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Errata and comments by Darij Grinberg

The following text is an annotation to Marc A. A. van Leeuwen’s paper “Schur
functions and alternating sums” in its version of 10 November 2006.

This annotation contains corrections of mistakes (or what I believe to be mistakes)
and additional comments (in particular, elaborations of some arguments that I found
insufficiently detailed in the paper). The latter are printed in blue.

Different comments are separated by horizontal lines, like this:

Page 1, Abstract: “Our our goal” should be “our goal”.

Page 1, §0: Lemma 2.2 actually has appeared in the literature (although in a far
less readable form than in your paper). It appears (in an equivalent form) in [DeLeTh,
second equation on p. 29], where it is attributed to Muir (the reference unfortunately
being the whole book “A treatise on the theory of determinants”).

Page 1, §0: “an equally symmetrical doubly alternating expressions” should be
either “an equally symmetrical doubly alternating expression” or “equally symmetrical
doubly alternating expressions”.

Page 4, §1.2: “to transpose semistandard tableau” should be “to transpose semi-
standard tableaux”.

Page 5, Definition 1.2.3: Replace “Tabl (λ/ν)” by “Tabl (λ/µ)”.

Page 5, §1.3: I would replace “and for which deg fn is bounded” by “and for
which the sequence (deg fn)n∈N is bounded”, to make the wording unambiguous.

Page 6, §1.4: Replace “be the sign” by “by the sign”.

Page 6, §1.4: It would be useful to define the notations Sn and ε (σ) here (both
of which are not really standard):

• Given n ∈ N, we let Sn denote the group of all permutations of the set [n] =
{0, 1, . . . , n− 1}.

• Given n ∈ N and σ ∈ Sn, we let ε (σ) denote the sign of σ.

Page 6, §1.4: In the formula “aα
[
X[n]

]
=
∑

σ∈Sn ε (σ)Xσ·α”, you are using the
notation “σ · α” for σ (α). This notation should be defined.

Page 6, §1.4: In (13), replace “X
αj
j ” by “X

αj
i ”.
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Page 7: In the formula for s(3,1)

[
X[3]

]
, replace “(X0 −X1) (X0 −X1) (X1 −X2)”

by “(X0 −X1) (X0 −X2) (X1 −X2)”.

Page 7, proof of Proposition 1.4.1: The sentence “We may assume that α ∈
Nn+1 holds, since otherwise both sα

[
X[n+1]

]
and sα

[
X[n]

]
are zero by definition.”

should be moved to the very beginning of this proof, because already in the very first
sentence this assumption is being used.

Page 8, §1.4: The claim that “The set {sλ | λ ∈ P} forms a Z-basis of Λ” is not
completely obvious (in my opinion) and could use a proof. Here is the simplest proof
that I am aware of:

Proof of the fact that the set {sλ | λ ∈ P} forms a Z-basis of Λ:

• For every n ∈ N, the family
(
sλ
[
X[n]

])
λ∈P; λn=0

is a Z-basis of Λ[n]. In particular,

this family is linearly independent. Hence, the family (sλ)λ∈P must be linearly
independent (because if this family would satisfy a nontrivial linear dependency
relation, then, for some sufficiently high n ∈ N, we could apply the projection
Λ → Λ[n] to this relation, and obtain a nontrivial linear dependency relation for
the family

(
sλ
[
X[n]

])
λ∈P; λn=0

; but this would contradict the fact that the latter

family is linearly independent).

• Now, let us show that the family (sλ)λ∈P spans Λ. Indeed, here are two ways to
prove this:

First proof of the fact that the family (sλ)λ∈P spans Λ: We shall use the notation
ε (α, λ) defined in (19). However, we cannot yet use the equality (19) as its
definition, because we have not yet proven that the set {sλ | λ ∈ P} forms a
Z-basis of Λ (and thus we have not yet proven that the scalar product 〈·, ·〉 is
well-defined). We shall instead use a different (but equivalent) definition of this
notation: If α ∈ C and λ ∈ P , then ε (α, λ) shall be defined as follows:

– If the sequence α [] (defined as in §1.5) has two equal entries, then we set
ε (α, λ) = 0.

– If the sequence α [] has no two equal entries, then there exists a unique
permutation σ ∈ S∞ such that σ (α []) is strictly decreasing. We consider

this σ, and we set ε (α, λ) =

{
ε (σ) , if σ (α []) = λ [] ;

0, if σ (α []) 6= λ []
.

It is rather clear that, with this definition of ε (α, λ), the equality (20) holds for
every α ∈ C. Proposition 2.1 and Lemma 2.2 hold. (Their proofs did not make
use of the fact that the set {sλ | λ ∈ P} forms a Z-basis of Λ; they only used the
notation ε (α, λ).)

Let f ∈ Λ. Then, we can write f [XN] in the form f [XN] =
∑

α∈C cαX
α for some

family (cα)α∈C ∈ ZC of integers. Consider this family (cα)α∈C. Applying Lemma
2.2 to β = (0), we obtain fs(0) =

∑
α∈C cαsα+(0) (and the sum on the right hand
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side of this equality is effectively finite – i.e., all but finitely many of its addends
are zero). Compared with f s(0)︸︷︷︸

=1

= f , this yields

f =
∑
α∈C

cα sα+(0)︸ ︷︷ ︸
=sα

=
∑
α∈C

cα sα︸︷︷︸
=
∑
λ∈P ε(α,λ)sλ

=
∑
α∈C

cα

(∑
λ∈P

ε (α, λ) sλ

)
=
∑
α∈C

∑
λ∈P

cαε (α, λ) sλ.

Thus, f belongs to the Z-linear span of the family (sλ)λ∈P .

Now, let us forget that we fixed f . We thus have shown that every f ∈ Λ belongs
to the Z-linear span of the family (sλ)λ∈P . In other words, the family (sλ)λ∈P
spans Λ.

Second proof of the fact that the family (sλ)λ∈P spans Λ: For every m ∈ N and
every graded ring A, we let A(m) denote the m-th graded component of the ring
A. Then, if n ∈ N and m ∈ N are arbitrary, then

the family
(
sλ
[
X[n]

])
λ∈P; λn=0; |λ|=m is a Z-basis of

(
Λ[n]

)
m

(1)

1.

For every n ∈ N, let πn be the projection Λ[n+1] → Λ[n] defined by the substitution
Xn := 0. Then, πn (f) = f [Xn := 0] for every n ∈ N and f ∈ Λ[n+1]. Hence,
every n ∈ N and λ ∈ P satisfy

πn
(
sλ
[
X[n+1]

])
= sλ

[
X[n+1]

]
[Xn := 0] = sλ

[
X[n]

]
(2)

(by Proposition 1.4.1, applied to α = λ). For every n ∈ N and m ∈ N satisfying
n ≥ m, it is easy to see that

the map πn |(Λ[n+1])m
:
(
Λ[n+1]

)
m
→ Λ[n] is injective (3)

2.

1Proof of (1): Let n ∈ N and m ∈ N. We know that the family
(
sλ
[
X[n]

])
λ∈P; λn=0

is a Z-basis

of Λ[n]. Therefore, for reasons of gradedness, we see that the family
(
sλ
[
X[n]

])
λ∈P; λn=0; |λ|=m is a

Z-basis of
(
Λ[n]

)
m

. Qed.
2Proof of (3): Let n ∈ N and m ∈ N be such that n ≥ m. The family(

sλ
[
X[n+1]

])
λ∈P; λn+1=0; |λ|=m is a Z-basis of

(
Λ[n+1]

)
m

(because of (1), applied to n + 1 instead

of n).
Recall that n ≥ m. Thus, it is easy to see that any λ ∈ P satisfying |λ| = m must also satisfy λn = 0.

Hence, the family
(
sλ
[
X[n]

])
λ∈P; λn+1=0; |λ|=m is a subfamily of the Z-basis

(
sλ
[
X[n]

])
λ∈P; λn=0

of

Λ[n]. Therefore, this family
(
sλ
[
X[n]

])
λ∈P; λn+1=0; |λ|=m is linearly independent.

Now, for every λ ∈ P, we have
(
πn |(Λ[n+1])m

) (
sλ
[
X[n+1]

])
= πn

(
sλ
[
X[n+1]

])
= sλ

[
X[n]

]
(by

(2)). Therefore, the Z-linear map πn |(Λ[n+1])m
sends the Z-basis

(
sλ
[
X[n+1]

])
λ∈P; λn+1=0; |λ|=m of(

Λ[n+1]

)
m

to the family
(
sλ
[
X[n]

])
λ∈P; λn+1=0; |λ|=m. Since the latter family is linearly independent,

this shows that the map πn |(Λ[n+1])m
is injective (since it sends a Z-basis of its domain to a linearly

independent family). This proves (3).
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Now, let f ∈ Λ be homogeneous. Set m = deg f . We know that the family(
sλ
[
X[m]

])
λ∈P; λm=0; |λ|=m is a Z-basis of

(
Λ[m]

)
m

(by (1), applied to n = m).

Thus, there exists a family (wλ)λ∈P; λm=0 of integers such that

f
[
X[m]

]
=

∑
λ∈P; λm=0

wλsλ
[
X[m]

]
(4)

(since f
[
X[m]

]
∈
(
Λ[m]

)
m

). Consider this family. We claim that

f
[
X[n]

]
=

∑
λ∈P; λm=0

wλsλ
[
X[n]

]
for every n ∈ N. (5)

Indeed, we can prove (5) as follows: For n < m, the equality (5) follows by
applying the canonical projection Λ[m] → Λ[n] (defined by the substitutions Xi :=
0 for all i ∈ {n, n+ 1, . . . ,m− 1}) to (4). For n ≥ m, we can prove (5) by
induction over n: The induction base (n = m) follows from (4). For the induction
step, we fix an n ∈ N satisfying n ≥ m, and we assume (as the induction
hypothesis) that

f
[
X[n]

]
=

∑
λ∈P; λm=0

wλsλ
[
X[n]

]
; (6)

our goal is then to prove that

f
[
X[n+1]

]
=

∑
λ∈P; λm=0

wλsλ
[
X[n+1]

]
. (7)

But both f
[
X[n+1]

]
and

∑
λ∈P; λm=0wλsλ

[
X[n+1]

]
are elements of

(
Λ[n+1]

)
m

. We
have

πn
(
f
[
X[n+1]

])
= f

[
X[n]

]
(by the definition of πn)

=
∑

λ∈P; λm=0

wλ sλ
[
X[n]

]︸ ︷︷ ︸
=πn(sλ[X[n+1]])

(by (2))

(by (6))

=
∑

λ∈P; λm=0

wλπn
(
sλ
[
X[n+1]

])
= πn

( ∑
λ∈P; λm=0

wλsλ
[
X[n+1]

])
.

Since the map πn |(Λ[n+1])m
is injective (by (3)), this shows that f

[
X[n+1]

]
=∑

λ∈P; λm=0wλsλ
[
X[n+1]

]
(because both f

[
X[n+1]

]
and

∑
λ∈P; λm=0wλsλ

[
X[n+1]

]
live in

(
Λ[n+1]

)
m

). In other words, (7) holds. This completes the induction step,
and thus (5) is proven. Now, from (5), it follows that f =

∑
λ∈P; λm=0 wλsλ.

Therefore, f belongs to the Z-linear span of the family (sλ)λ∈P .

Now, let us forget that we fixed f . We thus have shown that every homogeneous
f ∈ Λ belongs to the Z-linear span of the family (sλ)λ∈P . Therefore, every f ∈ Λ
belongs to the Z-linear span of the family (sλ)λ∈P (since every f ∈ Λ is a sum of
homogeneous elements of Λ). In other words, the family (sλ)λ∈P spans Λ.

• The family (sλ)λ∈P spans Λ and is linearly independent. Hence, the family (sλ)λ∈P
is a Z-basis of Λ, qed.
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Page 8, §1.5: Remove the comma before “that transforms α [] into λ []” on the
last line of page 8.

Page 10, Proposition 1.5.1: Replace “Z” by “N”.

Page 12: Replace “save intervals” by “safe intervals”.

Page 13: On the second line of page 13, replace “K ′λ/λ,α = K ′λ/λ,α = [α = (0)]” by

“K ′λ/λ,α = Kλ/λ,α = [α = (0)]”.

Page 13, Corollary 2.6: Replace “transposed” by “transpose”.

Page 13, §2: Two lines above (25), replace “transposed” by “transpose”.

Page 14, proof of Proposition 3.2: After “of equal shape”, add “(or, for (30),
transposed shape)”.

Page 14: You prove Proposition 3.2 using a reference to Knuth’s paper [Knu]. Let
me give an alternative proof of Proposition 3.2, which relies only on results that you
prove in your paper.

Second proof of Proposition 3.2: The following proof of Proposition 3.2 uses only
results you prove in your paper. Thus, it would make the paper self-contained.

We first notice some basic properties of minimal symmetric functions (whose proofs
are very easy):

• Every ν ∈ C satisfies

mν [XN] =
∑
β∈C

[
ν+ = β+

]
Xβ. (8)

• Every ν ∈ P satisfies

mν [XN] =
∑
α∈C

[
ν = α+

]
Xα. (9)

• For every ν ∈ P and α ∈ C, we have

(the Xα-coefficient of mν [XN]) =
[
ν = α+

]
. (10)

Now, every λ ∈ P satisfies

sλ [XN] =
∑

T∈SST(λ)

Xwt(T ) (11)

3 and therefore

((the Xα-coefficient of sλ [XN]) = Kλ,α for every α ∈ C) (13)

3Proof of (11): Let λ ∈ P. Define a power series f [XN] ∈ Z [[XN]] by f [XN] =
∑
T∈SST(λ)X

wt(T ).

In §5, you show that the power series f [XN] is symmetric. Since this power series is also homogeneous,
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4. Moreoer, every λ ∈ P satisfies

sλ =
∑
ν∈P

Kλ,νmν (14)

(by (13), since sλ is symmetric). Finally, every λ ∈ P and α ∈ C satisfy

Kλ,α+ = Kλ,α (15)

this shows that f [XN] ∈ Λ. Now,

f [XN] =
∑

T∈SST(λ)

Xwt(T ) =
∑
α∈C
|{T ∈ SST (λ) | wt (T ) = α}|Xα.

Thus, Lemma 2.2 (applied to β = (0) and cα = |{T ∈ SST (λ) | wt (T ) = α}|) yields

fs(0) =
∑
α∈C
|{T ∈ SST (λ) | wt (T ) = α}| sα+(0)︸ ︷︷ ︸

=sα

=
∑
α∈C
|{T ∈ SST (λ) | wt (T ) = α}| sα.

Compared with f s(0)︸︷︷︸
=1

= f , this yields

f =
∑
α∈C
|{T ∈ SST (λ) | wt (T ) = α}| sα. (12)

But in (48), you have proven that
∑
T∈SST(λ) swt(T ) = sλ, so that

sλ =
∑

T∈SST(λ)

swt(T ) =
∑
α∈C
|{T ∈ SST (λ) | wt (T ) = α}| sα = f (by (12)) .

Hence, sλ [XN] = f [XN] =
∑
T∈SST(λ)X

wt(T ), qed.
4Proof of (13): Let λ ∈ P. Let α ∈ C. We havethe Xα-coefficient of sλ [XN]︸ ︷︷ ︸

=
∑
T∈SST(λ)X

wt(T )

(by (11))


=

the Xα-coefficient of
∑

T∈SST(λ)

Xwt(T )

 =
∑

T∈SST(λ)

(
the Xα-coefficient of Xwt(T )

)
︸ ︷︷ ︸

=[α=wt(T )]

=
∑

T∈SST(λ)

[α = wt (T )] =
∑

T∈SST(λ);
α=wt(T )

[α = wt (T )]︸ ︷︷ ︸
=1

(since α=wt(T ))

+
∑

T∈SST(λ);
α6=wt(T )

[α = wt (T )]︸ ︷︷ ︸
=0

(since α6=wt(T ))

=
∑

T∈SST(λ);
α=wt(T )

1 +
∑

T∈SST(λ);
α 6=wt(T )

0

︸ ︷︷ ︸
=0

=
∑

T∈SST(λ);
α=wt(T )

1 = |{T ∈ SST (λ) | α = wt (T )}| · 1

=

∣∣∣∣∣∣∣∣∣∣
{T ∈ SST (λ) | α = wt (T )}︸ ︷︷ ︸

={T∈SST(λ) | wt(T )=α}
=SST(λ,α)

∣∣∣∣∣∣∣∣∣∣
= |SST (λ, α)| = # SST (λ, α) = Kλ,α,
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(by (13), since sλ is symmetric).
Now, we have

f =
∑
λ∈P

〈hλ | f〉mλ for every f ∈ Λ (16)

5. Hence, the two bases (hλ)λ∈P and (mλ)λ∈P of Λ are dual to each other with respect
to the bilinear form 〈· | ·〉.

Now, as you show right before Proposition 3.2, every α ∈ C and β ∈ C satisfy

〈hα | eβ〉 =
∑
λ∈P

Kλ,αK
′
λ,β (19)

and
〈hα | hβ〉 =

∑
λ∈P

Kλ,αKλ,β. (20)

Now, fix β ∈ C. Then, (16) (applied to f = hβ) yields

hβ =
∑
λ∈P

〈hλ | hβ〉mλ =
∑
ν∈P

〈hν | hβ〉︸ ︷︷ ︸
=
∑
λ∈P Kλ,νKλ,β

(by (20), applied to α=ν)

mν

(here, we renamed the summation index λ as ν)

=
∑
ν∈P

(∑
λ∈P

Kλ,νKλ,β

)
mν ,

and thus (13) is proven.
5Proof of (16): Let f ∈ Λ. We need to prove the equality (16). This equality is Z-linear in f .

Hence, we can WLOG assume that f belongs to the basis (sλ)λ∈P of the Z-module Λ. Assume this.
Thus, f = sµ for some µ ∈ P. Consider this µ.

For every ν ∈ P, we have Kµ/(0),ν =
〈
hν | sµ/(0)

〉
(by the definition of Kµ/(0),ν). Since µ/ (0) = µ,

this equality rewrites as
Kµ,ν = 〈hν | sµ〉 . (17)

Now,

∑
λ∈P

〈hλ | f〉mλ =
∑
ν∈P

〈
hν | f︸︷︷︸

=sµ

〉
mν (here, we renamed the summation index λ as ν)

=
∑
ν∈P
〈hν | sµ〉︸ ︷︷ ︸

=Kµ,ν
(by (17))

mν =
∑
ν∈P

Kµ,νmν . (18)

On the other hand, f = sµ =
∑
ν∈P Kµ,νmν (by (14), applied to λ = µ). Comparing this with (18),

we obtain f =
∑
λ∈P 〈hλ | f〉mλ. This proves (16).
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so that

hβ [XN] =
∑
ν∈P

(∑
λ∈P

Kλ,νKλ,β

)
mν [XN]︸ ︷︷ ︸

=
∑
α∈C[ν=α+]Xα

(by (9))

=
∑
ν∈P

(∑
λ∈P

Kλ,νKλ,β

)(∑
α∈C

[
ν = α+

]
Xα

)

=
∑
α∈C

∑
ν∈P

(∑
λ∈P

Kλ,νKλ,β

)[
ν = α+

]
︸ ︷︷ ︸

=
∑
λ∈P Kλ,α+Kλ,β

Xα =
∑
α∈C

∑
λ∈P

Kλ,α+︸ ︷︷ ︸
=Kλ,α

(by (15))

Kλ,β

Xα

=
∑
α∈C

(∑
λ∈P

Kλ,αKλ,β

)
Xα.

Hence,

∑
α∈C

(∑
λ∈P

Kλ,αKλ,β

)
Xα = hβ [XN] =

∑
α∈C

]Mα,βX
α (by (10)) .

Comparing coefficients in this equality, we conclude that∑
λ∈P

Kλ,αKλ,β = ]Mα,β.

This proves (29). Similarly, we can prove (30) (by applying (16) to f = eβ instead of
f = hβ, and by using (19) instead of (20)). The proof of Proposition 3.2 is complete.

(Alternatively, it is also possible to prove Proposition 3.2 by deriving it from the
identities (33) and (34), which are more widespread than Proposition 3.2 and which
can be proven in various ways, not only using the RSK algorithm.)

Page 15: “the the image” should be “the image”.

Page 15: You write: “From the proof of proposition 2.1 we see that if λ ∈ Nl, then
one needs to consider only permutations σ ∈ Sl”. By this, you mean that if λ ∈ Nl

and if σ ∈ S∞ is a permutation satisfying σ (λ []) ≥ µ [], then

σ ∈ Sl. (21)

I do not see how (21) is supposed to follow from the proof of Proposition 2.1. Here
is, instead, my proof of (21):

Proof of (21): Let λ ∈ Nl, and let σ ∈ S∞ be a permutation satisfying σ (λ []) ≥ µ [].
We need to prove (21). Indeed, assume the contrary (for the sake of contradiction).
Thus, σ /∈ Sl. Thus, there exists some i ∈ {l, l + 1, l + 2, . . .} such that σ (i) 6= i.
Let j be the largest such i. Thus, j is an element of {l, l + 1, l + 2, . . .} and satisfies
σ (j) 6= j. From j ∈ {l, l + 1, l + 2, . . .}, we obtain j ≥ l.
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Now, we have σ (j) < j 6. Now, set i = σ (j). Thus, σ−1 (i) = j.
We have λ ∈ Nl, and thus λw = 0 for every w ∈ N satisfying w ≥ l. Applying this to

w = j, we obtain λj = 0. The definition of λ [j] now yields λ [j] = λj︸︷︷︸
=0

−1−j = −1−j,

so that

−1− j = λ

 j︸︷︷︸
=σ−1(i)

 = λ
[
σ−1 (i)

]
= (λ [])σ−1(i) = (σ (λ []))i

(by the definition of σ (λ []))

≥ (µ [])i (since σ (λ []) ≥ µ [])

= µ [i] = µi︸︷︷︸
≥0

−1− i︸︷︷︸
=σ(j)<j

(by the definition of µ [i])

> −1− j.

This is absurd. This contradiction shows that our assumption was wrong. Hence, (21)
is proven.

Page 16, §3: You claim that “we may apply the automorphism ω to equation
(37)” to obtain the equality (40). This is correct, but in my opinion could use a bit
more justification. You are tacitly using the fact that

ω
(
sλ/µ

)
= sλt/µt for any λ ∈ P and µ ∈ P . (22)

The proof of (22) is simple, but not something I would leave to the reader:
Proof of (22): The basis (sλ)λ∈P of the Z-module Λ is orthonormal with respect

to the scalar product 〈· | ·〉 (because of the definition of this scalar product). In other
words, we have

〈sλ | sµ〉 = [λ = µ] for any λ ∈ P and µ ∈ P . (23)

Furthermore,

〈ω (f) | ω (g)〉 = 〈f | g〉 for any f ∈ Λ and g ∈ Λ (24)

7.
Recall that ω is a ring morphism (since ω coincides with the ring morphism Λ→ Λ

that sends hi 7→ ei for all i > 0). Thus,

sµtsνt = ω (sµsν) for any µ ∈ P and ν ∈ P (25)

6Proof. Assume the contrary. Thus, σ (j) ≥ j. Combined with σ (j) 6= j, this yields σ (j) > j. Now,
σ is injective (since σ ∈ S∞). Thus, from σ (j) 6= j, we obtain σ (σ (j)) 6= σ (j). Also, σ (j) ≥ j ≥ l,
so that σ (j) ∈ {l, l + 1, l + 2, . . .}.

But recall that j is the largest i ∈ {l, l + 1, l + 2, . . .} such that σ (i) 6= i. Hence, every i ∈
{l, l + 1, l + 2, . . .} such that σ (i) 6= i satisfies i ≤ j. Applying this to i = σ (j), we obtain σ (j) ≤ j
(since σ (j) ∈ {l, l + 1, l + 2, . . .} and σ (σ (j)) 6= σ (j)). This contradicts σ (j) > j. This contradiction
proves that our assumption was wrong, qed.

7Proof of (24): The equality 〈ω (f) | ω (g)〉 = 〈f | g〉 is Z-linear in each of f and g. Thus, it suffices
to prove it in the case when f and g belong to the basis (sλ)λ∈P of the Z-module Λ. But in this case,

it boils down to the identity
[
αt = βt

]
= [α = β] for any α ∈ P and β ∈ P (because of (23)), which

identity is obvious.
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8.
Every f ∈ Λ satisfies

f =
∑
λ∈P

〈f | sλ〉︸ ︷︷ ︸
=〈sλ|f〉

sλ =
∑
λ∈P

〈sλ | f〉 sλ =
∑
ν∈P

〈sν | f〉 sν (26)

(here, we have renamed the summation index λ as ν).
Let λ ∈ P and µ ∈ P . The definition of ω yields ω (sλ) = sλt . Applying (26) to

f = sλ/µ, we obtain

sλ/µ =
∑
ν∈P

〈
sν | sλ/µ

〉︸ ︷︷ ︸
=〈sµsν |sλ〉

(since 〈sµsν |sλ〉=〈sν |sλ/µ〉
(by (17), applied to f=sν))

sν =
∑
ν∈P

〈sµsν | sλ〉 sν . (27)

The same argument (applied to λt and µt instead of λ and µ) yields

sλt/µt =
∑
ν∈P

〈sµtsν | sλt〉 sν =
∑
ν∈P

〈
sµtsνt︸ ︷︷ ︸

=ω(sµsν)
(by (25))

| sλt︸︷︷︸
=ω(sλ)

〉
sνt︸︷︷︸

=ω(sν)
(since ω(sν)=sνt

(by the definition of ω))(
here, we have substituted νt for ν in the sum,
because the map P → P , ν 7→ νt is a bijection

)
=
∑
ν∈P

〈ω (sµsν) | ω (sλ)〉︸ ︷︷ ︸
=〈sµsν |sλ〉
(by (24))

ω (sν)

=
∑
ν∈P

〈sµsν | sλ〉ω (sν) = ω


∑
ν∈P

〈sµsν | sλ〉 sν︸ ︷︷ ︸
=sλ/µ

(by (27))

 (since the map ω is Z-linear)

= ω
(
sλ/µ

)
.

This proves (22).

Page 18: Replace “by a single factor hj” by “by a single factor hβj” (or something
like this, but not hj, since j already means something different here).

Page 19: In the paragraph that begins with “Now suppose to the contrary” and
ends with “of the sequence (µt + col (M)) []”, every appearance of “β(i)” should be
replaced by “β(i+1)”, and every appearance of “β(i−1)” should be replaced by “β(i)”.
Also, the “αi−1” should be replaced by “αi”. (The reason for this is that the claim

8Proof of (25): Let µ ∈ P and ν ∈ P. Since ω is a ring morphism, we have ω (sµsν) =
ω (sµ)︸ ︷︷ ︸
=sµt

(by the definition of ω)

ω (sν)︸ ︷︷ ︸
=sνt

(by the definition of ω)

= sµtsνt . This proves (25).
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that “β(i) was obtained by adding the binary composition Mi to the partition β(i−1)”
is false; the addition of Mi rather turns β(i) into β(i+1).)

Page 25: You claim that “Conversely any entry m+ 1 for which this condition in
terms of α′ holds, and for which k is minimal, cannot have an entry m in the same
column”. This is true, but I find this rather nontrivial.
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