj+0

=(empty product)=1 =(empty product)=1
= 1.
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This proves Lemma (b).
(c) Let r € N and j € Z. Then, the definition of f,,1; 1 yields

tr—l—l,j—l
r+1

- Z Y—1)+1X (=142 X(j=1)+k " B+ (D) U (—1)+(k+2) = H(j=1)+(r+1)
k=0 -

-~

=XjXjp1 Xjpk—1 SUjrkUjtk+1 Ujtr
r+1
= Z XjXj1  Xjpk—1 UjpkUjrk+1 " Ujtr
k=0

r+1
= XjXj41 " Xjpo—1 " UjpoUjr041 " Ujpr Tt Z XiXjt1 - Xjrk—1 UjpkUjrk+1 " Ujpr
N -~ 7 -~ 7 k:l NS ~~ >

=(empty product)=1 SUjljp1Ujpy =X X1 X2 X k-1

(here, we have split off the addend for k = 0 from the sum)

r+1
= Ujljyp - Ujypr + Z Xj- Xj41Xj42 - Xjpk—1 - UjpkUjpk+1 0 Ujqr
k=1
r+1 -
=X; kgl Xj1 X2 Xk Uk 17 Uy
r+1
= Ujlljp1 - Ujpy T X 2 Xjt1Xj42 " Xjpk—1 " UjpkUjpkt1 - Ujtr
k=1

~
,
=k20 Xjt1Xjp2 Xk Ujpk+1Uj+k+27 Ujtr

(here, v;e have substituted k for k—1 in the sum)

.
= Ujlj1 Wi F X)) XX Xk Wik tke2 o Uy
k=0

—t,
(by the definition of ¢, )

= Wty W T Xy = Xk Ul U

This proves Lemma (c).
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(d) Let r € N and j € Z. Then, the definition of ¢, 1 ; yields

r+1
trv1,) = Z Xj41Xj42 " Xk " Ujrk1Ujrk42 ** Ujpr41
k=0
r

Xjt1Xj42 " Xjgpk " Ujpk1Ujpk42 " Ujpr1
k N~ o

0
Ukt Ujk2 Wi W41

T X1 X2 X1 Ui (e D) 1 (1) 42 7 U

= (empty;n;oduct) =1
(here, we have split off the addend for k = r + 1 from the sum)

.
= Z Xip1Xj42  Xjgk * Uik 1 Wjpk42 ** Wjpr * Wjprb 1 TXj41Xj42 * - Xjgrp 1
k=0

N J/
-~

r
=Ujiri1 kZO Xj 1 Xj2 e Xk Wk 1 k27 Uy

r
= Ujtr+1 2 Xjp1Xj42  Xjpk - Wik 1Wjpkt2 - Uiy TXj01 X020 X4l
k=0

N J/
-~

=t
(by the definition of ¢, )

= Ujprpityj + Xjp1Xj42 - Xjprg1e

This proves Lemma (d).

(e) We WLOG assume that n # 1, since otherwise the claim is easy to check by
hand. Thus, n > 2, so that n — 2 € IN.

Leta € Z and b € Z. Then, Lemma (c) (applied to ¥ = n—2 and j = a)
yields

Xaty—2,4 + Uglgyy - Ugpp2 = t(n—2)+1,a—1 =ty 1,a-1
(since (n—2)+1 = n —1). Multiplying both sides of this equality by u,_1, we
obtain
Ug— (xutn—2,u + Uglgyq - ua+n—2) = Uz 1ty—1,4-1-

Hence,

Ug_1tp—10-1 = Ug—1 (Xaty—2,0 + Uallgs1 - Ugin—2)

=Ug 1Xgty_pq+ Ug_1 Uglgyy - Ugip—2
H\,—J \ /

=XgqlUgz—1 =Ug_1Ug " Ug4p—2
=U(g—2)+1%(a—2)+2" " U(a—2)+n
=Uqlip Uy
(by Lemma3.7)
= Xallg—1tp—2,0 + Urllp - - - Up. (6)

Also, Lemma (d) (applied to r =n —2 and j = b) yields

Upt(n—2)+1tn—2,b T Xb41Xp+2 * ** Xpy (n—2)+1 = E(n—2)+1,b-
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In view of (n —2) +1 = n — 1, this rewrites as

Uptn-1tn—2p + Xp1Xp42 "  Xppn—1 = tn—1p-

Multiplying both sides of this equality by x;, we obtain

Xp (Upsn—1tn—2p + Xp+1Xp42 *** Xbyn—1) = Xptu_1p,

so that

Xptn—1p = Xp (Upsn—1tn—2p + Xp+1Xp4+2 " Xpsn—1)
=Xy Upin-1  tp2p+ Xp Xp1Xpi2 Xprn—1
——

~
=Up-1)+n—Ub-1 =XpXp+1 Xptn—1
=X (b-1)+1X(b-1)+2"""X(b—1)+n

(by Lemma

= XplUp_1tp—2p + X1X2 - Xp.
Adding (6) to this equality, we obtain

xbtn—l,b + ua—ltn—l,a—l
= XpUp_1ty—2p + X1X2 "+ X + XglUg_1ty_24 + Ul - - - Uy (7)
= XgUg—1tn—24 + X1X2 - - X 4 XpUp_1ty_pp + Uslo - - - Up.

The same argument (applied to b and a instead of a4 and b) yields

Xatn—1,0 + Up—1tn—1p-1
= xbub—ltn—Z,b + X1Xp - Xy + XaUg_1ty—2,4 + Ul - - - Uy,

Comparing this with , we obtain x,t, 1, +Up_1ty,_1p—1 = Xpty_1p+ Ug—1tn—1,0-1-
This proves Lemma (e).
(f) Applying Lemma (e)toa=i+1and b =i, we obtain

Xit1tn—1,i+1 + Ui—1ty—1,i—1 = Xity—1i + Uit1-1 tn—1,i+1-1
‘\/_/A/_/

=U; =ty-1,

= Xitp_1; Fuity_1; = (i +u;) ty_1,.

This proves Lemma (f).
(g) We shall prove Lemma (g) by induction on g:
Induction base: Let us show that Lemma (g) holds for g = 1.
Indeed, let j € Z. The definition of ¢, ; yields

1

t1; = kz Xjp1Xj42 - Xk~ Ujpk1Ujk2 - Ujp1
=0

= Xjp1Xj42 0 X0 Ujp 041 Ujp042 0 0 Ujp1 T X1 X2 X1 U1 U142 0 Ui

-~ -~

=(empty product)=1 =Ujt1 =Xj1 =(empty product)=1

= Ujp1 T Xjp1 = Xjp1 + Ujype
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Hence,

tootjer hy o = b (X 1) = (X1 F ujg) togj
SN~~~

=Xj1+Ujp

Comparing this with

bn—1,j4141 - Xjp2Xj43 - Xjp141 TUjt—1j t1—1,j+1
~ ~\~ o ~\~ o H/_/
=ty_1j12 =Xj12¥j 13" X2 =tg,jr1=1
=Xj+2 (by Lemma 3.12) (b),
applied to j+1 instead of j)
= th—1j+2Xj42 T Ujty_1; = Xjpotp—1j42 + Uity—1,j
~—— ~—
=X+ +1tn-1,(+1)+1  TU(+1)-1E-1,(+1) -1

(since j+2=(j+1)+1) (since j=(j+1)—1)

= X(jr1)+1tn1,G1)+1 F UG -1ta1 1)1 = (a1 + uj11) ot
(by Lemma (f), applied toi =j+1),

we obtain

bn—1j+1+1 * Xj+2Xj43 * * Xjp141 + Ujtp—1jf1-1,j+1 = tn—1j+1t1-

Now, forget that we fixed j. We thus have proved that

bn—1,j+1+1 * Xj+2Xj43 ** Xj+14+1 + Ujtp—1jf1-1,j41 = tn—1j+1t1f

for each j € Z. In other words, Lemma (g) holds for g = 1. This completes the
induction base

Induction step: Fix a positive integer p. Assume (as induction hypothesis) that
Lemma (g) holds for g = p. We must now show that Lemma (g) holds for
g=p+1

We have assumed that Lemma (g) holds for g4 = p. In other words, each
j € Z satisfies

bn1japtl s Xj2Xjna  Xjypr1 T Uitu—1jtp-1,j11 = tu_1j11tp- (8)

Now, let j € Z be arbitrary. Then, Lemma (d) (applied to r = p) yields

Ujyptitpj + Xjp1Xj42  Xjppp1 = Epi1 -

Multiplying both sides of this equality by ¢, 1 ;,1, we obtain

tn1,j+1 (”j+p+1tp,j + Xjp1Xjp2 - xj+p+1) = tp1,j+1tp+1,)-

3We could have simplified this part of the proof by taking g = 0 as induction base instead. But
this would have required extending the semifield K to a semiring K LI {0} by adjoining a zero
(since t_1; would be an empty sum). It is not hard to do this, but we prefer computations to
technicalities.
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Hence,

ti—t,j+1tp41,)

= ty_1,j+1 (”j+p+ltp,j + Xjp1Xj42 'xj+p+1)

= tu—t 1 Ujppi tpj T 11 Xjp1 X2 Xjppi
N————

=Ujrpritn-1,j+1

= Ujtp+1 th—1,j+1tp,; Fhp—1,j+1 ° Xjp1Xj42 * Xjpp+1
—— N ~~ o
=1 jp+1 X2 X3 X pp1 Tt 1 11 =X X2 X437 X pt1

(by (8))

= Uy pi1 (Bntjp+1 - Xjp2Xj43 - Xjgp1 + Uitp_1,jtp—1,j41)
1,41 X1 Xj2Xj3 0 Xjpp

= Ujppt1tn—1,j4p+1 " Xj42Xj43  * Xjpp1 T Ujpprrtjtn—1,jtp—1,j41
1,41 X1 Xjp2Xj3 0 X p

= (Wjrpritn—1jeps1 + b1 K1) XjaXjes - Xjpen F Wjp ity 1ty 10

[ J/

=Xjp1tn—1j41 FUjppr1tn—1,j+p+1
=Xjp1tn—1,j+1 T U(j+p+2)—1tn—1,(+p+2) -1
(since j+p+1=(j+p+2)—1)

= (xj+1tn—1,j+1 + ”(j+p+2)—1tn—l,(j+p+2)—1> Xj2Xj43 Xjpp1 + Ujpppaljitn_1,itp-1j41

N J/

=Xjtpatn—1j4p+2 Tl (ir1)—1tn—1,(j+1)-1
(by Lemma (e), applied to a=j+1 and b=j+p+2)

= | Xjrpr2tn—tjrpr2 T UGr1) -1 Eno1 1) -1 | Xjr2Xje3 0 Xjppal + Ui prathitn1,itp 111
N — N —
:Mj :tnfl,]‘
= (Xjrpratn1jrpr2 T Ujitn_1j) - Xj1oXj43 Xjpr1 T Ui prithite 1ty 111
= Xjppotn—1,j4p+2 - Xj2Xj43 Xjpp1 T Uity 1, XjpoXji3 o Xjyppia
+ujppitjty—_1itp—1,i41
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= Ujty_1,j Uippr1  tp—1jm1+  XjpoXj3: - Xjyppl
H/_./ -~ 7
=U(j+1)+(p—1)+1 =X(j4+1)+1X (1) 427 X (j+1)+(p—1)+1

+ Xjrpratn-1jtpr2  Xjr2Xjps 0 Xjptl

-~

=y 1,jbp+2° X2 %43 X p1 X p42

= Ujln-1, (”(j+1)+<p—1)+1tpfl,f+1 TX(j+)+1X (1) 427 x(z‘+1)+(p—1>+1>

N J/

=t .
(p—1)+1,j+1
(by Lemma (d), applied to j+1 and p—1 instead of j and r)

T b1 jipr2 - Xjr2Xj43  Xjpp+1 - Xjp42

~
=Xj2Xj43 X p42

= Ujtn-1,j Ep-1)+1j+1 T In—1jrpr2 - Xjr2Xjas o Xjgpi2

-~ -~ -~

=tpi1)-1j+1  hi-ljt(pr1) 41 TXH2XH3 T X (p1)+1
= Ujtn—1,it(p41)-1,j+1 T En—1j+ (p+1)+1 " Xj42Xj43 * Xjp (p+1)+1

= b1 (pr1) 41 Xj2Xj43 - X (pr1)+1 T Wit (p1)-141-

In other words,

bne1j(p+1)+1 " Xj42Xj43 " Xjp (pr1)+1 T Ujtn—1,jt(p+1)-1,j41 = En—1j+1Ep+1j-

Now, forget that we fixed j. We thus have proved that each j € Z satisfies

Fn1j(pr1) 11 Xjr2Xj43 0 X (pr) 41 T Uitn—1t(pa1) 101 = tn-1jttp e

In other words, Lemma (g) holds for g = p + 1. This completes the induction
step. Hence, Lemma (g) is proved by induction.

(h) In short, this follows from the definition of y because “everything is n-
periodic”. Here is the argument in detail:

Convention 3.6/entails that the families (1;);., (X;);cz and (y;);c5 are n-periodic.
In other words, the families (u]-)].ez, (xf)jez and (y]')].ez are n-periodic (here, we
have renamed the index i as j).

Let i € Z. Let i’ be the unique element of {1,2,...,n} that is congruent to i

modulo n. Thus, i/ = imodn. Hence, uy = u; (since the family (uj)]. ey 18 71

periodic) and yy = y; (since the family (y]-)].ez is n-periodic). Also, from i’ =
imod n, we obtain i’ +1 = i+ 1mod n, so that x;, 1 = x; 1 (since the family (xf)jez
is n-periodic) and t, 111 = t,_1,;+1 (by Lemma (a), applied to r = n —1,
j=i+1landj =i+1). Also, from i’ = imodn, we obtain i’ —1 =i — 1modn,
so that u;_1 = u;_1 (since the family (uf)jeZ is n-periodic) and t, 17 1 = t; 1,1

(by Lemma (@), appliedtor =n—1,j =7 —1and j/ =i —1). Now, recall that
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vy = y;; hence,

Up 1ty -
i =Yy = uy - —— L (by the definition of y, since i’ € {1,2,...,n})

Xit41tn—1,i7+1
C Uicitno1i1
Y Xipiteo1i

since up =u;and uy_; =u; qand t, 1y =1t,_1,1

( and X1 = Xy and £, 41 = fyo1i41 ) '

Thus, Lemma (h) is proved.
(i) We shall prove Lemma (i) by induction on g:
Induction base: For each j € Z, we have

/
to bt to,j

UipiUjpp Ujpo  Ep1jp04+1  Xj42Xj43 °* Xjp041

ﬁ In other words, Lemma (i) holds for g = 0. This completes the induction
base.
Induction step: Fix r € IN. Assume (as induction hypothesis) that Lemma @)
holds for g = r. We must now show that Lemma (i) holds for g = r + 1.
We have assumed that Lemma (i) holds for g = r. In other words, each j € Z
satisfies )
tr,j . tnfl,jJrl ) tr,j )

Upptljro Uiy bu ljirel Xje2Xj43 e Xjyrgl
Now, let j € Z be arbitrary. Then, (9) (applied to j 4 1 instead of j) yields

/
f i1 b+ tr i+l

Uttt Bt G er X254 X b

4Proof. Let j € Z. Lemma (b) yields tp; = 1. The same argument (applied to y and t;’j instead
of x and t, ;) yields t6’]- = 1. From this equality, and from u;1uj 5 - - - uj 0 = (empty product) =
1, we obtain
o, L
Ujpaljyp - Ujpo 1

Comparing this with

tnfl,jJrl tO,j

bn—1,j+0+1  Xj42Xj43 "+ Xj40+1
ot 1

tn-1jr0+1 1
(since to,; = 1 and X 5Xj43 - - Xj1041 = (empty product) = 1)
ti—tj+1 ta-1je1 1
th1jr0+1  ta-141 ’

t/ . t . o

) 0, —1,j+1 0,

we obtain / =1 . / . Qed.
Ujpithjyo  Ujpo  En1j4041  Xj42X43° Xjp0+1
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In other words,

t. to 4 b
r,j+1 _ n—1,j+2 ) r,j+1 (10)

UjipoUjp3 - Ujrrt 1l bntjir+2 Xj43Xj44 Xjprt

(since (j+1)+1=j+2and (j+1)+2=j+3and (j+1)+r+1=j+r+2and
G+1)+r=j+r+land (j+1)+3=j+4).
But Lemma [3.12] (¢) (applied to j + 1 instead of j) yields

Xt it + Wi iU ()41 W) = B (41 -1 = B
(since (j+1) — 1 = ). Hence,
ey = Xjpatrjpr T Uity 11 U(ja)+r = Xjaibrjpn T Uil Ui

(since (j+1)+1=j+2and (j+1)+r = j+r+1). The same reasoning (applied
toy and t;,j instead of x and ¢, ;) yields

/ . /
b1, = Yiertyjon T Wit o Ui

Hence,
/ /
ey Vit Tt U
Ujp1Ujyo - Ujpr41 Ujp1Ujyo - Ujpr41
X /
Yjit1ty it

UjpiUjo - Ujgr41

-~

. /
Yji+1ty it

Wjpy - UjpoUjyg - Ujpryl
(since Ujr1UjpoUjpr41=Ujt1 'uj+2”j+3“'uj+r+1)

/
Yi+1t, ; 1
— ] r/]+ +1
Ujt1 Ujpalljps - Ujpr1
. vt’ ,
Yin rj+1
Ujr1 UjpoUjy3 - Ujpr4
. t.
+1 J+1
_ Y " 1
Ujr UjtoUji3 - Ujpr41
Ly trj+1
tn—1j+r+2 Xj+3Xj+4 " Xjgr42
(by (@)
Y it trj+1

+1. (11)

Uit1 tn—1jrr+2  Xj+3Xj4a  Xjpri2
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But Lemma (h) (applied to i = j+ 1) yields

Uiyt o Hiteey

Yik1 = My X(j+1)+1En—1,(j+1)+1 JH Xjtotn—1,j+2
(since (j+1)—1=jand (j+1)+1 = j+2). Dividing this equality by u; 1, we
find

Yir1 Uit

U1 Xjgobu1j2

Hence, becomes
tl

r+1,j B Yi+1 th—1,j+2 trj+1 1
UjpiUjyo - Ujpr4 Ujr1 tn—1j+r+2  Xj43Xj+4 " Xjpr42
N~
B ujtn—l,]'
Xjtotn—1+2
Ujty_1,j th—1,j+2 trj+1
— 7 . 7 . 7 + 1

Xjitotn—1j+2 tn—1j+r+2  Xj43Xj4a - Xjpri2
_ Ujtn—1,trj1 1
bn1jrre2 X2 - Xj13Xjpd * Xjpri2

. ujtn—l,jtr,]'+1 11
bn—1,j4r+2 " Xj42Xj43 " Xjprs2

(since Xj+2 * Xj43Xj 44 - Xjpr42 = Xj42Xj43 - xj+r+2)
Uity—1,jtrj+1 + tn—1,j4+r+2 * Xj+2Xj43 " Xjgr42

b1 j+r42 - Xj42Xj43 * Xjpry2
bn—1jtr+2 ° Xj42Xj43 - Xjpry2 T Ujkp—1 ity i1

= (12)
bn—1j+r42 - Xj42Xj43 " Xjpry2
But Lemma (g) (applied to g = r + 1) yields
bn1j+ (1) 41 " Xj42Xj43 0 X (r+1)+1 T Uitn—1it 1) —141 = tn-1 i1t
This rewrites as
b 1jeri2 XjraXjis  Xjpro H Uty it i1 = Byt (13)
(sincej+ (r+1)+1=j+r+2and (r+1) — 1 =r). Hence, becomes
/
ey a2t XjpaXja o X2 + Uit ity
UjprUjp2 - Ujqrp bn—1,j4r42 * Xj42Xj43 " Xjprs2

_ En1j+1tr11 (by (13))

bn—1,jr42 " Xj42Xj43 " Xjpr2
tn—1,j+1 tri1,)

bn—1jtr+2  Xj+2Xj43 " Xjpri2
tn—1,j+1 tri1,)

bi—1jr(r+1) 41 Xj+2X43 " Xjp (r41)+1
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(since j+r+2=j+ (r+1)+1).
Forget that we fixed j. We thus have shown that each j € Z satisfies

!/
tr+1,]' o tn—l,]'—l—l tr+1,j

UjpiUjo - Ujprrr b e i) 1 Xj42X43  Xjp (e 1) 41

In other words, Lemma (i) holds for g = r + 1. This completes the induction
step. Hence, Lemma (i) is proved by induction.

() Let j € Z. Then, ujy, = u; (by Convention 3.6). Lemma (i) (applied to
g = n — 1) yields

/
Sy o tin tn-1,

Ujpiljip  Uipn—1 by 1jrm-1)+1 Xj+2Xj43 " Xjp(n—1)+1
tn—1,+1 th—1,
— n—1,7+ . n—1,; (14)
tn—1j4n  Xj42Xj43 " Xjtn

(since (n—1)+1 = n). Butj = j+ nmodn; hence, Lemma (@) (applied to
r=n—1landj =j+n)yields t,_1; = t,_q j4,. Hence, becomes

!/
tho1 b1 th—1,j A tn—1,j+n

UjpiUjpo - Ujpn—1  tn—tjon Xj42Xj43 Xjgn  In—1j4n Xj42Xj43 " Xjjn
(since ty_1,; = ty—1,j4n)

th—1,j+1 B tn—1,j+1Xj+1 b

xj+2xj+3...x].+n xj+2xj+3'”x]‘+7’l'x]'+1 X1Xp Xy

(since Xj19Xj43 -+« Xjan * Xjp1 = Xj41 - Xjp2Xj43 - Xjpn = Xjp1Xj10 - Xjpp = X1X2 -+ Xy
(by Lemma [3.7))). Hence,

!/ / !/
ba1j41%j41 1 By jUj+n g Ujn

X1X2 -+ Xn UjpiUjyo - Ujpp—1 UjpqiUjyo - Ujyp—1 " Ujpn  UjpiUjp - Ujpp
(since UjpqUjpo - Ujpp—1 Ujpn = Ujpiljio - ”j+n)

t;q—1,j”j .

= (since uj4, = uj)

Ujr1Ujro - Ujip

/ )
tn_l,]-u]
uluz s Uy

(since uj11j4o  Ujy = Uylz - - - Uy (by Lemma 3.7)). This proves Lemma G).
(k) Let i € Z. Applying Lemma (j) to j =i —1, we obtain

/
birica¥i-1 b1+ Xi-1)+1 | b1
u1u2 P un xlxz .. xn xle o xn
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(since (i — 1) + 1 =i). Applying Lemma (j) toj =i+ 1, we obtain

/ . ) )
Bl b1 X041 beo1ii0Xieo

uluz...un xlxz...xn xlxz...xn

(since (i +1) +1 =i + 2). Dividing the former equality by the latter, we obtain

Uiy - - - Uy Uil -+ - Uy X1Xp Xy X1Xp Xy

/ . / .
tn—l,i—lul—l/tn—l,i+1u1+1 b /tn—l,i+2xi+2

This rewrites as .
bp_ricaMi-1  te1x

/
tn,1,i+1ui+1 tnfl,i+2xi+2

/ . !/ . / .
tn—l,i—lulfl/tn—l,i+1ul+1 bt

(since and

Y
UqUp - -~ Uy  UUp - - - Uy tn_11i+1ui+1
th—1iXi  th—1it2Xiv2  tp—1iXi

X1Xp:  Xp X1X2-ccXp  Epo1i42Xig2
u; 1, we obtain

). Multiplying both sides of this equality by

/ :
bp1iaMi-1 y tn—1,iXi (15)
— = Uiy
tn—l,i—l—l tn—1,i+2Xi4+2
Now,
. / / .
Uity ;0 b Uil
e ‘ui/ Yit1
Vi1t 111 n—1,i+1 y vt
(i+1)—1*n—-1,(i+1)-1
tn—l,ixi =Ujy1- t
Sy X(i41)+15n—1,(i+1)+1
n—1i+2Xi4+2 (by Lemma (h),
(by (15)) applied to i+1 instead of i)
tn—1,iXi U(it1)—1tn—1,(i+1)-1
=UWip1 ui/ | Uiy - ;
n—1,i+2Xi42 X(i+1)+1tn—1,(i+1)+1
B tn—1,iX; Uity—1,i
—Mi+1't—'ui/ ui+1‘t—
n—1,i+2Xi+2 Xit2tn—1,i+2
= X;.
This proves Lemma (k). O]

Lemma 3.13. Let x € K" be an n-tuple. For each j € Z, let

n—1

g = E Xj+1Xj42 - Xjpk " Ujpk+1Uj4k+2 ** Uj4n—1 -
k=0 h ’

~ ~

k n—1
=11 x4 = IT wujti
i—1 i=k+1

Let z € K" be such that
Ui—1qi—1

Zi = Uj-
Xit19i4+1

foreachi e {1,2,...,n}.
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| Then, f, (x) =z

Proof of Lemma Let t,; and y be as in Definition Then, for each j € Z, we
have

n—1

th—1,j = kz fj+1x]‘+2 - 'xj+]§'ilj+k+1uj+k+2 s uj+n—£
=0 ~~ ~~
k n—1
=11 xjti :;H Ujyi
i=1 i=k+1

(by the definition of t,_ ;)
= g (by the definition of g;) . (16)

Now, leti € {1,2,...,n}. Then, t, 1,1 = g;—1 (by (16), applied to j = i — 1) and
th—1,i+1 = gi+1 (by (16), applied to j = i + 1). Now, the definition of y yields

Uiqty_1,i-1 Ui—1qi—1 .
Yi= Ui b =Uj (since t, 11 =gi—1 and t,_1 ;41 = gi11)
Xit1ln—1,i+1 Xi+1qi+1
. Ui—149i—1
(since we assumed that z; = u; - Yi1gi .
Xi+1qi4+1

Forget that we fixed i. We thus have shown that y; = z; for each i € {1,2,...,n}.
In other words, y = z. Hence, z = y = f, (x) (since £, (x) was defined to be y).
This proves Lemma [3.13| O

For future convenience, let us restate Lemma [3.13| with different labels:

Lemma 3.14. Let y € K" be an n-tuple. For each j € Z, let

n—1
ri = Z YirYj+2 - Yjrk  Ujpkt1Ujrk+2  Ujpn—1-
k:O\ ~~ g A g
k
:l:llyj+i = II wujyi

Let x € K" be such that

Uj 11 .
xj =y =L foreachi € {1,2,...,n}.

Yit1Ti+1

Then, £, (y) = x.

Proof of Lemma Lemma is just Lemma with x, g; and z renamed as
y, rjand x. O

We are now ready for the proof of Theorem 3.11}




Pelletier—Ressayre hidden symmetry page 29

Proof of Theorem [3.11} (a) Let x € K". We shall prove that (f, o f,) (x) = x.
Let t,; and y be as in Definition Then, f, (x) = y (by the definition of f,),
so that y = f, (x). Let t’ (for each r 6 N and j € Z) be as in Lemma w The

definition of #’ shows that

n—1,j

~1
o1 = Zy]+13/]+2 Yjrk o Wik Ujrkt2 0 U1

NV NV
n—1
Hy]+l = I1 wujyi
i

= i=k+1

=

for each j € Z. Lemma (k) shows that

u-_lt’_ - .
X = u; —— LTl for eachi € {1,2,...,n}.

. /
Vit1t, 141

Thus, Lemma (applied to r; = t;_; ) yields that f, (y) = x. Hence, x =

f.| vy = £, (f, (x)) = (f, o f,) (x). In other words, (f, o f,) (x) = x.
<~
=fu(x)

Forget that we fixed x. We thus have proved that (f,of,) (x) = x for each
x € K". In other words, f, of, = id. In other words, f, is an involution. This
proves Theorem 3.1 (a).

(b) Let £, ; be as in Definition Note that the y from Definition [3.8|is precisely
the y in Theorem B.11] (b) (because both y’s satisfy f, (x) = y).

Lemma [3.12] (a) yields t,_19 = t;,—1, (since 0 = nmodn) and t,_11 = ty_1,41
(sincel =n —|— 1mod n). Multiplying these two equalities, we obtain t,_1t,_11 =
tn—1ntn—1n+1, whence

fn-totn-11 (17)
tnfl,ntnfl,n+1




Pelletier—Ressayre hidden symmetry page 30

We have
n n
Ui 1ty—1,i-1
i=1 S~~~ i=1 Xi+1tn—1,i+1
Ui 1tp—1i-1
:ui.—
Xiv1tn—1,i41
(by the definition of y
in Definition 3.8)
n n
" ITuia)- (I t—1,i1
- (ITw) - 52
] n n
=1 (H xi+1) : (H tn—l,i+1>
i=1 i=1
n n n
= T]w |- Ui—1 | - [tn-1-
—_——r —— ~ ~
=ujup-uy  =HUQUL - Up—1 =ty_1,0tn-11"th-1n-1
e ti1,0tn-11" " th-1n41
(by Lemma@ — 7 7 7
tn—l,ntn—l,n—H
n n
/ [ Txie | - [Tti-1i+1
i=1 i=1
_\/_/ . ~ /
=X2X3Xp41 =tp-12tn-13"tn—1n+1
=X1X2°Xp t ¢ et
(by Lemma[37) _‘n=10°n—-11 n—1n+1
th-10tn—11
tn1,0tn—11" " th-1n41
:(uluZ"'un)'(uluZ"'un)' , ’ ,
tnfl,ntnfl,n+1
th—1,0tn—11" " th—1n1
/ <(x1xz e Xp) -
th—1,0tn-11
2y / 2
(uatz - - - un) o t—10tn-11 (uatz - - - un)
- - v
X1X2 -+ Xy tn—l,ntn—l,n—l—l/ X1X2 -+ Xy
—_————
=1
(by ()
so that

ylyz. . .yn .xlxz. . -xn = (uluz. . .un)Z.
This proves Theorem (b).

(c) Let ¢, ; be as in Definition Note that the y from Definition [3.§]is precisely
the y in Theorem (c) (because both y’s satisfy f, (x) = y).
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Leti € Z. Then,
Ui + Yi
=~

Ui1ty—1,i-1

Xit1tn—1,i+1
(by Lemma (h))

=u;-

Uj_1t,_1i— Uj_1t,_1i—
:ui+ui‘ i—1tn 1,11:ui<1+ i—1tn—1, 1):M

Xit1tn—1,i41 Xiv1tn—1,i+1

Ui
I b 1 (Xip1tn—1,i41 + Ui—1tp—1i-1)
i+1tn—1,i4+1 ~ v
=(xi+ui)ty 1
(by Lemma )
Ui

- ) (xi + ui) tn—l,i-
Xivitn-1,i41

CXigitp—1ip1 + Uity 1,1

i

Now,
1 1 u;
—+t—= (u; +yi) / (ui-y) = —————
up Y uH/—/ Xit1tn—1,i+1
i
= (xituty
Xig1tn—1,i+1 !
(by (8
1
= —— (xi+u) ty_1/ Vi
Xig1tn—1,i+1 ~—~
Ui1ty—1,i-1

=u

B
Xit1tn—1,i4+1

(by Lemma [B.12| (h))

Xiv1tn-1,i41

- () b/ (u-. ”iltnlﬂ'l) _ (i) b,
i i) tn—1,i i =

Xiv1tn—1,i+1

Xiv1tn—1,i+1

The same argument (applied to i 4 1 instead of i) yields

~ (xip i) Bein

1 N 1 (Mgt i) be1in
Uil Yit1  UipU(ip1)-1tn—1,3+1)-1

Ujp1Uity—

1,i

(since (i +1) — 1 = i). Multiplying with this equality, we obtain

1 1 Uu;
(ui +yi) ( + ) - l (i + 1) by1i -

Uiyl  Yi+l Xiv1tn—1,i41

1 1

=u;j+x;

1 1
Uit1 Xip1

This proves Theorem (c).

- Xip1Ui41
N’

Uit _1tp—1,i—1

(Xip1 + Uit1) ti1,it1

= (u; + x;) (

1

Uit

Ui Uity 1,

1

Xit1

).

(18)

(i 4+ ui) ty_1i/ (i i)
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(d) Let ¢, ; be as in Definition Note that the y from Definition [3.§]is precisely
the y in Theorem B.11](d) (because both y’s satisfy f, (x) = y).

We have
n
[Txis1 = xox3- - x40 = 2922+ - 2 (by Lemma
i=1
n
= H Xi (19)
i=1
and
n n+1
H th_1i+1 = H th—1, (here, we have substituted i for i + 1 in the product)

n n
S ' PR | th—u =ty11 ] [ tn-n,i
— 2 i=2
=ty_1,1

(by Lemma 3.12] m (a),
since n+1=1mod n)

n
= H tn—l,i- (20)
i=1

Every i € Z satisties (as we have shown in the proof of Theorem (c)
above). Hence,

n n
2]

I (u; +yi) =11 (—t (x; + u;) tn—l,i)

i=1 u_\,d i—1 \Xir1ln—1,i+1
i

= (XUt
Xiv1tn—1,i41

(by (18))

n

IT u .
= . i=1 . ( x1—|—u ) (th 1z>
(z‘H xz+1) <ZI—[1 [ 11+1) i=1
[T u "
= — izln ( (x; + u; ) (th 11>
(H xi) (H tn—l,i) i=1

1

(by (19) and @0))

n fll(xz"'”) i+
- (1) = = (1) T
I x; =1
i=1
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Thus,
n
i +Yi
izl(l yl)_ L Xi +u; o L Ui + X;
ﬁ U; i=1 ;xi , i=1 Xi
i=1 Uit X
=
so that .
ui +yi
ﬁui+xi_zljl(l yl): L u1+yz
i=1 i ﬁ Uu; =1 Wi
i=1
This proves Theorem (d). O

Let us observe one more property of the involution f, (even though we will have
no use for it):

Proposition 3.15. Let x € K" be such that xyxp---x, = wuqup---u,. Then,
£, (x) = x.

Proof of Proposition Let £, ; and y be as in Definition Then, £, (x) =y (by
the definition of f,).

Let i € Z. We shall first show that u; _1t,_1; 1 = xit,_1;.

Indeed, the definition of t,_; ; yields

n—1

th—1,i = Z Xit1Xi+2 - Xitk " Uitk+1Uitk+2 " Uitn—1-
k=0
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Multiplying both sides of this equality by x;, we find

Xitp—1,; =

n—1
Xi Z Xip1Xip2 * Xigk - Uipk1Uitk+2 " Uign—1
k=0
n—1
Z Xit Xip1Xi42 " Xip Uik 1Uipk+2 " Uitn—1
k=0 ~

n—1
Z XiXit1 = Xipk " Uitk 1Uitk+2 " Uitn—1
k=0

XiXit1  Xign—1  Uip(n-1)+1%ir(n-1)+2 " Uitn—1

:x(l‘*l)ﬂx;i}l)ﬂx"'x(f*1)+” =UjpnUitn4+1 - Uign—1
=x1x0 2y —(empty product)=1
(by Lemma [57) (empty product)

n—2
+ Z XiXig1 o Xipk * Uighk1Uipk+2 " Uign—1
k=0

(here, we have split off the addend for k = n — 1 from the sum)
n—2

X1Xp -+ Xp + Z XiXit1 - Xipk " Uitk1Uitk+2 " Uitn—1

=Uilp Uy 5:0

S/

~-
n—1
:kzl XiXit1 i (k—1) Wit (k—1)+1 Wit (k—1) 42" Uitn—1

(l:ere, we have substituted k—1 for k in the sum)
n—1
Uil -~ - Uy + Z XiXit1 = Xip (k=1) " Wit (k=1)+1%it(k—1)42 " " Ui+n—1
k=1 7N o

=XiXip1 Xipk—1 Uit kUitk+1 Uitn—1
n—1
UM -+ Uy Y XiXig 1 Xk - Ui kligky - Wit (21)
k=1

On the other hand, Convention[3.6yields that u; = u;,, for each j € Z. Applying
this to j = i — 1, we obtain

Ui 1 =Uj 11y = Uj1n1 (sincei—1+n=i+n-—1).

Furthermore,

th—1,i-1 = Z X(i—1)+1X(G—1)+2 " X(i—1)+k " U(i—1)+k+1 U (i—1)+k+2 " U(i-1)+n—1

n—1

S

k:o ' NV
=XiXip1 o Xipk—1 =UipkUitk+1 Wign—2

(by the definition of ¢,_1,_1)

n—1
= Z XiXi1 - Xigk—1 " WitkWitk+1 " Uitn—2-
k=0
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Multiplying these two equalities, we obtain

n—1

Ui—1tp—1,i—1 = Uitn—1 Z XiXit1 "t Xipk—1 " UipkUitk+1 " Uitn-2
k=0

n—1
= Z XiXit1 " Xipk—1 " WitkWitk4+1 " Uign—2 " Uitn—1
k=0

=UjpkUitk4+1 " Uitn—1
n—1
= 2 XiXip1 s Xipk—1 " UipkUitk+1 " Uign—1
k=0

= XiXi1 Xig0-1 " Wi OUir04+1 """ Uign—1

=(empt toduct = :”i”i+?cui+n—1
(empty p ) U118 (i-1)+2" H(i-1)+n
:uluzu.un
(by Lemma3.7)
n—1
+ Z XiXit1 - Xipk—1 " WitkUWitk+1 " Uitn—1
k=1
(here, we have split off the addend for k = 0 from the sum)
n—1
= Ul - Uy + Z XiXip1 - Xipk—1 " WipkUitk+1 " Uitn—1-
k=1

Comparing this with (2I), we obtain
Uiitp—1i-1 = Xitp—1,- (22)
The same argument (applied to i 4 1 instead of i) yields

Uit1)—1tn—1,(+1)-1 = Xit1tn—1,i+1-

In other words,
Uity 1,; = Xig1tn—1,i11 (23)
(since (i+1) —1=1i).
Now, the definition of y yields

Ui qty_1,-1
Vi=uj ————— =ujUj_qty_1,-1/ (Xiy1ty_1i+1)
Xit1tn—1,i+1 ~— N ~ 4
=Xty 1, =uity_1,
(by @2)) (by 3))

= uiXity_1;/ (Uity—1i) = ;.

Now, forget that we fixed i. We thus have proved that y; = x; for each i € Z.
Thus, in particular, y; = x; for each i € {1,2,...,n}. In other words, y = x. Hence,
f, (x) = y = x. This proves Proposition [3.15 O
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Remark 3.16. There is an alternative proof of Theorem (a) that avoids the
use of the more complicated parts of Lemma (specifically, of parts (g), (1), (j)
and (k)). Let us outline this proof:

The claim of Theorem (@) can be restated as the equality f, (f, (x)) = x
for each x € K" and each u € K" (we are not regarding u as fixed here). This
equality boils down to a set of identities between rational functions in the vari-
ables uy,uy, ..., Uy, x1,%2,...,%x, (since each entry of f, (x) is a rational function
in these variables, and each entry of f, (f, (x)) is a rational function in the former
entries as well as uq, uy, ..., uy). These rational functions are subtraction-free (i.e.,
no subtraction signs appear in them), and thus are defined over any semifield.
But there is a general principle saying that if we need to prove an identity be-
tween two subtraction-free rational functions, it is sufficient to prove that it holds
over the semifield Q. from Example (Indeed, this principle follows from the
fact that any subtraction-free rational function can be rewritten as a ratio of two
polynomials with nonnegative integer coefficients, and thus an identity between
two subtraction-free rational functions can be rewritten as an identity between
two such polynomials; but the latter kind of identity will necessarily be true if it
has been checked on all positive rational numbers.)

As a consequence of this discussion, in order to prove Theorem (a) in full
generality, it suffices to prove Theorem (a) in the case when K = Q... So let
us restrict ourselves to this case. Let x € K". We must show that £, (f, (x)) = x.

Lety = £, (x), and let z = £, (y). We will show that z = x.

Assume the contrary. Thus, z # x. Hence, there exists some i € {1,2,...,n}
such that z; # x;. Consider this i. Hence, either z; > x; or z; < x;. We WLOG
assume that z; > x; (since the proof in the case of z; < x; is identical, except that
all inequality signs are reversed). But Theorem (c) yields

(u~+x')( ! + ! )—(u-+ )( ! + ! >
: : Uit1  Xit1 Y Uir1  Yi+1 '

Likewise, Theorem (c) (applied to y and z instead of x and y) yields

(u; + -)( ! + ! )—(u~+z')< ! + ! )
Y Uir1  Yiv1 1 1 Uit1 Zit1

(since z = £, (v)). Hence,
1 1 1 1
u; + Xx; + = (u; +y; +
(1 2 <ui+1 xi+1) (i +4:) (“i+1 yi+1)

1 1
= |u;+ z ( + )
~~ Uir1  Zitl

>X;

>(ui—|—xl~)( LI >

U1 Zip1
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Cancelling the positive number u; + x; from this inequality, we obtain +
Uit
1 1 1
> + . Hence, > , so that z; 1 > x;11. Thus, from z; > x;,
Xi+1  Uit1  Zip Xit1  Zitl

we have obtained z; 1 > x;;1. The same reasoning (but applied to i + 1 instead
of i) now yields z;;» > x;1 (since zj;1 > x;41). Proceeding in the same way,
we successively obtain z;;3 > x;43 and z;14 > X;44 and z;;15 > x;45 and so on.
Hence,

Zi Zit1 * Zign—1 > XiXip1© o Xigp-1- (24)
N N——_ e’
>Xi >Xjqq >Xitn—1

But Theorem (b) yields

2
ylyz...yn.xlxz...xn:(uluz...un) .

Also, Theorem (b) (applied to y and z instead of x and y) yields

2
lez...zn.ylyz..-yn:(uluz...un)

(since z = f,(y)). Comparing these two equalities, we find y1y2---yy -
X1Xp - Xp = Z1Z2 - Zn - Y1Y2 - - Yn, SO that

X1Xp -+ Xy = 2122 -+ - Zp. (25)

But Lemma yields zjzjiq1 -+ Ziin-1 = 2122+ 2zn and XjXji1- Xy 1 =
X1X2 - - - Xy. In light of these two equalities, we can rewrite as z1zp -+ -z >
X1Xp - - - Xx,. This, however, contradicts . This contradiction shows that our
assumption was false, thus concluding our proof of z = x.

Now, £, | f, (x) | = fu (y) = z = x, as we wanted to prove. Hence, Theorem
——
=y
(a) is proved again.

We shall take up the study of the birational involution f, again in Subsection
where we will pose several questions about its meaning and uniqueness properties.

4. Proof of the main theorem

We shall now slowly approach the proof of Theorem [2.3| through a long sequence
of auxiliary results, some of them easy, some well-known.
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4.1. From the life of snakes

Recall the conventions introduced in Section [1l and in Convention Let us next
introduce some further notations.

Definition 4.1.

(@) Let £ denote the ring k [xlﬂ,xid,. : .,x%l] of Laurent polynomials in

the n indeterminates xi,xp,...,x, over k. Clearly, the polynomial ring
k [x1,xp,...,%,] is a subring of L.

(b) We let xr1 denote the monomial x1x; - - - x, € k[x1,x2,...,%,] C L.

If f € A is a symmetric functiorﬂ and if aq,a,,...,a, are n elements of a com-
mutative k-algebra A, then f (ay,4ay,...,a,,0,0,0,...) means the result of substitut-
ing ay,4ay,...,a4,0,0,0,... for x1,x2,...,Xu, Xy41, Xn12, Xn43, ... in f. This is a well-
defined element of A (see [GriRei20, Exercise 2.1.2] for the proof), and is denoted
by f (ay,az,...,a,). It is called the evaluation of f at ay,ap,...,ay.

For any symmetric function f € A, the evaluation

f(x1,x2,...,x0) = f(x1,%2,...,%,,0,0,0,...)

is a polynomial in k [x1, X2, ..., x,] and thus a Laurent polynomial in £. Moreover,
for any symmetric function f € A, the evaluation

-1 -1 -1 -1 -1 ~1
f(x1 JXy e, Xy )zf(x1 JXy e, Xy ,0,0,0,...)

is a Laurent polynomial in £ as well.

Convention 4.2. For the rest of Section[4} let us agree to the following notation: If
7 is an n-tuple (of any objects), then we let 7y; denote the i-th entry of v whenever
i€{1,2,...,n}. Thus, each n-tuple 7 satisfies vy = (1,72, ---,7n)-

Definition 4.3.

(@) A snake means an n-tuple A = (Aq,Ay, ..., A,) of integers (not necessarily
nonnegative) such that Ay > Ay > --- > A,

(b) A snake A is said to be nonnegative if it belongs to IN” (that is, if all its entries
are nonnegative). Thus, a nonnegative snake is the same as a partition
having length < n. In other words, a nonnegative snake is the same as a
partition A € Par [n].

Sor, more generally, any formal power series in k [[x1, X2, x3, . ..]] that is of bounded degree
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(© If A € Z" is an n-tuple, and d is an integer, then A + d denotes
the n-tuple (A +d,Ay+4d,...,Ap+d) € Z" (which is obtained from
A by adding d to each entry), whereas A — d denotes the n-tuple
(M—d,Ay—d,..., Ay —d) € Z". (Thus, A —d = A+ (—d).)

(d) If A € Z", then AV denotes the n-tuple (—Ay, —Ay_1,...,—A1) € Z",

(e) We regard Z" as a Z-module in the obvious way. Thus, if A € Z" and
u € Z" are two n-tuples of integers, then

A+.u: (A1+V11A2+,”2///\n+,un)/
)\—]l: (Al_ﬂllAZ_P[Z/---/An_Vn)-

(f) We let p denote the nonnegative snake (n —1,n —2,...,2,1,0). Thus,

pi=n—i foreachi € {1,2,...,n}. (26)

Example 4.4. In this example, let n = 3.

(@) The four 3-tuples (3,1,0), (2,2,1), (1,0, —1) and (—1, —2, —5) are examples
of snakes.

(b) The first two of these four snakes (but not the last two) are nonnegative.
(c) We have (5,3,1) +3 = (8,6,4) and (5,3,1) —3 = (2,0, —2).

(d) We have (5,2,2)" = (=2, -2, -5).

(e) We have (2,1,2) + (3,4,5) = (5,5,7).

(f) We have p = (2,1,0).

Note that what we call a “snake” here is called a “staircase of height n” in Stem-
bridge’s work [Stembr87], where he uses these snakes to index finite-dimensional
polynomial representations of the group GL, (C). We avoid calling them “stair-
cases”, as that word has since been used for other things (in particular, p is often
called “the n-staircase” in the jargon of combinatorialists).

The notations introduced in Definition [4.3| have the following properties:

Proposition 4.5.

(@) If A is a snake, and d is an integer, then A +d and A — d are snakes as well.

(b) If A is a snake, then A" is a snake as well.
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(c) Wehave (A+pu)+d=(A+d)+puforany A € Z", y € Z" and d € Z.
(d) Wehave A+ (d+e) = (A+d)+eforany A € Z",d € Zand e € Z.
(e) Wehave (A+d)—d=(A—d)+d=Aforany A € Z" and d € Z.

Proof of Proposition Completely straightforward. O

Let us now assign a Laurent polynomial a, to each A € Z™:

Definition 4.6. Let A € Z" be any n-tuple. Then, we define the Laurent polyno-
mial

A A An
ap = GZG (-1 xwl(l)xwz(Z) "~ Xo(n) €L,

where &, is the symmetric group of the set {1,2,...,1n} (and where (—1)% de-
notes the sign of a permutation w). This Laurent polynomial a, is called the
alternant corresponding to the n-tuple A.

(The “a” in the notation “a,” has nothing to do with the a in Theorem [2.3])

Example 4.7. We have

4(532) = Y (—1)Zux2;(1)x§u(z)x§;(3)
weB3

= 03503 + 5x5x% + 3x5x% — X]3%5 — X3x5x3 — 5.

The sum in Definition [4.6]is the same kind of sum that appears in the definition
of a determinant. Therefore, we can rewrite the alternant as follows:

Proposition 4.8. Let A € Z" be an n-tuple. Then, the alternant a, € L satisfies

o = det () ) = et (=) )
] /1<i<n, 1<j<n 1<i<n, 1<j<n

Proof of Proposition The definition of a determinant yields

A B 0 TN _ w M A A
det((x]. >1§i§n, 1§j§n) =) (=) gxw(i) =), =1 xwl(l)xw"’(z)---xw(n).

weS, wesy,
A A
.M 2 M
_xw(l)xw(Z)' xw(n)
Comparing this with
a) = Z (‘UWXM X2y (by the definition of a,)
A w(1)*w(2) w(n) y A) s
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we obtain

T
a), = det ((x.A’) ) = det (((x.A’) ) )
] J1<i<n, 1<j<n ] J1<i<n, 1<j<n

<since det A = det <AT> for any square matrix A)

T
Aj ) . Aj
= det (xl.’> since <x41> = <xl.]) )
1<i<n, 1<j<n ] J1<i<n, 1<j<n 1<i<n, 1<j<n

This proves Proposition O
Thus, in particular, we can compute the alternant a, corresponding to the snake
p=mn-1,n-2,...,2,1,00)=n—-1,n—-2,...,n—n).

Indeed, Proposition 4.8| (applied to A = p) yields

a, = det (xei) , ) =det (x‘?f) . |
] 1<i<n, 1<j<n ! 1<i<n, 1<j<n
since pj =n —jforeachj e {1,2,...,n}

_ n—j
= det ((xi >1§i§n, 1§j§n) ( (because p = (n—1,n—2,...,n—n)) )
= [] (xi—-x)

1<i<j<n

(by the classical formula for the Vandermonde determinant).

We recall a standard concept from commutative algebra: An element a of a com-
mutative ring A is said to be regular if it has the property that every x € A satisfying
ax = 0 must satisfy x = 0. (Thus, regular elements are the same as elements that
are not zero-divisors, if one does not require zero-divisors to be nonzeroﬁ)

| Lemma 4.9. The alternant 4, is a regular element of L.

Proof of Lemma Let b € L be such that a,b = 0. We want to show that b = 0.

. ) c
We know that b is a Laurent polynomial, and thus has the form b = ——-——-
XX cee X n
1 %2 n
for some uq,uy,...,u, € Z and some polynomial ¢ € k[x1,xp,...,x4]. Con-
. . c .
sider these uq,uy,...,u;, and this c. From b = s We obtain ¢ =

Uy, U
xl x2 ° xn
b-x]'xy? - - - x;;". Multiplying this equality by a,, we obtain

— oMy M2 U —
apc = aph -xy'x, X" =

=0

®Unfortunately, there is no agreement in the literature on whether zero-divisors should be required
to be nonzero. This is one of the reasons why we are avoiding this notion.
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But it is a well-known fact (see, e.g., [Grinbel9, Corollary 4.4]) that the polyno-

mial ] (x;— xj) is a regular element of k [x,x2,...,X,]. In other words, a,
1<i<j<n

is a regular element of k [x1,xy,...,%,] (sinceap = [] (x; — x;)). Hence, from
1<i<j<n
c

apc = 0, we obtain ¢ = 0. Now, b = = 0 (since ¢ = 0).

Uy ,.u2 .. Un
xy'xy Xy

Forget that we fixed b. We thus have shown that each b € L satisfying a,b = 0
satisfies b = 0. In other words, a, is a regular element of £. This proves Lemma

19 []
. u .
Lemma 4.9 shows that fractions of the form - (where u € L) are well-defined
0
if u is a multiple of a,. (That is, there is never more than one b € L that satisfies

a,b =u.)
4
We notice that the element x;; = x1x - - - x,; of L is invertible (since x1, xo, ..., Xy
are invertible in £).

I Lemma 4.10. Let A € Z" be any n-tuple, and let d € Z. Then, a); = x%a A
Proof of Lemma The definition of a, yields

ay= Y (—1)%xl eyt (27)
wes,

But the definition of A +d yields A +d = (A +4d, Ay +d, ..., A, +d). Hence,

(A+d), =M +d foreachi € {1,2,...,n}. (28)
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Now, the definition of a4, yields

_ w (A+d); (A+d), (A+d), _ w (A+d);
aa= ), (-1) Yo1) *we) T Ywm) T Y, (-1 [T Yo i)
weS, ~ ~ weS, ie{1,2,...n} S——
B (A+d); _ it
. xw(i) _xw(i
i€{1,2,..,n} (since (28)

yields (A+d);=A;+d)

weGn iE{l,Z,...,n} \'\f'/
Ai
:xwu)xi(i)
. w A d
- Z (_1) H xw(z)xw(z))
weS, ie{1,2,..n}

weS, ie{1,2,..n} i€{12,...,n}
= H x;,i
ie{1,2,..n}
(here, we have substituted i for w(i)
in the product, since w:{1,2,...,.n}—{1,2,...n}
is a bijection)

_ _1\Ww A d

=) (-1 [T Yo (i) [T «
weGy, i€{1,2,.,n} i€{1,2,..,n}

g N— _ p—

An :xilxg...xg:(xlxz...xn)d:x?_[
(since x1xp---xXp=x17)

= Y (D" (x5t X)) 2

)l NV
=X(1)¥(2)” Nio(n)

weS,
= xi Y (=1 x2;1(1)x2;2(2) e xi‘u’&n) — xta,.
weSn y
by &)
This proves Lemma O

Clearly, N" C Z". For any « € IN”, a polynomial a, has been defined in
[GriRei20, Definition 2.6.2]. This polynomial a, is identical with the alternant a,
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we have defined in Definition since

(the polynomial a, as defined in [GriRei20, Definition 2.6.2])

= ) sgn(w)w x*

wEGn n .

:(_1)w :xlflxgz...xznzn x;,xl
i=1

(where we are using the notation of [GriRei20, Definition 2.6.2])
a;

n n
w ; w
- T 0 wIT) = T oI e
i=1 weG, i=1 7;/(‘)’
N’ —rw(i
n
:Hl(W(xi))“i
1=
(since &, acts on k[xq,x3,...,%]
by k-algebra automorphisms)

o VR A § C U DR G AU

wes, . wes,
LS ) an
7xw(1) xw(Z) . 'xw(n)

= (the alternant a, as defined in Definition [4.6)) .

Thus, we can freely use results from [GriRei20, §2.6] without worrying about con-
flicting definitions of a,. (But we need to keep in mind that what is called x in
[GriRei20| §2.6] is (x1, X2, ..., X,) in our terminology, and that [GriRei20, §2.6] only
studies alternants a, for &« € IN”, while we are also interested in a, with A € Z".)

| Lemma 4.11. Let A be a snake. Then, a,,, is a multiple of 4, in L.

Proof of Lemma Our proof will consist of two steps:

Step 1: We will prove Lemma in the particular case when A is non-
negative.

Step 2: We will use Lemma to derive the general case of Lemma
from this particular case.

We will use this strategy again further on; we shall refer to it as the right-shift
strategy.

Here are the details of the two steps:

Step 1: Let us prove that Lemma holds in the particular case when A is
nonnegative.

Indeed, let us assume that A is nonnegative. We must show that 4, , , is a multiple
of ap in L.
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We know that A is a nonnegative snake, thus a partition of length < n. Hence,

a
[GriRei20)], Corollary 2.6.7] shows that sy (x1,x2,...,X,) = ary Thus, ay,, = ap -
a

sa (x1,%x2,...,%u). This shows that a, , is a multiple of a, in £ (since sy (x1,x2,...,%,) €
k[x1,x2,...,%4) C L£). Thus, Lemma is proved under the assumption that A is
nonnegative. This completes Step 1.

Step 2: Let us now prove Lemma in the general case.

We know that A is a snake. Thus, Ay > A, > --- > A,. Hence, each i €
{1,2,...,n} satisfies A; > A, and thus

Aj— Ap > 0. (29)

The snake A may or may not be nonnegative. However, there exists some integer
d such that the snake A 4 d is nonnegativeﬂ Consider this d. Proposition (c)
(applied to p = p) yields (A +p) +d = (A +d) + p.

The snake A + d is nonnegative; thus, we can apply Lemma to A + d instead
of A (because in Step 1, we have proved that Lemma holds in the particular
case when A is nonnegative). Thus we conclude that a(, , 4) 4, is a multiple of 4, in
L. In other words, there exists some u € L such that a() )., = apu. Consider this
u. From (A +p) +d = (A +d) + p, we obtain a4y, o) 14 = A\ 4d)+p = dpli-

Lemma (applied to A + p instead of A) yields a1 )14 = xha Atp- Since the
element x17 of L is invertible, we thus obtain

-1

_ d _—d _ —d

Artp = (xn) Q) p)rd = X7 GpUh = Ap - X" U
\H/—/\_i\/_/

Hence, a, 1, is a multiple of 4, (since xﬁdu € L). This proves Lemma (4.11, Thus,
Step 2 is complete, and Lemma is proven. O

a
Definition 4.12. Let A be a snake. We define an element 55, € £ by 5, = %.

0
(This is well-defined, because Lemma shows that a, ,, is a multiple of 4, in
a
L, and because Lemma shows that the fraction Atp is uniquely defined.)

o

It makes sense to refer to the elements s, just defined as “Schur Laurent polyno-
mials”. In fact, as the following lemma shows, they are identical with the Schur
polynomials s, (x1,x2,...,x,) when the snake A is nonnegative:

"Indeed, for example, we can take d = —A;. Then, all entries of A + d have the form A; + d =

=y
Aj — Ay forsome i € {1,2,...,n}, and thus are nonnegative (because of ); this shows that the
snake A + d is nonnegative.
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Lemma 4.13. Let A € Par [n]. Then,

Sy =) (x1,%0,..., %) .

Proof of Lemma We know that A is a partition of length < n (since A € Par [n]).
Hence, A is a nonnegative snake. Furthermore, since A is a partition of length <,
_ Itp

we can apply [GriRei20, Corollary 2.6.7] and obtain s, (x1,x2,...,%,) = = 3,
0
a
(since 5, was defined to be ?). This proves Lemma 4.13, O
P

The Schur Laurent polynomials 5, appear in Stembridge’s [Stembr87], where
they are named s,. (The equivalence of our definition with his follows from
[Stembr87, Theorem 7.1].)

Furthermore, from Lemma we can easily obtain an analogous property for
Schur Laurent polynomials:

I Lemma 4.14. Let A € Z" be any snake, and let d € Z. Then, 5,5 = x%ﬁ.

Proof of Lemma Proposition (0) (applied to u = p) yields (A+p) +d =
(A+d) + p. But Lemma (applied to A + p instead of A) yields a(y;)1q =

X%¢A+p- This rewrites as 4y 41 = X%0A+p (since (A +p)+d = (A+d)+p).
The definition of 5, ,; yields

d
AA+d)+p X119 +p

— _ . _.d
SA+d = (smce A A+d)+p = xHa/H-p) :

ap ap
Comparing this with

d
d - _d PAtp XA+
xH S/\ — xH . — 7
~ o o
Aatp
a

%
(by the definition of 5)
we obtain s, , 5 = de§A. This proves Lemma m O

Lemma 4.15. Let y, v € Par [n]. Then,

Proof of Lemma It is well-known (see, e.g., [GriRei20, Exercise 2.3.8(b)]) that if
A is a partition having length > 7, then

sx(x1,x2,...,x,) =0. (30)
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We know that u € Par[n]. Hence, Lemma (applied to A = p) yields
Sy = sy (x1,x2,...,%,). Likewise, 5, = s, (x1,x2,...,x,). Multiplying these two
equalities, we obtain

)

SuSy = s (X1, %2, ..., Xn) sy (X1, %0, ..., X0) = (susy)  (x1,%2,..., %)
——r
= Z C}}/l‘,l/s)L
A€Par
(by (@)
A A
= ( Z chA> (x1,%X0,...,%y) = Z CluuSA (x1,%2,...,%n)
A€Par A€Par
— Z cil‘lvs,\ (x1,%2,..., %) + Z Cﬁ/vé/\ (x1,%2,...,%n
A€Par; A€Par; "0
A has length < A has length > =
as eng <n as eng n (by )
_)\GPar[n]

(by the definition of Par[n])

since each A € Par either has length < 7 or has length > n
(but not both at the same time)

= Z cﬁlvf)\(xl,xz,...,xn)—i— Z CQ,VO: Z CQ,V@\.

A€Par[n| %, h AlePar;h A€Par[n]
oA th >
(by Lemma [4.13) Jnes engv " _
=0
This proves Lemma O

Lemma 4.16. The family (5,), {snakes} Of elements of L is k-linearly indepen-
dent.

Proof of Lemma Let us define a strict snake to be an n-tuple & € Z" of integers
satisfying a; > ap > --- > «y. It is easy to see that the map

{snakes} — {strict snakes},
A= A+p (31)

is a bijection.
It is also easy to see that if & and B are two strict snakes, then

(the coefficient of xf 1x§2 coxbin aa> = 0B (32)

1, ifta=0p;

0, ifa+#PB -
[Proof of (32): Let & and B be two strict snakes. Thus, a3 > ap > --- > a, and
B1 > B2 > --- > By (by the definition of a strict snake).

where ¢, g is the Kronecker delta of « and g (that is, the integer {
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The definition of a, says that

-1

_ w X1 1% Ay _ w x1 1% L.l
=), (-1) Y1) w2) " Ywmn) = Y, (=1 Yo 1) Xw-12) " Xu1(n)
weSy, we6y,
here, we have substituted w ! for w in the sum,
since the map &, = &,, w +— wlisa bijection
_ (_ id™! a1 1L5] L. Aln &1 &2 ey
= Rewtioe  Nee TN ST Shatie R
i id -~ .‘rl/ _ 71 w
*(:1) — T2 w#id  =(-1)
(since id~!(i)=i for each i€{1,2,....n})
(here, we have split off the addend for w = id from the sum)
= xi‘lng xlxn + Z ( 1 w 0‘1 @ “2_1(2) ce xz)n_l(n)_ (33)
weSy;
w#id
But every permutation w € &, satisfies
o ay . _ o o (i)
e Yaw = 1L %hg= 11 %)
ie{1,2,...,n} ie{1,2,..n} ~——
(since w1 (w(i))=i)
here, we have substituted w (i) for i in the product,
sincew: {1,2,...,n} = {1,2,...,n} is a bijection
IXZU 1 (XZU 0‘ aZU n
— H xi ():xl (1)x2 <2)"’xn()- (34)
{1/2/ M
Hence, becomes
Ky 0 " w o« o
Ay = X} X% X"+ Z (—-1) xw171(1)xw271(2) e xi‘u’il(n)
weGn; ~ 2
w#id :xaw(l) xg‘w(z) mxiw(n)
(by G9)
_ xliélxgz X Z Fa(1) xg‘lv(Z) . lev(n). (35)
weSy;
w#id

Now, let us fix a permutation w € &, satisfying w # id. Then, the two n-tuples
<[xw(1),txw(2), . ,ocw(n)> and (B1, B2, ..., Bn) are distinc Hence, x‘i‘w(l) x;‘w(Z) . .xiwm)

8Proof. Assume the contrary. Thus, ((xw(l),ocw(Z),. . .,ocw(n)> = (B1,B2/---,Bn)-

If wehad w (1) < w(2) < --- < w(n), then we would have w = id (since w is a permutation
of {1,2,...,n}), which would contradict w # id. Thus, we cannot have w (1) < w (2) < --- <
w (n). Hence, there exists some i € {1,2,...,n — 1} such that w (i) > w (i + 1). Consider this i.

But if # and v are two elements of {1,2,...,n} satisfying u > v, then a;, < ay (since a7 >
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and x7"' x5 P ﬁ " are two distinct monomials. Thus,
(the coefficient of x7'x; Pl xﬁ" in x1 ”xiwm e xiw(")>
—0. (36)

Now, forget that we fixed w. We thus have proved for every permutation
w € &, satisfying w # id. Now,
1 ﬁz Bn - >

(the coefficient of x} " x cxy"in ag

« « "
= | the coefficient of x| x} 2 b in sz ecxmn+ Y (1) a Wa xg,
weGy;

w#id
(by (5))
:(S(’J‘lfﬂ(Z""’“”)'(.Blrﬁz,...,ﬁn):(Stx,ﬁ
(since (aq,a3,...,00)=w and (B1,B2,....8n)=P)

+ Z (—1)° (the coefficient of x11 £P2. xgn in xl w(1) x;‘w(z) B -xzw“))
wiégg; )
wH#i (by:)

— 50(,‘3 + Z (—1)w0 — 50(,ﬁ'
weS,;
w#id
—
=0

This proves (32).]

Now, assume that (#3) )¢ fsnakes) € kisnakes} be a family of scalars with the prop-
erty that (all but finitely many snakes A satisfy ) = 0) and

2 UN\S) = 0. (37)
A€{snakes}

We shall show that u), = 0 for all snakes A.
Indeed, fix a snake u. Then, p + p is a strict snake (since the map is a
bijection). Let us denote this strict snake by . Thus, p = u + p.

ag > -+ > ap). Applying this to 4 = w (i) and v = w (i+1), we obtain ay;) < ay(is)
(since w (i) > w (i +1)). But ay;) = B; (since ("‘W(l)'“w(2)’ o ”)) (B1 B2 ) and
yp(it1) = Bip1 (for the same reason). Hence, f; = ay) < ty(ir1) = Bip1. However, from

B1 > B2 > - -+ > Bu, we obtain B; > B;;1. This contradicts §; < B;;1. This contradiction shows
that our assumption was false. Qed.
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If A is any snake, then A + p is a strict snake (since the map is a bijection),
and thus satisfies

(the coefficient of x7" x5 P xg” ina /\+p>

= Ort0,p (by (2), applied to &« = A +p)

= Optputp (since B = i +p)

=O\u (38)

(since A + p = p + p holds if and only if A = u holds).
From (37), we obtain

a 1
0= 2 Uy S\ = Z [Z9) At = — Z u)LaAer.

Ae{snakes} a o A€ {snakes} Ao Ao )\e {snakes}

fp
(by the definition of 5,)

Multiplying both sides of this equality by a,, we obtain

0= Z U AN+ 0
A€ {snakes}
Hence,
(the coefficient of x7'x5 Pl 5 " in 0)
= | the coefficient of x| x; Pl xﬁ" in Z UABA+p
A€ {snakes}
= Z Uy (the coefficient of x7'x5 Pl xﬁ” ina A+p>
A€{snakes} ~-
:5/\, 1
(by (38))
= Z u /\5 Ap = u]/, ,
A€ {snakes}
so that

uy, = (the coefficient of x7'x7 P ﬁ" in 0) =0.

Now, forget that we fixed u. We thus have proved that 1, = 0 for all snakes p.
In other words, u, = 0 for all snakes A.
Forget that we fixed (), ¢ (snakes)- We thus have shown that if (1)) )¢ enakes} €

k{snakes} jg a family of scalars with the property that

(all but finitely many snakes A satisfy uy =0) and ).  u;5, =0, thenu, =0
A€{snakes}
for all snakes A. In other words, the family (5,),, {snakes) Of elements of L is k-

linearly independent. This proves Lemma [4.16] O
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Lemma is actually part of a stronger claim: The family (51) )¢ (snakes} 1S @
basis of the k-module of symmetric Laurent polynomials in x1, x, ..., x,,. We shall
not need this, however, so we omit the prooﬁ

Recall Definition 4.3| (d). Our next lemma connects the Laurent polynomials s,
and 5,v for every snake A; it is folklore (see [GriRei20, Exercise 2.9.15(d)] for an
equivalent version), but we shall prove it for the sake of completeness.

Lemma 4.17. Let A be a snake. Then,
swo=5 (gt

1

Here, of course, 5, <x1’1, Xy a0t

1
for x1,xy,...,x, in the Laurent polynomial 5, € L.

Proof of Lemma Let wy € &, be the permutation of {1,2,...,n} that sends each
ie{l,2,...,n}ton+1—i Themap &, - S,, w — wowy is a bijection (since
S, is a group).

Foreachi € {1,2,...,n}, we have

A+p);=Ai+ pi =A+n—i. (39)

-~

by @)
Proposition (b) shows that A" is a snake. Thus, using Proposition (@),
we conclude that AV + (1 —n) is a snake. Let us denote this snake by u. Thus,
=AY+ (1-n). Hence, u+p = A"+ (1—n))+p = (AV+p) + (1 —n) (this

follows from Proposition [4.5] (c), applied to AV, p and 1 — n instead of A, u and d).
Therefore,

Aptp = A(AV4p)+(1—-n) = xll{”a)\vﬂ, (40)
(by Lemma applied to A + p and 1 — n instead of A and d).

The definition of A" yields AY = (—=A,, —Ay_1,...,—A1). Hence, for each i €
{1,2,...,n}, we have

(AY); = =Ansis (41)
Thus, for each i € {1,2,...,n}, we have

(n+p); = pi + o= (A+Q1-n), An—i
Ny’ N /. A ~~ g
=(/\v+(171’l))7» :(AV),-Jr(lfn)

=n—i
(since p=A"Y+(1—n)) (by @) (by the definition of AY +(1—n))
= (AY), +Q—-n)+n—i

N~ ~-

:_/\n-i-l—i =1-i
(by (1))
= —App1-i+1—1i (42)

Tust in case: It follows easily from Lemma and [GriRei20, Remark 2.3.9(d)].

) means the result of substituting Xy b Xy yeen
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Hence, the definition of a;, yields

Gty = 2 (_1)wx(ﬂ+p)1x(ﬂ+p)z,,,x(ﬂﬂ)n

w(l) “w(2) w(n)
weS, ~
(1+p);
= x,.
i€{1,2,..n} w(i)
_ w (H+0);
=) (=1 I[1 Yow(i)
wed, ie{1,2,..n} S——

“Apg1—itl-i

=Xu(9)
(since yields (p+p);=—Ap41-i+1—1)

D VLI § B i (43)

wed, ie{1,2,..n}

The definition of 4, , yields

_ w  (A+p); (A+p), (A+p),
arp= ), (-1) Ywa) Ywe) T ()
wes, ~~ <
_ (A+p);
_ie{l,l;,[...,n} Fli
_ w (A+p);
=2 )" ] X (i)
wed, ie{1,2,.,n} N——"
AiJrnfi
:xw(i)

(since (B9) yields (A+p);=A;+n—i)

=Y -1 JI xi}"(:.r)”_i.
weS, i€{1,2,..n}

1

Substituting x;° 1,x£ e Xy 1 for x1,x2,...,x, on both sides of this equality, we
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obtain
-1 -1 -1
Artp (xl S Xy e, Xy )

=Y 0" TJI <x;(1i)>/\i+n—i: DEEI | x;((i/;ﬁnfi)

weG, ic{1,2,. n} ~——— wes, ie{1,.2,.,n}
_—(A+n—i)
=Xu(i)
—(Ai4n—i
=y o T1 Ny
weSy, D o 1€{1,2,..,n} N———’
=(=1)7(=1)7° A
7xw(n+17i)

(since —(Aj+n—i)=—A;—n+i
and (wowy) (i)=w(wo (i))=w(n+1—i)
(because wq(i)=n-+1—1i))
here, we have substituted w o wy for w in the sum,
since the map &, =+ &,, w — w o wy is a bijection

= L DU T adh

wGGn i€{1,2,...,n}
= -7 —Aj—n+i
=(-1D" ) (-1 I X g1
weS, ie{12,...n}
- ﬂqﬂ—i*”*(nﬂq)
_ie{lg,[-..,n}xz”(”+1—(n+1—i))

(here, we have substituted n+1—i for i
in the product)

o w w —Api1-i—n+(n+1-i)
= (=)™}, (=1 ' I1 X (1 (n41-1))
weS, ie{12,..,n} N -~ 4
_ 7/\n+1—i+1*"
=Xu()

(since —A, 1 j—n+(n+1—i)=—A, 1 _;+1—i
and n+1—(n+1—i)=i)

_ (_1)ZU() Z (_1)w H x;();1)1+1—i+1—i _ (_1)w0 ay—f—p
N~

weS, i€{12,..n}

;r :xll—;na/\v+p
~utp by (d
(by @3)) (by (O
woy 11—
— (_1) 0 xH naAV—i-p' (44)

On the other hand, let us denote the snake [ 0,0,...,0 | € Z" by &; note that it

%,—/
n times
satisfies ¥ = | —0,—0,...,—0] = [0,0,...,0 | = @. We have proved (44) for
[ ~~ 7 N, s’

n times n times

any snake A; thus, we can apply to @ instead of A. We thus obtain

1 -1 -1 wy 1—
Ag+p <x1 S Xy Xy, ) = (—1)"x ”a@vﬂ).
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In view of @ +p = p and @" +p = &+ p = p, we can rewrite this as

=g
ap (xl_l,xz_l,. . .,x,jl) = (—1)* x%l_”ap. (45)
e _ . _ Ar+p _ C
The definition of 5, yields 5, = — Hence, a),, = 5)a,. Substituting
0

Xy b Xy L X, 1 for x1, x5, ..., x, on both sides of this equality, we obtain

= 1 .1 -1
(51ap) (xl Xy Xy )
1 .1

_ 1 1 -1
— A(Xl ,XZ ,...,Xn >'ap <x1 ,xZ ,...,xn >

J/

-1 -1 -1
Arsp (xl JXy e, Xy, )

-~

=(—1)"0x{"a

(by @5))
=3 (xl_l,xz_l, .. .,x;1> S(=1)™ xll{”ap.
Comparing this with (44), we find
51 (xl_l,xz_l, o .,x;1> (=) xpy "2y = (—1)° x}l_”aAvﬂJ. (46)

The element (—1)“° x{; " of £ is invertible (since xj is invertible), and thus we can
cancel it from the equality (46). As a result, we obtain

5\ (xl_l,xz_l,...,x,jl) Ty = AV g (47)
But the definition of 5,v yields
a
fp
(by (@7)). This proves Lemma [4.17] O

4.2. hf, h; and the Pieri rule

Definition 4.18. Let k € Z. Then, we define two Laurent polynomials i € £
and h, € L by

I’l;_ :hk (xl,xz,...,xn) and

- -1 -1 -1
hy = Iy <x1 JXy e, Xy )

Note that if k € Z is negative, then b = h (x1,x,...,x,) = 0 and b =0

=0
(similarly).

We begin by describing /" as a Schur Laurent polynomial:
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Lemma 4.19. Let k € IN. Then, the partition (k) is a nonnegative snake (when
regarded as the n-tuple (k,0,0,...,0)), and satisfies

Proof of Lemma The partition (k) has length < n (since it has length < 1, but
we have n > 1). Thus, it is a nonnegative snake (since every partition having length
< n is a nonnegative snake) and belongs to Par [n]. Hence, Lemma (applied
to A = (k)) yields 55y = s (x1,%2,. .., Xn) = hg (x1,%2,...,Xy) (since sy = hy).
Comparing this with i;” = Iy (x1,x2,...,%,), we obtain Sty = h. This proves
Lemma 4.19 O

Next, we need to know what happens when a Schur Laurent polynomial 5, is
multiplied by some /. The answer to this question is classically given by the first
Pieri rule; we shall state it in a form that will be most convenient to us. To do so,
we introduce some more notation:

Definition 4.20. Let A € Z". Then, we define the size |A| of A to be the integer
AM+Ar+ -4 Ay

Definition 4.21. Let A, u € Z". Then, we write that y — A if and only if we have
W12 A >y > Ay > 2 i 2 A (48)
In other words, we write that x — A if and only if we have

(i > Ajforeachi € {1,2,...,n}) and
(Aj > pjyq1 foreachie {1,2,...,n—1}).

The following properties of the sizes of n-tuples are obvious:
Proposition 4.22.

@ If A,y €Z" then A+ u| = |A| + |y

(b) If A € Z"and d € Z, then [A +d| = |A| + nd.

() If A € Z", then |AY| = — |A|.

The relation — defined in Definition has the following simple properties:
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Proposition 4.23. Let A, u € Z".

(@) If 4y — A, then both A and y are snakes.
(b) We have y — A if and only if AY — uV.
(c) Letd € Z. Then, we have y — Aifand only if y +d — A +d.

Proof of Proposition[4.23} (a) Assume that 4 — A. Thus, the chain of inequalities
holds (by Definition #.21). But this chain of inequalities implies both p; >
pp > -+ > puypand Ay > Ay > --- > A, Thus, p and A are snakes. This proves
Proposition (a).

(b) The definition of u" yields ¥ = (—pn, —Mn-1,...,—p1). Similarly, AV =
(=Aw, —Ap_1,...,—A1). Hence, we have AV — uV if and only if we have

—Ap 2 —Un > —Apy1 > —YPp1 = > —A >~

(because of Definition 4.21)).
Thus, we have the following chain of equivalences:

(A = p )
“l/l>)\1>“l/[2>)\2 Zﬂnz)\n)
H—A) (by Definition .

In other words, we have y — A if and only if AY — uV. This proves Proposition

(b).
(c) This follows easily from Definition O

We can now state the Pieri rule in the form we need:

Proposition 4.24. Let A be a snake. Let k € Z. Then,

ht sy = Y. Sy (49)
 is a snake;
p—A; |l =|A =k

This can be proven directly using alternants; but let us give a proof based on
known theory:

Proof of Proposition We follow the same right-shift strategy as we did in our
proof of Lemma Thus, our proof shall consist of two steps:

Step 1: We will prove Proposition in the particular case when A is
nonnegative.
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Step 2: We will use Lemma to derive the general case of Proposition
from this particular case.

Here are the details of the two steps:

Step 1: Let us prove that Proposition holds in the particular case when A is
nonnegative.

Indeed, let us assume that A is nonnegative. We must prove the equality ([#9).

If k < 0, then both sides of this equality are 0 m Thus, the equality (49) holds
if k < 0. Therefore, for the rest of Step 1, we WLOG assume that k > 0. In other
words, k € IN.

Note that A is a partition of length < n (since A is a nonnegative snake). In other
words, A € Par [n].

We note that if y is a partition of length < n, then we have defined |u| in two
different ways: On the one hand, |u| was defined as the infinite sum p1 + p2 + pz +
-+ (in the definition of the size of a partition); on the other hand, || was defined
as the finite sum py + pp + - - - + p, (because we can regard y as a snake, and then
interpret || according to Definition [4.20). Fortunately, these two definitions do not
clash, since the infinite sum p; + pp 4+ p3 + - - - equals the finite sum pq + pp 4 - - - +
1n whenever y is a partition of length < n. (In fact, if y is a partition of length < n,
then

Mitpptpzt--
= (p1+p2+- -+ pn) + (Bnrr + o2 T Pz + )

. ~

—0+0+0+--
(since all of py41,1n42,Un+3,... are 0
(because y has length <n))

=(m+m+--+u) +O+0+0+---)=p1+p2+ -+ un.

(. i

=0

10proof. Assume that k < 0. We must show that both sides of are 0.
Indeed, from k < 0, we obtain h; = 0, thus hlf = ht (x1,x2,...,%,) = 0. Hence, hk+ -5, = 0.
—~—

~—
=0 =0

In other words, the left hand side of is 0.

It remains to show that the right hand side of is 0. This will follow if we can show that
the sum on this right hand side is empty, i.e., that there exists no snake y such that 4 — A and
|| — |A| = k. So let us show this.

Let u be a snake such that 4 — A and || — |A| = k. We shall derive a contradiction.

From y — A, we obtain 1 > Ay > o > Ay > -+ > py > Ay (by the definition of “u — A”).

n n
Hence, y; > Aj foreachi € {1,2,...,n}. Thus, . p; > ¥ A;. In other words, || > |A| (since
=1~ =1
>A;

| = p1+pa+- +pn = i p; and similarly |A] = f; Ai). Hence, |u| — |A| > 0. But this
i—1 i=1

i=
contradicts |u| — [A| =k < 0.

Forget that we fixed p. We thus have found a contradiction whenever y is a snake such that
i — A and || — |A| = k. Hence, there exists no such snake y. In other words, the sum on the
right hand side of is empty. Hence, the right hand side of is 0. This completes our
proof.
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Thus, the infinite sum pq + pp + p3 + - - - equals the finite sum py + pp + - - - + py.)
We will use some standard notations concerning partitions. Specifically:

e If o = (ag,ap,a3,...) and B = (B1, B2, B3, - - .) are two partitions, then we will
write « C B if and only if each i € {1,2,3,...} satisfies a; < ;. (This is
precisely the definition of & C B given in [GriRei20, Definition 2.3.1].)

e If o = (ay,ap,a3,...) and B = (B1, B2, B3, - - .) are two partitions, then we say
that /B is a horizontal strip if they satisfy

B Cwaand (everyie {1,2,3,...} satisfies ; > aji1).

(This is not literally how a “horizontal strip” is defined in [GriRei20], but it is
equivalent to that definition; the equivalence follows from [GriRei20, Exercise
2.7.5(a)].)

¢ If x and S are two partitions, and if k € IN, then we say that «/ is a horizontal
k-strip if a/ B is a horizontal strip and we have |a| — |8| = k. (This is equivalent
to the definition of a “horizontal k-strip” in [GriRei20, §2.7]).

We note the following claim:
Claim 1: We have

{partitions y € Par [n] such that /A is a horizontal k-strip }
= {snakes y such that y — A and |u|— |A| = k}.

[Proof of Claim 1: Let us notice that A, > 0 (since the snake A is nonnegative).
Any snake y satisfying 4 — A must be nonnegativeEl Hence,

{snakes y such that y — A and |pu| — |A| =k}

= {nonnegative snakes y such that 4 — A and |u| — |A| =k}

= {partitions y of length < n such that y — A and |u| — |A| =k}
(since the nonnegative snakes are precisely the partitions of length < n)

= {partitions y € Par [n] such that 4 — A and |u| — |A| =k} (50)
(since the partitions of length < n are precisely the partitions y € Par [n]).

HProof, Let u be a snake satisfying y — A. Thus, we have the chain of inequalities y1 > A1 > o >
Ay > --- > uy > Ay (since g — A was defined to be equivalent to this chain of inequalities).
Hence, in particular, we have y; > A; for each i € {1,2,...,n}. Thus, for each i € {1,2,...,n},
we have y; > A; > 0 (since A is nonnegative). In other words, i is nonnegative. Qed.
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However, if j € Par [n] is a partition, then the statement “u — A” is equivalent
to the statement “u /A is a horizontal strip” El Hence,

artitions y € Par [n] such that 4 — A and |u| — |A| =k

P H H H

= {partitions y € Par [n] such that y/A is a horizontal strip and || — |A| =k}
= {partitions yu € Par [n] such that /A is a horizontal k-strip }

(because the statement “u/A is a horizontal k-strip” was defined to mean “u /A is
a horizontal strip and |u| — |A| = k”). Thus, becomes

{snakes y such that y — A and |u| — |A| =k}
= {partitions y € Par [n] such that 4 — A and || —|A| =k}
= {partitions y € Par [n] such that y/A is a horizontal k-strip} .

This proves Claim 1.]

12Proof. Let u € Par [n] be a partition. Let us write both partitions u € Par [n] and A € Par [n] as
infinite sequences

H= (.”1/?/‘2/]43/---) and A = (All/\ZI/\’?)I"‘)'

Then, every integer i > n satisfies y; = 0 (since u € Par [n]) and A; = 0 (since A € Par[n]). In
other words, all the numbers i, 11, Unt2, n+3,.-- as well as Ay 11, Aygo, Ayys, ... equal 0.
Now, we have the following chain of equivalences:

(u/ A is a horizontal strip)
<= (ACpand (everyie {1,2,3,...} satisfies \; > p;;1))
(by the definition of a “horizontal strip”)
= (A Cu) A (everyie {1,2,3,...} satisfies A; > pjq1)
—_———

<= (eachi€{1,2,3,...} satisfies A;<p;)
(by the definition of “ACu")

< |eachie{1,2,3,...} satisfies A; <pu; | A(everyie {1,2,3,...} satisfies A; > pj 1)
——
= (HizA)
(eachi € {1,2,3,...} satisfies u; > A;) A (every i € {1,2,3,...} satisfies A; > ;1)
(M =MZpp>2A>puz3>2A3=> )

1y

(M >M>2up>A > >y > Ag) A(An 2> ppg1 > Apgt 2> Pug2 2> Aug2 2 g3 > Apyz > -+ 1)

(since all the numbers py,1,1n+2,Hn+3,--
as well as Ay, 11,Ay42,A443,... equal 0)

= (mzMzmp>2> 2 2 A)AA20>20>20>20>0>02> )

< (Ay>0) < (true)
(since A, >0)

=S (M >A > > > Ay) = (= A)

(since the statement “y — A” was defined to mean “yuy > A1 > pup > Ay > - > uy > Ay7). In
other words, the statement “u — A” is equivalent to the statement “s/A is a horizontal strip”.

Qed.
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From the first Pieri rule ([GriRei20, (2.7.1)@ applied to k instead of 1), we obtain

SAhk = Z

At ePar;
AT /A is a horizontal k-strip

)3

u€Par;
u/ A is a horizontal k-strip

S)\+ — S‘u

(here, we have renamed the summation index A™ as U).
Evaluating both sides of this equality at x1,x2, ..., x,;, we find

(S/\hk) (xll X2,enny xn)

u€Par;
u/ A is a horizontal k-strip

ucPar;
u/ A is a horizontal k-strip

u€Par;
u/ A is a horizontal k-strip;

u has length <n

Su

(x1,x2, ..

sy (x1,x2,..

su (x1,x2,..

'/le)
-/xn)

-/xn) +

)3

u€Par;
u/ A is a horizontal k-strip;
u has length >n

-;xn)

J/

sy (x1,x2,..

-

=(
(by ,
applied to y instead of A)

since each y € Par either has length < 7 or has length > n
(but not both at the same time)

= ) su (x1, 2, ..
u€Par;
u/ A is a horizontal k-strip;
u has length <n
= Y. su (x1,%2, ..

pucPar;
u/ A is a horizontal k-strip;
u has length <n

In view of

(S)Lhk) (x]_/ X2,. .. ,xn) =

we can rewrite this as

ht -5y =

LX) + ) 0
u€Par;
u/ A is a horizontal k-strip;

 has length >n

=0

S Xn) .

f/\ (x1/x2/---/xn)' flk (x1/x2/'--/x1’l)
=5) =ht
(by Lemma (since hlj:hk(xl,xz,...,xn))
Syl =nh 5y,
Y. su (x1,%2,...,%n). (51)

uePar;

u/ A is a horizontal k-strip;
 has length <n

13This also appears in [MenRem15, Theorem 5.3], in [Stanle01, Theorem 7.15.7] and in [Eggel9,

Theorem 9.3].
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But we have the following equality of summation signs:

r - r - T

uePar; uePar; u€Par(n];
u/ A is a horizontal k-strip; u has length <n; i/ A is a horizontal k-strip
p has length <n u/ A is a horizontal k-strip

since the partitions y € Par that have length <n
are precisely the partitions y € Par [n] '

Thus, we can rewrite (51) as

h;—-g)\: Z sy(xl,xz,...,xn)
p€Par|n); h ~ g
/A is a horizontal k-stri —5u
. P (since Lemma [£.13]

(applied to u instead of A)
yields 5,=s, (x1,%2,...,X1))

= ). Sy = ). Sp-

uePar(nl;  is a snake;
i/ A is a horizontal k-strip U—A; |p|—|A|=k
= )y

u is a snake;
p=A; = |A =k
(by Claim 1)

This proves (#9). Thus, Proposition is proved under the assumption that A is
nonnegative. This completes Step 1.

Step 2: Let us now prove Proposition in the general case.

The snake A may or may not be nonnegative. However, there exists some integer
d such that the snake A + 4 is nonnegativelﬂ Consider this d.

The map {snakes} — {snakes}, p +— u +d is a bijection. (Indeed, its inverse is
the map {snakes} — {snakes}, u — p —d.) Moreover, every snake y satisfies

il - A+d = (Iul+nd) = (A + nd)
S—~— S—~—
=|p|+nd =[A|4+nd

(by Proposition (b))  (by Proposition (b))
= |pul = [A]. (52)

For any snake y, we have the logical equivalence
(p—=A) <= (p+d—A+4d)

(by Proposition (c)). In other words, for any snake u, we have the logical
equivalence
(p+d—=A+d) < (p—A).

4Indeed, this can be proved in the same way as it was proved during Step 2 of the proof of Lemma

above.
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Hence, we have the following equality of summation signs:

3 - ¥ - ¥ )

y is a snake; y is a snake;  is a snake;
pt+d—A+d; |p+d|—|A+d|=k U—A; |p+d|—|A+d|=k u—A; |p|—|A|=k

(by G2)).

The snake A + d is nonnegative; thus, we can apply Proposition .24/ to A + d
instead of A (because in Step 1, we have proved that Proposition .24 holds in the
particular case when A is nonnegative). Thus we conclude that

e Saed = )3 Sy = )3 Sy-+d
u is a snake; u is a snake; ~~
p—A+d; |p|—|A+d|=k pA-d—A+d; |p+d|—|A+d|=k =xih5,
N ~~ (by Lemma [4.14]
= r applied to y instead of A)

u is a snake;
H=A; = |A =k
(by (63))
here, we have substituted y + d for y in the sum,
since the map {snakes} — {snakes}, p+— u+d
is a bijection
d = d =
= ) X185, = iy ) Su.

u is a snake; u is a snake;
p=As |l =[A =k p=A |l = A=k

Comparing this with

+ = IR g
h - SAtd = hy - x[150,
N~
ledjg)\
(by Lemma [4.14)
we obtain
+ o de _ o -
bt sy = i Y. Sy

u is a snake;
p—A; |l =|A =k

We can divide both sides of this equality by x¥; (since x§; € L is invertible (because
xr1 € L is invertible)), and thus obtain

ht -5y = Y, s

u is a snake;
e

This proves Proposition Thus, Step 2 is complete, and Proposition is
proven. [

Using Lemma we can “turn Proposition upside down”, obtaining the
following analogous result for h instead of I;':
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Proposition 4.25. Let A be a snake. Let k € Z. Then,

hy -5y = Y, s (54)
u is a snake;
A=y | A= pl=k

Proof of Proposition .25} Tt is easy to see (from Definition [4.3] (d)) that (AY)" = A.
Likewise, (1")" = u for any snake y. Hence, the map {snakes} — {snakes}, y
1" (which is well-defined because of Proposition [4.5] (b)) is inverse to itself. Thus,
this map is a bijection.

If u is a snake, then

we have y — A if and only if A¥ — u" (55)

(by Proposition (b)). Moreover, if u is a snake, then

M - ]
4
= A -
(by Propositi|or|1 (©) (by Propositign ()
= (= AD) = (= [ul) = [u[ = A]. (56)

But we have
- -1 -1 —1 -1 -1 -1
hy :hk<x1 Xy Xy, ):h,jr (xl Xy Xy, )

since 11" = hy (x1,%2,...,%,) and
1 1 _ 1 1 _
thus ;" (xl , X, ,...,xnl) = hy (xl , X, ,...,xn1>

Also, Lemma|4.17|yields 5,v =5, xil,xfl,...,x_1 . Multiplying these two equal-
y 1 /%2 n plymng q
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ities, we obtain
S 1 -1 1\ = (-1 .1 1
hy -5y =hy <x1 Xy e, Xy >-SA (xl Xy, Xy )

_ + .3 -1 -1 -1
= (Bt -50) <x1 Xy, Xy, >
A/—/
= Y S
u is a snake;
p—A; [u|—[A|=k

(by Proposition [4.24)

_ = -1 .-1 -1
= Yoos| (ot

p is a snake;
p=A; = A=k

— s -1 -1 -1
= y S (gt

p is a snake;
p—A; ul = A=k

= L
u is a snake;
A= =M=k
(since the statement “u—A"
is equivalent to “AV—p"”

(by GB3)))

= -1 -1 -1
— Z Sy <x1 Xy e Xy >
u is a snake;

AV =Yl —|A =k

Comparing this with

). Sp = ). S
N

u is a snake; u is a snake; - o~ )
A g W =lul=k A WY =k =S e )
~~ (by Lemma[4.17
= r applied to u instead of A)

u is a snake;
A=’ [u|=[Al=k
(by E6))
here, we have substituted " for u in the sum, since
the map {snakes} — {snakes}, y — " is a bijection

T | 1
— Z Su (xl i S ),

u is a snake;
AV —=pYs |l = A=k

we obtain

he Sy = ) Su-
i is a snake;
AV =g [AY = |p|=k

We have proved this equality for any snake A. Thus, we can apply it to A" instead
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of A (since Proposition (b) shows that A" is a snake). We thus obtain

hl: 'S(/\\/)\/ — Z S]/[.
u is a snake;
(A =g |(A)Y |~ |pl=k

In view of (AY)" = A, this can be rewritten as follows:

he -5y = Z Sy-
u is a snake;
A=y [A]=[pl=k

This proves Proposition O

4.3. Computing 5,
I Convention 4.26. From now on, for the rest of Section 4, we assume that n > 2.

Our next goal is to obtain a simple formula for the Schur polynomial 5, (x1, X2, ..., Xy),
where « is as in Theorem The first step is the following definition:

Definition 4.27. Let a,b € N. Then, b © a will denote the snake (b,0"2, —a).
(This is indeed a well-defined snake, since n > 2 and since b > 0 > —a.)

Proposition 4.28. Let a,b € Z. Then,

min{a,b}

hahy = ). Sp—k)o(—k)- (57)
k=0

Proof of Proposition .28, We must prove the equality (57). If (at least) one of the
integers a and b is negative, then this equality boils down to 0 = 0 E Hence,
for the rest of this proof, we WLOG assume that none of the integers a and b is
negative. Hence, a,b € IN.

Note thateach k € {0,1,...,min{a,b}} satisfies b —k € IN (since k < min {a,b} <
b) and a — k € IN (likewise). Hence, the snakes (b — k) © (a — k) on the right hand
side of the equality are well-defined.

Lemma (applied to k = b) yields that the partition (b) is a nonnegative snake
(when regarded as the n-tuple (b,0,0,...,0)), and satisfies Sy = h;“.

Now, Proposition (applied to A = (b) and k = a) yields

ha_ '§(b) = Z 514.

u is a snake;

(0)=p; [(b)]—|p|=a

15Indeed, its left hand side is 0 in this case because every negative integer k satisfies hy =0and

I = 0; but its right hand side is also 0 in this case, because the negativity of min {a,b} causes
the sum to become empty.
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In view of 5 = h; and |(b)| = b, we can rewrite this as

h, -h; = Z Sy (58)
i is a snake;
(b)—w b—|u|=a
Now, we claim the following;:

Claim 1: The snakes u satisfying (b) — u and b — |u| = a are precisely
the snakes of the form (b — k) & (a — k) for k € {0,1,...,min{a,b}}.

[Proof of Claim 1: Let u be a snake satisfying (b) — u and b — || = a. We shall
show that = (b — k) & (a — k) for some k € {0,1,...,min{a,b}}.

Indeed, we have (b) — u. In other words, | b,0,0,...,0 | — u (since we are
——

n—1 times

identifying (b) with the snake (b, 0,0,.. .,O) ). But Definition [4.21{ shows that we
————

n—1 times

have (b, 0,0,.. .,O) — p if and only if we have
———

n—1 times

Hence, we have
b>u>20>2uw>0>pu3>--->02>py

-4
n—1 times
the numbers uy, 3, ..., u,—1 equals O (since it is sandwiched between 0 and 0 in

(since we have (b, 0,0,..., 0) — ). This chain of inequalities yields that each of
———

~—

n—2 times

this chain). Hence, y = yl,w ..., 0, ],tn) = (yl,O”_z,yn). Therefore,

| = +0+0+ - +0+puy = 1+ pn,

n—2 times

so that y; = |u| — puu. Moreover, from 0 > u,, we obtain u, <0, so that —u, € N
and py = || — pa = [ul.
<0
Set g = b—py. Thus, yy =b—g. Also, g = _b _—py > py — pp = 0. Further-
Zm
more, from || = pq1 + pn, we obtain
pn=pl—p =0 ) - (b—|p)) =g—a=—(a—-g).
N——

——
=g =q
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Combining the inequalities g =b— yu; <b—|y|=aandg=b— 3 <b, we
~ ~
=i =0
obtain ¢ < min {a,b}. Combining this with ¢ > 0, we find 0 < ¢ < min{a,b}, so
that ¢ € {0,1,...,min {a,b}}. Furthermore,

p= |, 0% | =(b-g0"%—(a-g)) =(b-g)S(a—g)
N~
=b—g =—(a—g)

(since (b — g) © (a — g) was defined to be the snake (b — g,0"2, — (a —g))). Thus,
= (b—k)e(a—k)forsomek e {0,1,..., min{a,b}} (namely, for k = g).

Forget that we fixed y. We thus have shown that if u is a snake satisfying
(b) — pand b — |u| = a, then we have y = (b—k) S (a—k) for some k €
{0,1,...,min{a,b}}. It is straightforward to see that the converse holds as well
(ie., thatif p = (b—k)© (a—k) for some k € {0,1,...,min{a,b}}, then y is a
snake satisfying (b) — p and b — |u| = a). Combining these two facts, we conclude
that the snakes y satisfying (b) — p and b — |pt| = a are precisely the snakes of the
form (b—k)e (a—k) fork € {0,1,...,min{a,b}}. This proves Claim 1.]

Now, Claim 1 shows that

Y, &= ). S(b-k)o(a—k)

u is a snake; ke{0,1,... min{a,b}}
(b)—p; b—[u|=a

(indeed, it is clear that the snakes (b — k) & (a — k) for k € {0,1,...,min{a,b}} are
all distinct). Hence, becomes

min{a,b}
he by = ), &= )3 Sh-to-k = ), S(b-Ko@—k-
u is a snake; ke{0,1,...min{a,b}} k=0
(b)—w b—[u|=a
This proves Proposition O

Proposition 4.29. Let a,b € IN. Then,

= =1t - 3+
Svea = Ny hb - hu—lhb—l'

(Recall that every negative integer k satisfies i, = 0 and ;" = 0.)

Proof of Proposition We have min {a,b} € N (since a,b € N), so that min {a,b} >
0.
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Proposition yields

min{a,b} min{a,b}
hahi = Y. Sp-ro@t =5p-0o@-0)+ Y, SpH—ko—k
=Spoa

( here, we have split off the addend for k = 0 from the sum, )
since min {a,b} >0
min{a,b}
= Spoa T kzl S(b—k)S(a—k)- (59)

Proposition (applied to a — 1 and b — 1 instead of a and b) yields

min{a—1,b—1} min{a,b}—1
hy yhy_y = k;) S((b-1)-k)e((a-1)—k) = ;;o S((b-1)-k)S((a=1)=k)
(since min{a —1,b—1} =min{a,b} — 1)
min{a,b} ~
= L SO0 )o(e ) -e)
(here, we have substituted k — 1 for k in the sum)
min{a,b}
= ). Sp-ko@-k
k=1

(since (b—1)—(k—1)=b—kand (a—1)—(k—1)=a—k).

Subtracting this equality from (59), we obtain

min{a,b} min{a,b}
by —h, by = <§b@a + ) §(b—k)@(u—k)> — Y. Sp-ko@—k = e
k=1 k=1

This proves Proposition O

Corollary 4.30. Let a,b € IN. Define the partition « = (a+ b, a”_z). Then, « is a
nonnegative snake and satisfies

S =ty (I — by )

Proof of Corollary From a,b € IN, we obtaina+ b > a > 0. Hence, « is a
>0
partition of length < n (since n — 1 < n). In other words, « is a nonnegative snake.
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We have
(i@ al +a
=(b,0"=2,—a)= (b,O, o,..., O,—a)
\:2 times

=1b5,00,...,0,—al +a=|b+a0+a0+a,...,0+a,—a+a
—— N -~ Y

n—2 times n—2 times
_ _ n—-2\ _
=\|a+b,a,a,...,a,0 —<a—|—b,a >—1x
——
n—2 times
(since & = (a+b,a""2)). Hence, a = (b©a) + 4, so that
_ _ g _
Sa = S(poa)+a — X1 Shoa
(bea) NED
=hg iy —h,_hy

(by Proposition [f.29)
(by Lemma appliedto A =b©aand d = a)

=y (hahf = i)
This proves Corollary O
We notice that the expression h; I —h,_ k" | in Proposition can be rewrit-

o Mp
By by
well as the first Jacobi-Trudi formula [GriRei20, (2.4.16)]). Such a generalization
indeed exists, and has been proved by Koike as well as by Hamel and King; see
Proposition 5.1 below.

ten as det . This suggests a way to generalize Proposition 4.29| (as

4.4. The sets R, (7) and a formula for h; 1,5,

We shall next aim for a formula for h, hb+§y (for a snake u and integers a,b € Z),
which will be obtained in a straightforward way by applying Propositions and
We will need the following definition:

Definition 4.31. Let p, v € Z" and a,b € Z. Then, R, () shall denote the set
of all snakes v satisfying the four conditions

H—v and lu|—1v|=a and ¥—v and |v| —|v| = 0.
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Lemma 4.32. Let i,y € Z" and a,b € Z. Assume that < is not a snake. Then,
‘Ry,a,b (7)‘ =0.

Proof of Lemma Let v € Ry 4p (7). We shall obtain a contradiction.
Indeed, we have v € R, ;; (7). In other words, v is a snake satisfying the four
conditions

H—v and | —1|v| =a and ¥—=v and lvY|—|v| =10

(by the definition of R, ;4 (7)). Thus, in particular, we have v — v. Hence, Propo-
sition (a) (applied to 7y and v instead of u and A) yields that both v and -y are
snakes. Hence, 7 is a snake. This contradicts the fact that - is not a snake.

Now, forget that we fixed v. We thus have obtained a contradiction for each
v € Ry 45 (7). Hence, there existsnov € Ry ;5 (7). In other words, the set R, 1, (7)

is empty. Thus, |R,, .5 ()| = 0. This proves Lemma @ O

Lemma 4.33. Let u be a snake. Let a,b € Z. Then,

hohySu=" ). |Ruap (71)]5y-

7 is a snake

Proof of Lemma Proposition (with the letters A, k and y renamed as y, a
and v) says that

hy -5, = ) 5. (60)

v is a snake;
p—v; |u|=|v|=a

Proposition (with the letters A, k and p renamed as v, b and ) says that
h s, = ) Sy (61)
< is a snake;

T—=v; |v|-|v|=b

for each snake v.
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Now,
—pF5 = bt - .3 . 3
hy hts, = h hy Sy = h; Y. Sy
S B v is a snake;
= X % p=v - lv|=a
v is a snake;
p=v; [u|=|v|=a
(by (60))
_ + = o _
= )3 hy Sy = )3 )3 Sy
v is a snake; B ~— B v is a snake; < is a snake;
p=v; |l =lvl=a = s aanake. Sy = pl=lv|=a  y—uv; |y|—|v|=b
Y=V [y =|v|=b = ¥ Tx
(by (1)) 7 is a snake v is a snake;
p=v; |pl=vl=a;
7= [y =|v|=b
= L 3 sy= ) Y. S
7 is a snake vis |a ‘sna‘lkle; visasnake VER, . 4(7)
u—=v; |p|—|v|=a; —_——
vy lrl-lvi=b =[Ry0p(7)|5y
VER;[,ﬂ/b(’y)
(by the definition of Ry, ; (7))
= L [Ruap (M5
7 is a snake
This proves Lemma O

Corollary 4.34. Let u € Par([n]. Let a,b € IN. Define the partition a =
(a+b,a""2). Then, every A € Z" satisfies

Cé,y = ‘Ry,a,b (A - a)’ - |Ry,a71,bfl (/\ - a)‘ . (62)

A

Here, we understand ¢ ,

nonnegative snake).

to mean 0 if A is not a partition (i.e., if A is not a

Proof of Corollary Corollary shows that « is a nonnegative snake and sat-
isfies
S =ty (Il = Iy ) 63)
Every snake 7y satisfies
(by Lemma applied to y and a instead of A and d).
We have a € Par [n] (since « is a nonnegative snake). Hence, Lemma (applied
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to « and yu instead of y and v) yields

D

A€Par[n|
N——

SaSy =

A =

_ Az
Ca,ys)\ =

Z Coc,ys)t

A is a snake;
A is nonnegative

A is a snake;
A is nonnegative
(since the partitions A€Par[n] are
precisely the nonnegative snakes)

A =

= Z CauSA —
A is a snake

_ Az

= Z CauSA —

A is a snake

A —
)3 Cap SA
A is a snake; S~~~
A is not nonnegative =0
(since we understand CQ/H
to mean 0 if A is not
a nonnegative snake)
_ A =
Y = ) b

A is a snake; A is a snake

A is not nonnegative

(.

=0
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Hence,
A = _ _ _ — _
Y. CoySA = Sa Sy = Xy - (ha h — hu_lhzr_l) Su
A is a snake . R
:xn'(hu hy _haflhbfl)
(by ©3))
— 0 —1+3 a - 1+ 3
= X1 - hy hy sy —X7 h,_1hy,_{5u
S~—— —

= Z |Ry,u,b(7) |§’Y =

7 is a snake

(by Lemma

a

Z |Ry,a71,b71(7) |§7

7 is a snake

app

(by Lemma
lied to a—1 and b—1

instead of a4 and b)

= X1 Z ‘Ry,a,b (’Y) ‘ E‘Y - xaH ’

< is a snake

= Z ‘Ry,a,b (7)‘ x%lg’r -

7 is a snake

Z |Ry,a71,b71 (r)’)‘ §’7

v is a snake

Yo Rua1p-1 (V)] ¥15,

7 is a snake v is a snake

= Z (‘Ry,a,b (’)’)‘ - ’Ry,a—l,b—l (’)’)D @

=5y4a

(by (64))

= Y. (|Ruap ()] = [Rua=1,0-1 (7)]) 5544

7 is a snake

- Z (‘Ry,a,b ()L - a)| - }Ry,a—l,b—l ()L - a)|) g(/\_a)‘i‘a

A is a snake

N e’
=3 A

here, we have substituted A — a for < in the sum,
since the map {snakes} — {snakes}, A — A —a
is a bijection
= Z (‘Ry,a,b (A - a)| - ‘Ry,a—l,b—l ()‘ - a) |) g/\-

A is a snake

We can compare coefficients on both sides of this equality (since Lemma shows
that the family (5,), {snakes) Of elements of L is k-linearly independent), and thus

conclude that

Cgc\,y = |Ry,a,b (/\ _ a)‘ - ‘Ry,a—l,b—l (/\ o a)l

This proves in the case when A is a snake.

for every snake A.

However, it is easy to see that also holds in the case when A is not a snakelﬁ
Thus, always holds. This proves Corollary

16Proof. Let A € Z" be such that A is not a snake. We must show that (62) holds for this A.
We have assumed that A is not a snake. Hence, A — a is not a snake (because it is easy to see
from Definition [£.3| that A is a snake if and only if A — a is a snake). Thus, Lemma (applied

to v = A —a) yields ’Ry,a,b (A — a)‘ = 0. Also, Lemma

]

4.32

(appliedto A —a,a—1and b —1

instead of v, a and b) yields ’Ry,a,lrb,l (A — a)’ = 0. On the other hand, A is not a snake, and

thus not a nonnegative snake. Hence, cé’ﬂ = 0 (since we have defined cé,y to be 0 if A is not a
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4.5. The map f,

Convention 4.35. For the whole Subsection we shall use Convention [3.6| (not
only for n-tuples a € K", but for any n-tuples a). This convention does not
conflict with Convention because both conventions define <; in the same
way when v is an n-tuple and i € {1,2,...,n} (whereas the latter convention
does not define <; for any other values of i).

Convention 3.6/ does conflict with our old convention (from Section [1) to iden-

tify partitions with finite tuples: Indeed, if we let y be the n-tuple | 1,L,...,1 ],

n times
then Convention 3.6 yields 7,11 = 71 = 1 when we regard <y as an n-tuple, but
we get 7,41 = 0 if we regard < as a partition. We shall resolve this conflict by
agreeing not to identify partitions with finite tuples in Subsection (Thus,
in particular, we will not identify a nonnegative snake (y1, 2, ..., n) € Z" with
its corresponding partition (y1, o, ..., 4n,0,0,0,...) € Par [n].)

Let us now apply the results of Section |3} The abelian group (Z, +,0) of integers
is totally ordered (in the usual way). Thus, Example (applied to (A, *,e) =
(Z,+,0)) shows that there is a semifield (Z, min,+,0) (that is, a semifield with
ground set Z, addition min, multiplication 4 and unity 0), called the min tropi-
cal semifield of (Z,+,0). We have the following little dictionary between various
operations on this semifield (Z, min, +,0) and familiar operations on integers:

e The addition operation of the semifield (Z, min, +,0) is the binary operation
min on Z. That is, for any a,b € Z, the sum a + b understood with respect to
the semifield (Z, min, +,0) is precisely the integer min {a, b}.

e Thus, (nonempty) finite sums in the semifield (Z, min, +,0) are minima of fi-
nite sets of integers. That s, if r € IN, and if ag, a4, . . ., a, are any r 4 1 integers,

r

then the sum ) a; understood with respect to the semifield (Z, min, +,0) is
=0

min {ag,ay,...,a,} =min{a; | k€{0,1,...,7}}.

e Furthermore, the multiplication operation of the semifield (Z, min,+,0) is
the addition + of integers. That is, for any a4,b € Z, the product ab under-
stood with respect to the semifield (Z, min, +,0) is precisely the sum a + b
understood with respect to the integer ring Z. Meanwhile, the unity of the
semifield (Z, min, +,0) is the integer 0.

nonnegative snake). Comparing this with ‘R}lﬂ,b (A — a)‘ - 'Ry,a—l,b—l (A —a)| = 0, we obtain

=0 =0
CQIH = ‘Ry,u,b (A — a)‘ — ’Ry,u—l,b—l (A —a) ’ In other words, holds.
Thus, we have shown that holds in the case when A is not a snake.
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e Thus, the division operation of the semifield (Z, min, +,0) is the subtraction
— of integers. That s, for any a,b € Z, the quotient % understood with respect
to the semifield (Z, min, +,0) is precisely the difference a — b understood with
respect to the integer ring Z.

¢ For the same reason, squaring an element of the semifield (Z, min, +,0) is
tantamount to doubling it as an integer. That is, for any a € Z, the square
a®> understood with respect to the semifield (Z, min, +,0) is the product 2a
understood with respect to the integer ring Z.

e For the same reason, taking reciprocals in the semifield (Z, min, +,0) is tan-

1
tamount to negation of integers. That is, for any a € Z, the reciprocal "

understood with respect to the semifield (Z, min, +,0) is the integer —a un-
derstood with respect to the integer ring Z.

e For the same reason, finite products in the semifield (Z, min, +,0) are sums
of integers. That is, if r € IN, and if ay,ay,...,a, are any r integers, then the

.
product [T a; understood with respect to the semifield (Z, min, +,0) is the
k=1

sum

,
ar understood with respect to the integer ring Z.

k=1

Thus, applying Definitionto K = (Z, min, +,0) (and renaming everythin,
we obtain the following:

Definition 4.36. Fix any n-tuple u € Z".

We define a map f, : Z" — Z" as follows:

Let v € Z" be an n-tuple. For each j € Z and r € N, define an element
Tr,j e”Z by

Trj = M0 Vi1 + Yjr2 o+ Vik + Pk T B2 o B

r

k
:,Zl Viti = L i
1=

i=k+1
| ke {0,1,...,7}}.

17Namely, we are
¢ renaming the (fixed) n-tuple u as y;

* renaming the (variable) n-tuple x as 7 (in order to avoid a clash with the variables
X1,X2,...,Xn);

* renaming the elements ¢, ; as 7, ;

¢ renaming the n-tuple y as 7.
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Define € Z" by setting
i =ui+ (Hic1 + T—1i-1) — (Vit1 + Tu-1i+1) foreachi € {1,2,...,n}.

Set f, (7) = 7.

Applying Theorem m to K = (Z, min, +,0) (and renaming everythinﬂ and
using our above dictionary), we thus obtain the following:

Theorem 4.37. Fix any n-tuple u € Z".

(@) The map f, is an involution (i.e., we have f, o f;, = id).

(b) Lety € Z" and 17 € Z" be such that 7 = f,, (7). Then,
(m+m+-+m)+(ntr2t++rm) =2 +p2+-+pn).
(c) Let y € Z" and 17 € Z" be such that 7 = £, (7). Then,
min {p, vi} + min{—pip1, —viga} = min {p, i} +min{—pi1, =i}
for each i € Z.

(d) Lety € Z" and n € Z" be such that 7 = f, (7). Then,

(min {p;, i} — i) = ) (min {p;, 1;:} — ui) -
— ~

1

1

We obtain the following corollaries from Theorem

Corollary 4.38. Fix any n-tuple p € Z". Let v € Z" and n € Z" be such that
7 = £, (7). Then:

(@) We have |i7| — [u| = |p| — |7]-
(b) We have

min {p;, 7;} — min {p;, v} = max {pip1, Miv1} — max{pip1, Yie1}

foreachie€ {1,2,...,n—1}.

18Namely, we are
* renaming the (fixed) n-tuple u as y;
* renaming the (variable) n-tuple x as 7;

¢ renaming the n-tuple y as 7.
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(c) We have

M-

Il
—_

n
(i — min {p;, 7;} + min {p;, 7i}) = Y 7.
i=1

1

(d) We have v = £, (7).

Proof of Corollary (a) Theorem (b) yields
(m+m+-+m)+(ntrt+ 7)) =20 +pa+ -+ ).

In view of the equalities

Il =m+m+- Y =71 472t
and Hl =p1+p2+ -+ pn,

we can rewrite this as |i7| + |y| = 2 |u|. Equivalently, |y| — |u| = |u| — |y|. This
proves Corollary (a).
(b) Leti € {1,2,...,n — 1}. Then, Theorem (c) yields

min {p;, v;} +min { —p; 1, —yig1} = min {p;, 7;} +min {—pi 1, —1iq )

In view of min {—p;1, —7it1} = —max{yir1, vir1} and min{—p; 1, -1} =
—max {j11,7i+1}, We can rewrite this as

min {15, 77} + (— max {jus11,7i41}) = min {7} + (—max (g, g1 )
In other words,
min {jts, 71} — max {pti+1, 741} = min {ji; 7} — max (s, o1}
Equivalently,
min { g, 17} — min {p;, vi} = max {1, fiv1} — max{pip, viga}-

This proves Corollary (b).
(c) Theorem (d) yields

1

1

(min {p;, vi} — i) = )_ (min {p;, 17} — pi) - (65)
=1 =1
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Now, we have

-

N
Il
—

(i — min {p, 17;} + min {p;, 7:})
=min{p;,y;}— (min{p;7; } —p;)

I
1=

(min {p;, 7i} — (min {p;, i} — i)

~.
I
[y

I
1=

min {u;, v} — me{ﬂuﬂz} )
=1

1
¢

N
Il
—

-y (min{p;, v} i)

= oy @)
Zmln{yll ’)/l} Z min {,uu 71} ’)’z)
i=1

i

=

I
—_

n

2, (min {ps, i} — (min {71} — 71)) = Z; Vi
=7%i =

M:

N
I
—_

This proves Corollary (0).
(d) Theorem [4.37)(a) shows that f,, o f, = id. But recall that 7 = f,, (y). Applying
the map f;, to both sides of this equality, we obtain

£ (1) = £ (£ (7)) = (fuofy) () =1
N——
=id
This proves Corollary (d). O

We are now ready to prove the key lemma:

Lemma 4.39. Fix any n-tuple y € Z". Let v € Z". Let a,b € Z. Then,

‘Rﬂbﬂ |—’wa ()]

Proof of Lemma[4.39} Define n € Z" by n = f, (7). We must then prove that

}Rll,bﬂ (77)‘ = ‘Ry,a,b (’)’) ‘
We know that R, , ;, (7) is the set of all snakes v satisfying the four conditions

n—v and | —|v| =a and ¥ —=v and lv| — |[v| = D.

Likewise, R, 4 (17) is the set of all snakes v satisfying the four conditions

H—v and lju|—1|v| =0 and n—v and 7| —v| = a.
Now, fix v € Ry 45 (7)- Thus, v is a snake satisfying the four conditions

U—v and lu|—|v| =a and Y—v and Y| —|v| =10
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(by the definition of R, ;5 (7))- In particular, we have p — v. In other words, we
have
P12V 2y 2 V22 2 i 2 U (66)

(by the definition of “u — v”). Likewise, from y — v, we obtain
YIZVIZY2 212> 2 Yy 2 (67)
We define an n-tuple § € Z" by setting
Ci = min{u;,n;} —min{y;, v} +v; foreachi € {1,2,...,n}.

We shall prove that { € R4 (17)-
We begin by proving several auxiliary claims:

Claim 1: We have min {y;,77;} > {; foreachi € {1,2,...,n}.

[Proof of Claim 1: Leti € {1,2,...,n}. From (66), we obtain y; > v;. From (67), we

obtain ; > v;. Combining y; > v; and v; > v;, we obtain min {y;, v;} > v;. Now,
the definition of { yields

¢i = min {p;,7;} — min {p;, 7} +vi < min{p;, 7} —vi + v = min {p;, 1}
~———
>V
In other words, min {y;,17;} > ;. This proves Claim 1.]
Claim 2: We have {; > max {y; 1,711} foreachi € {1,2,...,n—1}.

[Proof of Claim 2: Leti € {1,2,...,n —1}. From (66)), we obtain v; > p; 1. From
(67), we obtain v; > ;1. Combining v; > p;;1 and v; > 741, we obtain v; >
max {#i 1, vi+1}- Now, the definition of { yields

Ci = min {p;, 17;} :min{?‘i' i)+ L

=max{pi 11 Mip1}—max{pip1,viz1}  =max{pii1,vie1}

(by Corollary [4.38] (b))
> max {piy1, g1t — max {piz1, Yigr } + max{pip1, Y1} = max {pip1, figa t-

This proves Claim 2.]
Claim 3: The n-tuple { is a snake and satisfies 4 — ¢ and 7 — (.

[Proof of Claim 3: Foreachi € {1,2,...,n}, we have y; > {; (since p; > min {y;, ;} >
¢i (by Claim 1)). For each i € {1,2,...,n—1}, we have {; > ;1 (since Claim 2
yields {; > max {y;1, 711} > Hir1)- Combining the preceding two sentences, we
obtain

VlZClZﬂZZCZZZ,unzgn
In other words, u — ¢ (by the definition of “u — ¢”).
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For each i € {1,2,...,n}, we have n; > {; (since #; > min{y;,1n;} > {; (by
Claim 1)). For each i € {1,2,...,n—1}, we have {; > 7;.1 (since Claim 2 yields
¢i > max{pit1,Miy1} > Yi+1).- Combining the preceding two sentences, we obtain

In other words, 1 — { (by the definition of “x# — (”). Hence, Proposition (@)
(applied to 7 and  instead of u and A) yields that both ¢ and 7 are snakes. Hence,
( is a snake. This completes the proof of Claim 3.]

Claim 4: We have |u| — |{| = b and |y| — || = a.

[Proof of Claim 4: We have

n
ul=p+ppt =) and
i=1

1l =C+0++Tlu=) 0
i-1

Subtracting these two equalities from one another, we find

n n
|M|—|€|—i§ui—; | Ci.
=min{p;,;; } —min{p;,y;} +v;
(by the definition of {)

1=

(min {u;, 7} — min {p;, v} +v;)

I

N
Il
—

MHi—

1

Il
—_

I
gt

~
I
[y

(i = (min { g, 7} — min {pg,7i} +vi))
=(pi—min{p;,17; tHmin{p;,7i}) —vi

(i —min {p;, 17;} + min {p;,7i}) —vi)

|
™=

N
Il
—

n

(s — min {pg, 3} + min {p, 7:}) — Y v
i=1

I
L2=

(T

o
:4):1 Yi
i=
(by Corollary ()
n n
= Y i - Y vi =[] =] ="
N S~~~
- R
(since |’Y‘:71+72+"'+7n:421 7i)  (since |V\:V1+V2+'“+Vn=.21 v;)
1= 1=




Pelletier—Ressayre hidden symmetry page 81

Furthermore,
=l =(pul =) =yl =) =a—0
~ b
and
ml=1¢l= (nl—Iul)  +ul=12)) =[pul=|7[+b=(a—b)+b=a.
s T o

#l
(by Corollary (@)

Thus, Claim 4 is proven. ]
We have now shown (in Claim 3 and Claim 4) that { is a snake satisfying the four
conditions

u—{  and u|—Zl=b and 5 —C  and 7= 12| = a.

In other words, { € R, 1, (17) (by the definition of R, ;4 (17))-
Forget that we fixed v. Thus, for each v € R, ;5 (), we have constructed a
¢ € Ry pq (17). Let us denote this ¢ by v. We thus have defined a map

R}l,ﬂ,b (’7) — Ry,b,a (77) ’
Vi 7.

Let us denote this map by g, , ;- Its definition shows that

gyab (V) | =v; =min {p;, 1} —min {p;, v;} +v; (68)
——

( since U was defined as the n-tuple {, whose entries )
are given by {; = min {y;, 17;} — min {u;, v;} + v;

foreachv € Ry ;5 (7) and each i € {1,2,...,n}.

However, from # = f, (), we obtain v = £, (17) (by Corollary (d)). The
relation between 7 and 7 is thus symmetric. Hence, in the same way as we defined
amap g,.p * Ruap (1) = Rupa (1), we can define a map g, 54 @ Rypa () —
Ry () (by repeating the above construction of g. ,, with b, a, 7 and -y taking the
roles of a, b, v and 7, respectively). The resulting map g, ;, satisfies

(8,60 (v)), = min {p;, v;} — min {pg, 1} + v; (69)

for eachv € R, ;4 (17) and each i € {1,2,...,n}. (Indeed, this can be proved just as
we proved , but with b, a,  and -y taking the roles of a, b, v and 7.)
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Now, it is easy to see that g, ;5 0 g, = id H and gy 440 8yap = id
Thus, the two maps g, ,» and g, ;, are mutually inverse. Hence, these two maps
are invertible, i.e., are bijections.

Thus, there exists a bijection from R, ;5 () to Ry, (17) (namely, g, ;). This

yields |Ry 05 (7)| = |Rupe (7)| = |Rupa (£4(7))] (since 7 = £, (7). This proves
Lemma 439 D

Having learned a lot about the map f,,, let us now connect it to the map ¢ defined
in Theorem For this, we shall use the following lemma:

Lemma 4.40. Fix any n-tuple y € Z".
Let v € Z" be an n-tuple. For each j € Z, let

;

T =minq Visr +Vigo + - Vit Pier1 B2 o P

~~ ~~

k n—1
=) Vjyi = L Hjti
. i=1 i=k+1
| ke {0,1,...,n—1}}.
Let 7 € Z" be such that
i =i+ (pic1 +7-1) — (Vi1 + Tiw1) foreachi € {1,2,...,n}.

Then, f, (v) = 7.

YProof. Letv € Rypa(n). Thus, g,p4 (V) € Ryap (7). Now, both (g“r,u,h o gq,b,a) (v) and v are

n-tuples. Furthermore, for each i € {1,2,...,n}, we have

(g"y,a,b o gry,h,a) (v)| = (g"y,a,b (gn,h,a (V)>)l

=8y, (gq,b/a (v) )

= min {7} —min {7} + (800 (V).
=min{p;,y; } —min{u;,n; }+v;
(by €9)
(by (68), applied to g, 4, (v) instead of 1/)

= min {p;, 7;} — min {p;,7;} +min {p;, 7} — min {p;, 7} +v;
= Vj.

In other words, the two n-tuples (gw,bogmhﬂ) (v) and v agree in each entry. Hence,

(gv,a,b o gmb,a) (v) =v=id(v).
Forget that we fixed v. We thus have shown that (g%a,b o gq,b,a) (v) = id (v) for each v €

Ry ba (17). In other words, 81,00 © 8 ba = id.
2for similar reasons
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Proof of Lemma Lemma is obtained when we apply Lemma to
K = (Z, min, +,0) (and rename everythingEL and use our above dictionary again).
O

We can now connect the map f, with the map ¢ from Theorem

Lemma 4.41. Let 4,b € IN. Fix any n-tuple y € Z". Define a map ¢ : Z"" — Z"
as in Theorem Then,

¢(w) =1, (w—a)+b for each w € Z".

Proof of Lemma Let w € Z".
Define an n-tuple v = (v,v2,...,vy) € Z" by

Vi =w;—a foreachi e {1,2,...,n}.
Thus,

v=(v,vp,...,Vn) = (w1 —a,wy—a,...,wy, —a)
(since v; = w; —a foreach i € {1,2,...,n})

=w —a.

For each i € Z, we let i# denote the unique element of {1,2,...,n} congruent to
i modulo n.
For each j € Z, set

5 = min { (Vpnm+ Vim0 V)
+ (V(j+k+1)# T Wkt Tt Pl(j+n—1)#>
| ke{o,l,...,n—l}}. (70)
Define an n-tuple 7 = (1,72, ...,4x) € Z" by setting
Ni = Hig + <Pl(z>1)# + T(iq)#) - (V(z’+1)# + T(i+1)#) foreachie€ {1,2,...,n}.
The definition of ¢ then yields
¢(w)=(n+bm+b,...,n,+b) =n+b. (71)

2INamely, we are
¢ renaming the (fixed) n-tuple u as y;
¢ renaming the n-tuple x as v;
* renaming the elements g; as Tj;

¢ renaming the n-tuple z as 7.
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Our plan is now to show that f, (v) = 1. We shall achieve this by applying
Lemma but in order to do so, we need to show that the assumptions of Lemma
are satisfied.

We shall do this piece by piece. First we claim the following:

Claim 1: We have vy = v, for each p € Z.

[Proof of Claim 1: Let p € Z. Then, p# = pmod n (by the definition of p#).

Convention [3.6| ensures that the family (v;);., is n-periodic. In other words, if j
and ;' are two integers satisfying j = j'mod n, then v; = vy. We can apply this to
j = p#and j' = p, and thus obtain v,4 = v}. This proves Claim 1.]

Claim 2: We have p,4 = pp, for each p € Z.
[Proof of Claim 2: This is analogous to the proof of Claim 1.]
Claim 3: For each j € Z, we have

;

T =minq Visr +Vigo + o Vit Pt Bk o Pgn—1

—~~ N~

k n—1
:'21 Vigi = L Hjti
i=

| ke {0,1,...,n—1}}.
[Proof of Claim 3: Let j € Z. Then, the definition of 7; yields

GEmng L Visng o Vgrg ot Vi
N—— N—— N——
=Vjt1 =Vj+2 =Vjtk
(by Claim 1)  (by Claim 1) (by Claim 1)

+ | Btk T Birkras Tt Bidn-1#
A/_/

N—— N——
“Hj+k+1 “Hj+k+2 =Hjt+n—1
(by Claim 2)  (by Claim 2) (by Claim 2)

| ke{o,l,...,n—l}}

= min 4 Vi1 +Vjgo o Vit Pkt T ez o et

-~ ~~

k n—1
=) Viy = Y Hjti
i=1 i=kr1

| ke {0,1,...,n—1}}.
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This proves Claim 3.]
The next claim is an easy fact from elementary number theory:

Claim 4: We have (p#+q)# = (p+q)#forany p € Zand q € Z.

[Proof of Claim 4: Let p € Z and q € Z. Recall that p# is defined as the unique
element of {1,2,...,n} congruent to p modulo n. Hence, p# is congruent to p
modulo 7n. In other words, p# = pmodn. Thus, p# +g9=p+gmodn.

~—

=pmodn

Recall that (p# + q) # is defined as the unique element of {1,2,...,n} congruent
to p# + q modulo n. Hence, (p#+ q) # is congruent to p# + ¢ modulo n. In other
words, (p#+q)# = p#+gmodn. Thus, (p#+q)# = p#t+9 = p+gmodn. In
other words, (p# + q) # is congruent to p + g modulo n.

Moreover, (p#+ q) # is an element of {1,2,...,n} (since (p# + q) # is the unique
element of {1,2,...,n} congruent to p# + q modulo n). Hence, (p#+q)# is an
element of {1,2,...,n} congruent to p + g modulo n.

But let us now recall that (p + q) # is defined as the unique element of {1,2,...,n}
congruent to p + g modulo n. Hence, (p + q) # is the only such element. In other
words, if i is an element of {1,2,...,n} congruent to p + g modulo n, then i =
(p+9q)#. Applying this to i = (p#+ q)#, we conclude that (p#+q)# = (p+q)#
(since (p#+ q)# is an element of {1,2,...,n} congruent to p + g modulo n). This
proves Claim 4.]

Using Claim 4, we easily obtain the following;:

Claim 5: We have 1,4 = T, for each p € Z.
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[Proof of Claim 5: Let p € Z. Then, the definition of 7,4 yields

/

Tp# = Min <V(p#+1)# T Vo + 0t V(p#+k)#>

J/

-~

k
=) Vipriy
\ i=1

+ (P‘(p#+k+1)# t W(phtkt2)s Tt P‘(p#+n—1)#>

7

NV
n—1

:i:%l H(ptrijs

|k€{Qann—1}}

k n—1
= min V(p#Jri)# + Z ]fl(p#+i)# | k e {0, 1,...
i=1 S——— i=k+1 —
=Vip+i# =H(p+ip
(since Claim 4 (since Claim 4
(applied to g=i) (applied to g=i)
yields (p#+i)#=(p+i)#) yields (p#+i)#=(p+i)#)
k n—1
= min Viprips + Z Mo | k€{0,1,...,n—1} 0.

Comparing this with

T = min (V(p+1)# + Vip+2)# +ot 1/(erk)#>

[\ J/

k
:,E V(p+iy#
\ i=1

+ <:M(p—|—k+1)# + H(p+k42)# + -+ :u(p—&-n—l)#)

(& J/
-

nil
_i:k+1 Fipript

]kE{QL“qn—l}}
(by the definition of T)
k n—1
:min{ZV(p+i)#+ Z H(priy | kE{O,l,...,n—l}},
i=1 i=k+1

we obtain Tys = Tp. This proves Claim 5.]

,n—1}
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Now, leti € {1,2,...,n}. Then, the definition of # yields

ni= M | Hi—vs T Ta—ns | | Varns T T
N~~~ —— N—— N—— N——
~Hi =Hi-1 =T =Vi41 =Tj11
(by Claim 2) (by Claim2)  (by Claim 5) (by Claim 1)  (by Claim 5)

= pi+ (i1 + Tim1) — (Vi1 + Tiga) -
Now, forget that we fixed i. We thus have proved that
i =ui+ (pic1 +7-1) — (Vi1 + Tiw1) foreachi € {1,2,...,n}.

Combining this with Claim 3, we conclude that the assumptions of Lemma are
satisfied. Hence, Lemma yields f, (v) = 5. In view of v = w — g, this rewrites
as f, (w —a) = 1. Hence, 1 = f,, (w — a), so that (71) becomes

¢(w)= n +b=f,(w—a)+b.
~—

=f,(w—a)

This proves Lemma O

4.6. The finale

Now, let us again use the convention (from Section [I) by which we identify parti-
tions with finite tuples (and therefore identify partitions in Par [11] with nonnegative
snakes). This is no longer problematic, since we are not using Convention 3.6/ any
more.

Lemma 4.42. Let a,b € N. Define the two partitions « = (a+b,4"?) and
B=(a+bb"2).

Fix any partition y € Par[n]. Consider the map f, : Z" — Z" defined in
Definition [4.36

Then, for any A € Z", we have

CA+a — f‘u (A)+b
0(/]/[ ,3/}1 ’

Here, we understand CQIZ’Z to mean 0 if A + a is not a partition, and likewise we

understand cg’ ;A)er to mean 0 if f, (1) + b is not a partition.

Proof of Lemma Let A € Z". Corollary (applied to A + a instead of A)
yields

CQ,J;Q = ‘Ry,a,b ((/\ + a) - Ll)} - ‘Ry,a—l,b—l ((A + a) - Ll)‘
= [Ryap (M) = [Rya—1,p-1 ()] (72)
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N
=b+a
Hence, Corollary (applied to b, a, B and £, (A) + b instead of a, b, « and A)

yields

(since (A +a) —a = A). On the other hand, B = (a +b b”2> = (b+a,b"2).

(£ (M) +b) =) | = [Ryp-1,0-1 (£ (1) +b) = )]
fﬂ ()\))}J - lRy,b—l,a—l (fﬂ ()‘))l

-~ -~

:|R]A,ﬂ,b(A) :’Ry,afl,bfl ()‘)’
(by Lemma (by Lemma
applied to y=A) applied to A, a—1 and b—1
instead of 7, a and b)

(since (fy(A)+b) —b=1f,(A))
- ‘Ry,a,b (A)l - }Ry,a—l,b—l (A)| .

Comparing this with l| we find Cﬁ;a _ ng IEA)+

. This proves Lemma {4.42, O

We are now ready to prove Theorem

Proof of Theorem The map f, is an involution (by Theorem (@), thus a bi-
jection.

Leta™ : Z" — Z" be the map that sends each w € Z" to w — a. This map a™ is
clearly a bijection.

Let b™ : Z" — Z" be the map that sends each w € Z" to w + b. This map b™ is
clearly a bijection.

From Lemma we can easily see that

p=bTof,0a".

[Proof: Let w € Z". Then, the definition of a~ yields a~ (w) = w — a. Hence,
w—a=a (w). But Lemma[4.41]yields

¢ (w)=f(w—a)+b=Db"|f, w—a
=a~ (w)
(since the definition of b™ yields b™ (f, (w —a)) = f, (w —a) +b)
=b" (fy (a” (w))) = (b+ of,o a) (w).

Forget that we fixed w. Thus we have shown that ¢ (w) = (b* of, 0a™) (w) for
each w € Z". In other words, ¢ =b™ o f,oa", qed.]

Recall that the maps b", f, and a~ are bijections. Hence, their composition
bt of, 0ca” is a bijection as well. In other words, ¢ is a bijection (since ¢ =
b* of, 0a”). This proves Theorem 2.3 (a).
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(b) Let w € Z". Then, Lemma {4.41] yields ¢ (w) = f, (w —a)+b. Hence,
f, (w—a)+b= ¢ (w). But Lemma {4.42| (applied to A = w — a) yields

cgf;,‘“)+“ = cg/‘flwfa)% = CZ,(;J) (since f, (w —a) +b = ¢ (w)).
In view of (w —a) +a = w, this rewrites as ¢/, = cg,(;). This proves Theorem
(b). O

5. Final remarks

5.1. Aside: A Jacobi—Trudi formula for Schur Laurent
polynomials

As mentioned above, Proposition has the following generalization, which can
be obtained from an identity of Koike [Koike89, Proposition 2.8] (via the map 7,
from [Koike89] and the correspondence between Schur Laurent polynomials and
rational representations of GL (1)), which has later been extended by Hamel and
King [HamKinl11] (see [HamKin11, (6) and (10)] for the connection)

Proposition 5.1. Let p,g € N with p+¢q < n. Let a = (ay,a2,...,ap)
and b = (by,by,...,by) be two partitions. Let b © a denote the snake
(b1,b, ..., by, 0" P9, —ay, —a,_1,...,—a1). Let M be the (p+4q) % (p+q)-
matrix

Ap—iy1+i—j’ if i < p;
Wt ifi>p
bip—itj ij€{1,2,...p+q}
ha_p hap—l hup—p-l—l hap—p hap—p—l o hap—p—q+1
hapf1+1 h”pfl o h”pfl—P‘Fz h“pfl—r"*‘l h“ﬂ—lfp o h”lﬂfl_p_q'*'2
_ ha1+P—1 hu1+P—2 hﬂ_l hﬁ1—1 hal -2 halfq
= + + + + + +
hbl—p hbl—p+1 hb1—1 hbl hb1+1 hb1+q—1
+ + + + + +
hbz*Pfl hbzfp hbz*Z hbzfl hbz o hb2+’1*2
+ + + + + +
hbququrl hbququrz hbqfq hbq*l]‘i’l hbqqurZ hbq
Then,
§b@a = det M.

22We recall Definition Definition (a), Definition Definition and Definition as

well as the conventions made in Section |1} for the notations used in this proposition.
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Remark 5.2. The analogous generalization of the second Jacobi-Trudi formula
([GriRei20, (2.4.17)]) can easily be proved (although we leave both stating and
proving it to the reader). What makes it easy is the (fairly obvious) fact that the
elementary symmetric functions ey satisfy

-1 -1 —1 ~1
ek <x1 JXy e, Xy, )sz enk (X1,X2,...,Xn)

for all k € Z. (See [GriRei20), Definition 2.2.1] for the definition of ey.)

Proposition |5.1| generalizes Proposition (which corresponds to the particular
case when p = 1 and g = 1) as well as the first Jacobi-Trudi formula [GriRei20,
(2.4.16)] (which corresponds to the particular case p = 0).

We notice that what we called b © a in Proposition [5.1| has been called [b, a] in
[Stembr87].

We thank Grigori Olshanski for informing us of the provenance of Proposition

6.1

5.2. Questions on f,

We shall now pose several questions about the birational involution f, studied
in Section Convention Convention [3.5] and Convention will be used
throughout Subsection

5.2.1. f, as a composition?

Most of our questions are meant to attempt seeing the involution £, from different
directions. The first one is inspired by what is now known as the “toggle approach”
to dynamical combinatorics (see, e.g., [Roby15]), but is really an application of the
age-old “divide and conquer” paradigm to complicated maps:

Question 5.3. Is there an equivalent definition of f, as a composition of toggles?
(A toggle here means a birational map K" — K" that changes only one entry of
the n-tuple. An example for a birational map that can be defined as a composi-
tion of toggles is birational rowmotion — see, e.g., [EinPro13]. Cluster mutations,
as in the theory of cluster algebras, are another example of toggles.)

Another set of questions concern the uniqueness of f,. While we defined the map
f, explicitly, all we have then used are the properties listed in Theorem Thus,
it is a natural question to ask whether these properties characterize f, uniquely. A
pointwise version of this question can be asked as well: Given x € K" and y € K"
satisfying some of the equalities in parts (b), (¢) and (d) of Theorem does it
follow that y = f, (x) ? (Keep in mind that u is fixed.)

Depending on which equalities we require, we may of course get different an-
swers. Let us first ask what happens if we require the equalities from Theorem 3.11]
(c) only:
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5.2.2. Characterizing £, (x) via the cyclic equations

Question 5.4. Given x € K" and y € K" satisfyin
y ymng

(ui+xi)( L )Z(UHF%)( S ) (73)

Uiy1  Xip1 Uir1  Yi+1

for all i € Z. Does it follow thaty = f, (x) ory = x ?

Note that the “or y = x” part is needed here, since y = x is obviously a solution to
the equations (73).

The following example shows that the answer to Question 5.4{is “no” if K is the
min tropical semifield (Z, min, +,0) of the totally ordered abelian group Z.

Example 5.5. Let k,¢ € N with ¢ > k. Let K = (Z, min, +,0) and n = 3 and
u=(0,0,g) and x = (1,2,0). Sety = (k+1,2,k) (where the “+” sign in “k +1”
stands for addition of integers, not addition in K). Then, the equations hold
in K for all i € Z. (Restated in terms of standard operations on integers, this is
saying that

min {u;, x;} + min {—u; 1, —x;11} = min{u;, y;} + min {—u; 1, —yi1}

for all i € Z.) This is straightforward to verify, and shows that for a given x there
can be an arbitrarily high (finite) number of y € K" satisfying the equations
foralli € Z.

We note that this number cannot be infinite. In fact, this follows from the follow-
ing proposition@

Proposition 5.6. Let x € R" and z € R" be fixed.
(@) Let y € R" be such that
zi = min{u;,y;} +min {—u; 1, —yii1} (74)
forall i € Z. Then, we have z; + u;;1 <y; < u;_1 —z;_1 foreachi € Z.

(b) There are only finitely many y € Z" such that holds for all i € Z.

23To be more precise, this claimed finiteness follows from Proposition (b), applied to the n-tuple
z € R" defined by

z; = min {u;, x; } + min {—u; 1, —x; 1} foralli € Z.
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Proof of Proposition [5.6| (sketched). (a) Let i € Z. Then, yields

zi = min {u;,y;} + min {—uir1, —yir1} < yi — Ui,
<Vi Sl

so that z; + u; 1 < y;. Furthermore, (applied to i — 1 instead of i) yields

zi—1 = min{u;_1,yi—1} + min{—u;, —y;} <uj1 -y,

<u;_q <-y;

so that y; < u;_1 — z;_1. Combining this with z; + u;11 < y;, we obtain z; + u;41 <
y; < u;_1 — z;_1. This proves Proposition 5.6 (a).

(b) If y € Z" is such that holds for all i € Z, then Proposition [5.6| (a) shows
that each entry y; of y lies in the finite set

F; .= {all integers between z; + u; 1 and u;_1 — z;_1 (inclusive)} .

Thus, the whole n-tuple y lies in the finite set F; X F, X - - - x F,. Therefore, there
are only finitely many such y’s. This proves Proposition [5.6( (b). O

Example has shown that the answer to Question is “no” when K =
(Z, min, +,0). However, the answer to Question is “yes” it K = Q4 and, more
generally, if the semifield K embeds into an integral domain:

Proposition 5.7. Assume that there is an integral domain IL such that the semi-
tield K is a subsemifield of IL (in the sense that K C IL and that the operations
+ and - of K are restrictions of those of I, whereas the unity of K is the unity of
LL). Let x € K". Then, the only n-tuples y € K" satisfying the equations for
allie Zarey =f,(x) and y = x.

Proof of Proposition |5.7| (sketched). The following is a rough outline, as we don’t have
any need for Proposition

We define the elements f,; € K for all € N and j € Z as in Definition We
further sett 1; = 0 € IL for each j € Z. (This is in line with our definition of ¢, ,
because an empty sum should be understood as 0.) Thus, ¢,; € L is defined for
eachr e NU{—1} and each j € Z.

For any k € N, we set g =t _1 € K.

For any integer k > 1, we set I = t;_5, € L. Note that i, € K if k > 2; however,
hy = t121=t_11=0 (by the definition of t—l,l)-

It is clear that f, (x) and x are two n-tuples y € K" satisfying the equations
for all i € Z. (Indeed, for f, (x), this follows from Theorem (c), while for x,
it is obvious.) We thus only need to prove the converse: Let y € K" be an n-tuple
satisfying the equations for all i € Z. We must show that y = £, (x) or y = x.

We WLOG assume that n > 2, since otherwise (i.e., for n = 1) this claim is easily
checked by hand.

For any integer k > 1, we set wy = g — x1yohx € L. We shall see soon (as a
consequence of Claim 3) that this wy actually belongs to K.

We begin with the following claim:
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Claim 1: (a) We have uy_1x,Qx—1 + ko1 = (Ug + xx) g for each integer
k> 1.

(b) We have uy_q1xxhg_1 + hgy1 = (uk + xk) hy for each integer k > 2.

[Proof of Claim 1: We shall prove something more general. Namely, for any p € Z
and any integer k > p — 1, we set

Zp = ti_pp1 € L. (75)
Thus, for each integer k > —1, we have
20 = tk—0,0-1 = tk,—1 = k- (76)
Moreover, for each integer k > 1, we have
Zk2 = tk—22-1 = tk—21 = M- (77)
Now, we claim that
Uk 1XkZk—1,p + Zkt1,p = (Uk + Xk) Zk p (78)

for any p € Z and any integer k > p. Once this is proved, then Claim 1 will easily
follow. (Indeed, Claim 1 (a) will follow by applying to p = 0 and rewriting the
result using (76). Likewise, Claim 1 (b) will follow by applying top = 2 and
rewriting the result using (77).)

So it suffices to prove (78). Let us do this. Fix p € Z and k > p. We must
prove the equality (78). If k = p, then this equality boils down to u, 1x, -0+
(up+xp) = (up+2xp) -1 (since it is easily seen that z, 1, = t_1, 1 = 0 and
Zpy1p = Hp-1 = Up +Xp and zp, = ty, 1 = 1), which is obvious. Thus, for the
rest of this proof of (78), we WLOG assume that k # p. Hence, k > p + 1 (since
k> p),sothatk—p—1¢&N.

We can thus apply Lemma dtor=k—-p—-landj=p-1 @ This
results in

Ug—1tk—p—1,p—1 T XpXp+1 - Xk—1 = tk—pp—1 = Zkp
(by (75)). Multiplying both sides of this equality by x;, we find

Xk (uk—ltk—p—l,p—l + XpXpy1 - Xk—l) = XkZk,ps
so that
XiZk,p = Xk (Mk—1tk—p—1,p—1 + XpXpg1 - Xk—1)
= Up—1Xk  tk—p—1p-1 + (xpXpr1 - xk—1) Xk
N——

N J/
-~

=t_1-p,p-1 =XpXp41-Xk
=Zk-1,p

(by (75), appli;sd to k—1
instead of k)

= Ug_1XkZk—1,p T XpXp41 - Xk (79)

24This might appear strange, since one of the conditions in Lemma is not satisfied (namely,
we do not have a guarantee that y is as in Definition . However, this does not matter, since
Lemma (d) does not depend on this condition (as is clear from the proof).
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On the other hand, we can apply Lemma dtor=k—pandj=p-—1
This results in

uktk—p,p—l T XpXpp1 o X = tk—p+1,p—1 = tk—i—l—p,p—l = Zk+1,p
(by (75), applied to k + 1 instead of k). Hence,
Zkt1,p = Uktk—p,p—1 + XpXp41 - Xg-
Adding uy_1xxzx—1,p to both sides of this equality, we obtain

Uk—1XkZk—1,p T Zk+1,p
= Uk—1XkZk—1,p + Uktk—pp—1 + XpXpy1 - X

= Ug—1XkZk—1,p T XpXp41 - X HUktpp1

-

=XkZk,p =Zk,p
(by (79) (by (73))

= XkZk,p + UkZk,p = (uk + xk) Zk,p-

This proves (78). As we said, this completes the proof of Claim 1.]
As a consequence, we can easily conclude the following:

Claim 2: We have
U1 X W1 + Wi = (g + Xk) Wi (80)
for each integer k > 2.

[Proof of Claim 2: Let k > 2 be an integer. Then, Claim 1 (a) yields uj_1xxgx—1 +
Sk+1 = (ug +xk)gk/ so that g1 = (ug + x¢) Sk — Ug—1Xk8k—1- Also, Claim 1 (b)
yields ug 1 xphx 1 + M1 = (ug + xx) hy, so that hyq = (ug + x¢) e — w1 xhy 1.
Now, the definition of wy 1 yields

Wy = Sk+1 —X1Y0 it
N~ ——

=(Ug+Xk) Sk —Uk—1XkSk—1 =(ug+xp) e — g1 xchy_4
(g + x) Sk — Ug—1Xk8k—1) — X1Y0 ((ux + xx) Iy — ug_1x¢h_1)

(
= (up+x¢)  (&k — x1yoh)  —ur—1Xk (k-1 — X1Yohx—1)
———

/

g o
(by the definition of wy) (by the definition of wy_1)

= (g + Xp) W — U1 X Wg_1.

Hence, uy_1x3wy_1 + wxyq1 = (Ug + xx) wy. This proves Claim 2.]
We now claim the following:

Claim 3: Let k be a positive integer. Then, the elements wy,wy, ..., wiq
belong to K. Moreover, if k > 2, then
_ U U X Wi —1

— 81
Yk Wt (81)
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[Proof of Claim 3: Proceed by induction on k.

Induction base: We shall use two base cases: the cases k = 1 and k = 2. These
require us to show that the elements w;, wy, w3 belong to K and that the equality
is true for k = 2.

The definition of w; says w; = g1 — x1¥0 \hl/ = g1 = t;—1 = upg+ x9. Thus, wy

=0

belongs to K.
The definition of w, yields
Wy = 2 —X1¥0 _ha = uguy + Xou1 + XoX1 — X1Y0-
~—~—~ N~
=t 1 =tp1=1
=ugu1+XxgU1+Xx0X1

The definition of w3 yields

w3 = 93 —X1Yo0 hs
=31 =t 1=uz+x3

=UguiUy+XoUUp+XgX1U2+X0X1X2

= UgUqUp + Xol1t + XoX1Up + XoX1X2 — X1Yo (12 + X2) .

The equations are satisfied for all i € Z, and thus are satisfied for i = 0. In
other words, we have

(u +x)(l+l)—(u+ )(l—l-l)
00u1x1 oy0u1y1~

1
Solving this equation for " we obtain
1

1 1
1 (10 + xo) (u_1 + x_1> _ l _ Holq + XoU1 + XoX1 + X1Up 1

v up + Yo u; u1x1 (1o + Yo) uy
uguy + xouq + xox1 + x11p — X1 (4o + Yo)
u1x1 (4o + Yo)
wy

_ , 82
u1x1 (4o + Yo) (82)

since ugu1 + xouq + Xox1 + X1ug — X1 (uo —|—yo) = UpUq + XoU1 + XoX1 — X1Yo = Wp.

This shows that wy = u1xq (1o + yo) - ]/_ € K (since u1, x1, g, Yo, y1 € K). Thus, we
1

have shown that w; belongs to K.

Furthermore, by taking reciprocals on both sides of (82), we obtain

_ u1xq (4o + Yo)
N = -
w2
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Hence,
U +y1=up+ i (o + yo) =1uq- w2 21 lto + o)
(0] wn
_ oy, (Mot xo) (1 + 1) (83)
w»

(since a straightforward computation yields wy + x1 (ug + yo) = (1o + xo) (11 + x1)).
The equations are satisfied for all i € Z, and thus are satisfied for i = 1. In
other words, we have

(u1 4+ x1) (l+xl2) = (u1+¥y1) (l‘F 1).

Uz U Y2

1
Solving this equation for Vo we obtain
2

1 (u1+x1)(ul+1) 1 (u1+x1)(uiz+1> 1

2 X2 X2

v2 UL+ uy 1y - (o +x0) (1 +x1) 2
wr
(by (83))
1 1
_wm w1 wplmtx) 1
1y - Uo+x0  up  uqupxp (ug+xo)  Un
w3

wy (up + x2) — upxo (g + Xp)

uyupxp (1o + xo)
w3

— A 4
UqU2 X2 W1 (8 )

(since straightforward computations yield wy (12 + x2) — uqx2 (1p + x9) = w3 and
ug + xg = wy). This shows that w3 = ujurxpws - y— € K (since u1, up, x, wy,y2 € K).
2
Thus, we have shown that w3 belongs to K.
Taking reciprocals on both sides of (84), we find

UU X2

Y2 = ws3

In other words, is true for k = 2. Thus, the induction base is complete.
Induction step: Let i > 2 be an integer. Assume (as the induction hypothesis) that

Claim 3 holds for k = i. We shall now show that Claim 3 holds for k =i + 1.
Claim 2 (applied to k = i) yields

Ui 1XWi—1 + Wip1 = (U + X;) W;. (85)
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We have assumed that Claim 3 holds for k = i. In other words, the elements
w1, Wy, ..., w1 belong to K, and the equality is true for k = i.
Thus, in particular, (81) is true for k = i. In other words, we have

Ui UX{W;
.= i—1%iAiWi-1 ) (86)
Wit1
Adding u; to both sides of this equality, we obtain
Uity =u+ Wi UiXiWim1 _ Ui (Ui XiWi1 + Wis1)
Wi+1 Wit
_ui (i + x;) w; &7

Wit+1
(by (85)).
But Claim 2 (applied to k = i + 1) yields u;x;w; + wito = (Uj11 + Xj41) Wit1, SO
that
(Uig1 + Xit1) Wig1 — UiXi 1 Wi = Wiy, (88)

1
Now, recall that the equation 1i is true. Solving this equation for =y we find
i+1

1 1
Ui + x; +
1 — N (ui+1 xz'+1) 1 - (i + i) (i1 + Xiv1) 1

Yit1 u +yi Ujitq Uip1Xip1 (Ui + i) Ui
(u;i + x;) (Uip1 + Xig1) 1

= - (by @7))
up (Ui +x;) w; Uiy
UiprXip1 ——
Wit1
(it xip)wivr 1 (Wi + X)) Wig1 — UiXi Wi
Uil 1 X1 W; Uit Uilj11Xi41W;
Wi42 (

= 2 by (889)) . (89)

Uilj 1 Xi41 Wi

Hence,
Wit = Uillj 1 X4 Wj - cK
Yit1

(since u;11, Xj+1, Wit+1, Ui, Xiy1, w; € K). Hence, w;, belongs to K.

Taking reciprocals on both sides of the equality (89), we obtain

Yii1 = Uili+1Xi41Wi
a Wi+2
In other words, is true for k =i + 1.

We have now proved that the elements wy, wy, ..., w;;» belong to K (since we
already know that wy, wy, ..., w;;+1 belong to K, and since w;,, belongs to K), and
that the equality is true for k = i+ 1. In other words, Claim 3 holds for
k =i+ 1. This completes the induction step, and therefore Claim 3 is proved.]
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Claim 4: For each k > 1, we have

Sk = (1o +x0) - ugun - - - up_1 + xox1 Mg (90)
and
h, — Sk~ (10 + X0) - ugttp - - - Uje—y (91)
k X0X1 '

[Proof of Claim 4: The equality is easily checked directly. The equality
follows by solving for hy.]
Now, Claim 3 (applied to k = 1) shows that the elements wy, wy, ..., w,; belong

to K and satisf
Y _ Uy 1UpnXnWy—1 (92)
In Wy+1 .

The definition of w,_; yields

Wp—1 = §n—1 — X1Y0 hy—1
~——

8n—1— (1o + x0) - Uy - -~ Up_2
XoX1
(by 1), applied to k=n—1)
Qn—1— (Uo + x0) - UqUp -+ - Up_

= 8n-1— X1Yo "

X0X1
_(1_ Y vo - (1o + xo) - ugu -+ -y
- - gnfl +
X0 N~~~ X0
=tp-1,-1
(by the definition
of g,-1)
0 0 (Uo+Xx0) -ugup -y
T PRI S S r

1
= X0 ((x0 —yo) th—1,-1 + Yo - (1o + x0) - Uy - - - Uy_3).

Thus,
1
XnWn—1 = Xn: - ((x0 —yo) the1,—1 + Yo - (1o + x0) - U - - - Uy_2)
—l
(since_xn:xo)
= (x0 —Y0) th—1,—1 + Yo - (o + x0) - ugtip - - - Up_2.
Therefore,

Uy 1UnXnWy—1
= up_1un ((x0 = Y0) tn—1,—1 + Yo - (to + X0) - Ugtiz - - - Uy_2)
= Uy_1 U (X0 —Y0) tu—1,—1 + Up_1Un - Yo - (U0 + X0) - Urlp - - - Uy _2

J/

-~

=Uup =]/0~(M0+x0)~u1u2---un

= Uy_11o (X0 — Y0) tn—1,—1 + Yo - (U0 + X0) - UqUp - - - Uy. (93)
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The definition of w,,; yields

Wy = Sn+1 —x1Yohu 1

=(up+xq)-uqty - Un+X0x1 My i1
(by (90), applied to k=n+1)

= (uo +x0) - uqua - - - Uy + XoX1hy 11 — X1Y0hn11
= (uo + x0) - uguz - - - un + 21 (X0 — Yo) )
~—~—
=tp-11
(by the definition
of hy 1)

= (o + x0) - urtiz -+ - tn + x1 (X0 — Yo) tn—1,1- (94)
Now, becomes

Y = Un—1UnXnWy—1 _ Un—1U0 (x0 —Yo0) tn—1,—1 + Yo - (uo + X0) - UrUz - - - Uy
! Wyt1 (uo + x0) - Uy - - - Up + x1 (X0 — Yo) tn—11

(by and (94)). Comparing this with y, = yo, we obtain

_ Up—1uo (X0 — Yo) tn—1,-1+ Yo - (o + X0) - uaUp - - - Un
(uo + x0) - uqup -+ - Uy + x1 (X0 — Yo) tn—11

Yo

In other words,

Yo - (1o + x0) - ugti - - -ty + x1 (X0 — Yo) tn-1,1)
= Up—1Uo (xO - yO) tn—l,—l + Yo - (u() + xo) cU Uy - Uy,

Thus,

0 = uy1ug (X0 — Yo) tn—1,—1 + Yo - (1o + Xo) - ugtiz - - - ty
—yo - ((uo + x0) - uquz - - - uy + x1 (X0 — Yo) tn-1,1)
= Uy_1Uo (X0 — Yo) tn—1,-1 — YoX1 (X0 — Yo) tu—1,1
= (x0 —yo) (Un—1uotn—1,-1 — YoX1tp-11) -

Since IL is an integral domain, we thus conclude that either 0 = xp —yp or 0 =
Up_1Uoty—1,—1 — YoX1ty—1,1. In the former case, we obtain vy = xp; in the latter, we
find

_ Up—aUotn—1,1 CUp—1tp—1,-1 CU_1tpo1,-1

=y ————— =y —————— (since u, 1 =u_q)
X1tn—11 X1tn—11 X1tp—1,1

= (fu (x))g

(by Lemma (h) (applied to f, (x) and O instead of y and i), because the y
in Lemma (h) equals f, (x)). Thus, we have shown that either yy = xo or

Yo = (fu (x))o-

Yo
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However, the equalities holding for all k > 2 show that y; is uniquely de-
termined by yg for all k > 2. The same formula determines x; in terms of xy and
determines (f, (x)), in terms of (f, (x)), (since both n-tuples x and f, (x) satisfy
the same equalities as y does). Thus, if yyp = xp, then y; = x4 for all k > 2, and
therefore y = x; likewise, if yo = (f, (x)),, then yx = (f, (x)), for all k > 2, and
therefore y = f, (x). Hence, we conclude that either y = x or y = £, (x) (since we
know that either yy = xg or yo = (f, (x)),). This completes the proof of Proposition

6.2 O

5.2.3. Characterizing f, (x) via the cyclic equations and the product equation

Another avatar of the uniqueness question is the following;:

Question 5.8. Given x € K" and y € K" satisfying both forall i € Z and

ViY2 - Yn - X1Xa - Xy = (Uqtiy -ty (95)
Does it follow that y = £, (x) ?

The answer to this question is definitely “yes” when K = Q, by essentially
the same argument that was used in Remark Again, however, the answer is
“no” when K = (Z, min, +,0). For example, if K = (Z, min, +,0) and n = 4 and
u=(211,0) and x = (1,1,1,1), then the two n-tuples (1,1,1,1) and (2,2,0,0)
both can be taken as y in Question but clearly cannot both equal £, (x). (On the
other hand, if K = (Z, min, +,0) and n = 3, then the answer is “yes” again; this
can be shown by an unenlightening yet not particularly arduous case analysis.)

An even stronger version of Question 5.8/ holds when K = Q:

Proposition 5.9. Assume that K = Q. Let x € K" and y € K". Assume that
holds for all i € {1,2,...,n — 1}, and assume that holds. Then, y = f, (x).

Proof of Proposition 5.9 (sketched). Let z = £, (x). We have either y; > z; or y; < z;.
Assume WLOG that y; > z; holds (since in the other case, we can use the same
argument with all inequality signs reversed).

Now, we notice the following:

Claim 1: We have vy > z; for each k € {1,2,...,n}.

[Proof of Claim 1: We shall prove Claim 1 by induction on k:

Induction base: We have assumed that y; > z;. In other words, Claim 1 holds for
k = 1. This completes the induction base.

Induction step: Leti € {1,2,...,n —1}. Assume that Claim 1 holds for k = i. We
must prove that Claim 1 holds for k =i+ 1.

We have assumed that Claim 1 holds for k = i. In other words, we have y; > z;.




Pelletier—Ressayre hidden symmetry page 101

We have i € {1,2,...,n—1}; thus, holds (by our assumption). In other

words,
(u-+x')( ! + ! )—(u-+ )( ! + ! >
l l Uiy1  Xip1 s Uiyl Yiy1/)

On the other hand, Theorem (c) (applied to z instead of y) yields
1 1 1 1
o) e (1)

Uit  Xit1 Uit1  Zit1

(since z = £, (x)). Comparing these two equalities, we obtain

(u; + )( ! + ! )—(u-%—z')( ! + ! )
Py Uis1  Yip1 Y\ oz )

Hence,

(u~+z-)(1+1>— Ui+ i (1+1)>(u'+z~)<1+1)
' Y\ zin l \yi/ Uiy1  Yir1) l Y\ i Vit1)

>7z;

We can cancel u; + z; from this inequality (since u; + z; is a positive rational num-

1 1 1 1
ber), and obtain + > + . In other words, > . Thus,
Uit1  Zipl Uir1  VYi+1 Zi+1 Yi+1
Yit1 > Zi+1. In other words, Claim 1 holds for k = i+ 1. This completes the
induction step. Thus, Claim 1 is proven by induction.]

On the other hand, Theorem (b) (applied to z instead of y) yields

212y Zn XX X = (Ugllp Uy (since z = £, (x))
:ylyznn.yn.xlxz...xn

(by (95)). We can cancel x;x; - - - x,, from this equality (since x1x; - - - x;, is a positive
rational number), and obtain z1z2 - - -z, = y1y2 - - - Yn-
Claim 1 shows that 1 > z; and y, > zp and ... and y,, > z,. Multiplying these
n inequalities yields
Viy2 - Yn = 2122 - Zn.
But this inequality must be an equality (since z1z5 - - -z, = y1y2 - - - yn). Hence, all
the n inequalities y; > z; and y» > zp and ... and y, > z, (Which we multiplied to
obtain it) must be equalities (indeed, since we are working with positive rational
numbers, we will always obtain a strict inequality if we multiply a strict inequality
with a weak inequality). In other words, we have y; = z; and y = zp and ... and
Yn = zy. In other words, y = z. In other words, y = £, (x) (since z = £, (x)). This
proves Proposition O

5.2.4. Understanding Lemma (3.12

Another question concerns Lemma [3.12}
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Question 5.10. What is the “real meaning” of some of the more complicated
parts of Lemma In particular, Lemma (g) reminds of the Pliicker
relation for minors of a 2 X m-matrix; can it be viewed that way? (Such a proof
would not be superior to the one given above, as it wouldn’t be subtraction-free
and thus wouldn’t work natively over arbitrary semifields. But it would shine
more light on the lemma.)

5.3. On the genesis of ¢ (and f,)

As we mentioned in the introduction to this paper, Pelletier and Ressayre did not
conjecture Theorem [2.3|in this exact form; instead, they conjectured the existence of
a mysterious bijection ¢ that satisfies Theorem 2.3| (b). Our definition of ¢ appears
ex caelis oblatus; while we have seen that our ¢ duly plays its part, it is far from clear
how we have found it in the first place. The following few paragraphs are meant
to demystify this process.

We were looking for a bijection ¢ : Z" — Z" satistying Theorem 2.3 (b). In other
words, we were looking for a way to match@ the nonzero coefficients in the product
Sa (X1,X2,...,Xn) -5y (x1,X2,...,Xx,) (When expanded in the basis (s, (x1,x, ..., xn))Aepar[n]
of the k-module of symmetric polynomials in x1, x3, . . ., x;) with the nonzero coeffi-
cients in the product sg (x1,%2,...,%n) - Sy (x1,X%2,..., %) in such a way that match-
ing coefficients are equal.

The first step towards this goal was the discovery of the formula s, (x1,x2,...,x,) =

xf - (hu_ hy — h;_lh;_1>: our Corollary 4.30, We originally proved this formula

combinatorially, by analyzing the structure of semistandard tableaux of shape a.
@ The proof of Corollary given above (using the Pieri rule) was an afterthought.

Corollary was a visible step in the right direction, as it moved the prob-
lem from the world of Littlewood-Richardson coefficients into the simpler world
of Pieri rules. Indeed, instead of expanding s, (x1,X2,...,Xu) Sy (X1, X2,...,Xn), We
now only had to expand x{; - <ha_h;r — h;_lh;l) -8y (x1,%2,...,%u), which looked
like an expansion that the Pieri rule could help with (to be fully honest, we only
knew the Pieri rule for multiplying by h'; but we soon would find one for mul-
tiplying by h,’). The xf; factor was clearly a mere distraction, but in order to get
rid of it, we had to extend our polynomial ring to the ring £ of Laurent polynomi-
als (since <ha_h;r — h;—lh;l) “ Sy (x1,%2,...,%pn) is, in general, not a polynomial).
This extension had already been done by Stembridge in [Stembr87], and all we

had to do was rename “staircases” as “snakes”, define Schur Laurent polynomials
(by generalizing the alternant formula for Schur polynomials in the most obvious

25“Matching” means “perfect matching” here — i.e., every coefficient on either side should get a
unique partner.

26Each of the first @ columns of such a tableau would have the form (1,2,...,i—1,i+1,...,n) for
some i € {1,2,...,n}, and these numbers i would weakly increase as one moves right.
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way), extend some basic properties of Schur polynomials to Schur Laurent poly-
nomials, and find the “upside-down” Pieri rule (Proposition 4.25). None of this
was difficult; in particular, the “upside-down” Pieri rule followed easily from the
usual Pieri rule using Lemma (which is our main device for turning things
“upside down”). The Schur polynomial s, (x1,x2,...,x,) was generalized to the
Schur Laurent polynomial s,.

Thus our problem was reduced to matching the nonzero coefficients in the prod-
uct (ha_ h — ha__lhb*_1> -5, with the nonzero coefficients in the product (hb_ hf — hb_—lh;—1> :
5y. The products could both be expressed using the Pieri rules, but the differ-
ences were still a distraction. At this point, we made a fortunate guess: We
hoped it would suffice to match the nonzero coefficients in the product h; I -5,
with the nonzero coefficients in the product i, I -5,. More precisely, we hoped
to find such a matching that would not depend on a and b; then it would also
provide a matching between the nonzero coefficients in the product i, ,h; , -5,
and the nonzero coefficients in the product i, k' | -5, and therefore by tak-
ing differences we would obtain a matching between the nonzero coefficients in

the product (ha_ h — ha__lhb*_1> -8, and the nonzero coefficients in the product

(e = Iy bt ) 5

Thus we needed to expand &, I -5,. Using the Pieri rules, this was straight-
forward - the answer is in Lemma Our problem was to connect this result
with what we would similarly obtain from expanding h, 1, -5,. In other words,
we wanted to construct a bijection £, : Z" — Z" that would satisfy

]Ry,bﬂ (f, (’y))| = |RW,;J (’y)| forany a,b € Z and v € Z".

Fixing v € Z", we thus were looking for an n-tuple # (our f, (y)-to-be) that would
satisfy |Rypq (17)] = |Ryap (7)]-

In the case when b = 0 (in which case this equality would be equivalent to saying
“n — pif and only if p — 7”), we found such an # directly, by setting

i = Wi+ Miv1 — Vi1 foreachi € {1,2,...,n},

where indices are cyclic modulo n (so that yy = p, and vy = v;). This formula
surprised us with its cyclic symmetry (which was not expected from the original
problem, and which foreshadowed the usefulness of Convention although we
thought nothing of it at that point). Nevertheless, the formula failed in various
examples for b > 0, and we could not easily fix it.

We tried to be more systematic. It was easy to rewrite the definition of R, ;4 ()
as

Ry,u,h (’)/)
={veZ" | (min{y; v} >v;i>max{pj1,viy1} foreachie {1,2,...,n—1})
and [ — |v] = aand || — |v] = b}

Thus, the size of this set would depend only
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e on the differences min {y;, v;} — max{pjr1,vis1} for i € {1,2,...,n—1}
(each of which differences would determine the “breathing space” for the
corresponding v;),

e on the difference |p| — |y| (Which would have to equal a — b in order for the
two conditions |u| — |v| = a and || — |v| = b to be satisfiable simultaneously),

* as well as on something else we could not quite pinpoint (in order for |u| —
lv| = a and |y| — |v| = b to actually hold, as opposed to merely |u| — |y| =
a—Db).

Analogous observations held for R, ;, (7). With Occam’s razor in hand, we sus-
pected that |R, 4, (7)| = |R;ap (7)| could best be achieved by requiring these
differences to be the same for (y,a,b,7y) as for (y,b,a,1). Thus, in particular, we
hoped to have

min {p;, v} — max {pip1, Yig1} = min {p;, 7;} — max {pipq, i1}
foreachi € {1,2,...,n—1}

and

=yl = [l = [pl.
(Due to the “mystery ingredient”, this would likely neither be necessary nor suffi-
cient for |Ru,b,a ()] = |RW,;J (7)|, but it looked like the right tree to bark up.) This
is a system of equations that whose solution is neither unique nor straightforward.
However, the system was a beacon rather than a destination to us, so we merely
needed something like a good solution.

Systems of equations involving sums, differences, minima and maxima belong to
tropical geometry — a discipline we were not expert in and could not hope to master
quickly. However, we were aware of a surprisingly successful strategy for taming
such systems: detropicalization. The mainstay of this strategy is the observation
(made above in Example that the binary operations min, max, + and — are
the addition, the “harmonic addition’@ the multiplication and the division of a
certain semifield (the min tropical semifield of (Z,+,0), or of whatever totally
ordered abelian group our numbers belong to). Thus, even if we could not solve
our system, we could generalize it to arbitrary semifields by replacing min, max, +
and — by addition, “harmonic addition”, multiplication and division, respectively.
Thus our system would become

1 1
(Vi‘i"Yi)/ﬁ:(Vi‘i‘ﬂi) /ﬁ

Hi+l  Yit1 Hiv1 i1
foreachi € {1,2,...,n—1}

¥ Harmonic addition is a binary operation defined on any semifield. It sends any pair (a,b) of

elements of the semifield to L = ﬂ.
1 1 a+b

a b
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and
]/l1]/l2...yn:171;72...17n

Y1Y2 Ve MiM2 M

Renaming p, v and 7 as u, x and y, and simplifying the fractions somewhat, we
rewrote this as

(ui + x;) (

1 +1>_(u.+')(1 +1)
Uit Xit1 Y Uir1  Yinl
foreachi € {1,2,...,n—1}

and
2
ylyz...yn.xlxz...xn P (uluZ...un) .

This new system was a system of polynomial equations (at least after clearing
denominators), so we did the obvious thing: We left it to the computer for small
values of n (specifically, n = 2, n = 3 and n = 4) and looked at the results.
For n = 3, the computer (SageMath’s solve function, to be precise) laid out the
following two solutions:

e Solution 1:

Uy (u1u2u3 + XqUpU3 + X1XoU3 + X1XQX3)

Y1 = ’
U XoU3 — X1X2X3

—UqUU3
2=
4 X1X3

Usus (x1x3 - M1M3)

UU U3 + X1UU3 + X XUz + X1X2X3

Ys =

o Solution 2:

uiuz (uqup + xqup + x1x2)
X (uquz + ugx3 + x1x3)

Uuilo (M2M3 + XoU3 + XZX3)
X3 (u1u2 + xqup + x1X2) !

upuz (Uqusz + u1x3 + x1x3)
xq (upuz + xouz + x2x3)

Y2 =

Y3 =

The computer did not know that we were trying to work over a semifield (which
had no subtraction), but we did, so we immediately discarded Solution 1 as useless
due to the minus signs. The question was whether Solution 2 would be of any
use. The omens were favorable: There were no minus signs; the (unexpected,
but not unwelcome) cyclic symmetry reared its head again; finally, the nontrivial
factors (such as ujuy + x1u2 + x1x2) had a structure that appeared in the definition
of the geometric crystal R-matrix (see, e.g., [Etingo03, (5)] or [NouYam02, (4.19)]) -
a known successful case of detropicalization.
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Solution 2 turned out to be generalizable indeed. Proving that the general for-
mula indeed produced a solution to our system (parts (b) and (c) of Theorem
was not completely trivial, but not hard either. (The first few parts of Lemma
were discovered along the way.) Thus we had a candidate for the map f,, (and thus
for the map ¢, which was obtained from f, by shifting by a and b, corresponding
to the x{; factor that we had dropped).

Why was this map £, a bijection? Again, we believed that the easiest way lay
through the birational realm (i.e., we had to detropicalize). Computer experiments
suggested that f, was not only a bijection but actually an involution (part (a) of
Theorem [B.11). The first proof of this we found was the one sketched in Remark
the alternative, computational proof that we gave first was found afterwards.

Having found our bijection f,, we had to retrace our steps. Most of this was
straightforward. The equality |Ry, 4 (£ (7))]| = |Ryap (7)] still had to be proved,
but this turned out to be rather easy (part (d) of Theorem was discovered
along the way, as the missing ingredient from our previous analysis of the size of
Ry ap (7). The way the proof was written up in the end was mostly decided by
concerns of readability rather than authenticity; we believe that, had we followed
the logic of its discovery in our writeup, we would have lost more in clarity than
would be gained in motivation. We placed the study of the birational map f;, (Sec-
tion [3) in front due to its self-contained nature and possible applicability to differ-
ent problems; likewise, Section {4 begins with general properties of Schur Laurent
polynomials and slowly progresses towards more technical lemmas tailored for the
proof of Theorem We would not be too surprised if some unnecessary de-
tours were made along our way (Lemma appears a particularly likely place
for such), for which we apologize in advance (any simplifications are appreciated).

5.4. The birational R-matrix connection

In this section, we shall connect the map f;, from our Definition with the bira-
tional R-matrix nj defined in [LamPyl12, §6] and studied further (e.g.) in [CheLin20].

We fix a positive integer n and a semifield K. We shall use Convention (3.4 and
Convention Let us recall the definition of the birational R-matrix 7 (no relation
to the # in Theorem [2.3):

Definition 5.11. We define a map 7 : K" x K" — K" x K" as follows:
Let 2 € K" and b € K" be two n-tuples. For any i € Z, define an element
ki (a,b) € K by

i+n—1
Ki(a,b) = Y, bijibip---bj-aj 187081

]:1 ~ ~~
j i+n-1
=1II by = II ay

p=i+1 p=j+1
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Define a’ € K" and V' € K" by setting

/ aj—1Ki—1 (a/ b) .
A N f h 1,2,...
a; 5 (@,0) oreachie€ {1,2,...,n}

and
p = Dixikiva (a,b)
! ki (a,b)

Set 17 (a,b) = (a', V).

foreachi € {1,2,...,n}.

The map 1 we just defined is known as a birational R-matrix; related maps have
previously appeared in the literature ([BraKaz00, Lemma 8.6], [YamadaOl, Defi-
nition 2.1], [Etingo03, Proposition 3.1]). In particular, the map R from [Etingo03,
Proposition 3.1] is equivalent to # (at least up to technical issues of where it is de-
fine. Indeed, it is not hard to see that the map # from Definition becomes
the map R from [Etingo03| Proposition 3.1] if we set x; = b;;1 and y; = a; and
x; = b} and y; = a; 1 (that is, if we define x;,y;, x},y. this way, then the equalities
[Etingo03) (8), (9) and (10)] are satisfied, so that we have R (x,y) = («/,y') where
R is as defined in [Etingo03, Proposition 3.1]). This birational R-matrix R has its
origins in the theory of geometric crystals and total positivity. A related map is the
transformation (x,a) — (y,b) in [NouYam02, §2.2] (see also [Zygour18]).

Now, we shall see that the map # is intimately related to our map f, (even though
f, transforms a single n-tuple x into a single n-tuple y using the fixed n-tuple u,
while 7 takes a pair of two n-tuples to another such pair). In order to state this
relation, we define some more notation:

Definition 5.12. If a € K" and b € K" are two n-tuples, then we define two new

n-tuples ab € K" and % € K" by setting
— a.b; A I} ;
(ab); = a;b and (b)i b, foreachi € {1,2,...,n}.

We can now express the map f,, from Definition through the map # from
Definition as follows:

Theorem 5.13. Let u € K" and x € K" be two n-tuples. Let (a’,V') = 7 (u, x).
Then,

28Namely: We have defined our map 7 as a literal map K" x K" — K" x K" for any semifield K,
whereas [Etingo03] Proposition 3.1] defines R as a birational map (C*)" x (C*)" --» (C*)" x
(C*)". Neither of these two settings generalizes the other, but it is not hard to transfer identities

from one to the other (as long as they are subtraction-free, i.e., no minus signs appear in them).
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Proof of Theorem Set a = u and b = x. We shall use the notations «; (a,b) from
Definition i}‘ and the notations ¢, ; and y from Definition[8.8| Then, f, (x) = y (by
Definition [3.8)

For each i € Z, we have

i+n—1

K; (Ll, b) = Z bi1biyp - - b] "Aj41aj42 0 Aign—1 (by the definition of «; (ﬂ, b))
j=i
i+n—1
= Y XipaXigo oo X Uil Uippo (since a = u and b = x)
j=i
n—1
= Z Xip1Xi42 - Xipk - Wipk+1Uivk+2 ° " Uitn—1
k=0
(here, we have substituted i + k for j in the sum)
- tn—l,i (96)

n—1
(since the definition of t,,_q ; yieldst,_1; = Y Xjy1Xi40 - Xjgg Uithr1Uithkt2 - Uitn—1)-
k=0

However, (a/,b") = 1 (u,x) = 1 (a,b) (since u = a and x = b). Hence, Definition

yields that

, ai1xi—1 (a,b) :
a; = —Kz' @,b) foreachi € {1,2,...,n}
and ; (a,b)
¢ Ui (4, .
b; = —Ki (0,D) foreachi € {1,2,...,n}.

Hence, for each i € {1,2,...,n}, we have

al /b, — G2 (a,b) /bi+1Ki+1 (a,b) _ ajiaxiq(a,b)  ai1tn_1,i1
K; (ﬂ, b) K; (ﬂ, b) bi+1Ki+1 (a, b) bi+1tn71,i+1
( since x;_1 (a,b) = t,_1,—1 (by (96), applied to i — 1 instead of i) )
and «;q (a,b) = t,_1,41 (by (96), applied to i + 1 instead of i)

uj_1t,_1i—
= —otnlitl (since a = u and b = x)
Xit1tn—1,i+1
=Yi/u; (97)
Uj_1t,_1i—
(since the definition of y yields y; = u; - ~izPn=Limly "Now, for eachi € {1,2,...,n},
Xit1tn—1,i+1
we have
a’ a
(uy) = uiﬁ (by Definition [5.12))
1 1
=u;- a; /b =u;-yi/ui = y;
\\’J
=Y/ u;

(by @7)




Pelletier—Ressayre hidden symmetry page 109

/ /
In other words, u% = y. Comparing this with f, (x) = y, we obtain f, (x) = u—.

This proves Theorem O

We finish by stating some “gauge-invariance” properties for f, and #:

Proposition 5.14. Let ¢, u, x € K". Then, f,, (¢x) = ¢of, (x).
p 8 gu & 8

Proposition 5.15. Let g,a,b € K". Let (a’,b') = 5 (a,b). Then, (ga’,gb’") =
17 (8a,8b)-

Proof of Proposition Clearly, we have
(llb)i = aibi (98)

for any 4,b € K" and any i € Z. (Indeed, because of Convention it suffices
to prove this in the case when i € {1,2,...,n}. However, in this case, this follows
from Definition [5.12])

We shall use the notations t,; and y from Definition Then, f, (x) = y (by
Definition [3.8).

For each j € Z, define an element q; € K by

n—1
4i = 2 (gx)]-H (gx)j+2 T (gx)]'+k : (g“)j+k+1 (g“)j+k+2 T (g”)]'+n—1 .
k=0 -~ Z

-~ ~"

n—1

k
:il;ll(gX)Hi :i=ll:£-1(gu)j+i
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Thus, for each j € Z, we have

[ay

n—

qj = )3 (gx)j+1 (gx)j+2 e (gx)j+lﬁ' (g”)j+k+1 (8“)j+k+2 T (8”)]4;1—11

:0 ~\~ ~\~

k n—1
*il;ll(gx)jﬂ' *izlgrl(gu)ﬁi

n—1 k n—1
- Z H ]—i—z ' H (gu)]—i—z
k=0 | i=1 N—~— i=k+1 N=—=—~——
=8j+iXj+i =8j+ilj+i
(by ©8)) (by 08))
n—1 k n—1
= H g]+1x]+z : H (gj+i”j+i)
k:0 i=1 N i=k+1 P

N agh
PR
I z\

>

Jr

t
I~
it

R

T
~_—
—
oy
AR

=

s
~_—
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n—1 n—1 k n—1
=\ I1g+] L Xjti | - [T i
i=1 k=0 \ i=1 y i=k+1 |
:xj+1x;:2"'xj+k :”j+k+1uj:rk+2"'”j+n—l
n—1 n—1
= H 8j+i | Z Xj1Xj42 o Xjpk - UjphpaUjpe42 0 Ujpn—1
i=1 k=0
:tnfl,j
(by the definition of ¢, 1 ;)
n—1
= gj+i . tn—l,j' (99)
i=1
However, for each j € Z, we have
n—1 n
[18j+i | - 8jen =18+ = 841842 &j4n = 81827 - g
i=1 i=1
(by Lemma [3.7] applied to a = ¢ and k = j) and therefore
nil .« . o« ..
ng+i _ glgz' &n _ 8182 . 8n (100)
i=1 g]-i—n g]
(since Convention 3.6 yields gj, = ;).
Thus, for each j € Z, we have
n—1
qj = ng+i tho1,j (by ©9)
i=1 ,
:glgz e gn
8j
(by (T00D)
_ 8182 &n tao1. (101)
8j
Now, leti € {1,2,...,n}. Applying (101) to j = i — 1, we obtain
gi1= 8182 &n by 1i 1. (102)
8i—1
Applying (101) to j =i + 1, we obtain
g = S8 (103)
8i+1
Dividing the equality (102) by the equality (103), we obtain
B182° 8y i
qi-1 _ _ 8i-1 R e ¥ R 28| (104)
i1 81827 7°8nm . betipn &1

Si+1
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However, the definition of y yields

Uj_1t,_1i_
Yi = 1; - i—1tn—1,i 1. (105)
Xit1tn—1,i+1

On the other hand, from (98), we obtain the equalities (gu); = g;u; and (gu); ; =
gi—1ti—1 and (gx); ;1 = gi1Xi41. Thus,

(8u);_19i—1 Qi—1Ui—19i-1 Si—1Ui—1 qi-1
u,.—: ‘u-.—: u .
(1), (8x)z'+1 Ji+1 Sith Si+1Xi+14qi+1 81t Si+1Xi+1  qit+1
QiUi—1 ty—1,i-1 i+l
= QilU; - . . by (104)
sit Sir1Xit1 1,11 Si—1 (by (109))
B Ui 1tp-1i-1 _
=&l = 8QiYi = (81/)1'

xi+1tnfl,i+1j

(by:)
(since the definition of gy yields (gy); = giyi). Therefore,

(81);_19i-1

(8y); = (gu); - (8%)i1 qi+1

Now, forget that we fixed i. We thus have proved that

(84); 1 9i-1 ,
= (qu), =—t—— — foreachi e {1,2,...,n}.
89)i = 8% (o). Lo { }
Hence, Lemma (applied to gu, gx and gy instead of u, x and z) yields that
fou(gx) =¢ vy = gfu (x). Proposition |5.14{is thus proved. O
=f,(x)

Proof of Proposition For any i € Z, we consider the element «; (a,b) defined in
Definition and we also consider the element «; (g4, gb) defined in the same
way as «; (a,b) (but using ga and gb instead of a and b).

Define two n-tuples a’ € K" and b’ € K" as in Definition Furthermore, let
(ga)’ € K" and (gb)’ € K" be the two n-tuples defined in the same way (but using
ga and gb instead of a and b). Definition yields that # (a,b) = (a’,V"). The
same argument (applied to ga and gb instead of a and b) yields

1 (ga,8b) = ((ga)’, (gb)") . (106)

We shall now show that (ga)’ = ga’ and (gb)" = gb'.
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Indeed, let i € Z be arbitrary. Then, the definition of «; (ga, gb) yields

i+n—1
xi (ga,8b) = Z (8b)i11(8D)isn -+ (gb)]- ' (8a)j+1 (8a)j+z - (88)i 1
= j z+n\;
= II (gb), = II (ga),
p=i+1 p=j+1
i+n—1 i+n—1
= ) H | I (9,
j=i p=i+1 \/-/ p=j+1 >~~~
=8pYp —Spip
(by (98)) (by ©8))
i+n—1 j i+n—1
= (H (ngP)> : ( H (gp”p))
j=t p=itl p=j+1

j N j i+n—1 N i+n—1
_< I 8?)'( I1 bP) _< I1 gp)'( I1 ap)
p=i+1 p=i+1 p=j+1 p=j+1
i+n—1 j j i+n—1 i+n—1
= [T ) { I10) | IT s ) | IT o
j=i p=i+1 p=i+1 p=j+1 p=j+1

-~

i+n—1 J i+n—1 J i+n—1
() (i) (1) (i)
j=i R p=i+1 p=j+1 g p=i+1 p=j+1

itn1
=11 g
p=i+1
i+n—1 [i+n—1 j i+n—1
= Z H 8p |- 1—[ by | - H ap
j=i p=i+1 p—i+1 p=j+1

i+n—1 i+n—1 i+n—1
= I1I s 1—[ by IT
p=i+1 j=i p=i+1 p=j+1

-~

~
:bi+1bi+2"'bj =Aj114j42 " 4itn-1

i+n—1 i+n—1
=\ I & |- X bis1biya---bj-aj182- - aipn1

j=i

J/

=xi(a,b)
(by the definition of «;(a,b))

i+n—1
_ < 11 gp> i (a,b). (107)
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However, for each i € Z, we have
i+n—1 i+n
[T 80 ) 8in= T1 8 =8ir18is2 - 8ivn = 1827 g
p=i+1 p=i+1
(by Lemma applied to g and i instead of a and k) and therefore
i+n—1

8182 8n 8182 &n
= = (108)
p1—1£1 8 = 8i+n 8i

(since Convention [3.6] yields g1, = gi).
Thus, for each i € Z, we have

i+n—1
i (ga,8b) = ( [T gp) -Ki (a,b) (by (107))
i+1
R

:gng' . gn

g.
(by )

_ 81g2é" &n Ki (a,b). (109)
1

Now, leti € {1,2,...,n}. Then, the definition of a/ yields

i K; (ll, b) (110)
Likewise, the definition of ( ga)g yields
, (8a)i_1xi—1(ga, gb)
a = a). . K a, b K a, b
S = gy~ 8 malesh) /o mlsest)
_(kg)}l;l glgz—g ;1 (a,b) —glgzg—'gn-xi(a,b)
by 9, (by (@09

applied to i—1
instead of i)

= g S8 (ab) (m_g i (a, b)>
gl—l gz

a;_1xi—1 (a,b)
=& W = gia; = (8‘1/)1'

=a;
(by (CI0D)
(since the definition of ga’ yields (ga’); = gial).
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/
i

Forget that we fixed i. We thus have shown that (ga); = (ga’); for each i €
{1,2,...,n}. In other words, (ga)’ = ga’. A similar argument shows that (gb)" =

gb'. Thus, (106) becomes

This proves Proposition m O
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