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Remark (2017):

This note has been mostly written in 2012, when I was learning combi-
natorial optimization from Schrijver’s online notes [Schrij17] and felt
a need for elementary and constructive proofs of the main theorems
of linear optimization (as opposed to the standard short proofs us-
ing compactness and the Hahn-Banach theorem). This note provides
such proofs, although I cannot vouch for their readability1.

Needless to say, this note breaks no new ground, and probably these
proofs (or easier ones) appear often enough in the literature (in fact, I
suspect that almost all of the material of this note is covered by each
of the two textbooks [Laurit13] and [Schrij98]). Writing them up was
a learning experience which, I fear, reading them will not be.

While this note often refers to [Schrij17], it is actually self-contained
and can be read separately (except for the few places where it modifies
arguments from [Schrij17] to make them constructive; but these are
tangential to the note).

The purpose of this note is to give elementary proofs for various results in linear
optimization theory. Here, “elementary” means that no analysis is being used,
and that the proofs are “morally” constructive.

Let me explain what “morally constructive” means: The results and proofs
given below are not valid in constructive logic, but this is solely for the reason
that R is not a discrete field in constructive logic. If we would formulate the
results and proofs below for Q instead of R, then they would become valid in
constructive logic. Thus, when I make any claim in constructive logic below,
I tacitly want it to be understood with all R’s replaced by Q’s (and all “real
numbers” replaced by “rational numbers”, and so on).

Note that the following proofs, being free of analysis, generalize to any ordered
field instead of R (for example, to Q or to Q

(√
2
)
). However, we are going to

formulate them for the field R only (trusting that the reader, if necessary, can
generalize them on his own). In particular, whenever we speak of “vector spaces”,
“vectors” and “matrices” below, we mean vector spaces, vectors and matrices over
R.

This note was originally intended as a supplement to Chapter 2 of Schrijver’s
notes [Schrij17]2; but it is fully self-contained. It proves separation theorems for
convex hulls and cones (of finite sets), the Farkas, Gordan, Stiemke and Motzkin
theorems, and two versions of the linear programming duality theorem. Also, it
“patches” the proof of Theorem 2.3 in [Schrij17] (the theorem saying that any
bounded polyhedron is the convex hull of its vertices) to make it constructive.

1They are overdetailed in many places, the result of my attempts to ensure their correctness;
unfortunately the trees often obscure the forest.

2In particular, this explains the strange numbering of results in this note: The numbers have
been chosen so as not to conflict with the labeling of [Schrij17].
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1. Notations and basics 1: Convex sets

Before we start formulating and proving substantial theorems, let us introduce
some notations. The notations that we introduce will usually be identical to the
ones introduced in [Schrij17], save for a few exceptions.

In the following, N will always denote the set {0, 1, 2, . . .}; thus, we regard 0 as
an element of N (unlike some other authors).

We will use the words “vector” and “point” as synonyms; both of them will
denote elements of a vector space.

Definition. Let E be an R-vector space. Let C be a subset of E.
We say that C is convex if every two elements x ∈ C and y ∈ C and
every real number λ ∈ [0, 1] satisfy λx+ (1− λ) y ∈ C.

Geometrically, this definition is often put into words as follows: Let E be an
R-vector space. Let C be a subset of E. We say that C is convex if every point
on a segment containing two points of C must also lie in C.

The following property of convex sets is easy to see:

Proposition 2.0a. Let E be an R-vector space. Let C be a convex
subset of E. Let I be any set, and let (xi)i∈I be a family of elements
of C indexed by elements of I. Let (λi)i∈I be a family of nonnegative
reals indexed by elements of I such that all but finitely many i ∈ I
satisfy λi = 0. Assume also that

∑
i∈I
λi = 1. Then,

∑
i∈I
λixi ∈ C.

For the sake of completeness, we shall give a proof of Proposition 2.0a in Section
16.

Definition. Let E be an R-vector space. Let I be any set, and let
(xi)i∈I be a family of elements of E indexed by elements of I. If (λi)i∈I
is a family of nonnegative reals indexed by elements of I such that all
but finitely many i ∈ I satisfy λi = 0, and such that

∑
i∈I
λi = 1, then

the vector
∑
i∈I
λixi is said to be a convex combination of the vectors xi

for i ∈ I.

Using this definition, Proposition 2.0a rewrites as follows:

Proposition 2.0b. Let E be an R-vector space. Let C be a convex
subset of E. Let I be any set, and let (xi)i∈I be a family of elements
of C indexed by elements of I. Then, any convex combination of the
vectors xi for i ∈ I lies in C.
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This result is often stated in words as follows: A convex set is closed under
convex combinations.

The notion of convex sets gives rise to another notion: that of a convex hull.
The notion of a convex hull can be defined in several ways; here are three:

Definition 2.0c. Let E be an R-vector space. Let S be a subset of E.
Then, the convex hull of S will denote the intersection of all convex
subsets of E which contain S as a subset. We denote the convex hull
of S by conv . hullS.

Definition 2.0d. Let E be an R-vector space. Let S be a subset of
E. Then, the convex hull of S will denote the set of all convex com-
binations of the vectors s for s ∈ S. (This will often be abbreviated
as follows: “The convex hull of S will denote the set of all convex
combinations of the elements of S.”) We denote the convex hull of S
by conv . hullS.

Definition 2.0e. Let E be an R-vector space. Let S be a subset of
E. Then, the convex hull of S will denote the setx ∈ E |


there exist some t ∈ N,

a t-tuple (x1, x2, . . . , xt) of elements of S
and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 .

We denote the convex hull of S by conv . hullS.

Definitions 2.0c, 2.0d and 2.0e are equivalent (according to Proposition 2.0f
(a) below).

The following result gathers some fundamental properties of convex hulls, most
of which are standardly used without explicitly calling them out:

Proposition 2.0f. (a) Definitions 2.0c, 2.0d and 2.0e are equivalent.

Let E be an R-vector space.

(b) We have conv . hull∅ = ∅.

Let now S be a subset of E.

(c) We have S ⊆ conv . hullS.

(d) The convex hull conv . hullS is a convex set.

(e) If T is a subset of S, then conv . hullT ⊆ conv . hullS.

(f) Every convex subset of E which contains S as a subset also con-
tains conv . hullS as a subset.

(g) If T is a subset of conv . hullS, then conv . hullT ⊆ conv . hullS.
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Again, we refer to Section 16 for a proof of Proposition 2.0f.

Remark. Let E be an R-vector space. Let S be a subset of E.
Then, the convex hull conv . hullS is a convex set (by Proposition 2.0f
(d)) and contains S as a subset (by Proposition 2.0f (c)). Moreover,
every convex subset of E which contains S as a subset also contains
conv . hullS as a subset (by Proposition 2.0f (f)). This result is often
put into words as follows: “The convex hull conv . hullS is the smallest
convex set containing S as a subset.”

The following proposition (which is, again, fundamental and will be used with-
out explicit mention) is a simple consequence of Definition 2.0e:

Proposition 2.0g. Let E be an R-vector space.

(a) If S is any subset of E, then

conv . hullS

=


t∑
i=1

λixi |


t is an element of N,

and (x1, x2, . . . , xt) is a t-tuple of elements of S,
and (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals

such that
t∑
i=1

λi = 1


 .

(b) Let F be a vector subspace of E. Let S be a subset of F . Then,
the convex hull conv . hullS does not depend on whether we consider
S as a subset of F or as a subset of E.

Again, we refer to Section 16 for a proof of Proposition 2.0g.
Here is yet another proposition that will be used tacitly:

Proposition 2.0h. Let E be an R-vector space. Let x1, x2, . . ., xn
be finitely many vectors in E.

(a) Then,

conv . hull {x1, x2, . . . , xn}
= (the set of all convex combinations of the vectors x1, x2, . . . , xn) .

(b) Let x ∈ E. Then, we have x ∈ conv . hull {x1, x2, . . . , xn} if and
only if x is a convex combination of the vectors x1, x2, . . ., xn.

Again, we refer to Section 16 for a proof of Proposition 2.0h.
Now, we can easily define polytopes:
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Definition. Let E be an R-vector space. Let P be a subset of
E. Then, P is said to be a polytope if P is the convex hull of
a finite subset of E. In other words, P is said to be a polytope
if there are finitely many vectors x1, x2, . . ., xn in E such that
P = conv . hull {x1, x2, . . . , xn}.

We are not going to define the notion of a polyhedron (nor will we use this
notion); we refer to [Schrij17] for that.

2. Notations and basics 2: Cones

Convex cones are a notion similar to that of convex sets.

Definition. Let E be an R-vector space. Let C be a subset of E.
We say that C is a convex cone in E if it satisfies the following two
conditions:

• We have 0 ∈ C.

• Every two elements x ∈ C and y ∈ C and every nonnegative
reals λ and µ satisfy λx+ µy ∈ C.

We will abbreviate “convex cone in E” as “convex cone” when the
value of E is clear from the context.

Note that this definition is in slight conflict with the definition of a convex cone
in [Schrij17]. In fact, the definition of a convex cone in [Schrij17] does not contain
the condition that 0 ∈ C. This is irrelevant for nonempty subsets C of E, because
if a nonempty subset C of E is a convex cone in the sense of [Schrij17], then it
must automatically contain 0 and therefore is also a convex cone in the sense of
our definition. So the only difference between our definition of a convex cone and
the definition given in [Schrij17] is that the empty set ∅ is a convex cone in the
sense of [Schrij17], but not a convex cone in the sense of our definition. This is
not a particularly significant difference.3

The name “convex cone” is somewhat presumptuous: It seems to imply that
any convex cone is a convex set, although we have not proved this. Fortunately,
this is true: Any convex cone is indeed a convex set4.

3One advantage of our definition is that it satisfies the identity cone (A ∪B) = coneA+coneB
for any two subsets A and B of E (whereas with Schrijver’s definition, this holds only when
A and B are both nonempty or both empty). We will not use this identity, however.

4Proof. Let E be an R-vector space. Let C be a convex cone in E. We shall prove that C is
a convex set.

Recall that C is a convex cone. Hence, every two elements x ∈ C and y ∈ C and every

7
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Remark. Let E be an R-vector space. Let C be a convex cone in E.
It is easy to see that every x ∈ C and every nonnegative real λ satisfy
λx ∈ C. In words, this is often stated as follows: “Convex cones are
closed under multiplication by a nonnegative scalar”.

Similarly to Proposition 2.0a, we have:

Proposition 2.0i. Let E be an R-vector space. Let C be a convex
cone in E. Let I be any set, and let (xi)i∈I be a family of elements
of C indexed by elements of I. Let (λi)i∈I be a family of nonnegative
reals indexed by elements of I such that all but finitely many i ∈ I
satisfy λi = 0. Then,

∑
i∈I
λixi ∈ C.

In words, Proposition 2.0i is often stated as follows: “Any linear combination
of finitely many elements of a convex cone with nonnegative coefficients must lie
in this cone.”

The proof of Proposition 2.0i is similar to (and somewhat easier than) that of
Proposition 2.0a; for the sake of completeness, we shall give it in Section 16.

Just as the notion of convex sets gave rise to the notion of convex hulls, the
notion of convex cones will give rise to the notion of convex conic hulls. Here are
three definitions for this notion:

Definition 2.0j. Let E be an R-vector space. Let S be a subset of
E. Then, the convex conic hull of S will denote the intersection of all
convex cones in E which contain S as a subset. We denote the convex
conic hull of S by coneS.

Definition 2.0k. Let E be an R-vector space. Let S be a subset of
E. Then, the convex conic hull of S will denote the set of all linear
combinations of the vectors s for s ∈ S with nonnegative coefficients.
(This will often be abbreviated as follows: “The convex conic hull of
S will denote the set of all linear combinations of the elements of S
with nonnegative coefficients.”) We denote the convex conic hull of S
by coneS.

nonnegative reals λ and µ satisfy

λx+ µy ∈ C (1)

(by the definition of a convex cone).
Now, let x ∈ C, y ∈ C and λ ∈ [0, 1]. Then, both λ and 1−λ are nonnegative reals (since

λ ∈ [0, 1]). Hence, λx+ (1− λ) y ∈ C (by (1), applied to µ = 1− λ).
Let us now forget that we fixed x, y and λ. We thus have proven that every two elements

x ∈ C and y ∈ C and every real number λ ∈ [0, 1] satisfy λx + (1− λ) y ∈ C. In other
words, C is a convex set (by the definition of a “convex set”).

Now, let us forget that we fixed C. We thus have shown that if C is a convex cone in E,
then C is a convex set. In other words, any convex cone is a convex set. Qed.
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Definition 2.0l. Let E be an R-vector space. Let S be a subset of
E. Then, the convex conic hull of S will denote the setx ∈ E |


there exist some t ∈ N,

a t-tuple (x1, x2, . . . , xt) of elements of S
and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 .

We denote the convex conic hull of S by coneS.

Definitions 2.0j, 2.0k and 2.0l are equivalent (according to Proposition 2.0m
(a) below).

The following result is analogous to Proposition 2.0f (except for its part (h),
which is easy)5:

Proposition 2.0m. (a) Definitions 2.0j, 2.0k and 2.0l are equivalent.

Let E be an R-vector space.

(b) We have6 cone∅ = 0 (not ∅).

Let now S be a subset of E.

(c) We have S ⊆ coneS.

(d) The convex conic hull coneS is a convex cone.

(e) If T is a subset of S, then coneT ⊆ coneS.

(f) Every convex cone in E which contains S as a subset also contains
coneS as a subset.

(g) If T is a subset of coneS, then coneT ⊆ coneS.

(h) We have conv . hullS ⊆ coneS.

We refer (again) to Section 16 for a proof of Proposition 2.0m.

Remark. Let E be an R-vector space. Let S be a subset of E. Then,
the convex conic hull coneS is a convex cone (by Proposition 2.0m
(d)) and contains S as a subset (by Proposition 2.0m (c)). Moreover,
every convex cone in E which contains S as a subset also contains
coneS as a subset (by Proposition 2.0m (f)). This result is often put
into words as follows: “The convex conic hull coneS is the smallest
convex cone containing S as a subset.”

5And its proof (apart from part (h)) is analogous to the proof of Proposition 2.0f. For example,
Proposition 2.0m (f) follows from Definition 2.0k in the same way as Proposition 2.0f (f)
follows from Definition 2.0d.

6Here and in the following, we use the symbol “0” not just for the number zero and the zero
vector in a vector space, but also for the zero subspace of any vector subspace. In other
words, if E is any R-vector space, then the subspace {0} of E is also denoted by 0. Hopefully,
this abuse of notation will sow no confusion.
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The following proposition (which is, again, fundamental and will be used with-
out explicit mention) is a simple consequence of Definition 2.0l:

Proposition 2.0n. Let E be an R-vector space.

(a) If S is any subset of E, then

coneS

=


t∑
i=1

λixi |

 t is an element of N,
and (x1, x2, . . . , xt) is a t-tuple of elements of S,

and (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals

 .

(b) Let F be a vector subspace of E. Let S be a subset of F . Then,
the convex conic hull coneS does not depend on whether we consider
S as a subset of F or as a subset of E.

See Section 16 for a proof of Proposition 2.0n.
Here is yet another proposition (an analogue of Proposition 2.0h) that will be

used tacitly:

Proposition 2.0o. Let E be an R-vector space. Let x1, x2, . . ., xn
be finitely many vectors in E.

(a) Then,

cone {x1, x2, . . . , xn}
= (the set of all linear combinations of the

vectors x1, x2, . . . , xn with nonnegative coefficients) .

(b) Let x ∈ E. Then, we have x ∈ cone {x1, x2, . . . , xn} if and only if
x is a linear combination of the vectors x1, x2, . . ., xn with nonnegative
coefficients.

A proof of Proposition 2.0o can be found in Section 16.
The following proposition is nearly trivial; we state it merely for convenience:

Proposition 2.0p. Let E be an R-vector space. Let S be a finite
subset of E.

(a) Then,

coneS =

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
.

In particular:

10
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(b) If (νs)s∈S is a family of nonnegative reals indexed by elements of
S, then

∑
s∈S

νss ∈ coneS.

(c) Conversely, if p is an element of coneS, then there exists a family
(νs)s∈S of nonnegative reals indexed by elements of S such that p =∑
s∈S

νss.

For the sake of completeness, the proof of Proposition 2.0p will be given in
Section 16.

3. Notations and basics 3: On the dual space

Here are two further notations that we will be using:

• If E is any R-vector space, then E∗ will mean the R-vector space HomR (E,R)
of all R-linear maps from E to R. This E∗ is called the dual space of E.

• If ` ∈ N, then we regard the vectors in R` as column vectors of length
`, and we regard the vectors in

(
R`
)∗

as row vectors of length `. More
precisely, we identify every row vector (a1, a2, . . . , a`) ∈ R` with the R-
linear map f ∈

(
R`
)∗

= HomR
(
R`,R

)
which sends every column vector

b1

b2
...
b`

 ∈ R` to the scalar (a1, a2, . . . , a`)


b1

b2
...
b`

 =
∑̀
i=1

aibi ∈ R. Thus, for

every f ∈
(
R`
)∗

and b ∈ R`, we have f (b) = fb (where f is regarded as an

element of
(
R`
)∗

= HomR
(
R`,R

)
on the left hand side, and regarded as a

row vector on the right hand side).

Let us state a simple property of convex hulls that we will be using several
times:

Proposition 2.0r. Let E be an R-vector space. Let t ∈ N. Let x1,
x2, . . ., xt be t vectors in E. Let f ∈ E∗ and δ ∈ R. Assume that

every i ∈ {1, 2, . . . , t} satisfies f (xi) < δ. (2)

Let C = conv . hull {x1, x2, . . . , xt}. Then, every x ∈ C satisfies
f (x) < δ.

The (rather easy) proof of Proposition 2.0r can be found in Section 16 below.
Here is an analogous property of convex conic hulls:

11
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Proposition 2.0s. Let E be an R-vector space. Let S be a subset
of E. Let f ∈ E∗. Assume that

every s ∈ S satisfies f (s) ≤ 0. (3)

Then, every x ∈ coneS satisfies f (x) ≤ 0.

Again, we refer to Section 16 for a proof of Proposition 2.0s.
Next, let us define the notion of a hyperplane:

Definition. Let E be an R-vector space. If f is a nonzero element
of E∗, and δ is an element of R, then the subset f−1 (δ) of E will be
called a hyperplane in E.

Note that this definition of a hyperplane is equivalent to the one given in
[Schrij17] when E = Rn for some n ∈ N. In fact, when E = Rn, then any element
f ∈ E∗ has the form

E → R,
x 7→ cTx

for some c ∈ Rn, and this c is nonzero if and only if f is nonzero.

Definition. Let E be an R-vector space. Let H be a hyperplane in
E. Let z ∈ E and C ⊆ E. We say that the hyperplane H separates
z and C if there exist a nonzero f ∈ E∗ and a δ ∈ R such that
H = f−1 (δ), f (z) > δ and (every x ∈ C satisfies f (x) < δ).

Note that this definition of “separate” is equivalent to the one given by Schrijver
in [Schrij17] when E = Rn for some n ∈ N. Schrijver’s definition, however, has
the disadvantage of using a topological notion (that of a “component”), which
makes it difficult to generalize to other ordered fields instead of R. It should be
remarked that Schrijver never really uses his definition of “separate” in [Schrij17];
instead, he more or less uses my definition.

Furthermore, we introduce the relations ≥ and ≤ on vectors:

Definition. Let ` ∈ N. Let u and v be two column vectors in R`.
Then, we write u ≤ v if and only if every i ∈ {1, 2, . . . , `} satisfies

(the i-th coordinate of u) ≤ (the i-th coordinate of v) .

Also, we write u ≥ v if and only if every i ∈ {1, 2, . . . , `} satisfies

(the i-th coordinate of u) ≥ (the i-th coordinate of v) .

The same notations apply if u and v are row vectors in
(
R`
)∗

rather
than column vectors in R`.

12
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Of course, it is true that if u and v are two column vectors in R` (or two
row vectors in

(
R`
)∗

), then u ≥ v holds if and only if v ≤ u. The relation ≤
is the smaller-or-equal relation of a partial order on R` (namely, the so-called
componentwise partial order), and the relation ≥ is the greater-or-equal relation
of this order. However, this order is not a total order (unless ` ≤ 1): for example,

if u =

(
0
1

)
and v =

(
1
0

)
, then we have neither u ≥ v nor v ≥ u.

Clearly, the relation ≤ respects the addition of vectors: If u ∈ R`, v ∈ R` and
w ∈ R` are such that u ≤ v, then u + w ≤ v + w. Moreover, if u ∈ R`, v ∈ R`,
x ∈ R` and y ∈ R` are such that u ≤ v and x ≤ y, then u + x ≤ v + y. As a
consequence, two vectors u ∈ R` and v ∈ R` satisfy u ≤ v if and only if u−v ≤ 0.
Furthermore, if x ∈ R` and y ∈ R` are such that x ≤ y, and if λ is a nonnegative
real, then λx ≤ λy. Similar rules hold for the relation ≥.

Definition. Let ` ∈ N. A vector v lying either in R` or in
(
R`
)∗

is
said to be nonnegative if it satisfies v ≥ 0.

It is clear that a sum of nonnegative vectors in R` is again nonnegative. More
generally, any linear combination of nonnegative vectors in R` with nonnegative
coefficients is again nonnegative.

Let us state a trivial but important fact:

Lemma 2.0t. Let n ∈ N.

(a) If a column vector v ∈ Rn satisfies v ≥ 0, then all coordinates of
the column vector v are nonnegative.

(b) If a row vector v ∈ (Rn)∗ satisfies v ≥ 0, then all coordinates of
the row vector v are nonnegative.

A proof of Lemma 2.0t can be found in Section 16. Of course, the converse
of Lemma 2.0t also holds; we just won’t use it often enough to have a reason to
state it.

Here is a simple property of nonnegative vectors, which will not be directly
used in these notes but which provides some context for them:

Lemma 2.0u. Let n ∈ N. Let x ∈ Rn. Then, there exist two vectors
y and z in Rn such that y ≥ 0, z ≥ 0 and x = y − z.

A proof of Lemma 2.0u can be found in Section 16.
Let us record another simple fact, which we will use many times:

Lemma 2.0v. Let n ∈ N. Let x ∈ (Rn)∗ be a row vector such that
x ≥ 0. Let y ∈ Rn be a column vector such that y ≥ 0. Then, xy ≥ 0.

Again, we refer to Section 16 for the proof of this fact.

13
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4. Closed intervals and [Schrij17, Theorem 2.3]

In this brief section, we shall state three simple lemmas about closed intervals
and use them to “patch” the proof of [Schrij17, Theorem 2.3] to make this latter
proof constructive. This section can be freely skipped, since none of what is done
here will be used afterwards.

In the following, a closed interval will mean a set which has the form {x ∈ R | a ≤ x ≤ b}
for some elements a and b of R ∪ {−∞,∞} (where, of course, −∞ is sup-
posed to be smaller than each element of R ∪ {∞}, and ∞ is supposed to be
larger than each element of R ∪ {−∞}). In particular, ∅ is a closed inter-
val (since ∅ = {x ∈ R | 1 ≤ x ≤ 0}), and R is a closed interval (since R =
{x ∈ R | −∞ ≤ x ≤ ∞}).

We will now state three simple lemmas, the proofs of which can all be found
in Section 16.

Lemma 2.0x. The intersection of finitely many closed intervals al-
ways is a closed interval.

Lemma 2.0y. Let α and β be two reals. Then, the set {x ∈ R | αx ≤ β}
is a closed interval.

Lemma 2.0z. Let n ∈ N and m ∈ N. Let b ∈ Rm. Let A ∈ Rm×n be
an m× n-matrix. Let P = {x ∈ Rn | Ax ≤ b}.
Let z ∈ Rn and c ∈ Rn. Then, the set {µ ∈ R | z + µc ∈ P} is a
closed interval.

With the help of Lemma 2.0z, we can modify the proof of Theorem 2.3 in
[Schrij17] in such a way that it no longer uses analysis:

Modifications to the proof of Theorem 2.3 in [Schrij17]. In the proof of Theorem
2.3 in [Schrij17], it is claimed that7 the numbers

µ0 := max {µ | z + µc ∈ P} and ν0 := max {ν | z − νc ∈ P}

“exist since P is compact”. We want to avoid this use of compactness. Instead,
we will prove the existence of these numbers µ0 and ν0 as follows:

Alternative proof of the existence of the numbers µ0 := max {µ | z + µc ∈ P}
and ν0 := max {ν | z − νc ∈ P} in the proof of Theorem 2.3 in [Schrij17]:

Lemma 2.0z shows that {µ ∈ R | z + µc ∈ P} is a closed interval.
We also notice that z + 0c︸︷︷︸

=0

= z ∈ P , so that 0 ∈ {µ ∈ R | z + µc ∈ P}.

Hence, the set {µ ∈ R | z + µc ∈ P} is nonempty.

7We are using the notations of [Schrij17] here.

14
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Finally, we notice that the set {µ ∈ R | z + µc ∈ P} is bounded (from both
sides)8.

Now, a nonempty bounded closed interval always has a maximum. Applied to
the closed interval {µ ∈ R | z + µc ∈ P}, this yields that {µ ∈ R | z + µc ∈ P}
has a maximum (since we know that {µ ∈ R | z + µc ∈ P} is a nonempty bounded
closed interval). In other words, max {µ ∈ R | z + µc ∈ P} exists. Since we de-
fined µ0 as max {µ ∈ R | z + µc ∈ P}, this means that µ0 exists.

We have thus shown that µ0 exists. Similarly, ν0 exists.
Also note that 0 is an element of the set {µ ∈ R | z + µc ∈ P}, whereas µ0

is the maximum of this set (since µ0 = max {µ ∈ R | z + µc ∈ P}). Since any
element of a set is ≤ to the maximum of this set (if the maximum exists), this
yields 0 ≤ µ0. Similarly, 0 ≥ ν0. This shows that z is a convex combination of
the points x := z+µ0c and y := z− ν0c. (This is used further below in the proof
of Theorem 2.3.)

This completes the modifications necessary to make the proof of Theorem 2.3
in [Schrij17] independent of analysis.

5. The separation theorem for polytopes

We now come to the topic of separation theorems. In this section, we are only
going to state them; for their proofs, we refer to Section 7 below.

Theorem 2.1 in [Schrij17] is a non-elementary fact; its proof cannot be ridden of
analysis. This is not surprising: Theorem 2.1 is too general (it speaks of arbitrary
convex sets). However, the following weaker version of Theorem 2.1 (which will
still be enough for most of what we want) can be proven elementarily:

Theorem 2.1a. Let C be a polytope in Rn, and let z ∈ Rn be such
that z /∈ C. Then, there exists a hyperplane separating z and C.

Let us first give a basis-free version of this theorem:

8Proof. Since P is bounded, there exists an M ∈ R such that every w ∈ P satisfies |w| ≤M .
Consider this M .

Now, let ξ be an element of {µ ∈ R | z + µc ∈ P}. Then, ξ ∈ R and z + ξc ∈ P . Recall
that every w ∈ P satisfies |w| ≤ M . Applied to w = z + ξc, this yields |z + ξc| ≤ M .
But the triangle inequality yields |z + ξc| ≥ |ξc|︸︷︷︸

=|ξ||c|

− |z| = |ξ| |c| − |z|. Thus, M ≥ |z + ξc| ≥

|ξ| |c|−|z|, so that |ξ| |c| ≤M+z. Since |c| > 0 (because c 6= 0), we can divide this inequality

by |c| and obtain |ξ| ≤ M + z

|c|
.

Now, forget that we fixed ξ. We thus have proven that every ξ ∈ {µ ∈ R | z + µc ∈ P}

satisfies |ξ| ≤ M + z

|c|
. This yields that the set {µ ∈ R | z + µc ∈ P} is bounded (from both

sides), qed.

15
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Theorem 2.1b. Let E be a finite-dimensional R-vector space. Let
C be a polytope in E, and let z ∈ E be such that z /∈ C. Then, there
exist an f ∈ E∗ and a δ ∈ R such that

(f (z) > δ) and (every x ∈ C satisfies f (x) < δ) .

Here is another way to rewrite this:

Theorem 2.1c. Let E be a finite-dimensional R-vector space. Let C
be a polytope in E. Then, exactly one of the following two assertions
holds:

Assertion C1: We have 0 ∈ C.

Assertion C2: There exists an f ∈ E∗ such that every x ∈ C satisfies
f (x) < 0.

We shall prove Theorem 2.1c, Theorem 2.1b and Theorem 2.1a (in this order)
in Section 7.

Theorem 2.1a does not have the full strength of Theorem 2.1, but it is enough
to replace many applications of Theorem 2.1. For example, in the proof of The-
orem 2.4 in [Schrij17], Schrijver writes: “Suppose x /∈ P . Then there exists a
hyperplane separating x and P .” This is (tacitly) being derived from Theorem
2.1, but it also follows from Theorem 2.1a (applied to C = P and z = x).

6. The separation theorem for finitely generated
cones

Next, we will show a separation theorem for finitely generated cones (more pre-
cisely, the “cone version” of Theorem 2.1c):

Theorem 2.5c. Let E be a finite-dimensional R-vector space. Let S
be a finite subset of E. Let b ∈ E. Then, exactly one of the following
two assertions holds:

Assertion D1: We have b ∈ coneS.

Assertion D2: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

Again, we refer to Section 7 for the proof of this theorem.

16
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7. Proofs of the separation theorems

We owe the reader four proofs now: the proofs of Theorems 2.1a, 2.1b, 2.1c and
2.5c. Now is the time to pay back this debt. We begin with a proof of Theorem
2.5c; the following neat proof I have learnt from [Bartl12] (which shows a more
general result):9

First proof of Theorem 2.5c. We shall prove Theorem 2.5c by strong induction
over |S|:

Induction step: Let n be a nonnegative integer. Assume that Theorem 2.5c
holds whenever |S| < n. We will now prove that Theorem 2.5c holds whenever
|S| = n.

So, let E be a finite-dimensional R-vector space. Let S be a finite subset of
E such that |S| = n. Let b ∈ E. Then, we must prove that exactly one of the
following two assertions holds:

Assertion D11: We have b ∈ coneS.

Assertion D12: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

Since coneS is a convex cone, it is clear that coneS is closed under multipli-
cation by a nonnegative scalar, and that any linear combination of finitely many
elements of coneS with nonnegative coefficients must lie in coneS. (These facts
follow from general properties of convex cones.)

The Assertions D11 and D12 cannot hold at the same time10. Therefore, at
most one of the two Assertions D11 and D12 holds. We will now show that at
least one of these assertions holds.

If n = 0, then this is easy to prove11. Hence, for the rest of this proof, we
WLOG assume that n 6= 0.

9A different (and much uglier) proof can be found in Section 17 below.
10Proof. Assume the opposite. Then, the Assertions D11 and D12 hold at the same

time. Since Assertion D12 holds, there exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0). Consider this f . We know that every x ∈ coneS
satisfies f (x) ≤ 0. Since b ∈ coneS (because Assertion D11 holds), we can apply this to
x = b, and thus obtain f (b) ≤ 0. But this contradicts f (b) > 0. This contradiction shows
that our assumption was wrong, qed.

11Proof. Assume that n = 0. We must show that at least one of the two Assertions D11 and
D12 holds.

We have |S| = n = 0, and thus S = ∅. Hence, coneS = cone∅ = 0. Therefore,
0 ∈ 0 = coneS.

If b = 0, then Assertion D11 holds (since b = 0 ∈ coneS). Hence, if b = 0, then at least
one of the two Assertions D11 and D12 holds. Thus, for the rest of this proof, we WLOG
assume that we don’t have b = 0. Thus, b 6= 0.

Recall the following well-known fact from linear algebra: If v is a vector in a finite-
dimensional R-vector space V , and if v 6= 0, then there exists some g ∈ V ∗ such that
g (v) 6= 0.

Applying this fact to V = E and v = b, we conclude that there exists a g ∈ E∗ such

17
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The set S is nonempty (since |S| = n 6= 0). In other words, there exists some
t ∈ S. Consider such a t.

From t ∈ S, we obtain |S \ {t}| = |S|︸︷︷︸
=n

−1 = n − 1 < n. Hence, we can apply

Theorem 2.5c to E, S \ {t} and b instead of E, S and b (since we assumed that
Theorem 2.5c holds whenever |S| < n), and conclude that exactly one of the
following two assertions holds:

Assertion D21: We have b ∈ cone (S \ {t}).
Assertion D22: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ cone (S \ {t}) satisfies f (x) ≤ 0).

Thus, we must be in one of the following two cases:
Case 1: Assertion D21 holds.
Case 2: Assertion D22 holds.
First, let us consider Case 1. In this case, Assertion D21 holds. In other words,

we have b ∈ cone (S \ {t}).
But S \ {t} ⊆ S and therefore cone (S \ {t}) ⊆ coneS (by Proposition 2.0m

(e), applied to S \ {t} instead of T ). Hence, b ∈ cone (S \ {t}) ⊆ coneS. In
other words, Assertion D11 holds. Hence, at least one of the two Assertions D11
and D12 holds. We have thus proven that at least one of Assertions D11 and D12
holds in Case 1.

Let us now consider Case 2. In this case, Assertion D22 holds. In other words,
there exists an f ∈ E∗ such that f (b) > 0 and (every x ∈ cone (S \ {t}) satisfies f (x) ≤ 0).
Consider this f , and denote it by g. Thus, g is an element of E∗ satisfying g (b) > 0
and

(every x ∈ cone (S \ {t}) satisfies g (x) ≤ 0) (4)

We must be in one of the following two subcases:
Subcase 2.1: We have g (t) ≤ 0.
Subcase 2.2: We have g (t) > 0.
Let us first consider Subcase 2.1. In this subcase, we have g (t) ≤ 0. Thus,

every x ∈ S satisfies g (x) ≤ 0 12. Hence, every x ∈ coneS satisfies g (x) ≤ 0

that g (b) 6= 0 (since b 6= 0). Consider this g. Define an h ∈ E∗ by h = g (b) · g. Then,

h (b) = (g (b) · g) (b) = g (b) g (b) = (g (b))
2
> 0 (since g (b) 6= 0). On the other hand,

every x ∈ coneS satisfies h (x) ≤ 0 (since x ∈ coneS = 0, so that x = 0, so that
h (x) = h (0) = 0 (since h is linear)). Altogether, we have thus shown that h (b) > 0
and (every x ∈ coneS satisfies h (x) ≤ 0).

Thus, we have proven that there exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0) (namely, f = h). In other words, Assertion D12 holds.
Thus, at least one of the two Assertions D11 and D12 holds. Qed.

12Proof. Let x ∈ S. We must show that g (x) ≤ 0.

If x = t, then this follows immediately from g

 x︸︷︷︸
=t

 = g (t) ≤ 0. Hence, for the rest of

18



Linear optimization May 4, 2018

(by Proposition 2.0s, applied to f = g). Now, we know that g is an element of
E∗ satisfying g (b) > 0 and (every x ∈ coneS satisfies g (x) ≤ 0). Hence, there
exists an f ∈ E∗ such that f (b) > 0 and (every x ∈ coneS satisfies f (x) ≤ 0)
(namely, f = g). In other words, Assertion D12 holds. Hence, at least one of
the two Assertions D11 and D12 holds. We have thus proven that at least one of
Assertions D11 and D12 holds in Subcase 2.1.

Let us now consider Subcase 2.2. In this subcase, we have g (t) > 0. Thus, the

real number
1

g (t)
is well-defined and satisfies

1

g (t)
> 0. In particular,

1

g (t)
is a

nonnegative real.

Define a vector q ∈ E by q =
1

g (t)
t. Then, g (q) = 1 13. Also, q ∈ coneS

14.
Define a subset S ′ of E by

S ′ = {s− g (s) q | s ∈ S \ {t}} .

Thus, |S ′| ≤ |S \ {t}| < n. Therefore, we can apply Theorem 2.5c to E, S ′ and
b − g (b) q instead of E, S and b (since we assumed that Theorem 2.5c holds
whenever |S| < n), and conclude that exactly one of the following two assertions
holds:

Assertion D31: We have b− g (b) q ∈ cone (S ′).

Assertion D32: There exists an f ∈ E∗ such that f (b− g (b) q) > 0
and (every x ∈ cone (S ′) satisfies f (x) ≤ 0).

Thus, we must be in one of the following two subsubcases:
Subsubcase 2.2.1: Assertion D31 holds.

this proof, we can WLOG assume that we don’t have x = t. Assume this.
We have x 6= t (since we don’t have x = t). Combining x ∈ S with x 6= t, we find

x ∈ S \ {t} ⊆ cone (S \ {t}) (by Proposition 2.0m (c), applied to S \ {t} instead of S).
Hence, (4) shows that g (x) ≤ 0. Qed.

13Proof. Applying the map g to the equality q =
1

g (t)
t, we obtain

g (q) = g

(
1

g (t)
t

)
=

1

g (t)
g (t) (since the map g is R-linear)

= 1.

14Proof. We have t ∈ S ⊆ coneS (by Proposition 2.0m (c)).
Recall that coneS is closed under multiplication by a nonnegative scalar. In other words,

every nonnegative real ω and every y ∈ coneS satisfy ωy ∈ coneS. Applying this to

ω =
1

g (t)
and y = t, we obtain

1

g (t)
t ∈ coneS (since

1

g (t)
is a nonnegative real). Thus,

q =
1

g (t)
t ∈ coneS.
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Subsubcase 2.2.2: Assertion D32 holds.
First, let us consider Subsubcase 2.2.1. In this subsubcase, Assertion D31 holds.

In other words, we have b− g (b) q ∈ cone (S ′).
But S ′ ⊆ coneS 15. Hence, Proposition 2.0m (g) (applied to T = S ′) yields

cone (S ′) ⊆ coneS. Hence, b− g (b) q ∈ cone (S ′) ⊆ coneS.
Define c ∈ E by c = b− g (b) q. Thus, c = b− g (b) q ∈ coneS.
Now, g (b) is a nonnegative real (since g (b) > 0). Hence, 1 and g (b) are

nonnegative reals. Also, c and q are elements of coneS (since c ∈ coneS and
q ∈ coneS). Therefore, 1c + g (b) q is a linear combination of finitely many
elements of coneS with nonnegative coefficients. Hence, 1c + g (b) q must lie in
coneS (since any linear combination of finitely many elements of coneS with
nonnegative coefficients must lie in coneS). In other words, 1c+ g (b) q ∈ coneS.
Since 1c︸︷︷︸

=c=b−g(b)q

+g (b) q = (b− g (b) q) + g (b) q = b, this rewrites as b ∈ coneS.

In other words, Assertion D11 holds. Hence, at least one of the two Assertions
D11 and D12 holds. We have thus proven that at least one of Assertions D11 and
D12 holds in Subsubcase 2.2.1.

Next, let us consider Subsubcase 2.2.2. In this subsubcase, Assertion D32
holds. In other words, there exists an f ∈ E∗ such that f (b− g (b) q) > 0 and
(every x ∈ cone (S ′) satisfies f (x) ≤ 0). Consider this f , and denote it by h.
Thus, h is an element of E∗ satisfying h (b− g (b) q) > 0 and

(every x ∈ cone (S ′) satisfies h (x) ≤ 0) . (5)

Now, define a k ∈ E∗ by k = h− h (q) · g. Then, each x ∈ E satisfies

k︸︷︷︸
=h−h(q)·g

(x) = (h− h (q) · g) (x) = h (x)− h (q) · g (x)

= h (x)− g (x) · h (q) = h (x− g (x) q) (6)

(since the map h is R-linear). Applying this to x = b, we obtain k (b) =
h (b− g (b) q) > 0. Moreover, each x ∈ S satisfies k (x) ≤ 0 16. Hence,
each x ∈ coneS satisfies k (x) ≤ 0 (by Proposition 2.0s, applied to f = k).

15Proof. Let s ∈ S \ {t}. We shall show that s− g (s) q ∈ coneS.
Indeed, s ∈ S \ {t} ⊆ cone (S \ {t}) (by Proposition 2.0m (c), applied to S \ {t} instead

of S). Hence, (4) (applied to x = s) yields g (s) ≤ 0. Thus, −g (s) ≥ 0. In other words,
−g (s) is nonnegative.

We have s ∈ S \ {t} ⊆ S ⊆ coneS (by Proposition 2.0m (c)) and q ∈ coneS. Hence,
1s + (−g (s)) q is a linear combination of finitely many elements of coneS with nonneg-
ative coefficients (since s ∈ coneS and q ∈ coneS, and since 1 and −g (s) are nonneg-
ative). Therefore, 1s + (−g (s)) q lies in coneS (since any linear combination of finitely
many elements of coneS with nonnegative coefficients must lie in coneS). In other words,
1s+(−g (s)) q ∈ coneS. Since 1s+(−g (s)) q = s−g (s) q, this rewrites as s−g (s) q ∈ coneS.

Now, forget that we fixed s. We thus have shown that s − g (s) q ∈ coneS for
each s ∈ S \ {t}. In other words, {s− g (s) q | s ∈ S \ {t}} ⊆ coneS. Thus, S′ =
{s− g (s) q | s ∈ S \ {t}} ⊆ coneS.

16Proof. Let x ∈ S. We must prove that k (x) ≤ 0.
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Thus, there exists an f ∈ E∗ such that f (b) > 0 and (every x ∈ coneS satisfies f (x) ≤ 0)
(namely, f = k). In other words, Assertion D12 holds. Hence, at least one of
Assertions D11 and D12 holds.

We have thus proven that at least one of Assertions D11 and D12 holds in
Subsubcase 2.2.2.

Recall that our goal was to prove that at least one of Assertions D11 and D12
holds. We have now proven this in Case 1, in Subcase 2.1, and in Subsubcases
2.2.1 and 2.2.2. Thus, we have proven this in all possible situations. So we know
that at least one of Assertions D11 and D12 holds. Thus, exactly one of Assertions
D11 and D12 holds (since we know that at most one of the two Assertions D11
and D12 holds).

Now, forget that we fixed E, S and b. We have thus proven that if E is a
finite-dimensional R-vector space, S is a finite subset of E such that |S| = n, and
b is an element of E, then exactly one of the following two assertions holds:

Assertion D11: We have b ∈ coneS.

Assertion D12: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

In other words, we have proven that Theorem 2.5c holds in the case when
|S| = n. This completes the induction step, and thus the induction proof of
Theorem 2.5c is complete.

Before we step to the proof of Theorem 2.1c, let us state a basic result that
connects convex conic hulls with convex hulls:

From q =
1

g (t)
t, we obtain t = g (t) q. But applying (6) to x = t, we obtain

k (t) = h

 t︸︷︷︸
=g(t)q

−g (t) q

 = h

g (t) q − g (t) q︸ ︷︷ ︸
=0

 = h (0) = 0

(since the map h is R-linear). Therefore, k (t) ≤ 0. Thus, if x = t, then k

 x︸︷︷︸
=t

 = k (t) ≤

0. Hence, for the rest of our proof of k (x) ≤ 0, we can WLOG assume that we don’t have
x = t. Assume this.

We have x 6= t (since we don’t have x = t). Combining x ∈ S with x 6= t, we obtain
x ∈ S \ {t}. Thus, x− g (x) q ∈ {s− g (s) q | s ∈ S \ {t}} (since x− g (x) q = s− g (s) q for
some s ∈ S \ {t} (namely, for s = x)). Hence,

x− g (x) q ∈ {s− g (s) q | s ∈ S \ {t}} = S′ ⊆ cone (S′)

(by Proposition 2.0m (c), applied to S′ instead of S). Thus, (5) (applied to x − g (x) q
instead of x) yields h (x− g (x) q) ≤ 0.

Now, (6) yields k (x) = h (x− g (x) q) ≤ 0. Qed.
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Proposition 2.4a. Let E be a finite-dimensional R-vector space.
Let T be a finite subset of E. Let x ∈ E.

Consider the direct sum E ⊕ R (which is also a finite-dimensional
R-vector space). Consider the vector (x, 1) ∈ E ⊕ R. Let S be the
subset {(y, 1) | y ∈ T} of E ⊕ R.

Then, x ∈ conv . hullT holds if and only if (x, 1) ∈ coneS.

Proof of Proposition 2.4a. The definition of S shows that S = {(y, 1) | y ∈ T}.
Thus, the set S is finite (since the set T is finite).

Let us first show that

if x ∈ conv . hullT , then (x, 1) ∈ coneS. (7)

[Proof of (7): Assume that x ∈ conv . hullT . We want to show that (x, 1) ∈
coneS.

We have

x ∈ conv . hullT

=


t∑
i=1

λixi |


t is an element of N,

and (x1, x2, . . . , xt) is a t-tuple of elements of T ,
and (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals

such that
t∑
i=1

λi = 1




(by Proposition 2.0g (a), applied to T instead of S). In other words, there exist
some element t of N, some t-tuple (x1, x2, . . . , xt) of elements of T , and some

t-tuple (λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λi = 1 and x =
t∑
i=1

λixi.

Consider this t, this (x1, x2, . . . , xt) and this (λ1, λ2, . . . , λt). Clearly, the family
(λi)i∈{1,2,...,t} is a family of nonnegative reals (since (λ1, λ2, . . . , λt) is a t-tuple of
nonnegative reals) and has the property that all but finitely many i ∈ {1, 2, . . . , t}
satisfy λi = 0 (since there are only finitely many i ∈ {1, 2, . . . , t}).

Each i ∈ {1, 2, . . . , t} satisfies (xi, 1) ∈ S 17 and therefore (xi, 1) ∈ coneS
(since (xi, 1) ∈ S ⊆ coneS (by Proposition 2.0m (c), applied to E⊕R instead of
E)). Thus, ((xi, 1))i∈{1,2,...,t} is a family of elements of coneS. Also, Proposition
2.0m (d) (applied to E⊕R instead of E) shows that the convex conic hull coneS
is a convex cone. Hence, Proposition 2.0i (applied to E ⊕R, coneS, {1, 2, . . . , t}
and (xi, 1) instead of E, C, I and xi) shows that

∑
i∈{1,2,...,t}

λi (xi, 1) ∈ coneS.

17Proof. Let i ∈ {1, 2, . . . , t}. Then, xi ∈ T (since (x1, x2, . . . , xt) is a t-tuple of elements of T ).
Thus, (xi, 1) ∈ {(y, 1) | y ∈ T} (since (xi, 1) = (y, 1) for some y ∈ T (namely, for y = xi)).
Hence, (xi, 1) ∈ {(y, 1) | y ∈ T} = S. Qed.
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Since

∑
i∈{1,2,...,t}︸ ︷︷ ︸

=
t∑

i=1

λi (xi, 1) =
t∑
i=1

λi (xi, 1) =

 t∑
i=1

λixi,

t∑
i=1

λi1︸︷︷︸
=λi



=


t∑
i=1

λixi︸ ︷︷ ︸
=x

,
t∑
i=1

λi︸ ︷︷ ︸
=1

 = (x, 1) ,

this rewrites as (x, 1) ∈ coneS. Thus, (7) is proven.]
Now, let us show that

if (x, 1) ∈ coneS, then x ∈ conv . hullT. (8)

[Proof of (8): Assume that (x, 1) ∈ coneS. We want to show that x ∈
conv . hullT .

Write the set T in the form T = {t1, t2, . . . , tn} for some n ∈ N. (This is
possible, since the set T is finite.)

We have

S =

(y, 1) | y ∈ T︸︷︷︸
={t1,t2,...,tn}

 = {(y, 1) | y ∈ {t1, t2, . . . , tn}}

= {(t1, 1) , (t2, 1) , . . . , (tn, 1)} .

We have

(x, 1) ∈ cone S︸︷︷︸
={(t1,1),(t2,1),...,(tn,1)}

= cone {(t1, 1) , (t2, 1) , . . . , (tn, 1)} .

But Proposition 2.0o (b) (applied to E ⊕ R, (ti, 1) and (x, 1) instead of E,
xi and x) shows that we have (x, 1) ∈ cone {(t1, 1) , (t2, 1) , . . . , (tn, 1)} if and
only if (x, 1) is a linear combination of the vectors (t1, 1) , (t2, 1) , . . . , (tn, 1) with
nonnegative coefficients. Therefore, (x, 1) is a linear combination of the vectors
(t1, 1) , (t2, 1) , . . . , (tn, 1) with nonnegative coefficients (since
(x, 1) ∈ cone {(t1, 1) , (t2, 1) , . . . , (tn, 1)}). In other words, there exists an n-tuple
(λ1, λ2, . . . , λn) of nonnegative reals such that

(x, 1) =
n∑
i=1

λi (ti, 1) .

Consider this (λ1, λ2, . . . , λn).
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We have

(x, 1) =
n∑
i=1

λi (ti, 1) =

(
n∑
i=1

λiti,

n∑
i=1

λi1

)
.

In other words,

x =
n∑
i=1

λiti and 1 =
n∑
i=1

λi1.

Now, 1 =
n∑
i=1︸︷︷︸

=
∑

i∈{1,2,...,n}

λi1︸︷︷︸
=λi

=
∑

i∈{1,2,...,n}
λi, so that

∑
i∈{1,2,...,n}

λi = 1.

Clearly, the family (λi)i∈{1,2,...,n} is a family of nonnegative reals (since (λ1, λ2, . . . , λn)
is a n-tuple of nonnegative reals) and has the property that all but finitely
many i ∈ {1, 2, . . . , n} satisfy λi = 0 (since there are only finitely many i ∈
{1, 2, . . . , n}).

Each i ∈ {1, 2, . . . , n} satisfies ti ∈ T (since ti ∈ {t1, t2, . . . , tn} = T ) and
therefore ti ∈ conv . hullT (since ti ∈ T ⊆ conv . hullT (by Proposition 2.0f
(c), applied to T instead of S)). Thus, (ti)i∈{1,2,...,n} is a family of elements of
conv . hullT . Also, Proposition 2.0f (d) (applied to T instead of S) shows that
the convex hull conv . hullT is a convex set. Hence, Proposition 2.0a (applied to
conv . hullT , {1, 2, . . . , n} and ti instead of C, I and xi) shows that

∑
i∈{1,2,...,n}

λiti ∈

conv . hullT . Since ∑
i∈{1,2,...,n}︸ ︷︷ ︸

=
n∑

i=1

λiti =
n∑
i=1

λiti = x,

this rewrites as x ∈ conv . hullT . Thus, (8) is proven.]
Now, combining the two logical implications (7) and (8), we conclude that

x ∈ conv . hullT holds if and only if (x, 1) ∈ coneS. This proves Proposition
2.4a.

Next, we can prove Theorem 2.1c:18

First proof of Theorem 2.1c. The Assertions C1 and C2 cannot hold at the same
time19. We will now show that at least one of these assertions holds.
18A different (and much uglier) proof can be found in Section 17 below.
19Proof. Assume the contrary. Thus, the Assertions C1 and C2 hold at the same time. Since

Assertion C2 holds, there exists an f ∈ E∗ such that every x ∈ C satisfies f (x) < 0.
Consider this f . We know that every x ∈ C satisfies f (x) < 0. Since 0 ∈ C (because
Assertion C1 holds), we can apply this to x = 0, and thus obtain f (0) < 0. But this
contradicts f (0) = 0 (which is because f is linear). This contradiction shows that our
assumption was wrong, qed.
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The set C is a polytope in E. In other words, C is the convex hull of a finite
subset of E (by the definition of a “polytope”). In other words, there exists a
finite subset T of E such that C = conv . hullT . Consider this T .

Let ι : E → E ⊕R be the canonical inclusion of the R-vector space E into the
direct sum E ⊕ R. This inclusion ι maps each x ∈ E to (x, 0) ∈ E ⊕ R; it is an
R-linear map.

Let S be the subset {(y, 1) | y ∈ T} of E ⊕ R. Then, S is a finite subset of
E ⊕ R (since T is a finite set).

Let b be the vector (0, 1) ∈ E ⊕R. Theorem 2.5c (applied to E ⊕R instead of
E) then shows that exactly one of the following two assertions holds:

Assertion C 11: We have b ∈ coneS.

Assertion C 12: There exists an f ∈ (E ⊕ R)∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

Thus, we are in one of the following two cases:
Case 1: Assertion C11 holds.
Case 2: Assertion C12 holds.
Let us first consider Case 1. In this case, Assertion C11 holds. In other words,

we have b ∈ coneS. Thus, (0, 1) = b ∈ coneS. Proposition 2.4a (applied to
x = 0) shows that 0 ∈ conv . hullT holds if and only if (0, 1) ∈ coneS. Thus,
0 ∈ conv . hullT holds (since (0, 1) ∈ coneS). Hence, 0 ∈ conv . hullT = C. In
other words, Assertion C1 holds. Thus, at least one of the two assertions C1 and
C2 holds.

We thus have shown that in Case 1, at least one of the two assertions C1 and
C2 holds.

Now, let us consider Case 2. In this case, Assertion C12 holds. In other words,
there exists an f ∈ (E ⊕ R)∗ such that f (b) > 0 and (every x ∈ coneS satisfies f (x) ≤ 0).
Consider such an f , and denote it by h. Thus, h is an element of (E ⊕ R)∗ sat-
isfying h (b) > 0 and

(every x ∈ coneS satisfies h (x) ≤ 0) . (9)

The map h ◦ ι is a well-defined R-linear map E → R (since h is an R-linear
map E ⊕ R → R, and since ι is an R-linear map E → E ⊕ R). In other words,
h ◦ ι ∈ E∗.

Now, let x ∈ C be arbitrary. Thus, x ∈ C = conv . hullT . But Proposition
2.4a shows that x ∈ conv . hullT holds if and only if (x, 1) ∈ coneS. Hence,
(x, 1) ∈ coneS (since x ∈ conv . hullT ). Therefore, (9) (applied to (x, 1) instead
of x) shows that h ((x, 1)) ≤ 0.

The definition of ι yields ι (x) = (x, 0). Hence, ι (x)︸︷︷︸
=(x,0)

+ b︸︷︷︸
=(0,1)

= (x, 0) + (0, 1) =
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(
x+ 0︸ ︷︷ ︸

=x

, 0 + 1︸ ︷︷ ︸
=1

)
= (x, 1). Applying the map h to both sides of this equality, we

find h (ι (x) + b) = h ((x, 1)) ≤ 0.
But the map h is R-linear. Thus,

h (ι (x) + b) = h (ι (x)) + h (b)︸︷︷︸
>0

> h (ι (x)) = (h ◦ ι) (x) .

Hence, (h ◦ ι) (x) < h (ι (x) + b) ≤ 0.
Now, forget that we fixed x. We thus have shown that every x ∈ C satisfies

(h ◦ ι) (x) < 0. Hence, there exists an f ∈ E∗ such that every x ∈ C satisfies
f (x) < 0 (namely, f = h ◦ ι). In other words, Assertion C2 holds. Thus, at least
one of the two assertions C1 and C2 holds.

We thus have shown that in Case 2, at least one of the two assertions C1 and
C2 holds.

Thus, in each of the two Cases 1 and 2, we have proven that at least one of
the two assertions C1 and C2 holds. Since these two Cases cover all possibilities,
we therefore conclude that at least one of the two assertions C1 and C2 holds.
Therefore, exactly one of the two assertions C1 and C2 holds (since we already
know that the Assertions C1 and C2 cannot hold at the same time). This proves
Theorem 2.1c.

Now, we are going to prove Theorem 2.1b and Theorem 2.1a:

Proof of Theorem 2.1b. We know that C is a polytope. By the definition of a
polytope, this shows that C is the convex hull of a finite set of vectors in E. In
other words, there exist some t ∈ N and some vectors x1, x2, . . ., xt in E such
that C = conv . hull {x1, x2, . . . , xt}. Consider this t and these x1, x2, . . ., xt.

Clearly, conv . hull {x1 − z, x2 − z, . . . , xt − z} is a polytope. Moreover,

0 /∈ conv . hull {x1 − z, x2 − z, . . . , xt − z}
20.

Now, applying Theorem 2.1c to conv . hull {x1 − z, x2 − z, . . . , xt − z} instead
of C, we obtain that exactly one of the following two assertions holds:

20Proof. Assume the opposite. Then, 0 ∈ conv .hull {x1 − z, x2 − z, . . . , xt − z}. But Propo-
sition 2.0h (b) (applied to t, xi − z and 0 instead of n, xi and x) shows that we have
0 ∈ conv .hull {x1 − z, x2 − z, . . . , xt − z} if and only if 0 is a convex combination of the vec-
tors x1−z, x2−z, . . ., xt−z. Hence, 0 is a convex combination of the vectors x1−z, x2−z,
. . ., xt − z (since we have 0 ∈ conv .hull {x1 − z, x2 − z, . . . , xt − z}). In other words, there

exist nonnegative elements λ1, λ2, . . ., λt of R such that
t∑
i=1

λi = 1 and
t∑
i=1

λi (xi − z) = 0.

Consider these λ1, λ2, . . ., λt.
We have

0 =

t∑
i=1

λi (xi − z) =

t∑
i=1

λixi −
t∑
i=1

λi︸ ︷︷ ︸
=1

z =

t∑
i=1

λixi − z,

26



Linear optimization May 4, 2018

Assertion C z1: We have 0 ∈ conv . hull {x1 − z, x2 − z, . . . , xt − z}.
Assertion C z2: There exists an f ∈ E∗ such that every
x ∈ conv . hull {x1 − z, x2 − z, . . . , xt − z} satisfies f (x) < 0.

Since Assertion Cz1 cannot hold (because 0 /∈ conv . hull {x1 − z, x2 − z, . . . , xt − z}),
this yields that Assertion Cz2 must hold. In other words, there exists an f ∈ E∗
such that every x ∈ conv . hull {x1 − z, x2 − z, . . . , xt − z} satisfies f (x) < 0.
Consider this f .

Clearly, every i ∈ {1, 2, . . . , t} satisfies f (z)− f (xi) > 0 21. Hence,

{f (z)− f (x1) , f (z)− f (x2) , . . . , f (z)− f (xt)}

is a set of positive reals. Since this set is finite, it must be bounded from below
by a positive real (because any finite set of positive reals is bounded from below
by a positive real). In other words, there exists a positive real ε such that every
i ∈ {1, 2, . . . , t} satisfies f (z)− f (xi) ≥ ε. Consider this ε.

Since ε is positive, we have ε >
ε

2
.

Now, let δ = f (z)− ε

2
. Then,

every i ∈ {1, 2, . . . , t} satisfies f (xi) < δ (10)

(since every i ∈ {1, 2, . . . , t} satisfies f (z)− f (xi) ≥ ε and thus f (xi) ≤ f (z)−
ε︸︷︷︸
>
ε

2

< f (z)− ε

2
= δ). Therefore, Proposition 2.0r shows that

every x ∈ C satisfies f (x) < δ. (11)

Altogether, we thus know that f (z) > δ (since ε is positive, so that
ε

2
> 0,

and thus δ = f (z) − ε

2︸︷︷︸
>0

< f (z)) and that every x ∈ C satisfies f (x) < δ (by

(11)). We thus have shown that there exist an f ∈ E∗ and a δ ∈ R such that

(f (z) > δ) and (every x ∈ C satisfies f (x) < δ) .

so that z =
t∑
i=1

λixi. Since λ1, λ2, . . ., λt are nonnegative elements of R such that
t∑
i=1

λi = 1,

this yields that z is a convex combination of the vectors x1, x2, . . ., xt. In other words,
z ∈ conv .hull {x1, x2, . . . , xt}. Hence, z ∈ conv .hull {x1, x2, . . . , xt} = C, which contradicts
z /∈ C. This contradiction shows that our assumption was wrong, qed.

21Proof. Let i ∈ {1, 2, . . . , t}. Then, xi − z ∈ {x1 − z, x2 − z, . . . , xt − z} ⊆
conv .hull {x1 − z, x2 − z, . . . , xt − z} (by Proposition 2.0f (c), applied to
{x1 − z, x2 − z, . . . , xt − z} instead of S). But we know that every x ∈
conv .hull {x1 − z, x2 − z, . . . , xt − z} satisfies f (x) < 0. Applying this to x = xi − z,
we obtain f (xi − z) < 0 (since xi − z ∈ conv .hull {x1 − z, x2 − z, . . . , xt − z}). Since
f (xi − z) = f (xi) − f (z) (since f is linear), this rewrites as f (xi) − f (z) < 0. In other
words, f (xi) < f (z). Hence, f (z)− f (xi) > 0, qed.
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This proves Theorem 2.1b.

Proof of Theorem 2.1a. Theorem 2.1b (applied to E = Rn) shows that there exist
an f ∈ (Rn)∗ and a δ ∈ R such that

(f (z) > δ) and (every x ∈ C satisfies f (x) < δ) .

Consider this f . Then, the hyperplane f−1 (δ) ⊆ Rn clearly separates z and
C. Thus, there exists a hyperplane separating z and C. This proves Theorem
2.1a.

8. The Farkas lemma

Next, we are going to give a proof of [Schrij17, Theorem 2.5] without recourse
to [Schrij17, Exercise 2.7]. This won’t be very rich in substance, since the main
work has already been done proving Theorems 2.1c and 2.5c.

First, we reformulate [Schrij17, Theorem 2.5]:

Theorem 2.5d. Let m ∈ N and n ∈ N. Let A be an m × n-matrix
and let b ∈ Rm. Then, exactly one of the following two assertions
holds:

Assertion F1: The system Ax = b has a nonnegative solution x ∈ Rn.

Assertion F2: There exists a vector y ∈ Rm such that yTA ≥ 0 and
yT b < 0.

In classical logic, Theorem 2.5d is equivalent to [Schrij17, Theorem 2.5], but
constructively Theorem 2.5d is stronger.

Notice that Theorem 2.5d appears in [Jacim11, Teorema 1] (in an equivalent
form) and in [Bartl12, Lemma 1] (in a generalized version).

Proof of Theorem 2.5d. The Assertions F1 and F2 cannot hold at the same time22.
We will now show that at least one of these assertions holds.

Let a1, a2, . . ., an be the columns of A. Let S = {a1, a2, . . . , an}. Then, S
is a finite subset of Rm. Hence, Theorem 2.5c (applied to E = Rm) yields that
exactly one of the following two assertions holds:

22Proof. Assume the opposite. Then, the Assertions F1 and F2 hold at the same time. Since
Assertion F2 holds, there exists a vector y ∈ Rm such that yTA ≥ 0 and yT b < 0. Consider
this y. Since Assertion F1 holds, the system Ax = b has a nonnegative solution x ∈ Rn.
Consider this solution x. We have x ≥ 0 (since x is nonnegative).

Lemma 2.0v (applied to yTA and x instead of x and y) shows that yTAx ≥ 0 (since
yTA ≥ 0 and x ≥ 0). This contradicts yT Ax︸︷︷︸

=b

= yT b < 0. This contradiction shows that

our assumption was wrong, qed.
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Assertion F 11: We have b ∈ coneS.

Assertion F 22: There exists an f ∈ (Rm)∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

We must thus be in one of the following two cases:
Case 1: Assertion F11 holds.
Case 2: Assertion F12 holds.
Let us first consider Case 1. In this case, Assertion F11 holds. In other words,

b ∈ coneS. Thus,

b ∈ coneS =

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
(by Proposition 2.0p (a)). Hence, there exists a family (νs)s∈S of nonnegative
reals such that b =

∑
s∈S

νss. Consider this family (νs)s∈S.

Let (e1, e2, . . . , en) be the standard basis of Rn. In other words, for every
i ∈ {1, 2, . . . , n}, let ei be the vector in Rn whose i-th coordinate is 1 and whose
other coordinates are all 0. Then, for every i ∈ {1, 2, . . . , n}, we have

Aei = (the i-th column of A) = ai (12)

(since the columns of A are a1, a2, . . ., an). Also, for every i ∈ {1, 2, . . . , n}, we
have ei ≥ 0 (since every coordinate of ei is either 1 or 0, and thus nonnegative).

Now, it is pretty clear that

for every s ∈ S, there exists a vector xs ∈ Rn such that xs ≥ 0 and Axs = s.
(13)

23 Consider this xs.
Now,

∑
s∈S

νsxs is a linear combination of nonnegative vectors (namely, the vec-

tors xs) with nonnegative coefficients (namely, the coefficients νs). Thus,
∑
s∈S

νsxs

must itself be a nonnegative vector (since any linear combination of nonnegative
vectors with nonnegative coefficients must itself be a nonnegative vector). Since

A

(∑
s∈S

νsxs

)
=
∑
s∈S

νs Axs︸︷︷︸
=s

=
∑
s∈S

νss = b,

this yields that the systemAx = b has a nonnegative solution x ∈ Rn (namely, x =∑
s∈S

νsxs). In other words, Assertion F1 holds. Hence, at least one of Assertions

F1 and F2 holds.
23Proof of (13): Let s ∈ S. Then, s ∈ S = {a1, a2, . . . , an}. Hence, there exists some

i ∈ {1, 2, . . . , n} such that s = ai. Consider this i. Then, s = ai = Aei (by (12)). Thus,
ei ≥ 0 and Aei = s. Thus, there exists a vector xs ∈ Rn such that xs ≥ 0 and Axs = s
(namely, xs = ei). This proves (13).
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We thus have proven that at least one of Assertions F1 and F2 holds in Case
1.

Now, let us consider Case 2. In this case, Assertion F12 holds. In other words,
there exists an f ∈ (Rm)∗ such that f (b) > 0 and (every x ∈ coneS satisfies f (x) ≤ 0).
Consider this f .

Let T denote the map

Rm → (Rm)∗ ,

v 7→ vT .

Then, it is known that T is an isomorphism of R-vector spaces. Hence, T−1 is
well-defined. Let z = T−1 (f). Then, f = T (z) = zT (by the definition of T ).
Thus, f (b) = zT b. Hence, zT b = f (b) > 0, so that (−z)T b = − zT b︸︷︷︸

>0

< −0 = 0.

Also, every i ∈ {1, 2, . . . , n} satisfies (−z)T ai ≥ 0 24. Now, for every
i ∈ {1, 2, . . . , n}, the rule for multiplying a row vector by a matrix yields that(

the i-th coordinate of (−z)T A
)

= (−z)T · (the i-th column of A)︸ ︷︷ ︸
=ai

(since the columns of A are a1, a2, ..., an)

= (−z)T ai

≥ 0 = (the i-th coordinate of 0) .

In other words, (−z)T A ≥ 0.
We thus know that (−z)T A ≥ 0 and (−z)T b < 0. Hence, there exists a vector

y ∈ Rm such that yTA ≥ 0 and yT b < 0 (namely, y = −z). In other words,
Assertion F2 holds. Hence, at least one of Assertions F1 and F2 holds.

We thus have proven that at least one of Assertions F1 and F2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions F1 and F2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions F1 and F2 holds. Since we know that the
Assertions F1 and F2 cannot hold at the same time, this yields that exactly one
of Assertions F1 and F2 holds. This proves Theorem 2.5d.

Thus, of course, [Schrij17, Theorem 2.5] is also proven.

24Proof. Let i ∈ {1, 2, . . . , n}. Then, ai ∈ {a1, a2, . . . , an} = S ⊆ coneS (by Proposition 2.0m
(c)). But we know that every x ∈ coneS satisfies f (x) ≤ 0. Applying this to x = ai, we
obtain f (ai) ≤ 0 (since ai ∈ coneS). Since f = zT , this rewrites as zTai ≤ 0, so that

(−z)T ai = − zTai︸︷︷︸
≤0

≥ −0 = 0, qed.
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9. The < and > relations for vectors

Let us now take a break from proving theorems, and introduce another piece of
notation:

Definition. Let ` ∈ N. Let u and v be two column vectors in R`.
Then, we write u < v if and only if every i ∈ {1, 2, . . . , `} satisfies

(the i-th coordinate of u) < (the i-th coordinate of v) .

Also, we write u > v if and only if every i ∈ {1, 2, . . . , `} satisfies

(the i-th coordinate of u) > (the i-th coordinate of v) .

The same notations apply if u and v are row vectors in
(
R`
)∗

rather
than column vectors in R`.

Note that for a positive integer ` and two vectors u ∈ R` and v ∈ R`, the asser-
tion (u > v) is not (in general) equivalent to the assertion (u ≥ v and u 6= v), but
is stronger. Similarly, the assertion (u < v) is stronger than (u ≤ v and u 6= v).

For example, if u =

(
1
1

)
and v =

(
1
0

)
, then we do have (u ≥ v and u 6= v),

but we don’t have u > v.
Here is one further caveat: If 00 denotes the zero vector in R0, then 00 > 00

and 00 < 00. This is not surprising, since 00 has no coordinates at all.
The newly introduced notation has several properties which are similar to prop-

erties proven before. For example, here is an analogue of Lemma 2.0t:

Lemma 2.2a. Let n ∈ N.

(a) If a column vector v ∈ Rn satisfies v > 0, then all coordinates of
the column vector v are positive.

(b) If a row vector v ∈ (Rn)∗ satisfies v > 0, then all coordinates of
the row vector v are positive.

A proof of Lemma 2.2a can be found in Section 16. Of course, the converse
of Lemma 2.2a also holds; we just won’t use it often enough to have a reason to
state it.

Let us state three further facts, which also are proven in Section 16 below.

Lemma 2.2b. Let n ∈ N. Let x ∈ (Rn)∗ be a nonzero row vector
such that x ≥ 0. Let y ∈ Rn be a column vector such that y > 0.
Then, xy > 0.

Lemma 2.2c. Let n ∈ N. Let x ∈ (Rn)∗ be a row vector such that
x > 0. Let y ∈ Rn be a nonzero column vector such that y ≥ 0. Then,
xy > 0.

Lemma 2.2d. Let n ∈ N. Let x ∈ (Rn)∗ be a row vector such that
x ≥ 0. Let y ∈ Rn be a column vector such that y > 0. Assume that
xy = 0. Then, x = 0.
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10. The Gordan and Stiemke theorems

Next, we will state two further important results.

Theorem 2.5e. Let A be an m×n-matrix. Then, exactly one of the
following two assertions holds:

Assertion G1: There exists a nonzero vector x ∈ Rn such that x ≥ 0
and Ax = 0.

Assertion G2: There exists a vector y ∈ Rm such that yTA > 0.

Theorem 2.5e is known as Gordan’s theorem and is equivalent to Exercise 2.17
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5e is somewhat
stronger than Exercise 2.17 in [Schrij17].

Theorem 2.5f. Let A be an m×n-matrix. Then, exactly one of the
following two assertions holds:

Assertion S1: There exists a vector x ∈ Rn such that x > 0 and
Ax = 0.

Assertion S2: There exists a vector y ∈ Rm such that yTA ≥ 0 and
yTA 6= 0.

Theorem 2.5f is known as Stiemke’s theorem and is equivalent to Exercise 2.16
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5f is somewhat
stronger than Exercise 2.16 in [Schrij17].

Proof of Theorem 2.5e. The Assertions G1 and G2 cannot hold at the same
time25. We will now show that at least one of these assertions holds.

Let a1, a2, . . ., an be the columns of A. Let C = conv . hull {a1, a2, . . . , an}.
Then, C is a polytope in Rm. Hence, Theorem 2.1c (applied to E = Rm) yields
that exactly one of the following two assertions holds:

Assertion G11: We have 0 ∈ C.

Assertion G12: There exists an f ∈ (Rm)∗ such that every x ∈ C
satisfies f (x) < 0.

25Proof. Assume the opposite. Then, the Assertions G1 and G2 hold at the same time. Since
Assertion G2 holds, there exists a vector y ∈ Rm such that yTA > 0. Consider this y. Since
Assertion G1 holds, there exists a nonzero vector x ∈ Rn such that x ≥ 0 and Ax = 0.
Consider this x.

Lemma 2.2c (applied to yTA and x instead of x and y) yields yTAx > 0 (since yTA > 0
and x ≥ 0 and since x is nonzero). This contradicts yTAx = yT Ax︸︷︷︸

=0

= 0. This contradiction

shows that our assumption was wrong, qed.
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Thus, we must be in one of the following two cases:
Case 1: Assertion G11 holds.
Case 2: Assertion G12 holds.
Let us first consider Case 1. In this case, Assertion G11 holds. In other words,

0 ∈ C. Thus, 0 ∈ C = conv . hull {a1, a2, . . . , an}.
Proposition 2.0h (b) (applied to Rm, ai and 0 instead of E, xi and x) shows that

we have 0 ∈ conv . hull {a1, a2, . . . , an} if and only if 0 is a convex combination of
the vectors a1, a2, . . ., an. Thus, 0 is a convex combination of the vectors a1, a2,
. . ., an (since we have 0 ∈ conv . hull {a1, a2, . . . , an}). In other words, there exist

n nonnegative elements λ1, λ2, . . ., λn of R such that
n∑
i=1

λi = 1 and
n∑
i=1

λiai = 0.

Consider these λ1, λ2, . . ., λn.

Let u be the vector


λ1

λ2
...
λn

 ∈ Rn. Then, the sum of the coordinates of the

vector u is
n∑
i=1

λi = 1 6= 0, while the sum of the coordinates of the vector 0 is 0.

Thus, u 6= 0. Also, u ≥ 0 (because u =


λ1

λ2
...
λn

, but every λi is nonnegative).

Moreover, by the definition of the product of a matrix with a column vector, we
have

Au =
n∑
i=1

(the i-th column of A)︸ ︷︷ ︸
=ai

(since the columns of A
are a1, a2, ..., an)

· (the i-th coordinate of u)︸ ︷︷ ︸
=λi

(since u=



λ1

λ2
...
λn


)

=
n∑
i=1

aiλi

=
n∑
i=1

λiai = 0.

Hence, u is nonzero, and satisfies u ≥ 0 and Au = 0. Thus, there exists a
nonzero vector x ∈ Rn such that x ≥ 0 and Ax = 0 (namely, x = u). In other
words, Assertion G1 holds. Hence, at least one of Assertions G1 and G2 holds.

We thus have proven that at least one of Assertions G1 and G2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion G12 holds. In other words,
there exists an f ∈ (Rm)∗ such that

every x ∈ C satisfies f (x) < 0. (14)

33



Linear optimization May 4, 2018

Consider this f .
Let T denote the map

Rm → (Rm)∗ ,

v 7→ vT .

Then, it is known that T is an isomorphism of R-vector spaces. Hence, T−1 is
well-defined. Let z = T−1 (f). Then, f = T (z) = zT (by the definition of T ).

Every i ∈ {1, 2, . . . , n} satisfies

ai ∈ {a1, a2, . . . , an} ⊆ conv . hull {a1, a2, . . . , an}
(by Proposition 2.0f (c), applied to S = {a1, a2, . . . , an})

= C

and thus f (ai) < 0 (by (14), applied to x = ai). Now, for every i ∈ {1, 2, . . . , n},
we have(

the i-th coordinate of the row vector (−z)T A
)

= (−z)T︸ ︷︷ ︸
=−zT =−f

(since f=zT )

· (the i-th column of A)︸ ︷︷ ︸
=ai

(since the columns of A
are a1, a2, ..., an)

(by the definition of the product of a row vector with a matrix)

= (−f) · ai = − f (ai)︸ ︷︷ ︸
<0

> −0 = 0 = (the i-th coordinate of the row vector 0) .

Thus, (−z)T A > 0. Hence, there exists a vector y ∈ Rm such that yTA > 0
(namely, y = −z). In other words, Assertion G2 holds. Hence, at least one of
Assertions G1 and G2 holds.

We thus have proven that at least one of Assertions G1 and G2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions G1 and G2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions G1 and G2 holds. Since we know that the
Assertions G1 and G2 cannot hold at the same time, this yields that exactly one
of Assertions G1 and G2 holds. This proves Theorem 2.5e.

As we have seen, Theorem 2.5e is no more than a simple corollary of Theorem
2.1c. Theorem 2.5f is more interesting.

Proof of Theorem 2.5f. The Assertions S1 and S2 cannot hold at the same time26.
We will now show that at least one of these assertions holds.

26Proof. Assume the opposite. Then, the Assertions S1 and S2 hold at the same time. Since
Assertion S2 holds, there exists a vector y ∈ Rm such that yTA ≥ 0 and yTA 6= 0. Consider
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Let p be the vector


1
1
...
1

 ∈ Rn. Clearly, p > 0.

Applying Theorem 2.5d to b = −Ap, we see that exactly one of the following
two assertions holds:

Assertion S 11: The system Ax = −Ap has a nonnegative solution
x ∈ Rn.

Assertion S 12: There exists a vector y ∈ Rm such that yTA ≥ 0 and
yT (−Ap) < 0.

Therefore, we must be in one of the following two cases:
Case 1: Assertion S11 holds.
Case 2: Assertion S12 holds.
Let us first consider Case 1. In this case, Assertion S11 holds. In other words,

the system Ax = −Ap has a nonnegative solution x ∈ Rn. Let y be this solution.
Then, y ∈ Rn is nonnegative and satisfies Ay = −Ap. Since y ≥ 0 (because y is
nonnegative) and p > 0, we have y︸︷︷︸

≥0

+ p︸︷︷︸
>0

> 0. Also, A (y + p) = Ay︸︷︷︸
=−Ap

+Ap =

−Ap+ Ap = 0.
Hence, we know that y + p > 0 and A (y + p) = 0. Thus, there exists a vector

x ∈ Rn such that x > 0 and Ax = 0 (namely, x = y + p). In other words,
Assertion S1 holds. Hence, at least one of Assertions S1 and S2 holds.

We have thus proven that at least one of Assertions S1 and S2 holds in Case 1.
Now, let us consider Case 2. In this case, Assertion S12 holds. In other words,

there exists a vector y ∈ Rm such that yTA ≥ 0 and yT (−Ap) < 0. Denote this
vector y by w. Then, w ∈ Rm satisfies wTA ≥ 0 and wT (−Ap) < 0.

Since −wTAp = wT (−Ap) < 0, we have −wTAp 6= 0, so that wTA 6= 0.
We thus know that wTA ≥ 0 and wTA 6= 0. Hence, there exists a vector y ∈ Rm

such that yTA ≥ 0 and yTA 6= 0 (namely, y = w). In other words, Assertion S2
holds. Hence, at least one of Assertions S1 and S2 holds.

We have thus proven that at least one of Assertions S1 and S2 holds in Case 2.
Hence, in each of the Cases 1 and 2, at least one of Assertions S1 and S2

holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions S1 and S2 holds. Since we know that the

this y. Since Assertion S1 holds, there exists a vector x ∈ Rn such that x > 0 and Ax = 0.
Consider this x.

The row vector yTA is nonzero (since yTA 6= 0) and satisfies yTA ≥ 0. Hence, Lemma
2.2b (applied to yTA and x instead of x and y) shows that yTAx > 0 (since x > 0). This
contradicts yTAx = yT Ax︸︷︷︸

=0

= 0. This contradiction shows that our assumption was wrong,

qed.

35



Linear optimization May 4, 2018

Assertions S1 and S2 cannot hold at the same time, this yields that exactly one
of Assertions S1 and S2 holds. This proves Theorem 2.5f.

11. Block matrices

Let us recall the following convention:

Convention 2.5g. (a) Let u ∈ N and v ∈ N. Let n1, n2, . . .,
nv be nonnegative integers, and let m1, m2, . . ., mu be nonnegative
integers. For every (i, j) ∈ {1, 2, . . . , u} × {1, 2, . . . , v}, let Ai,j be

an mi × nj-matrix. Then,


A1,1 A1,2 . . . A1,v

A2,1 A2,2 . . . A2,v
...

...
. . .

...
Au,1 Au,2 . . . Au,v

 will not mean

a u × v-matrix whose entries themselves are matrices, but rather a
block matrix of size (m1 +m2 + · · ·+mu) × (n1 + n2 + · · ·+ nv)
whose blocks are the matrices Ai,j.

(b) Let n ∈ N. Column vectors in Rn are considered as n × 1-
matrices, and row vectors in (Rn)∗ are considered as 1 × n-matrices.
In particular, Convention 2.5g (a) also applies when some of the Ai,j
are column vectors or row vectors (as long as their sizes “fit”). For

example, if x is the vector

(
2
1

)
and y is the vector

 3
7
5

, then

(
x
y

)
denotes the vector


2
1
3
7
5

.

Let us state yet another trivial property of nonnegative vectors using Conven-
tion 2.5g:

Lemma 2.5h. Let N ∈ N and M ∈ N. Let x ∈ RN and y ∈ RM .

Consider the block matrix

(
x
y

)
; this is an (N +M) × 1-matrix,

i. e., a vector in RN+M (since we identify matrices having only one
column with column vectors).

(a) If x ≥ 0 and y ≥ 0, then

(
x
y

)
≥ 0.

(b) If

(
x
y

)
≥ 0, then x ≥ 0 and y ≥ 0.

36



Linear optimization May 4, 2018

See Section 16 for the proof of Lemma 2.5h.
The following simple lemma further illustrates the use of Convention 2.5g:

Lemma 2.5i. Let n ∈ N. Let x ∈ Rn and y ∈ Rn be such that(
x
−x

)
≥
(

y
−y

)
(where

(
x
−x

)
and

(
y
−y

)
are to be under-

stood according to Convention 2.5g). Then, x = y.

We shall not use Lemma 2.5i, but a proof nevertheless is given in Section 16.

12. The Motzkin theorem

We will now prove another of the basic theorems of linear optimization theory:

Theorem 2.5k. Let n ∈ N, m ∈ N and m′ ∈ N. Let A be an m× n-
matrix. Let b ∈ Rm. Let A′ be an m′×n-matrix. Let b′ ∈ Rm′ . Then,
exactly one of the following two assertions holds:

Assertion M1: There exists a vector x ∈ Rn such that Ax < b and
A′x ≤ b′.

Assertion M2: There exist two vectors y ∈ Rm and y′ ∈ Rm′ such
that y ≥ 0, y′ ≥ 0, yTA+ y′TA′ = 0 and((

yT b+ y′T b′ < 0
)

or
(
y 6= 0 and yT b+ y′T b′ ≤ 0

))
.

Theorem 2.5k is known as Motzkin’s theorem and is equivalent to Exercise 2.19
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5k is somewhat
stronger than Exercise 2.19 in [Schrij17].

To prove Theorem 2.5k, we will first show:

Theorem 2.5l. Let n ∈ N, n′ ∈ N and m ∈ N. Let A be an m× n-
matrix. Let A′ be an m×n′-matrix. Then, exactly one of the following
two assertions holds:

Assertion L1: There exist two vectors x ∈ Rn and x′ ∈ Rn′ such that
x > 0, x′ ≥ 0 and Ax+ A′x′ = 0.

Assertion L2: There exists a vector y ∈ Rm such that yTA ≥ 0,
yTA′ ≥ 0 and yTA 6= 0.
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Proof of Theorem 2.5l. The Assertions L1 and L2 cannot hold at the same time27.
We will now show that at least one of these assertions holds.

Consider the block matrix
(
A A′

)
; this is an m× (n+ n′)-matrix.

Let p be the vector


1
1
...
1

 ∈ Rn. Clearly, p > 0.

Applying Theorem 2.5d to n + n′,
(
A A′

)
and −Ap instead of n, A and b,

we conclude that exactly one of the following two assertions holds:

Assertion L11: The system
(
A A′

)
x = −Ap has a nonnegative

solution x ∈ Rn+n′ .

Assertion L12: There exists a vector y ∈ Rm such that yT
(
A A′

)
≥

0 and yT (−Ap) < 0.

Therefore, we must be in one of the following two cases:
Case 1: Assertion L11 holds.
Case 2: Assertion L12 holds.
Let us first consider Case 1. In this case, Assertion L11 holds. In other words,

the system
(
A A′

)
x = −Ap has a nonnegative solution x ∈ Rn+n′ . Let ξ be

this solution. Then, ξ ∈ Rn+n′ is a nonnegative vector satisfying
(
A A′

)
ξ =

−Ap.

Let us write the vector ξ in the form

(
u
v

)
, where u ∈ Rn and v ∈ Rn′ .

We have

(
u
v

)
= ξ ≥ 0 (since ξ is a nonnegative vector). Hence, Lemma 2.5h

(b) (applied to n, n′, u and v instead of N , M , x and y) shows that u ≥ 0 and
v ≥ 0.

27Proof. Assume the opposite. Then, the Assertions L1 and L2 hold at the same time. Since
Assertion L2 holds, there exists a vector y ∈ Rm such that yTA ≥ 0, yTA′ ≥ 0 and yTA 6= 0.
Consider this y.

Since Assertion L1 holds, there exist two vectors x ∈ Rn and x′ ∈ Rn′ such that x > 0,
x′ ≥ 0 and Ax+A′x′ = 0. Consider these two vectors x and x′.

From x > 0, we conclude that x ≥ 0.
Applying Lemma 2.0v to yTA and x instead of x and y, we obtain yTAx ≥ 0. Applying

Lemma 2.0v to n′, yTA′ and x′ instead of n, x and y, we obtain yTA′x′ ≥ 0.
If we had yTAx = 0, then Lemma 2.2d (applied to yTA and x instead of x and y) would

yield yTA = 0, contradicting yTA 6= 0. Thus, we cannot have yTAx = 0. Hence, yTAx 6= 0,
so that yTAx > 0 (since yTAx ≥ 0).

We have yT (Ax+A′x′)︸ ︷︷ ︸
=0

= 0, thus

0 = yT (Ax+A′x′) = yTAx︸ ︷︷ ︸
>0

+ yTA′x′︸ ︷︷ ︸
≥0

> 0.

This is absurd. This contradiction shows that our assumption was wrong, qed.
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Since ξ =

(
u
v

)
, we have

(
A A′

)
ξ =

(
A A′

)( u
v

)
= Au+ A′v

(by the multiplication rule for block matrices) .

Compared with
(
A A′

)
ξ = −Ap, this yields −Ap = Au + A′v. Thus, 0 =

Ap+ Au︸ ︷︷ ︸
=A(p+u)

+A′v = A (p+ u) + A′v. Also, p︸︷︷︸
>0

+ u︸︷︷︸
≥0

> 0.

Altogether, we know that p+u > 0, v ≥ 0 and A (p+ u)+A′v = 0. Thus, there
exist two vectors x ∈ Rn and x′ ∈ Rn′ such that x > 0, x′ ≥ 0 and Ax+A′x′ = 0
(namely, x = p + u and x′ = v). In other words, Assertion L1 holds. Hence, at
least one of Assertions L1 and L2 holds.

We have thus proven that at least one of Assertions L1 and L2 holds in Case
1.

Now, let us consider Case 2. In this case, Assertion L12 holds. In other words,
there exists a vector y ∈ Rm such that yT

(
A A′

)
≥ 0 and yT (−Ap) < 0.

Denote this y by w. Then, w ∈ Rm satisfies wT
(
A A′

)
≥ 0 and wT (−Ap) < 0.

Since wT (−Ap) < 0, we have wT (−Ap) 6= 0 and thus wTA (−p) = wT (−Ap) 6=
0, hence wTA 6= 0.

We have wT
(
A A′

)
≥ 0. Since wT

(
A A′

)
=
(
wTA wTA′

)
(by the

multiplication rule for block matrices), this rewrites as
(
wTA wTA′

)
≥ 0.

Thus, wTA ≥ 0 and wTA′ ≥ 0 (by an analogue of Lemma 2.5h (b) for block

matrices of the form
(
x y

)
instead of

(
x
y

)
).

So we have proven that wTA ≥ 0, wTA′ ≥ 0 and wTA 6= 0. Thus, there exists
a vector y ∈ Rm such that yTA ≥ 0, yTA′ ≥ 0 and yTA 6= 0 (namely, y = w).
In other words, Assertion L2 holds. Hence, at least one of Assertions L1 and L2
holds.

We have thus proven that at least one of Assertions L1 and L2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions L1 and L2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions L1 and L2 holds. Since we know that the
Assertions L1 and L2 cannot hold at the same time, this yields that exactly one
of Assertions L1 and L2 holds. This proves Theorem 2.5l.

Proof of Theorem 2.5k. The Assertions M1 and M2 cannot hold at the same
time28. We will now show that at least one of these assertions holds.

For any nonnegative integers α and β, let 0α,β denote the α × β zero matrix.
For any nonnegative integer γ, let Iγ denote the γ × γ identity matrix.

28Proof. Assume the opposite. Then, the Assertions M1 and M2 hold at the same time. Since
Assertion M2 holds, there exist two vectors y ∈ Rm and y′ ∈ Rm′ such that y ≥ 0, y′ ≥ 0,
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Consider the block matrix

(
Im −b

0m′,m −b′
)

; this is a (m+m′)×(m+ 1)-matrix.

Also, consider the block matrix

(
0m,m′ A −A
Im′ A′ −A′

)
; this is a (m+m′) ×

(m′ + 2n)-matrix.

Applying Theorem 2.5l to m + m′, m + 1, m′ + 2n,

(
Im −b

0m′,m −b′
)

and(
0m,m′ A −A
Im′ A′ −A′

)
instead of m, n, n′, A and A′, we conclude that exactly

one of the following two assertions holds:

yTA+ y′TA′ = 0 and((
yT b+ y′T b′ < 0

)
or
(
y 6= 0 and yT b+ y′T b′ ≤ 0

))
.

Consider these two vectors y and y′.
Since Assertion M1 holds, there exists a vector x ∈ Rn such that Ax < b and A′x ≤ b′.

Consider this x.
From Ax < b, we obtain b > Ax, so that b− Ax > 0. Thus, b− Ax ≥ 0. Also, y ≥ 0, so

that yT ≥ 0 (since the transpose of any nonnegative vector is nonnegative). Now, applying
Lemma 2.0v to m, yT and b− Ax instead of n, x and y, we obtain yT (b−Ax) ≥ 0. Thus,
yT b− yTAx = yT (b−Ax) ≥ 0, so that yT b ≥ yTAx.

From A′x ≤ b′, we obtain b′ ≥ A′x, so that b′ − A′x ≥ 0. Also, y′ ≥ 0, so that y′T ≥ 0
(since the transpose of any nonnegative vector is nonnegative). Now, applying Lemma
2.0v to m′, y′T and b′ − A′x instead of n, x and y, we obtain y′T (b′ −A′x) ≥ 0. Thus,
y′T b′ − y′TA′x = y′T (b′ −A′x) ≥ 0, so that y′T b′ ≥ y′TA′x.

Now, recall that we have
(
yT b+ y′T b′ < 0

)
or
(
y 6= 0 and yT b+ y′T b′ ≤ 0

)
. Hence, we

must be in one of the following two cases:
Case 1: We have yT b+ y′T b′ < 0.
Case 2: We have y 6= 0 and yT b+ y′T b′ ≤ 0.
Let us first consider Case 1. In this case, yT b+ y′T b′ < 0. Thus,

0 > yT b︸︷︷︸
≥yTAx

+ y′T b′︸ ︷︷ ︸
≥y′TA′x

≥ yTAx+ y′TA′x =
(
yTA+ y′TA′

)︸ ︷︷ ︸
=0

x = 0.

This is absurd. Thus, we have obtained a contradiction in Case 1.
Let us now consider Case 2. In this case, y 6= 0 and yT b + y′T b′ ≤ 0. From y 6= 0,

we obtain yT 6= 0. If we had yT (b−Ax) = 0, then Lemma 2.2d (applied to m, yT and
b − Ax instead of n, x and y) would yield yT = 0 (since yT ≥ 0, yT (b−Ax) = 0 and
b−Ax > 0), contradicting yT 6= 0. Hence, we cannot have yT (b−Ax) = 0. In other words,
yT (b−Ax) 6= 0. Combined with yT (b−Ax) ≥ 0, this yields yT (b−Ax) > 0. Hence,
yT b− yTAx = yT (b−Ax) > 0, so that yT b > yTAx.

Now, from yT b+ y′T b′ ≤ 0, we obtain

0 ≥ yT b︸︷︷︸
>yTAx

+ y′T b′︸ ︷︷ ︸
≥y′TA′x

> yTAx+ y′TA′x =
(
yTA+ y′TA′

)︸ ︷︷ ︸
=0

x = 0.

This is absurd. Thus, we have obtained a contradiction in Case 2.
Hence, in each of the cases 1 and 2, we have obtained a contradiction. Since cases 1 and

2 cover all possibilities, this yields that we have a contradiction in any situation. Thus, our
assumption was wrong, qed.
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Assertion M 11: There exist two vectors x ∈ Rm+1 and x′ ∈ Rm′+2n

such that x > 0, x′ ≥ 0 and

(
Im −b

0m′,m −b′
)
x+

(
0m,m′ A −A
Im′ A′ −A′

)
x′ =

0.

Assertion M 12: There exists a vector y ∈ Rm+m′ such that yT
(

Im −b
0m′,m −b′

)
≥

0, yT
(

0m,m′ A −A
Im′ A′ −A′

)
≥ 0 and yT

(
Im −b

0m′,m −b′
)
6= 0.

Therefore, we must be in one of the following two cases:
Case 1: Assertion M11 holds.
Case 2: Assertion M12 holds.
Let us first consider Case 1. In this case, Assertion M11 holds. In other words,

there exist two vectors x ∈ Rm+1 and x′ ∈ Rm′+2n such that x > 0, x′ ≥ 0 and(
Im −b

0m′,m −b′
)
x +

(
0m,m′ A −A
Im′ A′ −A′

)
x′ = 0. Denote these vectors x and x′

by ξ and ξ′, respectively. Then, ξ ∈ Rm+1 and ξ′ ∈ Rm′+2n satisfy ξ > 0, ξ′ ≥ 0

and

(
Im −b

0m′,m −b′
)
ξ +

(
0m,m′ A −A
Im′ A′ −A′

)
ξ′ = 0.

Denote the (m+ 1)-th coordinate of the vector ξ by t. Then, t > 0 (since

ξ > 0). Hence, t 6= 0, so that t is invertible, and
1

t
> 0 (since t > 0).

Since ξ is a vector in Rm+1 whose (m+ 1)-th coordinate is t, we can write ξ

in the form ξ =

(
u
t

)
for some u ∈ Rm. Consider this u. Then, u > 0 (since

ξ > 0).

Write the vector ξ′ ∈ Rm′+2n in the form

 v
w
z

, where v ∈ Rm′ , w ∈ Rn and

z ∈ Rn. Then, from ξ′ ≥ 0, we obtain v ≥ 0, w ≥ 0 and z ≥ 0.
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But

0 =

(
Im −b

0m′,m −b′
)

ξ︸︷︷︸
=

 u
t


+

(
0m,m′ A −A
Im′ A′ −A′

)
ξ′︸︷︷︸

=


v
w
z



=

(
Im −b

0m′,m −b′
)(

u
t

)
︸ ︷︷ ︸
=

 Imu+ (−b) t
0m′,mu+ (−b′) t


(by the multiplication rule for block matrices)

+

(
0m,m′ A −A
Im′ A′ −A′

) v
w
z


︸ ︷︷ ︸
=

 0m,m′v + Aw + (−A) z
Im′v + A′w + (−A′) z


(by the multiplication rule for block matrices)

=

(
Imu+ (−b) t

0m′,mu+ (−b′) t

)
+

(
0m,m′v + Aw + (−A) z
Im′v + A′w + (−A′) z

)
=

(
Imu+ (−b) t+ 0m,m′v + Aw + (−A) z

0m′,mu+ (−b′) t+ Im′v + A′w + (−A′) z

)
.

Hence,

(
Imu+ (−b) t+ 0m,m′v + Aw + (−A) z

0m′,mu+ (−b′) t+ Im′v + A′w + (−A′) z

)
= 0, so that Imu+ (−b) t+

0m,m′v + Aw + (−A) z = 0 and 0m′,mu+ (−b′) t+ Im′v + A′w + (−A′) z = 0.
Thus,

0 = Imu︸︷︷︸
=u>0

+ (−b) t︸ ︷︷ ︸
=−bt

+ 0m,m′v︸ ︷︷ ︸
=0

+Aw + (−A) z︸ ︷︷ ︸
=−Az

> −bt+ Aw − Az︸ ︷︷ ︸
=A(w−z)

= −bt+ A (w − z) .

Since t > 0, we can divide this inequality by t, and obtain 0 > −b+
1

t
A (w − z) =

−b+ A · 1

t
(w − z). Thus, b > A · 1

t
(w − z), so that A · 1

t
(w − z) < b.

On the other hand,

0 = 0m′,mu︸ ︷︷ ︸
=0

+ (−b′) t︸ ︷︷ ︸
=−b′t

+ Im′v︸︷︷︸
=v≥0

+A′w+(−A′) z︸ ︷︷ ︸
=−A′z

≥ −b′t+A′w − A′z︸ ︷︷ ︸
=A′(w−z)

= −b′t+A′ (w − z) .

Since t > 0, we can divide this inequality by t, and obtain 0 ≥ −b′+ 1

t
A′ (w − z) =

−b′ + A′ · 1

t
(w − z). Thus, b′ ≥ A′ · 1

t
(w − z), so that A′ · 1

t
(w − z) ≤ b′.

So we know that A · 1
t

(w − z) < b and A′ · 1
t

(w − z) ≤ b′. Hence, there exists a

vector x ∈ Rn such that Ax < b and A′x ≤ b′ (namely, x =
1

t
(w − z)). In other

words, Assertion M1 holds. Hence, at least one of Assertions M1 and M2 holds.
We have thus proven that at least one of Assertions M1 and M2 holds in Case

1.
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Next, let us consider Case 2. In this case, Assertion M12 holds. In other

words, there exists a vector y ∈ Rm+m′ such that yT
(

Im −b
0m′,m −b′

)
≥ 0,

yT
(

0m,m′ A −A
Im′ A′ −A′

)
≥ 0 and yT

(
Im −b

0m′,m −b′
)
6= 0. Denote this vector y by

η. Then, η ∈ Rm+m′ satisfies ηT
(

Im −b
0m′,m −b′

)
≥ 0, ηT

(
0m,m′ A −A
Im′ A′ −A′

)
≥

0 and ηT
(

Im −b
0m′,m −b′

)
6= 0.

Let us write the vector η in the form

(
v
w

)
, where v ∈ Rm and w ∈ Rm′ .

Then, ηT =

(
v
w

)T
=
(
vT wT

)
. Hence,

ηT
(

Im −b
0m′,m −b′

)
=
(
vT wT

)( Im −b
0m′,m −b′

)
=
(
vT Im + wT0m′,m vT (−b) + wT (−b′)

)
(by the multiplication rule for block matrices)

=
(
vT −

(
vT b+ wT b′

) )since vT Im︸ ︷︷ ︸
=vT

+wT0m′,m︸ ︷︷ ︸
=0

= vT and vT (−b) + wT (−b′) = −
(
vT b+ wT b′

) .

Thus,
(
vT −

(
vT b+ wT b′

) )
= ηT

(
Im −b

0m′,m −b′
)
≥ 0. Therefore, vT ≥ 0

and −
(
vT b+ wT b′

)
≥ 0 (by an analogue of Lemma 2.5h (b) for block matrices

of the form
(
x y

)
instead of

(
x
y

)
). From −

(
vT b+ wT b′

)
≥ 0, we obtain

vT b + wT b′ ≤ 0. From vT ≥ 0, we obtain v ≥ 0 (since a column vector is
nonnegative if and only if its transpose is nonnegative).
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Since ηT =
(
vT wT

)
, we have

ηT
(

0m,m′ A −A
Im′ A′ −A′

)
=
(
vT wT

)( 0m,m′ A −A
Im′ A′ −A′

)
=
(
vT0m,m′ + wT Im′ vTA+ wTA′ vT (−A) + wT (−A′)

)
(by the multiplication rule for block matrices)

=
(
wT vTA+ wTA′ −

(
vTA+ wTA′

) )since vT0m,m′︸ ︷︷ ︸
=0

+wT Im′︸ ︷︷ ︸
=wT

= wT and vT (−A) + wT (−A′) = −
(
vTA+ wTA′

) .

Thus,
(
wT vTA+ wTA′ −

(
vTA+ wTA′

) )
= ηT

(
0m,m′ A −A
Im′ A′ −A′

)
≥ 0.

Hence, we have wT ≥ 0, vTA + wTA′ ≥ 0 and −
(
vTA+ wTA′

)
≥ 0 (by an

analogue of Lemma 2.5h (b) for block matrices of the form
(
x y z

)
instead

of

(
x
y

)
). From −

(
vTA+ wTA′

)
≥ 0, we obtain vTA + wTA′ ≤ 0. Combining

this with vTA + wTA′ ≥ 0, we obtain vTA + wTA′ = 0. From wT ≥ 0, we
obtain w ≥ 0 (since a column vector is nonnegative if and only if its transpose is
nonnegative).

Altogether, we now know that v ≥ 0, w ≥ 0, vTA+ wTA′ = 0, vT b+ wT b′ ≤ 0

and
(
vT −

(
vT b+ wT b′

) )
= ηT

(
Im −b

0m′,m −b′
)
6= 0.

Since
(
vT −

(
vT b+ wT b′

) )
6= 0, at least one of the relations vT 6= 0 and

−
(
vT b+ wT b′

)
6= 0 must hold. Thus, we must be in one of the following two

subcases:
Subcase 2.1: We have vT 6= 0.
Subcase 2.2: We have −

(
vT b+ wT b′

)
6= 0.

Let us consider Subcase 2.1 first. In this subcase, vT 6= 0. Thus, v 6= 0.
Combined with vT b+ wT b′ ≤ 0, this yields

(
v 6= 0 and vT b+ wT b′ ≤ 0

)
, so that((

vT b+ wT b′ < 0
)

or
(
v 6= 0 and vT b+ wT b′ ≤ 0

))
.

Thus, we know that v ≥ 0, w ≥ 0, vTA+ wTA′ = 0 and((
vT b+ wT b′ < 0

)
or
(
v 6= 0 and vT b+ wT b′ ≤ 0

))
.

Hence, there exist two vectors y ∈ Rm and y′ ∈ Rm′ such that y ≥ 0, y′ ≥ 0,
yTA+ y′TA′ = 0 and((

yT b+ y′T b′ < 0
)

or
(
y 6= 0 and yT b+ y′T b′ ≤ 0

))
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(namely, y = v and y′ = w). In other words, Assertion M2 holds. Thus, Assertion
M2 holds in Subcase 2.1.

Let us now consider Subcase 2.2. In this subcase, −
(
vT b+ wT b′

)
6= 0, so that

vT b + wT b′ 6= 0. Combined with vT b + wT b′ ≤ 0, this yields vT b + wT b′ < 0.
Hence, ((

vT b+ wT b′ < 0
)

or
(
v 6= 0 and vT b+ wT b′ ≤ 0

))
.

Thus, we know that v ≥ 0, w ≥ 0, vTA+ wTA′ = 0 and((
vT b+ wT b′ < 0

)
or
(
v 6= 0 and vT b+ wT b′ ≤ 0

))
.

Hence, there exist two vectors y ∈ Rm and y′ ∈ Rm′ such that y ≥ 0, y′ ≥ 0,
yTA+ y′TA′ = 0 and((

yT b+ y′T b′ < 0
)

or
(
y 6= 0 and yT b+ y′T b′ ≤ 0

))
(namely, y = v and y′ = w). In other words, Assertion M2 holds. Thus, Assertion
M2 holds in Subcase 2.2.

We have thus proven that Assertion M2 holds in each of Subcases 2.1 and 2.2.
Thus, in Case 2, Assertion M2 always holds (because Subcases 2.1 and 2.2 cover
all of Case 2). Hence, in Case 2, at least one of Assertions M1 and M2 holds.

Hence, in each of the Cases 1 and 2, at least one of Assertions M1 and M2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions M1 and M2 holds. Since we know that the
Assertions M1 and M2 cannot hold at the same time, this yields that exactly one
of Assertions M1 and M2 holds. This proves Theorem 2.5k.

Let us mention two direct corollaries of Theorem 2.5k:

Corollary 2.5n. Let n ∈ N and m ∈ N. Let A be an m× n-matrix.
Let b ∈ Rm. Then, exactly one of the following two assertions holds:

Assertion N1: There exists a vector x ∈ Rn such that Ax < b.

Assertion N2: There exists a nonzero vector y ∈ Rm such that y ≥ 0,
yTA = 0 and yT b ≤ 0.

Corollary 2.5n is classically equivalent to Exercise 2.18 in [Schrij17], but con-
structively stronger.

Here is the second corollary:

Corollary 2.5o. Let n ∈ N and m ∈ N. Let A be an m× n-matrix.
Let b ∈ Rm. Then, exactly one of the following two assertions holds:

Assertion O1: There exists a vector x ∈ Rn such that Ax ≤ b.

Assertion O2: There exists a vector y ∈ Rm such that y ≥ 0, yTA = 0
and yT b < 0.
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Corollary 2.5o is classically equivalent to [Schrij17, Corollary 2.5a], but con-
structively stronger.

Proof of Corollary 2.5n. The Assertions N1 and N2 cannot hold at the same
time29. We will now show that at least one of these assertions holds.

Let 00,n denote the zero 0× n-matrix, and let 00 denote the zero vector in R0.
(Both 00,n and 00 are matrices with no entries at all.) Applying Theorem 2.5k to
m′ = 0, A′ = 00,n and b′ = 00, we conclude that exactly one of the following two
assertions holds:

Assertion N 11: There exists a vector x ∈ Rn such that Ax < b and
00,nx ≤ 00.

Assertion N 12: There exist two vectors y ∈ Rm and y′ ∈ R0 such
that y ≥ 0, y′ ≥ 0, yTA+ y′T00,n = 0 and((

yT b+ y′T00 < 0
)

or
(
y 6= 0 and yT b+ y′T00 ≤ 0

))
.

Hence, we must be in one of the following two cases:
Case 1: Assertion N11 holds.
Case 2: Assertion N12 holds.
Let us first consider Case 1. In this case, Assertion N11 holds. In other words,

there exists a vector x ∈ Rn such that Ax < b and 00,nx ≤ 00. Thus, Assertion
N1 holds. Hence, at least one of Assertions N1 and N2 holds.

We have thus proven that at least one of Assertions N1 and N2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion N12 holds. In other
words, there exist two vectors y ∈ Rm and y′ ∈ R0 such that y ≥ 0, y′ ≥ 0,
yTA+ y′T00,n = 0 and((

yT b+ y′T00 < 0
)

or
(
y 6= 0 and yT b+ y′T00 ≤ 0

))
.

Denote these vectors y and y′ by η and η′. Then, η ∈ Rm and η′ ∈ R0 satisfy
η ≥ 0, η′ ≥ 0, ηTA+ η′T00,n = 0 and((

ηT b+ η′T00 < 0
)

or
(
η 6= 0 and ηT b+ η′T00 ≤ 0

))
. (15)

29Proof. Assume the opposite. Then, the Assertions N1 and N2 hold at the same time. Since
Assertion N2 holds, there exists a nonzero vector y ∈ Rm such that y ≥ 0, yTA = 0 and
yT b ≤ 0. Consider this y.

Since Assertion N1 holds, there exists a vector x ∈ Rn such that Ax < b. Consider this x.
From Ax < b, we obtain b > Ax, hence b − Ax > 0. Thus, b − Ax ≥ 0. Also, y ≥ 0, so

that yT ≥ 0 (since the transpose of any nonnegative vector is nonnegative). Now, applying
Lemma 2.0v to m, yT and b−Ax instead of n, x and y, we obtain yT (b−Ax) ≥ 0. Combined
with yT (b−Ax) = yT b − yTA︸︷︷︸

=0

x = yT b ≤ 0, this yields yT (b−Ax) = 0. Hence, applying

Lemma 2.2d to m, yT and b − Ax instead of n, x and y, we obtain yT = 0, thus y = 0,
contradicting the fact that y be nonzero. Thus, our assumption was wrong, qed.
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Since η′T00 = 0, the relation (15) simplifies to
((
ηT b < 0

)
or
(
η 6= 0 and ηT b ≤ 0

))
.

Thus, ηT b ≤ 0 (because otherwise, neither ηT b < 0 nor
(
η 6= 0 and ηT b ≤ 0

)
would be possible) and η 6= 0 (for the same reason). Also, ηTA + η′T00,n = 0
simplifies to ηTA = 0.

Altogether, we know that η is nonzero and satisfies η ≥ 0, ηTA = 0 and
ηT b ≤ 0. Thus, there exists a nonzero vector y ∈ Rm such that y ≥ 0, yTA = 0
and yT b ≤ 0 (namely, y = η). In other words, Assertion N2 holds. Hence, at
least one of Assertions N1 and N2 holds.

We have thus proven that at least one of Assertions N1 and N2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions N1 and N2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions N1 and N2 holds. Since we know that the
Assertions N1 and N2 cannot hold at the same time, this yields that exactly one
of Assertions N1 and N2 holds. This proves Corollary 2.5n.

Proof of Corollary 2.5o. The Assertions O1 and O2 cannot hold at the same
time30. We will now show that at least one of these assertions holds.

Let 00,n denote the zero 0× n-matrix, and let 00 denote the zero vector in R0.
(Both 00,n and 00 are matrices with no entries at all.) Applying Theorem 2.5k to
0, m, 00,n, 00, A and b instead of m, m′, A, b, A′ and b′, we conclude that exactly
one of the following two assertions holds:

Assertion O11: There exists a vector x ∈ Rn such that 00,nx < 00

and Ax ≤ b.

Assertion O12: There exist two vectors y ∈ R0 and y′ ∈ Rm such that
y ≥ 0, y′ ≥ 0, yT00,n + y′TA = 0 and((

yT00 + y′T b < 0
)

or
(
y 6= 0 and yT00 + y′T b ≤ 0

))
.

Hence, we must be in one of the following two cases:
Case 1: Assertion O11 holds.
Case 2: Assertion O12 holds.

30Proof. Assume the opposite. Then, the Assertions O1 and O2 hold at the same time. Since
Assertion O2 holds, there exists a vector y ∈ Rm such that y ≥ 0, yTA = 0 and yT b < 0.
Consider this y.

Since Assertion O1 holds, there exists a vector x ∈ Rn such that Ax ≤ b. Consider this
x.

From Ax ≤ b, we obtain b ≥ Ax, thus b − Ax ≥ 0. Also, y ≥ 0, so that yT ≥ 0 (since
the transpose of any nonnegative vector is nonnegative). Now, applying Lemma 2.0v to
m, yT and b − Ax instead of n, x and y, we obtain yT (b−Ax) ≥ 0. This contradicts
yT (b−Ax) = yT b − yTA︸︷︷︸

=0

x = yT b < 0. This contradiction shows that our assumption was

wrong, qed.
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Let us first consider Case 1. In this case, Assertion O11 holds. In other words,
there exists a vector x ∈ Rn such that 00,nx < 00 and Ax ≤ b. Hence, Assertion
O1 holds. Hence, at least one of Assertions O1 and O2 holds.

We have thus proven that at least one of Assertions O1 and O2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion O12 holds. In other
words, there exist two vectors y ∈ R0 and y′ ∈ Rm such that y ≥ 0, y′ ≥ 0,
yT00,n + y′TA = 0 and((

yT00 + y′T b < 0
)

or
(
y 6= 0 and yT00 + y′T b ≤ 0

))
.

Denote these vectors y and y′ by η and η′. Then, η ∈ R0 and η′ ∈ Rm satisfy
η ≥ 0, η′ ≥ 0, ηT00,n + η′TA = 0 and((

ηT00 + η′T b < 0
)

or
(
η 6= 0 and ηT00 + η′T b ≤ 0

))
. (16)

Since η ∈ R0, we have η = 0 (since the only element of R0 is 0). Hence, the
assertion η 6= 0 is false. Thus, the assertion

(
η 6= 0 and ηT00 + η′T b ≤ 0

)
is also

false. Hence, from (16), we conclude that we must have ηT00 + η′T b < 0. Since
ηT00︸︷︷︸

=0

+η′T b = η′T b, this simplifies to η′T b < 0.

Furthermore, comparing ηT00,n︸ ︷︷ ︸
=0

+η′TA = η′TA with ηT00,n + η′TA = 0, we

obtain η′TA = 0.
Altogether, we now know that η′ ≥ 0, η′TA = 0 and η′T b < 0. Hence, there

exists a vector y ∈ Rm such that y ≥ 0, yTA = 0 and yT b < 0 (namely, y = η′).
In other words, Assertion O2 holds. Hence, at least one of Assertions O1 and O2
holds.

We have thus proven that at least one of Assertions O1 and O2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions O1 and O2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions O1 and O2 holds. Since we know that the
Assertions O1 and O2 cannot hold at the same time, this yields that exactly one
of Assertions O1 and O2 holds. This proves Corollary 2.5o.

13. The weak Duality theorem

The following theorem is classically equivalent to, but constructively stronger
than [Schrij17, Corollary 2.5b]:

Theorem 2.5p. Let n ∈ N and m ∈ N. Let A be an m × n-
matrix. Let b ∈ Rm. Let c ∈ Rn and δ ∈ R. Assume that the set
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{x ∈ Rn | Ax ≤ b} has at least one element. Then, exactly one of
the following two assertions holds:

Assertion P1: There exists a vector x ∈ Rn such that Ax ≤ b and
cTx > δ.

Assertion P2: There exists a vector y ∈ Rm such that y ≥ 0, yTA = cT

and yT b ≤ δ.

The following proof of Theorem 2.5p is being given only for the sake of com-
pleteness. It is more or less a copy of that of [Schrij17, Corollary 2.5b], with
the only difference that the reductio to absurdum part has been replaced by a
constructive case distinction:

Proof of Theorem 2.5p. The Assertions P1 and P2 cannot hold at the same time31.
We will now show that at least one of these assertions holds.

Let 0n denote the zero vector in Rn.

Consider the block matrix

(
AT 0n
bT 1

)
(where the scalar 1 is considered as a

vector in R1, thus as an 1× 1-matrix); this is an (n+ 1)× (m+ 1)-matrix.

Also, consider the block matrix

(
c
δ

)
. This block matrix is an (n+ 1) × 1-

matrix, i. e., a vector in Rn+1.

Applying Theorem 2.5d to n+ 1, m+ 1,

(
AT 0n
bT 1

)
and

(
c
δ

)
instead of m,

n, A and b, we conclude that exactly one of the following two assertions holds:

Assertion P11: The system

(
AT 0n
bT 1

)
x =

(
c
δ

)
has a nonnega-

tive solution x ∈ Rm+1.

Assertion P12: There exists a vector y ∈ Rn+1 such that yT
(
AT 0n
bT 1

)
≥

0 and yT
(
c
δ

)
< 0.

31Proof. Assume the opposite. Then, the Assertions P1 and P2 hold at the same time. Since
Assertion P2 holds, there exists a vector y ∈ Rm such that y ≥ 0, yTA = cT and yT b ≤ δ.
Consider this y.

Since Assertion P1 holds, there exists a vector x ∈ Rn such that Ax ≤ b and cTx > δ.
Consider this x.

From Ax ≤ b, we obtain b ≥ Ax, so that b − Ax ≥ 0. Also, y ≥ 0, so that yT ≥ 0
(since the transpose of any nonnegative vector is nonnegative). Now, applying Lemma 2.0v
to m, yT and b − Ax instead of n, x and y, we obtain yT (b−Ax) ≥ 0. This contradicts
yT (b−Ax) = yT b︸︷︷︸

≤δ

− yTA︸︷︷︸
=cT

x ≤ δ − cTx︸︷︷︸
>δ

< δ − δ = 0. This contradiction shows that our

assumption was wrong, qed.
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Hence, we must be in one of the following two cases:
Case 1: Assertion P11 holds.
Case 2: Assertion P12 holds.
Let us first consider Case 1. In this case, Assertion P11 holds. In other

words, the system

(
AT 0n
bT 1

)
x =

(
c
δ

)
has a nonnegative solution x ∈ Rm+1.

Let ξ be this solution. Then, ξ ∈ Rm+1 is a nonnegative vector such that(
AT 0n
bT 1

)
ξ =

(
c
δ

)
.

Let us write the vector ξ in the form

(
v
w

)
, where v ∈ Rm and w ∈ R1.

Consider w ∈ R1 as a scalar (because elements of R1 can be identified with
scalars). Then,(

c
δ

)
=

(
AT 0n
bT 1

)
ξ︸︷︷︸

=

 v
w


=

(
AT 0n
bT 1

)(
v
w

)
=

(
ATv + 0nw
bTv + 1w

)

(by the rules for multiplying block matrices). Thus, c = ATv + 0nw and δ =
bTv + 1w. Hence, c = ATv + 0nw︸︷︷︸

=0

= ATv and δ = bTv + 1w︸︷︷︸
=w

= bTv + w.

Now,

(
v
w

)
= ξ ≥ 0 (since ξ is nonnegative). Thus, v ≥ 0 and w ≥ 0 (by

Lemma 2.5h (b)).
Thus,

δ = bTv + w︸︷︷︸
≥0

≥ bTv =
(
bTv
)T (

since bTv is a scalar, i. e., a 1× 1-matrix
)

= vT
(
bT
)T︸ ︷︷ ︸

=b

= vT b.

In other words, vT b ≤ δ.

Also, from c = ATv, we obtain cT =
(
ATv

)T
= vT

(
AT
)T︸ ︷︷ ︸

=A

= vTA.

We thus know that v ≥ 0, vTA = cT and vT b ≤ δ. Hence, there exists a vector
y ∈ Rm such that y ≥ 0, yTA = cT and yT b ≤ δ (namely, y = v). In other words,
Assertion P2 holds. Hence, at least one of Assertions P1 and P2 holds.

We have thus proven that at least one of Assertions P1 and P2 holds in Case
1.

Let us now consider Case 2. In this case, Assertion P12 holds. In other words,

there exists a vector y ∈ Rn+1 such that yT
(
AT 0n
bT 1

)
≥ 0 and yT

(
c
δ

)
<
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0. Denote this y by w. Then, w ∈ Rn+1 satisfies wT
(
AT 0n
bT 1

)
≥ 0 and

wT
(
c
δ

)
< 0.

Let us write the vector w in the form

(
v
t

)
, where v ∈ Rn and t ∈ R1.

Consider t ∈ R1 as a scalar (because elements of R1 can be identified with scalars).
Then, tT = t.

We have
(
cTv
)T

= cTv (since cTv is a scalar). Thus, cTv =
(
cTv
)T

=

vT
(
cT
)T︸ ︷︷ ︸

=c

= vT c, therefore vT c = cTv.

From w =

(
v
t

)
, we obtain wT =

(
v
t

)T
=
(
vT tT

)
=
(
vT t

)
(since

tT = t). Thus,

wT
(
c
δ

)
=
(
vT t

)( c
δ

)
= vT c︸︷︷︸

=cT v

+tδ

(by the multiplication rule for block matrices)

= cTv + tδ.

Hence, the relation wT
(
c
δ

)
< 0 (which we know to be true) rewrites as cTv +

tδ < 0.
On the other hand, from wT =

(
vT t

)
, we deduce that

wT
(
AT 0n
bT 1

)
=
(
vT t

)( AT 0n
bT 1

)
=
(
vTAT + tbT vT0n + t · 1

)
(by the multiplication rule for block matrices). Thus, the relation wT

(
AT 0n
bT 1

)
≥

0 (which we know to be true) rewrites as
(
vTAT + tbT vT0n + t · 1

)
≥ 0. Thus,

(using the analogue of Lemma 2.5h (b) for block matrices of the form
(
x y

)
instead of

(
x
y

)
) we conclude that vTAT + tbT ≥ 0 and vT0n + t · 1 ≥ 0.

From vTAT + tbT ≥ 0, we obtain
(
vTAT + tbT

)T ≥ 0 (since the transpose

of a nonnegative vector is always nonnegative). In light of
(
vTAT + tbT

)T
=(

AT
)T︸ ︷︷ ︸

=A

(
vT
)T︸ ︷︷ ︸

=v

+
(
bT
)T︸ ︷︷ ︸

=b

tT︸︷︷︸
=t

= Av + bt, this rewrites as Av + bt ≥ 0. Since bt = tb

(as we can regard t as a scalar), this rewrites as Av + tb ≥ 0.
Of course, vT0n + t · 1 ≥ 0 simplifies to t ≥ 0. Hence, we must be in one of the

following two subcases:
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Subcase 2.1: We have t = 0.
Subcase 2.2: We have t > 0.
Let us first consider Subcase 2.1. In this subcase, we have t = 0. Thus,

cTv + t︸︷︷︸
=0

δ = cTv + 0δ = cTv. Hence, the relation cTv + tδ < 0 (which we know

to be true) rewrites as cTv < 0. Thus, cTv 6= 0, so that cTv is invertible.
We know that the set {x ∈ Rn | Ax ≤ b} has at least one element. Let x0 be

such an element. Then, x0 ∈ {x ∈ Rn | Ax ≤ b}, so that x0 ∈ Rn and Ax0 ≤ b.

Let τ = max

{
0,
cTx0 − δ
cTv

+ 1

}
32. Then, τ ≥ 0 and τ ≥ cTx0 − δ

cTv
+ 1.

We have τ ≥ cTx0 − δ
cTv

+ 1 >
cTx0 − δ
cTv

. Multiplying this inequality with cTv,

we obtain
τcTv < cTx0 − δ (17)

(since cTv < 0).
On the other hand, Av + t︸︷︷︸

=0

b = Av + 0b = Av, so that Av = Av + tb ≥ 0.

Now, using τ ≥ 0, we obtain τ Av︸︷︷︸
≥0

≥ τ0 = 0. Hence, A (x0 − τv) = Ax0 −

τAv︸︷︷︸
≥0

≤ Ax0 ≤ b.

On the other hand,

cT (x0 − τv) = cTx0 − τcTv︸︷︷︸
<cT x0−δ
(by (17))

> cTx0 −
(
cTx0 − δ

)
= δ.

Altogether, we thus know that A (x0 − τv) ≤ b and cT (x0 − τv) > δ. Hence,
there exists a vector x ∈ Rn such that Ax ≤ b and cTx > δ (namely, x = x0−τv).
In other words, Assertion P1 holds. We have thus proven that Assertion P1 holds
in Subcase 2.1.

Now, let us consider Subcase 2.2. In this subcase, t > 0. Thus, t 6= 0, so that

t is invertible, and
1

t
> 0 (since t > 0). Hence, from Av + tb ≥ 0, we obtain

Av ≥ −tb. Multiplying this inequality by
1

t
(which is allowed, since

1

t
> 0), we

obtain
1

t
Av ≥ −b. Hence, A

(
−1

t
v

)
= − 1

t
Av︸︷︷︸
≥−b

≤ − (−b) = b.

On the other hand,

δ−cT
(
−1

t
v

)
︸ ︷︷ ︸

=−
1

t
cT v

= δ−
(
−1

t
cTv

)
= δ+

1

t
cTv =

1

t

(
tδ + cTv

)
=

1

t︸︷︷︸
>0

(
cTv + tδ

)︸ ︷︷ ︸
<0

< 0,

32This is well-defined, since the real number cT v is invertible.
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so that cT
(
−1

t
v

)
> δ.

Altogether, we know that A

(
−1

t
v

)
≤ b and cT

(
−1

t
v

)
> δ. Thus, there

exists a vector x ∈ Rn such that Ax ≤ b and cTx > δ (namely, x = −1

t
v). In

other words, Assertion P1 holds. We have thus proven that Assertion P1 holds
in Subcase 2.2.

Altogether, we know that Assertion P1 holds in each of Subcases 2.1 and 2.2.
Thus, in Case 2, Assertion P1 always holds (since Subcases 2.1 and 2.2 cover all
of Case 2). Thus, in Case 2, at least one of Assertions P1 and P2 holds.

Hence, in each of the Cases 1 and 2, at least one of Assertions P1 and P2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions P1 and P2 holds. Since we know that the
Assertions P1 and P2 cannot hold at the same time, this yields that exactly one
of Assertions P1 and P2 holds. This proves Theorem 2.5p.

Theorem 2.5p yields a weak version of linear programming duality:

Corollary 2.5q. Let n ∈ N and m ∈ N. Let A be an m ×
n-matrix. Let b ∈ Rm. Let c ∈ Rn. Assume that the number
max

{
cTx | x ∈ Rn; Ax ≤ b

}
exists. Then, the number

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exists and satisfies

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

I am calling this version weak because it requires the existence of
max

{
cTx | x ∈ Rn; Ax ≤ b

}
, while the same conclusion can be proven un-

der the (easier to verify) assumption that the set
{
cTx | x ∈ Rn; Ax ≤ b

}
is

nonempty and bounded from below. (This will follow from Theorem 2.6c below.)
Here is yet another weak version of linear programming duality:

Corollary 2.5r. Let n ∈ N and m ∈ N. Let A be an m× n-matrix.
Let b ∈ Rm. Let c ∈ Rn. Assume that the number
min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exists. Then, the number

max
{
cTx | x ∈ Rn; Ax ≤ b

}
exists and satisfies

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Both Corollary 2.5q and Corollary 2.5r are easy corollaries of Theorem 2.6c be-
low. We will, however, give an alternative proof of Corollary 2.5q using Theorem
2.5p first. In a similar vein, Corollary 2.5r could be shown using an analogue of
Theorem 2.5p.
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Proof of Corollary 2.5q. The number max
{
cTx | x ∈ Rn; Ax ≤ b

}
exists (by

assumption). Denote this number by δ. Then, every element of
{
cTx | x ∈ Rn; Ax ≤ b

}
is ≤ δ. In other words,

cTx ≤ δ for every x ∈ Rn satisfying Ax ≤ b. (18)

Also, the set
{
cTx | x ∈ Rn; Ax ≤ b

}
has a maximum (since

max
{
cTx | x ∈ Rn; Ax ≤ b

}
exists) and thus has at least one element (since

a set that has a maximum must always have at least one element). In other
words, there exists some x ∈ Rn satisfying Ax ≤ b. In other words, the set
{x ∈ Rn | Ax ≤ b} has at least one element. Hence, Theorem 2.5p yields that
exactly one of the following two assertions holds:

Assertion Q11: There exists a vector x ∈ Rn such that Ax ≤ b and
cTx > δ.

Assertion Q12: There exists a vector y ∈ Rm such that y ≥ 0, yTA =
cT and yT b ≤ δ.

Since Assertion Q11 cannot hold33, this yields that Assertion Q12 must hold.
In other words, there exists a vector y ∈ Rm such that y ≥ 0, yTA = cT and
yT b ≤ δ. Denote this y by w. Thus, w ∈ Rm satisfies w ≥ 0, wTA = cT

and wT b ≤ δ. Since w ∈ Rm satisfies w ≥ 0 and wTA = cT , we have w ∈{
y ∈ Rm | y ≥ 0 and yTA = cT

}
and thus

wT b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. (19)

Now, we will prove that

λ ≥ δ for every λ ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. (20)

[Proof of (20): Let λ ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. Thus, there

exists a z ∈ Rm such that z ≥ 0, zTA = cT and zT b = λ. Consider this z.
By the definition of δ, we have

δ = max
{
cTx | x ∈ Rn; Ax ≤ b

}
∈
{
cTx | x ∈ Rn; Ax ≤ b

}
.

Hence, there exists some x ∈ Rn such that Ax ≤ b and cTx = δ. Denote this
x by q. Then, q ∈ Rn satisfies Aq ≤ b and cT q = δ. From Aq ≤ b, we obtain
b ≥ Aq, thus b − Aq ≥ 0. Also, z ≥ 0, so that zT ≥ 0 (since the transpose of
a nonnegative vector must always be nonnegative). Thus, applying Lemma 2.0v
to m, zT and b − Aq instead of n, x and y, we obtain zT (b− Aq) ≥ 0 (since

33Proof. Assume the contrary. Then, Assertion Q11 holds. In other words, there exists a vector
x ∈ Rn such that Ax ≤ b and cTx > δ. Consider this x. Then, Ax ≤ b, so that cTx ≤ δ
(by (18)), contradicting cTx > δ. This contradiction shows that our assumption was wrong,
qed.
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b− Aq ≥ 0). Since zT (b− Aq) = zT b︸︷︷︸
=λ

− zTA︸︷︷︸
=cT

q = λ− cT q︸︷︷︸
=δ

= λ− δ, this rewrites

as λ− δ ≥ 0. In other words, λ ≥ δ. This proves (20).]
From (19), we know that wT b ∈

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. Hence,

applying (20) to λ = wT b, we obtain wT b ≥ δ. Combined with wT b ≤ δ, this
yields wT b = δ. Hence, (19) rewrites as

δ ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Thus, δ is an element of the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. Com-

bined with the fact that every element of the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is ≥ δ (by (20)), this yields that δ is the minimum of the set{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. In other words, the number

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exists and satisfies

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
= δ.

Since δ = max
{
cTx | x ∈ Rn; Ax ≤ b

}
, this rewrites as follows: The number

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exists and satisfies

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
= max

{
cTx | x ∈ Rn; Ax ≤ b

}
.

This proves Corollary 2.5q.

14. The Duality theorem

We are almost ready to formulate the linear programming duality theorem in one
of its strongest forms. First, let us define two basic notions:

Definition 2.6b. (i) A subset S of R is said to be unbounded from
above if for every δ ∈ R, there exists a t ∈ S such that t ≥ δ.

(ii) A subset S of R is said to be unbounded from below if for every
δ ∈ R, there exists a t ∈ S such that t ≤ δ.

In classical logic, a subset S of R is unbounded from above if and only if it is
not bounded from above (i. e., there does not exist any m ∈ R such that every
t ∈ S satisfies t ≤ m). In constructive logic, this is not generally true, and the
assertion that S be unbounded from above is stronger than the assertion that S
not be bounded from above.

We now state a theorem that is somewhat stronger (both classically and con-
structively) than [Schrij17, Theorem 2.6]:

Theorem 2.6c. Let n ∈ N and m ∈ N. Let A be an m × n-matrix.
Let b ∈ Rm. Let c ∈ Rn. Then, exactly one of the following four
assertions holds:
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Assertion I1: The sets {x ∈ Rn | Ax ≤ b} and
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
are empty.

Assertion I2: The set
{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded from

above, and the set
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is empty.

Assertion I3: The set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is un-

bounded from below, and the set {x ∈ Rn | Ax ≤ b} is empty.

Assertion I4: The numbers max
{
cTx | x ∈ Rn; Ax ≤ b

}
and

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exist and satisfy

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Theorem 2.6c is often referred to as the “asymmetric version of the strong
duality theorem of linear programming”.

Let me reiterate that Theorem 2.6c still holds if we replace R by any other
ordered field, such as Q. This cannot be said of the proof of Theorem 2.6 in
[Schrij17], since it uses the fact that any set of real numbers has a supremum or
is unbounded from above (and this fact does not hold for Q). So we are going to
give a different proof.

First, we prove a slightly weaker result:

Lemma 2.6d. Let n ∈ N and m ∈ N. Let A be an m×n-matrix. Let
b ∈ Rm. Let c ∈ Rn. Assume that the set {x ∈ Rn | Ax ≤ b} has at
least one element. Then, exactly one of the following two assertions
holds:

Assertion J1: The set
{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded from

above, and the set
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is empty.

Assertion J2: The numbers max
{
cTx | x ∈ Rn; Ax ≤ b

}
and

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exist and satisfy

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

It should be said that Lemma 2.6d is weaker than Theorem 2.6c, but still
stronger than [Schrij17, Theorem 2.6].

Proof of Lemma 2.6d. The Assertions J1 and J2 cannot hold at the same time34.
We will now show that at least one of these assertions holds.

34Proof. Assume the opposite. Then, the Assertions J1 and J2 hold at the same time.
The set

{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded from above (by Assertion J1), and thus

has no maximum. In other words, the number max
{
cTx | x ∈ Rn; Ax ≤ b

}
does not exist.

But this contradicts Assertion J2. This contradiction shows that our assumption was wrong,
qed.
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For any nonnegative integers α and β, let 0α,β denote the α × β zero matrix.
For any nonnegative integer γ, let Iγ denote the γ × γ identity matrix.

Consider the block matrix


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

; this is an (2m+ 2n+ 1)×(n+m)-

matrix.

Consider the block matrix


0m,1
b
c
−c
01,1

; this is an (2m+ 2n+ 1) × 1-matrix, i.

e., a vector in R2m+2n+1. We identify the 1×1-matrix 01,1 with the scalar 0; thus,

the block matrix


0m,1
b
c
−c
01,1

 rewrites as


0m,1
b
c
−c
0

.

Applying Corollary 2.5o to 2m+2n+1, n+m,


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 and


0m,1
b
c
−c
01,1


instead of m, n, A and b, we see that exactly one of the following two assertions
holds:

Assertion J 11: There exists a vector x ∈ Rn+m such that


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

x ≤


0m,1
b
c
−c
01,1

.

Assertion J 12: There exists a vector y ∈ R2m+2n+1 such that y ≥ 0,

yT


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 = 0 and yT


0m,1
b
c
−c
01,1

 < 0.
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Hence, we must be in one of the following two cases:
Case 1: Assertion J11 holds.
Case 2: Assertion J12 holds.
Let us first consider Case 1. In this case, Assertion J11 holds. In other words,

there exists a vector x ∈ Rn+m such that


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

x ≤


0m,1
b
c
−c
01,1

. Denote

this vector x by ξ. Then, ξ ∈ Rn+m satisfies


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 ξ ≤


0m,1
b
c
−c
01,1

.

Let us write the vector ξ in the form

(
u
v

)
, where u ∈ Rn and v ∈ Rm. Since

ξ =

(
u
v

)
, we have


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 ξ

=


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT


(
u
v

)
=


0m,nu+ (−Im) v
Au+ 0m,mv
0n,nu+ ATv

0n,nu+
(
−AT

)
v

−cTu+ bTv


(by the multiplication rule for block matrices)

=


−v
Au
ATv
−ATv

−cTu+ bTv




since 0m,nu︸ ︷︷ ︸
=0

+ (−Im) v︸ ︷︷ ︸
=−v

= −v, Au+ 0m,mv︸ ︷︷ ︸
=0

= Au,

0n,nu︸ ︷︷ ︸
=0

+ATv = ATv, and 0n,nu︸ ︷︷ ︸
=0

+
(
−AT

)
v︸ ︷︷ ︸

=−AT v

= −ATv

 .

Hence, 
−v
Au
ATv
−ATv

−cTu+ bTv

 =


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 ξ ≤


0m,1
b
c
−c
01,1

 .
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Hence, we have the five inequalities35

−v ≤ 0m,1, Au ≤ b, ATv ≤ c,

−ATv ≤ −c, and − cTu+ bTv ≤ 01,1.

The inequality −v ≤ 0m,1 leads to v ≥ −0m,1 = 0m,1 = 0. Thus, vT ≥ 0 (since the
transpose of any nonnegative vector is nonnegative). The inequality −ATv ≤ −c
rewrites as ATv ≥ c; combining this with ATv ≤ c, we obtain ATv = c. The
inequality −cTu+ bTv ≤ 01,1 becomes −cTu+ bTv ≤ 01,1 = 0, so that bTv ≤ cTu.

Since bTv is a scalar, we have
(
bTv
)T

= bTv. Thus, bTv =
(
bTv
)T

= vT
(
bT
)T︸ ︷︷ ︸

=b

=

vT b. Hence, vT b = bTv ≤ cTu.
But u ∈ Rn satisfies Au ≤ b. Thus, u ∈ {x ∈ Rn | Ax ≤ b} and therefore

cTu ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
.

On the other hand,

every w ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
satisfies w ≤ vT b. (21)

36 Applying this to w = cTu, we obtain cTu ≤ vT b (since cTu ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
).

Combined with vT b ≤ cTu, this yields

vT b = cTu. (22)

Thus, vT b = cTu ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
. In other words, vT b is an element

of the set
{
cTx | x ∈ Rn; Ax ≤ b

}
. Combined with the fact that every element

of the set
{
cTx | x ∈ Rn; Ax ≤ b

}
is ≤ vT b (due to (21)), this yields that vT b is

the maximum of the set
{
cTx | x ∈ Rn; Ax ≤ b

}
. In other words, the number

max
{
cTx | x ∈ Rn; Ax ≤ b

}
exists and satisfies

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= vT b. (23)

35Here, we are using the following simple fact: Let n1, n2, n3, n4, and n5 be five nonnegative
integers. Let α1 ∈ Rn1 , α2 ∈ Rn2 , α3 ∈ Rn3 , α4 ∈ Rn4 , and α5 ∈ Rn5 be five column
vectors. Let β1 ∈ Rn1 , β2 ∈ Rn2 , β3 ∈ Rn3 , β4 ∈ Rn4 , and β5 ∈ Rn5 be five column vectors.

Assume that


α1

α2

α3

α4

α5

 ≥


β1
β2
β3
β4
β5

. Then, we have the five inequalities

α1 ≥ β1, α2 ≥ β2, α3 ≥ β3, α4 ≥ β4, and α5 ≥ β5.

36Proof of (21): Let w ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
. Then, there exists some x ∈ Rn such that

Ax ≤ b and w = cTx. Consider this x.
We have Ax ≤ b, hence b ≥ Ax. Thus, b − Ax ≥ 0. Thus, Lemma 2.0v (applied to

m, vT and b − Ax instead of n, x and y) yields vT (b−Ax) ≥ 0 (since vT ≥ 0). Thus,
0 ≤ vT (b−Ax) = vT b− vTA︸︷︷︸

=cT

x = vT b− cTx︸︷︷︸
=w

= vT b−w, so that w ≤ vT b. This proves (21).
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Now,

every w ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
satisfies w ≥ vT b. (24)

37 Also, from v ≥ 0 and vTA = cT , we conclude that v ∈
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
.

Hence, vT b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. Combined with the fact

that every element of the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is ≥ vT b

(by (24)), this yields that vT b is the minimum of the set{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. In other words, the number

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exists and satisfies

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
= vT b.

Compared with (23), this yields

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Altogether, we have shown that the numbers max
{
cTx | x ∈ Rn; Ax ≤ b

}
and min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exist and satisfy

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

In other words, Assertion J2 holds. Thus, at least one of Assertions J1 and J2
holds.

We have thus proven that in Case 1, at least one of Assertions J1 and J2 holds.
Now, let us consider Case 2. In this case, Assertion J12 holds. In other words,

there exists a vector y ∈ R2m+2n+1 such that y ≥ 0, yT


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 = 0 and

37Proof of (24): Let w ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. Then, there exists an y ∈ Rm

such that y ≥ 0, yTA = cT and w = yT b. Consider this y. Since y ≥ 0, we have yT ≥ 0
(since the transpose of any nonnegative vector is nonnegative).

We have Au ≤ b. Thus, b ≥ Au, so that b − Au ≥ 0. Thus, Lemma 2.0v (applied to
m, yT and b − Au instead of n, x and y) yields yT (b−Au) ≥ 0 (since yT ≥ 0). Thus,
0 ≤ yT (b−Au) = yT b− yTA︸︷︷︸

=cT

u = yT b︸︷︷︸
=w

− cTu︸︷︷︸
=vT b

(by (22))

= w − vT b, so that w ≥ vT b. This proves

(24).

60



Linear optimization May 4, 2018

yT


0m,1
b
c
−c
01,1

 < 0. Denote this vector y by η. Then, η ∈ R2m+2n+1 satisfies η ≥ 0,

ηT


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT

 = 0 (25)

and

ηT


0m,1
b
c
−c
01,1

 < 0. (26)

Let us write the vector η in the form


u
v
q
r
w

, where u ∈ Rm, v ∈ Rm, q ∈ Rn,

r ∈ Rn and w ∈ R1. The vector w ∈ R1 will be regarded as a scalar (since we
can identify vectors of length 1 with scalars). Thus, wT = w.

Define a vector s ∈ Rn by s = q − r.

Since η =


u
v
q
r
w

, we have

ηT =


u
v
q
r
w


T

=
(
uT vT qT rT wT

)

=
(
uT vT qT rT w

)
(27)

(because wT = w).
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Now, (25) yields ηT


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT



T

= 0T = 0.

Hence,

0 =

ηT


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT



T

=


0m,n −Im
A 0m,m

0n,n AT

0n,n −AT
−cT bT


T

︸ ︷︷ ︸
=

 (0m,n)T AT (0n,n)T (0n,n)T
(
−cT

)T
(−Im)T (0m,m)T

(
AT
)T (

−AT
)T (

bT
)T 

(
ηT
)T︸ ︷︷ ︸

=η

=

(
(0m,n)T AT (0n,n)T (0n,n)T

(
−cT

)T
(−Im)T (0m,m)T

(
AT
)T (

−AT
)T (

bT
)T

)
η

=

(
0n,m AT 0n,n 0n,n −c
−Im 0m,m A −A b

)
u
v
q
r
w




since (0m,n)T = 0n,m and (−Im)T = − (Im)T︸ ︷︷ ︸
=Im

= −Im and (0m,m)T = 0m,m

and (0n,n)T = 0n,n and
(
AT
)T

= A and
(
−AT

)T
= −

(
AT
)T︸ ︷︷ ︸

=A

= −A

and
(
−cT

)T
= −

(
cT
)T︸ ︷︷ ︸

=c

= −c and
(
bT
)T

= b and η =


u
v
q
r
w




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=

(
0n,mu+ ATv + 0n,nq + 0n,nr + (−c)w
(−Im)u+ 0m,mv + Aq + (−A) r + bw

)
(by the multiplication rule for block matrices) .

Thus, (
0n,mu+ ATv + 0n,nq + 0n,nr + (−c)w
(−Im)u+ 0m,mv + Aq + (−A) r + bw

)
= 0 =

(
0
0

)
.

Thus,
0n,mu+ ATv + 0n,nq + 0n,nr + (−c)w = 0 (28)

and
(−Im)u+ 0m,mv + Aq + (−A) r + bw = 0. (29)

Now, (28) yields

0 = 0n,mu︸ ︷︷ ︸
=0

+ATv + 0n,nq︸︷︷︸
=0

+ 0n,nr︸︷︷︸
=0

+ (−c)w︸ ︷︷ ︸
=−cw

= ATv − cw︸︷︷︸
=wc

(since w is a scalar)

= ATv − wc,

so that ATv = wc. Thus, wc = ATv, so that

 wc︸︷︷︸
=AT v

T

=
(
ATv

)T
= vT

(
AT
)T︸ ︷︷ ︸

=A

=

vTA. Hence,
vTA = (wc)T = wcT . (30)

Also, (29) yields

0 = (−Im)u︸ ︷︷ ︸
=−u

+ 0m,mv︸ ︷︷ ︸
=0

+Aq + (−A) r︸ ︷︷ ︸
=−Ar

+bw = −u+ Aq − Ar︸ ︷︷ ︸
=A(q−r)

+ bw︸︷︷︸
=wb

(since w is a scalar)

= −u+ A (q − r)︸ ︷︷ ︸
=s

+wb = −u+ As+ wb,

so that
u = As+ wb. (31)

On the other hand, from (27), we obtain

ηT


0m,1
b
c
−c
01,1

 =
(
uT vT qT rT w

)


0m,1
b
c
−c
01,1


= uT0m,1︸ ︷︷ ︸

=0

+vT b+ qT c+ rT (−c)︸ ︷︷ ︸
=−rT c

+w01,1︸ ︷︷ ︸
=0

(by the multiplication rule for block matrices)

= vT b+ qT c− rT c︸ ︷︷ ︸
=(qT−rT )c

= vT b+
(
qT − rT

)︸ ︷︷ ︸
=(q−r)T

c = vT b+

q − r︸ ︷︷ ︸
=s

T

c = vT b+ sT c.
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Hence, (26) rewrites as
vT b+ sT c < 0. (32)

Since sT c is a scalar, we have
(
sT c
)T

= sT c, so that sT c =
(
sT c
)T

= cT
(
sT
)T︸ ︷︷ ︸

=s

=

cT s. Hence, (32) rewrites as
vT b+ cT s < 0. (33)

We have


u
v
q
r
w

 = η ≥ 0. Hence, we have the five inequalities38

u ≥ 0, v ≥ 0, q ≥ 0, r ≥ 0, and w ≥ 0.

Since w ≥ 0, we can multiply the inequality (33) with w, and obtain

w
(
vT b+ cT s

)
≤ 0. (34)

But from v ≥ 0, we obtain vT ≥ 0 (since the transpose of any nonnegative vector
is nonnegative). Thus, Lemma 2.0v (applied to m, vT and u instead of n, x and
y) yields vTu ≥ 0 (because u ≥ 0). Hence,

0 ≤ vT u︸︷︷︸
=As+wb
(by (31))

= vT (As+ wb) = vTA︸︷︷︸
=wcT

(by (30))

s+ wvT b

= wcT s+ wvT b = w
(
vT b+ cT s

)
. (35)

Combined with (33), this easily yields that w = 0 39. As a consequence, (30)
rewrites as

vTA = 0cT = 0. (36)

38Here, we are using the following simple fact: Let n1, n2, n3, n4, and n5 be five nonnegative
integers. Let α1 ∈ Rn1 , α2 ∈ Rn2 , α3 ∈ Rn3 , α4 ∈ Rn4 , and α5 ∈ Rn5 be five column
vectors. Let β1 ∈ Rn1 , β2 ∈ Rn2 , β3 ∈ Rn3 , β4 ∈ Rn4 , and β5 ∈ Rn5 be five column vectors.

Assume that


α1

α2

α3

α4

α5

 ≥


β1
β2
β3
β4
β5

. Then, we have the five inequalities

α1 ≥ β1, α2 ≥ β2, α3 ≥ β3, α4 ≥ β4, and α5 ≥ β5.

39Proof. Assume that w > 0. Then, we can divide the inequality (35) by w, and obtain
0 ≤ vT b + cT s. This contradicts (33). This contradiction shows that our assumption was
wrong. Thus, we don’t have w > 0. Hence, w ≤ 0. Combined with w ≥ 0, this yields w = 0,
qed.

64



Linear optimization May 4, 2018

Also, (31) becomes
u = As+ w︸︷︷︸

=0

b = As. (37)

Let us summarize what we have found so far: We have found vectors u ∈ Rm,
v ∈ Rm and s ∈ Rn satisfying u ≥ 0 and v ≥ 0 and the equations (33), (36) and
(37). These equations (along with u ≥ 0 and v ≥ 0) are all that we are going to
need from now on; we can forget about q, r, η and w.

Our goal now is to prove that Assertion J1 holds.
By the assumptions of Lemma 2.6d, the set {x ∈ Rn | Ax ≤ b} has at least

one element. Let z be this element. Then, z ∈ {x ∈ Rn | Ax ≤ b}. In other
words, z ∈ Rn and Az ≤ b. From Az ≤ b, we obtain b ≥ Az, thus b− Az ≥ 0.

Also, vT ≥ 0 (since v ≥ 0, and since the transpose of any nonnegative vector is
nonnegative). Thus, Lemma 2.0v (applied to m, vT and b−Az instead of n, x and
y) yields vT (b− Az) ≥ 0 (since b−Az ≥ 0). Thus, vT b−vTAz = vT (b− Az) ≥ 0,
so that vT b ≥ vTA︸︷︷︸

=0
(by (36))

z = 0. But from (33), it follows that

cT s < − vT b︸︷︷︸
≥0

≤ −0 = 0. (38)

Hence, cT s 6= 0, so that cT s is invertible.
Now, let δ ∈ R. We will show that there exists a t ∈

{
cTx | x ∈ Rn; Ax ≤ b

}
such that t ≥ δ.

Let λ = max

{
0,
cT z − δ
cT s

}
(this is well-defined since cT s is invertible). Then,

λ ≥ 0 and λ ≥ cT z − δ
cT s

.

Multiplying the inequality λ ≥ cT z − δ
cT s

with cT s, we obtain

λ · cT s ≤ cT z − δ (39)

(the sign has flipped since cT s < 0).
From (37), we have As = u ≥ 0. Hence, λAs ≥ 0 (since λ ≥ 0). The vector

z − λs ∈ Rn satisfies A (z − λs) = Az − λAs︸︷︷︸
≥0

≤ Az ≤ b. Hence, z − λs ∈

{x ∈ Rn | Ax ≤ b}, so that cT (z − λs) ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
.

But
cT (z − λs) = cT z − λ · cT s︸ ︷︷ ︸

≤cT z−δ
(by (39))

≥ cT z −
(
cT z − δ

)
= δ.

Since cT (z − λs) ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
, this yields that there exists a t ∈{

cTx | x ∈ Rn; Ax ≤ b
}

such that t ≥ δ (namely, t = cT (z − λs)).
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Now, forget that we fixed δ. We have thus shown that for every δ ∈ R, there
exists a t ∈

{
cTx | x ∈ Rn; Ax ≤ b

}
such that t ≥ δ. In other words, the set{

cTx | x ∈ Rn; Ax ≤ b
}

is unbounded from above.
Finally, let us prove that the set

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is empty.

In fact, let ψ ∈
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
be arbitrary. We will derive a

contradiction (thus showing that ψ cannot exist).
Since ψ ∈

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
, we have ψ ∈ Rm, ψ ≥ 0 and

ψTA = cT . From ψTA = cT , it follows that ψTAs = cT s. Since As = u (by (37)),
this rewrites as ψTu = cT s. Combined with (38), this yields ψTu < 0. But since
ψ ≥ 0, we have ψT ≥ 0 (since the transpose of a nonnegative vector is always
nonnegative), and thus Lemma 2.0v (applied to m, ψT and u instead of n, x and
y) yields ψTu ≥ 0 (since u ≥ 0). This contradicts ψTu < 0.

Now, forget that we fixed ψ. Thus, for every ψ ∈
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
,

we have derived a contradiction. Hence, there exists no
ψ ∈

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
. In other words, the set{

y ∈ Rm | y ≥ 0 and yTA = cT
}

is empty.
Altogether, we have proven that the set

{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded

from above, and the set
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is empty. In other

words, Assertion J1 holds. Thus, at least one of Assertions J1 and J2 holds.
We have thus proven that in Case 2, at least one of Assertions J1 and J2 holds.
We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions

J1 and J2 holds. Since these cases cover all possibilities, this yields that, in every
situation, at least one of Assertions J1 and J2 holds. Combined with the fact that
the Assertions J1 and J2 cannot hold at the same time, this yields that exactly
one of the Assertions J1 and J2 holds. This proves Lemma 2.6d.

Lemma 2.6d was “one piece” of Theorem 2.6c; here is another “piece”:

Lemma 2.6e. Let n ∈ N and m ∈ N. Let A be an m×n-matrix. Let
b ∈ Rm. Let c ∈ Rn. Assume that the set

{
y ∈ Rm | y ≥ 0, yTA = 0 and yT b < 0

}
has at least one element. Then:

(a) The set {x ∈ Rn | Ax ≤ b} is empty.

(b) Exactly one of the following two assertions holds:

Assertion K1: The sets {x ∈ Rn | Ax ≤ b} and
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
are empty.

Assertion K2: The set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is un-

bounded from below, and the set {x ∈ Rn | Ax ≤ b} is empty.

Proof of Lemma 2.6e. The Assertions K1 and K2 cannot hold at the same time40.

40Proof. Assume the opposite. Then, the Assertions K1 and K2 hold at the same time. The
set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is unbounded from below (by Assertion K2), and

thus nonempty. In other words, there exists some y ∈ Rm satisfying y ≥ 0 and yTA = cT .
In other words, the set

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is nonempty. But this contradicts

Assertion K1. This contradiction shows that our assumption was wrong, qed.
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We will now show that at least one of these assertions holds.
The set

{
y ∈ Rm | y ≥ 0, yTA = 0 and yT b < 0

}
has at least one element (by

assumption). Denote this element by z. Then,
z ∈

{
y ∈ Rm | y ≥ 0, yTA = 0 and yT b < 0

}
. In other words, z ∈ Rm, z ≥ 0,

zTA = 0 and zT b < 0. From z ≥ 0, it follows that zT ≥ 0 (since the transpose of
any nonnegative vector is nonnegative).

Now, it is easy to see that the set {x ∈ Rn | Ax ≤ b} is empty41. This proves
Lemma 2.6e (a).

Applying Theorem 2.5d to n, m, AT and c instead of m, n, A and b, we conclude
that exactly one of the following two assertions holds:

Assertion K 11: The system ATx = c has a nonnegative solution
x ∈ Rm.

Assertion K 12: There exists a vector y ∈ Rn such that yTAT ≥ 0 and
yT c < 0.

Thus, we must be in one of the following two cases:
Case 1: Assertion K11 holds.
Case 2: Assertion K12 holds.
Let us consider Case 1 first. In this case, Assertion K11 holds. In other words,

the system ATx = c has a nonnegative solution x ∈ Rm. Denote this x by u.
Thus, u ∈ Rm is nonnegative and satisfies ATu = c.

Comparing
(
ATu

)T
= uT

(
AT
)T︸ ︷︷ ︸

=A

= uTA with

(
ATu︸︷︷︸

=c

)T

= cT , we obtain uTA =

cT . Also, u is nonnegative, i. e., we have u ≥ 0. Since u ∈ Rm, u ≥ 0 and
uTA = cT , we have u ∈

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
and thus

uT b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
. (40)

Now, let δ ∈ R. We will show that there exists a
t ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
such that t ≤ δ.

In fact, since zT b < 0, we have zT b 6= 0, so that zT b is invertible. Now, let

λ = max

{
0,
δ − uT b
zT b

}
(this is well-defined since zT b is invertible). Then, λ ≥ 0

and λ ≥ δ − uT b
zT b

.

41Proof. Let w ∈ {x ∈ Rn | Ax ≤ b}. Then, w ∈ Rn and Aw ≤ b.
From Aw ≤ b, we obtain b ≥ Aw, so that b − Aw ≥ 0. Hence, Lemma 2.0v (applied

to m, zT and b − Aw instead of n, x and y) yields zT (b−Aw) ≥ 0 (since zT ≥ 0). This
contradicts zT (b−Aw) = zT b− zTA︸︷︷︸

=0

w = zT b < 0.

Now, forget that we fixed w. We have thus shown that any w ∈ {x ∈ Rn | Ax ≤ b}
satisfies a contradiction. In other words, there exists no w ∈ {x ∈ Rn | Ax ≤ b}. In other
words, the set {x ∈ Rn | Ax ≤ b} is empty, qed.
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Multiplying the inequality λ ≥ δ − uT b
zT b

with zT b, we obtain

λ · zT b ≤ δ − uT b (41)

(the sign flipped since zT b < 0).
From u ≥ 0, λ ≥ 0 and z ≥ 0, we obtain u+ λz ≥ 0.
Also,

(u+ λz)T︸ ︷︷ ︸
=uT +λzT

A =
(
uT + λzT

)
A = uTA︸︷︷︸

=cT

+λ zTA︸︷︷︸
=0

= cT .

Since u + λz ∈ Rm, u + λz ≥ 0 and (u+ λz)T A = cT , we have u + λz ∈{
y ∈ Rm | y ≥ 0 and yTA = cT

}
and thus

(u+ λz)T b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Since
(u+ λz)T b = uT b+ λ · zT b︸ ︷︷ ︸

≤δ−uT b
(by (41))

≤ uT b+ δ − uT b = δ,

this yields that there exists a t ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
such

that t ≤ δ (namely, t = (u+ λz)T b).
Now, forget that we fixed δ. We thus have proven that for every δ ∈ R, there

exists a t ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
such that t ≤ δ. In other

words, the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is unbounded from below.

We now know that the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
is unbounded

from below, and the set {x ∈ Rn | Ax ≤ b} is empty. In other words, Assertion
K2 holds. Thus, at least one of Assertions K1 and K2 holds.

Hence, we know that in Case 1, at least one of Assertions K1 and K2 holds.
Let us now consider Case 2. In this case, Assertion K12 holds. In other words,

there exists a vector y ∈ Rn such that yTAT ≥ 0 and yT c < 0. Denote this vector
y by w. Then, w ∈ Rn is a vector such that wTAT = 0 and wT c < 0.

Since wTAT = 0, we have
(
wTAT

)T
= 0T = 0. This rewrites as Aw = 0

(because
(
wTAT

)T
=
(
AT
)T︸ ︷︷ ︸

=A

(
wT
)T︸ ︷︷ ︸

=w

= Aw).

Since wT c is a scalar, we have
(
wT c

)T
= wT c < 0. Since

(
wT c

)T
= cT

(
wT
)T︸ ︷︷ ︸

=w

=

cTw, this rewrites as cTw < 0.
Now, it is easy to see that the set

{
y ∈ Rm | y ≥ 0 and yTA = cT

}
is empty42.

42Proof. Let s ∈
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
. Then, s ∈ Rm is a vector such that s ≥ 0

and sTA = cT . Thus, sTA︸︷︷︸
=cT

w = cTw < 0, contradicting sT Aw︸︷︷︸
=0

= 0.

Now, forget that we fixed s. We thus have shown that every s ∈
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Altogether, we now know that the sets {x ∈ Rn | Ax ≤ b} and{
y ∈ Rm | y ≥ 0 and yTA = cT

}
are empty. In other words, Assertion K1 holds.

Thus, at least one of Assertions K1 and K2 holds.
Hence, we know that in Case 2, at least one of Assertions K1 and K2 holds.
We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions

K1 and K2 holds. Since these cases cover all possibilities, this yields that, in every
situation, at least one of Assertions K1 and K2 holds. Combined with the fact
that the Assertions K1 and K2 cannot hold at the same time, this yields that
exactly one of the Assertions K1 and K2 holds. This proves Lemma 2.6e (b).

Proof of Theorem 2.6c. Corollary 2.5o yields that exactly one of the two asser-
tions O1 and O2 holds.43

Thus, we must be in one of the following two cases:
Case 1: Assertion O1 holds.
Case 2: Assertion O2 holds.
Let us consider Case 1 first. In this case, Assertion O1 holds. In other

words, there exists a vector x ∈ Rn such that Ax ≤ b. In other words, the
set {x ∈ Rn | Ax ≤ b} has at least one element. Hence, Lemma 2.6d yields that
exactly one of the two assertions J1 and J2 holds.44 Since Assertion J1 is identi-
cal to Assertion I2, and Assertion J2 is identical to Assertion I4, this rewrites as
follows: Exactly one of the assertions I2 and I4 holds.

Assertion I1 is false45. Assertion I3 is also false.46

So we know that Assertions I1 and I3 are both false. Combining this with the
fact that exactly one of the assertions I2 and I4 holds, we conclude that exactly
one of the four assertions I1, I2, I3 and I4 holds. In other words, Theorem 2.6c
is proven in Case 1.

Now, let us consider Case 2. In this case, Assertion O2 holds. In other words,
there exists a vector y ∈ Rm such that y ≥ 0, yTA = 0 and yT b < 0. In other
words, the set

{
y ∈ Rm | y ≥ 0, yTA = 0 and yT b < 0

}
has at least one element.

Thus, Lemma 2.6e (b) yields that exactly one of the two assertions K1 and K2
holds.47 Since Assertion K1 is identical to Assertion I1, and Assertion K2 is
identical to Assertion I3, this rewrites as follows: Exactly one of the assertions
I1 and I3 holds.{

y ∈ Rm | y ≥ 0 and yTA = cT
}

satisfies a contradiction. In other words, no

s ∈
{
y ∈ Rm | y ≥ 0 and yTA = cT

}
can exist. In other words, the set{

y ∈ Rm | y ≥ 0 and yTA = cT
}

is empty, qed.
43See the statement of Corollary 2.5o for these assertions.
44See the statement of Lemma 2.6d for these assertions.
45Proof. Assume the contrary. Thus, Assertion I1 holds. Hence, the set {x ∈ Rn | Ax ≤ b} is

empty. This contradicts the fact that the set {x ∈ Rn | Ax ≤ b} has at least one element.
This contradiction shows that our assumption was false, qed.

46Proof. Assume the contrary. Thus, Assertion I3 holds. Thus, in particular, the set
{x ∈ Rn | Ax ≤ b} is empty. This contradicts the fact that the set {x ∈ Rn | Ax ≤ b}
has at least one element. This contradiction shows that our assumption was false, qed.

47See the statement of Lemma 2.6e for these assertions.
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Assertion I2 is false48. Assertion I4 is also false.49

So we know that Assertions I2 and I4 are both false. Combining this with the
fact that exactly one of the assertions I1 and I3 holds, we conclude that exactly
one of the four assertions I1, I2, I3 and I4 holds. In other words, Theorem 2.6c
is proven in Case 2.

So we have proven Theorem 2.6c in each of the cases 1 and 2. Since these
cases 1 and 2 cover all possibilities, this yields that Theorem 2.6c is proven in all
situations. In other words, the proof of Theorem 2.6c is complete.

Note that Theorem 2.5p is an easy corollary of Theorem 2.6c:

Alternative proof of Theorem 2.5p. The Assertions P1 and P2 cannot hold at the
same time50. We will now show that at least one of these assertions holds.

Theorem 2.6c yields that exactly one of the four assertions I1, I2, I3 and I4
holds.51 Thus, we must be in one of the following four cases:

Case 1: Assertion I1 holds.
Case 2: Assertion I2 holds.
Case 3: Assertion I3 holds.
Case 4: Assertion I4 holds.
Let us consider Case 1 first. In this case, Assertion I1 holds. Thus, in particular,

the set {x ∈ Rn | Ax ≤ b} is empty. This contradicts the assumption that the
set {x ∈ Rn | Ax ≤ b} has at least one element. Thus, we have obtained a
contradiction. Hence, Theorem 2.5p holds in Case 1 (because ex falso quod
libet).

Let us now consider Case 2. In this case, Assertion I2 holds. Hence, in par-
ticular, the set

{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded from above. Thus, there

exists a t ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
such that t ≥ δ+ 1. Consider this t. Then,

t ∈
{
cTx | x ∈ Rn; Ax ≤ b

}
, so that there exists some z ∈ Rn such that Az ≤ b

and t = cT z. Consider this z. We have Az ≤ b and cT z = t ≥ δ + 1 > δ. Thus,
there exists a vector x ∈ Rn such that Ax ≤ b and cTx > δ (namely, x = z). In
other words, Assertion P1 holds. Hence, at least one of Assertions P1 and P2

48Proof. Assume the contrary. Thus, Assertion I2 holds. Thus, in particular, the set{
cTx | x ∈ Rn; Ax ≤ b

}
is unbounded from above, and therefore nonempty. In other

words, there exists some x ∈ Rn satisfying Ax ≤ b.
But Lemma 2.6e (a) shows that the set {x ∈ Rn | Ax ≤ b} is empty. In other words,

there exists no x ∈ Rn satisfying Ax ≤ b. This contradicts the fact that there exists some
x ∈ Rn satisfying Ax ≤ b. This contradiction shows that our assumption was false, qed.

49Proof. Assume the contrary. Thus, Assertion I4 holds. Hence, in particular, the number
max

{
cTx | x ∈ Rn; Ax ≤ b

}
exists. In other words, the set

{
cTx | x ∈ Rn; Ax ≤ b

}
has

a maximum. Hence, this set is nonempty. In other words, there exists some x ∈ Rn such
that Ax ≤ b.

But Lemma 2.6e (a) shows that the set {x ∈ Rn | Ax ≤ b} is empty. In other words,
there exists no x ∈ Rn satisfying Ax ≤ b. This contradicts the fact that there exists some
x ∈ Rn satisfying Ax ≤ b. This contradiction shows that our assumption was false, qed.

50This can be proven just as in our first proof of Theorem 2.5p above.
51See the statement of Theorem 2.6c for these assertions.
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holds. Combined with the fact that the Assertions P1 and P2 cannot hold at the
same time, this yields that exactly one of Assertions P1 and P2 holds. In other
words, Theorem 2.5p holds in Case 2.

In Case 3, we obtain the very same contradiction as in Case 1. Hence, Theorem
2.5p holds in Case 3 (because ex falso quod libet).

Let us finally consider Case 4. In this case, Assertion I4 holds. In other words,
the numbers max

{
cTx | x ∈ Rn; Ax ≤ b

}
and

min
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
exist and satisfy

max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Hence, we can define an ε ∈ R by

ε = max
{
cTx | x ∈ Rn; Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
.

Now, we must be in one of the following two subcases:
Subcase 4.1: We have δ < ε.
Subcase 4.2: We have δ ≥ ε.
Let us first consider Subcase 4.1. In this subcase, δ < ε. Thus, ε > δ. Since

ε = max
{
cTx | x ∈ Rn; Ax ≤ b

}
∈
{
cTx | x ∈ Rn; Ax ≤ b

}
(because the

maximum of a set always lies in this set), there exists a z ∈ Rn such that Az ≤ b
and ε = cT z. Consider this z. Then, Az ≤ b and cT z = ε > δ. Hence, there
exists a vector x ∈ Rn such that Ax ≤ b and cTx > δ (namely, x = z). In other
words, Assertion P1 holds. Hence, at least one of Assertions P1 and P2 holds.
Combined with the fact that the Assertions P1 and P2 cannot hold at the same
time, this yields that exactly one of Assertions P1 and P2 holds. In other words,
Theorem 2.5p holds in Subcase 4.1.

Let us now consider Subcase 4.2. In this subcase, δ ≥ ε. Thus, ε ≤ δ. Since
ε = min

{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA = cT

}
(because the minimum of a set always lies in this set), there exists a z ∈ Rm such
that z ≥ 0, zTA = cT and ε = zT b. Consider this z. Then, z ≥ 0, zTA = cT and
zT b = ε ≤ δ. Hence, there exists a vector y ∈ Rm such that y ≥ 0, yTA = cT and
yT b ≤ δ (namely, y = z). In other words, Assertion P2 holds. Hence, at least one
of Assertions P1 and P2 holds. Combined with the fact that the Assertions P1
and P2 cannot hold at the same time, this yields that exactly one of Assertions
P1 and P2 holds. In other words, Theorem 2.5p holds in Subcase 4.2.

We now know that Theorem 2.5p holds in each of Subcases 4.1 and 4.2. Since
these Subcases 4.1 and 4.2 cover all of Case 4, this yields that Theorem 2.5p holds
in Case 4.

We thus know that Theorem 2.5p holds in each of Cases 1, 2, 3 and 4. Since
these Cases 1, 2, 3 and 4 cover all possibilities, this yields that Theorem 2.5p
holds in every situation. Theorem 2.5p is thus proven again.
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15. The symmetric version of the Duality theorem

We are now going to prove a variant of the duality theorem which is “symmetric”
in the sense that the set we take the minimum of and the set we take the maximum
of are defined similarly (in particular, both are parametrized by nonnegative
vectors, which was not the case in Theorem 2.6c):

Theorem 2.6f. Let n ∈ N and m ∈ N. Let A be an m × n-matrix.
Let b ∈ Rm. Let c ∈ Rn. Then, exactly one of the following four
assertions holds:

Assertion Q1: The sets {x ∈ Rn | x ≥ 0 and Ax ≤ b} and{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
are empty.

Assertion Q2: The set
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
is un-

bounded from above, and the set
{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty.

Assertion Q3: The set
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
is un-

bounded from below, and the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is
empty.

Assertion Q4: The numbers max
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
and min

{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
exist and satisfy

max
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
= min

{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
.

Theorem 2.6f is stronger than Exercise 2.23 in [Schrij17] (both classically and
constructively).

It should be noticed that most of the times when Schrijver applies linear pro-
gramming duality in [Schrij17], it is being applied not in the form of Theorem 2.6
in [Schrij17] (or our Theorem 2.6c), but in the form of Exercise 2.23 in [Schrij17]
(or our Theorem 2.6f). In particular, in the proofs of Corollary 3.7b and Corol-
lary 8.3a in [Schrij17], Schrijver is applying Exercise 2.23 when he says that he is
using linear programming duality.

Proof of Theorem 2.6f. For any nonnegative integer γ, let Iγ denote the γ × γ
identity matrix.

Let 0n be the zero vector in Rn.

Consider the block matrix

(
A
−In

)
; this is an (m+ n)× n-matrix.

Also, consider the block matrix

(
b

0n

)
; this is an (m+ n)× 1-matrix, i. e., a

vector in Rm+n (since we identify matrices having only one column with column
vectors).
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Applying Theorem 2.6c to m + n,

(
A
−In

)
and

(
b

0n

)
instead of m, A and

b, we see that exactly one of the following four assertions holds:

Assertion Q11: The sets

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
and{

y ∈ Rm+n | y ≥ 0 and yT
(

A
−In

)
= cT

}
are empty.

Assertion Q12: The set

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
is

unbounded from above, and the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is empty.

Assertion Q13: The set

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
is unbounded from below, and the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty.

Assertion Q14: The numbers max

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
and min

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
ex-

ist and satisfy

max

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
= min

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
.

We will now prove that these assertions Q11, Q12, Q13, and Q14 are equivalent
to the assertions Q1, Q2, Q3, and Q4, respectively.

First, we notice that{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
=
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
. (42)
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52

Next, we notice that{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
=
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
. (44)

53

52Proof of (42): For each x ∈ Rn, we have(
b

0n

)
−

(
A
−In

)
x︸ ︷︷ ︸

=

 Ax
−x


(by the multiplication rule

for block matrices)

=

(
b

0n

)
−
(
Ax
−x

)
=

(
b−Ax

0n − (−x)

)

=

(
b−Ax
x

)
. (43)

Now, for each x ∈ Rn, we have the following chain of equivalences:((
A
−In

)
x ≤

(
b

0n

))
⇐⇒

((
b

0n

)
≥
(

A
−In

)
x

)
⇐⇒

((
b

0n

)
−
(
Ax
−x

)
≥ 0

)
⇐⇒

((
b−Ax
x

)
≥ 0

)
(by (43))

⇐⇒ (b−Ax ≥ 0 and x ≥ 0) (by Lemma 2.5h)

⇐⇒

x ≥ 0 and b−Ax ≥ 0︸ ︷︷ ︸
⇐⇒ (b≥Ax) ⇐⇒ (Ax≤b)


⇐⇒ (x ≥ 0 and Ax ≤ b) .

Hence,{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
=
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
.

This proves (42).

53Proof of (44): Let λ ∈
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
be ar-

bitrary. Then, there exists an y ∈ Rm+n such that y ≥ 0, yT
(

A
−In

)
= cT and

λ = yT
(

b
0n

)
. Denote this y by ξ. Thus, ξ ∈ Rm+n satisfies ξ ≥ 0, ξT

(
A
−In

)
= cT

and λ = ξT
(

b
0n

)
.
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Let us write the vector ξ in the form

(
u
v

)
, where u ∈ Rm and v ∈ Rn.

We have

(
u
v

)
= ξ ≥ 0. Thus, Lemma 2.5h (b) (applied to N = m, M = n, x = u and

y = v) yields that u ≥ 0 and v ≥ 0. Thus, uT ≥ 0 and vT ≥ 0.

Since ξ =

(
u
v

)
, we have ξT =

(
u
v

)T
=
(
uT vT

)
, and thus

ξT
(

A
−In

)
=
(
uT vT

)( A
−In

)
= uTA+ vT (−In)︸ ︷︷ ︸

=−vT

(by the multiplication rule for block matrices)

= uTA− vT .

Compared with ξT
(

A
−In

)
= cT , this yields cT = uTA− vT . In other words,

uTA = cT + vT .

Hence, uTA = cT + vT︸︷︷︸
≥0

≥ cT .

So we now know that u ∈ Rm, u ≥ 0 and uTA ≥ cT . In other words, u ∈{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
, so that

uT b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
. (45)

Now,

λ = ξT︸︷︷︸
=
(
uT vT

)
(

b
0n

)
=
(
uT vT

)( b
0n

)

= uT b+ vT 0n︸ ︷︷ ︸
=0

(by the multiplication rule for block matrices)

= uT b ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
(by (45)) .

Now, forget that we fixed λ. We thus have proven that every

λ ∈
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
satisfies λ ∈{

yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT
}

. In other words,{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
⊆
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
. (46)

Now, let µ ∈
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
be arbitrary. Then, there exists a

y ∈ Rm such that y ≥ 0, yTA ≥ cT and µ = yT b. Denote this y by u. Thus, u ∈ Rm satisfies
u ≥ 0, uTA ≥ cT and µ = uT b.
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We have uTA ≥ cT . In other words, uTA− cT ≥ 0.

Let v be the vector
(
uTA− cT

)T
. Then, vT =

((
uTA− cT

)T)T
= uTA − cT ≥ 0;

therefore, v ≥ 0.

Lemma 2.5h (a) (applied to N = m, M = n, x = u and y = v) yields that

(
u
v

)
≥ 0

(since u ≥ 0 and v ≥ 0). But on the other hand,(
u
v

)T
︸ ︷︷ ︸

=
(
uT vT

)

(
A
−In

)
=
(
uT vT

)( A
−In

)
= uTA+ vT (−In)︸ ︷︷ ︸

=−vT

(by the multiplication rule for block matrices)

= uTA− vT︸︷︷︸
=uTA−cT

= uTA−
(
uTA− cT

)
= cT .

Now, we know that our

(
u
v

)
∈ Rm+n satisfies

(
u
v

)
≥ 0 and

(
u
v

)T (
A
−In

)
= cT .

In other words,(
u
v

)
∈
{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
,

and thus(
u
v

)T (
b

0n

)
∈
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
.

Since (
u
v

)T
︸ ︷︷ ︸

=
(
uT vT

)

(
b

0n

)
=
(
uT vT

)( b
0n

)
= uT b︸︷︷︸

=µ

+ vT 0n︸ ︷︷ ︸
=0

(by the multiplication rule for block matrices)

= µ,

this rewrites as

µ ∈
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
.

Now, forget that we fixed µ. We thus have proven that every µ ∈{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
satisfies

µ ∈
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
. In other words,

{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
⊆
{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
.
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Next, we notice that we have the following equivalence of assertions:(
the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty

)
⇐⇒ (the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is empty) . (47)

54

Also, we have the following equivalence of assertions:(
the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is empty

)
⇐⇒

(
the set

{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty

)
. (48)

Combined with (46), this yields{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
=
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
.

This proves (44).
54Proof of (47): We have the following equivalence of assertions:(

the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty

)
⇐⇒

(
there exists no x ∈ Rn satisfying

(
A
−In

)
x ≤

(
b

0n

))

⇐⇒


the set

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
︸ ︷︷ ︸

={cT x | x∈Rn; x≥0 and Ax≤b}
(by (42))

is empty


⇐⇒

(
the set

{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
is empty

)
⇐⇒ (there exists no x ∈ Rn satisfying x ≥ 0 and Ax ≤ b)
⇐⇒ (the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is empty) .

This proves (47).
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55

Now, we make the following four observations:

• Assertion Q11 is equivalent to Assertion Q1.56

• Assertion Q12 is equivalent to Assertion Q2.57

55Proof of (48): We have the following equivalence of assertions:(
the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is empty

)
⇐⇒

(
there exists no y ∈ Rm+n satisfying y ≥ 0 and yT

(
A
−In

)
= cT

)

⇐⇒


the set

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
︸ ︷︷ ︸

={yT b | y∈Rm; y≥0 and yTA≥cT}
(by (44))

is empty


⇐⇒

(
the set

{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
is empty

)
⇐⇒

(
there exists no y ∈ Rm satisfying y ≥ 0 and yTA ≥ cT

)
⇐⇒

(
the set

{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty

)
.

This proves (48).

56Proof. Assertion Q11 says that the sets

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
and{

y ∈ Rm+n | y ≥ 0 and yT
(

A
−In

)
= cT

}
are empty. Thus, we have the following equiv-

alence of assertions:

(Assertion Q11 holds)

⇐⇒
(

the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty

)
︸ ︷︷ ︸

⇐⇒ (the set {x∈Rn | x≥0 and Ax≤b} is empty)
(by (47))

∧
(

the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is empty

)
︸ ︷︷ ︸

⇐⇒ (the set {y∈Rm | y≥0 and yTA≥cT} is empty)
(by (48))

⇐⇒ (the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is empty)

∧
(
the set

{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty

)
⇐⇒ (Assertion Q1 holds)

(because Assertion Q1 says that the sets {x ∈ Rn | x ≥ 0 and Ax ≤ b} and{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
are empty). In other words, Assertion Q11 is equivalent

to Assertion Q1.

57Proof. Assertion Q12 says that the set

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
is un-
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• Assertion Q13 is equivalent to Assertion Q3.58

bounded from above, and that the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is

empty. Thus, we have the following equivalence of assertions:

(Assertion Q12 holds)

⇐⇒


the set

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
︸ ︷︷ ︸

={cT x | x∈Rn; x≥0 and Ax≤b}
(by (42))

is unbounded from above


∧
(

the set

{
y ∈ Rm+n | y ≥ 0 and yT

(
A
−In

)
= cT

}
is empty

)
︸ ︷︷ ︸

⇐⇒ (the set {y∈Rm | y≥0 and yTA≥cT} is empty)
(by (48))

⇐⇒
(
the set

{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
is unbounded from above

)
∧
(
the set

{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty

)
⇐⇒ (Assertion Q2 holds)

(since Assertion Q2 says that the set
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
is unbounded

from above, and that the set
{
y ∈ Rm | y ≥ 0 and yTA ≥ cT

}
is empty). In other words,

Assertion Q12 is equivalent to Assertion Q2.

58Proof. Assertion Q13 says that the set

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
is unbounded from below, and that the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty.

Thus, we have the following equivalence of assertions:

(Assertion Q13 holds)

⇐⇒


the set

{
yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
︸ ︷︷ ︸

={yT b | y∈Rm; y≥0 and yTA≥cT}
(by (44))

is unbounded from below


∧
(

the set

{
x ∈ Rn |

(
A
−In

)
x ≤

(
b

0n

)}
is empty

)
︸ ︷︷ ︸

⇐⇒ (the set {x∈Rn | x≥0 and Ax≤b} is empty)
(by (47))

⇐⇒
(
the set

{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
is unbounded from below

)
∧ (the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is empty)

⇐⇒ (Assertion Q3 holds)

(since Assertion Q3 says that the set
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
is unbounded
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• Assertion Q14 is equivalent to Assertion Q4.59

Combining these observations, we see that Assertions Q11, Q12, Q13, Q14 are
equivalent to Assertions Q1, Q2, Q3, Q4, respectively. Hence, we have the fol-
lowing equivalence of assertions:

(exactly one of Assertions Q11, Q12, Q13, Q14 holds)

⇐⇒ (exactly one of Assertions Q1, Q2, Q3, Q4 holds) .

Since we know that exactly one of Assertions Q11, Q12, Q13, Q14 holds, this
yields that exactly one of Assertions Q1, Q2, Q3, Q4 holds. In other words,
Theorem 2.6f is proven.

16. Appendix: Proofs omitted from the early
sections

We have promised to give proofs for various statements made in Section 1, in
Section 2, in Section 3, in Section 4, and in Section 9. Let us now fulfill this
promise.

16.1. Proofs for Section 1

Proof of Proposition 2.0a. We will first show that if J is any finite subset of I, and if (µi)i∈J is a
family of nonnegative reals indexed by J such

that
∑
i∈J

µi = 1, then
∑
i∈J

µixi ∈ C

 . (49)

[Proof of (49): We shall prove (49) by strong induction over |J |:
Induction step:60 Fix N ∈ N. Assume that (49) holds in the case when |J | < N .

We must prove that (49) holds in the case when |J | = N .

from below, and that the set {x ∈ Rn | x ≥ 0 and Ax ≤ b} is empty). In other words,
Assertion Q13 is equivalent to Assertion Q3.

59Proof. If we use (42) to replace every
{
cTx | x ∈ Rn; x ≥ 0 and Ax ≤ b

}
by

{
cTx | x ∈ Rn;

(
A
−In

)
x ≤

(
b

0n

)}
, and if we use

(44) to replace every
{
yT b | y ∈ Rm; y ≥ 0 and yTA ≥ cT

}
by{

yT
(

b
0n

)
| y ∈ Rm+n; y ≥ 0 and yT

(
A
−In

)
= cT

}
, then Assertion Q4 turns

into Assertion Q14. Hence, Assertion Q14 is equivalent to Assertion Q4.
60A strong induction needs no induction base.
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We have assumed that (49) holds in the case when |J | < N . In other words, if J is any finite subset of I satisfying |J | < N , and
if (µi)i∈J is a family of nonnegative reals indexed by J

such that
∑
i∈J

µi = 1, then
∑
i∈J

µixi ∈ C

 . (50)

Now, let us prove that (49) holds in the case when |J | = N . Thus, let J be any
finite subset of I satisfying |J | = N , and let (µi)i∈J be a family of nonnegative
reals indexed by J such that

∑
i∈J

µi = 1. We shall show that
∑
i∈J

µixi ∈ C.

If |J | ≤ 1, then
∑
i∈J

µixi ∈ C holds61. Hence, for the rest of our proof of∑
i∈J

µixi ∈ C, we WLOG assume that we don’t have |J | ≤ 1.

There exists a k ∈ J satisfying µk < 1 62. Consider such a k. We have
µk < 1, thus 1− µk > 0.

For every i ∈ J \ {k}, set µ′i =
µi

1− µk
. This is a nonnegative real (since µi

is a nonnegative real, and since 1 − µk > 0). Hence, (µ′i)i∈J\{k} is a family of
nonnegative reals indexed by J \ {k}. Moreover, k ∈ J and thus |J \ {k}| =
|J |︸︷︷︸
=N

−1 = N − 1 < N . Furthermore,

1 =
∑
i∈J

µi =
∑
i∈J ;
i 6=k︸︷︷︸

=
∑

i∈J\{k}

µi +
∑
i∈J ;
i=k

µi

︸ ︷︷ ︸
=µk

(since k∈J)

=
∑

i∈J\{k}

µi + µk.

Solving this equation for
∑

i∈J\{k}
µi gives us

∑
i∈J\{k}

µi = 1−µk. Hence,

∑
i∈J\{k}

µi

1− µk
=

61Proof. Assume that |J | ≤ 1.
The sum

∑
i∈J

µi cannot be empty (since
∑
i∈J

µi = 1 6= 0). Hence, J cannot be the empty

set. Thus, |J | ≥ 1. Therefore, |J | = 1 (since |J | ≤ 1). In other words, J = {k} for some
k ∈ J . Consider this k. We have k ∈ J ⊆ I and thus xk ∈ C. Now, from J = {k}, we
obtain

∑
i∈J

µi =
∑
i∈{k}

µi = µk, so that µk =
∑
i∈J

µi = 1. From J = {k}, we also obtain∑
i∈J

µixi =
∑
i∈{k}

µixi = µk︸︷︷︸
=1

xk = xk ∈ C, qed.

62Proof. Assume the contrary. Thus, every k ∈ J satisfies µk ≥ 1. In other words, every i ∈ J
satisfies µi ≥ 1. Now,

∑
i∈J

µi = 1, so that 1 =
∑
i∈J

µi︸︷︷︸
≥1

≥
∑
k∈J

1 = |J | ·1 = |J |. In other words,

|J | ≤ 1. This contradicts the fact that we don’t have |J | ≤ 1. This contradiction proves
that our assumption was wrong, qed.
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1. Now, ∑
i∈J\{k}

µ′i︸︷︷︸
=

µi
1− µk

=
∑

i∈J\{k}

µi
1− µk

=

∑
i∈J\{k}

µi

1− µk
= 1.

Thus, we can apply (50) to J \ {k} and (µ′i)i∈J\{k} instead of J and (µi)i∈J . As

a result, we obtain
∑

i∈J\{k}
µ′ixi ∈ C.

On the other hand,∑
i∈J

µixi =
∑
i∈J ;
i=k

µi

︸ ︷︷ ︸
=µkxk

(since k∈J)

+
∑
i∈J ;
i 6=k︸︷︷︸

=
∑

i∈J\{k}

µixi = µkxk +
∑

i∈J\{k}

µixi. (51)

We have k ∈ J ⊆ I and thus xk ∈ C. Also, µk ∈ [0, 1] (since µk is a nonnegative
real and satisfies µk < 1).

Now, recall that the set C is convex. In other words, every two elements x ∈ C
and y ∈ C and every real number λ ∈ [0, 1] satisfy λx + (1− λ) y ∈ C (because
of the definition of convexity). Applying this to x = xk, y =

∑
i∈J\{k}

µ′ixi and

λ = µk gives us µkxk + (1− µk)
∑

i∈J\{k}
µ′ixi ∈ C (since xk ∈ C,

∑
i∈J\{k}

µ′ixi ∈ C

and µk ∈ [0, 1]). Since

µkxk + (1− µk)
∑

i∈J\{k}

µ′i︸︷︷︸
=

µi
1− µk

xi

= µkxk + (1− µk)
∑

i∈J\{k}

µi
1− µk

xi︸ ︷︷ ︸
=

1

1− µk
∑

i∈J\{k}
µixi

= µkxk + (1− µk)
1

1− µk︸ ︷︷ ︸
=1

∑
i∈J\{k}

µixi

= µkxk +
∑

i∈J\{k}

µixi =
∑
i∈J

µixi (by (51)) ,

this rewrites as
∑
i∈J

µixi ∈ C.

Now, let us forget that we fixed J and (µi)i∈J . We thus have proven that if J is
any finite subset of I satisfying |J | = N , and if (µi)i∈J is a family of nonnegative
reals indexed by J such that

∑
i∈J

µi = 1, then
∑
i∈J

µixi ∈ C. In other words, (49)

holds in the case when |J | = N . This completes the induction step.
Thus, (49) is proven by induction.]
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Now, recall that all but finitely many i ∈ I satisfy λi = 0. In other words,
there exists a finite subset J of I such that

every i ∈ I \ J satisfies λi = 0. (52)

Consider this J . We have
∑
i∈I
λi = 1. Since

∑
i∈I

λi =
∑
i∈I;
i∈J︸︷︷︸

=
∑
i∈J

(since J⊆I)

λi +
∑
i∈I;
i/∈J︸︷︷︸

=
∑

i∈I\J

λi =
∑
i∈J

λi +
∑
i∈I\J

λi︸︷︷︸
=0

(by (52))

=
∑
i∈J

λi +
∑
i∈I\J

0︸ ︷︷ ︸
=0

=
∑
i∈J

λi,

this rewrites as
∑
i∈J

λi = 1. Thus, (49) (applied to (µi)i∈J = (λi)i∈J) shows that∑
i∈J

λixi ∈ C. Now,

∑
i∈I

λixi =
∑
i∈I;
i∈J︸︷︷︸

=
∑
i∈J

(since J⊆I)

λixi +
∑
i∈I;
i/∈J︸︷︷︸

=
∑

i∈I\J

λixi =
∑
i∈J

λixi +
∑
i∈I\J

λi︸︷︷︸
=0

(by (52))

=
∑
i∈J

λixi +
∑
i∈I\J

0xi︸ ︷︷ ︸
=0

=
∑
i∈J

λixi ∈ C.

This proves Proposition 2.0a.

Proof of Proposition 2.0f. (a) Let E be an R-vector space. Let S be a subset of
E.

Let C1 be the intersection of all convex subsets of E which contain S as a
subset. Definition 2.0c defined the convex hull of S to be this set C1. In other
words,

(the convex hull of S defined according to Definition 2.0c) = C1. (53)

Let C2 be the set of all convex combinations of the vectors s for s ∈ S. Defi-
nition 2.0d defined the convex hull of S to be this set C2. In other words,

(the convex hull of S defined according to Definition 2.0d) = C2. (54)
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Let C3 be the setx ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 .

Definition 2.0e defined the convex hull of S to be this set C3. In other words,

(the convex hull of S defined according to Definition 2.0e) = C3. (55)
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The set C3 is convex63. Moreover, S ⊆ C3
64. Hence, C3 is a convex subset

63Proof. Let y ∈ C3, z ∈ C3 and λ ∈ [0, 1]. We shall show that λy + (1− λ) z ∈ C3.
Notice that λ and 1− λ both are nonnegative reals (since λ ∈ [0, 1]).
We have

y ∈ C3 =

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 .

In other words, we can write y in the form y =
t∑
i=1

λixi for some t ∈ N, some t-tuple

(x1, x2, . . . , xt) of elements of S and some t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1. Let us denote this t, this (x1, x2, . . . , xt) and this (λ1, λ2, . . . , λt)

by p, (y1, y2, . . . , yp) and (µ1, µ2, . . . , µp), respectively. Thus, p is an element of N, and
(y1, y2, . . . , yp) is a p-tuple of elements of S, and (µ1, µ2, . . . , µp) is a p-tuple of nonnegative

reals such that
p∑
i=1

µi = 1 and y =
p∑
i=1

µiyi.

Similarly, use the assumption z ∈ C3 to write z in the form z =
q∑
i=1

νizi, where q is an ele-

ment of N, and where (z1, z2, . . . , zq) is a q-tuple of elements of S, and where (ν1, ν2, . . . , νq)

is a q-tuple of nonnegative reals such that
q∑
i=1

νi = 1.

Define a (p+ q)-tuple (w1, w2, . . . , wp+q) of elements of S by

(w1, w2, . . . , wp+q) = (y1, y2, . . . , yp, z1, z2, . . . , zq) .

Then:

• For every i ∈ {1, 2, . . . , p}, we have

wi = yi. (56)

• For every i ∈ {p+ 1, p+ 2, . . . , p+ q}, we have

wi = zi−p. (57)

Furthermore, define a (p+ q)-tuple (η1, η2, . . . , ηp+q) of nonnegative reals by

(η1, η2, . . . , ηp+q) = (λµ1, λµ2, . . . , λµp, (1− λ) ν1, (1− λ) ν2, . . . , (1− λ) νq)

(this is well-defined because both λ and 1 − λ are nonnegative reals and because
(µ1, µ2, . . . , µp) and (ν1, ν2, . . . , νq) are tuples of nonnegative reals). Then:

• For every i ∈ {1, 2, . . . , p}, we have

ηi = λµi. (58)

• For every i ∈ {p+ 1, p+ 2, . . . , p+ q}, we have

ηi = (1− λ) νi−p. (59)
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Now,

p+q∑
i=1

ηi =

p∑
i=1

ηi︸︷︷︸
=λµi

(by (58))

+

p+q∑
i=p+1

ηi︸︷︷︸
=(1−λ)νi−p

(by (59))

=

p∑
i=1

λµi︸ ︷︷ ︸
=λ

p∑
i=1

µi

+

p+q∑
i=p+1

(1− λ) νi−p︸ ︷︷ ︸
=(1−λ)

p+q∑
i=p+1

νi−p

= λ

p∑
i=1

µi + (1− λ)

p+q∑
i=p+1

νi−p = λ

p∑
i=1

µi︸ ︷︷ ︸
=1

+ (1− λ)

q∑
i=1

νi︸ ︷︷ ︸
=1

(here, we substituted i for i− p in the second sum)

= λ+ (1− λ) = 1

and

p+q∑
i=1

ηiwi =

p∑
i=1

ηi︸︷︷︸
=λµi

(by (58))

wi︸︷︷︸
=yi

(by (56))

+

p+q∑
i=p+1

ηi︸︷︷︸
=(1−λ)νi−p

(by (59))

wi︸︷︷︸
=zi−p

(by (57))

=

p∑
i=1

λµiyi︸ ︷︷ ︸
=λ

p∑
i=1

µiyi

+

p+q∑
i=p+1

(1− λ) νi−pzi−p︸ ︷︷ ︸
=(1−λ)

p+q∑
i=p+1

νi−pzi−p

= λ

p∑
i=1

µiyi + (1− λ)

p+q∑
i=p+1

νi−pzi−p = λ

p∑
i=1

µiyi︸ ︷︷ ︸
=y

+ (1− λ)

q∑
i=1

νizi︸ ︷︷ ︸
=z

(here, we substituted i for i− p in the second sum)

= λy + (1− λ) z.

Hence, there exist some t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a t-

tuple (λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = λy +

(1− λ) z (namely, t = p + q, (x1, x2, . . . , xt) = (w1, w2, . . . , wp+q) and (λ1, λ2, . . . , λt) =
(η1, η2, . . . , ηp+q)). In other words,

λy + (1− λ) z ∈

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 = C3.

Now, let us forget that we fixed y, z and λ. We thus have proven that every two elements
y ∈ C3 and z ∈ C3 and every real number λ ∈ [0, 1] satisfy λy + (1− λ) z ∈ C3. If we
rename y and z as x and y in this statement, we obtain the following: Every two elements
x ∈ C3 and y ∈ C3 and every real number λ ∈ [0, 1] satisfy λx + (1− λ) y ∈ C3. In other
words, the set C3 is convex (by the definition of convexity). Qed.
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of E which contains S as a subset. Thus, the intersection of all convex subsets of
E which contain S as a subset is a subset of C3. In other words, C1 is a subset
of C3 (since C1 is the intersection of all convex subsets of E which contain S as
a subset). In other words, C1 ⊆ C3.

On the other hand, C3 ⊆ C1
65. Combined with C1 ⊆ C3, this shows that

64Proof. Let w ∈ S. Then,
1∑
i=1

1 = 1 and
1∑
i=1

1w = 1w = w. Hence, there exist some

t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a t-tuple (λ1, λ2, . . . , λt) of nonnegative

reals such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = w (namely, t = 1, (x1, x2, . . . , xt) = (w) and

(λ1, λ2, . . . , λt) = (1)). In other words,

w ∈

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 = C3.

Let us now forget that we fixed w. We thus have proven that w ∈ C3 for every w ∈ S. In
other words, S ⊆ C3, qed.

65Proof. Let w ∈ C3. We shall show that w ∈ C1.
Let D be any convex subset of E which contains S as a subset. Thus, D is a convex

subset of E and satisfies S ⊆ D.
We have

w ∈ C3 =

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x


 .

In other words, there exist some t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a

t-tuple (λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = w. Consider

this t, this (x1, x2, . . . , xt) and this (λ1, λ2, . . . , λt). For every i ∈ {1, 2, . . . , t}, we have
xi ∈ S ⊆ D. Thus, (xi)i∈{1,2,...,t} is a family of elements of D. Also, clearly, (λi)i∈{1,2,...,t}
is a family of nonnegative reals (since (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals).
Furthermore, all but finitely many i ∈ {1, 2, . . . , t} satisfy λi = 0 (since there are only

finitely many i ∈ {1, 2, . . . , t}). Finally,
∑

i∈{1,2,...,t}
λi =

t∑
i=1

λi = 1. Hence, Proposition 2.0a

(applied to D and {1, 2, . . . , t} instead of C and I) shows that
∑

i∈{1,2,...,t}
λixi ∈ D. Thus,

w =
t∑
i=1

λixi =
∑

i∈{1,2,...,t}
λixi ∈ D.

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is
any convex subset of E which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
convex subsets of E which contain S as a subset. In other words, w lies in C1 (since C1 is
the intersection of all convex subsets of E which contain S as a subset). In other words,
w ∈ C1.

Let us now forget that we fixed w. We thus have proven that w ∈ C1 for every w ∈ C3.
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C1 = C3.

In other words, C3 ⊆ C1, qed.
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The set C2 is convex66. Moreover, S ⊆ C2
67. Hence, C2 is a convex subset

of E which contains S as a subset. Thus, the intersection of all convex subsets of

66Proof. Let y ∈ C2, z ∈ C2 and λ ∈ [0, 1]. We shall show that λy + (1− λ) z ∈ C2.
Notice that λ and 1− λ both are nonnegative reals (since λ ∈ [0, 1]).
We have y ∈ C2. In other words, y is a convex combination of the vectors s for s ∈ S

(since C2 is the set of all convex combinations of the vectors s for s ∈ S). In other words, y
has the form y =

∑
i∈S

µii for some family (µi)i∈S of nonnegative reals indexed by elements of

S and having the property that all but finitely many i ∈ S satisfy µi = 0, and the property
that

∑
i∈S

µi = 1. Similarly, z has the form z =
∑
i∈S

νii for some family (νi)i∈S of nonnegative

reals indexed by elements of S and having the property that all but finitely many i ∈ S
satisfy νi = 0, and the property that

∑
i∈S

νi = 1. Consider these two families (µi)i∈S and

(νi)i∈S .
For every i ∈ S, both λµi and (1− λ) νi are nonnegative reals (since λ, µi, 1− λ and νi

are nonnegative reals), and hence the sum λµi + (1− λ) νi is a nonnegative real. Thus, we
can define a family (ηi)i∈S of nonnegative reals by setting

(ηi = λµi + (1− λ) νi for every i ∈ S) .

Consider this family (ηi)i∈S . We know that all but finitely many i ∈ S satisfy µi = 0, and
we also know that all but finitely many i ∈ S satisfy νi = 0. Using these two facts, we see
that all but finitely many i ∈ S satisfy ηi = λ µi︸︷︷︸

=0

+ (1− λ) νi︸︷︷︸
=0

= 0 + 0 = 0. We have

∑
i∈S

ηi︸︷︷︸
=λµi+(1−λ)νi

=
∑
i∈S

(λµi + (1− λ) νi) = λ
∑
i∈S

µi︸ ︷︷ ︸
=1

+ (1− λ)
∑
i∈S

νi︸ ︷︷ ︸
=1

= λ+ (1− λ) = 1

and∑
i∈S

ηi︸︷︷︸
=λµi+(1−λ)νi

i =
∑
i∈S

(λµi + (1− λ) νi) i = λ
∑
i∈S

µii︸ ︷︷ ︸
=y

+ (1− λ)
∑
i∈S

νiz︸ ︷︷ ︸
=z

= λy + (1− λ) z.

Hence, λy + (1− λ) z =
∑
i∈S

ηii. Therefore, λy + (1− λ) z has the form
∑
i∈S

λii for some

family (λi)i∈S of nonnegative reals indexed by elements of S and having the property that
all but finitely many i ∈ S satisfy λi = 0, and the property that

∑
i∈S

λi = 1 (namely, for

the family (λi)i∈S = (ηi)i∈S). In other words, λy+ (1− λ) z is a convex combination of the
vectors s for s ∈ S. In other words, λy + (1− λ) z ∈ C2 (since C2 is the set of all convex
combinations of the vectors s for s ∈ S).

Now, let us forget that we fixed y, z and λ. We thus have proven that every two elements
y ∈ C2 and z ∈ C2 and every real number λ ∈ [0, 1] satisfy λy + (1− λ) z ∈ C2. If we
rename y and z as x and y in this statement, we obtain the following: Every two elements
x ∈ C2 and y ∈ C2 and every real number λ ∈ [0, 1] satisfy λx + (1− λ) y ∈ C2. In other
words, the set C2 is convex (by the definition of convexity).

67Proof. Let w ∈ S. Define a family (µi)i∈S of nonnegative reals by setting(
µi =

{
1, if i = w;

0, if i 6= w
for every i ∈ S

)
.
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E which contain S as a subset is a subset of C2. In other words, C1 is a subset
of C2 (since C1 is the intersection of all convex subsets of E which contain S as
a subset). In other words, C1 ⊆ C2.

On the other hand, C2 ⊆ C1
68. Combined with C1 ⊆ C2, this shows that

C1 = C2.
Combining C1 = C2 with C1 = C3, we obtain C1 = C2 = C3. Now, (53)

becomes

(the convex hull of S defined according to Definition 2.0c)

= C1 = C2 = (the convex hull of S defined according to Definition 2.0d) (60)

Then, it is easy to see that:

• All but finitely many i ∈ S satisfy µi = 0.

• We have
∑
i∈S

µi = 1.

• We have
∑
i∈S

µii = w.

Hence, w =
∑
i∈S

µii. Thus, w has the form
∑
i∈S

λii for some family (λi)i∈S of nonnegative

reals indexed by elements of S and having the property that all but finitely many i ∈ S
satisfy λi = 0, and the property that

∑
i∈S

λi = 1 (namely, for the family (λi)i∈S = (µi)i∈S).

In other words, w is a convex combination of the vectors s for s ∈ S. In other words, w ∈ C2

(since C2 is the set of all convex combinations of the vectors s for s ∈ S).
Now, let us forget that we fixed w. We thus have proven that w ∈ C2 for every w ∈ S.

In other words, S ⊆ C2, qed.
68Proof. Let w ∈ C2. We shall show that w ∈ C1.

Let D be any convex subset of E which contains S as a subset. Thus, D is a convex
subset of E and satisfies S ⊆ D.

We have w ∈ C2. In other words, w is a convex combination of the vectors s for s ∈ S
(since C2 is the set of all convex combinations of the vectors s for s ∈ S). In other words, w
has the form w =

∑
i∈S

λii for some family (λi)i∈S of nonnegative reals indexed by elements of

S and having the property that all but finitely many i ∈ S satisfy λi = 0, and the property
that

∑
i∈S

λi = 1. Consider this family (λi)i∈S .

For every i ∈ S, we have i ∈ S ⊆ D. Thus, (i)i∈S is a family of elements of D. Hence,
Proposition 2.0a (applied to D, S, (i)i∈S and (λi)i∈S instead of C, I, (xi)i∈I and (λi)i∈I)
shows that

∑
i∈S

λii ∈ D. Thus, w =
∑
i∈S

λii ∈ D.

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is
any convex subset of E which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
convex subsets of E which contain S as a subset. In other words, w lies in C1 (since C1 is
the intersection of all convex subsets of E which contain S as a subset). In other words,
w ∈ C1.

Let us now forget that we fixed w. We thus have proven that w ∈ C1 for every w ∈ C2.
In other words, C2 ⊆ C1, qed.
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(by (54)). Also, (54) becomes

(the convex hull of S defined according to Definition 2.0d)

= C2 = C3 = (the convex hull of S defined according to Definition 2.0e) (61)

(by (55)).
Now, let us forget that we fixed S. We thus have shown that if S is any subset

of E, then (60) and (61) hold. In other words, if S is any subset of E, then

(the convex hull of S defined according to Definition 2.0c)

= (the convex hull of S defined according to Definition 2.0d)

= (the convex hull of S defined according to Definition 2.0e) .

In other words, Definitions 2.0c, 2.0d and 2.0e are equivalent. This proves Propo-
sition 2.0f (a).

(c) We define the set C3 as in our proof of Proposition 2.0f (a). Then, (55)
shows that

C3 = (the convex hull of S defined according to Definition 2.0e)

= (the convex hull of S) = conv . hullS.

But in our proof of Proposition 2.0f (a), we have shown that S ⊆ C3. Thus,
S ⊆ C3 = conv . hullS. This proves Proposition 2.0f (c).

(d) We define the set C3 as in our proof of Proposition 2.0f (a). Then, (55)
shows that

C3 = (the convex hull of S defined according to Definition 2.0e)

= (the convex hull of S) = conv . hullS.

But in our proof of Proposition 2.0f (a), we have shown that the set C3 is convex.
Since C3 = conv . hullS, this rewrites as follows: The set conv . hullS is convex.
This proves Proposition 2.0f (d).

(f) Let D be a convex subset of E which contains S as a subset. Thus, the
intersection of all convex subsets of E which contain S as a subset is a subset
of D. In other words, conv . hullS is a subset of D (since conv . hullS is the
intersection of all convex subsets of E which contain S as a subset (by Definition
2.0d)). In other words, D contains conv . hullS as a subset.

Now, let us forget that we fixed D. We thus have shown that if D is a convex
subset of E which contains S as a subset, then D contains conv . hullS as a
subset. In other words, every convex subset of E which contains S as a subset
also contains conv . hullS as a subset. This proves Proposition 2.0f (f).

(b) Every two elements x ∈ ∅ and y ∈ ∅ and every real number λ ∈ [0, 1]
satisfy λx + (1− λ) y ∈ ∅ 69. In other words, the set ∅ is convex (by the

69Indeed, this is vacuously true (since there exist no x ∈ ∅).

91



Linear optimization May 4, 2018

definition of convexity). Thus, ∅ is a convex subset of E which contains ∅ as a
subset. Now, Proposition 2.0f (f) (applied to S = ∅) shows that every convex
subset of E which contains ∅ as a subset also contains conv . hull∅ as a subset.
Thus, the set ∅ contains conv . hull∅ as a subset (since ∅ is a convex subset
of E which contains ∅ as a subset). In other words, conv . hull∅ ⊆ ∅, so that
conv . hull∅ = ∅. This proves Proposition 2.0f (b).

(g) Let T be a subset of conv . hullS. The set conv . hullS is a convex set (by
Proposition 2.0f (d)) and contains T as a subset (since T ⊆ conv . hullS). In
other words, conv . hullS is a convex subset of E which contains T as a subset.

But Proposition 2.0f (f) (applied to T instead of S) shows that every convex
subset of E which contains T as a subset also contains conv . hullT as a subset.
Thus, the set conv . hullS contains conv . hullT as a subset (since conv . hullS is a
convex subset of E which contains T as a subset). In other words, conv . hullT ⊆
conv . hullS. This proves Proposition 2.0f (g).

(e) Let T be a subset of S. Thus, T ⊆ S ⊆ conv . hullS (by Proposition 2.0f
(c)). In other words, T is a subset of conv . hullS. Hence, Proposition 2.0f (g)
yields conv . hullT ⊆ conv . hullS. This proves Proposition 2.0f (e).

Proof of Proposition 2.0g. (a) Let S be a subset of E. Definition 2.0e yields

conv . hullS

=

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x




=


x ∈ E |



x can be written in the form x =
t∑
i=1

λixi,

where t is an element of N,
and (x1, x2, . . . , xt) is a t-tuple of elements of S,

and (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals

such that
t∑
i=1

λi = 1




=


t∑
i=1

λixi |


t is an element of N,

and (x1, x2, . . . , xt) is a t-tuple of elements of S,
and (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals

such that
t∑
i=1

λi = 1


 .

This proves Proposition 2.0g (a).
(b) Proposition 2.0g (a) provides an expression for conv . hullS which clearly

does not depend on whether we consider S as a subset of F or as a subset of E
(since it only refers to the elements of S). Hence, conv . hullS does not depend
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on whether we consider S as a subset of F or as a subset of E. This proves
Proposition 2.0g (b).

Proof of Proposition 2.0h. (a) Let S = {x1, x2, . . . , xn}. Let Q be the set of all
convex combinations of the vectors x1, x2, . . ., xn.

Recall that Q is the set of all convex combinations of the vectors x1, x2, . . .,
xn. In other words, Q is the set of all convex combinations of the vectors xi for
i ∈ {1, 2, . . . , n}.
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The set Q is convex70. Moreover, S ⊆ Q 71. Hence, Q is a convex subset

70Proof. Let y ∈ Q, z ∈ Q and λ ∈ [0, 1]. We shall show that λy + (1− λ) z ∈ Q.
Notice that λ and 1− λ both are nonnegative reals (since λ ∈ [0, 1]).
We have y ∈ Q. In other words, y is a convex combination of the vectors xi for

i ∈ {1, 2, . . . , n} (since Q is the set of all convex combinations of the vectors xi for
i ∈ {1, 2, . . . , n}). In other words, y has the form y =

∑
i∈{1,2,...,n}

µixi for some family

(µi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the

property that all but finitely many i ∈ {1, 2, . . . , n} satisfy µi = 0, and the property that∑
i∈{1,2,...,n}

µi = 1. Similarly, z has the form z =
∑

i∈{1,2,...,n}
νixi for some family (νi)i∈{1,2,...,n}

of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the property that all
but finitely many i ∈ {1, 2, . . . , n} satisfy νi = 0, and the property that

∑
i∈{1,2,...,n}

νi = 1.

Consider these two families (µi)i∈{1,2,...,n} and (νi)i∈{1,2,...,n}.

For every i ∈ {1, 2, . . . , n}, both λµi and (1− λ) νi are nonnegative reals (since λ, µi,
1 − λ and νi are nonnegative reals), and hence the sum λµi + (1− λ) νi is a nonnegative
real. Thus, we can define a family (ηi)i∈{1,2,...,n} of nonnegative reals by setting

(ηi = λµi + (1− λ) νi for every i ∈ {1, 2, . . . , n}) .

Consider this family (ηi)i∈{1,2,...,n}. We know that all but finitely many i ∈ {1, 2, . . . , n}
satisfy ηi = 0 (since there are only finitely many i ∈ {1, 2, . . . , n}). We have∑

i∈{1,2,...,n}

ηi︸︷︷︸
=λµi+(1−λ)νi

=
∑

i∈{1,2,...,n}

(λµi + (1− λ) νi)

= λ
∑

i∈{1,2,...,n}

µi︸ ︷︷ ︸
=1

+ (1− λ)
∑

i∈{1,2,...,n}

νi︸ ︷︷ ︸
=1

= λ+ (1− λ) = 1

and∑
i∈{1,2,...,n}

ηi︸︷︷︸
=λµi+(1−λ)νi

xi =
∑

i∈{1,2,...,n}

(λµi + (1− λ) νi)xi

= λ
∑

i∈{1,2,...,n}

µixi︸ ︷︷ ︸
=y

+ (1− λ)
∑

i∈{1,2,...,n}

νixi︸ ︷︷ ︸
=z

= λy + (1− λ) z.

Hence, λy+(1− λ) z =
∑

i∈{1,2,...,n}
ηixi. Therefore, λy+(1− λ) z has the form

∑
i∈{1,2,...,n}

λixi

for some family (λi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and

having the property that all but finitely many i ∈ {1, 2, . . . , n} satisfy λi = 0, and the
property that

∑
i∈{1,2,...,n}

λi = 1 (namely, for the family (λi)i∈{1,2,...,n} = (ηi)i∈{1,2,...,n}). In

other words, λy+ (1− λ) z is a convex combination of the vectors xi or i ∈ {1, 2, . . . , n}. In
other words, λy+ (1− λ) z ∈ Q (since Q is the set of all convex combinations of the vectors
xi for i ∈ {1, 2, . . . , n}).

Now, let us forget that we fixed y, z and λ. We thus have proven that every two elements
y ∈ Q and z ∈ Q and every real number λ ∈ [0, 1] satisfy λy + (1− λ) z ∈ Q. If we rename
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of E which contains S as a subset. Thus, Proposition 2.0f (f) (applied to the
convex subset Q of E) shows that Q contains conv . hullS as a subset. In other
words, conv . hullS ⊆ Q.

On the other hand, Q ⊆ conv . hullS 72. Combining this with conv . hullS ⊆

y and z as x and y in this statement, we obtain the following: Every two elements x ∈ Q
and y ∈ Q and every real number λ ∈ [0, 1] satisfy λx+ (1− λ) y ∈ Q. In other words, the
set Q is convex (by the definition of convexity). Qed.

71Proof. Let w ∈ S. Then, w ∈ S = {x1, x2, . . . , xn}. Thus, there exists some k ∈ {1, 2, . . . , n}
such that w = xk. Consider this k.

Define a family (µi)i∈{1,2,...,n} of nonnegative reals by setting(
µi =

{
1, if i = k;

0, if i 6= k
for every i ∈ {1, 2, . . . , n}

)
.

Then, it is easy to see that:

• All but finitely many i ∈ {1, 2, . . . , n} satisfy µi = 0.

• We have
∑

i∈{1,2,...,n}
µi = 1.

• We have
∑

i∈{1,2,...,n}
µixi = xk.

Hence, w = xk =
∑

i∈{1,2,...,n}
µixi. Thus, w has the form

∑
i∈{1,2,...,n}

λixi for some family

(λi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the

property that all but finitely many i ∈ {1, 2, . . . , n} satisfy λi = 0, and the property that∑
i∈{1,2,...,n}

λi = 1 (namely, for the family (λi)i∈{1,2,...,n} = (µi)i∈{1,2,...,n}). In other words,

w is a convex combination of the vectors xi for i ∈ {1, 2, . . . , n}. In other words, w ∈ Q
(since Q is the set of all convex combinations of the vectors xi for i ∈ {1, 2, . . . , n}).

Now, let us forget that we fixed w. We thus have proven that w ∈ Q for every w ∈ S. In
other words, S ⊆ Q, qed.

72Proof. Let w ∈ Q. We shall show that w ∈ conv .hullS.
Let D be any convex subset of E which contains S as a subset. Thus, D is a convex

subset of E and satisfies S ⊆ D.
We have w ∈ Q. In other words, w is a convex combination of the vectors xi for

i ∈ {1, 2, . . . , n} (since Q is the set of all convex combinations of the vectors xi for
i ∈ {1, 2, . . . , n}). In other words, w has the form w =

∑
i∈{1,2,...,n}

λixi for some fam-

ily (λi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the

property that all but finitely many i ∈ {1, 2, . . . , n} satisfy λi = 0, and the property that∑
i∈{1,2,...,n}

λi = 1. Consider this family (λi)i∈{1,2,...,n}.

For every i ∈ {1, 2, . . . , n}, we have xi ∈ {x1, x2, . . . , xn} = S ⊆ D. Thus,
(xi)i∈{1,2,...,n} is a family of elements of D. Hence, Proposition 2.0a (applied to D,

{1, 2, . . . , n}, (xi)i∈{1,2,...,n} and (λi)i∈{1,2,...,n} instead of C, I, (xi)i∈I and (λi)i∈I) shows

that
∑

i∈{1,2,...,n}
λixi ∈ D. Thus, w =

∑
i∈{1,2,...,n}

λixi ∈ D.

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is
any convex subset of E which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
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Q, we obtain conv . hullS = Q. Thus,

conv . hull {x1, x2, . . . , xn}︸ ︷︷ ︸
=S

= conv . hullS = Q

= (the set of all convex combinations of the vectors x1, x2, . . . , xn)

(by the definition of Q). This proves Proposition 2.0h (a).
(b) We have the following chain of logical equivalences:x ∈ conv . hull {x1, x2, . . . , xn}︸ ︷︷ ︸

=(the set of all convex combinations of the vectors x1, x2, ..., xn)
(by Proposition 2.0h (a))


⇐⇒ (x ∈ (the set of all convex combinations of the vectors x1, x2, . . . , xn))

⇐⇒ (x is a convex combination of the vectors x1, x2, . . . , xn) .

In other words, we have x ∈ conv . hull {x1, x2, . . . , xn} if and only if x is a convex
combination of the vectors x1, x2, . . ., xn. This proves Proposition 2.0h (b).

16.2. Proofs for Section 2

Proof of Proposition 2.0i. We will first show that if J is any finite subset of I, and if (µi)i∈J is a
family of nonnegative reals indexed by J ,

then
∑
i∈J

µixi ∈ C

 . (62)

[Proof of (62): We shall prove (62) by strong induction over |J |:
Induction step:73 Fix N ∈ N. Assume that (62) holds in the case when |J | < N .

We must prove that (62) holds in the case when |J | = N .
We have assumed that (62) holds in the case when |J | < N . In other words, if J is any finite subset of I satisfying |J | < N , and

if (µi)i∈J is a family of nonnegative reals indexed
by J , then

∑
i∈J

µixi ∈ C

 . (63)

convex subsets of E which contain S as a subset. In other words, w lies in conv .hullS
(since conv .hullS is the intersection of all convex subsets of E which contain S as a subset
(because of Definition 2.0c)). In other words, w ∈ conv .hullS.

Let us now forget that we fixed w. We thus have proven that w ∈ conv .hullS for every
w ∈ Q. In other words, Q ⊆ conv .hullS, qed.

73A strong induction needs no induction base.
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Now, let us prove that (62) holds in the case when |J | = N . Thus, let J be any
finite subset of I satisfying |J | = N , and let (µi)i∈J be a family of nonnegative
reals indexed by J . We shall show that

∑
i∈J

µixi ∈ C.

If |J | ≤ 0, then
∑
i∈J

µixi ∈ C holds74. Hence, for the rest of our proof of∑
i∈J

µixi ∈ C, we can WLOG assume that we don’t have |J | ≤ 0. Assume this.

We have |J | > 0 (since we don’t have |J | ≤ 0). Thus, J 6= ∅. Hence, there
exists a k ∈ J . Consider such a k.

Now, (µi)i∈J\{k} is a family of nonnegative reals indexed by J \ {k}. Moreover,
k ∈ J and thus |J \ {k}| = |J |︸︷︷︸

=N

−1 = N − 1 < N . Thus, we can apply (63) to

J\{k} and (µi)i∈J\{k} instead of J and (µi)i∈J . As a result, we obtain
∑

i∈J\{k}
µixi ∈

C. Also, xk ∈ C (since (xi)i∈I is a family of elements of C).
Recall that C is a convex cone. Thus, every two elements x ∈ C and y ∈ C

and every nonnegative reals λ and µ satisfy λx + µy ∈ C (by the definition of a
convex cone). Applying this to x = xk, y =

∑
i∈J\{k}

µixi, λ = µk and µ = 1, we

obtain µkxk + 1
∑

i∈J\{k}
µixi ∈ C. Now,

∑
i∈J

µixi =
∑
i∈J ;
i=k

µi

︸ ︷︷ ︸
=µkxk

(since k∈J)

+
∑
i∈J ;
i 6=k︸︷︷︸

=
∑

i∈J\{k}

µixi = µkxk +
∑

i∈J\{k}

µixi︸ ︷︷ ︸
=1

∑
i∈J\{k}

µixi

= µkxk + 1
∑

i∈J\{k}

µixi ∈ C.

Now, let us forget that we fixed J and (µi)i∈J . We thus have proven that if J is
any finite subset of I satisfying |J | = N , and if (µi)i∈J is a family of nonnegative
reals indexed by J , then

∑
i∈J

µixi ∈ C. In other words, (62) holds in the case when

|J | = N . This completes the induction step.
Thus, (62) is proven by induction.]
Now, recall that all but finitely many i ∈ I satisfy λi = 0. In other words,

there exists a finite subset J of I such that

every i ∈ I \ J satisfies λi = 0. (64)

74Proof. Assume that |J | ≤ 0. We need to prove
∑
i∈J

µixi ∈ C.

From |J | ≤ 0, we obtain |J | = 0. Thus, J = ∅.
Recall that C is a convex cone. Hence, 0 ∈ C (according to the definition of a convex

cone).
But J = ∅, and thus

∑
i∈J

µixi = (empty sum) = 0 ∈ C, qed.
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Consider this J . Then, (62) (applied to (µi)i∈J = (λi)i∈J) shows that
∑
i∈J

λixi ∈ C.

Now, ∑
i∈I

λixi =
∑
i∈I;
i∈J︸︷︷︸

=
∑
i∈J

(since J⊆I)

λixi +
∑
i∈I;
i/∈J︸︷︷︸

=
∑

i∈I\J

λixi =
∑
i∈J

λixi +
∑
i∈I\J

λi︸︷︷︸
=0

(by (64))

=
∑
i∈J

λixi +
∑
i∈I\J

0xi︸ ︷︷ ︸
=0

=
∑
i∈J

λixi ∈ C.

This proves Proposition 2.0i.

Proof of Proposition 2.0m. (a) Let E be an R-vector space. Let S be a subset
of E.

Let C1 be the intersection of all convex cones in E which contain S as a subset.
Definition 2.0j defined the convex conic hull of S to be this set C1. In other words,

(the convex conic hull of S defined according to Definition 2.0j) = C1. (65)

Let C2 be the set of all linear combinations of the vectors s for s ∈ S with
nonnegative coefficients. Definition 2.0k defined the convex conic hull of S to be
this set C2. In other words,

(the convex conic hull of S defined according to Definition 2.0k) = C2. (66)

Let C3 be the setx ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 .

Definition 2.0l defined the convex conic hull of S to be this set C3. In other words,

(the convex conic hull of S defined according to Definition 2.0l) = C3. (67)
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The set C3 is a convex cone75. Moreover, S ⊆ C3
76. Hence, C3 is a convex

75Proof. As usual, we let () denote an empty 0-tuple. If (x1, x2, . . . , x0) = () and

(λ1, λ2, . . . , λ0) = (), then
0∑
i=1

λixi = (empty sum) = 0. Hence, 0 is an element of E such that

there exist some t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a t-tuple (λ1, λ2, . . . , λt)

of nonnegative reals such that
t∑
i=1

λixi = 0 (namely, t = 0, (x1, x2, . . . , xt) = () and

(λ1, λ2, . . . , λt) = ()). In other words,

0 ∈

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 = C3.

Let y ∈ C3 and z ∈ C3. Let λ and κ be two nonnegative reals. We shall show that
λy + κz ∈ C3.

We have

y ∈ C3 =

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 .

In other words, we can write y in the form y =
t∑
i=1

λixi for some t ∈ N, some t-tuple

(x1, x2, . . . , xt) of elements of S and some t-tuple (λ1, λ2, . . . , λt) of nonnegative reals. Let
us denote this t, this (x1, x2, . . . , xt) and this (λ1, λ2, . . . , λt) by p, (y1, y2, . . . , yp) and
(µ1, µ2, . . . , µp), respectively. Thus, p is an element of N, and (y1, y2, . . . , yp) is a p-tuple of

elements of S, and (µ1, µ2, . . . , µp) is a p-tuple of nonnegative reals such that y =
p∑
i=1

µiyi.

Similarly, use the assumption z ∈ C3 to write z in the form z =
q∑
i=1

νizi, where q is an ele-

ment of N, and where (z1, z2, . . . , zq) is a q-tuple of elements of S, and where (ν1, ν2, . . . , νq)
is a q-tuple of nonnegative reals.

Define a (p+ q)-tuple (w1, w2, . . . , wp+q) of elements of S by

(w1, w2, . . . , wp+q) = (y1, y2, . . . , yp, z1, z2, . . . , zq) .

Then:

• For every i ∈ {1, 2, . . . , p}, we have

wi = yi. (68)

• For every i ∈ {p+ 1, p+ 2, . . . , p+ q}, we have

wi = zi−p. (69)

Furthermore, define a (p+ q)-tuple (η1, η2, . . . , ηp+q) of nonnegative reals by

(η1, η2, . . . , ηp+q) = (λµ1, λµ2, . . . , λµp, κν1, κν2, . . . , κνq)
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cone in E which contains S as a subset. Thus, the intersection of all convex cones

(this is well-defined because both λ and κ are nonnegative reals and because (µ1, µ2, . . . , µp)
and (ν1, ν2, . . . , νq) are tuples of nonnegative reals). Then:

• For every i ∈ {1, 2, . . . , p}, we have

ηi = λµi. (70)

• For every i ∈ {p+ 1, p+ 2, . . . , p+ q}, we have

ηi = κνi−p. (71)

Now,

p+q∑
i=1

ηiwi =

p∑
i=1

ηi︸︷︷︸
=λµi

(by (70))

wi︸︷︷︸
=yi

(by (68))

+

p+q∑
i=p+1

ηi︸︷︷︸
=κνi−p

(by (71))

wi︸︷︷︸
=zi−p

(by (69))

=

p∑
i=1

λµiyi︸ ︷︷ ︸
=λ

p∑
i=1

µiyi

+

p+q∑
i=p+1

κνi−pzi−p︸ ︷︷ ︸
=κ

p+q∑
i=p+1

νi−pzi−p

= λ

p∑
i=1

µiyi + κ

p+q∑
i=p+1

νi−pzi−p = λ

p∑
i=1

µiyi︸ ︷︷ ︸
=y

+κ

q∑
i=1

νizi︸ ︷︷ ︸
=z

(here, we substituted i for i− p in the second sum)

= λy + κz.

Hence, there exist some t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a t-tuple

(λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λixi = λy + κz (namely, t = p + q,

(x1, x2, . . . , xt) = (w1, w2, . . . , wp+q) and (λ1, λ2, . . . , λt) = (η1, η2, . . . , ηp+q)). In other
words,

λy + κz ∈

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 = C3.

Now, let us forget that we fixed y, z, λ and κ. We thus have proven that every two
elements y ∈ C3 and z ∈ C3 and every nonnegative reals λ and κ satisfy λy + κz ∈ C3. If
we rename y, z and κ as x, y and µ in this statement, we obtain the following: Every two
elements x ∈ C3 and y ∈ C3 and every nonnegative reals λ and µ satisfy λx+ µy ∈ C3.

Thus, we have proven the following two statements:

• We have 0 ∈ C3.

• Every two elements x ∈ C3 and y ∈ C3 and every nonnegative reals λ and µ satisfy
λx+ µy ∈ C3.

In other words, the set C3 is a convex cone (by the definition of a convex cone).

76Proof. Let w ∈ S. Then,
1∑
i=1

1w = 1w = w. Hence, there exist some t ∈ N, a t-tuple
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in E which contain S as a subset is a subset of C3. In other words, C1 is a subset
of C3 (since C1 is the intersection of all convex cones in E which contain S as a
subset). In other words, C1 ⊆ C3.

On the other hand, C3 ⊆ C1
77. Combined with C1 ⊆ C3, this shows that

C1 = C3.

(x1, x2, . . . , xt) of elements of S and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λixi = w (namely, t = 1, (x1, x2, . . . , xt) = (w) and (λ1, λ2, . . . , λt) = (1)). In other

words,

w ∈

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 = C3.

Let us now forget that we fixed w. We thus have proven that w ∈ C3 for every w ∈ S. In
other words, S ⊆ C3.

77Proof. Let w ∈ C3. We shall show that w ∈ C1.
Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone

in E and satisfies S ⊆ D.
We have

w ∈ C3 =

x ∈ E |


there exist some t ∈ N,
a t-tuple (x1, x2, . . . , xt) of elements of S

and a t-tuple (λ1, λ2, . . . , λt) of nonnegative reals

such that
t∑
i=1

λixi = x


 .

In other words, there exist some t ∈ N, a t-tuple (x1, x2, . . . , xt) of elements of S and a

t-tuple (λ1, λ2, . . . , λt) of nonnegative reals such that
t∑
i=1

λixi = w. Consider this t, this

(x1, x2, . . . , xt) and this (λ1, λ2, . . . , λt). For every i ∈ {1, 2, . . . , t}, we have xi ∈ S ⊆ D.
Thus, (xi)i∈{1,2,...,t} is a family of elements of D. Also, clearly, (λi)i∈{1,2,...,t} is a family

of nonnegative reals (since (λ1, λ2, . . . , λt) is a t-tuple of nonnegative reals). Clearly, all
but finitely many i ∈ {1, 2, . . . , t} satisfy λi = 0 (since there are only finitely many i ∈
{1, 2, . . . , t}). Hence, Proposition 2.0i (applied to D and {1, 2, . . . , t} instead of C and I)

shows that
∑

i∈{1,2,...,t}
λixi ∈ D. Thus, w =

t∑
i=1

λixi =
∑

i∈{1,2,...,t}
λixi ∈ D.

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in
E which contain S as a subset. In other words, w lies in C1 (since C1 is the intersection of
all convex cones in E which contain S as a subset). In other words, w ∈ C1.

Let us now forget that we fixed w. We thus have proven that w ∈ C1 for every w ∈ C3.
In other words, C3 ⊆ C1, qed.
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The set C2 is a convex cone78. Moreover, S ⊆ C2
79. Hence, C2 is a convex

78Proof. We have
∑
i∈S

0i︸︷︷︸
=0

=
∑
i∈S

0 = 0. Thus, 0 has the form
∑
i∈S

λii for some family (λi)i∈S

of nonnegative reals indexed by elements of S and having the property that all but finitely
many i ∈ S satisfy λi = 0 (namely, for (λi)i∈S = (0)i∈S). In other words, 0 is a linear
combination of the vectors s for s ∈ S with nonnegative coefficients. In other words, 0 ∈ C2

(since C2 is the set of all linear combinations of the vectors s for s ∈ S).
Now, let y ∈ C2 and z ∈ C2. Let λ and κ be two nonnegative reals. We shall show that

λy + κz ∈ C2.
We have y ∈ C2. In other words, y is a linear combination of the vectors s for s ∈ S with

nonnegative coefficients (since C2 is the set of all linear combinations of the vectors s for
s ∈ S with nonnegative coefficients). In other words, y has the form y =

∑
i∈S

µii for some

family (µi)i∈S of nonnegative reals indexed by elements of S and having the property that
all but finitely many i ∈ S satisfy µi = 0. Similarly, z has the form z =

∑
i∈S

νii for some

family (νi)i∈S of nonnegative reals indexed by elements of S and having the property that
all but finitely many i ∈ S satisfy νi = 0. Consider these two families (µi)i∈S and (νi)i∈S .

For every i ∈ S, both λµi and κνi are nonnegative reals (since λ, µi, κ and νi are
nonnegative reals), and hence the sum λµi + κνi is a nonnegative real. Thus, we can define
a family (ηi)i∈S of nonnegative reals by setting

(ηi = λµi + κνi for every i ∈ S) .

Consider this family (ηi)i∈S . We know that all but finitely many i ∈ S satisfy µi = 0, and
we also know that all but finitely many i ∈ S satisfy νi = 0. Using these two facts, we see
that all but finitely many i ∈ S satisfy ηi = λ µi︸︷︷︸

=0

+κ νi︸︷︷︸
=0

= 0 + 0 = 0. We have

∑
i∈S

ηi︸︷︷︸
=λµi+κνi

i =
∑
i∈S

(λµi + κνi) i = λ
∑
i∈S

µii︸ ︷︷ ︸
=y

+κ
∑
i∈S

νiz︸ ︷︷ ︸
=z

= λy + κz.

Hence, λy + κz =
∑
i∈S

ηii. Therefore, λy + κz has the form
∑
i∈S

λii for some family (λi)i∈S

of nonnegative reals indexed by elements of S and having the property that all but finitely
many i ∈ S satisfy λi = 0 (namely, for the family (λi)i∈S = (ηi)i∈S). In other words, λy+κz
is a linear combination of the vectors s for s ∈ S with nonnegative coefficients. In other
words, λy+κz ∈ C2 (since C2 is the set of all linear combinations of the vectors s for s ∈ S
with nonnegative coefficients).

Now, let us forget that we fixed y, z, λ and κ. We thus have proven that every two
elements y ∈ C2 and z ∈ C2 and every nonnegative reals λ and κ satisfy λy + κz ∈ C2. If
we rename y, z and κ as x, y and µ in this statement, we obtain the following: Every two
elements x ∈ C2 and y ∈ C2 and every nonnegative reals λ and µ satisfy λx+ µy ∈ C2.

Thus, we have proven the following two statements:

• We have 0 ∈ C2.

• Every two elements x ∈ C2 and y ∈ C2 and every nonnegative reals λ and µ satisfy
λx+ µy ∈ C2.

In other words, the set C2 is a convex cone (by the definition of a convex cone). Qed.
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cone in E which contains S as a subset. Thus, the intersection of all convex cones
in E which contain S as a subset is a subset of C2. In other words, C1 is a subset
of C2 (since C1 is the intersection of all convex cones in E which contain S as a
subset). In other words, C1 ⊆ C2.

On the other hand, C2 ⊆ C1
80. Combined with C1 ⊆ C2, this shows that

C1 = C2.
Combining C1 = C2 with C1 = C3, we obtain C1 = C2 = C3. Now, (65)

79Proof. Let w ∈ S. Define a family (µi)i∈S of nonnegative reals by setting(
µi =

{
1, if i = w;

0, if i 6= w
for every i ∈ S

)
.

It is easy to see that:

• All but finitely many i ∈ S satisfy µi = 0.

• We have
∑
i∈S

µii = w.

Hence, w =
∑
i∈S

µii. Thus, w has the form
∑
i∈S

λii for some family (λi)i∈S of nonnegative

reals indexed by elements of S and having the property that all but finitely many i ∈ S
satisfy λi = 0 (namely, for the family (λi)i∈S = (µi)i∈S). In other words, w is a linear
combination of the vectors s for s ∈ S with nonnegative coefficients. In other words, w ∈ C2

(since C2 is the set of all linear combinations of the vectors s for s ∈ S with nonnegative
coefficients).

Now, let us forget that we fixed w. We thus have proven that w ∈ C2 for every w ∈ S.
In other words, S ⊆ C2.

80Proof. Let w ∈ C2. We shall show that w ∈ C1.
Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone

in E and satisfies S ⊆ D.
We have w ∈ C2. In other words, w belongs to the set C2. In other words, w is a linear

combination of the vectors s for s ∈ S with nonnegative coefficients (since C2 is the set of
all linear combinations of the vectors s for s ∈ S with nonnegative coefficients). In other
words, w has the form w =

∑
i∈S

λii for some family (λi)i∈S of nonnegative reals indexed

by elements of S and having the property that all but finitely many i ∈ S satisfy λi = 0.
Consider this family (λi)i∈S .

For every i ∈ S, we have i ∈ S ⊆ D. Thus, (i)i∈S is a family of elements of D. Hence,
Proposition 2.0i (applied to D, S, (i)i∈S and (λi)i∈S instead of C, I, (xi)i∈I and (λi)i∈I)
shows that

∑
i∈S

λii ∈ D. Thus, w =
∑
i∈S

λii ∈ D.

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in
E which contain S as a subset. In other words, w lies in C1 (since C1 is the intersection of
all convex cones in E which contain S as a subset). In other words, w ∈ C1.

Let us now forget that we fixed w. We thus have proven that w ∈ C1 for every w ∈ C2.
In other words, C2 ⊆ C1.
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becomes

(the convex conic hull of S defined according to Definition 2.0j)

= C1 = C2 = (the convex conic hull of S defined according to Definition 2.0k)
(72)

(by (66)). Also, (66) becomes

(the convex conic hull of S defined according to Definition 2.0k)

= C2 = C3 = (the convex conic hull of S defined according to Definition 2.0l)
(73)

(by (67)).
Now, let us forget that we fixed S. We thus have shown that if S is any subset

of E, then (72) and (73) hold. In other words, if S is any subset of E, then

(the convex conic hull of S defined according to Definition 2.0j)

= (the convex conic hull of S defined according to Definition 2.0k)

= (the convex conic hull of S defined according to Definition 2.0l) .

In other words, Definitions 2.0j, 2.0k and 2.0l are equivalent. This proves Propo-
sition 2.0m (a).

(c) We define the set C3 as in our proof of Proposition 2.0m (a). Then, (67)
shows that

C3 = (the convex conic hull of S defined according to Definition 2.0l)

= (the convex conic hull of S) = coneS.

But in our proof of Proposition 2.0m (a), we have shown that S ⊆ C3. Thus,
S ⊆ C3 = coneS. This proves Proposition 2.0m (c).

(d) We define the set C3 as in our proof of Proposition 2.0m (a). Then, (67)
shows that

C3 = (the convex conic hull of S defined according to Definition 2.0l)

= (the convex conic hull of S) = coneS.

But in our proof of Proposition 2.0m (a), we have shown that the set C3 is a
convex cone. Since C3 = coneS, this rewrites as follows: The set coneS is a
convex cone. This proves Proposition 2.0m (d).

(f) Let D be a convex cone in E which contains S as a subset. Thus, the
intersection of all convex cones in E which contain S as a subset is a subset of
D. In other words, coneS is a subset of D (since coneS is the intersection of all
convex cones in E which contain S as a subset (by Definition 2.0k)). In other
words, D contains coneS as a subset.
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Now, let us forget that we fixed D. We thus have shown that if D is a convex
cone in E which contains S as a subset, then D contains coneS as a subset. In
other words, every convex cone in E which contains S as a subset also contains
coneS as a subset. This proves Proposition 2.0m (f).

(b) Every two elements x ∈ 0 and y ∈ 0 and every nonnegative reals λ and µ
satisfy λx+µy ∈ 0 81. Furthermore, 0 ∈ 0. Thus, we have proven the following
two statements:

• We have 0 ∈ 0.

• Every two elements x ∈ 0 and y ∈ 0 and every nonnegative reals λ and µ
satisfy λx+ µy ∈ 0.

In other words, the set 0 is a convex cone (by the definition of a convex cone).
Thus, 0 is a convex cone in E which contains ∅ as a subset. Now, Proposition

2.0m (f) (applied to S = ∅) shows that every convex cone in E which contains
∅ as a subset also contains cone∅ as a subset. Thus, the set 0 contains cone∅
as a subset (since 0 is a convex cone in E which contains ∅ as a subset). In other
words, cone∅ ⊆ 0.

On the other hand, 0 ⊆ cone∅ 82. Combining this with cone∅ ⊆ 0, we
obtain cone∅ = 0. This proves Proposition 2.0m (b).

(g) Let T be a subset of coneS. The set coneS is a convex cone (by Proposition
2.0m (d)) and contains T as a subset (since T ⊆ coneS). In other words, coneS
is a convex cone in E which contains T as a subset.

But Proposition 2.0m (f) (applied to T instead of S) shows that every convex
cone in E which contains T as a subset also contains coneT as a subset. Thus,
the set coneS contains coneT as a subset (since coneS is a convex cone in E
which contains T as a subset). In other words, coneT ⊆ coneS. This proves
Proposition 2.0m (g).

(e) Let T be a subset of S. Thus, T ⊆ S ⊆ coneS (by Proposition 2.0m
(c)). In other words, T is a subset of coneS. Hence, Proposition 2.0m (g) yields
coneT ⊆ coneS. This proves Proposition 2.0m (e).

(h) Proposition 2.0m (d) shows that coneS is a convex cone.

81Proof. Let x ∈ 0 and y ∈ 0 be two elements. Let λ and µ be two nonnegative reals. Then,
x = 0 (since x ∈ 0) and y = 0 (since y ∈ 0), so that λ x︸︷︷︸

=0

+µ y︸︷︷︸
=0

= λ0 + µ0 = 0 ∈ 0, qed.

82Proof. Proposition 2.0m (d) (applied to S = ∅) shows that the set cone∅ is a convex cone.
In other words, it satisfies the following two statements:

• We have 0 ∈ cone∅.

• Every two elements x ∈ cone∅ and y ∈ cone∅ and every nonnegative reals λ and µ
satisfy λx+ µy ∈ cone∅.

(This is because of our definition of a convex cone.)
In particular, 0 ∈ cone∅, so that {0} ⊆ cone∅. Thus, 0 = {0} ⊆ cone∅, qed.
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Recall that any convex cone is a convex set. Applying this to the convex cone
coneS, we conclude that coneS is a convex set (since coneS is a convex cone).
In other words, coneS is a convex subset of E.

Proposition 2.0m (c) shows that S ⊆ coneS. Thus, the set coneS contains S
as a subset. Hence, coneS is a convex subset of E which contains S as a subset.

But Proposition 2.0f (f) shows that every convex subset of E which contains S
as a subset also contains conv . hullS as a subset. Thus, the set coneS contains
conv . hullS as a subset (since coneS is a convex subset of E which contains S as
a subset). In other words, conv . hullS ⊆ coneS. This proves Proposition 2.0m
(h).

Proof of Proposition 2.0n. The proof of Proposition 2.0n is analogous to the proof
of Proposition 2.0g. (Of course, instead of using properties of convex sets, we now
need to use the corresponding properties of convex cones.)

Proof of Proposition 2.0o. (a) Let S = {x1, x2, . . . , xn}. Let Q be the set of all
linear combinations of the vectors x1, x2, . . ., xn with nonnegative coefficients.

Recall that Q is the set of all linear combinations of the vectors x1, x2, . . ., xn
with nonnegative coefficients. In other words, Q is the set of all linear combina-
tions of the vectors xi for i ∈ {1, 2, . . . , n} with nonnegative coefficients.
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The set Q is a convex cone83. Moreover, S ⊆ Q 84. Hence, Q is a convex cone

83Proof. We have
∑

i∈{1,2,...,n}
0xi︸︷︷︸
=0

=
∑

i∈{1,2,...,n}
0 = 0. Hence, 0 =

∑
i∈{1,2,...,n}

0xi. Thus, 0

has the form
∑

i∈{1,2,...,n}
λixi for some family (λi)i∈{1,2,...,n} of nonnegative reals indexed by

elements of {1, 2, . . . , n} and having the property that all but finitely many i ∈ {1, 2, . . . , n}
satisfy λi = 0 (namely, for (λi)i∈S = (0)i∈S). In other words, 0 is a linear combination of the
vectors xi for i ∈ {1, 2, . . . , n} with nonnegative coefficients. In other words, 0 ∈ Q (since Q
is the set of all linear combinations of the vectors xi for i ∈ {1, 2, . . . , n} with nonnegative
coefficients).

Now, let y ∈ Q and z ∈ Q. Let λ and κ be two nonnegative reals. We shall show that
λy + κz ∈ Q.

We have y ∈ Q. In other words, y is a linear combination of the vectors xi for i ∈
{1, 2, . . . , n} with nonnegative coefficients (since Q is the set of all linear combinations of
the vectors xi for i ∈ {1, 2, . . . , n} with nonnegative coefficients). In other words, y has
the form y =

∑
i∈{1,2,...,n}

µixi for some family (µi)i∈{1,2,...,n} of nonnegative reals indexed by

elements of {1, 2, . . . , n} and having the property that all but finitely many i ∈ {1, 2, . . . , n}
satisfy µi = 0. Similarly, z has the form z =

∑
i∈{1,2,...,n}

νixi for some family (νi)i∈{1,2,...,n}

of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the property that all
but finitely many i ∈ {1, 2, . . . , n} satisfy νi = 0. Consider these two families (µi)i∈{1,2,...,n}
and (νi)i∈{1,2,...,n}.

For every i ∈ {1, 2, . . . , n}, both λµi and κνi are nonnegative reals (since λ, µi, κ and νi
are nonnegative reals), and hence the sum λµi + κνi is a nonnegative real. Thus, we can
define a family (ηi)i∈{1,2,...,n} of nonnegative reals by setting

(ηi = λµi + κνi for every i ∈ {1, 2, . . . , n}) .

Consider this family (ηi)i∈{1,2,...,n}. We know that all but finitely many i ∈ {1, 2, . . . , n}
satisfy ηi = 0 (since there are only finitely many i ∈ {1, 2, . . . , n}). We have∑

i∈{1,2,...,n}

ηi︸︷︷︸
=λµi+κνi

xi =
∑

i∈{1,2,...,n}

(λµi + κνi)xi

= λ
∑

i∈{1,2,...,n}

µixi︸ ︷︷ ︸
=y

+κ
∑

i∈{1,2,...,n}

νixi︸ ︷︷ ︸
=z

= λy + κz.

Hence, λy + κz =
∑

i∈{1,2,...,n}
ηixi. Therefore, λy + κz has the form

∑
i∈{1,2,...,n}

λixi for some

family (λi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and having

the property that all but finitely many i ∈ {1, 2, . . . , n} satisfy λi = 0 (namely, for the
family (λi)i∈{1,2,...,n} = (ηi)i∈{1,2,...,n}). In other words, λy + κz is a linear combination of

the vectors xi or i ∈ {1, 2, . . . , n} with nonnegative coefficients. In other words, λy+κz ∈ Q
(since Q is the set of all linear combinations of the vectors xi for i ∈ {1, 2, . . . , n} with
nonnegative coefficients).

Now, let us forget that we fixed y, z, λ and κ. We thus have proven that every two
elements y ∈ Q and z ∈ Q and every nonnegative reals λ and κ satisfy λy + κz ∈ Q. If
we rename y, z and κ as x, y and µ in this statement, we obtain the following: Every two
elements x ∈ Q and y ∈ Q and every nonnegative reals λ and µ satisfy λx+ µy ∈ Q.
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in E which contains S as a subset. Thus, the intersection of all convex cones in
E which contain S as a subset is a subset of Q. In other words, coneS is a subset
of Q (since coneS is the intersection of all convex cones in E which contain S as
a subset (because of Definition 2.0j)). In other words, coneS ⊆ Q.

On the other hand, Q ⊆ coneS 85. Combining this with coneS ⊆ Q, we

Thus, we have proven the following two statements:

• We have 0 ∈ Q.

• Every two elements x ∈ Q and y ∈ Q and every nonnegative reals λ and µ satisfy
λx+ µy ∈ Q.

In other words, the set Q is a convex cone (by the definition of a convex cone). Qed.
84Proof. Let w ∈ S. Then, w ∈ S = {x1, x2, . . . , xn}. Thus, there exists some k ∈ {1, 2, . . . , n}

such that w = xk. Consider this k.
Define a family (µi)i∈{1,2,...,n} of nonnegative reals by setting(

µi =

{
1, if i = k;

0, if i 6= k
for every i ∈ {1, 2, . . . , n}

)
.

Then, it is easy to see that:

• All but finitely many i ∈ {1, 2, . . . , n} satisfy µi = 0.

• We have
∑

i∈{1,2,...,n}
µixi = xk.

Hence, w = xk =
∑

i∈{1,2,...,n}
µixi. Thus, w has the form

∑
i∈{1,2,...,n}

λixi for some family

(λi)i∈{1,2,...,n} of nonnegative reals indexed by elements of {1, 2, . . . , n} and having the

property that all but finitely many i ∈ {1, 2, . . . , n} satisfy λi = 0 (namely, for the family
(λi)i∈{1,2,...,n} = (µi)i∈{1,2,...,n}). In other words, w is a linear combination of the vectors

xi for i ∈ {1, 2, . . . , n} with nonnegative coefficients. In other words, w ∈ Q (since Q is
the set of all linear combinations of the vectors xi for i ∈ {1, 2, . . . , n} with nonnegative
coefficients).

Now, let us forget that we fixed w. We thus have proven that w ∈ Q for every w ∈ S. In
other words, S ⊆ Q.

85Proof. Let w ∈ Q. We shall show that w ∈ coneS.
Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone

in E and satisfies S ⊆ D.
We have w ∈ Q. In other words, w is a linear combination of the vectors xi for i ∈

{1, 2, . . . , n} with nonnegative coefficients (since Q is the set of all linear combinations of
the vectors xi for i ∈ {1, 2, . . . , n} with nonnegative coefficients). In other words, w has
the form w =

∑
i∈{1,2,...,n}

λixi for some family (λi)i∈{1,2,...,n} of nonnegative reals indexed by

elements of {1, 2, . . . , n} and having the property that all but finitely many i ∈ {1, 2, . . . , n}
satisfy λi = 0. Consider this family (λi)i∈{1,2,...,n}.

For every i ∈ {1, 2, . . . , n}, we have xi ∈ {x1, x2, . . . , xn} = S ⊆ D. Thus, (xi)i∈{1,2,...,n} is

a family of elements of D. Hence, Proposition 2.0i (applied to D, {1, 2, . . . , n}, (xi)i∈{1,2,...,n}
and (λi)i∈{1,2,...,n} instead of C, I, (xi)i∈I and (λi)i∈I) shows that

∑
i∈{1,2,...,n}

λixi ∈ D.

Thus, w =
∑

i∈{1,2,...,n}
λixi ∈ D.
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obtain coneS = Q. Thus,

cone {x1, x2, . . . , xn}︸ ︷︷ ︸
=S

= coneS = Q

= (the set of all linear combinations of the

vectors x1, x2, . . . , xn with nonnegative coefficients)

(by the definition of Q). This proves Proposition 2.0o (a).
(b) We have the following chain of logical equivalences:x ∈ cone {x1, x2, . . . , xn}︸ ︷︷ ︸

=(the set of all linear combinations of the
vectors x1, x2, ..., xn with nonnegative coefficients)

(by Proposition 2.0o (a))


⇐⇒

(
x ∈ (the set of all linear combinations of the

vectors x1, x2, . . . , xn with nonnegative coefficients)

)
⇐⇒ (x is a linear combination of the vectors x1, x2, . . . , xn

with nonnegative coefficients) .

In other words, we have x ∈ cone {x1, x2, . . . , xn} if and only if x is a linear
combination of the vectors x1, x2, . . ., xn with nonnegative coefficients. This
proves Proposition 2.0o (b).

Proof of Proposition 2.0p. (b) Let (νs)s∈S is a family of nonnegative reals indexed
by elements of S.

Clearly, there are only finitely many i ∈ S (since the set S is finite). Hence, all
but finitely many i ∈ S satisfy νi = 0.

We know that (νs)s∈S is a family of nonnegative reals. Renaming the index s
as i in this statement, we conclude that (νi)i∈S is a family of nonnegative reals.

We have
∑
s∈S

νss =
∑
i∈S

νii (here, we renamed the summation index s as i). Thus,∑
s∈S

νss has the form
∑
i∈S

λii for some family (λi)i∈S of nonnegative reals indexed by

the elements of S such that all but finitely many i ∈ S satisfy λi = 0 (namely, for

Let us now forget that we fixed D. We thus have proven that w ∈ D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in E
which contain S as a subset. In other words, w lies in coneS (since coneS is the intersection
of all convex cones in E which contain S as a subset (because of Definition 2.0j)). In other
words, w ∈ coneS.

Let us now forget that we fixed w. We thus have proven that w ∈ coneS for every w ∈ Q.
In other words, Q ⊆ coneS, qed.
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the family (λi)i∈S = (νi)i∈S). In other words,
∑
s∈S

νss is a linear combination of the

vectors s for s ∈ S with nonnegative coefficients. In other words,
∑
s∈S

νss belongs

to the set of all linear combinations of the vectors s for s ∈ S with nonnegative
coefficients. In other words,

∑
s∈S

νss belongs to coneS (since coneS is the set of

all linear combinations of the vectors s for s ∈ S with nonnegative coefficients
(according to Definition 2.0k)). In other words,

∑
s∈S

νss ∈ coneS. This proves

Proposition 2.0p (b).
(c) Let p be an element of coneS. Thus, p ∈ coneS. In other words, p is

a linear combination of the vectors s for s ∈ S with nonnegative coefficients
(since coneS is the set of all linear combinations of the vectors s for s ∈ S with
nonnegative coefficients (according to Definition 2.0k)). In other words, p can be
written in the form

∑
i∈S

λii for some family (λi)i∈S of nonnegative reals indexed by

the elements of S such that all but finitely many i ∈ S satisfy λi = 0. Consider
this (λi)i∈S. Thus, p =

∑
i∈S

λii.

We know that (λi)i∈S is a family of nonnegative reals. Renaming the index i
as s in this statement, we conclude that (λs)s∈S is a family of nonnegative reals.
Now, p =

∑
i∈S

λii =
∑
s∈S

λss (here, we renamed the summation index i as s). Thus,

there exists a family (νs)s∈S of nonnegative reals indexed by elements of S such
that p =

∑
s∈S

νss (namely, (νs)s∈S = (λs)s∈S). This proves Proposition 2.0p (c).

(a) If (νs)s∈S is a family of nonnegative reals, then
∑
s∈S

νss ∈ coneS (according

to Proposition 2.0p (b)). In other words,{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
⊆ coneS. (74)

On the other hand,

coneS ⊆

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
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86. Combining this with (74), we obtain

coneS =

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
.

This proves Proposition 2.0p (a).

16.3. Proofs for Section 3

Proof of Proposition 2.0r. Let x ∈ C.
We have x ∈ C = conv . hull {x1, x2, . . . , xt}, so that x is a convex combination

of the vectors x1, x2, . . ., xt. In other words, there exist t nonnegative elements

λ1, λ2, . . ., λt of R such that
t∑
i=1

λi = 1 and
t∑
i=1

λixi = x. Consider these λ1, λ2,

. . ., λt.
There exists at least one j ∈ {1, 2, . . . , t} such that λj 6= 0 (since otherwise, we

would have λi = 0 for every i ∈ {1, 2, . . . , t}, so that
t∑
i=1

λi︸︷︷︸
=0

=
t∑
i=1

0 = 0, which

would contradict
t∑
i=1

λi = 1 6= 0). Consider this j. Then, λj is nonnegative and

satisfies λj 6= 0. Thus, λj > 0.
Combining f (xj) < δ (by (2), applied to i = j) with λj > 0, we obtain

λjf (xj) < λjδ. In other words,

λjf (xj)− λjδ < 0. (75)

86Proof. Let p ∈ coneS. Thus, there exists a family (νs)s∈S of nonnegative reals indexed by
elements of S such that p =

∑
s∈S

νss (according to Proposition 2.0p (c)). In other words, p

has the form
∑
s∈S

νss for some family (νs)s∈S of nonnegative reals. In other words,

p ∈

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
.

Now, let us forget that we fixed p. We thus have proven that every p ∈ coneS satisfies

p ∈
{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
. In other words,

coneS ⊆

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
,

qed.
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Since x =
t∑
i=1

λixi, we have

f (x) = f

(
t∑
i=1

λixi

)
=

t∑
i=1

λif (xi) (since the map f is R-linear)

=
t∑
i=1

λif (xi)−
t∑
i=1

λiδ︸ ︷︷ ︸
=

t∑
i=1

(λif(xi)−λiδ)

+
t∑
i=1

λi︸ ︷︷ ︸
=1

δ

=
t∑
i=1

(λif (xi)− λiδ) + δ. (76)

We know that every i ∈ {1, 2, . . . , t} satisfies λif (xi) − λiδ ≤ 0 (since (2)
yields f (xi) < δ, so that λif (xi) ≤ λiδ (since λi ≥ 0), so that λif (xi)−λiδ ≤ 0).

Hence, every addend of the sum
t∑
i=1

(λif (xi)− λiδ) is nonpositive. Since we know

that at least one addend of this sum is actually negative (namely, the addend for
i = j, because of (75)), this sum must thus be < 0. Now, (76) becomes

f (x) =
t∑
i=1

(λif (xi)− λiδ)︸ ︷︷ ︸
<0

+δ < δ.

This proves Proposition 2.0r.

Proof of Proposition 2.0s. Let x ∈ coneS. Then,

x ∈ coneS =

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
(by the definition of coneS). Hence, there exists a family (νs)s∈S of nonnegative
reals such that x =

∑
s∈S

νss. Consider this (νs)s∈S.

Each s ∈ S satisfies

νsf (s) ≤ 0 (since νs ≥ 0 and f (s) ≤ 0 (by (3))) . (77)

Since x =
∑
s∈S

νss, we have

f (x) = f

(∑
s∈S

νss

)
=
∑
s∈S

νsf (s)︸ ︷︷ ︸
≤0

(by (3))

(since the map f is R-linear)

≤
∑
s∈S

0 = 0.

This proves Proposition 2.0s.
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Proof of Lemma 2.0t. (a) Let v ∈ Rn be a column vector satisfying v ≥ 0. We
must prove that all coordinates of the column vector v are nonnegative.

We have v ≥ 0. In other words, every i ∈ {1, 2, . . . , n} satisfies

(the i-th coordinate of v) ≥ (the i-th coordinate of 0)

(by the definition of v ≥ 0). Hence, every i ∈ {1, 2, . . . , n} satisfies

(the i-th coordinate of v) ≥ (the i-th coordinate of 0) = 0.

In other words, for every i ∈ {1, 2, . . . , n}, the i-th coordinate of v is nonnegative.
In other words, the coordinates of the column vector v are nonnegative. This
proves Lemma 2.0t (a).

(b) The proof of Lemma 2.0t (b) is completely identical to the proof of Lemma
2.0t (a) given above (except that “Rn” must be replaced by “(Rn)∗”, and the word
“column” must be replaced by “row”).

Proof of Lemma 2.0u. Write the vector x in the form


x1

x2
...
xn

 with x1, x2, . . .,

xn being real numbers. Then, for every i ∈ {1, 2, . . . , n}, we have

(the i-th coordinate of x) = xi. (78)

But now, let u be the vector


max {x1, 0}
max {x2, 0}

...
max {xn, 0}

. Then, for every i ∈ {1, 2, . . . , n},

we have

(the i-th coordinate of u) = max {xi, 0} (79)

≥ 0 = (the i-th coordinate of 0) .

Thus, u ≥ 0.

Furthermore, let v be the vector


−min {x1, 0}
−min {x2, 0}

...
−min {xn, 0}

. Then, for every i ∈

{1, 2, . . . , n}, we have

(the i-th coordinate of v) = −min {xi, 0}︸ ︷︷ ︸
≤0

(80)

≥ −0 = 0 = (the i-th coordinate of 0) .
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Thus, v ≥ 0.
Now, every λ ∈ R satisfies

max {λ, 0}+ min {λ, 0} = λ. (81)

87

Now, every i ∈ {1, 2, . . . , n} satisfies

(the i-th coordinate of u− v)

= (the i-th coordinate of u)︸ ︷︷ ︸
=max{xi,0}

(by (79))

− (the i-th coordinate of v)︸ ︷︷ ︸
=−min{xi,0}

(by (80))

= max {xi, 0} − (−min {xi, 0}) = max {xi, 0}+ min {xi, 0} = xi

(by (81), applied to λ = xi)

= (the i-th coordinate of x) (by (78)) .

Thus, u− v = x.
So we know that u ≥ 0, v ≥ 0 and x = u − v. Hence, there exist two vectors

y and z in Rn such that y ≥ 0, z ≥ 0 and x = y − z (namely, y = u and z = v).
This proves Lemma 2.0u.

Proof of Lemma 2.0v. The row vector x ∈ (Rn)∗ satisfies x ≥ 0. Thus, Lemma
2.0t (b) (applied to v = x) shows that the coordinates of the row vector x are
nonnegative. Let λ1, λ2, . . ., λn be the coordinates of the row vector x. Then,
λ1, λ2, . . ., λn are nonnegative (since the coordinates of the row vector x are
nonnegative).

The column vector y ∈ Rn satisfies y ≥ 0. Thus, Lemma 2.0t (a) (applied to
v = y) shows that the coordinates of the column vector y are nonnegative. Let
µ1, µ2, . . ., µn be the coordinates of the column vector y. Then, µ1, µ2, . . ., µn
are nonnegative (since the coordinates of the column vector y are nonnegative).

By the definition of the product of a row vector with a column vector, we have

xy =
n∑
i=1

λiµi (since the coordinates of the row vector x are λ1, λ2, . . ., λn, while

the coordinates of the column vector y are µ1, µ2, . . ., µn).

87Proof of (81): Let λ ∈ R. Then, we must be in one of the following two cases:
Case 1: We have λ ≥ 0.
Case 2: We have λ < 0.
Let us first consider Case 1. In this case, λ ≥ 0, so that max {λ, 0} = λ and min {λ, 0} = 0,

and thus max {λ, 0}︸ ︷︷ ︸
=λ

+ min {λ, 0}︸ ︷︷ ︸
=0

= λ. Thus, (81) is proven in Case 1.

Let us next consider Case 2. In this case, λ < 0, so that max {λ, 0} = 0 and min {λ, 0} = λ,
and thus max {λ, 0}︸ ︷︷ ︸

=0

+ min {λ, 0}︸ ︷︷ ︸
=λ

= λ. Thus, (81) is proven in Case 2.

Hence, we have proven (81) in each of the cases 1 and 2. Thus, (81) always holds (since
cases 1 and 2 cover all possibilities). Qed.
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But for every i ∈ {1, 2, . . . , n}, the real λiµi is nonnegative (since λi is non-

negative and µi is nonnegative), i. e., we have λiµi ≥ 0. Thus, xy =
n∑
i=1

λiµi︸︷︷︸
≥0

≥

n∑
i=1

0 = 0. This proves Lemma 2.0v.

16.4. Proofs for Section 4

Proof of Lemma 2.0x. Let n ∈ N, and let I1, I2, . . ., In be n closed intervals. We
are going to prove that I1 ∩ I2 ∩ · · · ∩ In is a closed interval.

In order to show that, we will prove that

for every k ∈ {0, 1, . . . , n} , the set I1 ∩ I2 ∩ · · · ∩ Ik is a closed interval. (82)

Proof of (82): We will prove (82) by induction over k:
Induction base: For k = 0, the set I1∩ I2∩ · · · ∩ Ik is a closed interval (because

for k = 0, the set I1 ∩ I2 ∩ · · · ∩ Ik equals I1 ∩ I2 ∩ · · · ∩ I0 = R, and we know that
R is a closed interval). In other words, (82) holds for k = 0. This completes the
induction base.

Induction step: Let i ∈ {1, 2, . . . , n}. Assume that (82) holds for k = i − 1.
We now must show that (82) holds for k = i.

Since (82) holds for k = i−1, we know that the set I1∩I2∩· · ·∩Ii−1 is a closed
interval. Thus, the set I1 ∩ I2 ∩ · · · ∩ Ii−1 has the form {x ∈ R | a ≤ x ≤ b}
for some elements a and b of R ∪ {−∞,∞} 88. In other words, there ex-
ist some elements a and b of R ∪ {−∞,∞} such that I1 ∩ I2 ∩ · · · ∩ Ii−1 =
{x ∈ R | a ≤ x ≤ b}. Denote this a and b as c and d, respectively. Then,
I1 ∩ I2 ∩ · · · ∩ Ii−1 = {x ∈ R | c ≤ x ≤ d}.

The set Ii is a closed interval. Thus, Ii has the form {x ∈ R | a ≤ x ≤ b} for
some elements a and b of R ∪ {−∞,∞} 89. In other words, there exist some
elements a and b of R ∪ {−∞,∞} such that Ii = {x ∈ R | a ≤ x ≤ b}. Denote
this a and b as u and v, respectively. Then, Ii = {x ∈ R | u ≤ x ≤ v}.

Now, combining the relations

{x ∈ R | max {c, u} ≤ x ≤ min {d, v}} ⊆ I1 ∩ I2 ∩ · · · ∩ Ii
90 and

I1 ∩ I2 ∩ · · · ∩ Ii ⊆ {x ∈ R | max {c, u} ≤ x ≤ min {d, v}}
88This is because we have defined a closed interval to mean a set which has the form
{x ∈ R | a ≤ x ≤ b} for some elements a and b of R ∪ {−∞,∞}.

89This is because we have defined a closed interval to mean a set which has the form
{x ∈ R | a ≤ x ≤ b} for some elements a and b of R ∪ {−∞,∞}.

90Proof. Let y ∈ {x ∈ R | max {c, u} ≤ x ≤ min {d, v}}. Then, y ∈ R and max {c, u} ≤ y ≤
min {d, v}.

Since c ≤ max {c, u} ≤ y and y ≤ min {d, v} ≤ d, we have c ≤ y ≤ d, so that y ∈
{x ∈ R | c ≤ x ≤ d} = I1 ∩ I2 ∩ · · · ∩ Ii−1.
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91, we obtain

I1 ∩ I2 ∩ · · · ∩ Ii = {x ∈ R | max {c, u} ≤ x ≤ min {d, v}} .

Thus, I1∩I2∩· · ·∩Ii is a set of the form {x ∈ R | a ≤ x ≤ b} for some elements
a and b of R ∪ {−∞,∞} (namely, for a = max {c, u} and b = min {d, v}). In
other words, I1 ∩ I2 ∩ · · · ∩ Ii is a closed interval92. In other words, (82) holds
for k = i. This completes the induction step. The induction proof of (82) is thus
complete.

Now, applying (82) to k = n, we conclude that I1 ∩ I2 ∩ · · · ∩ In is a closed
interval.

Now forget that we fixed n and I1, I2, . . ., In. We have thus shown that
whenever n ∈ N and whenever I1, I2, . . ., In are n closed intervals, the set
I1 ∩ I2 ∩ · · · ∩ In is a closed interval. In other words, we have proven that the
intersection of finitely many closed intervals always is a closed interval. This
proves Lemma 2.0x.

Proof of Lemma 2.0y. We distinguish between three cases:
Case 1: We have α < 0.
Case 2: We have α = 0.
Case 3: We have α > 0.

Since u ≤ max {c, u} ≤ y and y ≤ min {d, v} ≤ v, we have u ≤ y ≤ v, so that y ∈
{x ∈ R | u ≤ x ≤ v} = Ii.

Combining y ∈ I1 ∩ I2 ∩ · · · ∩ Ii−1 and y ∈ Ii, we obtain y ∈ (I1 ∩ I2 ∩ · · · ∩ Ii−1) ∩ Ii =
I1 ∩ I2 ∩ · · · ∩ Ii.

Now, forget that we fixed y. We thus have proven that every y ∈
{x ∈ R | max {c, u} ≤ x ≤ min {d, v}} satisfies y ∈ I1 ∩ I2 ∩ · · · ∩ Ii. In other words,
{x ∈ R | max {c, u} ≤ x ≤ min {d, v}} ⊆ I1 ∩ I2 ∩ · · · ∩ Ii, qed.

91Proof. Let y ∈ I1 ∩ I2 ∩ · · · ∩ Ii. Then,

y ∈ I1 ∩ I2 ∩ · · · ∩ Ii ⊆ I1 ∩ I2 ∩ · · · ∩ Ii−1 = {x ∈ R | c ≤ x ≤ d} .

Hence, y ∈ R and c ≤ y ≤ d. Also,

y ∈ I1 ∩ I2 ∩ · · · ∩ Ii ⊆ Ii = {x ∈ R | u ≤ x ≤ v} ,

so that u ≤ y ≤ v.
Whenever α, β, γ are three reals satisfying α ≤ γ and β ≤ γ, we have max {α, β} ≤ γ.

Applied to α = c, β = u and γ = y, this yields max {c, u} ≤ y (since c ≤ y and u ≤ y).
Whenever α, β, γ are three reals satisfying α ≤ β and α ≤ γ, we have α ≤ min {β, γ}.

Applied to α = y, β = d and γ = v, this yields y ≤ min {d, v} (since y ≤ d and y ≤ v).
Since max {c, u} ≤ y ≤ min {d, v}, we have y ∈ {x ∈ R | max {c, u} ≤ x ≤ min {d, v}}.
Now, forget that we fixed y. We thus have proven that every y ∈ I1 ∩ I2 ∩ · · · ∩ Ii

satisfies y ∈ {x ∈ R | max {c, u} ≤ x ≤ min {d, v}}. In other words, I1 ∩ I2 ∩ · · · ∩ Ii ⊆
{x ∈ R | max {c, u} ≤ x ≤ min {d, v}}, qed.

92This is because we have defined a closed interval to mean a set which has the form
{x ∈ R | a ≤ x ≤ b} for some elements a and b of R ∪ {−∞,∞}.
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Let us first consider Case 1. In this case, α < 0. Hence, for every x ∈ R, the

assertion αx ≤ β is equivalent to x ≥ β

α
(because dividing an inequality by a

negative real number reverses the sign of this inequality). Thus, for every x ∈ R,
we have the following equivalence of assertions:

(αx ≤ β)⇐⇒
(
x ≥ β

α

)
⇐⇒

(
β

α
≤ x

)
⇐⇒

(
β

α
≤ x ≤ ∞

)
.

Hence,

{x ∈ R | αx ≤ β} =

{
x ∈ R | β

α
≤ x ≤ ∞

}
.

Thus, {x ∈ R | αx ≤ β} is a set of the form {x ∈ R | a ≤ x ≤ b} for some

elements a and b of R ∪ {−∞,∞} (namely, for a =
β

α
and b = ∞). In other

words, {x ∈ R | αx ≤ β} is a closed interval93. This proves Lemma 2.0y in Case
1.

Let us now consider Case 2. In this case, α = 0. We must be in one of the
following two subcases:

Subcase 2.1: We have β ≥ 0.
Subcase 2.2: We have β < 0.
First, let us consider Subcase 2.1. In this subcase, β ≥ 0. Thus, every

x ∈ R satisfies αx ≤ β (since every x ∈ R satisfies α︸︷︷︸
=0

x = 0 ≤ β). Hence,

{x ∈ R | αx ≤ β} = R. Thus, {x ∈ R | αx ≤ β} is a closed interval (since R
is a closed interval). This proves Lemma 2.0y in Subcase 2.1.

Next, let us consider Subcase 2.2. In this subcase, β < 0. Thus, every x ∈
R satisfies α︸︷︷︸

=0

x = 0 > β. Hence, no x ∈ R satisfies αx ≤ β. Therefore,

{x ∈ R | αx ≤ β} = ∅. Thus, {x ∈ R | αx ≤ β} is a closed interval (since ∅
is a closed interval). This proves Lemma 2.0y in Subcase 2.2.

Since Lemma 2.0y is proven in both Subcases 2.1 and 2.2, it follows that Lemma
2.0y always holds in Case 2 (because Subcases 2.1 and 2.2 cover all possibilities
within Case 2).

Finally, let us consider Case 3. In this case, α > 0. Hence, for every x ∈ R,

the assertion αx ≤ β is equivalent to x ≤ β

α
(because dividing an inequality by a

positive real number leaves the sign of this inequality invariant). Thus, for every
x ∈ R, we have the following equivalence of assertions:

(αx ≤ β)⇐⇒
(
x ≤ β

α

)
⇐⇒

(
−∞ ≤ x ≤ β

α

)
.

93This is because we have defined a closed interval to mean a set which has the form
{x ∈ R | a ≤ x ≤ b} for some elements a and b of R ∪ {−∞,∞}.
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Hence,

{x ∈ R | αx ≤ β} =

{
x ∈ R | −∞ ≤ x ≤ β

α

}
.

Thus, {x ∈ R | αx ≤ β} is a set of the form {x ∈ R | a ≤ x ≤ b} for some

elements a and b of R ∪ {−∞,∞} (namely, for a = −∞ and b =
β

α
). In other

words, {x ∈ R | αx ≤ β} is a closed interval94. This proves Lemma 2.0y in Case
3.

Thus, Lemma 2.0y is proven in each of Cases 1, 2 and 3. Since these cases
cover all possibilities, this yields that Lemma 2.0y is always proven.

Proof of Lemma 2.0z. Let b1, b2, . . . , bm be the m coordinates of the column vec-
tor b. Thus, we have

(the i-th coordinate of b) = bi (83)

for each i ∈ {1, 2, . . . ,m}.
Let a1, a2, . . . , am be the m rows of the matrix A. Then, for each column vector

x ∈ Rn, and for each i ∈ {1, 2, . . . ,m}, we have

(the i-th coordinate of Ax) = aix (84)

(by the definition of the product of a matrix with a column vector).
For each x ∈ Rn, we have the following chain of equivalences:

(Ax ≤ b)

⇐⇒ (every i ∈ {1, 2, . . . ,m} satisfies

(the i-th coordinate of Ax)︸ ︷︷ ︸
=aix

(by (84))

≤ (the i-th coordinate of b)︸ ︷︷ ︸
=bi

(by (83))


(by the definition of Ax ≤ b)

⇐⇒ (every i ∈ {1, 2, . . . ,m} satisfies aix ≤ bi)

⇐⇒ (aix ≤ bi for every i ∈ {1, 2, . . . ,m}) .

Hence,

{x ∈ Rn | Ax ≤ b}
= {x ∈ Rn | aix ≤ bi for every i ∈ {1, 2, . . . ,m}} .

94This is because we have defined a closed interval to mean a set which has the form
{x ∈ R | a ≤ x ≤ b} for some elements a and b of R ∪ {−∞,∞}.
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Thus,

P = {x ∈ Rn | Ax ≤ b}
= {x ∈ Rn | aix ≤ bi for every i ∈ {1, 2, . . . ,m}} .

For every i ∈ {1, 2, . . . ,m}, the set {µ ∈ R | aicµ ≤ bi − aiz} is a closed in-
terval (by Lemma 2.0y, applied to α = aic and β = bi − aiz).

For any element µ ∈ R, we have the following equivalence of assertions:

(z + µc ∈ P )⇐⇒

ai (z + µc)︸ ︷︷ ︸
=aiz+aicµ

≤ bi for every i ∈ {1, 2, . . . ,m}


(since P = {x ∈ Rn | aix ≤ bi for every i ∈ {1, 2, . . . ,m}})

⇐⇒

aiz + aicµ ≤ bi︸ ︷︷ ︸
this is equivalent to

aicµ≤bi−aiz

for every i ∈ {1, 2, . . . ,m}


⇐⇒ (aicµ ≤ bi − aiz for every i ∈ {1, 2, . . . ,m}) .

Thus,

{µ ∈ R | z + µc ∈ P}
= {µ ∈ R | aicµ ≤ bi − aiz for every i ∈ {1, 2, . . . ,m}}

=
⋂

i∈{1,2,...,m}

{µ ∈ R | aicµ ≤ bi − aiz} .

This shows that {µ ∈ R | z + µc ∈ P} is an intersection of finitely many closed
intervals (since {µ ∈ R | aicµ ≤ bi − aiz} is a closed interval for every i ∈ {1, 2, . . . ,m}).
Thus, {µ ∈ R | z + µc ∈ P} is a closed interval (since Lemma 2.0x says that the
intersection of finitely many closed intervals always is a closed interval). This
proves Lemma 2.0z.

16.5. Proofs for Section 9

Proof of Lemma 2.2a. (a) Let v ∈ Rn be a column vector satisfying v > 0. We
must prove that all coordinates of the column vector v are positive.

We have v > 0. In other words, every i ∈ {1, 2, . . . , n} satisfies

(the i-th coordinate of v) > (the i-th coordinate of 0)

(by the definition of v > 0). Hence, every i ∈ {1, 2, . . . , n} satisfies

(the i-th coordinate of v) > (the i-th coordinate of 0) = 0.
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In other words, for every i ∈ {1, 2, . . . , n}, the i-th coordinate of v is positive.
In other words, the coordinates of the column vector v are positive. This proves
Lemma 2.2a (a).

(b) The proof of Lemma 2.2a (b) is completely identical to the proof of Lemma
2.2a (a) given above (except that “Rn” must be replaced by “(Rn)∗”, and the
word “column” must be replaced by “row”).

Proof of Lemma 2.2b. The row vector x ∈ (Rn)∗ satisfies x ≥ 0. Thus, Lemma
2.0t (b) (applied to v = x) shows that the coordinates of the row vector x are
nonnegative. Let λ1, λ2, . . ., λn be the coordinates of the row vector x. Then,
λ1, λ2, . . ., λn are nonnegative (since the coordinates of the row vector x are
nonnegative).

The column vector y ∈ Rn satisfies y > 0. Thus, Lemma 2.2a (a) (applied to
v = y) shows that the coordinates of the column vector y are positive. Let µ1,
µ2, . . ., µn be the coordinates of the column vector y. Then, µ1, µ2, . . ., µn are
positive (since the coordinates of the column vector y are positive).

By the definition of the product of a row vector with a column vector, we

have xy =
n∑
i=1

λiµi (since the coordinates of the row vector x are λ1, λ2, . . ., λn,

while the coordinates of the column vector y are µ1, µ2, . . ., µn). But for every
i ∈ {1, 2, . . . , n}, the real λiµi is nonnegative (since λi is nonnegative95 and µi is
positive96). In other words, for every i ∈ {1, 2, . . . , n}, we have λiµi ≥ 0. Hence,
n∑
i=1

λiµi︸︷︷︸
≥0

≥
n∑
i=1

0 = 0. Hence, xy =
n∑
i=1

λiµi ≥ 0.

Assume (for the sake of contradiction) that xy = 0.
Recall that, for every i ∈ {1, 2, . . . , n}, the real λiµi is nonnegative. Thus,

the sum
n∑
i=1

λiµi is a sum of nonnegative reals. Since this sum is 0 (because

n∑
i=1

λiµi = 0), this yields that

every i ∈ {1, 2, . . . , n} satisfies λiµi = 0 (85)

(because if a sum of nonnegative reals is 0, then each of these reals must equal
0). Thus, every i ∈ {1, 2, . . . , n} satisfies λi = 0 97. In other words, all the
numbers λ1, λ2, . . ., λn equal zero. Since λ1, λ2, . . ., λn are the coordinates of
the row vector x, this yields that all the coordinates of the row vector x equal
zero. Hence, x = 0. This contradicts the fact that x 6= 0 (since x is nonzero).
This contradiction shows that our assumption (that xy = 0) was false. Hence,

95because λ1, λ2, . . ., λn are nonnegative
96because µ1, µ2, . . ., µn are positive
97Proof. Let i ∈ {1, 2, . . . , n}. Recall that µ1, µ2, . . ., µn are positive; thus, µi is positive.

Hence, µi 6= 0. But (85) yields λiµi = 0. We can divide this equality by µi (since µi 6= 0),
and thus obtain λi = 0. Qed.
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we cannot have xy = 0. Thus, we have xy 6= 0. Combining this with xy ≥ 0, we
obtain xy > 0. This proves Lemma 2.2b.

Proof of Lemma 2.2c. Lemma 2.2c is proven in the same way as Lemma 2.2b,
except that the roles of the vectors x and y are partly reversed. (The details are
left to the reader.)

Proof of Lemma 2.2d. Assume the contrary. Thus, x 6= 0. Hence, x is nonzero.
Lemma 2.2b thus yields xy > 0. This contradicts xy = 0. This contradiction
shows that our assumption was false. This proves Lemma 2.2d.

16.6. Proofs for Section 11

Proof of Lemma 2.5h. We have the following chain of logical equivalences:((
x
y

)
≥ 0

)
⇐⇒

(
all coordinates of the vector

(
x
y

)
are ≥ 0

)
⇐⇒ (all coordinates of the vectors x and y are ≥ 0) since the coordinates of the vector

(
x
y

)
are

precisely the coordinates of the vectors x and y


⇐⇒ (all coordinates of the vector x are ≥ 0)︸ ︷︷ ︸

⇐⇒ (x≥0)

∧ (all coordinates of the vector y are ≥ 0)︸ ︷︷ ︸
⇐⇒ (y≥0)

⇐⇒ (x ≥ 0) ∧ (y ≥ 0) .

In other words,

(
x
y

)
≥ 0 holds if and only if (x ≥ 0 and y ≥ 0). This yields

both parts (a) and (b) of Lemma 2.5h.

Proof of Lemma 2.5i. Let x1, x2, . . . , xn be the n coordinates of the vector x. Let
y1, y2, . . . , yn be the n coordinates of the vector y. Then, the 2n coordinates of the

vector

(
x
−x

)
are x1, x2, . . . , xn,−x1,−x2, . . . ,−xn, whereas the 2n coordinates

of the vector

(
y
−y

)
are y1, y2, . . . , yn,−y1,−y2, . . . ,−yn. Hence, the inequality(

x
−x

)
≥
(

y
−y

)
says that each of the 2n coordinates x1, x2, . . . , xn,−x1,−x2, . . . ,−xn
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is ≥ to the corresponding coordinate among y1, y2, . . . , yn,−y1,−y2, . . . ,−yn. In
other words,

xi ≥ yi for each i ∈ {1, 2, . . . , n} , (86)

and
− xi ≥ −yi for each i ∈ {1, 2, . . . , n} . (87)

But (87) rewrites as

xi ≤ yi for each i ∈ {1, 2, . . . , n} .

Combining this with (86), we obtain xi = yi for each i ∈ {1, 2, . . . , n}. Thus,
x = y. This proves Lemma 2.5i.

17. Appendix: Old (and ugly) proofs of Theorems
2.1c and 2.5c

This section gives alternative proofs for Theorem 2.1c and 2.5c. These are the
proofs I have found myself, before I became aware of the neat proofs given in
Section 7; they are clumsy and long-winded, but maybe there is something of
interest in them (although I don’t know what that would be).

We shall prove Theorem 2.1c first, and then derive Theorem 2.5c from it. But
first of all, we will need a basic fact (which is often used as an exercise in linear
algebra courses):

Lemma 2.1d. Let k be an infinite field, and let E be a k-vector
space. Let x1, x2, . . ., xt be vectors in E. Assume that every i ∈
{1, 2, . . . , t} satisfies xi 6= 0. Then, there exists an f ∈ E∗ such that
every i ∈ {1, 2, . . . , t} satisfies f (xi) 6= 0.

Proof of Lemma 2.1d. Let us prove that for every j ∈ {0, 1, . . . , t},

there exists some f ∈ E∗ such that every i ∈ {1, 2, . . . , j} satisfies f (xi) 6= 0.
(88)

Proof of (88): We will prove (88) by induction over j:
Induction base: There exists some f ∈ E∗ such that every i ∈ {1, 2, . . . , 0} sat-

isfies f (xi) 6= 0 (namely, f = 0 (because the assertion that every i ∈ {1, 2, . . . , 0}
satisfies f (xi) 6= 0 is vacuously true)).

Induction step: Let J ∈ {1, 2, . . . , t} be such that (88) holds for j = J − 1. We
then have to prove that (88) holds for j = J .

We have xJ 6= 0 (because every i ∈ {1, 2, . . . , t} satisfies xi 6= 0).
There is a known linear-algebraic fact that if v is a vector in a k-vector space

F such that v 6= 0, then there exists an h ∈ F ∗ such that h (v) 6= 0. Applying
this fact to F = E and v = xJ , we see that there exists an h ∈ E∗ such that
h (xJ) 6= 0 (since xJ 6= 0). Consider this h.
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Since (88) holds for j = J − 1, there exists some f ∈ E∗ such that every
i ∈ {1, 2, . . . , J − 1} satisfies f (xi) 6= 0. Denote this f by g. Then, every
i ∈ {1, 2, . . . , J − 1} satisfies g (xi) 6= 0.

Let r be the element


−h (xJ)

g (xJ)
, if g (xJ) 6= 0;

0, if g (xJ) = 0
of k. Let M be the

subset

{
−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}
∪ {r} of k. Then,

|M | =
∣∣∣∣{−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}
∪ {r}

∣∣∣∣
≤
∣∣∣∣{−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}∣∣∣∣︸ ︷︷ ︸
≤J−1

+ |{r}|︸︷︷︸
=1

≤ J − 1 + 1 = J,

so that we cannot have k ⊆ M (because if we had k ⊆ M , then we would have
|k| ≤ |M | ≤ J , which contradicts the fact that k is infinite). As a consequence,
there exists an s ∈ k such that s /∈M . Consider this s.
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Now, every i ∈ {1, 2, . . . , J} satisfies (sg + h) (xi) 6= 0. 98 Thus, there
exists some f ∈ E∗ such that every i ∈ {1, 2, . . . , J} satisfies f (xi) 6= 0 (namely,
f = sg + h). In other words, (88) holds for j = J . This completes the induction
step. The induction proof of (88) is thus complete.

Applying (88) to j = t, we obtain that there exists an f ∈ E∗ such that every
i ∈ {1, 2, . . . , t} satisfies f (xi) 6= 0. This proves Lemma 2.1d.

Second proof of Theorem 2.1c. We will prove Theorem 2.1c by induction over
dimE.

Induction base: In the case when dimE = 0, Theorem 2.1c is obvious.99 This
completes the induction base.

Induction step: Let n be a positive integer. Assume that Theorem 2.1c holds
whenever dimE = n− 1. We will now prove that Theorem 2.1c holds whenever
dimE = n.

So, let G be an R-vector space satisfying dimG = n. Let C be a polytope in

98Proof. Assume the opposite. Then, there exists some i ∈ {1, 2, . . . , J} such that
(sg + h) (xi) = 0. Consider this i. Since i ∈ {1, 2, . . . , J}, we must be in one of the
following two cases:
Case 1: We have i ∈ {1, 2, . . . , J − 1}.
Case 2: We have i = J .
Let us first consider Case 1. In this case, i ∈ {1, 2, . . . , J − 1}.
Our i satisfies (sg + h) (xi) = 0, so that 0 = (sg + h) (xi) = sg (xi)+h (xi), thus sg (xi) =

−h (xi). Since g (xi) 6= 0, we can divide this by g (xi) and obtain

s ∈ −h (xi)

g (xi)
∈
{
−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}
⊆
{
−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}
∪ {r} = M,

contradicting s /∈M . Thus, we have obtained a contradiction in Case 1.
Let us now consider Case 2. In this case, i = J . Thus, (sg + h) (xi) = (sg + h) (xJ) =

sg (xJ) + h (xJ). Compared with (sg + h) (xi) = 0, this becomes sg (xJ) + h (xJ) =
0. Thus, sg (xJ) = −h (xJ)︸ ︷︷ ︸

6=0

6= −0 = 0, so that g (xJ) 6= 0. Thus, r =


−h (xJ)

g (xJ)
, if g (xJ) 6= 0;

0, if g (xJ) = 0
=
−h (xJ)

g (xJ)
(since g (xJ) 6= 0).

But dividing sg (xJ) = −h (xJ) by g (xJ) (this is allowed since g (xJ) 6= 0), we obtain

s =
−h (xJ)

g (xJ)
= r ∈

{
−h (x1)

g (x1)
,
−h (x2)

g (x2)
, . . . ,

−h (xJ−1)

g (xJ−1)

}
∪ {r} = M,

contradicting s /∈M . Thus, we have obtained a contradiction in Case 2.
Hence, in each of the cases 1 and 2, we have obtained a contradiction. Thus, we always

have a contradiction. Hence, our assumption was wrong, qed.
99In fact, in the case when dimE = 0, the only polytopes in E are 0 and ∅. If C = 0, Assertion

C1 holds and Assertion C2 does not; else, Assertion C2 holds and Assertion C1 does not.
Thus, Theorem 2.1c holds in the case when dimE = 0.
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G. By the definition of a polytope, this shows that C is the convex hull of a finite
set of vectors in G. In other words, there exist some t ∈ N and some vectors
x1, x2, . . ., xt in G such that C = conv . hull {x1, x2, . . . , xt}. Consider this t and
these x1, x2, . . ., xt.

We will now prove that exactly one of the following assertions holds:

Assertion C 11: We have 0 ∈ C.

Assertion C 12: There exists an f ∈ G∗ such that every x ∈ C satisfies
f (x) < 0.

First, it is clear that the Assertions C11 and C12 cannot hold at the same
time100. We will now show that at least one of these assertions holds. Our proof
will proceed in several steps:101

Step 1: If some i ∈ {1, 2, . . . , t} satisfies xi = 0, then at least one of Assertions
C11 and C12 holds102. Hence, for the rest of this proof, we can WLOG assume
that no i ∈ {1, 2, . . . , t} satisfies xi = 0. Assume this.

Step 2: If t = 0, then at least one of Assertions C11 and C12 holds103. Hence,
for the rest of this proof, we can WLOG assume that t 6= 0. Assume this.

Step 3: Every i ∈ {1, 2, . . . , t} satisfies xi 6= 0 (since no i ∈ {1, 2, . . . , t} satisfies
xi = 0). Thus, Lemma 2.1d (applied to k = R and E = G) yields that there
exists an f ∈ G∗ such that every i ∈ {1, 2, . . . , t} satisfies f (xi) 6= 0. Denote
this f by g. Thus, g is an element of G∗ such that every i ∈ {1, 2, . . . , t} satisfies
g (xi) 6= 0. Now, Im g = R 104.

Step 4: Now, let F = Ker g. Then, F is an R-vector subspace of E and satisfies
dimF = n− 1 105.

100Proof. Assume the opposite. Then, the Assertions C11 and C12 hold at the same time. Since
Assertion C12 holds, there exists an f ∈ G∗ such that every x ∈ C satisfies f (x) < 0.
Consider this f . We know that every x ∈ C satisfies f (x) < 0. Since 0 ∈ C (because
Assertion C11 holds), we can apply this to x = 0, and thus obtain f (0) < 0. But this
contradicts f (0) = 0 (which is because f is linear). This contradiction shows that our
assumption was wrong, qed.

101I have split this proof into several steps for the reader’s convenience. These steps, however,
are not self-contained; for example, Step 9 involves a case distinction, Step 10 handles its
Case 1, and Steps 11 until 18 handle its Case 2.

102Proof. Assume that some i ∈ {1, 2, . . . , t} satisfies xi = 0. Consider this i. Then, 0 = xi ∈
conv .hull {x1, x2, . . . , xt} = C, so that Assertion C11 holds. Thus, at least one of Assertions
C11 and C12 holds, qed.

103Proof. Assume that t = 0. Then, C = conv .hull {x1, x2, . . . , xt}︸ ︷︷ ︸
=∅

(since t=0)

= conv .hull∅ = ∅, so

that Assertion C12 holds (because it is vacuously true for f = 0). Thus, at least one of
Assertions C11 and C12 holds.

104Proof. Every i ∈ {1, 2, . . . , t} satisfies g (xi) 6= 0. Applied to i = 1, this yields g (x1) 6= 0, so
that g 6= 0, and thus Im g 6= 0. Hence, dim (Im g) ≥ 1. Since 1 = dimR, this rewrites as
dim (Im g) ≥ dimR. Combined with Im g ⊆ R, this yields Im g = R, qed.

105Proof. By the homomorphism theorem, G� (Ker g) ∼= Im g. Since F = Ker g, we
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Step 5: Let I+ be the set {i ∈ {1, 2, . . . , t} | g (xi) > 0}, and let I− be the set
{i ∈ {1, 2, . . . , t} | g (xi) < 0}. Clearly, these sets I+ and I− are disjoint (since
no i ∈ {1, 2, . . . , t} can satisfy g (xi) > 0 and g (xi) < 0 at the same time).

Since I+ = {i ∈ {1, 2, . . . , t} | g (xi) > 0}, it is clear that

every i ∈ I+ satisfies g (xi) > 0. (89)

Since I− = {i ∈ {1, 2, . . . , t} | g (xi) < 0}, it is clear that

every j ∈ I− satisfies g (xj) < 0. (90)

Every i ∈ {1, 2, . . . , t} satisfies g (xi) 6= 0. Thus,

{1, 2, . . . , t} =

i ∈ {1, 2, . . . , t} | g (xi) 6= 0︸ ︷︷ ︸
this is equivalent to

(g(xi)>0 or g(xi)<0)


= {i ∈ {1, 2, . . . , t} | g (xi) > 0 or g (xi) < 0}
= {i ∈ {1, 2, . . . , t} | g (xi) > 0}︸ ︷︷ ︸

=I+

∪{i ∈ {1, 2, . . . , t} | g (xi) < 0}︸ ︷︷ ︸
=I−

= I+ ∪ I−.

Step 6: If I− = ∅, then at least one of Assertions C11 and C12 holds106. Hence,
for the rest of this proof, we can WLOG assume that I− 6= ∅. Assume this.

Step 7: For every i ∈ {1, 2, . . . , t}, let αi be the element
1

g (xi)
∈ R (this is

well-defined since g (xi) 6= 0).

For every (i, j) ∈ I+ × I−, we have αi − αj 6= 0 107, so that
1

αi − αj
is

well-defined.

have G�F = G� (Ker g) ∼= Im g = R, so that dim (G�F ) = dimR = 1. Thus,
1 = dim (G�F ) = dimG︸ ︷︷ ︸

=n

−dimF = n− dimF . Hence, dimF = n− 1, qed.

106Proof. Assume that I− = ∅.
Let i ∈ {1, 2, . . . , t} be arbitrary. Then, i ∈ {1, 2, . . . , t} = I+ ∪ I−︸︷︷︸

=∅

= I+, so that

g (xi) > 0 (by (89)).
Now, forget that we fixed i. We thus have proven that every i ∈ {1, 2, . . . , t} satisfies

g (xi) > 0. Hence, every i ∈ {1, 2, . . . , t} satisfies (−g) (xi) = − g (xi)︸ ︷︷ ︸
>0

< 0.

Therefore, Proposition 2.0r (applied to E = G, f = −g and δ = 0) shows that every
x ∈ C satisfies (−g) (x) < 0 (because C = conv .hull {x1, x2, . . . , xt}). Thus, there exists an
f ∈ G∗ such that every x ∈ C satisfies f (x) < 0 (namely, f = −g). Hence, Assertion C12
holds. Thus, at least one of Assertions C11 and C12 holds, qed.

107Proof. Let (i, j) ∈ I+ × I−. Then, i ∈ I+ and j ∈ I−. Thus, g (xi) > 0 (by (89)), so
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Now, let S denote the set{
1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
.

Since every (i, j) ∈ I+× I− satisfies
1

αi − αj
(αixi − αjxj) ∈ Ker g 108, we have{

1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
⊆ Ker g. Thus,

S =

{
1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
⊆ Ker g = F.

Thus, conv . hullS is a polytope in F .

Since S =

{
1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
, we have

1

αi − αj
(αixi − αjxj) ∈ S for every (i, j) ∈ I+ × I−. (91)

Step 8: Let us now see that conv . hullS ⊆ C:

Every (i, j) ∈ I+ × I− satisfies
1

αi − αj
(αixi − αjxj) ∈ C 109. Thus,

{
1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
⊆ C.

that
1

g (xi)
> 0. Also, g (xj) < 0 (by (90)), so that

1

g (xj)
< 0. Now, since αi =

1

g (xi)

(by the definition of αi) and αj =
1

g (xj)
(by the definition of αj), we have αi − αj =

1

g (xi)︸ ︷︷ ︸
>0

− 1

g (xj)︸ ︷︷ ︸
<0

> 0, so that αi − αj 6= 0, qed.

108Proof. Let (i, j) ∈ I+ × I−. Since αi =
1

g (xi)
(by the definition of αi) and αj =

1

g (xj)
(by

the definition of αj), we have

g (αixi − αjxj) = g

(
1

g (xi)
xi −

1

g (xj)
xj

)
=

1

g (xi)
g (xi)︸ ︷︷ ︸

=1

− 1

g (xj)
g (xj)︸ ︷︷ ︸

=1

(since g is R-linear)

= 1− 1 = 0.

Thus, αixi − αjxj ∈ Ker g. Since Ker g is a k-vector space, this yields
1

αi − αj
(αixi − αjxj) ∈ Ker g, qed.

109Proof. Let (i, j) ∈ I+ × I−. Then, i ∈ I+ and j ∈ I−. Thus, g (xi) > 0 (by (89)), so that
1

g (xi)
> 0. Also, g (xj) < 0 (by (90)), so that

1

g (xj)
< 0.
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Thus,

S =

{
1

αi − αj
(αixi − αjxj) | (i, j) ∈ I+ × I−

}
⊆ C.

Hence, C is a convex set containing S as a subset. But since every convex set
containing S as a subset must also contain conv . hullS as a subset (because
conv . hullS is the smallest convex set containing S as a subset), this yields that
C contains conv . hullS as a subset. In other words, conv . hullS ⊆ C.

Step 9: Now, since dimF = n − 1, we can apply Theorem 2.1c to F and
conv . hullS instead of E and C (because we assumed that Theorem 2.1c holds
whenever dimE = n − 1). As a consequence, we obtain that exactly one of the
following two assertions holds:

Assertion C 21: We have 0 ∈ conv . hullS.

Assertion C 22: There exists an f ∈ F ∗ such that every x ∈ conv . hullS
satisfies f (x) < 0.

Thus, we must be in one of the following two cases:
Case 1: Assertion C21 holds.
Case 2: Assertion C22 holds.
Step 10: Let us consider Case 1 first. In this case, Assertion C21 holds. In

other words, 0 ∈ conv . hullS. Since conv . hullS ⊆ C, this yields 0 ∈ C, so that
Assertion C11 holds. Thus, at least one of Assertions C11 and C12 holds in Case
1.

Now, since αi =
1

g (xi)
(by the definition of αi) and αj =

1

g (xj)
(by the definition of αj),

we have αi =
1

g (xi)
> 0 and αj =

1

g (xj)
< 0. Thus, αi︸︷︷︸

>0

− αj︸︷︷︸
<0

> 0.

Since αi > 0 and αi − αj > 0, we have
αi

αi − αj
> 0. Since −αj > 0 (this is because

αj < 0) and αi − αj > 0, we have
−αj

αi − αj
> 0.

But C is convex. Thus, every point on a segment connecting two points of C must lie in
C.

Since
αi

αi − αj
> 0,

−αj
αi − αj

> 0 and
αi

αi − αj
+
−αj

αi − αj
=

αi
αi − αj

− αj
αi − αj

=

αi − αj
αi − αj

= 1, it is clear that
αi

αi − αj
xi +

−αj
αi − αj

xj is a point on the segment connecting

xi and xj . Since xi ∈ C (because xi ∈ {x1, x2, . . . , xt} ⊆ conv .hull {x1, x2, . . . , xt} = C)
and xj ∈ C (because xj ∈ {x1, x2, . . . , xt} ⊆ conv .hull {x1, x2, . . . , xt} = C), this yields

that
αi

αi − αj
xi +

−αj
αi − αj

xj is a point on a segment connecting two points of C. Thus,

αi
αi − αj

xi +
−αj

αi − αj
xj ∈ C (since every point on a segment connecting two points of C

must lie in C). Since
αi

αi − αj
xi +

−αj
αi − αj

xj =
1

αi − αj
(αixi − αjxj), this rewrites as

1

αi − αj
(αixi − αjxj) ∈ C, qed.
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Step 11: Now, let us consider Case 2. In this case, Assertion C22 holds. In
other words, there exists an f ∈ F ∗ such that every x ∈ conv . hullS satisfies
f (x) < 0. Denote this f by h. Then, every x ∈ conv . hullS satisfies h (x) < 0.

Step 12:110 A known fact from linear algebra states that if k is a field, P and
R are two k-vector spaces, Q is a k-vector subspace of P , and ξ : Q → R is a
k-linear map, then there exists a k-linear map η : P → R such that η |Q= ξ. 111

Applying this fact to k = R, P = G, Q = F , R = R and ξ = h, we conclude that
there exists an R-linear map η : G → R such that η |F= h. Denote this η by e.
Thus, e |F= h.

Now, e is an R-linear map G→ R, and

every x ∈ conv . hullS satisfies e (x) < 0 (92)

(since every x ∈ conv . hullS satisfies e (x) = (e |F )︸ ︷︷ ︸
=h

(x) = h (x) < 0).

Step 13: Let k be the element i of I− minimizing αie (xi) (this is well-defined
since I− is a finite set and I− 6= ∅). Then, k ∈ I−, and we have

αke (xk) ≤ αie (xi) for every i ∈ I−. (93)

Step 14: Let us now prove that

αke (xk) > αie (xi) for every i ∈ I+. (94)

Proof of (94): Let i ∈ I+. Since i ∈ I+ and k ∈ I−, we have (i, k) ∈ I+ × I−.
Thus, (91) (applied to (i, k) instead of (i, j)) yields

1

αi − αk
(αixi − αkxk) ∈ S ⊆ conv . hullS.

Hence, (92) (applied to x =
1

αi − αk
(αixi − αkxk)) yields e

(
1

αi − αk
(αixi − αkxk)

)
<

0. Since e

(
1

αi − αk
(αixi − αkxk)

)
=

1

αi − αk
e (αixi − αkxk) (because e is R-

linear), this rewrites as

1

αi − αk
e (αixi − αkxk) < 0. (95)

Since i ∈ I+, we have g (xi) > 0 (by (89)). Since k ∈ I−, we have g (xk) < 0
(by (90), applied to j = k). From g (xi) > 0 and g (xk) < 0, it follows that
g (xi) g (xk) < 0.

110This is no longer Step 11, but we are still in Case 2.
111Advanced algebraists tend to state this fact in the following equivalent form: Every k-vector

space is an injective k-module.
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By the definition of αi, we have αi =
1

g (xi)
> 0 (since g (xi) > 0). By the

definition of αk, we have αk =
1

g (xk)
< 0 (since g (xk) < 0). From αi > 0 and

αk < 0, it follows that αi︸︷︷︸
>0

− αk︸︷︷︸
<0

> 0. Thus, we can multiply (98) with αi−αk,

and obtain e (αixi − αkxk) < 0. Since

e (αixi − αkxk) = αie (xi)− αke (xk) (since e is R-linear) ,

this rewrites as αie (xi)− αke (xk) < 0. In other words, αke (xk) > αie (xi). This
proves (94).

Step 15: Let us slightly improve (94): It is easy to see that there exists a
positive real δ such that

every i ∈ I+ satisfies αk (e (xk) + δ) > αie (xi) . (96)

112 Consider this δ.
Step 16: We are now going to prove that

every i ∈ {1, 2, . . . , t} satisfies ((e (xk) + δ) g − g (xk) e) (xi) < 0. (98)

Proof of (98): Let i ∈ {1, 2, . . . , t}. Then, i ∈ {1, 2, . . . , t} = I+ ∪ I−. Hence,
either i ∈ I+ or i ∈ I−. We thus must be in one of the following two subcases:

Subcase 2.1: We have i ∈ I+.

112Proof. Every i ∈ I+ satisfies αke (xk) > αie (xi) (by (94)) and thus αke (xk)− αie (xi) > 0.
In other words, {αke (xk)− αie (xi) | i ∈ I+} is a set of positive reals. Since this set is
finite (because I+ is finite), it is thus bounded from below by a positive real. In other
words, there exists a positive real ε such that

every i ∈ I+ satisfies αke (xk)− αie (xi) ≥ ε. (97)

Consider this ε.

Let δ =
−ε
2αk

. Then, αkδ =
−ε
2

.

Since k ∈ I−, we have g (xk) < 0 (by (90), applied to j = k). By the definition of αk, we

have αk =
1

g (xk)
< 0 (since g (xk) < 0). Now, every i ∈ I+ satisfies

αk (e (xk) + δ)︸ ︷︷ ︸
=αke(xk)+αkδ

−αie (xi) = αke (xk) + αkδ − αie (xi)

= αke (xk)− αie (xi)︸ ︷︷ ︸
≥ε

(by (97))

+ αkδ︸︷︷︸
=
−ε
2

≥ ε+
−ε
2

=
ε

2
> 0

(since ε > 0). In other words, every i ∈ I+ satisfies αk (e (xk) + δ) > αie (xi).
We thus have proven that there exists a positive real δ such that every i ∈ I+ satisfies

αk (e (xk) + δ) > αie (xi). Qed.
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Subcase 2.2: We have i ∈ I−.
Let us first consider Subcase 2.1. In this subcase, i ∈ I+. Thus, g (xi) > 0

(by (89)). Since k ∈ I−, we have g (xk) < 0 (by (90), applied to j = k). From
g (xi) > 0 and g (xk) < 0, it follows that g (xi) g (xk) < 0.

By the definition of αi, we have αi =
1

g (xi)
> 0 (since g (xi) > 0). By

the definition of αk, we have αk =
1

g (xk)
< 0 (since g (xk) < 0). From (96),

we have αk (e (xk) + δ) > αie (xi). Since αi =
1

g (xi)
and αk =

1

g (xk)
, this

rewrites as
1

g (xk)
(e (xk) + δ) >

1

g (xi)
e (xi). Multiplied by g (xi) g (xk), this be-

comes g (xi) (e (xk) + δ) < g (xk) e (xi) (here, the sign has been switched since
g (xi) g (xk) < 0). Thus,

((e (xk) + δ) g − g (xk) e) (xi) = (e (xk) + δ) g (xi)︸ ︷︷ ︸
=g(xi)(e(xk)+δ)<g(xk)e(xi)

−g (xk) e (xi)

< g (xk) e (xi)− g (xk) e (xi) = 0.

Thus, (98) is proven in Subcase 2.1.
Let us now consider Subcase 2.2. In this subcase, i ∈ I−. Hence, (93) yields

αke (xk) ≤ αie (xi).
Since i ∈ I−, we have g (xi) < 0 (by (90), applied to j = i). Since k ∈ I−, we

have g (xk) < 0 (by (90), applied to j = k). From g (xi) < 0 and g (xk) < 0, it
follows that g (xi) g (xk) > 0.

Since αi =
1

g (xi)
(by the definition of αi) and αk =

1

g (xk)
(by the definition of

αk), the inequality αke (xk) ≤ αie (xi) (proven above) rewrites as
1

g (xk)
e (xk) ≤

1

g (xi)
e (xi). Multiplied by g (xi) g (xk), this becomes g (xi) e (xk) ≤ g (xk) e (xi)

(here, the sign has not been switched since g (xi) g (xk) > 0). Thus,

((e (xk) + δ) g − g (xk) e) (xi) = (e (xk) + δ) g (xi)︸ ︷︷ ︸
=e(xk)g(xi)+δg(xi)

−g (xk) e (xi)

= e (xk) g (xi)︸ ︷︷ ︸
=g(xi)e(xk)≤g(xk)e(xi)

+ δg (xi)︸ ︷︷ ︸
<0

(since δ>0
and g(xi)<0)

−g (xk) e (xi) < g (xk) e (xi)− g (xk) e (xi) = 0.

Thus, (98) is proven in Subcase 2.2.
We have thus proven (98) in each of the Subcases 2.1 and 2.2. Since these

subcases cover all possibilities, this yields that (98) always holds. This completes
the proof of (98).
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Step 17: Now,

every x ∈ C satisfies ((e (xk) + δ) g − g (xk) e) (x) < 0. (99)

Proof of (99): We know that every i ∈ {1, 2, . . . , t} satisfies
((e (xk) + δ) g − g (xk) e) (xi) < 0 (because of (98)). Thus, Proposition 2.0r (ap-
plied to G, (e (xk) + δ) g− g (xk) e and 0 instead of E, f and δ) shows that every
x ∈ C satisfies ((e (xk) + δ) g − g (xk) e) (x) < 0. This proves (99).

Step 18: Due to (99), there exists an f ∈ G∗ such that every x ∈ C satisfies
f (x) < 0 (namely, f = (e (xk) + δ) g − g (xk) e). In other words, Assertion C12
holds. Thus, at least one of Assertions C11 and C12 holds in Case 2.

We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions
C11 and C12 holds. Since these cases cover all possibilities, this yields that, in
every situation, at least one of Assertions C11 and C12 holds.

Altogether, we have shown the following two claims:

• Assertions C11 and C12 cannot hold at the same time.

• At least one of Assertions C11 and C12 holds.

Combining these claims, we conclude that exactly one of Assertions C11 and
C12 holds.

Now, forget that we fixed G and C. We have thus proven the following result:

Result 1: If G is an R-vector space satisfying dimG = n, and C is a
polytope in G, then exactly one of the following assertions holds:

Assertion C 11: We have 0 ∈ C.

Assertion C 12: There exists an f ∈ G∗ such that every x ∈ C satisfies
f (x) < 0.

If we rename G as E in Result 1, then this result takes the following form:

Result 2: If E is an R-vector space satisfying dimE = n, and C is a
polytope in E, then exactly one of the following assertions holds:

Assertion C 31: We have 0 ∈ C.

Assertion C 32: There exists an f ∈ E∗ such that every x ∈ C satisfies
f (x) < 0.

Clearly, Result 2 is exactly the statement of Theorem 2.1c in the case when
dimE = n. Hence, we have proven that Theorem 2.1c holds in the case when
dimE = n. This completes the induction step, and thus the induction proof of
Theorem 2.1c is complete.
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Second proof of Theorem 2.5c. We will prove Theorem 2.5c by strong induction
over |S|:

Induction step: Let n be a nonnegative integer. Assume that Theorem 2.5c
holds whenever |S| < n. We will now prove that Theorem 2.5c holds whenever
|S| = n.

So, let E be a finite-dimensional R-vector space. Let S be a finite subset of
E such that |S| = n. Let b ∈ E. Then, we must prove that exactly one of the
following two assertions holds:

Assertion D11: We have b ∈ coneS.

Assertion D12: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

Since coneS is a convex cone, it is clear that coneS is closed under multiplica-
tion by a nonnegative scalar (because convex cones are closed under multiplication
by a nonnegative scalar). It is also clear that any linear combination of finitely
many elements of coneS with nonnegative coefficients must lie in coneS (because
coneS is a convex cone, and because any linear combination of finitely many el-
ements of a convex cone with nonnegative coefficients must lie in this cone). In
particular, the sum of any two elements of coneS must lie in coneS.

First, it is clear that the Assertions D11 and D12 cannot hold at the same
time113. We will now show that at least one of these assertions holds.

Let C be the polytope conv . hull (S ∪ {−b}) in E. According to Theorem 2.1c,
exactly one of the following two assertions holds:

Assertion D21: We have 0 ∈ C.

Assertion D22: There exists an f ∈ E∗ such that every x ∈ C satisfies
f (x) < 0.

Thus, we must be in one of the following two cases:
Case 1: Assertion D21 holds.
Case 2: Assertion D22 holds.
First, let us consider Case 1. In this case, Assertion D21 holds. In other words,

0 ∈ C. Thus, 0 ∈ C = conv . hull (S ∪ {−b}). In other words, 0 is a convex
combination of the elements of S ∪ {−b}. In other words, there exist a family
(λs)s∈S∪{−b} of nonnegative reals such that

∑
s∈S∪{−b}

λs = 1 and
∑

s∈S∪{−b}
λss = 0.

Consider this family (λs)s∈S∪{−b}.

113Proof. Assume the opposite. Then, the Assertions D11 and D12 hold at the same
time. Since Assertion D12 holds, there exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0). Consider this f . We know that every x ∈ coneS
satisfies f (x) ≤ 0. Since b ∈ coneS (because Assertion D11 holds), we can apply this to
x = b, and thus obtain f (b) ≤ 0. But this contradicts f (b) > 0. This contradiction shows
that our assumption was wrong, qed.
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We must be in one of the following two subcases:
Subcase 1.1: We have λ−b = 0.
Subcase 1.2: We have λ−b 6= 0.
Let us first consider Subcase 1.1. In this subcase, we have λ−b = 0, so that

1 =
∑

s∈S∪{−b}

λs =
∑

s∈S\{−b}

λs +
∑
s∈{−b}

λs︸ ︷︷ ︸
=λ−b=0

(since S ∪ {−b} is the union of the disjoint sets S \ {−b} and {−b})

=
∑

s∈S\{−b}

λs.

If every s ∈ S \ {−b} would satisfy λs = 0, then we would have
∑

s∈S\{−b}
λs︸︷︷︸
=0

=∑
s∈S\{−b}

0 = 0, contradicting
∑

s∈S\{−b}
λs = 1. Thus, not every s ∈ S\{−b} satisfies

λs = 0. In other words, there exists an s ∈ S \ {−b} such that λs 6= 0. Let t be
such an s. Then, t ∈ S \ {−b} and λt 6= 0. Since λt is nonnegative and λt 6= 0,
we have λt > 0.

We have

0 =
∑

s∈S∪{−b}

λss =
∑

s∈S\{−b}

λss+
∑
s∈{−b}

λss︸ ︷︷ ︸
=λ−b(−b)=0
(since λ−b=0)

(since S ∪ {−b} is the union of the disjoint sets S \ {−b} and {−b})

=
∑

s∈S\{−b}

λss =
∑

s∈(S\{−b})\{t}

λss+ λtt,

so that

−λtt =
∑

s∈(S\{−b})\{t}

λss ∈ cone ((S \ {−b}) \ {t})︸ ︷︷ ︸
⊆S

(since λs is nonnegative for every s ∈ (S \ {−b}) \ {t})
⊆ coneS. (100)

Now, let us notice that

every ν ∈ R satisfies νt ∈ coneS. (101)

114 In other words,
tR ⊆ coneS. (102)

114Proof of (101): Let ν ∈ R.
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115

Let π be the canonical projection E → E� (tR). Clearly,

|π (S \ {t})| ≤ |S \ {t}| = |S|︸︷︷︸
=n

−1 (since t ∈ S)

= n− 1 < n.

Hence, we can apply Theorem 2.5c to E� (tR), π (S \ {t}) and π (b) instead of
E, S and b (since we assumed that Theorem 2.5c holds whenever |S| < n), and
conclude that exactly one of the following two assertions holds:

Assertion D31: We have π (b) ∈ cone (π (S \ {t})).
Assertion D32: There exists an f ∈ (E� (tR))∗ such that f (π (b)) >
0 and (every x ∈ cone (π (S \ {t})) satisfies f (x) ≤ 0).

Thus, we must be in one of the following two subsubcases:
Subsubcase 1.1.1: Assertion D31 holds.
Subsubcase 1.1.2: Assertion D32 holds.
First, let us consider Subsubcase 1.1.1. In this subsubcase, Assertion D31 holds.

In other words, we have π (b) ∈ cone (π (S \ {t})). Thus, there exists a family
(µw)w∈π(S\{t}) of nonnegative reals such that π (b) =

∑
w∈π(S\{t})

µww. Consider this

family (µw)w∈π(S\{t}).
For every w ∈ π (S \ {t}), let sw be an (arbitrarily chosen) element of S \ {t}

satisfying w = π (sw). Such an sw exists, since w ∈ π (S \ {t}). Now,

π (b) =
∑

w∈π(S\{t})

µw w︸︷︷︸
=π(sw)

=
∑

w∈π(S\{t})

µwπ (sw) = π

 ∑
w∈π(S\{t})

µwsw


(since π is linear). Since π is linear, we have

π

b− ∑
w∈π(S\{t})

µwsw

 = π (b)− π

 ∑
w∈π(S\{t})

µwsw


︸ ︷︷ ︸

=π(b)

= π (b)− π (b) = 0.

We have t ∈ S ⊆ coneS. Thus, if ν ≥ 0, then νt ∈ coneS (since coneS is closed under
multiplication by a nonnegative scalar). Thus, if ν ≥ 0, then (101) clearly holds. Therefore,
we can WLOG assume that ν ≥ 0 doesn’t hold for the rest of this proof. Assume this.

So, we know that ν ≥ 0 doesn’t hold. In other words, ν < 0. Thus, −ν > 0. Combined

with λt > 0, this yields
−ν
λt

> 0. Hence,
−ν
λt
· (−λtt) ∈ coneS (since −λtt ∈ coneS

(by (100)), and since coneS is closed under multiplication by a nonnegative scalar). Since
−ν
λt
· (−λtt) = νt, this rewrites as νt ∈ coneS. This proves (101).

115Proof of (102): Let x ∈ tR be arbitrary. Then, there exists a ν ∈ R such that x = νt.
Consider this ν. Then, x = νt ∈ coneS (by (101)). Now, forget that we fixed x. We have
thus shown that every x ∈ tR satisfies x ∈ coneS. In other words, tR ⊆ coneS. Thus, (102)
is proven.
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Thus,

b−
∑

w∈π(S\{t})

µwsw ∈ Ker π = tR

(since π is the canonical projection E → E� (tR))

⊆ coneS (by (102)) . (103)

But every w ∈ π (S \ {t}) satisfies sw ∈ S \ {t} ⊆ S ⊆ coneS. Therefore,∑
w∈π(S\{t})

µwsw ∈ coneS (since any linear combination of finitely many elements

of coneS with nonnegative coefficients must lie in coneS). Combined with (103),
this shows that

∑
w∈π(S\{t})

µwsw and b−
∑

w∈π(S\{t})
µwsw are two elements of coneS.

Thus, their sum

( ∑
w∈π(S\{t})

µwsw

)
+

(
b−

∑
w∈π(S\{t})

µwsw

)
must also lie in coneS

(because the sum of any two elements of coneS must lie in coneS). In other
words, coneS contains ∑

w∈π(S\{t})

µwsw

+

b− ∑
w∈π(S\{t})

µwsw

 = b.

In other words, b ∈ coneS. Thus, Assertion D11 holds. Hence, at least one of
Assertions D11 and D12 holds.

We have thus proven that at least one of Assertions D11 and D12 holds in
Subsubcase 1.1.1.

Next, let us consider Subsubcase 1.1.2. In this subsubcase, Assertion D32 holds.
In other words, there exists an f ∈ (E� (tR))∗ such that f (π (b)) > 0 and
(every x ∈ cone (π (S \ {t})) satisfies f (x) ≤ 0). Denote this f by h. Then, h ∈
(E� (tR))∗ satisfies h (π (b)) > 0 and (every x ∈ cone (π (S \ {t})) satisfies h (x) ≤ 0).

It is easy to see that

every s ∈ S satisfies (h ◦ π) (s) ≤ 0. (104)

116 From this, it is easy to see that

every x ∈ coneS satisfies (h ◦ π) (x) ≤ 0. (105)

116Proof of (104): Let s ∈ S.
Since π is the canonical projection E → E� (tR), we have π (tR) = 0, so that π (t) = 0

(since t ∈ tR). Thus, (h ◦ π) (t) = h

π (t)︸︷︷︸
=0

 = h (0) = 0 (since h is linear). Hence, if s = t,

then (104) is proven. Therefore, we can WLOG assume that s 6= t for the rest of this proof.
Assume this.

Since s 6= t, we have s ∈ S \ {t}. Hence, π (s) ∈ π (S \ {t}) ⊆ cone (π (S \ {t})).
Recall that (every x ∈ cone (π (S \ {t})) satisfies h (x) ≤ 0). Applying this to x = π (s),

we obtain h (π (s)) ≤ 0. Hence, (h ◦ π) (s) = h (π (s)) ≤ 0. This proves (104).
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117 Also, (h ◦ π) (b) = h (π (b)) > 0. Altogether, we have thus shown that
(h ◦ π) (b) > 0 and (every x ∈ coneS satisfies (h ◦ π) (x) ≤ 0).

Thus, there exists an f ∈ E∗ such that f (b) > 0 and (every x ∈ coneS satisfies f (x) ≤ 0)
(namely, f = h ◦ π). In other words, Assertion D12 holds. Hence, at least one of
Assertions D11 and D12 holds.

We have thus proven that at least one of Assertions D11 and D12 holds in
Subsubcase 1.1.2.

Hence, in each of the Subsubcases 1.1.1 and 1.1.2, at least one of Assertions D11
and D12 holds. Since these Subsubcases 1.1.1 and 1.1.2 cover the whole Subcase
1.1, this yields that at least one of Assertions D11 and D12 holds in Subcase 1.1.

Next, let us consider Subcase 1.2. In this subcase, we have λ−b 6= 0. Combined

with the fact that λ−b is nonnegative, this yields λ−b > 0. Thus,
1

λ−b
exists and

is > 0. Now,

0 =
∑

s∈S∪{−b}

λss =
∑

s∈S\{−b}

λss+
∑
s∈{−b}

λss︸ ︷︷ ︸
=λ−b(−b)

(since S ∪ {−b} is the union of the disjoint sets S \ {−b} and {−b})

=
∑

s∈S\{−b}

λss+ λ−b (−b) =
∑

s∈S\{−b}

λss− λ−bb,

117Proof of (105): Let x ∈ coneS. Then,

x ∈ coneS =

{∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}

(by the definition of coneS). Hence, there exists a family (νs)s∈S of nonnegative reals such
that x =

∑
s∈S

νss. Consider this (νs)s∈S .

Since x =
∑
s∈S

νss, we have

(h ◦ π) (x) = (h ◦ π)

(∑
s∈S

νss

)
=
∑
s∈S

νs (h ◦ π) (s)︸ ︷︷ ︸
≤0

(since νs≥0 and
(h◦π)(s)≤0 (by (104)))

(since h ◦ π is R-linear)

≤
∑
s∈S

0 = 0.

This proves (105).
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so that

λ−bb =
∑

s∈S\{−b}

λss ∈ cone (S \ {−b})︸ ︷︷ ︸
⊆S

(since λs is nonnegative for every s ∈ S \ {−b})
⊆ coneS.

Since
1

λ−b
> 0, this yields

1

λ−b
λ−bb ∈ coneS (because coneS is closed under

multiplication by a nonnegative scalar). Since
1

λ−b
λ−bb = b, this rewrites as

b ∈ coneS. In other words, Assertion D11 holds. Hence, at least one of Assertions
D11 and D12 holds.

We have thus proven that at least one of Assertions D11 and D12 holds in
Subcase 1.2.

Hence, in each of the Subcases 1.1 and 1.2, at least one of Assertions D11 and
D12 holds. Since these Subcases 1.1 and 1.2 cover the whole Case 1, this yields
that at least one of Assertions D11 and D12 holds in Case 1.

Finally, let us consider Case 2. In this case, Assertion D22 holds. In other
words, there exists an f ∈ E∗ such that every x ∈ C satisfies f (x) < 0. Denote
this f by h. Then,

every x ∈ C satisfies h (x) < 0. (106)

Now, it is easy to see that

every x ∈ coneS satisfies h (x) ≤ 0. (107)

118

Also, −b ∈ S ∪ {−b} ⊆ conv . hull (S ∪ {−b}) = C, so that h (−b) < 0 (by
(106)). Since h is linear, we have −h (b) = h (−b) < 0, so that h (b) > 0.

118Proof of (107): Let x ∈ coneS. Then, x ∈ coneS ={∑
s∈S

νss | (νs)s∈S is a family of nonnegative reals

}
. Thus, there exists a family

(νs)s∈S of nonnegative reals such that x =
∑
s∈S

νss. Consider this family (νs)s∈S .

Every s ∈ S satisfies h (s) < 0 (by (106), applied to x = s (since s ∈ S ⊆ S ∪ {−b} ⊆
conv .hull (S ∪ {−b}) = C)) and νs ≥ 0, so that νs︸︷︷︸

≥0

h (s)︸︷︷︸
<0

≤ 0. Now, since x =
∑
s∈S

νss, we

have

h (x) = h

(∑
s∈S

νss

)
=
∑
s∈S

νsh (s)︸ ︷︷ ︸
≤0

(since h is R-linear)

≤
∑
s∈S

0 = 0.

This proves (107).
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Altogether, we now know that h (b) > 0 and (every x ∈ coneS satisfies h (x) ≤ 0)
(by (107)). Thus, there exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0) (namely, f = h). In other words, Assertion
D12 holds. Hence, at least one of Assertions D11 and D12 holds.

We have thus proven that at least one of Assertions D11 and D12 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions D11 and D12
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions D11 and D12 holds. Since we know that the
Assertions D11 and D12 cannot hold at the same time, this yields that exactly
one of Assertions D11 and D12 holds.

Now, forget that we fixed E, S and b. We have thus proven that if E is a
finite-dimensional R-vector space, S is a finite subset of E such that |S| = n, and
b is an element of E, then exactly one of the following two assertions holds:

Assertion D11: We have b ∈ coneS.

Assertion D12: There exists an f ∈ E∗ such that f (b) > 0 and
(every x ∈ coneS satisfies f (x) ≤ 0).

In other words, we have proven that Theorem 2.5c holds in the case when
|S| = n. This completes the induction step, and thus the induction proof of
Theorem 2.5c is complete.
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