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Remark (2017):

This note has been mostly written in 2012, when I was learning combi-
natorial optimization from Schrijver’s online notes [Schrij17] and felt
a need for elementary and constructive proofs of the main theorems
of linear optimization (as opposed to the standard short proofs us-
ing compactness and the Hahn-Banach theorem). This note provides
such proofs, although I cannot vouch for their readabilityﬂ

Needless to say, this note breaks no new ground, and probably these
proofs (or easier ones) appear often enough in the literature (in fact, I
suspect that almost all of the material of this note is covered by each
of the two textbooks [Laurit13] and [Schrij98]). Writing them up was
a learning experience which, I fear, reading them will not be.

While this note often refers to [Schrij17], it is actually self-contained
and can be read separately (except for the few places where it modifies
arguments from [Schrij17] to make them constructive; but these are
tangential to the note).

The purpose of this note is to give elementary proofs for various results in linear
optimization theory. Here, “elementary” means that no analysis is being used,
and that the proofs are “morally” constructive.

Let me explain what “morally constructive” means: The results and proofs
given below are not valid in constructive logic, but this is solely for the reason
that R is not a discrete field in constructive logic. If we would formulate the
results and proofs below for QQ instead of R, then they would become valid in
constructive logic. Thus, when I make any claim in constructive logic below,
I tacitly want it to be understood with all R’s replaced by Q’s (and all “real
numbers” replaced by “rational numbers”, and so on).

Note that the following proofs, being free of analysis, generalize to any ordered
field instead of R (for example, to Q or to Q (\/5)) However, we are going to
formulate them for the field R only (trusting that the reader, if necessary, can
generalize them on his own). In particular, whenever we speak of “vector spaces”,
“vectors” and “matrices” below, we mean vector spaces, vectors and matrices over
R.

This note was originally intended as a supplement to Chapter 2 of Schrijver’s
notes [Schrijl'?]ﬂ; but it is fully self-contained. It proves separation theorems for
convex hulls and cones (of finite sets), the Farkas, Gordan, Stiemke and Motzkin
theorems, and two versions of the linear programming duality theorem. Also, it
“patches” the proof of Theorem 2.3 in [Schrij17] (the theorem saying that any
bounded polyhedron is the convex hull of its vertices) to make it constructive.

IThey are overdetailed in many places, the result of my attempts to ensure their correctness;
unfortunately the trees often obscure the forest.

2In particular, this explains the strange numbering of results in this note: The numbers have
been chosen so as not to conflict with the labeling of [Schrij17].
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1. Notations and basics 1: Convex sets

Before we start formulating and proving substantial theorems, let us introduce
some notations. The notations that we introduce will usually be identical to the
ones introduced in [Schrij17], save for a few exceptions.

In the following, N will always denote the set {0, 1,2, ...}; thus, we regard 0 as
an element of N (unlike some other authors).

We will use the words “vector” and “point” as synonyms; both of them will
denote elements of a vector space.

Definition. Let E be an R-vector space. Let C' be a subset of E.
We say that C'is convex if every two elements x € C' and y € C' and
every real number A € [0, 1] satisfy Az + (1 — \)y € C.

Geometrically, this definition is often put into words as follows: Let E be an
R-vector space. Let C' be a subset of E. We say that C' is convez if every point
on a segment containing two points of C' must also lie in C.

The following property of convex sets is easy to see:

Proposition 2.0a. Let E be an R-vector space. Let C' be a convex
subset of £. Let I be any set, and let (z;),., be a family of elements
of C' indexed by elements of 1. Let (A;),.; be a family of nonnegative
reals indexed by elements of I such that all but finitely many ¢ € [
satisfy \; = 0. Assume also that > \; = 1. Then, Y \z; € C.

el el

For the sake of completeness, we shall give a proof of Proposition 2.0a in Section

16l

Definition. Let F be an R-vector space. Let I be any set, and let
(2;);c; be a family of elements of F indexed by elements of I. If (\;),,
is a family of nonnegative reals indexed by elements of I such that all

but finitely many i € I satisfy A\; = 0, and such that >  A; = 1, then
iel
the vector Y \;z; is said to be a convex combination of the vectors z;
icl
fori e I.

Using this definition, Proposition 2.0a rewrites as follows:

Proposition 2.0b. Let E be an R-vector space. Let C' be a convex
subset of £. Let I be any set, and let (z;),.; be a family of elements
of C' indexed by elements of I. Then, any convex combination of the
vectors x; for i € I lies in C.




Linear optimization May 4, 2018

This result is often stated in words as follows: A convex set is closed under
convex combinations.

The notion of convex sets gives rise to another notion: that of a convex hull.
The notion of a convex hull can be defined in several ways; here are three:

Definition 2.0c. Let E be an R-vector space. Let S be a subset of E.
Then, the convexr hull of S will denote the intersection of all convex

subsets of &£ which contain S as a subset. We denote the convex hull
of S by conv.hull S.

Definition 2.0d. Let E be an R-vector space. Let S be a subset of
E. Then, the convezr hull of S will denote the set of all convex com-
binations of the vectors s for s € S. (This will often be abbreviated
as follows: “The convex hull of S will denote the set of all convex

combinations of the elements of S.”) We denote the convex hull of S
by conv . hull S.

Definition 2.0e. Let E be an R-vector space. Let S be a subset of
E. Then, the conver hull of S will denote the set

there exist some t € N,
a t-tuple (z1,xs,...,x;) of elements of S
r€eFE | and a t-tuple (A1, Ag,...,\;) of nonnegative reals
t

t
such that Y~ \; =1and Y \a; ==z

i=1 i=1
We denote the convex hull of S by conv . hull S.
Definitions 2.0c, 2.0d and 2.0e are equivalent (according to Proposition 2.0f
(a) below).
The following result gathers some fundamental properties of convex hulls, most
of which are standardly used without explicitly calling them out:
Proposition 2.0f. (a) Definitions 2.0c, 2.0d and 2.0e are equivalent.
Let E be an R-vector space.
(b) We have conv. hull @ = @.
Let now S be a subset of F.
(c) We have S C conv . hull S.
(d) The convex hull conv . hull S is a convex set.
(e) If T is a subset of S, then conv.hullT C conv . hull S.

(f) Every convex subset of E which contains S as a subset also con-
tains conv . hull S as a subset.

(g) If T is a subset of conv. hull S, then conv.hullT C conv . hull S.
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Again, we refer to Section [16| for a proof of Proposition 2.0f.

Remark. Let E be an R-vector space. Let S be a subset of F.
Then, the convex hull conv . hull S is a convex set (by Proposition 2.0f
(d)) and contains S as a subset (by Proposition 2.0f (c)). Moreover,
every convex subset of F which contains S as a subset also contains
conv . hull S as a subset (by Proposition 2.0f (f)). This result is often
put into words as follows: “The convex hull conv . hull S is the smallest
convex set containing S as a subset.”

The following proposition (which is, again, fundamental and will be used with-
out explicit mention) is a simple consequence of Definition 2.0e:

Proposition 2.0g. Let £ be an R-vector space.
(a) If S is any subset of £, then

conv . hull S
t is an element of N,
t and (z1,x2,...,x;) is a t-tuple of elements of S,
= Z Az | and (A1, Aa, ..., \;) is a t-tuple of nonnegative reals
i=1

¢
such that >~ \; =1

i=1

(b) Let F be a vector subspace of E. Let S be a subset of F. Then,
the convex hull conv . hull S does not depend on whether we consider
S as a subset of F' or as a subset of E.

Again, we refer to Section [16| for a proof of Proposition 2.0g.
Here is yet another proposition that will be used tacitly:

Proposition 2.0h. Let £ be an R-vector space. Let xq, zo, ..., T,
be finitely many vectors in E.

(a) Then,

conv. hull {zq, xs,...,2,}

= (the set of all convex combinations of the vectors 1, z3, ..., x,).

(b) Let x € E. Then, we have x € conv.hull{z,zs,...,2,} if and
only if x is a convex combination of the vectors x1, xs, ..., T,.

Again, we refer to Section [16] for a proof of Proposition 2.0h.
Now, we can easily define polytopes:
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Definition. Let E be an R-vector space. Let P be a subset of
E. Then, P is said to be a polytope if P is the convex hull of
a finite subset of E. In other words, P is said to be a polytope
if there are finitely many vectors xi, x3, ..., x, in E such that
P =conv.hull {zy,zs,...,2,}.

We are not going to define the notion of a polyhedron (nor will we use this
notion); we refer to [Schrij17] for that.

2. Notations and basics 2: Cones

Convex cones are a notion similar to that of convex sets.

Definition. Let F be an R-vector space. Let C be a subset of F.
We say that C' is a convex cone in E if it satisfies the following two
conditions:

e We have 0 € C.

e Every two elements x € C and y € C' and every nonnegative
reals A\ and p satisfy Az + py € C.

We will abbreviate “convex cone in E” as “convex cone” when the
value of F is clear from the context.

Note that this definition is in slight conflict with the definition of a convex cone
in [Schrij17]. In fact, the definition of a convex cone in [Schrij17] does not contain
the condition that 0 € C'. This is irrelevant for nonempty subsets C' of E, because
if a nonempty subset C' of E' is a convex cone in the sense of [Schrij17], then it
must automatically contain 0 and therefore is also a convex cone in the sense of
our definition. So the only difference between our definition of a convex cone and
the definition given in [Schrij17] is that the empty set & is a convex cone in the
sense of [Schrij17], but not a convex cone in the sense of our definition. This is
not a particularly significant difference]

The name “convex cone” is somewhat presumptuous: It seems to imply that
any convex cone is a convex set, although we have not proved this. Fortunately,
this is true: Any convex cone is indeed a convex se

30ne advantage of our definition is that it satisfies the identity cone (A U B) = cone A+cone B
for any two subsets A and B of E (whereas with Schrijver’s definition, this holds only when
A and B are both nonempty or both empty). We will not use this identity, however.

4Proof. Let E be an R-vector space. Let C be a convex cone in E. We shall prove that C is
a convex set.

Recall that C is a convex cone. Hence, every two elements x € C and y € C and every
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Remark. Let E be an R-vector space. Let C' be a convex cone in F.
It is easy to see that every x € C' and every nonnegative real A satisfy
Ar € C. In words, this is often stated as follows: “Convex cones are
closed under multiplication by a nonnegative scalar”.

Similarly to Proposition 2.0a, we have:

Proposition 2.0i. Let F be an R-vector space. Let C' be a convex
cone in E. Let I be any set, and let (z;),., be a family of elements
of C indexed by elements of I. Let (A;),.; be a family of nonnegative
reals indexed by elements of I such that all but finitely many ¢ € I
satisfy )\,L =0. Then, Z )\@IZ eC.
i€l
In words, Proposition 2.0i is often stated as follows: “Any linear combination
of finitely many elements of a convex cone with nonnegative coefficients must lie
in this cone.”
The proof of Proposition 2.0i is similar to (and somewhat easier than) that of
Proposition 2.0a; for the sake of completeness, we shall give it in Section
Just as the notion of convex sets gave rise to the notion of convex hulls, the
notion of convex cones will give rise to the notion of convex conic hulls. Here are
three definitions for this notion:

Definition 2.0j. Let E be an R-vector space. Let S be a subset of
E. Then, the convexr conic hull of S will denote the intersection of all
convex cones in F which contain S as a subset. We denote the convex
conic hull of S by cone S.

Definition 2.0k. Let E be an R-vector space. Let S be a subset of
E. Then, the convex conic hull of S will denote the set of all linear
combinations of the vectors s for s € .S with nonnegative coefficients.
(This will often be abbreviated as follows: “The convex conic hull of
S will denote the set of all linear combinations of the elements of S
with nonnegative coefficients.”) We denote the convex conic hull of S
by cone S.

nonnegative reals A and pu satisfy
Az +puy el (1)

(by the definition of a convex cone).

Now, let x € C, y € C and A € [0,1]. Then, both A and 1 — A are nonnegative reals (since
A €[0,1]). Hence, Az + (1 — X)y € C (by (1)), applied to =1 —X).

Let us now forget that we fixed x, y and A. We thus have proven that every two elements
x € C and y € C and every real number A € [0,1] satisfy Az + (1 — )y € C. In other
words, C' is a convex set (by the definition of a “convex set”).

Now, let us forget that we fixed C. We thus have shown that if C' is a convex cone in F,
then C' is a convex set. In other words, any convex cone is a convex set. Qed.
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Definition 2.0l. Let E be an R-vector space. Let S be a subset of
E. Then, the convezr conic hull of S will denote the set

there exist some t € N,

a t-tuple (z1,xs,...,2;) of elements of S
reFE | and a t-tuple (A1, Ag,...,\;) of nonnegative reals
t
such that > Nz, =z
i=1

We denote the convex conic hull of S by cone S.
Definitions 2.0j, 2.0k and 2.01 are equivalent (according to Proposition 2.0m
(a) below).
The following result is analogous to Proposition 2.0f (except for its part (h),
which is easy )}
Proposition 2.0m. (a) Definitions 2.0j, 2.0k and 2.01 are equivalent.
Let E be an R-vector space.
(b) We havd’| cone @ = 0 (not @).
Let now S be a subset of F.
(c) We have S C cone S.
(d) The convex conic hull cone S is a convex cone.
(e) If T' is a subset of S, then coneT C cone S.

(f) Every convex cone in E which contains S as a subset also contains
cone S as a subset.

(g) If T is a subset of cone S, then coneT C cone S.
(h) We have conv.hull S C cone S.

We refer (again) to Section [16] for a proof of Proposition 2.0m.

Remark. Let E be an R-vector space. Let S be a subset of E. Then,
the convex conic hull cone S is a convex cone (by Proposition 2.0m
(d)) and contains S as a subset (by Proposition 2.0m (c)). Moreover,
every convex cone in E which contains S as a subset also contains
cone S as a subset (by Proposition 2.0m (f)). This result is often put
into words as follows: “The convex conic hull cone S is the smallest
convex cone containing S as a subset.”

5 And its proof (apart from part (h)) is analogous to the proof of Proposition 2.0f. For example,
Proposition 2.0m (f) follows from Definition 2.0k in the same way as Proposition 2.0f (f)
follows from Definition 2.0d.

6Here and in the following, we use the symbol “0” not just for the number zero and the zero
vector in a vector space, but also for the zero subspace of any vector subspace. In other
words, if E is any R-vector space, then the subspace {0} of E is also denoted by 0. Hopefully,
this abuse of notation will sow no confusion.
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The following proposition (which is, again, fundamental and will be used with-
out explicit mention) is a simple consequence of Definition 2.01:

Proposition 2.0n. Let E be an R-vector space.
(a) If S is any subset of E, then

cone S
t t is an element of N,
= Z Az | and (x1,Zs,...,x;) is a t-tuple of elements of S,
i=1 and (Ag, A, ..., \;) is a t-tuple of nonnegative reals

(b) Let F be a vector subspace of E. Let S be a subset of F. Then,
the convex conic hull cone S does not depend on whether we consider
S as a subset of F' or as a subset of E.

See Section (16| for a proof of Proposition 2.0n.
Here is yet another proposition (an analogue of Proposition 2.0h) that will be
used tacitly:

Proposition 2.00. Let E be an R-vector space. Let x1, xs, ..., x,
be finitely many vectors in F.

(a) Then,

cone{wy, Ty, ..., Ty}
= (the set of all linear combinations of the

vectors xi, Za, ..., T, with nonnegative coefficients) .

(b) Let « € E. Then, we have x € cone {x1, s, ...,z,} if and only if
x is a linear combination of the vectors x, xs, ..., , with nonnegative
coefficients.

A proof of Proposition 2.0o can be found in Section
The following proposition is nearly trivial; we state it merely for convenience:

Proposition 2.0p. Let F be an R-vector space. Let S be a finite
subset of F.

(a) Then,

cone S = {Z vss | (Vs),eg is a family of nonnegative reals} :

seS

In particular:

10
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(b) If (), is a family of nonnegative reals indexed by elements of

S, then > vgs € cone S.
ses

(c) Conversely, if p is an element of cone S, then there exists a family
(Vs),eq of nonnegative reals indexed by elements of S such that p =

> s,

ses

For the sake of completeness, the proof of Proposition 2.0p will be given in
Section [16]

3. Notations and basics 3: On the dual space

Here are two further notations that we will be using:

e If F'is any R-vector space, then E* will mean the R-vector space Homg (F,R)
of all R-linear maps from F to R. This E* is called the dual space of E.

e If / € N, then we regard the vectors in R’ as column vectors of length
¢, and we regard the vectors in (]Re)* as row vectors of length ¢. More

precisely, we identify every row vector (aj,as,...,a,) € R® with the R-
linear map f € (RE)* = Homg (RZ,]R) which sends every column vector
by by
bg b2 ¢
. € R’ to the scalar (ay,as, ..., a;) ) = > a;b; € R. Thus, for
. : =1
be be

every f € (Ré)* and b € R, we have f (b) = fb (where f is regarded as an
element of (RZ)* = Homg (RZ, ]R) on the left hand side, and regarded as a
row vector on the right hand side).

Let us state a simple property of convex hulls that we will be using several
times:

Proposition 2.0r. Let £ be an R-vector space. Let ¢t € N. Let 1,
To, ..., Ty be t vectors in E. Let f € E* and § € R. Assume that

every i € {1,2,...,t} satisfies f (z;) <. (2)

Let C' = conv.hull{zy,xs,...,2;}. Then, every z € C satisfies

f(x) <o

The (rather easy) proof of Proposition 2.0r can be found in Section [16{ below.
Here is an analogous property of convex conic hulls:

11
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Proposition 2.0s. Let £ be an R-vector space. Let S be a subset
of . Let f € E*. Assume that

every s € S satisfies f (s) <0. (3)

Then, every = € cone S satisfies f (z) < 0.

Again, we refer to Section [16] for a proof of Proposition 2.0s.
Next, let us define the notion of a hyperplane:

Definition. Let F be an R-vector space. If f is a nonzero element
of E*, and ¢ is an element of R, then the subset f~!(d) of E will be
called a hyperplane in E.

Note that this definition of a hyperplane is equivalent to the one given in
[Schrij17] when E = R™ for some n € N. In fact, when £ = R", then any element
f € E* has the form

E — R,

r—clx
for some ¢ € R", and this c is nonzero if and only if f is nonzero.

Definition. Let E be an R-vector space. Let H be a hyperplane in
E. Let z € F and C' C E. We say that the hyperplane H separates
z and C' if there exist a nonzero f € E* and a § € R such that
H=f"1(5), f(2) > d and (every x € C satisfies f (z) < ).

Note that this definition of “separate” is equivalent to the one given by Schrijver
in [Schrij17] when E = R" for some n € N. Schrijver’s definition, however, has
the disadvantage of using a topological notion (that of a “component”), which
makes it difficult to generalize to other ordered fields instead of R. It should be
remarked that Schrijver never really uses his definition of “separate” in [Schrij17];
instead, he more or less uses my definition.

Furthermore, we introduce the relations > and < on vectors:

Definition. Let ¢ € N. Let v and v be two column vectors in R¢.
Then, we write u < v if and only if every i € {1,2,..., ¢} satisfies

(the i-th coordinate of u) < (the i-th coordinate of v).
Also, we write u > v if and only if every i € {1,2,..., ¢} satisfies
(the i-th coordinate of u) > (the i-th coordinate of v).

The same notations apply if v and v are row vectors in (]RZ)* rather
than column vectors in R’.

12
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Of course, it is true that if u and v are two column vectors in R (or two
row vectors in (RZ)*), then v > v holds if and only if v < u. The relation <
is the smaller-or-equal relation of a partial order on R’ (namely, the so-called
componentwise partial order), and the relation > is the greater-or-equal relation
of this order. However, this order is not a total order (unless ¢ < 1): for example,

ifu:((1)> andv:((1)),thenwehaveneitheruzvnorvzu.

Clearly, the relation < respects the addition of vectors: If u € R, v € R® and
w € R are such that u < v, then v +w < v+ w. Moreover, if u € R, v € RY,
r € Rf and y € R? are such that u < v and = < y,then u +x <v+y. Asa
consequence, two vectors u € R and v € R? satisfy u < v if and only if u—v < 0.
Furthermore, if z € R’ and y € R’ are such that x < g, and if \ is a nonnegative
real, then Az < Ay. Similar rules hold for the relation >.

Definition. Let ¢ € N. A vector v lying either in R’ or in (RZ)* is
said to be nonnegative if it satisfies v > 0.

It is clear that a sum of nonnegative vectors in R is again nonnegative. More
generally, any linear combination of nonnegative vectors in R? with nonnegative
coefficients is again nonnegative.

Let us state a trivial but important fact:

Lemma 2.0t. Let n € N.

(a) If a column vector v € R" satisfies v > 0, then all coordinates of
the column vector v are nonnegative.

(b) If a row vector v € (R™)" satisfies v > 0, then all coordinates of
the row vector v are nonnegative.

A proof of Lemma 2.0t can be found in Section [I6] Of course, the converse
of Lemma 2.0t also holds; we just won’t use it often enough to have a reason to
state it.

Here is a simple property of nonnegative vectors, which will not be directly
used in these notes but which provides some context for them:

Lemma 2.0u. Let n € N. Let z € R". Then, there exist two vectors
y and z in R™ such that y > 0, 2 >0 and x =y — 2.

A proof of Lemma 2.0u can be found in Section [16]
Let us record another simple fact, which we will use many times:

Lemma 2.0v. Let n € N. Let € (R")" be a row vector such that
x > 0. Let y € R" be a column vector such that y > 0. Then, zy > 0.

Again, we refer to Section [16] for the proof of this fact.

13
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4. Closed intervals and [Schrij17, Theorem 2.3]

In this brief section, we shall state three simple lemmas about closed intervals
and use them to “patch” the proof of [Schrij17, Theorem 2.3] to make this latter
proof constructive. This section can be freely skipped, since none of what is done
here will be used afterwards.

In the following, a closed interval will mean a set which has the form {z € R | a <z < b}
for some elements a and b of R U {—o00,00} (where, of course, —oo is sup-
posed to be smaller than each element of R U {oco}, and oo is supposed to be
larger than each element of R U {—o0}). In particular, @ is a closed inter-
val (since @ = {r €R | 1 <2z <0}), and R is a closed interval (since R =
{z eR | —oo <z < o0}).

We will now state three simple lemmas, the proofs of which can all be found
in Section 16l

Lemma 2.0x. The intersection of finitely many closed intervals al-
ways is a closed interval.

Lemma 2.0y. Let a and 3 be two reals. Then, theset {z € R | ax <}
is a closed interval.

Lemma 2.0z. Let n € Nand m € N. Let b € R™. Let A € R™*" be
an m x n-matrix. Let P = {x € R" | Az <b}.

Let z € R" and ¢ € R™. Then, the set {u € R | z+4 puc € P} is a
closed interval.

With the help of Lemma 2.0z, we can modify the proof of Theorem 2.3 in
[Schrij17] in such a way that it no longer uses analysis:

Modifications to the proof of Theorem 2.3 in [Schrij17]. In the proof of Theorem
2.3 in [Schrij17], it is claimed that[l] the numbers

po :=max{u | z+ pc € P} and v :=max{v | z—vce P}

“exist since P is compact”. We want to avoid this use of compactness. Instead,
we will prove the existence of these numbers 1y and v as follows:

Alternative proof of the existence of the numbers pg := max{u | z+ pc € P}
and vy :=max{v | z—wvc & P} in the proof of Theorem 2.3 in [Schrij17):

Lemma 2.0z shows that {# € R | z+ pc € P} is a closed interval.

We also notice that z—i-\Of_/ =z € P,sothat 0 € {geR | 24 puce P}.

=0
Hence, the set {# € R | z+ pc € P} is nonempty.

"We are using the notations of [Schriji7] here.

14
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Finally, we notice that the set {u € R | z+ puc € P} is bounded (from both
sides )|

Now, a nonempty bounded closed interval always has a maximum. Applied to
the closed interval {y € R | z+ pc € P}, thisyields that {u € R | z+ puc € P}
has a maximum (since we know that {yx € R | 2z 4 uc € P} is anonempty bounded
closed interval). In other words, max{y € R | z+ pc € P} exists. Since we de-
fined o as max {u € R | z+ pc € P}, this means that p exists.

We have thus shown that pg exists. Similarly, vy exists.

Also note that 0 is an element of the set {u € R | z+ uc € P}, whereas pyg
is the maximum of this set (since pp = max{pu € R | z+ pc € P}). Since any
element of a set is < to the maximum of this set (if the maximum exists), this
yields 0 < pg. Similarly, 0 > v4. This shows that z is a convex combination of
the points x := z + poc and y := z — vpe. (This is used further below in the proof
of Theorem 2.3.)

This completes the modifications necessary to make the proof of Theorem 2.3
in [Schrij17] independent of analysis. O

5. The separation theorem for polytopes

We now come to the topic of separation theorems. In this section, we are only
going to state them; for their proofs, we refer to Section [7| below.

Theorem 2.1 in [Schrij17] is a non-elementary fact; its proof cannot be ridden of
analysis. This is not surprising: Theorem 2.1 is too general (it speaks of arbitrary
convex sets). However, the following weaker version of Theorem 2.1 (which will
still be enough for most of what we want) can be proven elementarily:

Theorem 2.1a. Let C' be a polytope in R"”, and let z € R™ be such
that z ¢ C. Then, there exists a hyperplane separating z and C'.

Let us first give a basis-free version of this theorem:

8 Proof. Since P is bounded, there exists an M € R such that every w € P satisfies |w| < M.
Consider this M.

Now, let £ be an element of {u € R | z+ puc € P}. Then, £ € R and z + ¢ € P. Recall
that every w € P satisfies |w| < M. Applied to w = z + ¢, this yields |z 4+ &c| < M.
But the triangle inequality yields |z + &c| > [€c| —|z| = |€]||c| — |z]. Thus, M > |z + &c| >

~~

=[€llc|
[€] || — 2|, so that |£]|c|] < M +z. Since |¢| > 0 (because ¢ # 0), we can divide this inequality

by |c| and obtain [£| < 2

]
Now, forget that we fixed £&. We thus have proven that every £ € {u € R | z+ uc € P}

M
satisfies |¢] < |T ® . This yields that the set { € R | z + uc € P} is bounded (from both
c

sides), qed.

15
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Theorem 2.1b. Let E be a finite-dimensional R-vector space. Let
C' be a polytope in E, and let z € E be such that z ¢ C. Then, there
exist an f € E* and a § € R such that

(f(z)>9) and (every x € C satisfies f (x) < ).

Here is another way to rewrite this:

Theorem 2.1c. Let E be a finite-dimensional R-vector space. Let C

be a polytope in E. Then, exactly one of the following two assertions
holds:

Assertion C1: We have 0 € C.

Assertion C2: There exists an f € E* such that every x € C satisfies
f(x) <O.

We shall prove Theorem 2.1c, Theorem 2.1b and Theorem 2.1a (in this order)
in Section [7

Theorem 2.1a does not have the full strength of Theorem 2.1, but it is enough
to replace many applications of Theorem 2.1. For example, in the proof of The-
orem 2.4 in [Schrij17], Schrijver writes: “Suppose z ¢ P. Then there exists a
hyperplane separating x and P.” This is (tacitly) being derived from Theorem
2.1, but it also follows from Theorem 2.1a (applied to C'= P and z = z).

6. The separation theorem for finitely generated
cones

Next, we will show a separation theorem for finitely generated cones (more pre-
cisely, the “cone version” of Theorem 2.1c¢):

Theorem 2.5c. Let E be a finite-dimensional R-vector space. Let S
be a finite subset of E. Let b € E. Then, exactly one of the following
two assertions holds:

Assertion D1: We have b € cone S.

Assertion D2: There exists an f € E* such that f(b) > 0 and
(every = € cone S satisfies f (z) < 0).

Again, we refer to Section [7] for the proof of this theorem.

16
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7. Proofs of the separation theorems

We owe the reader four proofs now: the proofs of Theorems 2.1a, 2.1b, 2.1c and
2.5c. Now is the time to pay back this debt. We begin with a proof of Theorem
2.5¢; the following neat proof I have learnt from [Bartl12] (which shows a more
general result)

First proof of Theorem 2.5c. We shall prove Theorem 2.5¢ by strong induction
over |S|:

Induction step: Let n be a nonnegative integer. Assume that Theorem 2.5¢
holds whenever |S| < n. We will now prove that Theorem 2.5¢ holds whenever
|S| = n.

So, let E be a finite-dimensional R-vector space. Let S be a finite subset of
E such that |S| = n. Let b € E. Then, we must prove that exactly one of the
following two assertions holds:

Assertion D11: We have b € cone S.

Assertion D12: There exists an f € E* such that f (b) > 0 and
(every x € cone S satisfies f () < 0).

Since cone S is a convex cone, it is clear that cone S is closed under multipli-
cation by a nonnegative scalar, and that any linear combination of finitely many
elements of cone S with nonnegative coefficients must lie in cone S. (These facts
follow from general properties of convex cones.)

The Assertions D;1 and D;2 cannot hold at the same time[T_UL Therefore, at
most one of the two Assertions D;1 and D;2 holds. We will now show that at
least one of these assertions holds.

If n = 0, then this is easy to provd'] Hence, for the rest of this proof, we
WLOG assume that n # 0.

9A different (and much uglier) proof can be found in Section ﬂ below.

10 Proof.  Assume the opposite. Then, the Assertions D;1 and D;2 hold at the same
time. Since Assertion D12 holds, there exists an f € E* such that f(b) > 0 and
(every = € cone S satisfies f () < 0). Consider this f. We know that every = € coneS
satisfies f (z) < 0. Since b € cone S (because Assertion D11 holds), we can apply this to
x = b, and thus obtain f (b) < 0. But this contradicts f (b) > 0. This contradiction shows
that our assumption was wrong, qed.

11 Proof. Assume that n = 0. We must show that at least one of the two Assertions D;1 and
D;2 holds.

We have |S| = n = 0, and thus S = @. Hence, coneS = cone@ = 0. Therefore,
0€0=cones.

If b = 0, then Assertion D11 holds (since b = 0 € cone S). Hence, if b = 0, then at least
one of the two Assertions D71 and D12 holds. Thus, for the rest of this proof, we WLOG
assume that we don’t have b = 0. Thus, b # 0.

Recall the following well-known fact from linear algebra: If v is a vector in a finite-
dimensional R-vector space V', and if v # 0, then there exists some g € V* such that
g(v) #0.

Applying this fact to V = E and v = b, we conclude that there exists a g € E* such

17



Linear optimization May 4, 2018

The set S is nonempty (since |S| = n # 0). In other words, there exists some
t € S. Consider such a t.
From ¢t € S, we obtain |S'\ {t}| = |S| —1 =n —1 < n. Hence, we can apply
~—

Theorem 2.5¢ to E, S\ {t} and b instead of E, S and b (since we assumed that
Theorem 2.5¢ holds whenever |S| < n), and conclude that exactly one of the
following two assertions holds:

Assertion Dy1: We have b € cone (S'\ {t}).

Assertion Do2: There exists an f € E* such that f(b) > 0 and
(every x € cone (S'\ {t}) satisfies f (z) <0).

Thus, we must be in one of the following two cases:

Case 1: Assertion D51 holds.

Case 2: Assertion D52 holds.

First, let us consider Case 1. In this case, Assertion Dy1 holds. In other words,
we have b € cone (S'\ {t}).

But S\ {t} € S and therefore cone (S \ {t}) C coneS (by Proposition 2.0m
(e), applied to S\ {t} instead of T'). Hence, b € cone (S \ {t}) C coneS. In
other words, Assertion D1 holds. Hence, at least one of the two Assertions Dq1
and D12 holds. We have thus proven that at least one of Assertions D;1 and D;2
holds in Case 1.

Let us now consider Case 2. In this case, Assertion Ds2 holds. In other words,
there exists an f € E* such that f (b) > 0 and (every = € cone (S \ {t}) satisfies f (z) <0).
Consider this f, and denote it by g. Thus, g is an element of E* satisfying ¢ (b) > 0
and

(every x € cone (S'\ {t}) satisfies g (z) < 0) (4)

We must be in one of the following two subcases:

Subcase 2.1: We have g (t) < 0.

Subcase 2.2: We have g (t) > 0.

Let us first consider Subcase 2.1. In this subcase, we have g () < 0. Thus,
every x € S satisfies g (z) <0 [ Hence, every x € cone S satisfies g (z) <0

that g (b) # 0 (since b # 0). Counsider this g. Define an h € E* by h = ¢ (b) - g. Then,
h(b) = (g(b)-g) () = g(b)g(b) = (g(b))> > 0 (since g(b) # 0). On the other hand,
every x € coneS satisfies h(z) < 0 (since x € coneS = 0, so that z = 0, so that
h(xz) = h(0) = 0 (since h is linear)). Altogether, we have thus shown that h(b) > 0
and (every z € cone S satisfies h (z) < 0).

Thus, we have proven that there exists an f € E* such that f(b) > 0 and
(every x € cone S satisfies f (z) < 0) (namely, f = h). In other words, Assertion D2 holds.
Thus, at least one of the two Assertions D11 and D12 holds. Qed.

12 Proof. Let x € S. We must show that g (z) < 0.

If = ¢, then this follows immediately from g [ = ) = g (t) < 0. Hence, for the rest of

=t

18
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(by Proposition 2.0s, applied to f = ¢g). Now, we know that g is an element of
E* satisfying ¢ (b) > 0 and (every x € cone S satisfies g (z) < 0). Hence, there
exists an f € E* such that f(b) > 0 and (every x € cone S satisfies f (z) < 0)
(namely, f = g). In other words, Assertion D;2 holds. Hence, at least one of
the two Assertions D1 and D2 holds. We have thus proven that at least one of
Assertions D;1 and D;2 holds in Subcase 2.1.

Let us now consider Subcase 2.2. In this subcase, we have ¢ (£) > 0. Thus, the

1
real number —— is well-defined and satisfies —— > 0. In particular, — is a
g g(t) g(t)
nonnegative real.

1 .

Define a vector ¢ € E by q = mt. Then, g(q) = 1 . Also, ¢ € cone S
g

™

Define a subset S’ of E by

S'={s—g(s)qg | s€S\{t}}.

Thus, |S’] < |S\ {t}| < n. Therefore, we can apply Theorem 2.5¢ to E, S” and
b— g(b)q instead of FE, S and b (since we assumed that Theorem 2.5¢ holds
whenever |S| < n), and conclude that exactly one of the following two assertions

holds:

Assertion D31: We have b — ¢ (b) ¢ € cone (5").

Assertion D32: There exists an f € E* such that f(b—g(b)q) >0
and (every x € cone (S’) satisfies f (z) <0).

Thus, we must be in one of the following two subsubcases:
Subsubcase 2.2.1: Assertion D31 holds.

this proof, we can WLOG assume that we don’t have z = ¢. Assume this.
We have = # t (since we don’t have x = t). Combining x € S with = # ¢, we find
x € S\ {t} C cone(S\{t}) (by Proposition 2.0m (c), applied to S\ {t} instead of 5).
Hence, shows that g () < 0. Qed.
1
13 Proof. Applying the map g to the equality ¢ = ——t, we obtain

g(t)

1 1
gl@) =g ((t)t> =——g(t) (since the map g is R-linear)
g

=1.

14 Proof. We have t € S C cone S (by Proposition 2.0m (c)).
Recall that cone S is closed under multiplication by a nonnegative scalar. In other words,
every nonnegative real w and every y € conelS satisfy wy € coneS. Applying this to

1
a gl(t) g(t)
q= ——=t €cones.

g(t)

and y = t, we obtain ——t € cone S (since is a nonnegative real). Thus,

g9(t)
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Subsubcase 2.2.2: Assertion D32 holds.

First, let us consider Subsubcase 2.2.1. In this subsubcase, Assertion D31 holds.
In other words, we have b — ¢ (b) ¢ € cone (S5").

But 5" C coneS  [| Hence, Proposition 2.0m (g) (applied to 7’ = 5’) yields
cone (S”) C cone S. Hence, b — g (b) ¢ € cone (S’) C cone S.

Define c€ Eby c=b—g(b)g. Thus,c=b—g(b)q € coneS.

Now, ¢ (b) is a nonnegative real (since g(b) > 0). Hence, 1 and ¢ (b) are
nonnegative reals. Also, ¢ and ¢ are elements of cone S (since ¢ € cone S and
q € coneS). Therefore, 1c 4+ ¢ (b) ¢ is a linear combination of finitely many
elements of cone S with nonnegative coefficients. Hence, 1c¢ + g (b) ¢ must lie in
cone S (since any linear combination of finitely many elements of cone S with
nonnegative coefficients must lie in cone S). In other words, 1c+ g (b) ¢ € cone S.
Since Jde +yg (b)g = (b—g(b)q) + g (b)g = b, this rewrites as b € cone S.

=c=b—g(b)q
In other WOI“(d)S, Assertion D;1 holds. Hence, at least one of the two Assertions
D1 and D2 holds. We have thus proven that at least one of Assertions D1 and
D;2 holds in Subsubcase 2.2.1.

Next, let us consider Subsubcase 2.2.2. In this subsubcase, Assertion D32
holds. In other words, there exists an f € E* such that f(b— ¢ (b)gq) > 0 and
(every = € cone (S’) satisfies f (z) < 0). Consider this f, and denote it by h.
Thus, h is an element of E* satisfying h (b — g (b) q) > 0 and

(every = € cone (S') satisfies h (z) <0). (5)
Now, define a k € E* by k = h — h(q) - g. Then, each = € F satisfies
@)= (h—h(g)-g) (@) = h(z) = h(g) - g(x)

=h—h(q)-g
=h(z)—g(x) h(g)=h(z—g(zx)q) (6)
(since the map h is R-linear). Applying this to x = b, we obtain k(b) =
h(b—g(b)g) > 0. Moreover, each z € S satisfies k(z) < 0 [ Hence,
each x € cone S satisfies k (x) < 0 (by Proposition 2.0s, applied to f = k).

15 Proof. Let s € S\ {t}. We shall show that s — g (s) ¢ € cone S.

Indeed, s € S\ {t} C cone (S \ {t}) (by Proposition 2.0m (c), applied to S\ {¢t} instead
of S). Hence, (applied to = s) yields g (s) < 0. Thus, —g(s) > 0. In other words,
—g (s) is nonnegative.

We have s € S\ {t} C S C coneS (by Proposition 2.0m (c)) and ¢ € cone S. Hence,
1s + (=g (s))q is a linear combination of finitely many elements of cone S with nonneg-
ative coefficients (since s € coneS and ¢ € cone S, and since 1 and —g(s) are nonneg-
ative). Therefore, 1s + (—g(s)) ¢ lies in cone S (since any linear combination of finitely
many elements of cone S with nonnegative coefficients must lie in cone S). In other words,
1s+(—g(s))q € cone S. Since 1s+(—g (s)) ¢ = s—g () ¢, this rewrites as s—g (s) ¢ € cone S.

Now, forget that we fixed s. We thus have shown that s — g(s)g € coneS for
each s € S\ {t}. In other words, {s—g(s)q | s€ S\ {t}} C coneS. Thus, §' =
{s—g(s)g | s€S\{t}} CconeS.

16 Proof. Let x € S. We must prove that k (z) < 0.
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Thus, there exists an f € E* such that f (b) > 0 and (every = € cone S satisfies f (z) < 0)
(namely, f = k). In other words, Assertion D;2 holds. Hence, at least one of
Assertions D1 and D;2 holds.

We have thus proven that at least one of Assertions D;1 and D;2 holds in
Subsubcase 2.2.2.

Recall that our goal was to prove that at least one of Assertions D;1 and D;2
holds. We have now proven this in Case 1, in Subcase 2.1, and in Subsubcases
2.2.1 and 2.2.2. Thus, we have proven this in all possible situations. So we know
that at least one of Assertions D11 and D;2 holds. Thus, exactly one of Assertions
D;1 and D;2 holds (since we know that at most one of the two Assertions D;1
and D12 holds).

Now, forget that we fixed E, S and b. We have thus proven that if £ is a
finite-dimensional R-vector space, S is a finite subset of E such that |S| = n, and
b is an element of F, then exactly one of the following two assertions holds:

Assertion D11: We have b € cone S.

Assertion D12: There exists an f € E* such that f (b) > 0 and
(every = € cone S satisfies f (z) < 0).

In other words, we have proven that Theorem 2.5¢ holds in the case when
|S| = n. This completes the induction step, and thus the induction proof of
Theorem 2.5¢ is complete. O

Before we step to the proof of Theorem 2.1c, let us state a basic result that
connects convex conic hulls with convex hulls:

1
From g = ——t, we obtain ¢t = g (t) ¢. But applying @) to x = t, we obtain

g(t)

k(t)=h(\t/—g(t)q) Zh(g(t)q—g(t)q) =h(0)=0

=g(t)q =0

(since the map h is R-linear). Therefore, k (t) < 0. Thus, if z = ¢, then k | = k() <
=t
0. Hence, for the rest of our proof of k (x) < 0, we can WLOG assume that we don’t have
x = t. Assume this.
We have x # ¢ (since we don’t have z = t). Combining z € S with © # ¢, we obtain
z e S\{t}. Thus,z—g(z)ge{s—g(s)q | s€ S\ {t}} (sincex—g(z)g=s—g(s)qfor
some s € S\ {t} (namely, for s = z)). Hence,

z—g(@)ge{s—g(s)q | s€S\{t}} =5 C cone(5)

(by Proposition 2.0m (c), applied to S’ instead of S). Thus, (applied to z — g (x) ¢
instead of z) yields h (z — g () ¢) < 0.
Now, @ yields k() = h(x — g (z) q) <0. Qed.
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Proposition 2.4a. Let E be a finite-dimensional R-vector space.
Let T be a finite subset of E. Let x € E.

Consider the direct sum E @ R (which is also a finite-dimensional
R-vector space). Consider the vector (z,1) € E @ R. Let S be the
subset {(y,1) | y € T} of E®R.

Then, = € conv. hull 7" holds if and only if (x,1) € cone S.

Proof of Proposition 2.4a. The definition of S shows that S = {(y,1) | y € T}.
Thus, the set S is finite (since the set 7" is finite).
Let us first show that

if x € conv.hull T, then (z,1) € coneS. (7)

[Proof of (7): Assume that z € conv.hullT. We want to show that (z,1) €
cone S.
We have

x € conv.hullT

t is an element of N,

t and (x1,xs,...,;) is a t-tuple of elements of T,
= Z Az | and (Ag, Ay, ..., \;) is a t-tuple of nonnegative reals
i= t
' such that Y>> \; =1
i=1

(by Proposition 2.0g (a), applied to T" instead of S). In other words, there exist

some element ¢ of N| some t-tuple (x1,s,...,z;) of elements of T, and some
t

¢
t-tuple (A1, Aa, ..., Ar) of nonnegative reals such that > A\; =1 and z = > ;.
i=1 i=1
Consider this ¢, this (x1, z2,...,x;) and this (A, Ag,..., ;). Clearly, the family
(Ai)ieq12. ¢ 18 a family of nonnegative reals (since (A1, As, ..., Ar) is a t-tuple of
nonnegative reals) and has the property that all but finitely many i € {1,2,...,t}
satisfy A\; = 0 (since there are only finitely many ¢ € {1,2,...,t}).

Each i € {1,2,...,t} satisfies (z;,1) € S [] and therefore (z;,1) € coneS
(since (z;,1) € S C cone S (by Proposition 2.0m (c), applied to E @ R instead of
E)). Thus, ((2:,1)),c(12,. 4 18 a family of elements of cone S. Also, Proposition
2.0m (d) (applied to £ @R instead of E) shows that the convex conic hull cone S
is a convex cone. Hence, Proposition 2.0i (applied to E ® R, cone S, {1,2,...,t}

and (z;,1) instead of E, C, I and z;) shows that > A (z;,1) € coneS.
1€{1,2,....t}

17 Proof. Let i € {1,2,...,t}. Then, x; € T (since (x1,Z2,..., ;) is a t-tuple of elements of T).
Thus, (z;,1) € {(y,1) | y € T} (since (z;,1) = (y, 1) for some y € T (namely, for y = z;)).
Hence, (z;,1) € {(y,1) | y €T} = 5. Qed.
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Since

)\ (3] 1 ’L? 79 ’L]‘
IR SRRt ) SIS e )
i€{1,2,....t} =1 =1 i=1 _),
———
=3
i=1
Z AiTi, Z Ai (z,1)
= _—1
this rewrites as (x, 1) € cone S. Thus, (7)) is proven.]
Now, let us show that
if (z,1) € coneS, then x € conv. hull 7. (8)

[Proof of (§): Assume that (z,1) € coneS. We want to show that z €
conv . hull 7".

Write the set T in the form T = {ty,ts,...,t,} for some n € N. (This is
possible, since the set 7" is finite.)

We have
S: (y71) ‘ ye \T/ :{<y71> | ye{tlut%--"tn}}
Z{tl,tz ..... tn}
={(t1,1), (ta, 1), ..., (tn,1)}.
We have
(x,1) € cone \S/ = cone {(t1,1), (t2, 1), ..., (tn, 1)} .

:{(tlyl)v(t%l) 7777 (tn>1)}

But Proposition 2.00 (b) (applied to £ & R, (¢;,1) and (z,1) instead of E,
x; and x) shows that we have (z,1) € cone{(t1,1),(t2,1),...,(t,,1)} if and
only if (z,1) is a linear combination of the vectors (¢1,1),(t2,1),..., (t,, 1) with
nonnegative coefficients. Therefore, (z,1) is a linear combination of the vectors
(t1,1), (t2,1), ..., (ts, 1) with nonnegative coefficients (since

(x,1) € cone{(t1,1), (t2,1),...,(ts,1)}). In other words, there exists an n-tuple
(A1, Ag, ..., A\,) of nonnegative reals such that

i=1

Consider this (A, Ag, ..., \y).
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We have . . .
=1 =1 =1

In other words,

=1 =1

3

Now, 1 = > A,sothat > N =1

Nl =
\7;‘_’ i€{1,2,....n} i€{1,2,...n}

M{E

i€{1,2,...,n}

Clearly, the family (Ai);c(y o,y is a family of nonnegative reals (since (A1, Aa, . . .
is a n-tuple of nonnegative reals) and has the property that all but finitely
many ¢ € {1,2,...,n} satisfy \; = 0 (since there are only finitely many i €
{1,2,...,n}).

Each i € {1,2,...,n} satisfies t; € T (since t; € {t1,t2,...,t,} = T) and
therefore ¢; € conv.hullT (since t; € T C conv.hullT (by Proposition 2.0f
(c), applied to T' instead of S)). Thus, ({;);c(15 . 18 a family of elements of
conv . hull 7. Also, Proposition 2.0f (d) (applied to 7" instead of S) shows that
the convex hull conv . hull 7" is a convex set. Hence, Proposition 2.0a (applied to
conv.hull T, {1,2,...,n} and ¢; instead of C, I and x;) shows that  >>  \t; €

i€{1,2,....,n}
conv . hull7. Since

this rewrites as « € conv . hull 7. Thus, ({§]) is proven.|

Now, combining the two logical implications and , we conclude that
x € conv.hullT holds if and only if (z,1) € coneS. This proves Proposition
2.4a. O

Next, we can prove Theorem 2.1CH

First proof of Theorem 2.1c. The Assertions C1 and C2 cannot hold at the same
timd™l We will now show that at least one of these assertions holds.

18 A different (and much uglier) proof can be found in Section [17| below.

19 Proof. Assume the contrary. Thus, the Assertions C1 and C2 hold at the same time. Since
Assertion C2 holds, there exists an f € E* such that every x € C satisfies f (x) < 0.
Consider this f. We know that every x € C satisfies f(x) < 0. Since 0 € C (because
Assertion C1 holds), we can apply this to x = 0, and thus obtain f(0) < 0. But this
contradicts f (0) = 0 (which is because f is linear). This contradiction shows that our
assumption was wrong, qed.
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The set C' is a polytope in E. In other words, C' is the convex hull of a finite
subset of E (by the definition of a “polytope”). In other words, there exists a
finite subset T of F such that C' = conv.hullT. Consider this T'.

Let ¢+ : E — E & R be the canonical inclusion of the R-vector space E into the
direct sum £ @ R. This inclusion ¢ maps each z € E to (z,0) € E & R; it is an
R-linear map.

Let S be the subset {(y,1) | y € T} of E @ R. Then, S is a finite subset of
E @R (since T is a finite set).

Let b be the vector (0,1) € E @ R. Theorem 2.5¢ (applied to F & R instead of
E) then shows that exactly one of the following two assertions holds:

Assertion C11: We have b € cone S.

Assertion C12: There exists an f € (E @ R)" such that f (b) > 0 and
(every = € cone S satisfies f (z) < 0).

Thus, we are in one of the following two cases:

Case 1: Assertion C;1 holds.

Case 2: Assertion C;2 holds.

Let us first consider Case 1. In this case, Assertion C;1 holds. In other words,
we have b € coneS. Thus, (0,1) = b € coneS. Proposition 2.4a (applied to
x = 0) shows that 0 € conv.hullT holds if and only if (0,1) € coneS. Thus,
0 € conv.hullT holds (since (0,1) € coneS). Hence, 0 € conv.hull7T = C. In
other words, Assertion C1 holds. Thus, at least one of the two assertions C1 and
C2 holds.

We thus have shown that in Case 1, at least one of the two assertions C1 and
C2 holds.

Now, let us consider Case 2. In this case, Assertion C;2 holds. In other words,
there exists an f € (F @ R)" such that f (b) > 0 and (every = € cone S satisfies f (z) < 0).
Consider such an f, and denote it by h. Thus, h is an element of (E @ R)" sat-
isfying h (b) > 0 and

(every x € cone S satisfies h () < 0). (9)

The map h ot is a well-defined R-linear map £ — R (since h is an R-linear
map F & R — R, and since ¢ is an R-linear map ¥ — F @ R). In other words,
hove E”.

Now, let x € C' be arbitrary. Thus, x € C = conv.hull7T. But Proposition
2.4a shows that x € conv.hullT holds if and only if (x,1) € coneS. Hence,
(z,1) € cone S (since z € conv . hull 7). Therefore, (9) (applied to (z,1) instead
of z) shows that h ((z,1)) <0.

The definition of ¢ yields ¢ (z) = (x,0). Hence, ¢ (z

x,0

+

~—

= @0 +(01) =
=(0,1)

{

I
—~
=
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<:c +0,0+ 1) = (x,1). Applying the map h to both sides of this equality, we
find A (¢ () +b) = h((z,1)) < 0.
But the map h is R-linear. Thus,
hi(e(x)+0) =h(u(x))+h(b) >h((z) = (ho)(x).

—~—
>0

Hence, (hot) (x) < h(t(x)+b) <O0.

Now, forget that we fixed x. We thus have shown that every x € C' satisfies
(hot)(z) < 0. Hence, there exists an f € E* such that every x € C satisfies
f(xz) <0 (namely, f = hot). In other words, Assertion C2 holds. Thus, at least
one of the two assertions C1 and C2 holds.

We thus have shown that in Case 2, at least one of the two assertions C1 and
C2 holds.

Thus, in each of the two Cases 1 and 2, we have proven that at least one of
the two assertions C1 and C2 holds. Since these two Cases cover all possibilities,
we therefore conclude that at least one of the two assertions C1 and C2 holds.
Therefore, exactly one of the two assertions C1 and C2 holds (since we already
know that the Assertions C1 and C2 cannot hold at the same time). This proves
Theorem 2.1c. O

Now, we are going to prove Theorem 2.1b and Theorem 2.1a:

Proof of Theorem 2.1b. We know that C' is a polytope. By the definition of a
polytope, this shows that C' is the convex hull of a finite set of vectors in E. In
other words, there exist some ¢ € N and some vectors z1, xo, ..., z; in E such
that C' = conv . hull {z1, x5, ..., 2;}. Consider this ¢ and these 1, zo, ..., 2.
Clearly, conv . hull {zy — z, 29 — z,...,2; — 2z} is a polytope. Moreover,

0¢ conv.hull{zy — 2,290 — 2,..., 2y — 2}

E

Now, applying Theorem 2.1c to conv.hull{zy — z,29 — z,...,2; — z} instead
of C, we obtain that exactly one of the following two assertions holds:

20 Proof. Assume the opposite. Then, 0 € conv.hull {z; — 2,29 — 2,...,2; — z}. But Propo-
sition 2.0h (b) (applied to ¢, z; — z and O instead of n, z; and x) shows that we have
0 € conv.hull{zy — z,29 — 2,...,x; — 2z} if and only if 0 is a convex combination of the vec-
tors x1 — 2z, xo— 2z, ..., Ty — z. Hence, 0 is a convex combination of the vectors z1 — z, x5 — 2,
..., ¢y — z (since we have 0 € conv. hull{z; — z,29 — z,..., 2 — z}). In other words, there

t t
exist nonnegative elements A1, Ag, ..., A; of R such that >~ A; =1 and > A; (z; —2) =0.

=1 =1
Consider these A1, g, ..., s

We have . , .
i i=1 i=1 i=1

——
=1
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Assertion C,1: We have 0 € conv.hull{zy — 2,29 — 2,...,2; — z}.
Assertion C',2: There exists an f € E* such that every
x € conv. hull{x; — z,29 — 2,..., 2, — 2} satisfies f (z) < 0.
Since Assertion C,1 cannot hold (because 0 ¢ conv.hull {z| — 2,29 — 2, ..., 2, — 2}),
this yields that Assertion C,2 must hold. In other words, there exists an f € E*
such that every x € conv.hull{z; — z,29 — 2,...,2; — 2z} satisfies f(z) < 0.

Consider this f.
Clearly, every i € {1,2,...,t} satisfies f(z) — f (x;) > 0 E Hence,

{f(2) = f(21),f(2) = f(22),.... [ (2) = f(2e)}

is a set of positive reals. Since this set is finite, it must be bounded from below
by a positive real (because any finite set of positive reals is bounded from below
by a positive real). In other words, there exists a positive real € such that every
ie{1,2,...,t} satisfies f (z) — f (gl) > ¢. Consider this e.

Since ¢ is positive, we have ¢ > 5

Now, let 6 = f(2) — g Then,

every i € {1,2,...,t} satisfies f (z;) <9 (10)

(since every i € {1,2,...,t} satisfies f (z) — f (z;) > ¢ and thus f (z;) < f(2) —
E_<[f(x)-

3
>—

2

= §). Therefore, Proposition 2.0r shows that

DO | ™

every x € C satisfies f (z) < 0. (11)

Altogether, we thus know that f(z) > § (since € is positive, so that g > 0,
and thus 6 = f(z) — g < f(2)) and that every x € C satisfies f (x) < d (by

<~
>0
(11)). We thus have shown that there exist an f € E* and a § € R such that
(f(2)>9) and (every x € C satisfies f (x) < ).

t t

so that z = Y A\;x;. Since A1, Ag, ..., \; are nonnegative elements of R such that > \; =1,
~ —

this yields tzhat z is a convex combination of the vectors zi, =3, ..., 4. In otlzler words,
z € conv. hull{z1,xa,...,2:}. Hence, z € conv.hull {z1,z9,...,2:} = C, which contradicts
z ¢ C. This contradiction shows that our assumption was wrong, ged.

2Proof.  Let i € {1,2,...,t}. Then, =, — 2 € {x;1—z,20—2,...,24—2} C
conv.hull{zy —z,29 — 2z,...,2¢ —2}  (by Proposition 2.0f (c), applied  to

{1 — 2,29 —2,...,2y — z} instead of ). But we know that every x €
conv.hull{x; — 2,20 — z,...,2; — 2} satisfies f(z) < 0. Applying this to z = x; — z,
we obtain f(z; —z) < 0 (since z; — z € conv.hull{zy — 2,292 — 2z,...,2: — z}). Since

f(zi—2) = f(x;) — f(2) (since f is linear), this rewrites as f (z;) — f (z) < 0. In other
words, f(x;) < f(2). Hence, f(2) — f (z;) > 0, ged.
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This proves Theorem 2.1b. O

Proof of Theorem 2.1a. Theorem 2.1b (applied to E' = R™) shows that there exist
an f € (R")" and a § € R such that

(f(2) >9) and (every x € C satisfies f (z) < ).

Consider this f. Then, the hyperplane f~!(§) C R™ clearly separates z and
C'. Thus, there exists a hyperplane separating z and C. This proves Theorem
2.1a. O

8. The Farkas lemma

Next, we are going to give a proof of [Schrij17, Theorem 2.5] without recourse
to [Schrij17, Exercise 2.7]. This won’t be very rich in substance, since the main
work has already been done proving Theorems 2.1c and 2.5c.

First, we reformulate [Schrij17, Theorem 2.5]:

Theorem 2.5d. Let m € N and n € N. Let A be an m X n-matrix

and let b € R™. Then, exactly one of the following two assertions
holds:

Assertion F1: The system Az = b has a nonnegative solution x € R™.

Assertion F2: There exists a vector y € R™ such that y7 A > 0 and
T
y b <.

In classical logic, Theorem 2.5d is equivalent to [Schrij17, Theorem 2.5], but
constructively Theorem 2.5d is stronger.

Notice that Theorem 2.5d appears in [Jacim11, Teorema 1] (in an equivalent
form) and in [Bartll2, Lemma 1] (in a generalized version).

Proof of Theorem 2.5d. The Assertions F1 and F2 cannot hold at the same timd??}
We will now show that at least one of these assertions holds.

Let ai, ag, ..., a, be the columns of A. Let S = {aj,as,...,a,}. Then, S
is a finite subset of R™. Hence, Theorem 2.5¢ (applied to E = R™) yields that
exactly one of the following two assertions holds:

22 Proof. Assume the opposite. Then, the Assertions F1 and F2 hold at the same time. Since
Assertion F2 holds, there exists a vector y € R™ such that y” A > 0 and yTb < 0. Consider
this y. Since Assertion F1 holds, the system Az = b has a nonnegative solution x € R™.
Consider this solution . We have x > 0 (since x is nonnegative).

Lemma 2.0v (applied to y7A and x instead of x and y) shows that yT Az > 0 (since
yTA > 0 and z > 0). This contradicts yTil/:l_c/ = yTb < 0. This contradiction shows that

=b
our assumption was wrong, ged.
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Assertion F'11: We have b € cone S.

Assertion Fy2: There exists an f € (R™)" such that f (b) > 0 and
(every x € cone S satisfies f (z) < 0).

We must thus be in one of the following two cases:

Case 1: Assertion F;1 holds.

Case 2: Assertion F;2 holds.

Let us first consider Case 1. In this case, Assertion F;1 holds. In other words,
b € cone S. Thus,

b € coneS = {Z vss | (Vs)ses is a family of nonnegative reals}

SES

(by Proposition 2.0p (a)). Hence, there exists a family (v;), 4 of nonnegative
reals such that b = > vgs. Consider this family (vs)

ses”
seS
Let (ey,es,...,6,) be the standard basis of R”. In other words, for every
i€ {1,2,...,n}, let e; be the vector in R™ whose i-th coordinate is 1 and whose
other coordinates are all 0. Then, for every i € {1,2,...,n}, we have
Ae; = (the i-th column of A) = q; (12)
(since the columns of A are ay, as, ..., a,). Also, for every i € {1,2,...,n}, we

have e; > 0 (since every coordinate of e; is either 1 or 0, and thus nonnegative).
Now, it is pretty clear that

for every s € S, there exists a vector x, € R" such that z, > 0 and Az, = s.
(13)
3 Consider this ;.

Now, > vsxs is a linear combination of nonnegative vectors (namely, the vec-
ses
tors x;) with nonnegative coefficients (namely, the coefficients vy). Thus, ) vz
ses
must itself be a nonnegative vector (since any linear combination of nonnegative

vectors with nonnegative coefficients must itself be a nonnegative vector). Since

A (Zusxs) —Zysé_afﬁ—ZVss_b,

ses seS ses

this yields that the system Az = b has a nonnegative solution x € R™ (namely, x =

> vsxs). In other words, Assertion F1 holds. Hence, at least one of Assertions
s€S

F1 and F2 holds.

23 Proof of : Let s € S. Then, s € S = {a1,as9,...,a,}. Hence, there exists some
i € {1,2,...,n} such that s = a;. Consider this i. Then, s = a; = Ae; (by (12)). Thus,
e; > 0 and Ae; = s. Thus, there exists a vector x; € R™ such that x4 > 0 and Az, = s
(namely, x5 = ¢;). This proves .
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We thus have proven that at least one of Assertions F1 and F2 holds in Case
1.

Now, let us consider Case 2. In this case, Assertion F;2 holds. In other words,
there exists an f € (R™)" such that f (b) > 0 and (every = € cone S satisfies f (z) < 0).
Consider this f.

Let T" denote the map

R™ — (R™),

UF—)UT.

Then, it is known that 7" is an isomorphism of R-vector spaces. Hence, 7! is
well-defined. Let z = T (f). Then, f = T (z) = z* (by the definition of T).
Thus, f (b) = 2Tb. Hence, 27b = f (b) > 0, so that (—z)" b= — 2Tb < =0 =0.

>0
Also, every i € {1,2,...,n} satisfies (—z)T a; > 0 . Now, for every
i€ {1,2,...,n}, the rule for multiplying a row vector by a matrix yields that

(the i-th coordinate of (—z)" A)

= (-2)"- (the i-th column of A) = (—2)" q;

(since the columns of A are a1, ag, ..., an)

> (0 = (the i-th coordinate of 0).

In other words, (—z)" A > 0.

We thus know that (—z)" A > 0 and (—z)" b < 0. Hence, there exists a vector
y € R™ such that y7A4 > 0 and y'b < 0 (namely, y = —2). In other words,
Assertion F2 holds. Hence, at least one of Assertions F1 and F2 holds.

We thus have proven that at least one of Assertions F1 and F2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions F1 and F2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions F1 and F2 holds. Since we know that the
Assertions F1 and F2 cannot hold at the same time, this yields that exactly one
of Assertions F1 and F2 holds. This proves Theorem 2.5d. O]

Thus, of course, [Schrij17, Theorem 2.5] is also proven.

24 Proof. Let i € {1,2,...,n}. Then, a; € {a1,as,...,a,} =S C coneS (by Proposition 2.0m
(c)). But we know that every = € cone S satisfies f () < 0. Applying this to z = a;, we
obtain f (a;) < 0 (since a; € coneS). Since f = 2T, this rewrites as z7a; < 0, so that
(fz)T a; =—z2Ya; > —0=0, qed.

~—

<0
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9. The < and > relations for vectors

Let us now take a break from proving theorems, and introduce another piece of
notation:

Definition. Let ¢ € N. Let v and v be two column vectors in R¢.
Then, we write u < v if and only if every i € {1,2,..., ¢} satisfies

(the i-th coordinate of u) < (the i-th coordinate of v).
Also, we write u > v if and only if every ¢ € {1,2,..., ¢} satisfies
(the i-th coordinate of u) > (the i-th coordinate of v).

The same notations apply if © and v are row vectors in (]Rg)* rather
than column vectors in R’.

Note that for a positive integer ¢ and two vectors u € R’ and v € RY, the asser-
tion (u > v) is not (in general) equivalent to the assertion (u > v and u # v), but
is stronger. Similarly, the assertion (u < v) is stronger than (u < v and u # v).

For example, if u = ( 1 ) and v = ( (1) ), then we do have (u > v and u # v),

but we don’t have u > v.

Here is one further caveat: If 0, denotes the zero vector in R°, then 0, > 0,
and 0y < 0p. This is not surprising, since 0y has no coordinates at all.

The newly introduced notation has several properties which are similar to prop-
erties proven before. For example, here is an analogue of Lemma 2.0t:

Lemma 2.2a. Let n € N.

(a) If a column vector v € R” satisfies v > 0, then all coordinates of
the column vector v are positive.

(b) If a row vector v € (R™)" satisfies v > 0, then all coordinates of
the row vector v are positive.

A proof of Lemma 2.2a can be found in Section [I6] Of course, the converse
of Lemma 2.2a also holds; we just won’t use it often enough to have a reason to
state it.

Let us state three further facts, which also are proven in Section [16| below.

Lemma 2.2b. Let n € N. Let 2 € (R")" be a nonzero row vector
such that z > 0. Let y € R™ be a column vector such that y > 0.
Then, xy > 0.

Lemma 2.2c. Let n € N. Let z € (R")" be a row vector such that
x > 0. Let y € R™ be a nonzero column vector such that y > 0. Then,
xy > 0.

Lemma 2.2d. Let n € N. Let € (R")" be a row vector such that
x > 0. Let y € R"” be a column vector such that y > 0. Assume that
xy = 0. Then, x = 0.
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10. The Gordan and Stiemke theorems
Next, we will state two further important results.

Theorem 2.5e. Let A be an m x n-matrix. Then, exactly one of the
following two assertions holds:

Assertion G1: There exists a nonzero vector £ € R™ such that z > 0

and Ax = 0.
Assertion G2: There exists a vector y € R™ such that y7 A > 0.

Theorem 2.5e is known as Gordan’s theorem and is equivalent to Exercise 2.17
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5e is somewhat
stronger than Exercise 2.17 in [Schrij17].

Theorem 2.5f. Let A be an m x n-matrix. Then, exactly one of the
following two assertions holds:

Assertion S1: There exists a vector z € R"™ such that z > 0 and
Az = 0.

Assertion S2: There exists a vector y € R™ such that y7A > 0 and
yT A #0.

Theorem 2.5f is known as Stiemke’s theorem and is equivalent to Exercise 2.16
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5f is somewhat
stronger than Exercise 2.16 in [Schrij17].

Proof of Theorem 2.5e. The Assertions G1 and G2 cannot hold at the same
timd®] We will now show that at least one of these assertions holds.

Let ai, ag, ..., a, be the columns of A. Let C' = conv.hull{ay,as,...,a,}.
Then, C' is a polytope in R™. Hence, Theorem 2.1c (applied to E = R™) yields
that exactly one of the following two assertions holds:

Assertion G11: We have 0 € C.

Assertion G12: There exists an f € (R™)" such that every z € C
satisfies f (z) < 0.

25 Proof. Assume the opposite. Then, the Assertions G1 and G2 hold at the same time. Since
Assertion G2 holds, there exists a vector y € R™ such that y” A > 0. Consider this y. Since
Assertion G1 holds, there exists a nonzero vector x € R™ such that x > 0 and Az = 0.
Consider this z.

Lemma 2.2¢ (applied to y7 A and z instead of z and %) yields y* Az > 0 (since y7A > 0
and z > 0 and since z is nonzero). This contradicts y* Az = yT ég/ = 0. This contradiction

=0
shows that our assumption was wrong, qed.
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Thus, we must be in one of the following two cases:

Case 1: Assertion G;1 holds.

Case 2: Assertion G;2 holds.

Let us first consider Case 1. In this case, Assertion G;1 holds. In other words,
0 € C. Thus, 0 € C = conv.hull {ay,as,...,a,}.

Proposition 2.0h (b) (applied to R™, a; and 0 instead of E, x; and z) shows that

we have 0 € conv . hull {ay, as, ..., a,} if and only if 0 is a convex combination of

the vectors aq, ao, ..., a,. Thus, 0 is a convex combination of the vectors ai, ao,

..., Gy, (since we have 0 € conv.hull{ay, as,...,a,}). In other words, there exist
n

n nonnegative elements A1, A, ..., A, of R such that > \; =1 and > \;a; = 0.

i=1 i=1
Consider these Ai, Aa, ..., A\,
A1

A
Let u be the vector -2 € R™. Then, the sum of the coordinates of the

An
vector u is > A\; = 1 # 0, while the sum of the coordinates of the vector 0 is 0.
i=1
A

A
Thus, v # 0. Also, u > 0 (because u = ,2 , but every ); is nonnegative).

An
Moreover, by the definition of the product of a matrix with a column vector, we

have
n n

Au = Z (the i-th column of A) - (the i-th coordinate of u) = Z a;\;
=1 =a; Y i=1
(since the columns of A s A
are a1, az, ..., Gn) 1
A
(since u= . )
An

=1

Hence, u is nonzero, and satisfies © > 0 and Au = 0. Thus, there exists a
nonzero vector z € R" such that x > 0 and Az = 0 (namely, x = u). In other
words, Assertion G1 holds. Hence, at least one of Assertions G1 and G2 holds.

We thus have proven that at least one of Assertions G1 and G2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion G2 holds. In other words,
there exists an f € (R™)" such that

every x € (' satisfies f (z) < 0. (14)
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Consider this f.
Let T" denote the map

R™ — (R™),

vl

Then, it is known that 7' is an isomorphism of R-vector spaces. Hence, T~ is
well-defined. Let 2 =T~ (f). Then, f =T (z) = 2T (by the definition of T).
Every i € {1,2,...,n} satisfies

a; € {ay,as,...,a,} Cconv.hull{a,as,...,a,}
(by Proposition 2.0f (c), applied to S = {ay,as,...,a,})
=C

and thus f (a;) < 0 (by (14)), applied to z = a;). Now, for every i € {1,2,...,n},
we have

(the i-th coordinate of the row vector (—z)" A)

= (=2)" - (the i-th column of A)
— - ~
:7ZT:7f =a;
. 7 (since the columns of A
(since f=z") are a1, a2, ..., Gn)

(by the definition of the product of a row vector with a matrix)
=(—f)-a;=— f(a;) > —0 =0 = (the i-th coordinate of the row vector 0).
——

<0

Thus, (—z)" A > 0. Hence, there exists a vector y € R™ such that y7A > 0
(namely, y = —z). In other words, Assertion G2 holds. Hence, at least one of
Assertions G1 and G2 holds.

We thus have proven that at least one of Assertions G1 and G2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions G1 and G2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions G1 and G2 holds. Since we know that the
Assertions G1 and G2 cannot hold at the same time, this yields that exactly one
of Assertions G1 and G2 holds. This proves Theorem 2.5e. n

As we have seen, Theorem 2.5e is no more than a simple corollary of Theorem
2.1c. Theorem 2.5f is more interesting.

Proof of Theorem 2.5f. The Assertions S1 and S2 cannot hold at the same time?9]
We will now show that at least one of these assertions holds.

26 Proof. Assume the opposite. Then, the Assertions S1 and S2 hold at the same time. Since
Assertion S2 holds, there exists a vector y € R™ such that y” A > 0 and y” A # 0. Consider
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Let p be the vector . e R". Clearly, p > 0.
1
Applying Theorem 2.5d to b = —Ap, we see that exactly one of the following
two assertions holds:

Assertion S11: The system Axr = —Ap has a nonnegative solution
xr € R".

Assertion S12: There exists a vector y € R™ such that y7 A > 0 and
yT (—=Ap) < 0.

Therefore, we must be in one of the following two cases:

Case 1: Assertion S;1 holds.

Case 2: Assertion S;2 holds.

Let us first consider Case 1. In this case, Assertion S;1 holds. In other words,
the system Ax = —Ap has a nonnegative solution z € R". Let y be this solution.
Then, y € R" is nonnegative and satisfies Ay = —Ap. Since y > 0 (because y is
nonnegative) and p > 0, we have y + p > 0. Also, A(y+p) = Ay +Ap=

=~ —~
>0 >0 =—Ap
—Ap+ Ap=0.

Hence, we know that y +p > 0 and A (y + p) = 0. Thus, there exists a vector
x € R™ such that x > 0 and Az = 0 (namely, © = y + p). In other words,
Assertion S1 holds. Hence, at least one of Assertions S1 and S2 holds.

We have thus proven that at least one of Assertions S1 and S2 holds in Case 1.

Now, let us consider Case 2. In this case, Assertion S;2 holds. In other words,
there exists a vector y € R™ such that y7 A > 0 and y* (—Ap) < 0. Denote this
vector y by w. Then, w € R™ satisfies w? A > 0 and w’ (—Ap) < 0.

Since —w? Ap = w’ (—Ap) < 0, we have —w? Ap # 0, so that wl A # 0.

We thus know that w?' A > 0 and w” A # 0. Hence, there exists a vector y € R™
such that yTA > 0 and y" A # 0 (namely, y = w). In other words, Assertion S2
holds. Hence, at least one of Assertions S1 and S2 holds.

We have thus proven that at least one of Assertions S1 and S2 holds in Case 2.

Hence, in each of the Cases 1 and 2, at least one of Assertions S1 and S2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions S1 and S2 holds. Since we know that the

this y. Since Assertion S1 holds, there exists a vector € R™ such that x > 0 and Ax = 0.
Consider this z.

The row vector y? A is nonzero (since yZ A # 0) and satisfies y7 A > 0. Hence, Lemma
2.2b (applied to y© A and x instead of 2 and y) shows that y” Az > 0 (since z > 0). This
contradicts y? Az = yT \AE/ = 0. This contradiction shows that our assumption was wrong,

=0
qed.
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Assertions S1 and S2 cannot hold at the same time, this yields that exactly one
of Assertions S1 and S2 holds. This proves Theorem 2.5f. m

11. Block matrices

Let us recall the following convention:

Convention 2.5g. (a) Let u € N and v € N. Let ny, ng, ...,

n, be nonnegative integers, and let my, mso, ..., m, be nonnegative
integers. For every (i,7) € {1,2,...,u} x {1,2,...,v}, let A;; be
An A oo A,

will not mean

. Agr Agp ... Ay,
an m; X n;-matrix. Then, . . ) _

Aur Auz o0 Ay
a u X v-matrix whose entries themselves are matrices, but rather a
block matrix of size (m;+ma+---+my) X (ng +ng+ -+ +ny)
whose blocks are the matrices A, ;.

(b) Let n € N. Column vectors in R™ are considered as n x 1-
matrices, and row vectors in (R™)" are considered as 1 x n-matrices.
In particular, Convention 2.5g (a) also applies when some of the A, ;
are column vectors or row vectors (as long as their sizes “fit”). For

3
example, if z is the vector ( % ) and y is the vector | 7 |, then
5
2
1
( v ) denotes the vector | 3
Y 7
5

Let us state yet another trivial property of nonnegative vectors using Conven-
tion 2.5g:

Lemma 2.5h. Let N € Nand M € N. Let z € RY and y € R,
Consider the block matrix ;j ); this is an (VN + M) x l-matrix,

i. e., a vector in RM ™M (since we identify matrices having only one
column with column vectors).

(a)IfazanndyzO,then(5)20.

(b)If<§)20,thenx20andy20.
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See Section [16] for the proof of Lemma 2.5h.
The following simple lemma further illustrates the use of Convention 2.5g:

Lemma 2.5i. Let n € N. Let z € R" and y € R" be such that

( v ) > ( y ) (Where( v ) and( y ) are to be under-
—x —y —x —y

stood according to Convention 2.5g). Then, z = y.

We shall not use Lemma 2.5i, but a proof nevertheless is given in Section [L6]

12. The Motzkin theorem

We will now prove another of the basic theorems of linear optimization theory:

Theorem 2.5k. Let n € N, m € N and m’ € N. Let A be an m x n-
matrix. Let b € R™. Let A’ be an m/ x n-matrix. Let ' € R™. Then,
exactly one of the following two assertions holds:

Assertion M1: There exists a vector x € R™ such that Az < b and
Ar <Vb.

Assertion M2: There exist two vectors y € R™ and v/ € R™ such
that y > 0,y >0, yTA+yTA' =0 and

((y"b+y"t' <0) or (y#0andy"b+y"b <0)).

Theorem 2.5k is known as Motzkin’s theorem and is equivalent to Exercise 2.19
in [Schrij17] in classical logic. In constructive logic, Theorem 2.5k is somewhat
stronger than Exercise 2.19 in [Schrij17].

To prove Theorem 2.5k, we will first show:

Theorem 2.51. Let n € N, n’ € Nand m € N. Let A be an m X n-
matrix. Let A’ be an m xn’-matrix. Then, exactly one of the following
two assertions holds:

Assertion L1: There exist two vectors z € R” and 2/ € R" such that
x>0,2/>0and Ax + A'2’ = 0.

Assertion L2: There exists a vector y € R™ such that y’A > 0,
yT' A" >0 and yT A #£ 0.
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Proof of Theorem 2.5l. The Assertions L1 and L2 cannot hold at the same timelﬂ
We will now show that at least one of these assertions holds.
Consider the block matrix ( A A’ ); this is an m X (n + n’)-matrix.
1

1
Let p be the vector . € R". Clearly, p > 0.

1
Applying Theorem 2.5d to n+n/, ( A A’ ) and —Ap instead of n, A and b,
we conclude that exactly one of the following two assertions holds:

Assertion Ly1: The system ( A A )x = —Ap has a nonnegative
solution z € R

Assertion L, 2: There exists a vector y € R™ such that y” ( A A ) >
0 and y* (—Ap) < 0.

Therefore, we must be in one of the following two cases:

Case 1: Assertion L;1 holds.

Case 2: Assertion L;2 holds.

Let us first consider Case 1. In this case, Assertion L;1 holds. In other words,
the system ( A A’ )z = —Ap has a nonnegative solution z € R™" . Let & be

this solution. Then, ¢ € R™" is a nonnegative vector satisfying ( A A ){ =
—Ap.

Let us write the vector ¢ in the form ( :}L >, where u € R" and v € R

We have ( Z ) = ¢ > 0 (since ¢ is a nonnegative vector). Hence, Lemma 2.5h

(b) (applied to n, n’, u and v instead of N, M, x and y) shows that u > 0 and
v > 0.

27 Proof. Assume the opposite. Then, the Assertions L1 and L2 hold at the same time. Since
Assertion L2 holds, there exists a vector y € R™ such that y” A > 0, y" A’ > 0 and yT A # 0.
Consider this y.

Since Assertion L1 holds, there exist two vectors z € R™ and 2’ € R™ such that z > 0,
2’ >0 and Az + A’z’ = 0. Consider these two vectors z and z’.

From x > 0, we conclude that x > 0.

Applying Lemma 2.0v to 47 A and z instead of = and %, we obtain y” Az > 0. Applying
Lemma 2.0v to n/, yT A’ and 2’ instead of n, 2 and y, we obtain y A2’ > 0.

If we had y¥ Az = 0, then Lemma 2.2d (applied to y” A and = instead of z and y) would
yield y© A = 0, contradicting y” A # 0. Thus, we cannot have y” Az = 0. Hence, y” Az # 0,
so that y” Az > 0 (since y? Az > 0).

We have yT (Ax + A’'z’) = 0, thus

—_———

=0
0=y" (Azx + A'2') =yT Az +yT A2’ > 0.
—_— —=—
>0 >0

This is absurd. This contradiction shows that our assumption was wrong, qed.
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Since £ = ( Z ), we have

/ _ / U . /
(A A)e=(4 A )(U>_Au+Av
(by the multiplication rule for block matrices) .

Compared with ( A A )f = —Ap, this yields —Ap = Au + A'v. Thus, 0 =
Ap+ Au+Av=A((p+u)+ Av. Also, p +_u  >0.
— ~

=A(p+u) >0 20

Altogether, we know that p+u > 0, v > 0 and A (p + u)+ A’v = 0. Thus, there
exist two vectors z € R” and 2/ € R such that > 0, 2/ > 0 and Az + A'2’ =0
(namely, z = p+ u and 2’ = v). In other words, Assertion L1 holds. Hence, at
least one of Assertions L1 and L2 holds.

We have thus proven that at least one of Assertions L1 and L2 holds in Case
1.

Now, let us consider Case 2. In this case, Assertion L;2 holds. In other words,
there exists a vector y € R™ such that y” (A A" ) > 0 and y” (—Ap) < 0.
Denote this y by w. Then, w € R™ satisfies w” ( A A’ ) > 0and w” (—Ap) < 0.

Since w? (—Ap) < 0, we have w? (—Ap) # 0 and thus w’ A (—p) = w? (- Ap) #
0, hence wl' A # 0.

We have w” ( A A" ) > 0. Since w" (A A" ) = (w'A w'A") (by the
multiplication rule for block matrices), this rewrites as ( wlA wl A ) > 0.
Thus, w?A > 0 and wT A’ > 0 (by an analogue of Lemma 2.5h (b) for block

matrices of the form ( Ty ) instead of ( ;j ))

So we have proven that w?A > 0, wT A’ > 0 and w” A # 0. Thus, there exists
a vector y € R™ such that y7A4 > 0, yTA' > 0 and yT A # 0 (namely, y = w).
In other words, Assertion L2 holds. Hence, at least one of Assertions L1 and L2
holds.

We have thus proven that at least one of Assertions L1 and L2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions L1 and L2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions L1 and L2 holds. Since we know that the
Assertions L1 and L2 cannot hold at the same time, this yields that exactly one
of Assertions L1 and L2 holds. This proves Theorem 2.51. n

Proof of Theorem 2.5k. The Assertions M1 and M2 cannot hold at the same
timd®] We will now show that at least one of these assertions holds.

For any nonnegative integers o and f3, let 0, 3 denote the o X 3 zero matrix.
For any nonnegative integer v, let I, denote the v x 7 identity matrix.

28 Proof. Assume the opposite. Then, the Assertions M1 and M2 hold at the same time. Since
Assertion M2 holds, there exist two vectors y € R™ and 3’ € R™ such that y > 0, v’ > 0,
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Consider the block matrix ( Olm :Zi)’ ) ; thisis a (m 4+ m/) x (m + 1)-matrix.
| A -A

Also, consider the block matrix ( Orm '

I A —A’>; this is a (m+m') x

(m’ + 2n)-matrix.
Applying Theorem 2.51 to m + m/, m + 1, m’ + 2n, ( I, —b > and

Oy m =0

Oy A —A
I, A A
one of the following two assertions holds:

instead of m, n, n’, A and A’, we conclude that exactly

yTA+y'TA =0 and
((y"b+y"v <0) or (y+#0andy"b+y"t <0)).

Consider these two vectors y and y’.

Since Assertion M1 holds, there exists a vector x € R™ such that Az < b and A’z < V.
Consider this x.

From Ax < b, we obtain b > Ax, so that b — Az > 0. Thus, b — Az > 0. Also, y > 0, so
that y7 > 0 (since the transpose of any nonnegative vector is nonnegative). Now, applying
Lemma 2.0v to m, y? and b — Ax instead of n, 2 and y, we obtain y (b — Az) > 0. Thus,
yT'b —yT Ax = yT (b — Az) > 0, so that yTb > yT Ax.

From A’z < b/, we obtain &’ > Az, so that b’ — A’z > 0. Also, i’ > 0, so that /7 >0
(since the transpose of any nonnegative vector is nonnegative). Now, applying Lemma
2.0v to m/, y'T and b/ — A’z instead of n, x and y, we obtain y'7 (b’ — A’x) > 0. Thus,
YTy —yTA'w =y'T (b — A'z) >0, so that y/'Tv > y'T A'z.

Now, recall that we have (y"b+y7b <0) or (y#0 and y7b+ 47 <0). Hence, we
must be in one of the following two cases:

Case 1: We have yb + 3Tt < 0.

Case 2: We have y # 0 and y”b + /70’ < 0.

Let us first consider Case 1. In this case, y7b + 3’7’ < 0. Thus,

~—~
>yT Az >y'TA'z =0

0> yTb + y/Tb/ ZyTAI+y/TA/$: (yTA+y,TA/)£E:O

This is absurd. Thus, we have obtained a contradiction in Case 1.

Let us now consider Case 2. In this case, ¥ # 0 and y7b + /70 < 0. From y # 0,
we obtain yT # 0. If we had yT (b — Az) = 0, then Lemma 2.2d (applied to m, yT and
b — Az instead of n, x and y) would yield 7 = 0 (since y* > 0, y* (b — Ax) = 0 and
b— Ax > 0), contradicting 7 # 0. Hence, we cannot have y (b — Az) = 0. In other words,
yT (b— Az) # 0. Combined with y” (b— Ax) > 0, this yields y? (b — Az) > 0. Hence,
yT'b —yT Ax = yT (b — Az) > 0, so that yTb > yT Ax.

Now, from y7b+ 37 < 0, we obtain

0> y'b + y'v >yTAz+yTAz=(y"A+yTA)z=0.
~— —— ~——
>yT Az >y'TA'z =0
This is absurd. Thus, we have obtained a contradiction in Case 2.
Hence, in each of the cases 1 and 2, we have obtained a contradiction. Since cases 1 and
2 cover all possibilities, this yields that we have a contradiction in any situation. Thus, our
assumption was wrong, qed.
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Assertion My1: There exist two vectors z € R™ and 2/ € R +2n

such that x > 0, 2’ > 0 and < Ol’ln :5, ) x—|—< O}”’TI ﬁ, :ﬁ, ) =

Oprom =0

‘ . / I, —
Assertion M 2: There exists a vector y € R™™™ such that y” ( b )

Oy A —A I, —b
T m,m T m
0, y ( o _A,>20andy (O _b,)#o.

m’,m

Therefore, we must be in one of the following two cases:

Case 1: Assertion M;1 holds.

Case 2: Assertion M;2 holds.

Let us first consider Case 1. In this case, Assertion M;1 holds. In other words,
there exist two vectors z € R™*! and 2/ € R™*+?" such that =z > 0, 2/ > 0 and

( OI’T :5, ) T+ ( 07’77/ :;1, :21, ) 2’ = 0. Denote these vectors x and 2’

by € and &, respectively. Then, & € R™t! and ¢ € R 2" satisfy € > 0, & >0

[m —b Om,m’ A A ! __
and(Om,’m _b,)§+< I, A _A,)ﬁ—().

Denote the (m + 1)-th coordinate of the vector £ by ¢. Then, ¢ > 0 (since
1
¢ > 0). Hence, t # 0, so that t is invertible, and n > 0 (since t > 0).

Since £ is a vector in R™* whose (m + 1)-th coordinate is t, we can write &
in the form & = ( 7: for some u € R™. Consider this u. Then, u > 0 (since
£€>0).

v
Write the vector & € R™*2" in the form | w |, where v € R™, w € R and
z
z € R™. Then, from & > 0, we obtain v > 0, w > 0 and z > 0.
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But

Im —b Om,m’
0= Om’,m b’ \é;'/ * ]m’ A=A ~~~

B Lo —b\ [ u Ot A —A y

- (I LN A O O A
( ILnu —: (—b)t h ~ B g
( Ot + () ([ Ommrv + Aw + (—A) 2 )

/ /
(by the multiplication rule for block matrices) [m/’U + A'w + (_A ) Z
(by the multiplication rule for block matrices)

B Lyu+ (=b)t n Ommv + Aw + (—A) z
T\ Opmu+ (=0t Lyv+ Aw+ (A z

o Lpu+ (=b)t+ O+ Aw + (—A) 2
N\ O+ (0t + Lo+ Aw + (—A') 2

Hence Inu+ (=b)t + O + Aw + (—A) 2
I Om/7mu + (—b,) t + Im/U _'_ A/w + (—A/> 5
O + Aw + (—A) z = 0 and Oy ppu + (=)t + Lyv + Aw + (—A") 2 = 0.
Thus,

=0, so that I,u+ (—=b)t+

0= Inu+(=b)t+0pmwv+Aw+ (—A)z > —bt + Aw — Az = —bt + A(w — 2).
>0 b A A(w—2)
=u ——bt -0 ——Az =A(w—z

1
Since t > 0, we can divide this inequality by ¢, and obtain 0 > —b+ ;A (w—2z)=

1 1 1
—b+A'¥(w—z). Thus, b>A-¥(w—z), SothatA-g(w—z) < b.
On the other hand,

0=0mmu+t (=b)t+ Lpyv+Awt+(—A) 2z > =bt+Aw— Az = —-b't+A (w — 2).
=0 =—b't =vz =— A’z =A'(w—=z

1
Since t > 0, we can divide this inequality by ¢, and obtain 0 > —b'+ ZA/ (w—2z2)=
1 1 1
—b’—l—A’-;(w—z). Thus, b’ZA’-Z(w—z),sothat A’-;(w—z) <.
1 1
So we know that A- n (w—2z)<band A" n (w — z) < V. Hence, there exists a

1
vector © € R™ such that Ax < b and A’z < b’ (namely, z = n (w— z)). In other

words, Assertion M1 holds. Hence, at least one of Assertions M1 and M2 holds.
We have thus proven that at least one of Assertions M1 and M2 holds in Case
1.
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Next, let us consider Case 2. In this case, Assertion M;2 holds. In other

. / Im -
words, there exists a vector y € R™™ such that y” < 0 _5, ) > 0,

y? ( 07”7/ :2, :ﬁ, ) > 0 and y7 ( 0]7:@ :5, ) # (0. Denote this vector y by

n. Then, n € R™*™" satisfies n” ( L =b ) >0, n" ( Oy A —A ) >

O —Y Ly A —A
OandnT(Olm :[i)' ) # 0.

m’,m

Let us write the vector 7 in the form ( Z) >, where v € R™ and w € R".

w

o L. —b
(o
b

(o wT)( L jb,)z(vamwTom,,m o (=b) + w (~¥) )

Om’,m

T
Then, n! = ( v ) = ( o w? ) Hence,

(by the multiplication rule for block matrices)
= ( O a— (va—i-wa’) )

since v’ I, +w 0, = 0" and v" (—=b) + 0" (=) = — (V" b+ w"V)
~——
=uT =0

T _ (T T _ o Im -0
Thus, (v (vTb+ ™) ) = (Om',m Y

and — (v7b+w”V) > 0 (by an analogue of Lemma 2.5h (b) for block matrices
of the form ( Ty ) instead of ( ;C )) From — (va—i-wa’) > 0, we obtain

) > 0. Therefore, v7 > 0

v + wly < 0. From vT > 0, we obtain v > 0 (since a column vector is
nonnegative if and only if its transpose is nonnegative).
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Since n” = (v* w” ), we have
7( Opm A —A
n I, A —A
Opm: A —A
T T m,m
( v w ) ( Im’ A/ _A/ )
(v 0 +w 'Ly vTA+wT A 0T (—A) +w” (-A))

(by the multiplication rule for block matrices)
:(wT UTA—i-wTA/ —(UTA—i-wTA/) )

since v' O + w0 Iy = w" and v" (—A4) + w’ (=A") = — (vV A+ w"A)
T
=0 =w

Thus, (w? vTA+wTA — (WVTA+wTA) ) =T O A =4 > 0.

I, A -A
Hence, we have w? > 0, v7A + w’ A" > 0 and — (UTA+wTA’) > 0 (by an
analogue of Lemma 2.5h (b) for block matrices of the form ( Ty z ) instead

of ( z )) From — (v"A+w"A’) > 0, we obtain v"A + w" A’ < 0. Combining

this with v7A + wT A’ > 0, we obtain v7A + wT A’ = 0. From w’ > 0, we
obtain w > 0 (since a column vector is nonnegative if and only if its transpose is
nonnegative).

Altogether, we now know that v > 0, w > 0, vT A4+ wr A" =0, vTb 4+ wTH <0
and (o7 — (V70 +w™V) ) :nT( L :5, ) # 0.

Om’,m

Since ((vT — (vTb+wTV) ) # 0, at least one of the relations v” # 0 and
— (va +wly ) # 0 must hold. Thus, we must be in one of the following two
subcases:

Subcase 2.1: We have vT # 0.

Subcase 2.2: We have — (vb + wTb') # 0.

Let us consider Subcase 2.1 first. In this subcase, v # 0. Thus, v # 0.
Combined with v7b + w”t’ < 0, this yields (v # 0 and vTb + 0TV < 0), so that

((v"b 4w < 0) or (v#0and v"b+w't <0)).
Thus, we know that v > 0, w > 0, v A+ w? A’ = 0 and
((v"b+w" <0) or (v#0and v"b+w"d <0)).

Hence, there exist two vectors y € R™ and v/ € R™ such that y > 0, ¥ > 0,
yT'A+yTA =0 and

((y"b+y"t' < 0) or (y#0andy"b+y"t <0))

44



Linear optimization May 4, 2018

(namely, y = v and ¢ = w). In other words, Assertion M2 holds. Thus, Assertion
M2 holds in Subcase 2.1.

Let us now consider Subcase 2.2. In this subcase, — (va + wa’) % 0, so that
vTb + wTt # 0. Combined with v7b 4+ wd < 0, this yields vTb + w?b < 0.
Hence,

((UTb+ wly < O) or (U 40 and vTb + TV < O)) )

Thus, we know that v > 0, w > 0, v A + w? A’ = 0 and
((v"b+w" <0) or (v#0and v"b+w"d <0)).

Hence, there exist two vectors y € R™ and v/ € R™ such that y > 0, y/ > 0,
yTA+yTA =0 and

((y"b+y"0' < 0) or (y#0andy"b+y"t <0))

(namely, y = v and ¢ = w). In other words, Assertion M2 holds. Thus, Assertion
M2 holds in Subcase 2.2.

We have thus proven that Assertion M2 holds in each of Subcases 2.1 and 2.2.
Thus, in Case 2, Assertion M2 always holds (because Subcases 2.1 and 2.2 cover
all of Case 2). Hence, in Case 2, at least one of Assertions M1 and M2 holds.

Hence, in each of the Cases 1 and 2, at least one of Assertions M1 and M2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions M1 and M2 holds. Since we know that the
Assertions M1 and M2 cannot hold at the same time, this yields that exactly one
of Assertions M1 and M2 holds. This proves Theorem 2.5k. O]

Let us mention two direct corollaries of Theorem 2.5k:

Corollary 2.5n. Let n € N and m € N. Let A be an m X n-matrix.
Let b € R™. Then, exactly one of the following two assertions holds:

Assertion N1: There exists a vector € R™ such that Ax < b.

Assertion N2: There exists a nonzero vector y € R™ such that y > 0,
yT'A =0 and y'b < 0.

Corollary 2.5n is classically equivalent to Exercise 2.18 in [Schrij17], but con-
structively stronger.
Here is the second corollary:

Corollary 2.50. Let n € N and m € N. Let A be an m X n-matrix.
Let b € R™. Then, exactly one of the following two assertions holds:

Assertion O1: There exists a vector z € R™ such that Az < b.

Assertion O2: There exists a vector y € R™ such that y > 0, y7A =0
and y7b < 0.
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Corollary 2.50 is classically equivalent to [Schrij17, Corollary 2.5a], but con-
structively stronger.

Proof of Corollary 2.5n. The Assertions N1 and N2 cannot hold at the same
timd®] We will now show that at least one of these assertions holds.

Let 0p,, denote the zero 0 x n-matrix, and let 0y denote the zero vector in RO.
(Both 0, and 0y are matrices with no entries at all.) Applying Theorem 2.5k to
m' =0, A" =0y, and b’ = 0y, we conclude that exactly one of the following two
assertions holds:

Assertion N11: There exists a vector x € R™ such that Az < b and
Ooml’ S 00.

Assertion N12: There exist two vectors y € R™ and 3/ € R such
that y > 0,4 >0, y" A+ y'70p,, = 0 and

((y"b+y"00 < 0) or (y+#0andy"b+y"0,<0)).

Hence, we must be in one of the following two cases:

Case 1: Assertion N;1 holds.

Case 2: Assertion N;2 holds.

Let us first consider Case 1. In this case, Assertion N;1 holds. In other words,
there exists a vector x € R" such that Arx < b and 0,z < 0y. Thus, Assertion
N1 holds. Hence, at least one of Assertions N1 and N2 holds.

We have thus proven that at least one of Assertions N1 and N2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion N;2 holds. In other
words, there exist two vectors y € R™ and ¢y’ € RY such that y > 0, ¢/ > 0,
yT A+ 470y, =0 and

((y"b+y"00 < 0) or (y#0andy"b+y"0,<0)).

Denote these vectors y and ' by n and n’. Then, n € R™ and ' € R satisfy
n>0,7>0n"A+n70p, =0 and

((n"b+n"0o < 0) or (n#0andn"b+n"0, <0)). (15)

29 Proof. Assume the opposite. Then, the Assertions N1 and N2 hold at the same time. Since
Assertion N2 holds, there exists a nonzero vector y € R™ such that y > 0, y7A = 0 and
yT'b < 0. Consider this y.

Since Assertion N1 holds, there exists a vector € R™ such that Az < b. Consider this x.
From Az < b, we obtain b > Ax, hence b — Az > 0. Thus, b — Ax > 0. Also, y > 0, so
that y7 > 0 (since the transpose of any nonnegative vector is nonnegative). Now, applying
Lemma 2.0v to m, yT and b— Az instead of n, z and y, we obtain y* (b — Az) > 0. Combined
with y7 (b — Az) = yTb — y\T/éx = yTbh < 0, this yields y” (b — Az) = 0. Hence, applying
=0
Lemma 2.2d to m, 47 and b — Az instead of n, x and y, we obtain y” = 0, thus y = 0,
contradicting the fact that y be nonzero. Thus, our assumption was wrong, qed.
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Since 70y = 0, the relation simplifies to ((n"b < 0) or (n# 0 and b <0)).
Thus, n”b < 0 (because otherwise, neither n”b < 0 nor (1 # 0 and n"b < 0)
would be possible) and 7 # 0 (for the same reason). Also, n” A + 770, = 0
simplifies to nT A = 0.

Altogether, we know that 71 is nonzero and satisfies n > 0, 7 A = 0 and
nTh < 0. Thus, there exists a nonzero vector y € R™ such that y > 0, yTA =0
and y'b < 0 (namely, y = ). In other words, Assertion N2 holds. Hence, at
least one of Assertions N1 and N2 holds.

We have thus proven that at least one of Assertions N1 and N2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions N1 and N2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions N1 and N2 holds. Since we know that the
Assertions N1 and N2 cannot hold at the same time, this yields that exactly one
of Assertions N1 and N2 holds. This proves Corollary 2.5n. [

Proof of Corollary 2.50. The Assertions O1 and O2 cannot hold at the same
timd® We will now show that at least one of these assertions holds.

Let 0p,, denote the zero 0 x n-matrix, and let 0y denote the zero vector in RP.
(Both 0, and 0y are matrices with no entries at all.) Applying Theorem 2.5k to
0, m, Ogn, 0o, A and b instead of m, m’, A, b, A" and ¥', we conclude that exactly
one of the following two assertions holds:

Assertion Oq1: There exists a vector z € R™ such that 0y, < 0
and Az < b.

Assertion 012: There exist two vectors y € R” and ¢y’ € R™ such that
y>0,y >0,y 00, +y"A=0and

((yTOO +47b < O) or (y 40 and 470y +y7b < O)) .

Hence, we must be in one of the following two cases:
Case 1: Assertion O;1 holds.
Case 2: Assertion O;2 holds.

30 Proof. Assume the opposite. Then, the Assertions O1 and O2 hold at the same time. Since
Assertion O2 holds, there exists a vector y € R™ such that y > 0, y7A = 0 and y”b < 0.
Consider this y.

Since Assertion O1 holds, there exists a vector x € R™ such that Az < b. Consider this

x.
From Az < b, we obtain b > Az, thus b — Az > 0. Also, y > 0, so that y7 > 0 (since
the transpose of any nonnegative vector is nonnegative). Now, applying Lemma 2.0v to

m, y7 and b — Az instead of n, x and y, we obtain y? (b — Azr) > 0. This contradicts

yT' (b— Az) = yTb — y\T,éx = yTb < 0. This contradiction shows that our assumption was

=0
wrong, qed.
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Let us first consider Case 1. In this case, Assertion O;1 holds. In other words,
there exists a vector € R" such that 0y,z < 0y and Az < b. Hence, Assertion
O1 holds. Hence, at least one of Assertions O1 and O2 holds.

We have thus proven that at least one of Assertions O1 and O2 holds in Case
1.

Next, let us consider Case 2. In this case, Assertion O;2 holds. In other
words, there exist two vectors y € R? and 3/ € R™ such that y > 0, ¢/ > 0,
y 00, +yTA=0and

((y"00 +y"b < 0) or (y+#0andy"0y+y"b<0)).

Denote these vectors y and ¥ by n and /. Then, n € R® and n’ € R™ satisfy
n>0,1>0,n7"00,+7"A=0and

((n"00+7n"b<0) or (n#0andn0y+n"b<0)). (16)

Since n € RY, we have = 0 (since the only element of R° is 0). Hence, the
assertion 7 # 0 is false. Thus, the assertion (77 # 0 and nT0y + n'Th < O) is also
false. Hence, from , we conclude that we must have n0y + n7b < 0. Since
nT00 +1Tb = 1/Tb, this simplifies to n”7b < 0.
=

Furthermore, comparing 1’0y, +n*A = nTA with n70y,, + #7A = 0, we

o
obtain T A = 0.

Altogether, we now know that ' > 0, n’7A = 0 and n’7b < 0. Hence, there
exists a vector y € R™ such that y > 0, y" A = 0 and y"b < 0 (namely, y = 7).
In other words, Assertion O2 holds. Hence, at least one of Assertions O1 and O2
holds.

We have thus proven that at least one of Assertions O1 and O2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions O1 and O2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions O1 and O2 holds. Since we know that the
Assertions O1 and O2 cannot hold at the same time, this yields that exactly one
of Assertions O1 and O2 holds. This proves Corollary 2.50. [

13. The weak Duality theorem

The following theorem is classically equivalent to, but constructively stronger
than [Schrij17, Corollary 2.5b]:

Theorem 2.5p. Let n € N and m € N. Let A be an m X n-
matrix. Let b € R™. Let ¢ € R™ and § € R. Assume that the set
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{z € R" | Ax < b} has at least one element. Then, exactly one of
the following two assertions holds:

Assertion P1: There exists a vector x € R™ such that Az < b and
T
ctx > 0.

Assertion P2: There exists a vector y € R™ such that y > 0, y? A = ¢T
and y7'b < 6.

The following proof of Theorem 2.5p is being given only for the sake of com-
pleteness. It is more or less a copy of that of [Schrij17, Corollary 2.5b|, with
the only difference that the reductio to absurdum part has been replaced by a
constructive case distinction:

Proof of Theorem 2.5p. The Assertions P1 and P2 cannot hold at the same timdﬂ.
We will now show that at least one of these assertions holds.
Let 0,, denote the zero vector in R".

. . AT 0,
Consider the block matrix R

vector in RY, thus as an 1 x 1-matrix); this is an (n + 1) x (m + 1)-matrix.

) (where the scalar 1 is considered as a

Also, consider the block matrix

g ) This block matrix is an (n+ 1) x 1-

matrix, i. e., a vector in R*+.
AT 0, c\ .
il and 5 instead of m,

n, A and b, we conclude that exactly one of the following two assertions holds:

Applying Theorem 2.5d ton+1, m+1,

‘ AT o, c
Assertion P11: The system o1 )= s has a nonnega-

tive solution x € R™*1.

: . AT 0,
Assertion P12: There exists a vector y € R"*! such that y” ( 0 ) >

b1
OandyT(§)<0.

31 Proof. Assume the opposite. Then, the Assertions P1 and P2 hold at the same time. Since
Assertion P2 holds, there exists a vector y € R™ such that y > 0, yT A = ¢’ and y7b < 4.
Consider this y.

Since Assertion P1 holds, there exists a vector 2 € R™ such that Az < b and ¢’z > 6.
Consider this x.

From Az < b, we obtain b > Az, so that b — Az > 0. Also, y > 0, so that y7 > 0
(since the transpose of any nonnegative vector is nonnegative). Now, applying Lemma 2.0v
to m, y© and b — Az instead of n,  and y, we obtain y” (b — Az) > 0. This contradicts
yT (b— Az) = yTb—yTAz < 6 — T2 < § —6 = 0. This contradiction shows that our

—~ =~ ~
<5 —cT >8
assumption was wrong, qed.
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Hence, we must be in one of the following two cases:
Case 1: Assertion P;1 holds.
Case 2: Assertion P;2 holds.
Let us first consider Case 1.

T
words, the system ( ?T 01” ) T = ( (05 ) has a nonnegative solution z € R™*+!,
Let & be this solution. Then, ¢ € R™"! is a nonnegative vector such that

AT 0, ¢ = c
={ s )

b1

In this case, Assertion P;1 holds. In other

Let us write the vector ¢ in the form Zj} >, where v € R™ and w € R

Consider w € R! as a scalar (because elements of R! can be identified with
scalars). Then,

(5)=(o ) e (i 1) ()= (i)

bTv + 1w

(by the rules for multiplying block matrices). Thus, ¢ = ATv + 0,w and § =
b'v 4+ 1w. Hence, ¢ = ATv + 0,w = ATv and § = bTv + 1w = bTv + w.
<~ ~—
=0
Now, (Z}) = ¢ > 0 (since & is
Lemma 2.5h (b)).
Thus,

=w

nonnegative). Thus, v > 0 and w > 0 (by

(since bTv is a scalar, i. e., a 1 x 1—matrix)

In other words, v7b < 4.
Also, from ¢ = ATv, we obtain ¢! = (ATU)T =T (AT)T
o
We thus know that v > 0, v7'A = ¢’ and v7b < 6. Hence, there exists a vector
y € R™ such that y > 0, y? A = ¢ and y"b < § (namely, y = v). In other words,
Assertion P2 holds. Hence, at least one of Assertions P1 and P2 holds.
We have thus proven that at least one of Assertions P1 and P2 holds in Case

=T A.

1.

Let us now consider Case 2. In this case, Assertion P;2 holds. In other words,

T
there exists a vector y € R*™! such that y” ( ng 01” ) > 0 and y7 < g ) <
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T
0. Denote this y by w. Then, w € R"*! satisfies w? ( ZlT Oln ) > 0 and
w? ( g > < 0.
Let us write the vector w in the form [ , where v € R and t € R

t
Consider t € R! as a scalar (because elements of R! can be identified with scalars).
Then, t© = t.
We have (CTU)T = clv (since c'v is a scalar). Thus, cfv = (CTU)T =
v? (CT)T = vT¢, therefore v7c = c’v.

=c

T
Fromw:<:),weobtaian:<;}) = (o7 ") =(v" t) (since
tT' =t). Thus,

wT<g):(vT t)((?):QT,T_c/%—td

=Cc v

(by the multiplication rule for block matrices)

=c"v + 6.

Hence, the relation w’ ( g ) < 0 (which we know to be true) rewrites as ¢’v +

to < 0.
On the other hand, from w” = ((v” ¢ ), we deduce that

T T
wT<12T Oln)z(vT t)(le Oln)z(vTAT—i-th 010, +t-1)

b1
0 (which we know to be true) rewrites as ( v"A” + ¢ 70, +¢-1 ) > 0. Thus,
(using the analogue of Lemma 2.5h (b) for block matrices of the form ((z y )

T
(by the multiplication rule for block matrices). Thus, the relation w” ( A~ O, )

instead of ( z )) we conclude that vTAT + tb" > 0 and 070, +t-1 > 0.

From vTAT 4+ tbT > 0, we obtain (UTAT+th)T > 0 (since the transpose
of a nonnegative vector is always nonnegative). In light of (UTAT +th)T =
(AT)T (UT)T + (bT)T tT = Av + bt, this rewrites as Av + bt > 0. Since bt = tb
—— —— \,_/v

=A =v =b =t
(as we can regard t as a scalar), this rewrites as Av + tb > 0.
Of course, v10,, +t-1 > 0 simplifies to ¢t > 0. Hence, we must be in one of the

following two subcases:
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Subcase 2.1: We have t = 0.

Subcase 2.2: We have t > 0.

Let us first consider Subcase 2.1. In this subcase, we have t = 0. Thus,
v + 0= v+ 08 = c'v. Hence, the relation ¢c’v +t§ < 0 (which we know

=0

to be true) rewrites as ¢’v < 0. Thus, ¢’'v # 0, so that cTv is invertible.

We know that the set {z € R" | Az < b} has at least one element. Let xy be
such an element. Then, xy € {x € R" | Az < b}, so that zy € R" and Axy < b.

Tag— 6 Tag—6
LetT:maX{O,L%—l} .Then,TZOandTZ&—i—l.

v v
T T
c'rg—0 c'xg—0
We have 7 > OT > 2—. Multiplying this inequality with c¢’v,
_ cTv cTv
we obtain
rchv < clwg— 0 (17)

(since v < 0).
On the other hand, Av+ _t b= Av+ 0b = Av, so that Av = Av +tb > 0.

=0
Now, using 7 > 0, we obtain 7 _Av, > 70 = 0. Hence, A (xy — mv) = Azg —

>0
TAv < Azg < b.
<~

>0

On the other hand,
(2o —7v) =Ty — 7ty > clay — (cho — 5) =0.
<cTag—6
(by )
Altogether, we thus know that A (zo — 7v) < b and ¢’ (xg — 7v) > §. Hence,
there exists a vector x € R" such that Ax < b and ¢’z > ¢ (namely, z = 2o —T1v).
In other words, Assertion P1 holds. We have thus proven that Assertion P1 holds

in Subcase 2.1.
Now, let us consider Subcase 2.2. In this subcase, t > 0. Thus, ¢ # 0, so that

1
t is invertible, and n > 0 (since t > 0). Hence, from Av + tb > 0, we obtain
1 1
Av > —tb. Multiplying this inequality by n (which is allowed, since n > 0), we

1 1 1
obtain gAU > —b. Hence, A <—¥U> =—-Av< —(=b)=b.

On the other hand,

1 1 1
§—c’ (——v) =5— (——ch> =d+-cv==(td+c"v)= = (v+1d) <0,
/ / Ny )
> ; <0
=——cTv
t

32This is well-defined, since the real number ¢’ v is invertible.
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1
so that ¢! (——v > 4.
t
1 1
Altogether, we know that A <—¥v> < b and ¢! (—;v) > ¢§. Thus, there

exists a vector r € R™ such that Ax < b and ¢’z > § (namely, z = —=v). In

other words, Assertion P1 holds. We have thus proven that Assertion P1 holds
in Subcase 2.2.

Altogether, we know that Assertion P1 holds in each of Subcases 2.1 and 2.2.
Thus, in Case 2, Assertion P1 always holds (since Subcases 2.1 and 2.2 cover all
of Case 2). Thus, in Case 2, at least one of Assertions P1 and P2 holds.

Hence, in each of the Cases 1 and 2, at least one of Assertions P1 and P2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions P1 and P2 holds. Since we know that the
Assertions P1 and P2 cannot hold at the same time, this yields that exactly one
of Assertions P1 and P2 holds. This proves Theorem 2.5p. O]

Theorem 2.5p yields a weak version of linear programming duality:

Corollary 2.5q. Let n € N and m € N. Let A be an m X
n-matrix. Let b € R™. Let ¢ € R". Assume that the number
max {ch | z e R"; Az < b} exists. Then, the number

min {y"b | y € R™; y >0 and y"A = ¢’} exists and satisfies

max {c’z | 1 €R"; Az <b} =min{y’b | ye R™; y>0andy"A=c"}.

I am calling this version weak because it requires the existence of
max{ch | e R";, Az < b}, while the same conclusion can be proven un-
der the (easier to verify) assumption that the set {ch | x e R"; Az < b} is
nonempty and bounded from below. (This will follow from Theorem 2.6¢ below.)
Here is yet another weak version of linear programming duality:

Corollary 2.5r. Let n € N and m € N. Let A be an m X n-matrix.
Let b € R™. Let ¢ € R™. Assume that the number
min {y”b | y € R™; y >0 and y"A = "'} exists. Then, the number
max {ch | xeR", Az < b} exists and satisfies

max{ch | r€R™; Ang}:min{yTb | y e R™; yZOandyTA:cT}.

Both Corollary 2.5q and Corollary 2.51r are easy corollaries of Theorem 2.6¢ be-
low. We will, however, give an alternative proof of Corollary 2.5q using Theorem
2.5p first. In a similar vein, Corollary 2.5r could be shown using an analogue of
Theorem 2.5p.
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Proof of Corollary 2.5q. The number max {c"z | z € R"; Az <b} exists (by
assumption). Denote this number by 6. Then, every element of {CT:L' | x e R";, Ax < b}
is < 4. In other words,

c’'z < § for every x € R" satisfying Az < b. (18)

Also, the set {c'z | z € R"; Az <b} has a maximum (since
max {c’z | z € R"; Az <b} exists) and thus has at least one element (since
a set that has a maximum must always have at least one element). In other
words, there exists some x € R” satisfying Ax < b. In other words, the set
{r € R™ | Ax <b} has at least one element. Hence, Theorem 2.5p yields that
exactly one of the following two assertions holds:

Assertion (Q11: There exists a vector x € R" such that Ax < b and
T
c'x > 0.

Assertion Q12: There exists a vector y € R™ such that y > 0, yT A =
¢! and yTbh < 4.

Since Assertion Q11 cannot holdﬁ, this yields that Assertion Q;2 must hold.
In other words, there exists a vector y € R™ such that y > 0, y7A = ¢’ and
y'b < §. Denote this y by w. Thus, w € R™ satisfies w > 0, w4 = T
and w'b < 6. Since w € R™ satisfies w > 0 and w’A = ¢, we have w €
{yeR™ | y>0and y"A ="} and thus

w’b e {yTb | y€R™ y>0and y' A= CT} . (19)
Now, we will prove that
A >0 for every \ € {yTb | y€R™ y>0and y' A= cT} . (20)

[Proof of (@) Let A € {y"b | y € R™; y>0and y"A=c"}. Thus, there
exists a z € R™ such that z > 0, 27 A = ¢! and 27b = X\. Consider this z.
By the definition of §, we have

5:maX{CTx | xR Axﬁb}e{ch | r€R™; Axgb}.

Hence, there exists some # € R” such that Az < b and ¢z = 6. Denote this
x by q. Then, ¢ € R" satisfies Ag < b and c¢'q = §. From Aq < b, we obtain
b > Aq, thus b — Ag > 0. Also, z > 0, so that zZ > 0 (since the transpose of
a nonnegative vector must always be nonnegative). Thus, applying Lemma 2.0v
to m, 2z and b — Aq instead of n, x and y, we obtain 27 (b — Ag) > 0 (since

33 Proof. Assume the contrary. Then, Assertion Q;1 holds. In other words, there exists a vector
z € R” such that Az < b and ¢"x > 6. Consider this . Then, Az < b, so that ¢’z < §
(by )7 contradicting ¢’ > 6. This contradiction shows that our assumption was wrong,
qed.
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b— Aq>0). Since 27 (b— Aq) = 2"b — 2" Aq= X — c'q = X — 4, this rewrites
> ~
as A — 0 > 0. In other words, A > 6. This proves (20)).]
From We know that w’b € {yTb | yeR™; y>0and yTA = CT}. Hence,
applying (20) to A = w?b, we obtain w’b > §. Combined with w’b < §, this
yields w?b = §. Hence, rewrites as

se{y'db | yeR™ y>0andy"A=c"}.

Thus, ¢ is an element of the set {y"b | y € R™; y >0 and y"A=c"}. Com-
bined with the fact that every element of the set {y”b | y € R™; y >0 and y"A = ¢}
is > ¢ (by (20)), this yields that 0 is the minimum of the set

{yTb | yeR™; y>0and y'A = CT}. In other words, the number

min {yTb | yeR™; y>0and yTA= CT} exists and satisfies

min{yTb | y€R™; y>0and yTA:cT}:(S.

Since d = max {ch | € R™" Ax < b}, this rewrites as follows: The number
min {y”b | y € R™; y >0 and y" A = ¢’} exists and satisfies

min{yTb | yeR™; yEOandyTA:cT}:maX{ch | 2 €R"; Az <b}.

This proves Corollary 2.5q. O

14. The Duality theorem

We are almost ready to formulate the linear programming duality theorem in one
of its strongest forms. First, let us define two basic notions:

Definition 2.6b. (i) A subset S of R is said to be unbounded from
above if for every 0 € R, there exists a t € S such that t > §.

(ii) A subset S of R is said to be unbounded from below if for every
0 € R, there exists a t € S such that ¢t < 4.

In classical logic, a subset S of R is unbounded from above if and only if it is
not bounded from above (i. e., there does not exist any m € R such that every
t € S satisfies t < m). In constructive logic, this is not generally true, and the
assertion that S be unbounded from above is stronger than the assertion that S
not be bounded from above.

We now state a theorem that is somewhat stronger (both classically and con-
structively) than [Schrij17, Theorem 2.6]:

Theorem 2.6¢c. Let n € N and m € N. Let A be an m X n-matrix.
Let b € R™. Let ¢ € R". Then, exactly one of the following four
assertions holds:
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Assertion I1: Thesets {z € R" | Az <b}and {y € R™ | y>0and y"A=c"}
are empty.

Assertion I2: The set {¢"z | € R"; Az <b} is unbounded from
above, and the set {y € R™ | y >0 and y"A = ¢’} is empty.

Assertion I3: The set {y"b | y € R™; y>0and y"A=c"} is un-
bounded from below, and the set {z € R" | Az < b} is empty.

Assertion Ij: The numbers max {CTI | x e R", Az < b} and
min {y"b | y € R™; y >0 and y"A = ¢’} exist and satisfy

max{cT:c | xR Axgb}:min{yTb | yeR™; yZOandyTA:cT}.

Theorem 2.6¢ is often referred to as the “asymmetric version of the strong
duality theorem of linear programming”.

Let me reiterate that Theorem 2.6¢ still holds if we replace R by any other
ordered field, such as Q. This cannot be said of the proof of Theorem 2.6 in
[Schrij17], since it uses the fact that any set of real numbers has a supremum or
is unbounded from above (and this fact does not hold for Q). So we are going to
give a different proof.

First, we prove a slightly weaker result:

Lemma 2.6d. Let n € N and m € N. Let A be an m x n-matrix. Let
b € R™. Let ¢ € R". Assume that the set {x € R™ | Az < b} has at

least one element. Then, exactly one of the following two assertions
holds:

Assertion J1: The set {c"z | = € R"; Az < b} is unbounded from
above, and the set {y € R™ | y >0 and y"A = ¢’} is empty.

Assertion J2: The numbers max {CT:L' | x e R", Az < b} and
min {y"b | y € R™; y >0 and y"A = ¢’} exist and satisfy
max{ch | e R";, Az < b} :min{yTb | y€R™; y>0and yTA:cT}.

It should be said that Lemma 2.6d is weaker than Theorem 2.6¢, but still
stronger than [Schrij17, Theorem 2.6].

Proof of Lemma 2.6d. The Assertions J1 and J2 cannot hold at the same time*]|
We will now show that at least one of these assertions holds.

34 Proof. Assume the opposite. Then, the Assertions J1 and J2 hold at the same time.

The set {c’z | € R"; Az < b} is unbounded from above (by Assertion J1), and thus
has no maximum. In other words, the number max {cTz | v eR™ Ax < b} does not exist.
But this contradicts Assertion J2. This contradiction shows that our assumption was wrong,
qed.
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For any nonnegative integers o and f3, let 0, 3 denote the o X 3 zero matrix.
For any nonnegative integer v, let I, denote the v x 7 identity matrix.

Om,n _Im
A Om,m
Consider the block matrix | 0,, A? [;thisisan (2m + 2n + 1)x(n + m)-
Opn —AT
—c T
matrix.
Om,l
b
Consider the block matrix c ; this is an (2m + 2n + 1) x l-matrix, i.
—c
011
e., a vector in R*" 271 We identify the 1 x 1-matrix 0; ; with the scalar 0; thus,
Om,l Om,l
b b
the block matrix c rewrites as c
—c —c
011 0
Om,n _Im Om,l
A Omm b
Applying Corollary 2.50 to 2m+2n+1, n+m, | 0,, AT and c
Opn —AT —c
—CT bT 0171

instead of m, n, A and b, we see that exactly one of the following two assertions

holds:

Assertion J11: There exists a vector x € R"* such that | 0, AT z <

Om,n _Im
A Omm

Oppn —AT

—c T

Om,1
b
c
—c
01,1
Assertion J12: There exists a vector y € R?*™2n+1 quch that y > 0,
Omn —Inm O
A O b
yT' | Opn AT =0 and y* c <0.
Opn —AT —c
—CT bT 01 1

)

o7



Linear optimization

May 4, 2018

Hence, we must be in one of the following two cases:

Case 1: Assertion J;1 holds.
Case 2: Assertion J;2 holds.

Let us first consider Case 1. In this case, Assertion J;1 holds. In other words,

O —Im O 1
A Opm b
there exists a vector x € R™™ such that O, AT T < c . Denote
nn  —AT —c
CT bT 01,1
O ) O 1
A Omm b
this vector = by &. Then, £ € R™™™ satisfies | 0,, AT [£< c
Opn —AT —c
—CT bT 01’1
Let us write the vector ¢ in the form Z , where © € R" and v € R™. Since
u
&= ( v ),Wehave
O —1Im
A Opm
Opn AT ¢
Opn —AT
—c' T
Omn  —In Omntt + (—1Ln)v
A Opm Au + Oy v
=| 0,, AT ( Y ) = Opntu+ AT
Opn —AT | N7 Opntt + (—AT) v

T T —cTu+bTw

c
(by the multiplication rule for block matrices)

—v
Au —— —
- Al O +A;2) — ATy,
— ATy N B
—clu+ bTw =0
Hence,
—v Omn —Im
Au A Omm
ATy =| 0,, AT €<
— ATy Oppn —AT
—clu+ bTw —cr' T

E, Zmd Ot + (—AT) v
——

since Oyt + (—1m) v = —v, Au+ 0y 0 = Au,

o8
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Hence, we have the five inequalitieﬂ

- < Oy 1, Au < b, ATy < c,
—ATy < —e¢, and — cTu+bTv < 011.

The inequality —v < 0,1 leads to v > —0,, 1 = 0,,1 = 0. Thus, vl >0 (since the
transpose of any nonnegative vector is nonnegative). The inequality —ATv < —c
rewrites as ATv > ¢; combining this with ATv < ¢, we obtain ATv = ¢. The
inequality —cTu+ bTv < 01 becomes —c’u+bTv < 051 = 0, so that bTv < cTw.
Since bTv is a scalar, we have (bTU)T = b"v. Thus, bTv = (bTv)T =T (bT)T =
=b
vTbh. Hence, v'b = bTv < clu.

But v € R" satisfies Au < b. Thus, u € {vr € R* | Az <b} and therefore
c"'uwe {cz | z € R Az <b}.
On the other hand,

every w € {c'z | x € R"; Az < b} satisfies w < v'b. (21)

Applying this to w = ¢"u, we obtain ¢’u < v7b (since c'u € {c'z | z € R"; Az < b}).
Combined with v7b < ¢’u, this yields

v'b = clu. (22)

Thus, v7b = c'u € {ch | e R™ Az < b}. In other words, v”b is an element
of the set {ch | € R™ Ax < b}. Combined with the fact that every element
of the set {ch | z € R, Az < b} is < 07D (due to ), this yields that v7'b is
the maximum of the set {cTa: | x e R™; Ax < b}. In other words, the number
max {cTz | € R"; Az < b} exists and satisfies

max {c'z | z € R Az <b} =v"b. (23)

35Here, we are using the following simple fact: Let ni, ne, ns, n4, and ns be five nonnegative
integers. Let a3 € R™, as € R™, ag3 € R™, ay € R™, and a5 € R™ be five column
vectors. Let 1 € R™") B € R"2) B3 € R, B4 € R™, and 5 € R™ be five column vectors.

aq b1
Qg B2
Assume that a3 > | B3 |. Then, we have the five inequalities
oy Ba
as Bs
ai > P, ag > P, az > B, ay > By, and as > fs.

36 Proof of : Let w € {c¢"z | # € R"; Az <b}. Then, there exists some z € R™ such that
Az < b and w = ¢Tz. Consider this z.

We have Az < b, hence b > Axz. Thus, b — Az > 0. Thus, Lemma 2.0v (applied to

m, vT and b — Az instead of n, x and y) yields v? (b — Ax) > 0 (since v > 0). Thus,

0<oT (b— Az) = va—v:;éx = va—c\Tﬁ = vTb—w, so that w < vTb. This proves .

=cT =w
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Now,
every w € {yTb | y€R™ y>0and y' A= CT} satisfies w > v7b. (24)

Also, fromv > 0 and vTA = ¢’ we conclude that v € {y € R™ | y >0 and y"A ="},
Hence, v7b € {y"b | y € R™; y>0and y"A=c"}. Combined with the fact

that every element of the set {y”b | y € R™; y>0and y"A=c"} is > v7b

(by (24)), this yields that v”b is the minimum of the set

{yTb | y e R™; y>0and y'A= CT}. In other words, the number

min {y”b | y € R™; y >0 and y" A = ¢’} exists and satisfies

min {y’b | yeR™ y>0and y’A=c"} =v"b.
Compared with , this yields
max{cTa: | x e R, Ax < b} :min{yTb | y€R™; y >0 and yTA:cT}.

Altogether, we have shown that the numbers max{ch | € R™ Az < b}
and min {y”b | y € R™; y > 0 and y"A = ¢’} exist and satisfy

max{c'z | 2 €R"; Az <b} =min{y’b | ye R™; y>0andy' A=c"}.

In other words, Assertion J2 holds. Thus, at least one of Assertions J1 and J2
holds.
We have thus proven that in Case 1, at least one of Assertions J1 and J2 holds.
Now, let us consider Case 2. In this case, Assertion J;2 holds. In other words,

Om,n _[m
A Opm
there exists a vector y € R?™2n+1 qyuch that y > 0, 47 | 0,, AT =0 and
Onn —AT
' T

37 Proof of : Let w € {yTb | y€R™; y>0and yT'A= CT}. Then, there exists an y € R™
such that y > 0, yTA = ¢” and w = y”b. Consider this y. Since y > 0, we have y” > 0
(since the transpose of any nonnegative vector is nonnegative).

We have Au < b. Thus, b > Au, so that b — Au > 0. Thus, Lemma 2.0v (applied to
m, yT and b — Au instead of n, z and y) yields yT (b — Au) > 0 (since y© > 0). Thus,

0<yT(b—Au) =y"b—yTAu=y"b— "u =w—v"b, so that w > vTb. This proves
~ ~— ~~

=cT =w =vTh
(by (22))

29
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Om,l
b
y? c < 0. Denote this vector y by n. Then, n € R?"+2n+1 gatisfies n > 0,
—c
01,1
Om,n _[m
A Opm
| Onn AT | =0 (25)
Opn —AT
—c' T
and
0m,l
b
| e < 0. (26)
—c
011
u
v
Let us write the vector n in the form q |, where u € R™, v € R", q € R",
r

w
r € R" and w € R'. The vector w € R' will be regarded as a scalar (since we
can identify vectors of length 1 with scalars). Thus, w? = w.

Define a vector s € R" by s =q —r.

u
v

Since n = q |, we have
r
w

T
u
v
=1 ¢ :(UT AP wT)
r
w
=(ul " " T w) (27)

(because w! = w).
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Now, yields

Om,n _[m g
A O
| Opn AT =07 =0
On.n —AT
—c' BT
Hence,
Om,n _[m g
A Opm
0= |n"| 0,. AT
O —AT
' T
Om,n _Im ’
A Om,m
= On,n AT (77T)T
0, _AT ——
_C’T T =
_ (O, n)T AT (0, n)T (On,n)T (_CT !
(1) (Ona)” (A1)" (47" (1)
o Onn)” AT ()" (00" (=CT)
(_ m)T (Om m)T (AT)T (_AT)T (bT)T n
U
o On,m AT On,n On,n —C v
"\ =Ly Opm A —A b d
r
w
since (Omm)T = 0, and (—Im)T = — (Im)T = —1,, and (Om,m)T = 0y
=I
and (Omn)T =0,., and (AT) = A and (—AT)T = — (AT)T =-A
——
—A
U
v
and (—CT)T = — (CT)T = —c and (bT)T =bandn=1| ¢
\7/_/ r
N w
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o Opmu+ ATo+0,q + 0,7 + (—¢) w
N\ (—Lp)u+Oppmv+ Ag+ (—A) r + bw

(by the multiplication rule for block matrices) .

Thus,
On,mu + AT'U + On,nq + On,nr + (_C) w —0) = 0
(—ILn)u+O0pmmv+ Ag+ (A)r+bw /)~ \ 0 )’
Thus,
Onmtt + ATV 4+ 0,0q + 0,07 + (—c) w = 0 (28)
and
(—Ln)uw+ 0pmv + Ag+ (—A) r + bw = 0. (29)
Now, yields
= Opmt +AT0 + 0, q + 0yt + (—c) w = ATv — cw = ATy — we,
—— e N N — ?1;';
=0 =0 =0 =—cw (since w is a scalar)
T
so that ATv = we. Thus, we = ATv, so that | we = (ATU)T =7 (AT)T =
v V
:AT’U —A
vT A. Hence,
vTA = (we)" = wel. (30)

Also, yields

0= (—In)u+0pmv+Aqg+ (—A)r+bw = —u+ Ag — Ar+ bw
— —— ~—— —— ~~~

_ _ _ _ _ —wb
= =0 =—Ar =A(g—7) (since w is a scalar)

=—u+A(qg—1)+wb=—u+ As + wb,
——

=S

so that
u = As + wb. (31)
On the other hand, from (27)), we obtain
Om,l Om,l
b b

i’ c _ ( uf o ¢ T w )

—c —c

0171 01,1

= uTOml +olb + ch +7T (—c) + w0y,
\“,T_/ \,0_/
=0 =—r‘c =

(by the multiplication rule for block matrices)
T

:va—l—ch—rTc:va—i—(qT—rT)c:vTIH— g—r| ec=v"b+sTe
—_—— N , ——

=(q"=rT)c T =s

=(g—7)
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Hence, rewrites as

vTb+ sTc < 0. (32)
Since s”c is a scalar, we have (STC)T = sT¢, so that sTc = (sTc)T =T (ST)T =
~
c’'s. Hence, rewrites as
vTb+c''s < 0. (33)
., _
v
We have | ¢ | =7 > 0. Hence, we have the five inequalities®®
r
w
u >0, v >0, q>0, r >0, and w > 0.
Since w > 0, we can multiply the inequality with w, and obtain
w (va + cTs) < 0. (34)

But from v > 0, we obtain v > 0 (since the transpose of any nonnegative vector
is nonnegative). Thus, Lemma 2.0v (applied to m, v and u instead of n, z and
y) yields vTu > 0 (because u > 0). Hence,

T T _ T T
0<v' u, =v (As+wb)= p'A s+wv'b

=As+wb =wcl
by E1)) (by (BO))
=wc's+wv'b=w (vTb+cs). (35)

Combined with , this easily yields that w = 0 ﬂ As a consequence,
rewrites as
v A =0c" =0. (36)

38Here, we are using the following simple fact: Let ny, na, n3, n4, and ns be five nonnegative
integers. Let a; € R™ | as € R™, a3 € R™, ay € R™, and a5 € R be five column
vectors. Let 81 € R", By € R"2, B3 € R 5, € R™ and 85 € R™ be five column vectors.

Qi B
Q2 B2
Assume that | ag | > | B3 |. Then, we have the five inequalities
ay B
as Bs
ay > P, az > P, as > fs, ag > P, and as > fs.

39 Proof. Assume that w > 0. Then, we can divide the inequality by w, and obtain
0 < vTh + ¢T's. This contradicts . This contradiction shows that our assumption was
wrong. Thus, we don’t have w > 0. Hence, w < 0. Combined with w > 0, this yields w = 0,
qed.
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Also, becomes
u-As—l—\u;/b—As. (37)

Let us summarize what we have found so far: We have found vectors u € R™,
v € R™ and s € R” satisfying v > 0 and v > 0 and the equations , and
. These equations (along with v > 0 and v > 0) are all that we are going to
need from now on; we can forget about ¢, r, n and w.

Our goal now is to prove that Assertion J1 holds.

By the assumptions of Lemma 2.6d, the set {x € R® | Az < b} has at least
one element. Let z be this element. Then, z € {z € R" | Az <b}. In other
words, z € R" and Az < b. From Az < b, we obtain b > Az, thus b — Az > 0.

Also, vT > 0 (since v > 0, and since the transpose of any nonnegative vector is
nonnegative). Thus, Lemma 2.0v (applied to m, vT and b— Az instead of n, x and
y) yields v7 (b — Az) > 0 (since b— Az > 0). Thus, vTb—v Az = o7 (b — Az) >0,
so that v7b > U\T’A/ z = 0. But from , it follows that

(by ()
cr's < —a'h < —0=0. (38)

>0

Hence, c¢!'s # 0, so that ¢!'s is invertible.
Now, let § € R. We will show that there exists a t € {¢"z | z € R"; Az < b}
such that ¢ > 4.

T2-4
Let A = max {0, ¢ zT } (this is well-defined since ¢’'s is invertible). Then,
c's
T, _
A>0and A> C270
c's
clz—4
Multiplying the inequality A > with ¢!'s, we obtain
T's
Acls<clz—6 (39)

(the sign has flipped since c¢'s < 0).
From , we have As = u > 0. Hence, \As
z — As € R™ satisfies A(z—As) = Az — M\As
>0
{x e R® | Ax < b}, so that ¢’ (z — X\s) € {C?l’ | z € R"; Az < b}.
But

0 (since A > 0). The vector

>
< Az < b. Hence, z — \s €

(z=ds)=c"z=Q-cs>c"z— (2= 8) =0.
e~

<cTz-6

(by (39))

Since ¢’ (z — As) € {c'z | z € R"; Az < b}, this yields that there exists a ¢ €
{c"z | z €R™ Az <b} such that ¢ > § (namely, t = ¢’ (2 — \s)).
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Now, forget that we fixed 9. We have thus shown that for every € R, there
exists a t € {ch | x e R";, Ax < b} such that ¢ > §. In other words, the set
{cTa: | e R™ Az < b} is unbounded from above.

Finally, let us prove that the set {y € R™ | y >0 and y"A =c"} is empty.
In fact, let ¢ € {y ER™ | y>0and yT'A= CT} be arbitrary. We will derive a
contradiction (thus showing that ¢ cannot exist).

Since ¥ € {y e R™ | y>0and y"A=c"}, we have ¥ € R™, ¢ > 0 and
YT A= c'. From ¢ A = T, it follows that 7 As = ¢T's. Since As = u (by (37)),
this rewrites as ¢¥/"u = ¢’'s. Combined with (38)), this yields ¥"u < 0. But since
¥ > 0, we have T > 0 (since the transpose of a nonnegative vector is always
nonnegative), and thus Lemma 2.0v (applied to m, ¥ and u instead of n, z and
y) yields ¥Tu > 0 (since u > 0). This contradicts ¥ u < 0.

Now, forget that we fixed ¢. Thus, forevery ¢ € {y € R™ | y > 0and y"A ="},
we have derived a contradiction. Hence, there exists no
(NS {y ER™ | y>0and y’A= CT}. In other words, the set
{y ER™ | y>0and y’A= CT} is empty.

Altogether, we have proven that the set {CT:U | x e R"; Ax < b} is unbounded
from above, and the set {y € R™ | y>0and y"A=c"} is empty. In other
words, Assertion J1 holds. Thus, at least one of Assertions J1 and J2 holds.

We have thus proven that in Case 2, at least one of Assertions J1 and J2 holds.

We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions
J1 and J2 holds. Since these cases cover all possibilities, this yields that, in every
situation, at least one of Assertions J1 and J2 holds. Combined with the fact that
the Assertions J1 and J2 cannot hold at the same time, this yields that exactly
one of the Assertions J1 and J2 holds. This proves Lemma 2.6d. O

Lemma 2.6d was “one piece” of Theorem 2.6¢; here is another “piece”:

Lemma 2.6e. Let n € Nand m € N. Let A be an m X n-matrix. Let

b€ R™. Let c € R". Assume that the set {y eER™ | y>0,y"A=0and y7b < 0}
has at least one element. Then:

(a) The set {x € R™ | Az < b} is empty.

(b) Exactly one of the following two assertions holds:

Assertion K1: Thesets {x € R" | Az <b}and{y € R™ | y>0andy’A=c"}
are empty.

Assertion K2: The set {yTb | yeR™; y>0and y’A= CT} is un-

bounded from below, and the set {x € R" | Az < b} is empty.

Proof of Lemma 2.6e. The Assertions K1 and K2 cannot hold at the same timﬂ

40 Proof. Assume the opposite. Then, the Assertions K1 and K2 hold at the same time. The
set {yTb | y € R™; y >0 and y" A = ¢’} is unbounded from below (by Assertion K2), and
thus nonempty. In other words, there exists some y € R™ satisfying y > 0 and y7 4 = 7.
In other words, the set {y €ER™ | y>0and y'A= cT} is nonempty. But this contradicts

Assertion K1. This contradiction shows that our assumption was wrong, qed.
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We will now show that at least one of these assertions holds.

The set {y eER™ | y>0,yTA=0and y7b < 0} has at least one element (by
assumption). Denote this element by z. Then,
ze{yeR™ | y>0,y"A=0and y"b < 0}. In other words, z € R™, z > 0,
2TA =0 and 27b < 0. From z > 0, it follows that 27 > 0 (since the transpose of
any nonnegative vector is nonnegative).

Now, it is easy to see that the set {x € R" | Ax < b} is emptyf']] This proves
Lemma 2.6e (a).

Applying Theorem 2.5d to n, m, AT and c instead of m, n, A and b, we conclude
that exactly one of the following two assertions holds:

Assertion Ki1: The system ATz = ¢ has a nonnegative solution
r e R™.

Assertion K12: There exists a vector y € R” such that y” AT > 0 and
T
y'c < 0.

Thus, we must be in one of the following two cases:

Case 1: Assertion K;1 holds.

Case 2: Assertion K;2 holds.

Let us consider Case 1 first. In this case, Assertion K;1 holds. In other words,
the system ATz = ¢ has a nonnegative solution £ € R™. Denote this x by u.
Thus, u € R™ is nonnegative and satisfies ATu = c.

~~

=c

T
Comparing (ATu)T =ul (AT)T = u"Awith [ ATy | = ¢, we obtain u” A =
——

=A
¢, Also, u is nonnegative, i. e., we have u > 0. Since u € R™, u > 0 and
u"A=c" wehaveu e {y € R™ | y>0and y"A=c"} and thus

ub € {yTb | y€R™ y>0and y' A= CT} : (40)

Now, let 6 € R. We will show that there exists a
te{y" | yeR™ y>0and y"A=c"} such that t <.
In fact, since z7b < 0, we have 27b # 0, so that z7b is invertible. Now, let

§—ulb
A = max {O, Tzz} (this is well-defined since 27 is invertible). Then, A > 0
2
§—ulh
dA> ——.
and A > —

4 Proof. Let w € {x € R™ | Az <b}. Then, w € R” and Aw < b.
From Aw < b, we obtain b > Aw, so that b — Aw > 0. Hence, Lemma 2.0v (applied
to m, 27 and b — Aw instead of n, z and y) yields 27 (b — Aw) > 0 (since 27 > 0). This
contradicts 27 (b — Aw) = 2Tb — Z\T’A/w =2Th < 0.

=0
Now, forget that we fixed w. We have thus shown that any w € {x € R" | Ax < b}
satisfies a contradiction. In other words, there exists no w € {x € R® | Az < b}. In other
words, the set {x € R™ | Az < b} is empty, qed.
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5 —ulh
Multiplying the inequality A > Tzz with 27, we obtain
z
A-2lo <5 —u'b (41)

(the sign flipped since z7b < 0).
From v > 0, A > 0 and z > 0, we obtain u + Az > 0.

Also,
T
(u+A2)" A= (u"+ A7) A= uT;4 +A ZT;4 =cl.
=uT 42T =¢ =

Since u + Az € R™, u+ Xz > 0 and (u+X2)" A = T, we have u 4+ \z €
{yeR™ | y>0and y"A ="} and thus

(u+Xr2)"be {y"b | yeR™ y>0andy’ A=c"}.

Since
(u+X2)"b=uTb4+ A 2T <uTb+6—u"b=0,
<5—uTh
(by (@)
this yields that there exists a t € {y7b | y € R™; y >0 and y"A = ¢} such
that ¢ < 0 (namely, t = (u+ Az)" b).

Now, forget that we fixed 6. We thus have proven that for every § € R, there
exists a t € {y’b | y€R™ y>0and y"A=c"} such that ¢ < §. In other
words, the set {yTb | yeR™; y>0and yTA= CT} is unbounded from below.

We now know that the set {yTb | y € R™; y>0and y'A= CT} is unbounded
from below, and the set {z € R" | Ax < b} is empty. In other words, Assertion
K2 holds. Thus, at least one of Assertions K1 and K2 holds.

Hence, we know that in Case 1, at least one of Assertions K1 and K2 holds.

Let us now consider Case 2. In this case, Assertion K;2 holds. In other words,
there exists a vector y € R" such that y? A7 > 0 and y’¢ < 0. Denote this vector
y by w. Then, w € R" is a vector such that w? AT = 0 and w’c < 0.

Since w’ AT = 0, we have (wTAT)T = 07 = 0. This rewrites as Aw = 0
(because (wTAT)T = (AT)T (wT)T = Aw).

=A —w
Since w” ¢ is a scalar, we have (ch)T = w?lec < 0. Since (ch)T =cr (wT)T =
——

=w

cw, this rewrites as ¢c’w < 0.

Now, it is easy to see that the set {y ER™ | y>0and y'A= CT} is empt

42 Proof. Let s € {y ER™ | y>0and yT'A= CT}. Then, s € R™ is a vector such that s > 0
and sTA = ¢T. Thus, sTAw = ¢Tw < 0, contradicting s” Aw = 0.
<~ ~

=T =0

Now, forget that we fixed s. We thus have shown that every s €
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Altogether, we now know that the sets {x € R" | Az < b} and
{y eER™ | y>0and y’A= CT} are empty. In other words, Assertion K1 holds.
Thus, at least one of Assertions K1 and K2 holds.

Hence, we know that in Case 2, at least one of Assertions K1 and K2 holds.

We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions
K1 and K2 holds. Since these cases cover all possibilities, this yields that, in every
situation, at least one of Assertions K1 and K2 holds. Combined with the fact
that the Assertions K1 and K2 cannot hold at the same time, this yields that
exactly one of the Assertions K1 and K2 holds. This proves Lemma 2.6e (b). O

Proof of Theorem 2.6c. Corollary 2.50 yields that exactly one of the two asser-
tions O1 and O2 holds[*]

Thus, we must be in one of the following two cases:

Case 1: Assertion O1 holds.

Case 2: Assertion O2 holds.

Let us consider Case 1 first. In this case, Assertion O1 holds. In other
words, there exists a vector x € R™ such that Ar < b. In other words, the
set {x € R" | Az < b} has at least one element. Hence, Lemma 2.6d yields that
exactly one of the two assertions J1 and J2 holds[”] Since Assertion J1 is identi-
cal to Assertion 12, and Assertion J2 is identical to Assertion 14, this rewrites as
follows: Exactly one of the assertions [2 and 14 holds.

Assertion I1 is falsd®] Assertion I3 is also false[™]

So we know that Assertions I1 and I3 are both false. Combining this with the
fact that exactly one of the assertions 12 and I4 holds, we conclude that exactly
one of the four assertions I1, 12, I3 and I4 holds. In other words, Theorem 2.6¢
is proven in Case 1.

Now, let us consider Case 2. In this case, Assertion O2 holds. In other words,
there exists a vector y € R™ such that y > 0, y?A = 0 and y’b < 0. In other
words, the set {y € R™ | y >0, y"A =0 and y”b < 0} has at least one element.
Thus, Lemma 2.6e (b) yields that exactly one of the two assertions K1 and K2
holdsﬂ Since Assertion K1 is identical to Assertion I1, and Assertion K2 is
identical to Assertion 13, this rewrites as follows: Exactly one of the assertions
I1 and I3 holds.

{y ER™ | y>0and y'A= CT} satisfies a contradiction. In other words, no
s € {yeR™ | y>0andy"A=c"} can exist. In other words, the set
{y ER™ | y>0and y'A= CT} is empty, qed.

43See the statement of Corollary 2.50 for these assertions.

44Gee the statement of Lemma 2.6d for these assertions.

45 Proof. Assume the contrary. Thus, Assertion I1 holds. Hence, the set {z € R"® | Az < b} is
empty. This contradicts the fact that the set {x € R™ | Az < b} has at least one element.
This contradiction shows that our assumption was false, qed.

46 Proof.  Assume the contrary. Thus, Assertion I3 holds. Thus, in particular, the set
{zr € R" | Az <b} is empty. This contradicts the fact that the set {z € R™ | Az <b}
has at least one element. This contradiction shows that our assumption was false, qed.

47See the statement of Lemma 2.6e for these assertions.
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Assertion 12 is falsd®| Assertion I4 is also false["]

So we know that Assertions 12 and 14 are both false. Combining this with the
fact that exactly one of the assertions I1 and I3 holds, we conclude that exactly
one of the four assertions I1, 12, I3 and 14 holds. In other words, Theorem 2.6¢
is proven in Case 2.

So we have proven Theorem 2.6¢ in each of the cases 1 and 2. Since these
cases 1 and 2 cover all possibilities, this yields that Theorem 2.6¢ is proven in all
situations. In other words, the proof of Theorem 2.6¢ is complete. O

Note that Theorem 2.5p is an easy corollary of Theorem 2.6¢:

Alternative proof of Theorem 2.5p. The Assertions P1 and P2 cannot hold at the
same timeP9 We will now show that at least one of these assertions holds.

Theorem 2.6¢ yields that exactly one of the four assertions 11, 12, 13 and 14
holds@ Thus, we must be in one of the following four cases:

Case 1: Assertion I1 holds.

Case 2: Assertion 12 holds.

Case 3: Assertion I3 holds.

Case 4: Assertion 14 holds.

Let us consider Case 1 first. In this case, Assertion I1 holds. Thus, in particular,
the set {x € R® | Az < b} is empty. This contradicts the assumption that the
set {x € R" | Az <b} has at least one element. Thus, we have obtained a
contradiction. Hence, Theorem 2.5p holds in Case 1 (because ex falso quod
libet).

Let us now consider Case 2. In this case, Assertion 12 holds. Hence, in par-
ticular, the set {ch | e R";, Az < b} is unbounded from above. Thus, there
exists at € {cTsc | x e R", Az < b} such that ¢t > 6 + 1. Consider this t. Then,
te {ch | x e R™ Ax < b}, so that there exists some z € R" such that Az <b
and ¢t = ¢’ 2. Consider this z. We have Az <band ¢’z =t > §+1 > 6. Thus,
there exists a vector x € R™ such that Az < b and ¢’z > § (namely, x = 2). In
other words, Assertion P1 holds. Hence, at least one of Assertions P1 and P2

48 Proof. Assume the contrary. Thus, Assertion I2 holds. Thus, in particular, the set
{ch | x e R™; Az < b} is unbounded from above, and therefore nonempty. In other
words, there exists some x € R" satisfying Ax < b.

But Lemma 2.6e (a) shows that the set {x € R" | Az < b} is empty. In other words,
there exists no x € R™ satisfying Ax < b. This contradicts the fact that there exists some
x € R™ satisfying Az < b. This contradiction shows that our assumption was false, qed.

49 Proof. Assume the contrary. Thus, Assertion I4 holds. Hence, in particular, the number
max {c¢T'z | x € R"; Az < b} exists. In other words, the set {¢’z | z € R"; Az <b} has
a maximum. Hence, this set is nonempty. In other words, there exists some x € R™ such
that Az < b.

But Lemma 2.6e (a) shows that the set {x € R" | Az < b} is empty. In other words,
there exists no x € R™ satisfying Ax < b. This contradicts the fact that there exists some
x € R™ satisfying Az < b. This contradiction shows that our assumption was false, qed.
50This can be proven just as in our first proof of Theorem 2.5p above.
51See the statement of Theorem 2.6¢ for these assertions.
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holds. Combined with the fact that the Assertions P1 and P2 cannot hold at the
same time, this yields that exactly one of Assertions P1 and P2 holds. In other
words, Theorem 2.5p holds in Case 2.

In Case 3, we obtain the very same contradiction as in Case 1. Hence, Theorem
2.5p holds in Case 3 (because ex falso quod libet).

Let us finally consider Case 4. In this case, Assertion 14 holds. In other words,
the numbers max {ch | x e R", Az < b} and
min {y"b | y € R™; y >0 and y"A = ¢’} exist and satisfy

max{ch | x € R" Amgb} :min{yTb | y€R™; y >0 and yTA:cT}.
Hence, we can define an € € R by
ezmax{ch | x € RY Axgb} :min{yTb | y€R™; y>0and yTA:cT}.

Now, we must be in one of the following two subcases:

Subcase 4.1: We have § < .

Subcase 4.2: We have § > ¢.

Let us first consider Subcase 4.1. In this subcase, 6 < e. Thus, € > J. Since
e = max{c’z | v €R" Az <b} € {c'z | z € R"; Az <b} (because the
maximum of a set always lies in this set), there exists a z € R™ such that Az <b
and ¢ = ¢'z. Consider this z. Then, Az < b and ¢’z = ¢ > §. Hence, there
exists a vector z € R" such that Az < b and ¢’z > ¢ (namely, z = z). In other
words, Assertion P1 holds. Hence, at least one of Assertions P1 and P2 holds.
Combined with the fact that the Assertions P1 and P2 cannot hold at the same
time, this yields that exactly one of Assertions P1 and P2 holds. In other words,
Theorem 2.5p holds in Subcase 4.1.

Let us now consider Subcase 4.2. In this subcase, > ¢. Thus, ¢ < . Since
ézmin{yTb | yeR™; yZOandyTA:cT} € {yTb | yeR™; yZOandyTA:cT}
(because the minimum of a set always lies in this set), there exists a z € R™ such
that z > 0, 27A = ¢’ and € = 27b. Consider this z. Then, z > 0, 27A = ¢’ and
2Tb = e < §. Hence, there exists a vector y € R™ such that y > 0, y* A = ¢! and
yTb < § (namely, y = z). In other words, Assertion P2 holds. Hence, at least one
of Assertions P1 and P2 holds. Combined with the fact that the Assertions P1
and P2 cannot hold at the same time, this yields that exactly one of Assertions
P1 and P2 holds. In other words, Theorem 2.5p holds in Subcase 4.2.

We now know that Theorem 2.5p holds in each of Subcases 4.1 and 4.2. Since
these Subcases 4.1 and 4.2 cover all of Case 4, this yields that Theorem 2.5p holds
in Case 4.

We thus know that Theorem 2.5p holds in each of Cases 1, 2, 3 and 4. Since
these Cases 1, 2, 3 and 4 cover all possibilities, this yields that Theorem 2.5p
holds in every situation. Theorem 2.5p is thus proven again. O]
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15. The symmetric version of the Duality theorem

We are now going to prove a variant of the duality theorem which is “symmetric”
in the sense that the set we take the minimum of and the set we take the maximum
of are defined similarly (in particular, both are parametrized by nonnegative
vectors, which was not the case in Theorem 2.6¢):

Theorem 2.6f. Let n € N and m € N. Let A be an m X n-matrix.
Let b € R™. Let ¢ € R". Then, exactly one of the following four
assertions holds:

Assertion Q1: The sets {x € R" | x >0 and Az < b} and
{y ER™ | y>0and y'A > CT} are empty.

Assertion Q2: The set {ch | xeR" £>0and Az < b} 1S un-
bounded from above, and the set {y ER™ | y>0and yTA > CT}
is empty.

Assertion Q3: The set {y"b | y € R™; y > 0and y"A > '} is un-
bounded from below, and the set {z € R" | >0 and Az < b} is
empty.

Assertion ()4: The numbers max {cTa: | € R", £>0and Az < b}
and min {y”b | y € R™; y >0 and y"A > "'} exist and satisfy

max{cTac | € RY; :CEOandA:cgb}
:min{yTb | yeR™; yEOandyTAch}.

Theorem 2.6f is stronger than Exercise 2.23 in [Schrij17] (both classically and
constructively).

It should be noticed that most of the times when Schrijver applies linear pro-
gramming duality in [Schrij17], it is being applied not in the form of Theorem 2.6
in [Schrij17] (or our Theorem 2.6¢), but in the form of Exercise 2.23 in [Schrij17]
(or our Theorem 2.6f). In particular, in the proofs of Corollary 3.7b and Corol-
lary 8.3a in [Schrij17], Schrijver is applying Exercise 2.23 when he says that he is
using linear programming duality.

Proof of Theorem 2.6f. For any nonnegative integer v, let I, denote the v x «
identity matrix.
Let 0,, be the zero vector in R”.

Consider the block matrix < ); this is an (m + n) X n-matrix.

A
—I,
. . b
Also, consider the block matrix ( 0
n
vector in R™*™ (since we identify matrices having only one column with column
vectors).

); this is an (m + n) x l-matrix, i. e., a
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_f} and < Ob ) instead of m, A and

b, we see that exactly one of the following four assertions holds:

Assertion (Q11: The sets {x eR™ | ( _Ié} )x < ( Ob )} and

{y e R™™" | y>0andy" ( _f} > = CT} are empty.

Assertion ()12: The set {ch | e R ( _f‘} >x < < Ob )} s

unbounded from above, and the set {y eR™™ | y>0and y” ( _A ) = CT}

Applying Theorem 2.6¢ to m + n,

is empty.
_ (b n A T
Assertion Q13: The set < y 0 | y € R™™ 4 >0 and y” g =c

is unbounded from below, and the set {x eR" | ( 4 ) < ( b ) }

-1, On
is empty.
. A b
Assertion Q14: The numbers max{ ¢’z | r € R"; )= < 0
. o b — A
and min < y 0 | y € R™™ 4 >0 and y? )= ex-

ist and satisfy

max{cT:c | x €R" (_f} )xﬁ(ob )}
:min{yT(Ob) |y€Rm+";yZOandyT(_/} ):cT}.

We will now prove that these assertions Q11, Q12, Q13, and Q4 are equivalent
to the assertions Q1, Q2, Q3, and Q4, respectively.
First, we notice that

{eojwers (4 )os( g )}

={c"z | x€R" z>0and Az < b}. (42)
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2

Next, we notice that

{yT<0b > | y e R™™, yZOandyT(_f} )ZCT}

= {yTb | y€R™; y>0and yTAch}. (44)

£3

52 Proof of (@ For each z € R™, we have

() (4)r ~(2)-(%)-(m)

—Z
(by the multiplication rule

for block matrices)
b— Az
_ ( ; ) . (43)

Now, for each x € R™, we have the following chain of equivalences:

7N
7N
(=
|
&
b
&
O N
vV
o
N——
o
<

(b—Ax >0and z > 0) (by Lemma 2.5h)
<= |z >0and b—Az >0
—_———

<— (b>Az) < (Az<b)

(x >0and Az <b).

!

Hence,
T n A b T n
c'x | reRY " z < 0 :{cx\xER;xEOandAacgb}.

This proves .
53 Proof of : Let A € {yT< Ob ) | y € R™*+7; 4 >0 and y7 ( f} ) } be ar-
A

_ T
I, ) = ¢’ and
= CT

A=yT ( Obn ) Denote this y by &. Thus, & € R™*" satisfies € > 0, &7 ( _1‘11_ )

andA=5T< Ob >

bitrary. Then, there exists an y € R™*" such that y > 0, y7

7N
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Let us write the vector £ in the form ( g ), where u € R™ and v € R".

We have ( 1; ) =¢ > 0. Thus, Lemma 2.5h (b) (applied to N =m, M =n, x = u and

y = v) yields that v > 0 and v > 0. Thus, u” > 0 and v7 > 0.

T
Sincefz(ﬁ),wehavesz(u) :(uT vT )7andthus

v
A A
T

(G )=tr ()

=uTA+0T (-1,) (by the multiplication rule for block matrices)
——

=ulA—oT.

Compared with &7 ( f} ) = ¢T, this yields ¢” = uT A — v™. In other words,

uwlTA=c"+oT.

Hence, uTA = ¢T + o7 > (7.
~—
>0
So we now know that v € R™, w > 0 and uTA > ¢I. In other words, u €
{yeR™ | y>0and y"A> "}, so that

ulb e {yTb | y€R™; y >0 and yTAZCT}. (45)
Now,
b b
_ T _(,T T
=L ()= ()
(T o)
=uTb+ 070, (by the multiplication rule for block matrices)
~——
=0
:uTbG{yTb | yeR™; yZOandyTAch} (by (45)) .
Now, forget that we fixed . We thus have proven that every

A € {yT( Ob ) | y € R™*T: 4 >0 and yT< _IL} ) :cT} satisfies A €
{yTb | yeR™; y>0and yTA> cT}. In other words,

{yT(Ob > |y€Rm+”;y20andyT(_f} )CT}

- {yTb | y€R™; y>0and yTAZCT}. (46)

Now, let u € {yTb | yeR™; y>0andy’A> CT} be arbitrary. Then, there exists a
y € R™ such that y > 0, yT A > ¢’ and p = y7b. Denote this by . Thus, u € R™ satisfies
u>0,u’A>c" and p=uTb.
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We have u” A > ¢T. In other words, u’ A — ¢’ > 0.

T
Let v be the vector (uTA— cT)T. Then, v7 = ((uTA —cT)T) =uTA—-c" > 0
therefore, v > 0.

Lemma 2.5h (a) (applied to N = m, M =n, x = u and y = v) yields that ( Z > >0
(since u > 0 and v > 0). But on the other hand,

GY (e oo )t

=—oT

(by the multiplication rule for block matrices)
=uTA— T =uTA- (uTA — CT) =T
~

=uT A—cT

T
Now, we know that our(:j)ERm"’” satisﬁes(jj)ZOand(Z) ( N ):cT.
In other words,
(u>€{y€Rm+” \ yZOandyT( 4 >—CT},
v -1,
and thus
T
u b T b m+n, T A _T
(v) <0n>€{y (0n>|y€R py=0andy™ () =c .
T
b b
<Z) (On):(uT UT)<On):uTb—|—vT0n

——— =u =0

(by the multiplication rule for block matrices)
= i,

this rewrites as

ue{yT(Ob ) |y€Rm+”;y>OandyT(_/} )ch}.

Now, forget that we fixed pu. We thus have proven that every u €
{y"b | yeR™; y>0and y"A > "} satisfies

= {yT< Ob ) | y € R™*™: 4 >0 and yT< _/11. ) :cT}. In other words,

{yTb | y€R™; y>0and yTAZCT}

g{yT<Ol?n> | yERm+n, yZOandyT< _%1[”>:CT}.
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Next, we notice that we have the following equivalence of assertions:
(theset {xER” | (_f} >x§<ob )} isempty)
<= (theset {z € R" | >0 and Az < b} is empty). (47)

E1

Also, we have the following equivalence of assertions:

(the set {y cR™™ | y>0andy’ ( _/11. ) = CT} is empty)

— (the set {y cR™ | y>0andy’A> CT} is empty) ) (48)

Combined with , this yields

{yT(Ob > | yERm+n;y20andyT(_f} )CT}

={y"b | yeR™; y>0andy" A >c"}.

This proves .
54 Proof of : We have the following equivalence of assertions:

(theset {xeR" | (f} )xﬁ(ob )} isempty)

= (there exists no x € R" satisfying ( f} ) z < ( Ob ))
—in n

<= | the set {CTI | ©eR™; (_f} )xﬁ(ob )} is empty

:{(:T.t | x€R™; >0 and Az<b
(by (2))

= (the set {ch | € R"; = >0and Az < b} is empty)
<= (there exists no x € R" satisfying x > 0 and Az <b)
<= (theset {zx € R" | >0 and Az <b} is empty).

This proves .
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F9

Now, we make the following four observations:

e Assertion Q1 is equivalent to Assertion Ql.@

e Assertion Q2 is equivalent to Assertion Q2.ﬂ

55 Proof of (@ We have the following equivalence of assertions:

(the set {y €eR™™ | y >0 and yT < _f} ) = CT} is empty>

= (there exists no y € R™T™ satisfying y > 0 and y” ( 4 ) = CT)

< | the set {y” b | y € R™™™: 4 >0 and y" 4 =cl'} is empty
On 7In
={y"b | yeR™; y>0 and yT A>c"}
(by @)
— (the set {yTb | y€R™; y>0and yTA> CT} is empty)
— (there exists no y € R™ satisfying y > 0 and y7 A > CT)
< (theset {y € R™ | y >0 and yl'A > CT} is empty) .

This proves .
56 Proof. Assertion Q1 says that the sets {x eR™ | ( _/} > x < ( Ob >} and
{y € Rmn | y>0and yT ( 13 = CT} are empty. Thus, we have the following equiv-
—4in

alence of assertions:

(Assertion Q1 holds)

= <theset {a:e]R" | (_/} )mg(ob )} isempty)

<= (the set {x€R" | >0 and Az<b} is empty)

(by @)
A (the set {y ER™™ | y>0andy” < /; ) = CT} is empty)
—in

<= (the set {y€R™ | y>0 and y" A>c"'} is empty)
(by (48))
<= (theset {x e R" | £ >0 and Az < b} is empty)
A (the set {y ER™ | y>0andyTA> CT} is empty)
<= (Assertion Q1 holds)

(because Assertion Q1 says that the sets {z€R™ | z>0and Az <b} and

{y €R™ | y>0and yTA > cT} are empty). In other words, Assertion Qi1 is equivalent
to Assertion Q1.

57Proof. Assertion Q12 says that the set {ch | zeR™; ( _/11. )x < ( Ob )} is un-
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e Assertion Q;3 is equivalent to Assertion Q3

bounded from above, and that the set {y ER™™ | y >0 and yT< :L} > = cT} is

empty. Thus, we have the following equivalence of assertions:

(Assertion Q2 holds)

<= | the set {CT:E | x eR"; ( _/} ):z: < ( Ob >} is unbounded from above

={cT9: | zeR™; >0 and Axgb}

(by @2))
A (the set {y eR™™ | y>0andy” ( _/} > = CT} is empty)

<= (the set {y€R™ | y>0 and y" A>c"} is empty)
(by ([@8))
— (the set {ch | e R" = >0and Az < b} is unbounded from above)
A (theset {y eR™ | y>0and y"A>c"} is empty)
<= (Assertion Q2 holds)

(since Assertion Q2 says that the set {ch | € R"; = >0and Az < b} is unbounded
from above, and that the set {y ER™ | y>0and yTA > cT} is empty). In other words,
Assertion Q12 is equivalent to Assertion Q2.

58 Proof. Assertion Qi3 says that the set {yT ( Ob > | y e Rt ¢ >0 and y? ( :L} ) = CT}

is unbounded from below, and that the set < z € R" | ( _/} ) r < < Ob )} is empty.

Thus, we have the following equivalence of assertions:

(Assertion Q3 holds)

<= | the set {yT < Ob > | y € R™™™: 4 >0 and y© < _f} > = CT} is unbounded from below

:{yTb | yeR™; y>0 and yTAZCT}

(by (@)

A <theset {xGR" | (_/} >x§<0b )} isempty)

<= (the set {x€R"™ | >0 and Az<b} is empty)

(by (7))
< (theset {y"b | ye R™; y>0andy"A>c"} is unbounded from below)
A (the set {x € R" | >0 and Az < b} is empty)
<= (Assertion Q3 holds)

(since Assertion Q3 says that the set {yTb | y€R™; y>0and yTA > CT} is unbounded
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e Assertion Q4 is equivalent to Assertion Q4[]

Combining these observations, we see that Assertions Q1, Q12, Q3, Q14 are
equivalent to Assertions Q1, Q2, Q3, Q4, respectively. Hence, we have the fol-
lowing equivalence of assertions:

(exactly one of Assertions Q;1, Q,2, Q,3, Q4 holds)
<= (exactly one of Assertions Q1, Q2, Q3, Q4 holds).

Since we know that exactly one of Assertions Q;1, Q12, Q13, Q14 holds, this
yields that exactly one of Assertions Q1, Q2, Q3, Q4 holds. In other words,
Theorem 2.6f is proven. O

16. Appendix: Proofs omitted from the early
sections

We have promised to give proofs for various statements made in Section [I], in
Section [2| in Section [3| in Section [4] and in Section [9] Let us now fulfill this
promise.

16.1. Proofs for Section [1I
Proof of Proposition 2.0a. We will first show that

if J is any finite subset of I, and if (u;),.; is a

family of nonnegative reals indexed by .J such _ (49)
that > u; =1, then > pz; € C
ieJ ieJ

[Proof of (49): We shall prove by strong induction over |.J|:
Induction stepf] Fix N € N. Assume that holds in the case when |J| < N.
We must prove that holds in the case when |J| = N.

from below, and that the set {x € R" | x> 0 and Ax < b} is empty). In other words,
Assertion Q13 is equivalent to Assertion Q3.

59 Proof. If we wuse QD to replace every {ch | x eR™ 2 >0and Az < b}
by {ch | x eR™; :L} >x < ( Ob )}, and if we use
to replace e?/ery {ynTb | yeR™; y>0and yTA> CT} by

yT Obn | y € R™*7: 4y >0 and y7 _én =cT%, then Assertion Q4 turns

into Assertion Q4. Hence, Assertion Q14 is equivalent to Assertion Q4.
60A strong induction needs no induction base.
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We have assumed that holds in the case when |J| < N. In other words,

if J is any finite subset of I satisfying |J| < N, and

if (pi);c; is a family of nonnegative reals indexed by J | (50)
such that > u; =1, then > pz; € C
i€J icJ

Now, let us prove that holds in the case when |J| = N. Thus, let J be any
finite subset of I satisfying |J| = IV, and let (u;),.; be a family of nonnegative
reals indexed by J such that > u; = 1. We shall show that > p;z; € C.

ieJ icJ
If |J] < 1, then Y pz; € C holds®’l Hence, for the rest of our proof of
ieJ
> iz € C, we WLOG assume that we don’t have |J| < 1.

icJ
There exists a k € J satisfying pp < 1 H Consider such a k. We have
i < 1, thus 1 — py > 0.
i

For every i € J\ {k}, set p, = :

. This is a nonnegative real (since p;

is a nonnegative real, and since 1 — p > 0). Hence, (1), () is a family of
nonnegative reals indexed by J \ {k}. Moreover, k € J and thus |J\ {k}| =
|J| =1 =N —1 < N. Furthermore,

—

=N

1:ZMi= Z i + Zﬂi = Z i + -

ieJ ieJ; ieJ; ieJ\{k}
itk i—k
~—~ \/—/
— TRk
ieJZ\:{k} (since keJ)

Zui

Solving this equation for > pu; givesus > p; = 1 — py. Hence, AL S
ieJ\{k} i€J\{k} — Mk

61 Proof. Assume that |J| < 1.
The sum Y u; cannot be empty (since > p; = 1 # 0). Hence, J cannot be the empty
icJ i€J
set. Thus, |J| > 1. Therefore, |J| = 1 (since |J| < 1). In other words, J = {k} for some
k € J. Cousider this k. We have k € J C I and thus z; € C. Now, from J = {k}, we
obtain > u; = > pi = pk, so that pp = > pu; = 1. From J = {k}, we also obtain
= ic{k} icJ
Do = Y. % = ik T =2 € C, qed.
—

i€J ie{k} f

62 Proof. Assume the contra_ry. Thus, every k € J satisfies puy > 1. In other words, every i € J
satisfies p; > 1. Now, > pu; =1,sothat 1 =5 p; > > 1=|J|-1=1J|. In other words,

ieJ i€ N keJ
>1

|J| < 1. This contradicts the fact that we don’t have |J| < 1. This contradiction proves
that our assumption was wrong, qed.
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1. Now,

/ Wi ieJ\{k}
A 2 NeV 2 L= 1—py
e J\{k} L i€ J\{k}

:1—Nk

Thus, we can apply to J\ {k} and (1});c \ r) instead of J and (4;),c ;. As

a result, we obtain wix; € C.
ie \{k}
On the other hand,

ZM%Z Z,ui + Z Wil = [Tk + Z i T (51)

icJ i€ J; i€J; ieJ\{k}
i=k i#k
\V—/ v
=Mk _
(since keJ) e (kY

We have k € J C [ and thus z;, € C. Also, uy € [0, 1] (since py, is a nonnegative
real and satisfies p, < 1).

Now, recall that the set C' is convex. In other words, every two elements x € C
and y € C and every real number A € [0, 1] satisfy Az + (1 — \)y € C (because
of the definition of convexity). Applying this to x = xx, y = > plx; and

ieJ\{k}
A = pg gives us pprr + (1 —p) Y. pla; € C (since xp € C, Y. pla; € C
ieJ\{k} icJ\{k}
and gy € [0, 1]). Since
pexy + (1 — ) Z i T
e J\{k} /~L' ;
R
i 1
= wrxr + (1 — ) Z B = perr + (1 — i) Z Wi
e L= pu, L —py
icI\(k} —_ — Mhien
1 -

= 2 M
1 — pg ieaniny
= T Y = Y (by (1)),

ieJ\{k} ieJ

this rewrites as > u;x; € C.
ieJ

Now, let us forget that we fixed J and (y;),. ;. We thus have proven that if J is
any finite subset of I satisfying |.J| = N, and if (y;),., is a family of nonnegative
reals indexed by J such that > u; = 1, then > pz; € C. In other words,

icJ icJ

holds in the case when |J| = N. This completes the induction step.

Thus, is proven by induction.]
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Now, recall that all but finitely many ¢ € I satisfy A\; = 0. In other words,
there exists a finite subset J of I such that

every i € I\ J satisfies \; = 0. (52)
Consider this J. We have > \; = 1. Since
i€l
LAMZ 2 ML A= A D
el 1€l; i€l e i€\ —q
i€J i¢J (by (52))
-3 -5
= i€INJ
(since JCI)
SIS T ot
ieJ i€l\J ieJ

N——
=0

this rewrites as >, A; = 1. Thus, (applied to (i),c; = (Ai);e;) shows that
icJ

Z )\1337, e C. 1\IOW7

icJ
ATy = i AT = AiT; Ai
2 2 ik D dwi=D hamik )
el Z'E(I]; z;{], ieJ 1€I\J . :
1€ 7
N , , (by (52))
=X =X
i€J i€I\J
(since JCI)
ieJ iel\J icJ
0
This proves Proposition 2.0a. 0

Proof of Proposition 2.0f. (a) Let E be an R-vector space. Let S be a subset of
E.

Let Cy be the intersection of all convex subsets of E which contain S as a
subset. Definition 2.0c¢ defined the convex hull of S to be this set C;. In other
words,

(the convex hull of S defined according to Definition 2.0c) = C. (53)

Let Cy be the set of all convex combinations of the vectors s for s € S. Defi-
nition 2.0d defined the convex hull of S to be this set C5. In other words,

(the convex hull of S defined according to Definition 2.0d) = Cs. (54)
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Let Cs be the set

there exist some t € N,
a t-tuple (z1,xs,...,x;) of elements of S
r€EFE | and a t-tuple (A1, Ag,...,\;) of nonnegative reals
t

t
such that Y- \; =1 and > \a; ==z
: e

=1 7

Definition 2.0e defined the convex hull of S to be this set C3. In other words,

(the convex hull of S defined according to Definition 2.0e) = Cs. (55)
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The set Cj5 is convexﬁ. Moreover, S C Cy @ Hence, (45 is a convex subset

3 Proof. Let y € C3, z € C3 and X € [0,1]. We shall show that Ay + (1 — \) z € Cs.
Notice that A and 1 — A both are nonnegative reals (since A € [0, 1]).

We have
there exist some t € N,
a t-tuple (x1,x9,...,2¢) of elements of S
yeCs=qax ekl | and a t-tuple (A1, A2,...,A:) of nonnegative reals
t t
such that > A\;=1and Y M\ax; =z
i=1 i=1
t
In other words, we can write y in the form y = >  \jz; for some ¢t € N, some t-tuple
i=1
(z1,22,...,2¢) of elements of S and some t-tuple (A1, Aa,..., ;) of nonnegative reals

t

such that >~ \; = 1. Let us denote this ¢, this (z1,22,...,2;) and this (A1, Ag,..., \)
i=1

by p, (Y1,y2,...,yp) and (p1, fo, ..., tp), respectively. Thus, p is an element of N, and

(y1,92,---,Yp) is a p-tuple of elements of S, and (u1, po, ..., itp) is a p-tuple of nonnegative

p P
reals such that > pu; =1 and y = > ;.
i=1 i=1

q

Similarly, use the assumption z € C3 to write z in the form z = >_ v;z;, where ¢ is an ele-
i=1

ment of N, and where (21, 22,...,24) is a g-tuple of elements of S, and where (v1,v4,...,14)

a
is a g-tuple of nonnegative reals such that > v; = 1.
i=1

Define a (p + g)-tuple (w1, wa, ..., wp4tq) of elements of S by
(W1, W, .o Wptq) = (Y1, Y25 -+, Yps 21, 22, - - -5 Zg) -
Then:
e For every i € {1,2,...,p}, we have
Wi = Yi- (56)
e Foreveryi € {p+1,p+2,...,p+ q}, we have
Wi = Zi—p. (57)
Furthermore, define a (p + ¢)-tuple (91,72, ...,7p+q) of nonnegative reals by

(77177727”'577;04-(1) = (>\.U’17>\:u'2a'~'7)‘:u’p7(1_/\)Vlv(l_)\)V27"'7(1_)‘)Vq)

(this is well-defined because both A and 1 — A are nonnegative reals and because
(1, p2, - -, pip) and (v1, 19, ..., 1) are tuples of nonnegative reals). Then:

e For every i € {1,2,...,p}, we have
M = AMi- (58)
e Foreveryi€ {p+1,p+2,...,p+q}, we have

n;, = (1 — )\) Vi—p- (59)
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Now,
ptq p ptq Ptq
Dom=d. o, + 2 —ZMH > (1=Nriy
i=1 =1 _y i=p+1 —(1=\)v; i=p+1
by (9) by &) -
AL =(1-0) Y vy
i=p+1
P pt+q q
SO WIS SEES) RS 0t
=1 i=p+1 i=1
W—/ ——
=1 =1
(here, we substituted ¢ for ¢ — p in the second sum)
=A+(1-XN=1
and
ptq p+q

;mwz Z 771 \w’zl + Z i W

et \/ ~—

=Yi =(1— =Zi—p
(by ) (by ) Elljy ) ¥ (by E7)

p+q
=Z/\szz+ > (=N vipzip
i=p+1
»
:)‘El’“yi =(1—- )\) Z ’/1 pZi—p
p p+q q
:/\Zﬂ'iyi Z Vi—pZi— p—/\ZUzyz _/\)Zyizi
1=1 i=p+1 =1
\_v_./ ——
=y =z

(here, we substituted ¢ for ¢ — p in the second sum)
=Ay+(1—=X)z
Hence, there exist some t € N, a t-tuple (z1,22,...,2¢) of elements of S and a t-
t t
tuple (A1, Ag,..., ;) of nonnegative reals such that > A, = 1 and > Nz, = Ay +
i=1 i=1

(1 - )\) z (nameIY7 t = p + q, (‘T17$27 e 7It) = (wlaw27 oo 7wp+q) and ()\13 AQ? L) At) =
(Mmsm2, - Mptq))- In other words,

there exist some t € N,
a t-tuple (x1,x2,...,2¢) of elements of S
AM+(1—-NzezeFE | and a t-tuple (/\1, A2y .y A¢) of nonnegative reals = Cs.

such that Z/\ =1 and Z)\xl—x

i= =

Now, let us forget that we fixed y, z and A\. We thus have proven that every two elements
y € C3 and z € C3 and every real number A € [0,1] satisfy Ay + (1 —A)z € C5. If we
rename y and z as x and y in this statement, we obtain the following: Every two elements
x € C3 and y € Cs and every real number A € [0, 1] satisfy Az + (1 — A)y € Cs. In other
words, the set C is convex (by the definition of convexity). Qed.
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of E which contains S as a subset. Thus, the intersection of all convex subsets of
E which contain S as a subset is a subset of C3. In other words, ' is a subset
of C5 (since C) is the intersection of all convex subsets of E which contain S as
a subset). In other words, C; C Cs.

On the other hand, C3 C C} ﬁ Combined with C; C (5, this shows that

1 1

64 Proof. Let w € S. Then, >.1 = 1 and Y lw = lw = w. Hence, there exist some
i=1 i=1

t € N, a t-tuple (xl, Z9,...,x¢) of elements of S and a t-tuple (A1, A2, ..., \¢) of nonnegative

reals such that Z A; = 1 and Z Aix; = w (namely, t = 1, (1,29,...,2¢) = (w) and

=1
(A1, A2, ..., ) = (1)). In other Words

there exist some ¢t € N,
a t-tuple (x1,xa,...,2¢) of elements of S
weSrEFE | and a t-tuple (A1, A2,...,At) of nonnegative reals = (5.
t t
such that > A\;=1and Y Nz, =«

i=1 i=1

Let us now forget that we fixed w. We thus have proven that w € Cs for every w € S. In
other words, S C (s, qed.
65 Proof. Let w € C3. We shall show that w € C;.
Let D be any convex subset of E which contains S as a subset. Thus, D is a convex
subset of F/ and satisfies S C D.

We have
there exist some t € N,
a t-tuple (x1,22,...,x¢) of elements of S
wels=cz€FE | and a t-tuple (/\17 A2y ...y Ay) of nonnegative reals
such that Z)\ =1 and Z)\xz—x
i=1 =1
In other words, there exist some ¢t € N, a t-tuple (xl,xg, e, ) of elements of S and a

t-tuple (A1, A2, ..., A) of nonnegative reals such that Z A; =1 and Z Aix; = w. Consider

this ¢, this (z1,22,...,2:) and this (A, Aa,..., \). For every 1 E {1 2,...,t}, we have

z; € S C D. Thus, (2i);eq1 0, 4 18 a family of elements of D. Also, clearly, ()‘i)ie{l 2t}

is a family of nonnegative reals (since (A1, A2,...,A;) is a t-tuple of nonnegative reals).

Furthermore, all but finitely many ¢ € {1,2,...,t} satisfy A; = 0 (since there are only
t

finitely many ¢ € {1,2,...,t}). Finally, > A= >\ = 1. Hence, Proposition 2.0a

i€{1,2,...,t} i=1
(applied to D and {1,2,...,t} instead of C' and I) shows that Y.  \z; € D. Thus,
i€{1.2,.,t}
t
w = E Aix; = Z Nix; € D.
i=1 i€{1,2,...,t}

Let us now forget that we fixed D. We thus have proven that w € D whenever D is
any convex subset of F which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
convex subsets of E which contain S as a subset. In other words, w lies in C; (since Cj is
the intersection of all convex subsets of E which contain S as a subset). In other words,
w e C1.

Let us now forget that we fixed w. We thus have proven that w € C; for every w € Cs.
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Cl - 03.

In other words, C3 C C, qed.
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The set C5 is convex@. Moreover, S C Cy m Hence, C} is a convex subset
of E which contains S as a subset. Thus, the intersection of all convex subsets of

66 Proof. Let y € Cy, z € Cy and A € [0,1]. We shall show that Ay + (1 — \) 2z € Cs.
Notice that A and 1 — X\ both are nonnegative reals (since A € [0, 1]).
We have y € (5. In other words, y is a convex combination of the vectors s for s € §
(since Cy is the set of all convex combinations of the vectors s for s € S). In other words, y

has the form y = > p;i for some family (u;);c g of nonnegative reals indexed by elements of
=]
S and having the property that all but finitely many 7 € .S satisfy u; = 0, and the property
that ) p; = 1. Similarly, z has the form z = ) ;i for some family (v;),;. g of nonnegative
i€s i€s
reals indexed by elements of S and having the property that all but finitely many ¢ € S
satisfy v; = 0, and the property that ) v; = 1. Consider these two families (u;),.g and
€S

(Vi)ies-

For every i € S, both Ay; and (1 — \) v; are nonnegative reals (since A, p;, 1 — A and v;
are nonnegative reals), and hence the sum Ay; + (1 — A) ; is a nonnegative real. Thus, we
can define a family (1;),.g of nonnegative reals by setting

(i =i + (1 =Ny for every i € S).

Consider this family (7;);.g. We know that all but finitely many i € S satisfy p; = 0, and

we also know that all but finitely many ¢ € S satisfy v; = 0. Using these two facts, we see

that all but finitely many ¢ € S satisfy n; = A pu; +(1—X) 1, =04+ 0=0. We have
— ~

-0 =0
> M =D A Q=N =2 i+ 1-N)) m=A+(1-N)=1
€S At 1=\ i€S i€S i€S

223 i N~ N——
=1 =1

and

> n; i=> i+ A =Nv)i=A> pi+(1=N)) viz=Xy+(1-)\)z

i€S i€S i€S i€S

=Api+(1=X)v; —— ——
=y =z

Hence, \y + (1 —X)z = >_ m;i. Therefore, Ay + (1 — A) z has the form »_ \;i for some
i€s i€S
family ()\;);cg of nonnegative reals indexed by elements of S and having the property that
all but finitely many ¢ € S satisfy A; = 0, and the property that > A\; = 1 (namely, for
€S

the family (A\;);cg = (7:);cg). In other words, Ay 4 (1 — A) z is a convex combination of the
vectors s for s € S. In other words, Ay + (1 — A) z € Cy (since Cy is the set of all convex
combinations of the vectors s for s € S).

Now, let us forget that we fixed y, z and A. We thus have proven that every two elements
y € Cy and z € Cy and every real number A € [0,1] satisfy Ay + (1 —A) z € Ca. If we
rename y and z as x and y in this statement, we obtain the following: Every two elements
x € Cy and y € Cy and every real number A € [0, 1] satisfy Az + (1 — A\)y € C. In other
words, the set Cy is convex (by the definition of convexity).

57 Proof. Let w € S. Define a family (#i);eg of nonnegative reals by setting

1, if i = w;
=19 1 Z v for every i € S | .
0, ifi#w
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FE which contain S as a subset is a subset of C5. In other words, (] is a subset
of Cy (since C] is the intersection of all convex subsets of E which contain S as
a subset). In other words, C; C Cs.

On the other hand, Cy C C} @ Combined with C; C (5, this shows that
Cl - CQ.

Combining C; = Cy with C; = C5, we obtain C; = Cy = C3. Now, (53)

becomes

(the convex hull of S defined according to Definition 2.0c)
= () = Cy = (the convex hull of S defined according to Definition 2.0d) (60)

Then, it is easy to see that:

e All but finitely many i € S satisfy u; = 0.

e We have > p; = 1.
€S

e We have Y pii = w.
€S

Hence, w = 7 psi. Thus, w has the form ) A;i for some family (A;),.g of nonnegative

i€s i€s
reals indexed b; elements of S and having t}fe property that all but finitely many i € S
satisfy A; = 0, and the property that ) A; = 1 (namely, for the family (X;),cq = (i);cq)-
€S
In other words, w is a convex combination of the vectors s for s € S. In other words, w € Cy
(since Cy is the set of all convex combinations of the vectors s for s € S).

Now, let us forget that we fixed w. We thus have proven that w € Cs for every w € S.
In other words, S C Cs, qed.

68 Proof. Let w € Cy. We shall show that w € C;.

Let D be any convex subset of E which contains S as a subset. Thus, D is a convex
subset of F/ and satisfies S C D.

We have w € (5. In other words, w is a convex combination of the vectors s for s € S
(since Cy is the set of all convex combinations of the vectors s for s € S). In other words, w
has the form w =} Asi for some family ();),c g of nonnegative reals indexed by elements of

€S
S and having the property that all but finitely many i € S satisfy A; = 0, and the property
that > A; = 1. Consider this family (\;)
i€s

For every i € S, we have i € S C D. Thus, (i),.4 is a family of elements of D. Hence,
Proposition 2.0a (applied to D, S, (i),c g and (A;);cg instead of C, I, (2;),c; and (Xi);c;)
shows that Y A\ € D. Thus, w= ). \ji € D.

i€s i€s

Let us nosv forget that we fixed eD We thus have proven that w € D whenever D is
any convex subset of F which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
convex subsets of F which contain S as a subset. In other words, w lies in C; (since C is
the intersection of all convex subsets of E which contain S as a subset). In other words,
w e (1.

Let us now forget that we fixed w. We thus have proven that w € Cj for every w € Cs.
In other words, Cy C C, qed.

i€S”
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(by (54))). Also, becomes

(the convex hull of S defined according to Definition 2.0d)
= (3 = C3 = (the convex hull of S defined according to Definition 2.0e) (61)

(by (3))).

Now, let us forget that we fixed S. We thus have shown that if S is any subset
of F, then and hold. In other words, if S is any subset of E, then

(the convex hull of S defined according to Definition 2.0c)
= (the convex hull of S defined according to Definition 2.0d)
= (the convex hull of S defined according to Definition 2.0e) .

In other words, Definitions 2.0c, 2.0d and 2.0e are equivalent. This proves Propo-
sition 2.0f (a).

(c) We define the set C3 as in our proof of Proposition 2.0f (a). Then,
shows that

C3 = (the convex hull of S defined according to Definition 2.0e)
= (the convex hull of S) = conv . hull S.

But in our proof of Proposition 2.0f (a), we have shown that S C Cj3. Thus,
S C (5 = conv. hull S. This proves Proposition 2.0f (c).

(d) We define the set C3 as in our proof of Proposition 2.0f (a). Then,
shows that

C3 = (the convex hull of S defined according to Definition 2.0e)
= (the convex hull of S) = conv . hull S.

But in our proof of Proposition 2.0f (a), we have shown that the set Cj is convex.
Since C3 = conv . hull S, this rewrites as follows: The set conv.hull S is convex.
This proves Proposition 2.0f (d).

(f) Let D be a convex subset of £ which contains S as a subset. Thus, the
intersection of all convex subsets of E which contain S as a subset is a subset
of D. In other words, conv.hull S is a subset of D (since conv.hullS is the
intersection of all convex subsets of £ which contain S as a subset (by Definition
2.0d)). In other words, D contains conv . hull S as a subset.

Now, let us forget that we fixed D. We thus have shown that if D is a convex
subset of £ which contains S as a subset, then D contains conv.hullS as a
subset. In other words, every convex subset of E which contains S as a subset
also contains conv . hull S as a subset. This proves Proposition 2.0f (f).

(b) Every two elements x € @ and y € @ and every real number A € [0, 1]
satisfy Az + (1—A)y € @[] In other words, the set @ is convex (by the

%Tndeed, this is vacuously true (since there exist no z € @).
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definition of convexity). Thus, @ is a convex subset of F which contains & as a
subset. Now, Proposition 2.0f (f) (applied to S = &) shows that every convex
subset of £ which contains @ as a subset also contains conv . hull @ as a subset.
Thus, the set @ contains conv.hull @ as a subset (since @ is a convex subset
of £ which contains @ as a subset). In other words, conv.hull@ C @, so that
conv . hull @ = @. This proves Proposition 2.0f (b).

(g) Let T be a subset of conv.hull S. The set conv.hull S is a convex set (by
Proposition 2.0f (d)) and contains 7" as a subset (since 7" C conv.hull §). In
other words, conv . hull S is a convex subset of E' which contains T" as a subset.

But Proposition 2.0f (f) (applied to T instead of S) shows that every convex
subset of E which contains 7" as a subset also contains conv . hull7" as a subset.
Thus, the set conv . hull S contains conv . hull 7" as a subset (since conv . hull S'is a
convex subset of E which contains 7" as a subset). In other words, conv. hull 7" C
conv . hull S. This proves Proposition 2.0f (g).

(e) Let T be a subset of S. Thus, T C S C conv.hull S (by Proposition 2.0f
(c)). In other words, T is a subset of conv.hull S. Hence, Proposition 2.0f (g)
yields conv.hull7" C conv . hull S. This proves Proposition 2.0f (e). O

Proof of Proposition 2.0g. (a) Let S be a subset of E. Definition 2.0e yields

conv.hull §

( there exist some t € N,

a t-tuple (z1,xs,...,2;) of elements of S
=z €eFE | and a t-tuple (A1, Aa,...,\;) of nonnegative reals
t t
such that >  A\; =1 and NTi =T
=1 =1

\ 1= 1=
( t A

x can be written in the form = = > Az,
i=1
where t is an element of N,
=cz€eFE | and (x1,2s,...,x;) is a t-tuple of elements of S,
and (A1, Ag, ..., ;) is a t-tuple of nonnegative reals
t
such that > \; =1
\ =1 Y,
t is an element of N,
t and (x1,Zs,...,x;) is a t-tuple of elements of S,
= Z Aizi | and (Mg, Ag,...,\;) is a t-tuple of nonnegative reals
= t
! such that > A\ =1

\ =1

This proves Proposition 2.0g (a).

(b) Proposition 2.0g (a) provides an expression for conv.hull S which clearly
does not depend on whether we consider S as a subset of F' or as a subset of E
(since it only refers to the elements of S). Hence, conv.hull S does not depend

92



Linear optimization May 4, 2018

on whether we consider S as a subset of F' or as a subset of E. This proves
Proposition 2.0g (b). O

Proof of Proposition 2.0h. (a) Let S = {x1,22,...,2,}. Let @ be the set of all
convex combinations of the vectors z1, xo, ..., T,.

Recall that @) is the set of all convex combinations of the vectors zy, xo, ...,
Zn. In other words, @) is the set of all convex combinations of the vectors z; for
ie{l,2,...,n}.

93



Linear optimization May 4, 2018

The set @ is convexm. Moreover, S C @ E Hence, @) is a convex subset

0 Proof. Let y € Q, z € Q and X\ € [0,1]. We shall show that Ay + (1 — \) z € Q.
Notice that A and 1 — A both are nonnegative reals (since A € [0, 1]).
We have y € @. In other words, y is a convex combination of the vectors x; for

i € {1,2,...,n} (since Q is the set of all convex combinations of the vectors z; for
i € {1,2,...,n}). In other words, y has the form y = > pix; for some family
i€{1,2,...,n}
(“i)ie{l,z,...,n} of nonnegative reals indexed by elements of {1,2,...,n} and having the
property that all but finitely many ¢ € {1,2,...,n} satisfy p; = 0, and the property that
> pi = 1. Similarly, z has the form z = > viw;forsome family (v),c1 0 ny
i€{1,2,...,n} i€{1,2,....,n}

of nonnegative reals indexed by elements of {1,2,...,n} and having the property that all
but finitely many ¢ € {1,2,...,n} satisfy v; = 0, and the property that > oy =1
i€{1,2,...,n}
Consider these two families (1i);c(12. ny a0d (Vi)ic(12, ny-
For every ¢ € {1,2,...,n}, both Au; and (1 — \)v; are nonnegative reals (since A, p;,
1 — X and v; are nonnegative reals), and hence the sum Ay; + (1 — A\) v; is a nonnegative
real. Thus, we can define a family (7;);. {1,2,....ny Of nonnegative reals by setting

=M +1 =Ny for every i € {1,2,...,n}).

Consider this family (ni)ie{172w7n}. We know that all but finitely many ¢ € {1,2,...,n}
satisfy 7; = 0 (since there are only finitely many ¢ € {1,2,...,n}). We have

> o = X OGu+-nw)

i€{1,2,...,n} A (1=N) vy i€{1,2,...,n}

=AY mA=N ) wm=A+ (=N =1

i€{1,2,....,n} i€{1,2,....,n}
-1 =1
and
> i = > Qm+ (=N
i€{1,2,...,n} (1= i€{1,2,...,n}
= Z wizi+ (1 —X) Z viz; =Ay+ (1 =Xz
i€{1,2,...,n} i€{1,2,....,n}
=y =z
Hence, A\y+(1 —\)z = > mz;. Therefore, Ay+(1 — A) z has the form > Ay
i€{1,2,....,n} i€{1,2,...,n}
for some family (/\i)ie{l,Q,...,n} of nonnegative reals indexed by elements of {1,2,...,n} and

having the property that all but finitely many i € {1,2,...,n} satisfy A\; = 0, and the

property that { > })\i =1 (namely, for the family ()‘i)ie{l,Z 7777 ny = (172»)1-6{172 ’’’’’ n}). In
i€{1,2,...,n

other words, Ay + (1 — \) z is a convex combination of the vectors x; or i € {1,2,...,n}. In

other words, Ay + (1 — A) z € @ (since @ is the set of all convex combinations of the vectors
x; fori € {1,2,...,n}).

Now, let us forget that we fixed y, z and A. We thus have proven that every two elements

y € Q and z € @ and every real number X € [0,1] satisfy Ay + (1 — \) z € Q. If we rename
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of £ which contains S as a subset. Thus, Proposition 2.0f (f) (applied to the
convex subset @) of E) shows that ) contains conv.hull S as a subset. In other
words, conv. hull S C Q.

On the other hand, @) C conv.hull S EL Combining this with conv.hull § C

y and z as  and y in this statement, we obtain the following: Every two elements = € @
and y € @ and every real number A € [0, 1] satisfy Az + (1 — A\) y € Q. In other words, the
set @ is convex (by the definition of convexity). Qed.
™ Proof. Let w € S. Then, w € S = {x1,72,...,2,}. Thus, there exists some k € {1,2,...,n}
such that w = x. Consider this k.
Define a family (1;),. (1.2,.n} of nonnegative reals by setting

.....

1, ifi=k;
<Nz‘ = {0: ;fzyék’ for every i € {172,...711}).

Then, it is easy to see that:

e All but finitely many i € {1,2,...,n} satisfy p; = 0.
e We have > =1

e We have > T = T,

1€{1,2,...,n}
Hence, w = z, = > ;x;. Thus, w has the form > Aix; for some family
1€{1,2,...,n} i€{1,2,...,n}
(Ai)ie(1,2,... ny of nonnegative reals indexed by elements of {1,2,...,n} and having the

property that all but finitely many ¢ € {1,2,...,n} satisfy A\; = 0, and the property that
> A =1 (namely, for the family (\i);cq10  ny = (Wi)ieq12,. ny)- In other words,

i€{1,2,....,n}
w is a convex combination of the vectors x; for i € {1,2,...,n}. In other words, w € Q
(since @ is the set of all convex combinations of the vectors x; for i € {1,2,...,n}).

Now, let us forget that we fixed w. We thus have proven that w € @ for every w € S. In
other words, S C @, qed.
"2 Proof. Let w € Q. We shall show that w € conv . hull S.
Let D be any convex subset of E which contains S as a subset. Thus, D is a convex
subset of I/ and satisfies S C D.
We have w € Q. In other words, w is a convex combination of the vectors x; for

i € {1,2,...,n} (since @ is the set of all convex combinations of the vectors z; for

i € {1,2,...,n}). In other words, w has the form w = > \;x; for some fam-
i€{1,2,...,n}

ily (/\i)ie{l,z...,n} of nonnegative reals indexed by elements of {1,2,...,n} and having the

property that all but finitely many ¢ € {1,2,...,n} satisfy A\; = 0, and the property that

{ > })\,- = 1. Consider this family (Ai);c(12 ny-
i€{1,2,...n

For every i € {1,2,...,n}, we have z; € {z1,z2,...,2,} = S C D. Thus,
(xi)ie{l,Q,...,n} is a family of elements of D. Hence, Proposition 2.0a (applied to D,
{L.2,....n}, (Ti)icr2, ny a0 (Ni)jcqr 0,y instead of C, I, (2),c; and (A;);c;) shows
that > Xix; € D. Thus, w = > Aix; € D.

1€{1,2,...,n} i€{1,2,...,n}

Let us now forget that we fixed D. We thus have proven that w € D whenever D is
any convex subset of £ which contains S as a subset. In other words, w lies in every
convex subset of E which contains S as a subset. Hence, w lies in the intersection of all
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@, we obtain conv . hull § = Q). Thus,

conv . hull\{aq, To, ... ,ﬂfn}/
=5
=conv.hull § = @
= (the set of all convex combinations of the vectors zy, xs, ..., x,)

(by the definition of (). This proves Proposition 2.0h (a).
(b) We have the following chain of logical equivalences:

x € conv. hull {zq, zo,...,2,}
NS -~ 7
=(the set of all convex combinations of the vectors z1, z2, ..., Tn)
(by Proposition 2.0h (a))
<= (x € (the set of all convex combinations of the vectors z1, s, ..., x,))
<= (z is a convex combination of the vectors xy, xa, ..., x,).
In other words, we have x € conv . hull{zy, zs, ..., x,} if and only if x is a convex
combination of the vectors xy, xs, ..., x,. This proves Proposition 2.0h (b). [

16.2. Proofs for Section
Proof of Proposition 2.0i. We will first show that

if J is any finite subset of I, and if (y;),.; is a
family of nonnegative reals indexed by J, . (62)
then Z i T € C
icJ
[Proof of (69): We shall prove by strong induction over |J|:
Induction step{™| Fix N € N. Assume that holds in the case when |J| < N.
We must prove that holds in the case when |J| = N.

We have assumed that holds in the case when |J| < N. In other words,

if J is any finite subset of I satisfying |J| < N, and

if (pi);c; is a family of nonnegative reals indexed . (63)
by J, then > ux; € C

icJ

convex subsets of E which contain S as a subset. In other words, w lies in conv.hull S
(since conv . hull S is the intersection of all convex subsets of E which contain S as a subset
(because of Definition 2.0c)). In other words, w € conv.hull S.
Let us now forget that we fixed w. We thus have proven that w € conv.hull S for every
w € @. In other words, @ C conv.hullS, qged.
73 A strong induction needs no induction base.
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Now, let us prove that holds in the case when |J| = N. Thus, let J be any
finite subset of I satisfying |J| = NV, and let (u;),., be a family of nonnegative
reals indexed by J. We shall show that > ux; € C.

icJ
If |J] < 0, then > wx; € C holds™l Hence, for the rest of our proof of
ieJ
> iz € C, we can WLOG assume that we don’t have |J| < 0. Assume this.
icJ

We have |J| > 0 (since we don’t have |J| < 0). Thus, J # @. Hence, there

exists a k € J. Consider such a k.

Now, (11:);c y\(xy is a family of nonnegative reals indexed by J\ {k}. Moreover,

eJ\{
k € J and thus |J\ {k}| = |J| =1 = N —1 < N. Thus, we can apply |D to
—~—
=N
J\{k} and (e p\ 1,y instead of J and (p1;);c ;. As aresult, weobtain > pz; €
ieJ\{k}

C. Also, xj, € C (since (2;),.; is a family of elements of C').

Recall that C' is a convex cone. Thus, every two elements x € C' and y € C
and every nonnegative reals A and pu satisfy Az + py € C' (by the definition of a
convex cone). Applying this to z =z, y = > pwi, A = pp and p = 1, we

ieJ\{k}
obtain pgzr +1 >, px; € C. Now,
e J\{k}
Zﬂz‘iﬂi = Zﬂi + Z Hii = Tk + Z i
ieJ ile‘i; zi{; ieJ\{k}
i= i —_————
\:ng_/ ~ =1 > i
ok = 2 NG
(since keJ) e Nk}
€J\{k}
Now, let us forget that we fixed J and (j;);. ;. We thus have proven that if J is

any finite subset of I satisfying |.J| = NNV, and if (1), is a family of nonnegative
reals indexed by J, then Y p;z; € C. In other words, holds in the case when

icJ
|J| = N. This completes the induction step.
Thus, is proven by induction.
Now, recall that all but finitely many ¢ € I satisfy A; = 0. In other words,
there exists a finite subset J of I such that

every i € I\ J satisfies \; = 0. (64)

™ Proof. Assume that |J| < 0. We need to prove Y u;z; € C.
i€J
From |J] <0, we obtain |J| = 0. Thus, J = @.
Recall that C is a convex cone. Hence, 0 € C (according to the definition of a convex
cone).
But J = &, and thus Y p;x; = (empty sum) =0 € C, qed.
i€J
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Consider this J. Then, 1} (applied to (f45);c; = (Ai);c,) shows that Y \x; € C.

icJ
Now,
ATy = i AT = AiT; Ai
> D Amit ) dmi=) At ) A
el 2'61:]; z;{], ieJ 1€I\J . :
1€ 1
e (by (64))
=X =X
icJ iEI\J
(since JCI)
icJ iel\J icd
=0
This proves Proposition 2.0i. 0

Proof of Proposition 2.0m. (a) Let E be an R-vector space. Let S be a subset
of E.

Let Cy be the intersection of all convex cones in £ which contain S as a subset.
Definition 2.0j defined the convex conic hull of S to be this set C. In other words,

(the convex conic hull of S defined according to Definition 2.0j) = Cy.  (65)

Let C5 be the set of all linear combinations of the vectors s for s € S with
nonnegative coefficients. Definition 2.0k defined the convex conic hull of S to be
this set Cy. In other words,

(the convex conic hull of S defined according to Definition 2.0k) = Cy.  (66)

Let C5 be the set

there exist some t € N,

a t-tuple (z1,xs,...,2;) of elements of S
r€FE | and a t-tuple (A, Ag,...,\;) of nonnegative reals
t
such that > Nz, =z
i=1

Definition 2.0l defined the convex conic hull of S to be this set C3. In other words,

(the convex conic hull of S defined according to Definition 2.01) = C3.  (67)
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The set (5 is a convex condﬂ Moreover, S C Cs m Hence, (45 is a convex

™ Proof. As usual, we let () denmote an empty O-tuple. If (xy,72,...,79) = () and

0
(A1, A2, ..., A0) = (), then > A\;jxz; = (empty sum) = 0. Hence, 0 is an element of E such that
i=1
there exist some ¢t € N, a t-tuple (21, z2, ..., z:) of elements of S and a t-tuple (A1, A2, ..., A¢)

¢
of nonnegative reals such that Y M\z; = 0 (namely, ¢ = 0, (x1,22,...,2¢) = () and

i=1
(A1, A2, ..., ) = (). In other words,

there exist some ¢t € N,

a t-tuple (x1,x9,...,2¢) of elements of S
DecqxzeFlE | and a t-tuple (A1, A2,...,A:) of nonnegative reals = Cs.
t
such that > Nz, ==z
i=1

Let y € C5 and z € C3. Let A and x be two nonnegative reals. We shall show that

Ay + kz € Cs.
We have
there exist some t € N,
a t-tuple (x1,za,...,2¢) of elements of S
yeCs=czeFE | and a t-tuple (A1, A2,..., ) of nonnegative reals
t
such that > \jz; =«
i=1
t
In other words, we can write y in the form y = Aix; for some t € N, some t-tuple
i=1
(x1,x9,...,2¢) of elements of S and some t-tuple (A1, A, ..., ;) of nonnegative reals. Let

us denote this ¢, this (z1,22,...,2;) and this (A1, A2,...,\) by p, (y1,Y2,.-.,Yyp) and
(t1, p2, - . ., fp), respectively. Thus, p is an element of N, and (y1, 92, ...,Yp) is a p-tuple of
p

elements of S, and (g1, ft2, - - ., ip) is a p-tuple of nonnegative reals such that y = Y p;y;.
i=1

q
Similarly, use the assumption z € C3 to write z in the form z = Y v;z;, where ¢ is an ele-
i=1
ment of N, and where (21, 22, ..., 24) is a g-tuple of elements of S, and where (v1,vs,...,1v4)
is a g-tuple of nonnegative reals.
Define a (p + g)-tuple (w1, wa, ..., wp4q) of elements of S by

(w17w25""wp+q) = (y17y23"'aypaZhZQv"'?Zq) .
Then:

e For every i € {1,2,...,p}, we have

w; = Y. (68)
e Foreveryi € {p+1,p+2,...,p+ q}, we have
Wy = Zi—p. (69)
Furthermore, define a (p + ¢)-tuple (91,72, ..., Mp+q) of nonnegative reals by

(Msm2, - Npg) = (A1, A2, oo, Mip, KV, KV, ., KUg)
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cone in E which contains S as a subset. Thus, the intersection of all convex cones

(this is well-defined because both A and k are nonnegative reals and because (u1, ft2, . . ., fip)
and (vq,vs,...,1,) are tuples of nonnegative reals). Then:

e Forevery i € {1,2,...,p}, we have
M = Afi- (70)

e Foreveryie {p+1,p+2,...,p+ q}, we have

Ni = RVj—p. (71)
Now,
p+q P p+q P p+q
Zﬁiwi = Z i w; -+ Z i w; = Z Aniyi + Z KVi—pZi—p
=1 i=1 =X =y; i=p+1 =K =zi_p =1 i=p+1
(by (73)) (by () by @) by @) T "
=\ Z Wil = pzq ViepZi—p
i=1 i
P ptq P q
= A Z WilYi + K Z ViepZi—p = A Z il +/€Z ViZ;
i=1 i=p+1 i=1 i=1
| S— ~—
=y =z
(here, we substituted ¢ for ¢ — p in the second sum)
= \y + Kz.
Hence, there exist some ¢t € N, a t-tuple (z1,z9,...,2;) of elements of S and a t-tuple

t

(A1, A2,..., Ar) of nonnegative reals such that > \jz; = Ay + kz (namely, t = p + g,
i=1

(1,22, .., 2) = (W1, W2, .., Wptq) and (A1, Az, .y Ae) = (1,72, -+, Mptq)).  In other

words,

there exist some t € N,
a t-tuple (x1,xa,...,x¢) of elements of S
AMy+rkzEQr€EE | and a t-tuple (A1, Ag,...,A\;) of nonnegative reals =Cs.

t
such that > \jz; ==
i=1

Now, let us forget that we fixed y, z, A and k. We thus have proven that every two
elements y € C3 and z € C3 and every nonnegative reals A\ and k satisfy Ay + kz € C3. If
we rename y, z and k as z, y and g in this statement, we obtain the following: Every two
elements z € C'5 and y € (5 and every nonnegative reals A and p satisfy Az + py € Cs.

Thus, we have proven the following two statements:

e We have 0 € Cs.

e Every two elements x € C5 and y € C3 and every nonnegative reals A and p satisfy
Az + py € Cs.

In other words, the set C is a convex cone (by the definition of a convex cone).

1
"6 Proof. Let w € S. Then, Y lw = lw = w. Hence, there exist some ¢t € N, a t-tuple
i=1
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in I/ which contain S as a subset is a subset of C'5. In other words, (] is a subset
of C5 (since C is the intersection of all convex cones in E which contain S as a
subset). In other words, C, C Cs.

On the other hand, C3 C C} m Combined with C; C (3, this shows that
Cl = 03.

(z1,22,...,2¢) of elements of S and a t-tuple (A1, Ag, ..., A;) of nonnegative reals such that
t

S Niz; = w (namely, t = 1, (x1,x2,...,2¢) = (w) and (A1, Aa,..., A) = (1)). In other

i=1

words,

there exist some t € N,
a t-tuple (x1,x2,...,x;) of elements of S
weSxrEE | and a t-tuple (A1, A2,...,A:) of nonnegative reals = Cs.
t
such that > \z; ==
i=1

(2

Let us now forget that we fixed w. We thus have proven that w € Cj for every w € S. In
other words, S C Cj.
77Pmof. Let w € C3. We shall show that w € C;.
Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone
in F and satisfies S C D.

We have
there exist some ¢t € N,
a t-tuple (x1,x9,...,x;) of elements of S
wels=cr€eFE | and a t-tuple (A1, Ag,...,A:) of nonnegative reals
t
such that > \x; ==
i=1
In other words, there exist some ¢ € N, a t-tuple (z1,22,...,2;) of elements of S and a

t
t-tuple (A1, A2,...,\:) of nonnegative reals such that > A\;x; = w. Consider this ¢, this
i=1
(x1,29,...,2¢) and this (A1, Ae,..., ). For every i € {1,2,...,t}, we have z; € S C D.
Thus, (2i);eq12,.. 4 is a family of elements of D. Also, clearly, (Ai);cq10 4 is a family
of nonnegative reals (since (A1, A2,...,A) is a t-tuple of nonnegative reals). Clearly, all
but finitely many 7 € {1,2,...,t} satisfy A\; = 0 (since there are only finitely many i €
{1,2,...,t}). Hence, Proposition 2.0i (applied to D and {1,2,...,t¢} instead of C and I)
t

shows that > Aix; € D. Thus, w = > \jz; = > Aix; € D.
i€{1,2,...,t} =1 i€{1,2,...,t}

Let us now forget that we fixed D. We thus have proven that w € D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in
E which contain S as a subset. In other words, w lies in C; (since C} is the intersection of
all convex cones in E which contain S as a subset). In other words, w € C4.

Let us now forget that we fixed w. We thus have proven that w € Cy for every w € Cj.
In other words, C3 C C1, qed.
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The set (5 is a convex conﬁ Moreover, S C Cy m Hence, C5 is a convex

" Proof. We have Y. 0i = > 0= 0. Thus, 0 has the form > \;i for some family (\;)
i€s 7 i€s i€s
of nonnegative reals indexed by elements of S and having the property that all but finitely
many i € S satisfy A\; = 0 (namely, for (\;);cg = (0);cg). In other words, 0 is a linear
combination of the vectors s for s € S with nonnegative coefficients. In other words, 0 € Co
(since Cy is the set of all linear combinations of the vectors s for s € S).

Now, let y € Cy and z € (5. Let A and k be two nonnegative reals. We shall show that
Ay + kz € Cs.

We have y € Cs. In other words, y is a linear combination of the vectors s for s € S with
nonnegative coefficients (since Cy is the set of all linear combinations of the vectors s for
s € S with nonnegative coefficients). In other words, y has the form y = > p;i for some

i€S
family (p);cg of nonnegative reals indexed by elements of S and having the property that
all but finitely many i € S satisfy p; = 0. Similarly, z has the form z = Y ;i for some
€S
family (v;),.g of nonnegative reals indexed by elements of S and having the property that
all but finitely many 4 € S satisfy v; = 0. Consider these two families (1;);c g and (v;);cg-

For every i € S, both Au; and ky; are nonnegative reals (since A\, p;, x and v; are
nonnegative reals), and hence the sum Ay; + kv; is a nonnegative real. Thus, we can define
a family (7;);c g of nonnegative reals by setting

€S

(ns = A + Ky for every i € S).

Consider this family (7;);cg. We know that all but finitely many i € S satisfy p; = 0, and
we also know that all but finitely many i € S satisfy v; = 0. Using these two facts, we see
that all but finitely many i € S satisfy n; =X p; +x v; =04 0=0. We have

- =~

-0 =0
Z i i:Z()\m—i—fwi)i:)\Zuii—i—anz:)\y—i—nz.
i€S —Mtrvi i€S i€S i€S
iR —_—— ——
=y =z

Hence, Ay + kz = >_ n;i. Therefore, Ay + 2z has the form Y A;i for some family (\;)
€S i€s

of nonnegative reals indexed by elements of S and having the property that all but finitely

many i € S satisfy \; = 0 (namely, for the family (X\;),cg = (1:);cg)- In other words, A\y+rz

is a linear combination of the vectors s for s € S with nonnegative coefficients. In other

words, Ay + kz € Cq (since Cy is the set of all linear combinations of the vectors s for s € S

with nonnegative coefficients).

Now, let us forget that we fixed y, z, A and k. We thus have proven that every two
elements y € Cs and z € (5 and every nonnegative reals A\ and k satisfy Ay + kz € Cy. If
we rename y, z and k as z, y and g in this statement, we obtain the following: Every two
elements x € Cy and y € (5 and every nonnegative reals A and p satisfy Ax + py € Cs.

Thus, we have proven the following two statements:

€S

e We have 0 € Cs.

e Every two elements x € Cy and y € Cs and every nonnegative reals A and p satisfy
Az + py € Cs.

In other words, the set C5 is a convex cone (by the definition of a convex cone). Qed.
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cone in E which contains S as a subset. Thus, the intersection of all convex cones
in £ which contain S as a subset is a subset of Cs. In other words, C; is a subset
of Cy (since (] is the intersection of all convex cones in E' which contain S as a
subset). In other words, C7 C Cs.

On the other hand, Cy C C} ﬂ Combined with C; C (5, this shows that
01 - 02‘

Combining C; = Cy with C; = C5, we obtain C; = Cy = C3. Now, (65))

™ Proof. Let w € S. Define a family (#i);cg of nonnegative reals by setting

1, ifi=w;
=19 1 Z v for every i € S | .
0, ifi#w

It is easy to see that:

e All but finitely many ¢ € S satisfy pu; = 0.

e We have Y ;i = w.
i€s

Hence, w = }_ psi. Thus, w has the form ) A\;i for some family (A;),.g of nonnegative

i€s i€s
reals indexed b; elements of S and having tlfe property that all but finitely many ¢ € S
satisfy A; = 0 (namely, for the family (X\;),cq = (ti);cg)- In other words, w is a linear
combination of the vectors s for s € .S with nonnegative coefficients. In other words, w € Cy
(since Cy is the set of all linear combinations of the vectors s for s € S with nonnegative
coefficients).

Now, let us forget that we fixed w. We thus have proven that w € Cy for every w € S.
In other words, S C Cs.

80 Proof. Let w € Cy. We shall show that w € C;.

Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone
in F and satisfies S C D.

We have w € C5. In other words, w belongs to the set Cs. In other words, w is a linear
combination of the vectors s for s € S with nonnegative coefficients (since Cs is the set of
all linear combinations of the vectors s for s € S with nonnegative coefficients). In other
words, w has the form w = } A\;i for some family ();),.g of nonnegative reals indexed

i€s
by elements of S and having tehe property that all but finitely many ¢ € S satisfy A; = 0.
Consider this family (X\;),cg-

For every i € S, we have i € S C D. Thus, (i),.4 is a family of elements of D. Hence,
Proposition 2.0i (applied to D, S, (i);cg and (A;);cg instead of C, I, (x;),c; and (Xi);c;)
shows that > A\;i € D. Thus, w = > \ji € D.

= i€s

Let us now forget that we fixed D. We thus have proven that w € D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in
E which contain S as a subset. In other words, w lies in C; (since C} is the intersection of
all convex cones in E which contain S as a subset). In other words, w € Cy.

Let us now forget that we fixed w. We thus have proven that w € C; for every w € Cs.
In other words, Cy C C.
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becomes

(the convex conic hull of S defined according to Definition 2.0j)

= (1 = (3 = (the convex conic hull of S defined according to Definition 2.0k)
(72)

(by (66])). Also, becomes

(the convex conic hull of S defined according to Definition 2.0k)

= Cy = C5 = (the convex conic hull of S defined according to Definition 2.01)
(73)

(by (67))-
Now, let us forget that we fixed S. We thus have shown that if S is any subset
of E, then and hold. In other words, if S is any subset of E, then

(the convex conic hull of S defined according to Definition 2.0j)
= (the convex conic hull of S defined according to Definition 2.0k)
= (the convex conic hull of S defined according to Definition 2.01) .

In other words, Definitions 2.0j, 2.0k and 2.01 are equivalent. This proves Propo-
sition 2.0m (a).

(c) We define the set C5 as in our proof of Proposition 2.0m (a). Then,
shows that

C5 = (the convex conic hull of S defined according to Definition 2.01)

= (the convex conic hull of S) = cone S.

But in our proof of Proposition 2.0m (a), we have shown that S C Cj. Thus,
S C C3 = cone S. This proves Proposition 2.0m (c).

(d) We define the set C3 as in our proof of Proposition 2.0m (a). Then,
shows that

C3 = (the convex conic hull of S defined according to Definition 2.01)

= (the convex conic hull of S) = cone S.

But in our proof of Proposition 2.0m (a), we have shown that the set Cj is a
convex cone. Since C3 = cone S, this rewrites as follows: The set cone S is a
convex cone. This proves Proposition 2.0m (d).

(f) Let D be a convex cone in E which contains S as a subset. Thus, the
intersection of all convex cones in E which contain S as a subset is a subset of
D. In other words, cone S is a subset of D (since cone S is the intersection of all
convex cones in E which contain S as a subset (by Definition 2.0k)). In other
words, D contains cone S as a subset.
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Now, let us forget that we fixed D. We thus have shown that if D is a convex
cone in F which contains S as a subset, then D contains cone S as a subset. In
other words, every convex cone in F which contains S as a subset also contains
cone S as a subset. This proves Proposition 2.0m (f).

(b) Every two elements z € 0 and y € 0 and every nonnegative reals A and
satisfy Az +uy € 0 F1 Furthermore, 0 € 0. Thus, we have proven the following
two statements:

e We have 0 € 0.

e Every two elements x € 0 and y € 0 and every nonnegative reals A and p
satisfy Az + py € 0.

In other words, the set 0 is a convex cone (by the definition of a convex cone).

Thus, 0 is a convex cone in E which contains @ as a subset. Now, Proposition
2.0m (f) (applied to S = @) shows that every convex cone in £ which contains
& as a subset also contains cone @ as a subset. Thus, the set 0 contains cone &
as a subset (since 0 is a convex cone in £ which contains @ as a subset). In other
words, cone & C 0.

On the other hand, 0 C cone @ [?] Combining this with cone @ C 0, we
obtain cone @ = 0. This proves Proposition 2.0m (b).

(g) Let T' be a subset of cone S. The set cone S is a convex cone (by Proposition
2.0m (d)) and contains T as a subset (since 7' C cone S). In other words, cone S
is a convex cone in £ which contains 7" as a subset.

But Proposition 2.0m (f) (applied to T instead of S) shows that every convex
cone in E which contains T' as a subset also contains coneT" as a subset. Thus,
the set cone S contains cone7” as a subset (since cone S is a convex cone in E
which contains 7" as a subset). In other words, coneT C coneS. This proves
Proposition 2.0m (g).

(e) Let T be a subset of S. Thus, T C S C coneS (by Proposition 2.0m
(c)). In other words, T is a subset of cone S. Hence, Proposition 2.0m (g) yields
coneT" C coneS. This proves Proposition 2.0m (e).

(h) Proposition 2.0m (d) shows that cone .S is a convex cone.

81 Proof. Let x € 0 and y € 0 be two elements. Let A and p be two nonnegative reals. Then,
x =0 (since z € 0) and y = 0 (since y € 0), so that A_z +pu y = A0+ p0=0 €0, qed.
~ =~
=0 -0
82 Proof. Proposition 2.0m (d) (applied to S = @) shows that the set cone @ is a convex cone.
In other words, it satisfies the following two statements:

e We have 0 € cone @.

e Every two elements x € cone @ and y € cone @ and every nonnegative reals A and g
satisfy Az + py € cone @.

(This is because of our definition of a convex cone.)
In particular, 0 € cone &, so that {0} C cone&. Thus, 0 = {0} C cone @, ged.
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Recall that any convex cone is a convex set. Applying this to the convex cone
cone S, we conclude that cone S is a convex set (since cone .S is a convex cone).
In other words, cone S is a convex subset of E.

Proposition 2.0m (c) shows that S C coneS. Thus, the set cone S contains S
as a subset. Hence, cone S is a convex subset of E which contains S as a subset.

But Proposition 2.0f (f) shows that every convex subset of E which contains S
as a subset also contains conv . hull S as a subset. Thus, the set cone .S contains
conv . hull S as a subset (since cone S is a convex subset of £ which contains S as
a subset). In other words, conv.hull S C coneS. This proves Proposition 2.0m
(h). O

Proof of Proposition 2.0n. The proof of Proposition 2.0n is analogous to the proof
of Proposition 2.0g. (Of course, instead of using properties of convex sets, we now
need to use the corresponding properties of convex cones.) O

Proof of Proposition 2.00. (a) Let S = {x1,z9,...,2,}. Let @ be the set of all
linear combinations of the vectors x, xs, ..., , with nonnegative coefficients.

Recall that @ is the set of all linear combinations of the vectors xy, x», ..., x,
with nonnegative coefficients. In other words, () is the set of all linear combina-
tions of the vectors x; for ¢ € {1,2,...,n} with nonnegative coefficients.
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The set @) is a convex condﬂ Moreover, S C @) @ Hence, @) is a convex cone

83 Proof. We have > O0x; = > 0= 0. Hence, 0 = > 0z;. Thus, 0
ie{1,2,...,n}\:/0" ie{1,2,....,n} ie€{1,2,....,n}
has the form Y. Az for some family (A;),. {1,2,....n} Of nonnegative reals indexed by
i€{1,2,...,n} o

elements of {1,2,...,n} and having the property that all but finitely many ¢ € {1,2,...,n}
satisfy \; = 0 (namely, for (A\;),cg = (0);c5). In other words, 0 is a linear combination of the
vectors z; for i € {1,2,...,n} with nonnegative coefficients. In other words, 0 € @ (since @
is the set of all linear combinations of the vectors z; for ¢ € {1,2,...,n} with nonnegative
coefficients).

Now, let y € @Q and z € Q). Let A and k be two nonnegative reals. We shall show that
Ay + Kz € Q.

We have y € (. In other words, y is a linear combination of the vectors x; for ¢ €
{1,2,...,n} with nonnegative coefficients (since @ is the set of all linear combinations of
the vectors x; for i € {1,2,...,n} with nonnegative coefficients). In other words, y has

the form y = > px; for some family (14i);c(q o, .,y of nonnegative reals indexed by
ie{1,2,....,n} e
elements of {1,2,...,n} and having the property that all but finitely many ¢ € {1,2,...,n}
satisfy p; = 0. Similarly, z has the form z = > vz for some family (l/i)ie{l 5m}
i€{1,2,....,n} e

of nonnegative reals indexed by elements of {1,2,...,n} and having the property that all
but finitely many ¢ € {1,2,...,n} satisfy 1; = 0. Consider these two families (1;);c 1 2,
and (Vi)ie{l,Q,...,n}'

For every i € {1,2,...,n}, both Ay; and kv; are nonnegative reals (since A, y;, x and v;
are nonnegative reals), and hence the sum Au; + kv; is a nonnegative real. Thus, we can
define a family (7;);. (1.2,..n} of nonnegative reals by setting

(mi = s + Ky for every i € {1,2,...,n}).

Consider this family (7;);c(; 2 ). We know that all but finitely many 7 € {1,2,...,n}
satisfy n; = 0 (since there are only finitely many 7 € {1,2,...,n}). We have

Z M Ti= Z (A + kvy) x;

i€{120n} _y 0 i€{1,2,...,n}
=A Z Wi +K Z v;x; = Ay + k2.
i€{1,2,...,n} i€{1,2,...,n}
—y -
Hence, Ay + kz = > n;x;. Therefore, Ay + kz has the form > iz, for some
i€{1,2,....,n} i€{1,2,....,n}
family ()‘i)ie{l 2} of nonnegative reals indexed by elements of {1,2,...,n} and having

the property that all but finitely many ¢ € {1,2,...,n} satisfy \; = 0 (namely, for the
family (Ai)icq10,. 0y = (Mi)ic(1,2,. ny)- In other words, Ay + kz is a linear combination of
the vectors x; or ¢ € {1,2,...,n} with nonnegative coefficients. In other words, \y+kz € Q
(since @ is the set of all linear combinations of the vectors x; for ¢ € {1,2,...,n} with
nonnegative coefficients).

Now, let us forget that we fixed y, 2z, A and k. We thus have proven that every two
elements y € @ and z € @ and every nonnegative reals A and x satisfy Ay + kz € Q. If
we rename y, z and k as z, y and g in this statement, we obtain the following: Every two
elements = € @@ and y € ) and every nonnegative reals A and p satisfy Az + py € Q.
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in £ which contains S as a subset. Thus, the intersection of all convex cones in
E which contain S as a subset is a subset of (). In other words, cone S is a subset
of @ (since cone S is the intersection of all convex cones in E' which contain S as
a subset (because of Definition 2.0j)). In other words, cone S C Q.

On the other hand, @ C cone S ﬁ Combining this with cone S C @, we

Thus, we have proven the following two statements:

e We have 0 € Q.

e Every two elements ¢ € @ and y € Q and every nonnegative reals A and p satisfy
Az + py € Q.

In other words, the set @ is a convex cone (by the definition of a convex cone). Qed.
84 Proof. Let w € S. Then, w € S = {x1,22,...,2,}. Thus, there exists some k € {1,2,...,n}
such that w = x. Consider this k.
Define a family (ui)i€{1727___,n} of nonnegative reals by setting

1, ifi=k;
i =1 1 Z ’ for every i € {1,2,...,n} | .
0, ifi#k
Then, it is easy to see that:
e All but finitely many ¢ € {1,2,...,n} satisfy p; = 0.
e We have > i = Tk

i€{1,2,...,n}
Hence, w = z, = > ;x;. Thus, w has the form > A;z; for some family
i€{1,2,...,n} i€{1,2,...,n}
(Ai)ie(1,2,....ny Of nonnegative reals indexed by elements of {1,2,...,n} and having the

property that all but finitely many ¢ € {1,2,...,n} satisfy A; = 0 (namely, for the family
(AM)ieqr2,..ny = (i)ieqr,2,.. py)- In other words, w is a linear combination of the vectors

x; for i € {1,2,...,n} with nonnegative coefficients. In other words, w € @ (since @ is
the set of all linear combinations of the vectors z; for ¢ € {1,2,...,n} with nonnegative
coefficients).

Now, let us forget that we fixed w. We thus have proven that w € @ for every w € S. In
other words, S C Q.

85 Proof. Let w € ). We shall show that w € cone S.

Let D be any convex cone in E which contains S as a subset. Thus, D is a convex cone
in F and satisfies S C D.

We have w € Q. In other words, w is a linear combination of the vectors x; for ¢ €
{1,2,...,n} with nonnegative coefficients (since @ is the set of all linear combinations of
the vectors x; for i € {1,2,...,n} with nonnegative coefficients). In other words, w has
the form w = { > })\ixi for some family (A;);c(y 2, of nonnegative reals indexed by

i€{1,2,....n
elements of {1,2,...,n} and having the property that all but finitely many ¢ € {1,2,...,n}
satisfy A; = 0. Consider this family (Ai);c(1 2 n}-

Foreveryi € {1,2,...,n}, wehave z; € {x1,29,...,2,} =S5 C D. Thus, (mi)ie{l,Q,...,n} is
a family of elements of D. Hence, Proposition 2.0i (applied to D, {1,2,...,n}, (xi)ie{l,Z,.u,n}
and (Ai);eq1 2, oy instead of C, I, (zi);c; and (Ai);c7) shows that { > })\ixi e D.

i€{1,2,...,n
Thus, w = > Aix; € D.
i€{1,2,...,n}
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obtain cone S = (). Thus,

Coneixl, To, ..., Tn}

=5
=cone S = ()
= (the set of all linear combinations of the

vectors xy, Za, ..., T, with nonnegative coefficients)

(by the definition of @)). This proves Proposition 2.00 (a).
(b) We have the following chain of logical equivalences:

x € cone{xy,xa,...,2,}
NS

~
=(the set of all linear combinations of the
vectors x1, 2, ..., Tn, With nonnegative coefficients)
(by Proposition 2.00 (a))

x € (the set of all linear combinations of the
vectors xy, T, ..., T, with nonnegative coefficients)

<= (z is a linear combination of the vectors z, xs, ..., x,

with nonnegative coefficients) .

In other words, we have = € cone{xy,zs,...,z,} if and only if x is a linear
combination of the vectors xy, x2, ..., x, with nonnegative coefficients. This
proves Proposition 2.00 (b). O

Proof of Proposition 2.0p. (b) Let (vs),.¢ is a family of nonnegative reals indexed
by elements of S.

Clearly, there are only finitely many ¢ € S (since the set S is finite). Hence, all
but finitely many ¢ € S satisty v; = 0.

We know that (v),.g is a family of nonnegative reals. Renaming the index s
as 7 in this statement, we conclude that (v;), ¢ is a family of nonnegative reals.

We have ) vss = Y ;i (here, we renamed the summation index s as 7). Thus,
ses €S

> vss has the form ) \;i for some family ();),. ¢ of nonnegative reals indexed by
ses iesS

the elements of S such that all but finitely many ¢ € S satisfy \; = 0 (namely, for

Let us now forget that we fixed D. We thus have proven that w € D whenever D is any
convex cone in E which contains S as a subset. In other words, w lies in every convex cone
in E which contains S as a subset. Hence, w lies in the intersection of all convex cones in E
which contain S as a subset. In other words, w lies in cone S (since cone S is the intersection
of all convex cones in E which contain S as a subset (because of Definition 2.0j)). In other
words, w € cone S.

Let us now forget that we fixed w. We thus have proven that w € cone .S for every w € Q.
In other words, @ C cone S, qged.
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the family (\;),cg = (¢4);cg)- In other words, ) vys is a linear combination of the
ses
vectors s for s € S with nonnegative coefficients. In other words, > vs belongs
ses
to the set of all linear combinations of the vectors s for s € S with nonnegative

coefficients. In other words, ) v4s belongs to cone S (since cone S is the set of
seS
all linear combinations of the vectors s for s € S with nonnegative coefficients

(according to Definition 2.0k)). In other words, > vss € coneS. This proves
seS
Proposition 2.0p (b).
(c) Let p be an element of coneS. Thus, p € coneS. In other words, p is
a linear combination of the vectors s for s € S with nonnegative coefficients
(since cone S is the set of all linear combinations of the vectors s for s € S with
nonnegative coefficients (according to Definition 2.0k)). In other words, p can be

written in the form ) A;i for some family ();),. ¢ of nonnegative reals indexed by
i€s
the elements of S such that all but finitely many ¢ € S satisfy A\; = 0. Consider
this <)\Z)Z€S ThUS, P = Z )\zZ
ies
We know that ();), s is a family of nonnegative reals. Renaming the index i
as s in this statement, we conclude that (As), ¢ is a family of nonnegative reals.
Now, p = > Nii = > Ass (here, we renamed the summation index i as s). Thus,
€S ses
there exists a family (v;),.4 of nonnegative reals indexed by elements of S such
that p = > vgs (namely, (v5),.g = (As),eg)- This proves Proposition 2.0p (c).
ses
(a) If (vs),cg is a family of nonnegative reals, then ) vys € cone S (according
ses
to Proposition 2.0p (b)). In other words,

{Z ves | (Vs),es is a family of nonnegative reals} C cone S. (74)

seS

On the other hand,

cone S C {Z vss | (Vs),es is a family of nonnegative reals}

ses
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ﬁ]. Combining this with , we obtain

cone S = {Z vss | (Vs),es is a family of nonnegative reals} :

ses

This proves Proposition 2.0p (a). ]

16.3. Proofs for Section 3

Proof of Proposition 2.0r. Let x € C.
We have x € C' = conv. hull {x1, zs, ...,z }, so that z is a convex combination
of the vectors x1, xs, ..., x;. In other words, there exist ¢ nonnegative elements
t t
A1, Az, ooy A of Rsuch that > A\; = 1 and Y \jz; = z. Consider these A1, Ao,
i=1 i=1
co Ap
There exists at least one j € {1,2,...,¢} such that \; # 0 (since otherwise, we
t t
would have \; = 0 for every i € {1,2,...,t}, so that >, A; = > 0 =0, which
=1~ =l

1=

t
would contradict > A; = 1 # 0). Consider this j. Then, \; is nonnegative and

1=1
satisfies \; # 0. Thus, A; > 0.
Combining f(z;) < 6 (by (), applied to ¢ = j) with A; > 0, we obtain
Aif (xj) < A;j0. In other words,

86 Proof. Let p € coneS. Thus, there exists a family (vy) scg of nonnegative reals indexed by

elements of S such that p = > vss (according to Proposition 2.0p (c¢)). In other words, p
ses
has the form }7 v,s for some family (v,), g of nonnegative reals. In other words,
ses

pE {Z vss | (Vs),eg is a family of nonnegative reals} .
seS

Now, let us forget that we fixed p. We thus have proven that every p € cone S satisfies

pE { > Vss | (Vs),eg is a family of nonnegative reals}. In other words,
seS

cone S C {Z vss | (Vs),eg is a family of nonnegative reals} ,
ses

qed.
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t
Since x = Y, \;x;, we have
i=1

flx)=Ff (Z )\x> => NS (x:) (since the map f is R-linear)
=1 =1

t t t
=1 =1 =1

-~

o~

=1
= 1(>\if(xi)—>\i5)

= Z (Aif (3) — Xid) + 0. (76)

We know that every i € {1,2,...,t} satisfies \;f (z;) — \;d < 0 (since
yields f (z;) < d, so that A\ f (z;) < N6 (since \; > 0), so that A\ f (x;) — X6 < 0).

¢
Hence, every addend of the sum ) (\; f (x;) — A\;0) is nonpositive. Since we know
i=1

that at least one addend of this sum is actually negative (namely, the addend for
1 = j, because of )7 this sum must thus be < 0. Now, becomes

t

fx) = Z (Aif (i) = Aib) +6 < 6.

i=1
. s
g

<0

This proves Proposition 2.0r. 0
Proof of Proposition 2.0s. Let x € cone S. Then,

x € cone S = {Z vss | (Vs),eg is a family of nonnegative reals}
ses

(by the definition of cone S). Hence, there exists a family (v,), ¢ of nonnegative
reals such that x = ) vss. Consider this (v;)

seS”
seS
Each s € S satisfies
vsf(s) <0 (since vs > 0 and f (s) <0 (by (@))) . (77)
Since x = ) vgs, we have
sesS
T) = vsS | = vsf (s since the ma is R-linear
s s (So) - b f i Relinear)
ses ses <0
(by @)
<> 0=0.
ses
This proves Proposition 2.0s. O
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Proof of Lemma 2.0t. (a) Let v € R™ be a column vector satisfying v > 0. We
must prove that all coordinates of the column vector v are nonnegative.
We have v > 0. In other words, every ¢ € {1,2,...,n} satisfies

(the i-th coordinate of v) > (the i-th coordinate of 0)
(by the definition of v > 0). Hence, every i € {1,2,...,n} satisfies
(the i-th coordinate of v) > (the i-th coordinate of 0) = 0.

In other words, for every i € {1,2,...,n}, the i-th coordinate of v is nonnegative.
In other words, the coordinates of the column vector v are nonnegative. This
proves Lemma 2.0t (a).

(b) The proof of Lemma 2.0t (b) is completely identical to the proof of Lemma
2.0t (a) given above (except that “R"” must be replaced by “(R™)*”, and the word
“column” must be replaced by “row”). O

T
. : L2 .
Proof of Lemma 2.0u. Write the vector = in the form _ with x1, 29, ...,

xn
x,, being real numbers. Then, for every i € {1,2,...,n}, we have

(the i-th coordinate of z) = ;. (78)

max {xy,0}

max {xg,0}

But now, let u be the vector . Then, for every i € {1,2,...,n},

max {z,,0}

we have
(the i-th coordinate of u) = max {z;,0} (79)
> (0 = (the i-th coordinate of 0).
Thus, u > 0.
—min {z,0}

—min {x9,0}

Furthermore, let v be the vector Then, for every ¢ €

—min {x,,0}
{1,2,...,n}, we have
(the i-th coordinate of v) = — min {z;,0} (80)
—_———

<0
> —0 = 0 = (the i-th coordinate of 0).
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Thus, v > 0.
Now, every \ € R satisfies

max {\,0} +min {\,0} = \. (81)
E7

Now, every ¢ € {1,2,...,n} satisfies

(the i-th coordinate of u — v)
= (the i-th coordinate of u) — (the i-th coordinate of v)

. J S
—~ —~

) “on )
= max {z;,0} — (— min{z;,0}) = max {z;,0} + min {z;,0} = z;
(by (81), applied to A = ;)
= (the i-th coordinate of x) (by (7))

Thus, u —v = x.

So we know that u > 0, v > 0 and x = u — v. Hence, there exist two vectors
y and z in R™ such that y > 0, 2 > 0 and © = y — z (namely, y = v and z = v).
This proves Lemma 2.0u. O

Proof of Lemma 2.0v. The row vector x € (R")" satisfies x > 0. Thus, Lemma
2.0t (b) (applied to v = x) shows that the coordinates of the row vector = are

nonnegative. Let Ay, Ao, ..., A, be the coordinates of the row vector . Then,
A1, A9, ..., A, are nonnegative (since the coordinates of the row vector x are
nonnegative).

The column vector y € R" satisfies y > 0. Thus, Lemma 2.0t (a) (applied to
v = y) shows that the coordinates of the column vector y are nonnegative. Let
W1, M2, ..., iy be the coordinates of the column vector y. Then, py, g, ..., fin
are nonnegative (since the coordinates of the column vector y are nonnegative).
By the definition of the product of a row vector with a column vector, we have

n

xy = Y N, (since the coordinates of the row vector x are A1, A9, ..., \,, while
i=1

the coordinates of the column vector y are py, o, ..., fin).

87 Proof of : Let A € R. Then, we must be in one of the following two cases:
Case 1: We have A\ > 0.
Case 2: We have A < 0.
Let us first consider Case 1. In this case, A > 0, so that max {\,0} = A and min {),0} =0,
and thus max {\,0} +min {X,0} = A. Thus, (81)) is proven in Case 1.
= =0
Let us next consider Case 2. In this case, A < 0, so that max {\,0} = 0 and min {X,0} = A,
and thus max {\,0} + min {A,0} = A. Thus, (81)) is proven in Case 2.
=0 =)
Hence, we have proven in each of the cases 1 and 2. Thus, always holds (since
cases 1 and 2 cover all possibilities). Qed.
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But for every i € {1,2,...,n}, the real \;u; is nonnegative (since \; is non-

negative and p; is nonnegative), i. e., we have A\;ju; > 0. Thus, xy = > A\ju; >
izlv

>0

0 = 0. This proves Lemma 2.0v. O
> p
i=1

16.4. Proofs for Section [

Proof of Lemma 2.0x. Let n € N, and let I, I», ..., I,, be n closed intervals. We
are going to prove that I; NI, N --- N1, is a closed interval.
In order to show that, we will prove that

for every k € {0,1,...,n}, the set 1 NIy N---N I} is a closed interval. (82)

Proof of : We will prove by induction over k:

Induction base: For k = 0, the set Iy N I;N---N 1} is a closed interval (because
for k=0, theset 1NIsN---NI;equals [{NIsN---NIy =R, and we know that
R is a closed interval). In other words, holds for £ = 0. This completes the
induction base.

Induction step: Let i € {1,2,...,n}. Assume that holds for k =i — 1.
We now must show that holds for k = 1.

Since holds for k = 7—1, we know that the set Iy N IoN---N1;_; is a closed
interval. Thus, the set I; N [s N --- N [;_; has the foom {zr € R | a <z <b}
for some elements a and b of R U {—o0, 00} @ In other words, there ex-
ist some elements a and b of R U {—00,00} such that L N LLbN---N 13 =
{r eR | a <z <b}. Denote this a and b as ¢ and d, respectively. Then,
Ilﬁlgﬂn-ﬂfi_l:{xER | CSZL’Sd}

The set [; is a closed interval. Thus, /; has the form {z € R | a <z < b} for
some elements a and b of R U {—o00, o0} @ In other words, there exist some
elements a and b of RU {—00, 00} such that I; = {xr € R | a <z <b}. Denote
this @ and b as u and v, respectively. Then, I; ={z € R | u <z <wv}.

Now, combining the relations

{r eR | max{c,u} <z <min{d,v}} CLHNLN---NI

B9 and

Lnhn---NLC{reR | max{c,u} <z <min{d,v}}

88This is because we have defined a closed interval to mean a set which has the form
{z € R | a <z <b} for some elements a and b of R U {—o00, c0}.

89This is because we have defined a closed interval to mean a set which has the form
{zr €R | a <z <b} for some elements a and b of R U {—00, c0}.

9 Proof. Let y € {x € R | max{c,u} <z <min{d,v}}. Then, y € R and max{c,u} <y <
min {d, v}.

Since ¢ < max{c,u} < y and y < min{d,v} < d, we have ¢ < y < d, so that y €

{$€R | C§$§d}:]’10]20°"ﬂ.[i,1.
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T we obtain
Lnhn---Nnli={re€R | max{c,u} <z <min{d,v}}.

Thus, Iy NI;N---N1; is a set of the form {z € R | a <z < b} for some elements
a and b of RU {—00,00} (namely, for a = max{c,u} and b = min{d,v}). In
other words, Iy NI, N --- N I; is a closed interva]@. In other words, holds
for k = i. This completes the induction step. The induction proof of is thus
complete.

Now, applying to k = n, we conclude that Iy NI, N---N 1, is a closed
interval.

Now forget that we fixed n and Iy, Iy, ..., I,. We have thus shown that
whenever n € N and whenever I, Iy, ..., I, are n closed intervals, the set
ILiNnI;N---N1, is a closed interval. In other words, we have proven that the
intersection of finitely many closed intervals always is a closed interval. This
proves Lemma 2.0x. O

Proof of Lemma 2.0y. We distinguish between three cases:
Case 1: We have o < 0.
Case 2: We have o = 0.
Case 3: We have a > 0.

Since u < max{c,u} < y and y < min{d,v} < v, we have u < y < v, so that y €
{zeR | u<z<v}=1I.

Combining y € 1 NI, N---NI,_; and y € I;, we obtain y € (Il Nlr,N--- ﬂIi—l) NnI; =
LNnlhn---N1I,.

Now, forget that we fixed y. We thus have proven that every y €
{z €R | max{c,u} <z <min{d,v}} satisfies y € [y NIa N--- N I;. In other words,
{z eR | max{c,u} <z <min{d,v}} CHNLN---NI;, ged.

N Proof. Let y € 1, NIy N---N1;. Then,

yEIlﬂlgﬂ"'ﬂ]ig[lﬂlgﬂ---ﬂlz;lz{xER|C§$§d}.
Hence, y € R and ¢ <y < d. Also,
yehnhn---NLCh={xeR | u<zx<v},

so that u <y < v.
Whenever «, 3, v are three reals satisfying o < v and 8 < «, we have max {«, 8} < 7.
Applied to o = ¢, 8 = u and v = y, this yields max {¢,u} <y (since ¢ < y and u < y).
Whenever «, 8, v are three reals satisfying a < 8 and «a < v, we have a < min{3,~}.
Applied to a =y, 8 =d and v = v, this yields y < min {d, v} (since y < d and y < v).
Since max {c,u} <y < min{d,v}, we have y € {x € R | max{c,u} <z <min{d,v}}.
Now, forget that we fixed y. We thus have proven that every y € 1 NI, N---NI;
satisfies y € {z € R | max{c,u} <z <min{d,v}}. In other words, 1 NI N---NI; C
{z € R | max{c,u} <z <min{d,v}}, qed.
92This is because we have defined a closed interval to mean a set which has the form
{zx €R | a <z <b} for some elements a and b of R U {—00, 0}
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Let us first consider Case 1. In this case, & < 0. Hence, for every x € R, the
assertion ax < f( is equivalent to z > é (because dividing an inequality by a

negative real number reverses the sign of this inequality). Thus, for every x € R,
we have the following equivalence of assertions:

(wéﬁ)@»(zzﬁ)@(égx)@(égxgoo).

(0% « (07

Hence,

{reR | owcgﬁ}:{xeR ]

Ll

S:L’goo}.

Thus, {zr € R | axr <} is a set of the form {x € R | a <z < b} for some

elements a and b of R U {—o00,00} (namely, for « = — and b = o0). In other
a

words, {z € R | az < 8} is a closed interval™| This proves Lemma 2.0y in Case
1.

Let us now consider Case 2. In this case, = 0. We must be in one of the
following two subcases:

Subcase 2.1: We have g > 0.

Subcase 2.2: We have § < 0.

First, let us consider Subcase 2.1. In this subcase, 8 > 0. Thus, every
x € R satisfies ax < [ (since every = € R satisfies LT = 0 < /). Hence,

=0

{reR | ar < B} =R. Thus, {z € R | az <} is a closed interval (since R
is a closed interval). This proves Lemma 2.0y in Subcase 2.1.

Next, let us consider Subcase 2.2. In this subcase, § < 0. Thus, every = €

R satisfies o x = 0 > [. Hence, no z € R satisfies ax < (. Therefore,

=0
{z €R | ar <p} =. Thus, {xr e R | axr <} is a closed interval (since &
is a closed interval). This proves Lemma 2.0y in Subcase 2.2.

Since Lemma 2.0y is proven in both Subcases 2.1 and 2.2, it follows that Lemma
2.0y always holds in Case 2 (because Subcases 2.1 and 2.2 cover all possibilities
within Case 2).

Finally, let us consider Case 3. In this case, a > 0. Hence, for every x € R,

the assertion ax < [ is equivalent to z < ﬁ (because dividing an inequality by a

positive real number leaves the sign of this inequality invariant). Thus, for every
x € R, we have the following equivalence of assertions:

« (0%

(axﬁﬁ)(z)(xgé)@(—mgxgé).

93This is because we have defined a closed interval to mean a set which has the form
{zx €R | a <z <b} for some elements a and b of R U {—00, c0}.
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Hence,

{reR | Ozxgﬁ}:{xER | —oogxgg}.

Thus, {r € R | ar <} is a set of the form {x e R | a <z < b} for some
elements a and b of R U {—00,00} (namely, for a = —oo and b = —). In other

«
words, {z € R | az < 8} is a closed interval’} This proves Lemma 2.0y in Case
3.

Thus, Lemma 2.0y is proven in each of Cases 1, 2 and 3. Since these cases
cover all possibilities, this yields that Lemma 2.0y is always proven. O]

Proof of Lemma 2.0z. Let by, by, ..., b, be the m coordinates of the column vec-
tor b. Thus, we have

(the i-th coordinate of b) = b; (83)
for each 7 € {1,2,...,m}.
Let ay, as, ..., a, be the m rows of the matrix A. Then, for each column vector
x € R and for each i € {1,2,...,m}, we have

(the i-th coordinate of Ax) = ax (84)

(by the definition of the product of a matrix with a column vector).
For each z € R", we have the following chain of equivalences:

(Ar <)
< (every i € {1,2,...,m} satisfies

(the i-th coordinate of Ax) < (the i-th coordinate of b)

(b (2) oy €3)
(by the definition of Az < b)
< (every i € {1,2,...,m} satisfies a;x < b;)

< (a;x < b; forevery i€ {1,2,...,m}).
Hence,

{z e R" | Az <b}
={z eR" | aux <b; for every i € {1,2,...,m}}.

94This is because we have defined a closed interval to mean a set which has the form
{zx €R | a <z <b} for some elements a and b of R U {—00, c0}.
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Thus,

P={xeR" | Az <b}
={z eR" | ax <b; foreveryie {1,2,...,m}}.
For every i € {1,2,...,m}, the set {t € R | a;epu < b; —a;z} is a closed in-

terval (by Lemma 2.0y, applied to o« = a;c and § = b; — a;2).
For any element pu € R, we have the following equivalence of assertions:

(z+pc e P)<= | a;(z+ pc) <b; for every i € {1,2,...,m}
———
=a;z+a;cu

(since P ={z € R" | a;o <b; for every i € {1,2,...,m}})

< | @iz + a;cp < b; foreveryi e {1,2,...,m}
this is eq\urivalent to
aicu<b;—a;z
< (ajcp < b; — a;z for every i € {1,2,...,m}).

Thus,

{peR | z+puce P}
={peR | acp <b;—a;z forevery i € {1,2,...,m}}
= ﬂ {peR | aep <b;—a;z}.

ie{1,2,...,m}

This shows that {uy € R | z+ pc € P} is an intersection of finitely many closed
intervals (since {u € R | a;cu < b; — a;2} is a closed interval for every i € {1,2,...,m}).
Thus, {x € R | 24 pc € P}is aclosed interval (since Lemma 2.0x says that the
intersection of finitely many closed intervals always is a closed interval). This
proves Lemma 2.0z. O

16.5. Proofs for Section

Proof of Lemma 2.2a. (a) Let v € R™ be a column vector satisfying v > 0. We
must prove that all coordinates of the column vector v are positive.
We have v > 0. In other words, every i € {1,2,...,n} satisfies

(the i-th coordinate of v) > (the i-th coordinate of 0)
(by the definition of v > 0). Hence, every i € {1,2,...,n} satisfies

(the i-th coordinate of v) > (the i-th coordinate of 0) = 0.
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In other words, for every i € {1,2,...,n}, the i-th coordinate of v is positive.
In other words, the coordinates of the column vector v are positive. This proves
Lemma 2.2a (a).

(b) The proof of Lemma 2.2a (b) is completely identical to the proof of Lemma
2.2a (a) given above (except that “R™ must be replaced by “(R™)"”, and the
word “column” must be replaced by “row”). n

Proof of Lemma 2.2b. The row vector z € (R")" satisfies > 0. Thus, Lemma
2.0t (b) (applied to v = x) shows that the coordinates of the row vector x are

nonnegative. Let Ay, Ao, ..., A, be the coordinates of the row vector . Then,
A1, A2, ..., A, are nonnegative (since the coordinates of the row vector x are
nonnegative).

The column vector y € R™ satisfies y > 0. Thus, Lemma 2.2a (a) (applied to
v = y) shows that the coordinates of the column vector y are positive. Let pq,
la, .., iy be the coordinates of the column vector y. Then, puy, po, ..., @, are
positive (since the coordinates of the column vector y are positive).

By the definition of the product of a row vector with a column vector, we

n
have xy = > A\;ju; (since the coordinates of the row vector x are i, Ao, ..., A,
i=1
while the coordinates of the column vector y are uy, s, ..., ). But for every
i€ {1,2,...,n}, the real \;u; is nonnegative (since \; is nonnegativeﬁ and p; is

positiv@. In other words, for every i € {1,2,...,n}, we have \;u; > 0. Hence,

Aifbi > 0 = 0. Hence, xy = Aipt; > 0.
Assume (for the sake of contradiction) that zy = 0.
Recall that, for every i € {1,2,...,n}, the real A\;u; is nonnegative. Thus,

7

n
the sum ) A\;ju; is a sum of nonnegative reals. Since this sum is 0 (because
i=1

> Aip; = 0), this yields that
i=1

every i € {1,2,...,n} satisfies A\;i; = 0 (85)

(because if a sum of nonnegative reals is 0, then each of these reals must equal
0). Thus, every i € {1,2,...,n} satisfies \; = 0 m In other words, all the
numbers i, A9, ..., A\, equal zero. Since i, Ao, ..., A, are the coordinates of
the row vector z, this yields that all the coordinates of the row vector x equal
zero. Hence, © = 0. This contradicts the fact that x # 0 (since z is nonzero).
This contradiction shows that our assumption (that zy = 0) was false. Hence,

9because A1, A2, ..., Ay are nonnegative
9because 11, to, ..., fin are positive
9 Proof. Let i € {1,2,...,n}. Recall that uy, us, ..., i, are positive; thus, y; is positive.

Hence, u; # 0. But yields A;u; = 0. We can divide this equality by p; (since p; # 0),
and thus obtain A; = 0. Qed.
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we cannot have xy = 0. Thus, we have xy # 0. Combining this with zy > 0, we
obtain zy > 0. This proves Lemma 2.2b. O]

Proof of Lemma 2.2c. Lemma 2.2c is proven in the same way as Lemma 2.2b,
except that the roles of the vectors x and y are partly reversed. (The details are
left to the reader.) O

Proof of Lemma 2.2d. Assume the contrary. Thus, x # 0. Hence, x is nonzero.
Lemma 2.2b thus yields xy > 0. This contradicts xy = 0. This contradiction
shows that our assumption was false. This proves Lemma 2.2d. O]

16.6. Proofs for Section [11]

Proof of Lemma 2.5h. We have the following chain of logical equivalences:

((3)=0)
Yy
<— (all coordinates of the vector ( z ) are > O)

<= (all coordinates of the vectors z and y are > 0)

since the coordinates of the vector ( 5 ) are

precisely the coordinates of the vectors x and y

<= (all coordinates of the vector z are > 0)

(& J
-

<— (>0)

A (all coordinates of the vector y are > 0)

. J
-~

< (y>0)

<~ (x>0 A (y>0).

In other words, 5 > 0 holds if and only if (x > 0 and y > 0). This yields
both parts (a) and (b) of Lemma 2.5h. O

Proof of Lemma 2.5i. Let x1, 2o, ..., x, be the n coordinates of the vector z. Let
Y1,Y2, - - -, Yn be the n coordinates of the vector y. Then, the 2n coordinates of the

x :
vector are i, T, ..., Ty, —T1, —Ta,..., —Ty, whereas the 2n coordinates

of the vector ( y > are Yi,Ya, - - - » Yn, —Y1, —Y2, - - . , —Yn. Hence, the inequality

—T
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is > to the corresponding coordinate among 1, Y2, - - -, Yn, —Y1, —Y2, - - -, —Yn. 1IN
other words,
T >y for each i € {1,2,...,n}, (86)
and
—z; > -y for each i € {1,2,...,n}. (87)

But rewrites as
x; <y for each i € {1,2,...,n}.

Combining this with (86), we obtain z; = y; for each ¢ € {1,2,...,n}. Thus,
x =y. This proves Lemma 2.5i. [

17. Appendix: Old (and ugly) proofs of Theorems
2.1c and 2.5c

This section gives alternative proofs for Theorem 2.1c and 2.5c. These are the
proofs I have found myself, before I became aware of the neat proofs given in
Section [7} they are clumsy and long-winded, but maybe there is something of
interest in them (although I don’t know what that would be).

We shall prove Theorem 2.1c first, and then derive Theorem 2.5¢ from it. But
first of all, we will need a basic fact (which is often used as an exercise in linear
algebra courses):

Lemma 2.1d. Let £ be an infinite field, and let £ be a k-vector
space. Let xy, xo, ..., 2y be vectors in E. Assume that every i €
{1,2,...,t} satisfies x; # 0. Then, there exists an f € E* such that
every i € {1,2,...,t} satisfies f (x;) # 0.

Proof of Lemma 2.1d. Let us prove that for every j € {0,1,... ¢},

there exists some f € E* such that every i € {1,2,...,5} satisfies f (z;) # 0.
(88)

Proof of : We will prove by induction over j:

Induction base: There exists some f € E* such that every i € {1,2,...,0} sat-
isfies f (z;) # 0 (namely, f = 0 (because the assertion that every i € {1,2,...,0}
satisfies f (z;) # 0 is vacuously true)).

Induction step: Let J € {1,2,...,t} be such that holds for j = J —1. We
then have to prove that holds for 7 = J.

We have z; # 0 (because every i € {1,2,...,t} satisfies z; # 0).

There is a known linear-algebraic fact that if v is a vector in a k-vector space
F such that v # 0, then there exists an h € F* such that h(v) # 0. Applying
this fact to FF = E and v = x;, we see that there exists an h € E* such that
h(zy) # 0 (since x; # 0). Consider this h.
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Since holds for 7 = J — 1, there exists some f € E* such that every
i € {1,2,...,J — 1} satisfies f(x;) # 0. Denote this f by g. Then, every
ie{l,2,...,J — 1} satisfies g (z;) # 0.

—h(xj) . )
Let r be the element g(a(Z)J) ’ ¢ lfggm‘])o% 0 of k. Let M be the
) nrgry) =
subse —h(z) —h(z) —h (@) r}to en
b t{g(wl)’g(xg)""7g(:lrj_1)}u{} f k. Then,
. —h($1> —h([EQ) —h($J_1> -
’M|_H g(x) " glx) 7 glwsa) }U{}
—h<l'1) —h(ZL‘Q) —h(l'J_l) , . _
<5 I IET H*'{%'SJ s

so that we cannot have k C M (because if we had k& C M, then we would have
|k| < |M| < J, which contradicts the fact that k is infinite). As a consequence,
there exists an s € k such that s ¢ M. Consider this s.
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Now, every i € {1,2,...,J} satisfies (sg+ h) (x;) # 0. @ Thus, there
exists some f € E* such that every ¢ € {1,2,...,J} satisfies f (x;) # 0 (namely,
f =sg+h). In other words, holds for j = J. This completes the induction
step. The induction proof of is thus complete.

Applying to j = t, we obtain that there exists an f € E* such that every
i€ {1,2,...,t} satisfies f (z;) # 0. This proves Lemma 2.1d. O

Second proof of Theorem 2.1c. We will prove Theorem 2.1c by induction over
dim E.

Induction base: In the case when dim E = 0, Theorem 2.1c is obvious@ This
completes the induction base.

Induction step: Let n be a positive integer. Assume that Theorem 2.1c¢ holds
whenever dim ¥ = n — 1. We will now prove that Theorem 2.1c¢ holds whenever
dim £ = n.

So, let G be an R-vector space satisfying dim G = n. Let C' be a polytope in

9% Proof.  Assume the opposite. Then, there exists some i € {1,2,...,J} such that
(sg+h)(x;) = 0. Consider this i. Since i € {1,2,...,J}, we must be in one of the
following two cases:

Case 1: We have 1 € {1,2,...,J — 1}.

Case 2: We have i = J.

Let us first consider Case 1. In this case, i € {1,2,...,J — 1}.

Our i satisfies (sg + h) (x;) = 0, so that 0 = (sg + h) (z;) = sg (x;) +h (z;), thus sg (x;) =
—h (z;). Since g (x;) # 0, we can divide this by ¢ (z;) and obtain

se —h (z:) c {—h(ﬂil) —h (72) —h(mj_l)}

g () g(z1) " glx2) "7 g(zs1)
—h(z1) —h(x2) —h(v-1) "
g{ @) glm) T g }U” M.

contradicting s ¢ M. Thus, we have obtained a contradiction in Case 1.
Let us now consider Case 2. In this case, ¢ = J. Thus, (sg+h) (z;) = (sg+h) (z5) =
sg(xy) + h(zy). Compared with (sg+ h)(z;) = 0, this becomes sg(z;) + h(x;) =

0. Thus, sg(zy) = —h(xy) # -0 = 0, so that g(xy) # 0. Thus, r =
#0

—h (.TJ) if

, if g(xy) #0; —h(xy) , .
x = (since g (z5) # 0).
A 9(27) '
But dividing sg (x5) = —h (z5) by g (z;) (this is allowed since g (x;) # 0), we obtain
_ —h (xJ) _ {—h (.1‘1) —h (1‘2) —h (l‘J_l)} _
TEn B WTC R T RETeTa S R i

contradicting s ¢ M. Thus, we have obtained a contradiction in Case 2.
Hence, in each of the cases 1 and 2, we have obtained a contradiction. Thus, we always
have a contradiction. Hence, our assumption was wrong, ged.
991n fact, in the case when dim E = 0, the only polytopes in E are 0 and @. If C' = 0, Assertion
C1 holds and Assertion C2 does not; else, Assertion C2 holds and Assertion C1 does not.
Thus, Theorem 2.1c holds in the case when dim F = 0.
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G. By the definition of a polytope, this shows that C'is the convex hull of a finite
set of vectors in (G. In other words, there exist some ¢ € N and some vectors
x1, Ta, ..., x; in G such that C' = conv . hull {z, 25, ..., 2;}. Consider this ¢ and
these xq, xo, ..., x;.

We will now prove that exactly one of the following assertions holds:

Assertion C'11: We have 0 € C.

Assertion C'12: There exists an f € G* such that every x € C satisfies
f(x) <O.

First, it is clear that the Assertions C;1 and C;2 cannot hold at the same
timd™™] We will now show that at least one of these assertions holds. Our proof
will proceed in several stepszm

Step 1: If some ¢ € {1,2,...,t} satisfies z; = 0, then at least one of Assertions
Ci1 and C;2 hold@. Hence, for the rest of this proof, we can WLOG assume
that no i € {1,2,...,t} satisfies ; = 0. Assume this.

Step 2: If t = 0, then at least one of Assertions C;1 and C;2 hold@. Hence,
for the rest of this proof, we can WLOG assume that ¢ # 0. Assume this.

Step 3: Everyi € {1,2,...,t} satisfies x; # 0 (sinceno ¢ € {1,2,...,t} satisfies
x; = 0). Thus, Lemma 2.1d (applied to £ = R and E = G) yields that there
exists an f € G* such that every i € {1,2,...,t} satisfies f (x;) # 0. Denote
this f by g. Thus, ¢ is an element of G* such that every ¢ € {1,2,...,t} satisfies
g(z;) #0. Now, Img=R [™]

Step 4: Now, let F' = Ker g. Then, F'is an R-vector subspace of £ and satisfies
dimF =n—1

100 proof. Assume the opposite. Then, the Assertions C;1 and C;2 hold at the same time. Since
Assertion Cq2 holds, there exists an f € G* such that every x € C satisfies f (z) < 0.
Consider this f. We know that every x € C satisfies f(x) < 0. Since 0 € C (because
Assertion C;1 holds), we can apply this to & = 0, and thus obtain f(0) < 0. But this
contradicts f(0) = 0 (which is because f is linear). This contradiction shows that our
assumption was wrong, ged.

1017 have split this proof into several steps for the reader’s convenience. These steps, however,
are not self-contained; for example, Step 9 involves a case distinction, Step 10 handles its
Case 1, and Steps 11 until 18 handle its Case 2.

102 Progf. Assume that some i € {1,2,...,t} satisfies x; = 0. Consider this i. Then, 0 = z; €
conv. hull {x,zs,...,2:} = C, so that Assertion C;1 holds. Thus, at least one of Assertions
C11 and C;2 holds, qed.

103 Proof. Assume that t = 0. Then, C' = conv.hull {z1,z2,...,7;} = conv.hullg = &, so

=2
(since t=0)
that Assertion C;2 holds (because it is vacuously true for f = 0). Thus, at least one of
Assertions C;1 and C;2 holds.

104 proof. Every i € {1,2,...,t} satisfies g (x;) # 0. Applied to i = 1, this yields g (x1) # 0, so
that g # 0, and thus Img # 0. Hence, dim (Img) > 1. Since 1 = dim R, this rewrites as
dim (Im ¢g) > dimR. Combined with Im g C R, this yields Im g = R, qed.

105 Progf. By the homomorphism theorem, G, (Kerg) = Img. Since F = Kerg, we
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Step 5: Let It be the set {i € {1,2,...,t} | g(x;) > 0}, and let I~ be the set
{i e {1,2,...,t} | g(x;) <0}. Clearly, these sets It and I~ are disjoint (since
noi € {1,2,...,t} can satisfy g (z;) > 0 and g (z;) < 0 at the same time).

Since It ={i € {1,2,...,t} | g(x;) > 0}, it is clear that

every i € I'" satisfies g (z;) > 0. (89)
Since I- ={i e {1,2,...,t} | g(z;) <0}, it is clear that
every j € I~ satisfies g (z;) < 0. (90)

Every i € {1,2,...,t} satisfies g (x;) # 0. Thus,

{1,2,...,t}=qi€{1,2,...,t} | g(x;) #0
—_—

this is equivalent to
(g(z;)>0 or g(x;)<0)
={ie{1,2,...,t} | g(z;) >0 U{ie{1,2,...,t} | g(x;) <0}

=J+ =]—

=J1tul".

Step 6: If I~ = &, then at least one of Assertions C;1 and C;2 hold@. Hence,
for the rest of this proof, we can WLOG assume that I~ # &. Assume this.

€ R (this is

Step 7: For every i € {1,2,...,t}, let ;; be the element
well-defined since g (z;) # 0).

For every (i,j) € I x I~, we have o — j # 0 , so that
well-defined.

g (zi)

is
a; — Oéj

have G/F = G/ (Kerg) = Img = R, so that dim(G/F) = dimR = 1. Thus,
1=dim (G/F)=dimG—dim F = n — dim F. Hence, dim F' = n — 1, qged.

=n
106 Proof. Assume that I~ = @.
Let 7 € {1,2,...,t} be arbitrary. Then, i € {1,2,...,t} = It U I~ = I", so that

=
g (z;) >0 (by 89).
Now, forget that we fixed i. We thus have proven that every i € {1,2,...,t} satisfies
g (x;) > 0. Hence, every ¢ € {1,2,...,t} satisfies (—g) (z;) = — g (x;) < 0.
=
Therefore, Proposition 2.0r (applied to F = G, f = —g and § = 0) shows that every
x € C satisfies (—g) () < 0 (because C' = conv.hull {x, za,...,2:}). Thus, there exists an
f € G* such that every x € C satisfies f (z) < 0 (namely, f = —g). Hence, Assertion C;2
holds. Thus, at least one of Assertions C;1 and C;2 holds, qed.
107 Proof. Let (i,5) € IT x I~. Then, i € It and j € I~. Thus, g(z;) > 0 (by ), S0
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Now, let S denote the set

{—i_www_aﬁﬂ\<aﬁ€f+XI}'

a; — @y
1
Since every (i,7) € IT x I~ satisfies ——— (z; — ajz;) € Kerg , we have
Q; — Q5
1
{— (i — ajx;) | (i,7) € IT % I} C Kerg. Thus,
Q; — Oy
1 - T
S=¢——(vuz; —ajz;) | (4,7) €l xI p CKerg=F.
Q; — Q5
Thus, conv. hull S is a polytope in F'.
1
Since S = {— (ox; — ajay) | (i,7) € IT X [‘}, we have

Q; j

1
(qz; — ajz;) € S for every (i,7) € It x I". (91)
Qp — Oy

Step 8: Let us now see that conv.hull.S C C":
1
Every (i,7) € IT x I~ satisfies —— (a2, — ojzj) € C Thus,
a; — O[j

{#(am —ayz;) | (4,5) € 1T x f} cC.

Oéi—Oéj

1 1
that —— > 0. Also, g(z;) < 0 (by 1@] so that —— < 0. Now, since «o; =
g (i) g (z;)

y the definition of «;) and o; = y the definition of «;), we have o; — a; =
by the definiti f d o by the definiti f a; h i
1 1
g(z:)  g(x;)
N N —

>0 <0

9(z;)

> 0, so that a; — a; # 0, ged.

1 1
108 Proof. Let (i,j) € IT x I~. Since o = (by the definition of ;) and a; = ——— (by
g () g (x;)
the definition of «;), we have
1 1 1 1
(o~ aj0) =g (o= ) = —sg@) - g (o)
™ g@)™" glx)™’)  gla) g(x;)” "
=1 =1
(since ¢ is R-linear)
=1-1=0.
Thus, o;z; — ojxz; € Kerg. Since Kerg is a k-vector space, this yields

1

o (viz; — ajz;) € Kerg, ged.
K3

- %
109 proof. Let (4,§) € I x I~. Then, i € I'* and j € I~. Thus, g(z;) > 0 (by (89)), so that

1 1
——— > 0. Also, g(z;) <0 (by ), so that —— < 0.
g (x:) ’ g (x;)
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Thus,
1
S:{ — (ovz; — a;zj) | (7?>j)€[+><l}g0.

Qp — @y
Hence, C' is a convex set containing S as a subset. But since every convex set
containing S as a subset must also contain conv.hullS as a subset (because
conv . hull S is the smallest convex set containing S as a subset), this yields that
C contains conv . hull S as a subset. In other words, conv.hullS C C.

Step 9: Now, since dim F' = n — 1, we can apply Theorem 2.1c to F' and
conv . hull S instead of E and C' (because we assumed that Theorem 2.1c¢ holds
whenever dim £ = n — 1). As a consequence, we obtain that exactly one of the
following two assertions holds:

Assertion Cy1: We have 0 € conv . hull S.

Assertion C92: There exists an f € F* such that every x € conv . hull S
satisfies f (z) < 0.

Thus, we must be in one of the following two cases:

Case 1: Assertion Cy1 holds.

Case 2: Assertion Cy2 holds.

Step 10: Let us consider Case 1 first. In this case, Assertion Cy1 holds. In
other words, 0 € conv.hull S. Since conv.hull S C C, this yields 0 € C', so that
Assertion C;1 holds. Thus, at least one of Assertions C;1 and C;2 holds in Case
1.

1 1
Now, since o; = ——— (by the definition of ;) and a; = ——— (by the definition of «;),
g (z;) ) g (z;)
we have a; = —— > 0 and o; = —— < 0. Thus, a; — a; > 0.
g (xi) g () —~ —~
>0 <0
Since o; > 0 and o; — a; > 0, we have > 0. Since —a; > 0 (this is because
o; — Oéj

a; < 0) and o; — a; > 0, we have % 5.

Qg — Qg
But C' is convex. Thus, every point on a segment connecting two points of C' must lie in

C.

. Q;
Since

—Q Q5 —Q (67} (7]
> 0, L > 0 and + J_ = — J =
Oli—Olj O[Z'—O[j ai—aj O[i—O[j Oéi—Oéj Cvi—Olj
a; — Q4 . (67 — QO
J =1, it is clear that x; + e

x; is a point on the segment connecting
Oéi—Oéj Oéi—Oé] Oéi—Oéj
x; and x;. Since z; € C (because z; € {x1,29,...,2¢} C conv.hull{z1,z9,...,2¢} = C)
and z; € C (because x; € {z1,22,...,2:} C conv.hull{z,zs,...,2¢} = C), this yields

Py X
that S J x; is a point on a segment connecting two points of C. Thus,
Q; — Oy Q; — Oy

—Q . . . .
T; + I z; € C (since every point on a segment connecting two points of C
Q — Oy Q — Oy
o . Q; —q; 1
must lie in C). Since x; + Iz, =
Q; — Q; — Q5 Q; — Qy
1

aifaj

(ajz; — o), this rewrites as

(0z; — ajxj) € C, ged.

128



Linear optimization May 4, 2018

Step 11: Now, let us consider Case 2. In this case, Assertion Cy2 holds. In
other words, there exists an f € F™ such that every x € conv.hull S satisfies
f(x) < 0. Denote this f by h. Then, every x € conv.hull S satisfies h (x) < 0.

Step 1 2@ A known fact from linear algebra states that if k is a field, P and
R are two k-vector spaces, ) is a k-vector subspace of P, and £ : ) — R is a
k-linear map, then there exists a k-linear map 1 : P — R such that n |op= &. E
Applying this fact to k =R, P =G, Q = F', R =R and £ = h, we conclude that
there exists an R-linear map 7 : G — R such that n |p= h. Denote this n by e.
Thus, e |p= h.

Now, e is an R-linear map G — R, and

every = € conv . hull S satisfies e (z) < 0 (92)

(since every = € conv . hull S satisfies e (x) = (e |p) () = h(x) <0).

—h
Step 13: Let k be the element ¢ of I~ minimizing ;e (x;) (this is well-defined
since I~ is a finite set and I~ # @). Then, k € I~, and we have
age (rr) < aze () for every i € 1™. (93)
Step 14: Let us now prove that

age (z1) > aze (x;) for every i € I™. (94)

Proof of (94)): Let i € I'". Since i € I* and k € I, we have (i,k) € [T x ™.
Thus, (applied to (i, k) instead of (4, 7)) yields

1

Q; — O

1 1
Hence, (applied to x = (viz; — agzy)) yields e < (viz; — akxk)) <
o; — Qg Q; — Qg
0. Since e (

(ajz; — agzg) € S C conv. hull S.

(yx; — agzy) | = e (a;x; — agry) (because e is R-
Qp — Qg Qp — Qg

linear), this rewrites as

1

o — O

e(or; — agry) < 0. (95)

Since i € I'", we have g (z;) > 0 (by (89)). Since k € I, we have g (z;) < 0
(by (90), applied to j = k). From g (z;) > 0 and g (zx) < 0, it follows that
g(z;)g(x) <O.

H0This is no longer Step 11, but we are still in Case 2.
11 Advanced algebraists tend to state this fact in the following equivalent form: Every k-vector
space is an injective k-module.
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By the definition of «;, we have a; = > 0 (since g (x;) > 0). By the

g (z;)
definition of oy, we have oy = pTEn) < 0 (since g (zx) < 0). From «; > 0 and
9Tk
ap < 0, it follows that «; — a; > 0. Thus, we can multiply with a; — o,
~—
>0 <0
and obtain e (o;z; — agzy) < 0. Since
e (z; — agry) = aze (x;) — age (xg) (since e is R-linear) ,

this rewrites as aze (x;) — age (zx) < 0. In other words, axe (zx) > ase (z;). This

proves .

Step 15: Let us slightly improve : It is easy to see that there exists a
positive real ¢ such that

every i € I satisfies oy, (e (x1,) +0) > e (x;) . (96)

2] Consider this 4.
Step 16: We are now going to prove that

every i € {1,2,...,t} satisfies ((e(xx)+0)g— g (zx)e) (z;) <O0. (98)

Proof of (98): Let i € {1,2,...,t}. Then, i € {1,2,...,t} = I* UI". Hence,
either : € I'T or ¢ € I~. We thus must be in one of the following two subcases:
Subcase 2.1: We have i € I,

12 proof. Every i € I satisfies aye (x) > aie (z;) (by (94)) and thus age (x1) — aze (z;) > 0.
In other words, {aye (xr) — e (x;) | i € I} is a set of positive reals. Since this set is
finite (because It is finite), it is thus bounded from below by a positive real. In other
words, there exists a positive real € such that

every i € I satisfies age (zx) — aye (z;) > €. (97)

Consider this €.

Let 6 = —<. Then, ad = _—E.
20ék 2
Since k € I~, we have g (z1) < 0 (by , applied to j = k). By the definition of ay, we
have oy, = pYEm) < 0 (since g (zx) < 0). Now, every i € I satisfies
g\ Tk

ag (e (zr) +9) —aze (z;) = age (xg) + ard — aze (x;)
—_—— ——
=ake(zk)+akd

—& €
= — oy 4 6 > —=—=>0
are (xg) — aze (z;) + g e+ 5 2

>e —&
(by (7)) =5

(since € > 0). In other words, every i € I satisfies ay, (e (zx) + 6) > ase (z;).
We thus have proven that there exists a positive real § such that every i € It satisfies
ai (e(xg) +9) > aze (z;). Qed.
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Subcase 2.2: We have 1 € I~
Let us first consider Subcase 2.1. In this subcase, i € IT. Thus, g (x;) > 0

(by (89)). Since k € I~, we have g (z;) < 0 (by (90)), applied to j = k). From
g (z;) > 0and g (zx) < 0, it follows that g (z;) g (xx) < 0.
1

By the definition of «;, we have «o; = > 0 (since g(x;) > 0). By

g (z;)
the definition of oy, we have a; = e < 0 (since g (zx) < 0). From 1@}
g\ Tk
we have ay (e (xr) +9) > «oze(x;). Since a; = and op = ———, this
o) = ot gl T )
rewrites as e(xy)+9) > ——e(x;). Multiplied by g (z;) g (x), this be-
s le@m) +0) > —e(x) () 9 (22)

comes ¢ (x;) (e(xg) +0) < g(wx)e(x;) (here, the sign has been switched since
g (z;) g (x) <0). Thus,

((e(r) +0)g—g(ar)e) (m) = (elzr) +0)g(z:) —g(xw)e(w:)
—g(w:)(e(ok)+8)<g(ox)e(w:)
< g(xp)e(x;) —g(xp)e(x;) =0.

Thus, is proven in Subcase 2.1.

Let us now consider Subcase 2.2. In this subcase, ¢ € I~. Hence, yields
age (z) < aze (z;).

Since ¢ € I~, we have g (z;) < 0 (by , applied to j = 4). Since k € I~, we
have g (z) < 0 (by (90)), applied to j = k). From g (z;) < 0 and g (zx) < 0, it
follows that g (z;) g (xx) > 0.

Since o; = —— (by the definition of «;) and oy = (by the definition of

g () g (xx)
ax), the inequality age (zx) < aye (z;) (proven above) rewrites as ﬁe (xp) <
g\ Tk
1

ﬁe (x;). Multiplied by g (z;) g (xx), this becomes g (z;) e (xx) < g (zx) e (x;)
9 \Zi
(here, the sign has not been switched since g (z;) g (zx) > 0). Thus,

((e(zx) +0) g — g (zx)e) (z:) = (e (ar) +0) g (x:) =g (wx) € (z:)

(.

—e(wr)g(a:)+9(x:)
=  e(@m)g(x) + 6g(xi) —g(wp)e(r:) <g(zr)e(r:) —g(ze)e(r;) =0.
——— ~——
=g(z;)e(zr)<g(zp)e(z;) <0

(since 6>0
and g(z;)<0)

Thus, is proven in Subcase 2.2.
We have thus proven in each of the Subcases 2.1 and 2.2. Since these
subcases cover all possibilities, this yields that always holds. This completes

the proof of (98)).
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Step 17: Now,
every x € C satisfies ((e(xy) +0)g— g (zx)e) () <O0. (99)

Proof of (@) We know that every ¢ € {1,2,...,t} satisfies
((e(zk) +6) g — g (zx)e) (x;) <0 (because of (98)). Thus, Proposition 2.0r (ap-
plied to G, (e (zx) +9) g — g (xx) e and 0 instead of E, f and ¢) shows that every
z € C satisfies ((e (zx) +6) g — g (k) €) (z) < 0. This proves (99).

Step 18: Due to , there exists an f € G* such that every x € C satisfies
f(x) <0 (namely, f = (e(xg) +9)g — g(zx)e). In other words, Assertion C;2
holds. Thus, at least one of Assertions C;1 and C;2 holds in Case 2.

We have thus proven that, in each of the Cases 1 and 2, at least one of Assertions
C11 and C;2 holds. Since these cases cover all possibilities, this yields that, in
every situation, at least one of Assertions C;1 and C;2 holds.

Altogether, we have shown the following two claims:

e Assertions C;1 and C;2 cannot hold at the same time.

o At least one of Assertions C;1 and C;2 holds.

Combining these claims, we conclude that exactly one of Assertions C;1 and
C;2 holds.
Now, forget that we fixed G and C. We have thus proven the following result:

Result 1: If G is an R-vector space satisfying dim G = n, and C'is a
polytope in G, then exactly one of the following assertions holds:

Assertion C11: We have 0 € C.

Assertion C'12: There exists an f € G* such that every x € C satisfies
f(x) <O.

If we rename G as E in Result 1, then this result takes the following form:

Result 2: If F is an R-vector space satisfying dim £ = n, and C'is a
polytope in E, then exactly one of the following assertions holds:

Assertion C31: We have 0 € C.
Assertion C'32: There exists an f € E* such that every x € C satisfies

f(x) <O.

Clearly, Result 2 is exactly the statement of Theorem 2.1c in the case when
dim £ = n. Hence, we have proven that Theorem 2.1c¢ holds in the case when
dim £ = n. This completes the induction step, and thus the induction proof of
Theorem 2.1c is complete. [
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Second proof of Theorem 2.5¢c. We will prove Theorem 2.5¢ by strong induction
over |S]:

Induction step: Let n be a nonnegative integer. Assume that Theorem 2.5¢
holds whenever |S| < n. We will now prove that Theorem 2.5¢ holds whenever
|S| = n.

So, let E be a finite-dimensional R-vector space. Let S be a finite subset of
E such that |S| = n. Let b € E. Then, we must prove that exactly one of the
following two assertions holds:

Assertion D11: We have b € cone S.

Assertion D12: There exists an f € E* such that f (b) > 0 and
(every = € cone S satisfies f (z) < 0).

Since cone S is a convex cone, it is clear that cone S is closed under multiplica-
tion by a nonnegative scalar (because convex cones are closed under multiplication
by a nonnegative scalar). It is also clear that any linear combination of finitely
many elements of cone S with nonnegative coefficients must lie in cone S (because
cone S is a convex cone, and because any linear combination of finitely many el-
ements of a convex cone with nonnegative coefficients must lie in this cone). In
particular, the sum of any two elements of cone .S must lie in cone S.

First, it is clear that the Assertions D;1 and D2 cannot hold at the same
timd™3 We will now show that at least one of these assertions holds.

Let C be the polytope conv . hull (S U {—b}) in E. According to Theorem 2.1c,
exactly one of the following two assertions holds:

Assertion Dy1: We have 0 € C.

Assertion Do2: There exists an f € E* such that every x € C satisfies
f(x) <O.

Thus, we must be in one of the following two cases:

Case 1: Assertion D51 holds.

Case 2: Assertion D52 holds.

First, let us consider Case 1. In this case, Assertion Dy1 holds. In other words,
0 € C. Thus, 0 € C = conv.hull (SU{-b}). In other words, 0 is a convex
combination of the elements of S U {—b}. In other words, there exist a family

(As)sesug_py of nonnegative reals such that >3 A;=1land > Ass=0.
seSU{—-b} seSU{—b}
Consider this family (As),cguq_p)-

U3 Proof.  Assume the opposite. Then, the Assertions D;1 and D;2 hold at the same
time. Since Assertion D12 holds, there exists an f € E* such that f(b) > 0 and
(every = € cone S satisfies f (z) < 0). Consider this f. We know that every = € coneS
satisfies f (z) < 0. Since b € cone S (because Assertion Dq1 holds), we can apply this to
x = b, and thus obtain f (b) < 0. But this contradicts f (b) > 0. This contradiction shows
that our assumption was wrong, qed.
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We must be in one of the following two subcases:

Subcase 1.1: We have \_, = 0.

Subcase 1.2: We have A_; # 0.

Let us first consider Subcase 1.1. In this subcase, we have \_, = 0, so that

I= > A= > A+ DA
seSuU{-b} seS\{—-b} se{-b}

=\_4=0
(since S U {—0b} is the union of the disjoint sets S\ {—b} and {—b})

= > A

seS\{—b}

If every s € S\ {—b} would satisfy A\; = 0, then we would have > )\, =
sGS\{_b}\:fO"

> 0=0,contradicting >, A = 1. Thus, not every s € S\ {—b} satisfies
s€S\{-b} seS\{—b}
As = 0. In other words, there exists an s € S\ {—b} such that A\; # 0. Let ¢ be
such an s. Then, t € S\ {—b} and A\; # 0. Since \; is nonnegative and \; # 0,
we have \; > 0.

We have
0= Z AgS = Z AgS + Z)\ss
seSU{—b} seS\{—b} se{-b}
N——
=A_p(—b)=0

(since A_p=0)
(since S U {—0b} is the union of the disjoint sets S\ {—b} and {—b})
= > As= > As+M

s€S\{-b} se(S\{=b})\{t}
so that

M= > Ass € cone ((S\ {=b}) \ {t})

se(S\{-b})\{t} cs
(since Ay is nonnegative for every s € (S'\ {—b}) \ {t})
C cone S. (100)

Now, let us notice that
every v € R satisfies vt € cone S. (101)

@ In other words,
tR C cone S. (102)

Y4 Proof of : Let v e R.
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[

Let 7 be the canonical projection F — E / (tR). Clearly,
m (SAA{ED < [S\A{t} = |S] —1 (since ¢ € 5)
——

=n—1<n.
Hence, we can apply Theorem 2.5¢ to E/ (tR), 7 (S \ {t}) and 7 (b) instead of

E, S and b (since we assumed that Theorem 2.5¢ holds whenever |S| < n), and
conclude that exactly one of the following two assertions holds:

Assertion D31: We have 7 (b) € cone (7 (S \ {t})).

Assertion D32: There exists an f € (E (tR))" such that f (7 (b)) >
0 and (every z € cone (7 (S \ {t})) satisfies f (x) <0).

Thus, we must be in one of the following two subsubcases:

Subsubcase 1.1.1: Assertion D31 holds.

Subsubcase 1.1.2: Assertion D32 holds.

First, let us consider Subsubcase 1.1.1. In this subsubcase, Assertion D31 holds.
In other words, we have 7 (b) € cone (7 (S \ {t})). Thus, there exists a family
(Nw)wew( s\(1}) of nonnegative reals such that 7 (b) = (ESJ\{ ., typw. Consider this

wem t
famﬂy (/J/w)wew(S\{t} .
For every w € 7 85 \ {t}), let s,, be an (arbitrarily chosen) element of S\ {¢}

satisfying w = 7 (s,,). Such an s,, exists, since w € 7 (S \ {t}). Now,

T0)= Y me = Y per(s)) =1 D s

wen(S\{t})  =m(sw)  wem(S\{t}) wen(S\{t})

(since 7 is linear). Since 7 is linear, we have

T |b— Z PuwSy | =7 (b) =7 Z pwSw | = (b) — 7 (b) = 0.

wemn(S\{t}) wen(S\{t})

=m(b)

We have t € S C cone S. Thus, if v > 0, then vt € cone S (since cone S is closed under
multiplication by a nonnegative scalar). Thus, if v > 0, then clearly holds. Therefore,
we can WLOG assume that v > 0 doesn’t hold for the rest of this proof. Assume this.

So, we know that v > 0 doesn’t hold. In other words, ¥ < 0. Thus, —v > 0. Combined

with A; > 0, this yields ;\—V > 0. Hence, ;\—V - (=A¢t) € coneS (since —\t € coneS
¢

t
(by (100)), and since cone S is closed under multiplication by a nonnegative scalar). Since
. (—A¢t) = vt, this rewrites as vt € cone S. This proves 1}
t

U5 Proof of : Let z € tR be arbitrary. Then, there exists a v € R such that z = vt.
Consider this v. Then, z = vt € cone S (by (101)). Now, forget that we fixed . We have
thus shown that every x € tR satisfies © € cone S. In other words, tR C cone S. Thus, (102))
is proven.
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Thus,

b— Y pwse € Kerm =R
wen(S\{t})
(since 7 is the canonical projection £ — E/ (tR))

C cone S (by (102)). (103)

But every w € 7 (S \ {t}) satisfies s, € S\ {t} € S C coneS. Therefore,

> lwSw € coneS (since any linear combination of finitely many elements
wen(S\{t})
of cone S with nonnegative coefficients must lie in cone S). Combined with (103]),

this shows that S pwSwand b— > S, are two elements of cone S.

wen(S\{t}) wem(S\{t})
Thus, their sum < > uwsw) + <b - > uwsw> must also lie in cone S
wen(S\{t}) wen(S\{t})

(because the sum of any two elements of cone S must lie in cone S). In other
words, cone S contains

Z PwSw | + | 0 — Z wSw | = 0.

wem(S\{t}) wen(S\{t})

In other words, b € coneS. Thus, Assertion D;1 holds. Hence, at least one of
Assertions D;1 and D42 holds.

We have thus proven that at least one of Assertions D;1 and D;2 holds in
Subsubcase 1.1.1.

Next, let us consider Subsubcase 1.1.2. In this subsubcase, Assertion D32 holds.
In other words, there exists an f € (E,/ (tR))" such that f (7 (b)) > 0 and
(every = € cone (mw (S'\ {t})) satisfies f (z) <0). Denote this f by h. Then, h €
(E/ (tR))" satisfies h (7 (b)) > 0 and (every x € cone (7 (S'\ {t})) satisfies h (z) < 0).

It is easy to see that
every s € S satisfies (hom)(s) <0. (104)
m From this, it is easy to see that
every x € cone S satisfies (hom) (z) <0. (105)

16 Proof of :Let se S.
Since 7 is the canonical projection E — E/ (tR), we have m (t{R) = 0, so that 7 (¢) = 0

(since t € tR). Thus, (hom)(t)=h |~ (t)) = h(0) = 0 (since h is linear). Hence, if s =1,
——

=0
then is proven. Therefore, we can WLOG assume that s # ¢ for the rest of this proof.
Assume this.
Since s # t, we have s € S\ {t}. Hence, 7 (s) € 7w (S\ {t}) C cone (7 (S'\ {t})).
Recall that (every = € cone (w (S'\ {t})) satisfies h(x) < 0). Applying this to x = 7 (s),
we obtain h (7 (s)) < 0. Hence, (how) (s) = h (7w (s)) <0. This proves ‘
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[ Also, (hom)(b) = h(m(b)) > 0. Altogether, we have thus shown that
(hom)(b) >0 and (every = € cone S satisfies (h o) (z) <0).

Thus, there exists an f € E* such that f (b) > 0 and (every = € cone S satisfies f (z) < 0)
(namely, f = h o). In other words, Assertion D;2 holds. Hence, at least one of
Assertions D1 and D;2 holds.

We have thus proven that at least one of Assertions D;1 and D;2 holds in
Subsubcase 1.1.2.

Hence, in each of the Subsubcases 1.1.1 and 1.1.2, at least one of Assertions D;1
and D32 holds. Since these Subsubcases 1.1.1 and 1.1.2 cover the whole Subcase
1.1, this yields that at least one of Assertions D;1 and D;2 holds in Subcase 1.1.

Next, let us consider Subcase 1.2. In this subcase, we have A_; # 0. Combined

1
with the fact that A_; is nonnegative, this yields A, > 0. Thus, N exists and
—b

is > 0. Now,
D odhs= ) As+ D s
seSU{—b} seS\{-b} se{—b}

=A_p(=b)
(since S'U {—b} is the union of the disjoint sets S\ {—b} and {-0b})

Z AsS + Ay Z AgS — A

s€S\{—b} seS\{-b}

17 Proof of {105): Let a € cone S. Then,

x € coneS = {Z vss | (Vs)seg is a family of nonnegative reals}
ses

(by the definition of cone S). Hence, there exists a family (v), g of nonnegative reals such
that © = > vss. Consider this (vs)

s€S"
ses
Since z = ) v,s, we have
s€S
(hom) (hom (Z VS ) = Z vs (hom)(s) (since h o 7 is R-linear)
ses ses <0

(since vs>0 dnd

(hom)(s)<0 (by ))

<> 0=o.

ses

This proves (|105)).
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so that

Aph = Z Ass € cone (S'\ {—b})
seS\{—b} cs

(since Ay is nonnegative for every s € S\ {—b})

C cone S.

1 1
Since — > 0, this yields /\—)\_bb € cone S (because coneS is closed under
b b

1
multiplication by a nonnegative scalar). Since /\—)\_bb = b, this rewrites as
—b

b € cone S. In other words, Assertion D1 holds. Hence, at least one of Assertions
D41 and D42 holds.

We have thus proven that at least one of Assertions D1 and D;2 holds in
Subcase 1.2.

Hence, in each of the Subcases 1.1 and 1.2, at least one of Assertions D;1 and
D42 holds. Since these Subcases 1.1 and 1.2 cover the whole Case 1, this yields
that at least one of Assertions D;1 and D;2 holds in Case 1.

Finally, let us consider Case 2. In this case, Assertion Dy2 holds. In other
words, there exists an f € E* such that every x € C satisfies f (z) < 0. Denote
this f by A. Then,

every x € (' satisfies h (x) < 0. (106)

Now, it is easy to see that
every x € cone S satisfies h (z) < 0. (107)

[
Also, —b € SU{=b} C conv.hull(SU{-b}) = C, so that h(=b) < 0 (by
(106))). Since h is linear, we have —h (b) = h (—b) < 0, so that h (b) > 0.

U8 proof — of : Let = € cone S. Then, =z € cone S =
> vss | (Vs),eg is a family of nonnegative reals}. Thus, there exists a family
scS

(Vs)4es of nonnegative reals such that x = 3 v,s. Consider this family (vs),cg-

ses
Every s € S satisfies h(s) < 0 (by (106, applied to z = s (since s € S C SU{-b} C
conv.hull (SU{-b}) = C)) and v, > 0, so that v, h(s) < 0. Now, since x = ) vss, we
—~

seS
>0 <0
have
h(x)=h Z Vs | = Z vsh (s) (since h is R-linear)
seS ses
p 20
S
seS

This proves (107)).
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Altogether, we now know that i (b) > 0 and (every = € cone S satisfies h (z) < 0)
(by (107)). Thus, there exists an f € E* such that f (b) > 0 and
(every x € cone S satisfies f (x) < 0) (namely, f = h). In other words, Assertion
D2 holds. Hence, at least one of Assertions D;1 and D;2 holds.

We have thus proven that at least one of Assertions D;1 and D;2 holds in Case
2.

Hence, in each of the Cases 1 and 2, at least one of Assertions D;1 and D;2
holds. Since these Cases 1 and 2 cover all possibilities, this yields that, in every
situation, at least one of Assertions D1 and D42 holds. Since we know that the
Assertions D1 and D12 cannot hold at the same time, this yields that exactly
one of Assertions D;1 and D2 holds.

Now, forget that we fixed £, S and b. We have thus proven that if £ is a
finite-dimensional R-vector space, S is a finite subset of E such that |S| = n, and
b is an element of F, then exactly one of the following two assertions holds:

Assertion D11: We have b € cone S.

Assertion D12: There exists an f € E* such that f (b) > 0 and
(every = € cone S satisfies f (z) < 0).

In other words, we have proven that Theorem 2.5¢ holds in the case when

|S| = n. This completes the induction step, and thus the induction proof of
Theorem 2.5¢ is complete. O
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