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This is a BETA VERSION and has never been systematically proofread. Please
notify me of any mistakes, typos and hard-to-understand arguments you
find![f]

Thanks to Martin Brandenburg for pointing out several flaws.

At the moment, section 1 is missing a proof (namely, that the representation ring is
a special A-ring; I actually don’t know this proof).

Most exercises have solutions or at least hints given at the end of this text; however,
some do not.

What is this?

These notes try to cover some of the most important properties of A\-rings with proofs.
They were originally meant to accompany a talk at an undergraduate seminar, but
quickly grew out of proportion to what could fit into a talk. Still they lack in any-
thing really deep. At the moment, most of what is written here, except for the Todd
homomorphism section, is also in Knutson’s book [Knut73], albeit sometimes with dif-
ferent proofs. Part of the plan was to add some results from the Fulton/Lang book
[FulLan85] with better proofs, but this is not currently my short-term objective, given
that I don’t understand much of [FulLan85] to begin with. Most of the notes were
written independently of Yau’s 2010 text [YaulO|, but inevitably intersect with it.

I do not introduce, nor use, the A-ring of symmetric functions (see [Knut73] and
[HazewiO8H, §9, §16] for it). My avoidance of symmetric functions has no good reason}
unfortunately, it makes part of the notes (particularly, everything related to the -
verification principle) unnecessarily unwieldy. This is one of the things I would have
done differently if I were to rewrite these notes from scratch.

!my email address is A@B.com, where A=darijgrinberg and B=gmail
2Actually, the reason is that I have started writing these notes before I understood symmetric
functions well.



0. Notation and conventions

Some notations that we will use later on:

e In the following, N will denote the set {0,1,2,...}. The elements of this set N
will be called the natural numbers.

e When we say “ring”, we will always mean “commutative ring with unity”. A “ring
homomorphism” is always supposed to send 1 to 1. When we say “R-algebra”
(with R a ring), we will always mean “commutative R-algebra with unity”.

e Let R be a ring. An extension ring of R will mean a ring S along with a ring
monomorphism R — S. We will often sloppily identify R with a subring of S if
S is an extension ring of R; we will then also identify the polynomial ring R [T]
with a subring of the polynomial ring S [T], and so on. An extension ring S of
R is called finite-free if and only if the R-module S is finite-free (i. e., a free
R-module with a finite basis).

o We will use multisets. If I is a set, and u; is an object for every ¢ € I, then we
let [u; | ¢ € I] denote the multiset formed by all the u; where i ranges over I (this
multiset will contain each object o as often as it appears as an u; for some ¢ € ).
If I ={1,2,...,n} for some n € N, then we also denote the multiset [u; | i € ]
by [u1, ug, ..., Uy).

e We have not defined A-rings yet, but it is important to mention some discrepancy
in notation between different sources. Namely, some of the literature (including
[Knut73|, [Hazewi08a], [HazewiO8b|] and [Yaul0]) denotes as pre-A-rings what we
call A\-rings and denotes as A-rings what we call special A-rings. Even worse, the
notations in [FulLan85] are totally inconsistent’]

e When we say “monoid”, we always mean a monoid with a neutral element. (The
analogous notion without a neutral element is called “semigroup”.) “Monoid
homomorphisms” have to send the neutral element of the domain to the neutral
element of the target.

e Most times you read an expression with a > or a [] sign in mathematical liter-
n

ature, you know clearly what it means (e. g., the expression [] sink means the
k=1
product (sinl)-(sin2)-...-(sinn)). However, some more complicated expressions

with ) and [] signs can be ambiguous, like the expression [][ sink-n: Does this
k=1

expression mean <H sin k) -nor [[ ((sink)-n)? The answer depends on the
k=1 k=1

author of the text.

In this text, the following convention should be resorted to when parsing an ex-

pression with > or [] signs:

The argument of a [ [ sign ends as early as reasonably possible. Here, “reasonably

30ften, “A-ring” in [FulLan85] means “A-ring with a positive structure” (such A-rings are automati-
cally special), but sometimes it simply means “A-ring”.



possible” means that it cannot end before the last time the index of the product

n
appears (e. g., the argument of [] sink-n cannot end before the last appearance
k=1

of k), that it cannot end inside a bracket (e. g., the argument of [] ((sink) - n)
k=1
cannot end before the end of the n), that it cannot end between a symbol and its

exponent or index or between a function symbol or its arguments, and that the

usual rules of precedence have to apply. For example, the expression [] sink -n
k=1

has to be read as (H sin k) -n, and the expression [] sink-(cosk)”k-(n + 1) kn
k=1 k=1

has to be read as (H (sink - (cos k)? - (n+1) k)) n.
k=1
Similar rules apply to the parsing of a sum expression.

e Let Rbearing. Let P € R[X1,Xo,..., X, Y1,Ys,...,Y,] be a polynomial over
R in m + n variables. Then, the total degree of P with respect to the variables
X1, Xo,...,X,, is defined as the highest d € N such that at least one monomial
X XS XY Y2 - Y with ag 4+ ag + -+ + a,, = d appears in P with a
nonzero coefficient. (This total degree is defined to be —oo if P = 0.) Similarly,
the total degree of P with respect to the variables Y7, Y5, ... Y, is defined.

e The similarly-looking symbols A (a capital Lambda) and A (a wedge symbol,
commonly used for the logical operator “and”) will have completely different
meanings. The notation A’V (where R is a ring, V is an R-module and i is a
nonnegative integer) will stand for the i-th exterior power of the R-module V.
On the other hand, the notation A (K') (where K is a ring) will stand for a certain
ring defined in Chapter 4; this ring is not the exterior algebra of K (despite some
authors denoting the latter by A (K)).

1. Motivations

What is the point of A-rings?

Fulton/Lang [FulLan85] motivate A-rings through vector bundles. Here we are go-
ing for a more elementary motivation, namely through representation rings in group
representation theory:

1.1. Representation rings of groups

Consider a finite group G and a field k£ of characteristic 0. In representation theory,
one define the so-called representation ring of the group G over the field k. This ring
can be constructed as follows:

We consider only finite-dimensional representations of G.

Let Rep, G be the set of all representations of the group G over the field k. (We
disregard the set-theoretic problematics stemming from the notion of such a big set.
If you wish, you can call it a class or a SET instead of a set, or restrict yourself to a
smaller subset containing every representation up to isomorphism.)



Let FRep,, G be the free abelian group on the set Rep, G. Let I be the subgroup

I=(U-V | UandV are two isomorphic representations of G)
+ (U V —U—-V | U andV are two representations of G)

of the free abelian group FRep, G (written additively). Then, FRep, G /I is an abelian
group. Whenever U is a representation of GG, we should denote the equivalence class
of U € FRep, G modulo the ideal I by U; however, since we are going to work in
FRep, G /I throughout this Section 1 (because there is not much of interest to do
in FRep, G itself), we will simply write U for this equivalence class. This means
that whenever U and V are two isomorphic representations of G, we will simply write
U =V, and whenever U and V are two representations of G, we will simply write
U+V=UaqV.

Denote by 1 the equivalence class of the trivial representation of G on k (with
every element of G acting as identity) modulo /. We now define a ring structure
on FRep, G I by letting 1 be the one of this ring, and defining the product of two
representations of G' as their tensor product (over k). This is indeed a ring structure
because we have isomorphisms

U(VeaW)=2UaV)aW,

UaeV)oW2UW)d (Ve W),

U(VeW)2UV)e(UeW),
UV=Vvel,
1U=U®12U,
0U=2U®0=0

for any representations U, V and W, and because tensor products preserve isomor-
phisms (this means that if U, V and W are three representations of G such that
V =2 W (as representations), then U@V =2U W and Vo U =W & U).

The ring FRep, G/1 is called the representation ring of the group G over the field
k. The elements of FRep, G /I are called virtual representations.

This ring FRep, G /I is helpful in working with representations. However, its ring
structure does not yet reflect everything we can do with representations. In fact, we can
build direct sums of representations (this is addition in FRep, G I) and we can build
tensor products (this is multiplication in FRep, G /I), but we can also build exterior
powers of representations, and we have no idea yet what operation on FRep, G /I this
entails. So we see that the abstract notion of a ring is not enough to understand all of
representation theory. We need a notion of a ring together with some operations that
“behave like” taking exterior powers. What axioms should these operations satisfy?

Every representation V of a group G satisfies A°V 2= 1 and A'V = V. Besides, for
any two representations V' and W of G and every k € N, there exists an isomorphism

k
NV ew) =PV AW (1)
(see Exercise 1.1). In the representation ring, this means

k
VW) =D (AV) - (AW
=0



This already gives us three axioms for the operations that we want to introduce. If we
extend these three axioms to arbitrary elements of FRep, G /I (and not just actual
representations), we can compute AF of virtual representations (and it turns out that
it is well-defined), and we obtain the notion of a A-ring.

We can still wonder whether these axioms are all that we can say about group
representations. The answer is no: In addition to the formula , there exist relations
of the form

NV RW) = Py (NV APV, AV AW NPT, L N
for every k € N and any two representations V and W of G (2)

and

AN (N (V) = Poy (NVIAPY, L ANV
for every k € N, j € N and any representation V of G, (3)

where P, € Zoq,ag, ..., ay, b1, B, ..., Bx] and Py; € Z[oy, as, ..., ap;] are “universal”
polynomials (i. e., polynomials only depending on k resp. on k and j, but not on V,
W or GG). These polynomials are rather hard to write down explicitly, so it will need
some theoretical preparation to define themﬁ

These relations and , generalized to arbitrary virtual representations, abstract
to the notion of a special A\-ring. So FRep, G I is not just a A-ring; it is a special
A-ring. However, it has even more structure than that: It is an augmented \-ring
with positive structure. “Augmented” means the existence of a ring homomorphism ¢ :
FRep, G /I — 7Z (a so-called augmentation) with certain properties; we will list these
properties later, but let us now notice that for our representation ring FRep, G I, the
obvious natural choice of € is the homomorphism which maps every representation V'
of G todimV € Z. A “positive structure” is a subset of K closed under addition and
multiplication and containing 1, and satisfying other properties; in our case, the best
choice for a positive structure on FRep, G I is the subset

{V'| V is a representation of G} \ 0 C FRep, G /1.

The reader may wonder how much the ring FRep, G,/ I actually tells us about
representations of GG. For example, if U and V are two representations of G such that
U =V in FRep, G /I, does this mean that U = V ? It turns out that this is true,
thanks to the cancellative property of representation theoryﬂ hence, abstract algebraic

4Note that these polynomials can have negative coefficients, so that the equality (2|) does not neces-
sarily mean an isomorphism of the kind

AP (V @ W) 2 direct sum of some tensor products of some A’V and AJ W,
but generally means an isomorphism of the kind

AR (V @ W) @ direct sum of some tensor products of some A’V and A W

> (another) direct sum of some tensor products of some A’V and A W,

and similarly (3) has to be understood.

5This is the property that whenever U, V and W are three representations of a finite group G such
that U W =2 VW (where we recall once again that “representation” means “finite-dimensional
representation” for us!), then U = V. This can be proven using the Krull-Remak-Schmidt theorem,
or, when the characteristic of the field is 0, using semisimplicity of & [G].



identities that we can prove to hold in arbitrary special A-rings yield actual isomorphies
of representations of finite groups. (Of course, they only yield them once we will have
proven that FRep, G /I is a special A-ring. At the moment, this is not proven in this
text, although it is rather easy to show using character theory.)

1.2. Grothendieck rings of groups

The situation gets more complicated when the field over which we are working is not of
characteristic 0. In this case, it turns out that FRep, G /I is not necessarily a special
A-ring any more (although still a A-ring by Exercise 1.1). If we insist on getting a
special A\-ring, we must modify our definition of I to

I=(V-U-W | U,V and W are three representations of G such that
there exists an exact sequence 0 - U =V — W — 0).

The resulting ring FRep,, G /I is called the Grothendieck ring of representations of G
over our field. A proof that it is a special A-ring is sketched in [Seiler88, Example on
page 95, but I do not understand it. Anyway this result is not as strong as in charac-
teristic 0 anymore, because the equality U = V in the Grothendieck ring FRep, G_/T
does not imply U = V as representations of G when char k # 0. So the Grothendieck
ring is, in some sense, a pale shadow of the representation theory of G.

1.3. Vector bundles

Vector bundles over a given compact Hausdorff space are similar to representations of
a given group in several ways: They are somehow “enriched” vector space structures (a
vector bundle is, roughly speaking, a family of vector spaces with additional topological
structure; a representation of a group is a vector space with a group action on it), so one
can form direct sums, tensor products and exterior powers of both of these. Hence, it is
not surprising that we can define a A-ring structure on a kind of “ring of vector bundles
over a space” similarly to the A-ring structure on the representation ring of a group.
However, just as in the case of representations of a group over nonzero characteristic,
we must be careful with vector bundles, because this “ring of vector bundles over
a space” actually does not consist of vector bundles, but of equivalence classes, and
sometimes, different vector bundles can lie in one and the same equivalence class (just
as representations of groups are no longer uniquely determined by their equivalence
class in the representation ring when the characteristic of the ground field is not 0).
This “ring of vector bundles” is denoted by K (X), where X is the base space, and
is the first fundamental object of study in K-theory. We will not delve into K-theory
here; we will only provide some of its backbone, namely the abstract algebraic theory
of A-rings (which appear not only in K-theory, but also in representation theory and
elsewhere).

1.4. Exercises

Exercise 1.1. Let GG be a group, and let V and W be two representations
of G. Let k e N. Let tyy : V -V @&W and 1y : W — V & W be the

canonical injections.



For every i € {0,1, ..., k}, we can define a vector space homomorphism
i AV @ AW = AV (VW)
by requiring that it sends

(v Avg Ao A ;) @ (W Awg A cod A wg—y) to
vy (V1) Avy (02) Ao Ay (03) At (w1) At (we) A oo A by (Wg—;)

for all vy, vs,...,v; € V and wy, ws, ..., wi_; € W.

(a) Prove that this vector space homomorphism ®; is a homomorphism
of representations.

(b) Prove that the vector space homomorphism

k

PAVANTW 5 AV oW)

i=0
composed of the homomorphisms ®; for all i € {0,1,...,k} is a canonical
isomorphism of representations.

2. )\-rings

2.1. The definition

The following definition introduces our most important notions: that of a A-ring, that
of a A-ring homomorphism, and that of a sub-A-ring. While these notions are rather
elementary (and much easier to define than the ones in Sections 5 and later), they are
the basis of our theory.

Definition. 1) Let K be aring. Let \': K — K be a mappingﬁ for every
1 € N such that

MN(r)=1and M (z) =2 for every x € K. (4)

Assume that

k

Moz +y) = Z)\i (z) N7 (y) for every k€N, z € K and y € K.

=0

| ()
Then, we call (K, (\),cy) & A-ring. We will also call K itself a A-ring if
there is an obvious (from the context) choice of the sequence of mappings
(A"),eny which makes (K, (A\),.y) a A-ring.
2) Let (K, (A\),oy) and (L, (1)) be two A-rings. Let f : K — L be
a map. Then, f is called a A-ring homomorphism (or homomorphism of
A-rings) if and only if f is a ring homomorphism and satisfies y’o f = fo\’
for every ¢ € N.

5Here, “mapping” actually means “mapping” and not “group homomorphism” or “ring homomor-
phism”.



3) Let (K, (\),cy) be a A-ring. Let L be a subring of K. Then, L is
said to be a sub-A-ring of (K, (X'),.y) if and only if X (L) C L for every
i € N. Obviously, if L is a sub-A-ring of (K, (X"),.y), then (L, (X |1);cy) is
a A-ring, and the canonical inclusion L — K is a A-ring homomorphism.

2.2. An alternative characterization

We will now give an alternative characterization of A-rings:

Theorem 2.1. Let K be aring. Let \': K — K be a mappin{] for every
i € N such that \°(z) = 1 and X (z) = z for every x € K. Consider the
ring K [[T]] of formal power series in the indeterminate 7" over the ring K.
Define a map Ay : K — K [[T]] by

Z N (z) T for every x € K.
1€N
Note that the power series Ay (x) = >_ A\ (x) T* has the coefficient \° (z) =
ieN
1 before TY; thus, it is invertible in K [[T7]].

(a) Then,

Ar () - Ar (y
if and only if ( (A ZeN) is a A-ring.
(b) Let (K, (X\'),.y) be a A-ring. Then,

)=Ar(z+y) for every v € K and every y € K

Ar(0) =1
A (—2) = (A (2) 7! for every z € K;
Ar (z) - A (y) = Ar (z+y) for every x € K and every y € K.

(c) Let (K,(N),cy) and (L, (1');cy) be two A-rings. Consider the map
Ar : K — K [[T]] defined above, and a similarly defined map ur : L —
L[[T]] for the A-ring L. Let f : K — L be a ring homomorphism. Consider
the rings K [[T']] and L[[T]]. Obviously, the homomorphism f induces a
homomorphism f [[T]] : K [[T]] — L[[T]] (defined by

Wi (Z T) =Y f ()T

ieN ieN
for every ZaiTi € K|[[T)] with a; € K
ieN
).
Then, f is a A-ring homomorphism if and only if up o f = f[[T]] o Ar.

(d) Let (K, (\),cy) be a A-ring. Then, A" (0) = 0 for every positive integer
1.

"Here, “mapping” actually means “mapping” and not “group homomorphism” or “ring homomor-

phism”.
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Proof of Theorem 2.1. (a) Every x € K and every y € K satisfy

Ar (z) - Ar (y) = (Z N () TZ) . (Z X (y) Ti)

(smce A (x Z AZ )T  and Ar (y Z )\Z ’)

€N €N

_ZZ}\z )\kz Tk

keN i=0
(by the definition of the product of two formal power series)

and

r(x+y) = ZX T+ y) Z':ZA’“(:Cer)T’“

i€EN keN

Hence, the equation Ay (z) - Ay (y) = Ar (z + y) is equivalent to > Z N (z) N (y) -

}eN i=0
k
TF = 57 XF (2 + y) T*, which, in turn, means that every k € N satisfies > A (z) M= (y) =
keN i=0

M (2 +y), and this is exactly the property from the definition of a A-ring. Thus,
we have A\r () - Ar (y) = Ar (z +y) for every z € K and every y € K if and only if
(K, (A\"),oy) is a A-ring. This proves Theorem 2.1 (a).

(b) Theorem 2.1 (a) tells us that Ay (x) - Ar (y) = Ar (z +y) for every z € K and
every y € K if and only if (K, (\’),.y) is a A-ring. Since we know that (K, (X'), ) is
a A-ring, we thus conclude that

Ar (z) - M (y) = Ar (z+y) for every x € K and every y € K. (6)

Applied to z = y = 0, this rewrites as Ay (0) - Az (0) = Az (04 0) = Ay (0), what yields
Ar (0) =1 (since Az (0) is invertible in K [[T7]]).
On the other hand, every x € K satisfies

Ar (2) - Ar (—=z) = Ar (0) (by (6), applied to y = —x)
=1,

hence Ap (—z) = (Ar (z))~". Theorem 2.1 (b) is thus proven.
(c) We have (uro f)(x) = pr(f(z)) = Z w' (f (x))T* (by the definition of pur)

and (f [[T]] o Ar) () = (f[[T]) Az (2)) = (f [[T]]) (%/\ (z) Ti) = g\]f(ki ()T
for every x € K. Hence, ur o f = f[[T]] o Ar is equivalent to 3 ' (f (2))T" =
> [ (X' (2)) T" for every z € K, which in turn is equivalent to ' (}el(ic)) = f (N (x))
E)Ij every z € K and every i € N, which in turn means that ' o f = f o A\ for every
1 € N, which in turn means that f is a A-ring homomorphism. This proves Theorem

2.1 (c).
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(d) Applying the equality Ay (z) = Y. AN (z)T" to * = 0, we obtain A (0) =
i€N
STAY(0)T?. But since Ap (0) = 1, this rewrites as 1 = > A" (0) T%. For every pos-
ieN ieN
itive integer 7, the coefficient of T* on the left hand side of this equality is 0, while the
coefficient of 7% on the right hand side of this equality is A’ (0). Since the coefficients
of T% on the two sides of an equality must be equal, this yields 0 = A" (0) for every

positive integer i. This proves Theorem 2.1 (d). O

The map Ar defined in Theorem 2.1 will follow us through the whole theory of A-
rings. It is often easier to deal with than the maps A, since (as Theorem 2.1 (a) and
(b) show) Ar is a monoid homomorphism from (K, +) to (K [[T]], ) when (K, (\"),_y)
is a A-ring. Many properties of A-rings are easier to write in terms of Ay than in terms of
the separate \'. We will later become acquainted with the notion of “special A-rings”,
for which A7 is not only a monoid homomorphism but actually a A-ring homomorphism
(but not to K [[T]] but to a different A-ring with a new ring structure).

2.3. )-ideals

Just as rings have ideals and Lie algebras have Lie ideals, there is a notion of A\-ideals
defined for A-rings. Here is one way to define them:

Definition. Let (K, (A)),.y) be a A-ring. Let I be an ideal of the ring K.
Then, I is said to be a A-ideal of K if and only if every t € I and every
positive integer i satisfy \* (¢) € I.

Just as rings can be factored by ideals to obtain new rings, and Lie algebras can be
factored by Lie ideals to obtain new Lie algebras, we can factor A-rings by A-ideals and
obtain new A-rings:

Theorem 2.2. Let (K, (\),.y) be a A-ring. Let I be a A-ideal of the ring
K. For every z € K, let Z denote the residue class of z modulo /. (This Z
lies in K 1.)

(a) If v € K1 is arbitrary, and y € K and z € K are two elements of K
satisfying ¥ = x and Z = z, then A (y) = X\ (2) for every ¢ € N.

(b) For every i € N, define a map PR K/ I — K /I as follows: For
every x € K /I, let \' (x) be defined as A\ (w), where w is an element of K
satisfying w = x. (This is well-defined because the value of A? (w) does not

depend on the choice of w )
Then, (K/I, (X)
i€N

(c) The canonical projection K — K /I is a A-ring homomorphism.

) is a A-ring.

The proof of Theorem 2.2 is given in the solution of Exercise 2.3.
Along with Theorem 2.2 comes the following result:

Theorem 2.3. Let (K, (\),oy) and (L, (1)) be two A-rings. Let f :
K — L be a A-ring homomorphism. Then, Ker f is a A-ideal.

The proof of Theorem 2.3 is given in the solution of Exercise 2.4.

8In fact, any two choices of w lead to the same value of A\ (w) (this follows from Theorem 2.2 (a)).
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2.4. Exercises

Ezercise 2.1. Let (K, (X),oy) and (L, (1');cy) be two A-rings. Let f :
K — L be a ring homomorphism. Let E be a generating set of the Z-
module K.

(a) Prove that f is a A-ring homomorphism if and only if every e € E
satisfies (ur o f) () = (f[[T]] o Ar) (e).

(b) Prove that f is a A-ring homomorphism if and only if every e € E
satisfies (u o f) (e) = (f o X' (e) for every i € N.

Ezercise 2.2. Let (K, (X'),.y) be a A-ring. Let L be a subset of K which
is closed under addition, multiplication and the maps A". Assume that
0 € Land 1 € L. Then, the subset L — L of K (this subset L — L is defined
by L—L={¢(—{|te L, {'e L})isasub-Aring of K.

Exercise 2.3. Prove Theorem 2.2.

Ezxercise 2.4. Prove Theorem 2.3.

3. Examples of \-rings

3.1. Binomial \-rings

Before we go deeper into the theory, it is time for some examples.
Obviously, the trivial ring 0 (the ring satisfying 0 = 1) along with the trivial maps
A0 — 0is a A-ring. Let us move on to more surprising examples:

Theorem 3.1. For every i € N, define a map A : Z — Z by X' (z) = <x)
i

for every z € Z. ﬂ Then, (Z, (/\i)ieN) is a A-ring.

Proof of Theorem 3.1. Trivially, \° (x) = 1 and A (z) = x for every z € Z. The only
challenge, if there is a challenge in this proof, is to verify the identity for K = 7.
In other words, we have to prove that

(") :Z() (")) )

for every k € N, x € Z and y € Z. This is the so-called Vandermonde convolution
identity, and various proofs of it can easily be found in the literaturd™| Probably
the shortest proof of is the following: If we fix £ € N, then (7)) is a polynomial
identity in both x and y (indeed, both sides of are polynomials in x and y with
rational coefficients), and thus it is enough to prove it for all natural x and y (because
a polynomial identity holding for all natural variables must hold everywhere). But for

x—1)- .- (x—i+1)
i!
OFor example, it follows immediately from [Grin-detn, Theorem 3.29].

9Note that (f) is defined to be ( for every x € R and ¢ € N.
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x and y natural, we have

z+y k T y T x Y y
TF = T - Ti
> ()G -3 0)r -2 0)
k=0 =0 =0 7=0
—(1+7)° —(14T)"
(by the (by the

binomial formula) binomial formula)
z+y r+
_(1+T)w.(1+T)y—(1+T)”+y—Z( y)T’f

(by the binomial formula)

in the polynomial ring Z [T]. Comparing coefficients before T% in this equality, we
quickly conclude that holds for each £ € N. Thus, is provenB This proves
Theorem 3.1. O

Our next example is a generalization of Theorem 3.1:

Definition. Let K be a ring. We call K a binomial ring if and only if
none of the elements 1, 2, 3, ... is a zero-divisor in K, and n! | - (z — 1) -
. (x —i+41) for every x € K and every n € N.

Theorem 3.2. Let K be a binomial ring. For every i € N, define a map
N K — Kby )\ (z) = (x) for every x € K (where, again, (l) is defined
7 i

(@=1) (-1 +1)

x
to be .
7

). Then, (K, (\),oy) is a A-ring.

Such A-rings K are called binomial \-rings.

Proof of Theorem 3.2. Obviously, \° (x) = 1 and A\ (z) = x for every x € K, so it only
remains to show that is satisfied. This means proving for every k e N,z € K
and y € K. But this is easy now: Fix k € N. Then, is a polynomial identity in
both x and y, and since we know that it holds for every x € Z and every y € Z (as we
have seen in the proof of Theorem 3.1), it follows that it holds for every x € K and
every y € K (since a polynomial identity holding for all integer variables must hold
everywhere). This completes the proof of Theorem 3.2. m

Obviously, the A-ring (Z, (/\i)ieN) defined in Theorem 3.1 is a binomial A-ring. For
other examples of binomial A-rings, see Exercise 3.1. Of course, every Q-algebra is a
binomial ring as well.

1 Remark. Tt is tempting to apply this argument to the general case (where z and y are not required
to be natural), because the binomial formula holds for negative exponents as well (of course, this
requires working in the formal power series ring Z [[T]] rather than in the polynomial ring Z [T),
but I am not sure whether this argument is free of circular reasoning because it is not at all obvious
that (1+7)" (1 +T)Y = (1+ 7)™ in Z[[T]] for negative = and y, and I even fear that this is
usually proven using @
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3.2. Adjoining a polynomial variable to a \-ring

Binomial A-rings are not the main examples of A-rings. We will see an important
example of A-rings in Theorem 5.1 and Exercise 6.1. Another simple way to construct

new examples from known ones is the following one:

Definition. Let K be a ring. Let L be a K-algebra. Consider the ring
K [[T]] of formal power series in the indeterminate 7" over the ring K,
and the ring L[[T]] of formal power series in the indeterminate 7' over
the ring L. For every p € L, we can define a K-algebra homomorphism
evyr © K[[T)] — L[[T]] by setting ev,r (Z aiTi) = > a;u'T* for every
i€N i€N
power series Y a;T" € K [[T]] (which satisfies a; € K for every i € N). (In
ieN

other words, ev,r is the map that takes any power series in 7" and replaces
every T in this power series by uT".)

Theorem 3.3. Let (K, ()\i)ieN) be a )\—r'mg. Consider the polynomial ring
K [S]. For every i € N, define a map X : K [S] — K [S] as follows: For
every > a;S7 € K[S] (with a; € K for every j € N), let s > aij)
be thejiiefﬁcient of the power series ] Asir (a;) € (K [S]) [[T]] i)eeNfore T,
where the power series \gir (a;) € (KJ[GSN]) [[T7]] is defined as evgir (A7 (aj)).

(a) Then, (K 9], (X)

(11 (¥),..)

(b) For every a € K and a € N, we have A (aS®) = X (a) S% for every
1€ N.

) is a A-ring. The ring K is a sub-A-ring of
ieN

Proof of Theorem 3.3. For every z € K, we have

Agit (T Z N ( SJT <smce Ar (z Z N (x 1)

ieN €N
=\ () (9T)° + >\1 SJT YN (@) (ST
V—l N—— i>2 \\/—"
ol T el ST s
=14+ 25T + Z N (z) ST
1>2

J/

~
:(sum of terms divisible by T2)
(since T?|T* for every i>2)

=14+ 25°T + (Sum of terms divisible by T2) .

(a) Define a map Ay : K [S] — (K [S]) [[T]] by

:ZXi (u) T" for every u € K [5].

i€EN
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Then, according to the definition of the maps Xi, we have

Ar <Z aj5j> = [ sir (@) € (K [S) [IT1] (10)
jeN jeN
for every > a;57 € K [S] (with a; € K for every j € N). Hence, for every u € K [9],
jeN
we have , '
ZT ()T =14 uT + (sum of terms divisible by 7?) (11)
ieN
in (K [S]) [[T]] . Hence, for every u € K [S], we have X (u) =1 (this is obtained by
comparing coefficients before T in the equality ) and \' (u) = u (this is obtained
by comparing coefficients before T' in the equality ) Renaming u as z in this

sentence, we obtain the following: For every x € K [S], we have x (x) = 1 and
bY (x) = z.
Thus, we can apply Theorem 2.1 (a) to K [S], (7) and Ay instead of K, A" and
ieN

Ar. As a result, we see that
A (2) - Az (y) = A (2 +y) for every x € K [S] and every y € K [S]  (12)

if and only if (K [S], <X1> N) is a A-ring. Therefore, proving that <K [S], <X2> N)
ic ic

is a A-ring boils down to verifying . Let us therefore verify :
Proof of : Let x € K[S] and y € K[S]. Write x in the form x = ) a;5”

jEN
for some family (aj)jeN € KN, Write y in the form y = > b;S7 for some family
jEN
(0j);en € K. Adding the equalities z = >~ ;57 and y = Y b;57, we obtain z +y =
jEN jEN

> a; ST+ 6,87 =Y (a; + b;) S7. Applying the map Ap to both sides of this equality,

JjeN JjeN jeN

12 Proof of: Let w € K [S]. Write u in the form u = Y a;S7, where a; € K for every j € N.
JEN
9)

Then, ([9) yields

ZXZ' (u) T" = A & | = (Zajsj) =] AsiT (a;)

€N _ g = N .
J%:N e =1+a;S? T+(Sum of terms divisible by TZ)
(by , applied to z=a;)

= H (14 a;S7T + (sum of terms divisible by 7?))
jEN

=1+ (Z aij) T+ (sum of terms divisible by T2)
JEN

=1+ulT+ (sum of terms divisible by T2) .

This proves .
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we find

Ar(z+y) = Ar (Z (aj+bj)5j> =H Asir (aj +b;)
: . N——
jeN TN (@) Agir (b))
(since A (a;+bs)=Ar(a;)-Ar(bj)
by Theorem 2.1 (a))

(by (L0)), applied to a; + b; instead of a;)
= [[Asir (@) [[Asir (b))

jeN jEN
A NN

N~ ~~

=Ar| 3 a;S87 =Ar| X bS89
JEN JEN
(by (10)) (by (10)), applied

to b; instead of a;)

= XT E aij . XT E bij XT (I’) . XT (y) .
jeN JEN
—— ——

=x =y

Thus, is proven.

As we said, shows that <K [S], <Xl> ) is a A-ring. The rest of Theorem 3.3
i€N

(a) is yet easier to verify.

(b) We have Ar (aS®) = MAgar(a) as a particular case of . The equation
X (aS®) = XN (a)S* for every i € N follows by comparing coefficients before 77 in

the equality A (a.S®) = Agar (a). Thus, Theorem 3.3 (b) is proven.

The exercises below give some more examples.

3.3. Exercises

Ezercise 3.1. Let p € N be a prime. Prove that the localization {1, p, p?, ...

of the ring Z at the multiplicative subset {1,p,p?, ...} is a binomial ring.

Exercise 3.2. Let K be a ring where none of the elements 1, 2, 3, ... is a
zero-divisor. Let E be a subset of K that generates K as a ring. Assume
that n! |z-(x —1)-...-(x = n+ 1) for every x € F and every n € N. Prove

that K is a binomial ring.

Ezxercise 3.3. (a) Let K be a binomial ring. Let p € K [[T]] be a formal
power series with coefficient 1 before T° (we will later denote the set of such
power series by 1+ K [[T]]7). For every i € N, define a map X' : K — K as
follows: For every x € K, let A\ (z) be the coefficient of the formal power

series (1 + pT)* (which is defined as ) (i) (pT)" before T". Prove
keN
that (K, (\),.y) is a A-ring.

13If K is a Q-algebra, then this power series also equals exp (x log (1 + pT')), where log (1 + 7)) is the

_q)i-t
power series log (1 +7) = > i
ieN\{0} g

T
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(b) If p =1, prove that this A-ring is the one defined in Theorem 3.2.

Ezxercise 3.4. Let M be a commutative monoid, written multiplicatively
(this means, in particular, that we denote the neutral element of M as 1).
Define a Z-algebra Z [M] as follows:

As a Z-module, let Z [M] be the free Z-module with the basis M. Let
the multiplication on Z [M] be the Z-linear extension of the multiplication
on the monoid M.

For every i € N, define a map \' : Z[M] — Z[M] as follows: For every

ST amm € Z[M] (with a,, € Z for every m € M), let \° ( 3 amm) be
meM meM

the coefficient of the power series [[ (1+mT)*" € (Z[M])[[T]] before
meM

T

Prove that (Z[M], (\),cy) is a A-ring.

Ezercise 3.5. (a) Let M be a commutative monoid, written multiplica-
tively (this means, in particular, that we denote the neutral element of M
as 1). Let (K, ()\'),.y) be a A-ring.

Define a K-algebra K [M] as follows:

As a K-module, let K [M] be the free K-module with the basis M. Let
the multiplication on K [M] be the K-linear extension of the multiplication
on the monoid M. '

For every i € N, define a map A : K [M] — K [M] as follows: For every

S apm € K [M] (with a,, € K for every m € M), let X' [ 3 a,m
meM meM

be the coefficient of the power series [[ At (am) € (K [M])[[T]] be-

meM
fore T%, where the power series \pr () € (K [M])[[T]] is defined as
eV (>\T (O{m))

Prove that (K [M], T) ) is a A-ring. The ring K is a sub-A-ring

ieN
of (K[M],(T) ) For every a € K and m € M, we have X' (am) =
, , ieN
A (a) m" for every i € N.
(b) Show that Exercise 3.4 is a particular case of (a) for K = Z, and
that Theorem 3.3 is a particular case of (a) for M = N (where N denotes
the additive monoid N).

4. Intermezzo: Symmetric polynomials

Our next plan is to introduce a rather general example of A-rings that we will use as
a prototype to the notion of special \-rings. Before we do this, we need some rather
clumsy theory of symmetric polynomials. In case you can take the proofs for granted,
you don’t need to read much of this paragraph - you only need to know Theorems 4.3
and 4.4 and the preceding definitions (only the goals of the definitions; not the actual
constructions of the polynomials P, and P ;).
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4.1. Symmetric polynomials are generated by the elementary
symmetric ones

Theorem 4.1 (characterization of symmetric polynomials). Let K
be a ring. Let m € N. Consider the ring K [Uy, Us, ..., Up,| (the polynomial

ring in m indeterminates Uy, Uy, ..., Uy, over the ring K). For every i €
N, let X; = > [ Uk be the so-called i-th elementary symmetric
SC{1,2,...,m}; k€S
|S]|=i

polynomial in the variables Uy, U, ..., U,. (In particular, Xy = 1 and
X; = 0 for every i > m.)

A polynomial P € K [Uy, Us, ..., U,,] is called symmetric if it satisfies P (Uy, Us, ..., Uy,)

P (U,,(l), Ur@2), - U,r(m)) for every permutation 7 of the set {1,2,...,m}.

(a) Let P € K [Uy,Us,...,U,] be a symmetric polynomial. Then, there ex-
ists one and only one polynomial Q € K [ay, @, ..., a,] such that P (Uy, U, ..., Up,)

g

~
polynomial ring

Q(X17X27"‘7Xm)' E

(b) Let ¢ € N. Assume, moreover, that P € K [Uy, Us, ..., U,,] is a symmet-
ric polynomial of total degree < ¢ in the variables Uy, U, ..., U,,. Consider
the unique polynomial @ € K [, s, ..., o] from Theorem 4.1 (a). Then,
the variables «a; for ¢+ > ¢ do not appear in the polynomial Q.

There is a canonical homomorphism K [aq, ag, ..., &y — K [ag, ag, ..., oy
oy, if i < ¢
0, ifi >/¢ )
of Q € K [ay, ag, ..., @y under this homomorphism, then, P (Uy, Us, ..., Uy,) =
Q (X1, Xo, ooy Xon) = Qu (X1, Xo, s Xo).

(which maps every «; to { 19 If we denote by @, the image

We are not going to prove Theorem 4.1 here, since it is a fairly well-known fact[]
But we are going to extend it to two sets of indeterminates:

141n other words, the K-subalgebra
{Pe K[Uy,Us,....,Up] | P issymmetric}

of the polynomial ring K [Uy,Us, ..., Uy, is generated by the elements X7, Xs, ..., X,,,. Moreover,
these elements X, X5, ..., X, are algebraically independent; in other words, the K-algebra
homomorphism

K [ay,az,...am] = {P € K [U1,Us,...,Uy] | P is symmetric}
—_——
polynomial ring

which maps every «; to X; is injective. Hence, this homomorphism is an isomorphism.

15This homomorphism is a surjection if £ < m and an injection if £ > m.

16Proofs of Theorem 4.1 (a) can be found in [BluCos16l proof of Theorem 1], in [Dumas08, Theorem
1.2.1], in [MiRiRu88| Chapter II, Theorem 8.1}, in [Neusel07, Remark 4.16], in [Smith95l §1.1] or
in [CoLiOS15, Chapter 7, §1, proof of Theorem 3|. (Some of these sources only state the result in
the case when K is a field, or when K = C; but the same proof applies more generally for any ring
K.) Various other sources give proofs of Theorem 4.1 (a) under the condition that K is a field (or
that K = C), but they can easily be modified so that they become complete proofs of Theorem
4.1 (a) for any commutative ring K. (For instance, in order to make a complete proof of Thorem
4.1 (a) out of [DraGij09] proof of Theorem 2.1.1], it suffices to replace every occurence of C by K,
and to add the extra condition “the leading monomial of f has coefficient 1 in f” to [DraGij09,
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Let us state one piece of Theorem 4.1 (a) separately, to facilitate its later use:

Corollary 4.1a. Let K be a ring. Let m € N. Consider the ring
K [Uy,Us, ..., Up] (the polynomial ring in m indeterminates Uy, Ua, ..., Uy,

over the ring K). For every i € N, let X; = > [1 Uk be the so-
SC{1,2,...,m}; keS
15|

Exercise 2.1.2].) Also, various textbooks make claims which are easily seen to be equivalent to
Theorem 4.1 (a) (for example, [Newmanl2, Theorems 3.4 and 3.5]). Note that I am not saying
that all these proofs are distinct; in fact, many of them are essentially identical (although written
up in slightly different fashions and with varying levels of detail and constructiveness). Beware of
texts that use Galois theory to prove Theorem 4.1 (a) in the case when K is a field; such proofs
usually don’t generalize to the case when K is an arbitrary commutative ring (although they, too,
can be salvaged with a bit of work: it is not too hard to derive the general case from the case when
K is a field).

Various sources prove a result that is easily seen to be equivalent to Theorem 4.1 (a). Namely,
they prove the following result:

Theorem 4.1°. Let K, m, (Uy,Us,...,Uy,) and X; be as in Theorem 4.1. Let S be
the K-module consisting of all symmetric polynomials P € K [Uy, Us, ..., Uy,]. Then,
the family (X{' X3 -- 'Xfrrz")(il,@,...,im)eNm is a basis of the K-module S.
For example, Theorem 4.1’ is [LLPT95| (5.10) in Chapter SYM].
Let us briefly explain how Theorem 4.1 (a) follows from Theorem 4.1’:
[Proof of Theorem 4.1 (a) using Theorem 4.1°: A family (kg) e € K¢ of elements of K (where
G is an arbitrary set) is said to be finitely supported if all but finitely many g € G satisfy k, = 0.
Notice that the finitely supported families (k(i17i27~~-vi7n))(i1 iris)ENm € KN" of elements
of K are in bijection with the polynomials in the polynomial ring K [a1, g, ..., ). Indeed,
the bijection maps each finitely supported family (k(il,iz,.“,im)) to the polynomial
Z k(i17i27--<7im)ail agz T a;rT
(il,iz ..... im)GN"l
We know that P is a symmetric polynomial in K [Uy,Us, ..., Up,]. In other words, P € S (by the
definition of S). o
But Theorem 4.1’ shows that the family (X]'X3®-- ~Xf7;”)(il s i) €N is a basis of the K-
module §. Hence, P can be uniquely written as a K-linear combination of the elements of
the family (X}'X32--- X/m) (since P € S). In other words, there is a unique

finitely supported family (k(

(31,42,..0s0m ) EN™

(ilai27-~-7inz)eNm’

€ KN of elements of K satisfying P =

. i1,?2 ,,,,, im) ) (i1 in,... im ) ENT
11 12 i
Ky ig,eim) X1 Xo7 oo X
(i17i2,...,im)eNm

In other words, there is a unique polynomial > k(ihb’“_,im)a?a?-~-af;; €
(i1,i2,00esin ) ENT
K o1, as, ..., ] satisfying P = > iy g, im) X1 X52 -« Xm (because the finitely

(’Ll Ji2 ,...,im,)EN"L

supported families (k(ihi%m’im)) e KN of elements of K are in bijection with the

(21,824 .,0m ) EN™
polynomials in K [ay, s, ..., ayp)).

Renaming the polynomial > keiy io, ..., im)o/f a? ~--alm as @ in this statement, we

(#1532, rim ) EN
obtain the following: There is a unique polynomial Q@ € K [a1,as,...,qy] satisfying P =
Q (X1, Xo, ..., X;n). In other words, there is a unique polynomial @ € K [aq,as, ..., ] satis-
fying P (U1, Us, ..., Up) = Q (X1, Xa, ..., X;) (since P (Uy,Us,...,Uy,) = P). This proves Theorem
4.1 (a).]

The first claim of Theorem 4.1 (b) (namely, that the variables «; for ¢ > ¢ do not appear in
the polynomial @) can easily be obtained from the proof of Theorem 4.1 (a): In fact, each of the
above-mentioned proofs of Theorem 4.1 (a) provides an actual algorithm to find the polynomial
@, and this algorithm does not ever increase the total degree of P in the process. Thus, the first
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called i-th elementary symmetric polynomial in the variables U;, Us, ...,
Up. (In particular, Xy = 1 and X; = 0 for every i > m.)

Then, the elements X;, Xo, ..., X, of K [Uy,Us,...,Upy| are algebraically
independent (over K).

4.2. UV-symmetric polynomials are generated by the elementary
symmetric ones
Theorem 4.2 (characterization of UV-symmetric polynomials).

Let K be aring. Let m € Nand n € N. Consider the ring K [Uy, Us, ..., Up, V1, Va, ..., Vi)
(the polynomial ring in m + n indeterminates Uy, Us, ..., Uy, Vi, Vo, ...,

V,, over the ring K). For every i € N, let X; = > [T Uk be the
SC{1,2,...,m}; k€S
|S|=i
i-th elementary symmetric polynomial in the variables Uy, Us, ..., U,,. For
every j € N, let YV; = > [T Vi be the j-th elementary symmetric
SC{1,2,...,n}; k€S
|S|=7

polynomial in the variables Vi, V5, ..., V,,.

A polynomial P € K [Uy,Us, ...,Up, V1, Va, ..., V;,] is called UV-symmetric if
it satisfies

P(U17U27"‘7Um7‘/17‘/27”'7Vn> = P(Uﬂ'(l)aU7T(2)7"'JUTF(m)7V0'(1)7V0'(2)7"wvo‘(n))

for every permutation 7 of the set {1,2,...,m} and every permutation o of

the set {1,2,...,n}.

(a) Let P € K [Uy,Us,...,Upy, Vi, Vs, ..., V] be a UV-symmetric polynomial.
Then, there exists one and only one polynomial Q € K [ay, o, ..., &, B1, B2, -, Bl
such that P (Uy, Us, ..., Uy, Vi, Vo, ., V) = Q (X1, Xoy ooy, Xy Y1, Yo, o, Vi),

[

claim of Theorem 4.1 (b) follows. The second claim of Theorem 4.1 (b) follows from the first
(indeed, we have @ (X1, X, ..., X;n) = Q¢ (X1, Xa, ..., X¢), because the variables «; for i > ¢ do
not appear in the polynomial @).

[Remark: Theorem 4.1 (b) can be strengthened: Namely, we can replace the assumption that P
has total degree < ¢ by the (weaker) assumption that P is a K-linear combination of monomials of
the form U Ug? - - - U%m where each a; is < £. This stronger version, again, can be easily derived
from the classical proofs of Theorem 4.1 (a).]

7In other words, the K-subalgebra

{Pe K|[U,,Us,...Up,V1,Va,...,V,,] | P is UV-symmetric}

of the polynomial ring K [Uy,Us,...,Upn, Vi, Va, ..., V] is generated by the elements X, Xo, ...,
Xm, Y1, Yo, ..., Y,,. Moreover, these elements X1, Xs, ..., X, Y1, Yo, ..., Y,, are algebraically
independent; in other words, the K-algebra homomorphism

K [ay, a0,y m, 81, B2, oy Bn] = {P € K [U1,Us, .., Up, V1, Vo, ..., V] | P is UV-symmetric}

polynomial ring

which maps every o; to X; and every §; to Yj is injective. Hence, this homomorphism is an
isomorphism.
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(b) Let ¢ € Nand k € N. Assume, moreover, that P € K [Uy,Us, ..., Uy, Vi, Vo, ..., V3]
is a UV-symmetric polynomial of total degree < ¢ in the variables Uy, Us,,

..., Uy, and of total degree < k in the variables Vi, V5, ..., V,,. Consider

the unique polynomial Q € K [aq,ag, ..., am, 1, o, ..., Bn] from Theorem

4.2 (a). Then, neither the variables a; for ¢ > ¢ nor the variables f; for

J > k ever appear in the polynomial Q).

There is a canonical homomorphism

K[0517&27"'7am7ﬁ17ﬁ27'“7ﬂn] — K[05170527"'7&57617627“'7ﬂk]

. a;, if i <4 By, it j < k;
(which maps every «; to { 0. if i > ¢ and every f3; to { 0 ifj >k ).
If we denote by Q) the image of Q € K [ay, ag, ..., aum, [, Pa, ..., By] under
this homomorphism, then

P Uy, Uy, ... Uy, V1, Vo, Vi) = Qo (X1, Xoy oo, X, Y1, Yo, L Y.

Proof of Theorem 4.2. (a) Consider P as a polynomial in the indeterminates V;, V5,
.., Vi, over the ring K [Uy,Us,...,Uy]. Then, P is a symmetric polynomial in these
indeterminates Vi, Va, ..., V,, (since P is UV-symmetric), so Theorem 4.1 (a) (ap-
plied to n, K [Uy,Us, ...,Unl, (Vi,Va,..., Vi), Yi, (B1, B2, ..., Bn) and Q instead of m,
K, (Uy,Us,...,Upy), Xi, (a1, a9, ...,q,) and Q) yields the existence of one and only one
polynomial Q € (K [Uy, Uy, ..., Un]) [B1, B2, ..., Bu] such that P (U, Us, ..., Up, Vi, Va, ..., Vi) =

(. J

polynomial ring

~

Q (Y1,Ys,...,Y,). Consider this @
For every n-tuple (A1, A, ..., A\n) € N, let Qn, xs,..0,) € K [Ur,Us, ..., Uy| be the
coefficient of this polynomial () before ﬁfl 55\262" Thus,

Q=" D Qom0 (13)
(Al,)\z,...,An)GNn

Now,

P (U, Uy, ..., Un, Vi, Vi, o, Vi)
—QMW,Ys,....Y,) = Z Qo ) YTYS2 VM (14)

(A1,A2,..,An ) ENT

(this follows by evaluating both sides of at (081,082, ...,0n) = (Y1,Ya, ..., Y,)).
Now, for every n-tuple (A1, Ag,...,A,) € N”, the polynomial Qx, x,,..x,) IS & sym-
metric polynomial in the variables Uy, U,, ..., Uy, ﬁ Hence, by Theorem 4.1

18 Proof. Let ¢ € S,,. If we substitute U,(1),Us2)-->Us(m), V1, V2,..., Vs for
Uy,Us, ..., Un, Vi, Va,...,V, on both sides of the equality , then we obtain

P (Uo(l)a Ua(2)7 ey Ua(m)v Vlv ‘/23 B3] Vn)

- Z Q()‘lv)\Q ----- An) (U0(1)7 UO'(Q); ceey Ua(m)) Yl)\l Y2)\2 ...YTf\"
(A1,2,0.,A, ) ENT

(indeed, the polynomials Y7,Ys,...,Y,, stay the same under this substitution, since they are built
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(a) (applied to Q.1 instead of P), there exists one and only one polynomial
Rix g € K [an, ag, ..., auy] such that

~~
polynomial ring

Qi arnn) = B e (X1, Xo, o Xon)
Consider this R, x,,..z,)- Now, becomes

P (U, Usy...; Uy, Vi, Vo, o V)

_ YR VY A
= § Q01 22,00) (ER S e
————

A A2,.. An ) ENT
(1 2 Tl) _R()\l,)\2 ,,,,, )\n)(X17X27"'7Xm)
= R (X1, Xoy ooy X)) YUY Y M
— (A1,A2,0,An) 1y A2y ey AAm 1 2 eeedgy
(A1,x2,...,An)ENT

Thus, the polynomial @ € K [ay, a, ..., &, 1, B2, ..., By] defined by

Q — Z R(A17A27-~~7/\n) (011,052,...,0[7”) f\l 2)\2...5:1\" (17)
()\1,)\2,...7/\n)€Nn

satisfies P (U1, U, .., Upy, Vi, Vo, o, Vi) = Q (X1, Xo, oo, X, Y1, Y, ., Y,). Tt only re-
mains to prove that this is the only such polynomial. This amounts to showing that X7,

of the variables V1, Vs, ..., V,,). Hence,

Z Qi errn) (Us1)s Us(2)s wos Unmy) Y7 Y52 Y00
(A1,A2,...,A,)EN"

=P (Ua'(l)a Uo(2)7 () Ua(m)a Vh V27 ) Vn)

=P (Uy,Us, ... U, V1, Vo, oo, Vi) (since P is UV-symmetric)
= Z Q()\l’)\z’“")\n)yl)\l}/;\z...YnAn (by ) .

(A1,A2,..,An ) ENT

Subtracting the right hand side of this equation from the left, we obtain

> Rounean Uo) Usys o Ustm) = Qaina,oan) Y Yo7 Y0
(A1,A2,..,A ) ENT

—0. (15)

But Y1, Y3, ..., Y, are algebraically independent over K [Uy, Us, ..., Uy, ] (as we can see by applying
Corollary 4.1a to n, K [Uy,Us,...,Un], (V1,Va,...,V,) and Y; instead of m, K, (Uy,Us,...,Upy)
and X;). Hence, entails that

Qi arnn) Us(1):Us@)s s Us(m)) — Qar 2arrn) =0
for every (A1, A2, ..., \p) € N, In other words,
Qxninarnn) (Us(1): Us@)s s Us(m)) = Qa1 2arnAn) (16)

for every (A1, Az, ..., A\p) € N™.

Now, forget that we fixed 0. We thus have shown that holds for every o € S,, and every
(A1, A2, .oy Ap) € N,

Now, fix (A1, A2, ..., \p) € N”. As we know, holds for every o € S;,,. Hence,

Qv ared) (U1 U2y Um) = Qs daeenn) = Qi dasedn) (Uo(1)s Us@)s o0 U (m))
(by ) holds for every o € Sy,. In other words, the polynomial @z, x,,...,x,) is symmetric. Qed.
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Xoy ooy Xon, Y1, Yo, .., Y, are algebraically independent over K. But this is clear (from
Exercise 4.3, applied to S = K [Uy,Us,...;Up, V1, Vo, ..., V|, T = K [Uy,Us, ..., Uy,
pi = X; and ¢; = Y)), since X;, Xy, ..., X,, are algebraically independent over
K (by Corollary 4.1a) and since Y, Y, ..., Y, are algebraically independent over
K [Uy,Us,...,Upy] (by Corollary 4.1a, applied to n, K [Uy,Us,...,Unl, (V1,Va,...,V,)
and Y; instead of m, K, (U1, Uy, ..., Uy) and X;).

(b) Consider the polynomials Q, Q0 2ardn)s g 2a,. 0 and @ defined in our proof
of Theorem 4.2 (a).

The first claim of Theorem 4.1 (b) (applied to n, K [Uy, Us, ..., Up], (V1, Vo, ..., V3),

Yi, (B1, B2, -, Bn), @ and k instead of m, K, (U, Us, ...,Up), Xi, (1, 9,..., ), @
and /) yields that the variables 3, for j > k do not appear in the polynomlal Q Hence,
the coefficient of the polynomial Q before any monomial ﬁ 2.3} is 0 unless this
monomial satisfies A\gy 1 = Apio = = A, = 0. Since this coefﬁClent has been denoted
by Qi s, An)s WE can rewrite this as follows: We have

R radn) =0 (18)
for every n-tuple (A1, Ao, ..., An) € N” that fails to satisfy A\grp = Mo =+ = A, =0.
From this, we obtain

Ry =0 (19)
for every n-tuple (A1, Ag, ..., A,) € N” that fails to satisfy Agy1 = Agyo ==X, =0

™

Consider the polynomial ring K [y, s, s, ..., 51, B2, B3, . . .| in the infinitely many
variables «; (for ¢ € {1,2,3,...}) and §; (for j € {1,2,3,...}). For any u € N
and v € N, we shall consider the polynomial ring K [ay, ag, ..., ay, b1, B2, ..., ] as a
subring of K [y, g, as, ..., b1, B2, Ps, .. .] (by abuse of notation).

19 Proof. Fix some (A1, A2, ..., \,) € N™ that fails to satisfy A\py1 = Apyo = -+ = A, = 0. We must
show that R(/\1,>\2 77777 An) =0.
Recall that QM NasAn) = R()\h)\z _______ (X1, Xo, o0, Xin). Hence,

Rixing,nn) (X1, X2, X)) = Qayne,n,) = 0 (by 1.) Since Xl,Xg,... Xm are al—
gebraically independent over K (by Corollary 4.1a), this entails that Ry, »,

proves .

~~~~~~~
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Now, recall how ) has been defined in . ThusF_U]

_ E A1 QA2 A
Q - R(AL/\Q,”-M\n) (alv 0427 ey am) 1 2 "'Bn"
(A1,A2,...,An )EN?
— A1 QA2 An
o Z R()\h)\%--w)\n) (ala Qg, ..., Oém> 1 P2 /Bn
—_—
(A1,A2,0,A0 ) ENT; A oA A
Moet1=App2="=Apn=0 =B11B32..8.F
(since Ag41=Apt2="=An=0)
A1 QA2 An
+ Z R(Alv)\Q:--wAn) (051, a27 ooy am) 1 2 /Bn
(AL A2y An)EN;
not >‘k+1:Ak+2:"':>\n:0 (by )
_ E A1 A2 Ak
- R()‘l»)\%“-a)\n) (O‘la Qg, ..., am) 51 62 <Pk
(Al’)\Qv-"vAn)ENn§
Ak+1=Ap+2="=An=0

WV
€K|a1,02,....,am,B1,82,...,0k]

A QA2 A
+ E 067" B5%...60,"
(A1,A2,..,An) ENT;
not Apy1=Appo="=An=0
N TV
=0

€K [061,042, “‘7057VL7517527 J/Bk] .

Hence, the variables ; for j > k do not appear in the polynomial ). A similar
argument (but in which the roles of m, of U;, of X;, of a; and of ¢ are switched with
the roles of n, of V;, of Y}, of §; and of k) shows that the variables a; for i > ¢ do not
appear in the polynomial (). Thus, we know that neither the variables «; for ¢ > ¢ nor
the variables 3; for j > k ever appear in the polynomial ). Therefore, the variables
which do appear in the polynomial () remain unchanged under the homomorphism
which sends ) to Q. Therefore, Q)rr = (). Therefore,

Qur (X1, X2, o0, X0, Y1, Yo, V) = Q (X0, Xy o, X, Y1, Y2, 00, Y5

Hence,
P (Ula U27 e Um7 ‘/17 ‘/27 s Vn) = Q (X17X27 ) Xm7 )/17}/27 a3 Yn)
= Qur (X1, Xo, ..., X0, Y1, Y5, .., Y0) .
This completes the proof of Theorem 4.2 (b). O

Note that in the following, we are going to use Theorems 4.1 and 4.2 for K = Z only,
until Section 10 where we actually get to use them for general K.

4.3. Grothendieck’s polynomials P

Theorem 4.2 allows us to make the following definition:

20In the following computation, we are WLOG assuming that & < n. Indeed, this assumption is
legitimate, because in the case when k > n, the result of the computation (namely, the claim that
Q € Koy, a9, ..., m, b1, B2, ..., Br]) is obvious anyway.
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Definition. Let £ € N. Our goal now is to define a polynomial P, €
Z, [Oél, A9,y ..., O, ﬁla ﬁg, ceey Bk] such that

§ | | Uz‘/] :Pk (X17X27"'7Xk7}/17}/27“'7yk) (20)
SC{1,2,....m}x{1,2,....,n}; (3,j)€S
ST=k

in the polynomial ring Z [Uy, U, ..., Up, V1, Vo, ..., V)| for every n € N and

m € N, where X; = > [ Uy is the i-th elementary symmetric
SC{1,2,...,m}; k€S
|S|=i
polynomial in the variables U;, Us, ..., U,, for every ¢ € N, and Y; =

> [T Vi is the j-th elementary symmetric polynomial in the vari-
SC{1,2,...,n}; k€S

|S|=j
ables Vi, Vs, ..., V,, for every j € N.

In order to do this, we first fix some n € N and m € N. The polynomial

> [ vV, ez, Us, ... Un, Vi, Vi, ., Vi)

Sg{1727'~~7m}><{172 7777 n}; (Z,])GS
|S|=k

is UV-symmetric. Thus, Theorem 4.2 (a) yields that there exists one and
only one polynomial @ € Z[aq, g, ..., G, B1, Po, .., Bn] such that

> I[ UV = Q@ (X1, Xa, ..., X, Y1, Y2, 0 Vi)
SC{1,2,....m}x{1,2,....n}; (i,j)€S
|S|=k
inZ[Uy,Us, ..., Up, V1, Va, ..., V,,]. Since the polynomial > I[1 UV
SC{1,2,....m}x{1,2,....n}; (3,j)€S

|S|=k
has total degree < k in the variables Uy, Us, ..., U,, and of total degree < k
in the variables Vi, V3, ..., V,, Theorem 4.2 (b) yields that

> I 0V = Qui (X1, Xa, ., Xi, Y1, Y2, 0, YR)
SC{1,2,...m}x{1,2,....,n}; (i,j)€S
|S|=k

where @y i, is the image of the polynomial () under the canonical homomor-
phism Z [, @, ..., u, B1, B2y ooy Bn] = Z[oq, a, ...y a, By, Bay ...y Br]. How-
ever, this polynomial @y is not independent of n and m yet (as the poly-
nomial P that we intend to construct should be), so we call it Qg p,m]
rather than just Q.

Now we forget that we fixed n € N and m € N. We have learnt that

> I Ui = Quafoim (X1, Xo, oo, X, Y1, Y2, ., YR)
SC{1,2,...m}x{1,2,....n}; (i,j)€S
|S|=k

in the polynomial ring Z [Uy, Us, ..., Uy, V1, Vo, ..., V)] for every n € N and
m € N. Now, define a polynomial Py € Z[ay, as, ..., ag, f1, B2, ..., Bk] by
Py = Qe k)
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Theorem 4.3. (a) The polynomial P just defined satisfies the equation
(20) in the polynomial ring Z [Uy, Us, ..., Uy, V1, Va, ..., Vi, ] for every n € N
and m € N. (Hence, the goal mentioned above in the definition is actually
achieved.)

(b) For every n € N and m € N, we have

11 L+ UViT) =Y P (X1, X, o, Xi, Y1, Yo, ., Vi) TF
(4,7)€{1,2,....m}x{1,2,....n} keN
(21)
in the ring (Z [Uy, Us, ..., Upn, V1, Va, ..., Vi]) [[T]]. (Note that the right hand
side of this equation is a power series with coefficient 1 before TP, since
P[) == 1)

Proof of Theorem 4.3. (a) 1st Step: Fix n € N and m € N such that n > k and m > k.
Then, we claim that Qg jn.m) = k-
Proof. The definition of Qy, j (nm) yields

Z H U’LVj :Qk,k,[n,m} (X17X27"'an7Y'l>Yv27"'7Yk>
SC{1,2,...m}x{1,2,....n}; (i,j)€S
|S|=k

in the polynomial ring Z [Uy, Us, ..., Uy, Vi, Va, ..., V] Applying the canonical ring epi-
morphism Z [Uy, Us, ..., Up, V1, Vo, .., Vi | = Z[Uy, Us, ..., Uy, Vi, Va, ..., Vi] (which maps
Ui, it < k; Vi, it j < k;
0, iti>k ndevery ljto { 0, if j > k
noticing that this epimorphism maps every X; with ¢+ > 1 to the corresponding X; of
the image ring and every Y; with j > 1 to the corresponding Y; of the image ring!), we
obtain

every U; to ) to this equation (and

> I UVi = Qe (X1, Xa, oo, X, Y1, Y2, 00, 2
SC{1,2,....k} x{1,2,....k}; (4,j) €S
|S|=k

in the polynomial ring Z [Uy, Us, ..., Ug, Vi, Vs, ..., Vi]. On the other hand, the definition
of Qk,k,[k,k] yields

y [T Ui = Qugrsy (X1, Xa, o, Xi, Y2, Yo, 0, Vi)
SC{1,2,... k}x{1,2,...)k}; (i.5)€S
|S|=k

in the same ring. These two equations yield
Qk,k,[n,m] (Xla X27 sy Xk;) }/17 }/Za sy Yk’) - Qk’,k’,[k:,k’] (Xla X27 sy Xk’a }/17 }/27 ) Yk‘) .

Since the elements X, Xo, ..., Xi, Y1, Yo, ..., Y, of Z[Uy,Us, ..., Ug, Vi, Vo, ..., Vi are
algebraically independent (by Theorem 4.2 (a)), this yields Qg k pmm = Quk ki 1D
other words, Qj x,jn,m] = Pk, and the 1st Step is proven.

2nd Step: For every n € N and m € N, the equation is satisfied in the polynomial
ring Z Uy, Uay ..oy U, Vi, Vo, o, Vi
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Proof. Let n’ € N be such that n’ > n and n’ > k (such an n’ clearly exists). Let
m’ € N be such that m’ > m and m’ > k (such an m’ clearly exists). Then, the 1st
Step (applied to n' and m' instead of n and m) yields that Qp ./ m1 = Pr-

The definition of Qp k. [n/m, yields

> I UV = Qi) (X1, Xo, o0, X, Y3, Y2, o, YR)
SC{1,2,....m'}x{1,2,...,n"}; (i,5)€S
|S|=k

in the polynomial ring Z [Uy, Us, ..., Uy, V1, Va, ..., Viy].  Applying the canonical ring
epimorphism Z [Uy, Uy, ..., Uy, Vi, Vo, ... V| — Z Uy, Us, ..., Uy, Vi, Vo, .., Vi) (which
U;, if i < m; Vi, if 7 < mn;
0, if i >m andeveryvjto{ 0, if j > n
(and noticing that this epimorphism maps every X; with ¢ > 1 to the corresponding
X; of the image ring and every Y; with j > 1 to the corresponding Y; of the image
ring!), we obtain

maps every U; to { ) to this equation

> 1T UVi = Quiiwom) (X1, Xa, ooy Xie, Y2, Yo, o, Vi)
SC{1,2,...m}x{1,2,....n}; (i,5)€S —P,
|S|=k

= P (X1, Xo, .o, Xi, Y1, Y5, . YY)

in the polynomial ring Z [Uy, Us, ..., Uy, Vi, Va, ..., V,]. Hence, the equation is satis-
fied in the polynomial ring Z [Uy, Us, ..., Uy, Vi, Va, ..., Vi, ]. This completes the 2nd Step
and proves Theorem 4.3 (a).

(b) We have
1T 1+ UV,T) =) > II vyt
(4,7)€{1,2,....m}x{1,2,....,n} keN SC{1,2,....m}x{1,2,....,n}; (¢,j)€S
|S|=k
=Pk(X1,X2,...:;(k,Y1,Y2 ..... Yk)
(according to (20))
by Exercise 4.2 (d), applied to
Q=A{1,2,...,m} x{1,2,...,n},
A — (Z [Uh U27 ceey Um7 ‘/17 ‘/27 ceey VTLD [[T]] )
t =T and ;) = UV
= P(X1, Xo, ., X3, V1, Ve, V) T
keN
This proves Theorem 4.3 (b). O

Example. The above definition of the polynomials P, was rather abstract. Let us
sketch an example of how these polynomials are computed - namely, let us compute
PQ.

While our definition of P, was somewhat indirect (we constructed Py in multiple
steps; while each of these steps is constructive, this still is a rather long way to Py),
the important thing about P is that it satisfies (20). In fact, for every m > k and
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n > k, the polynomial P, is uniquely determined by the equation E, so that we
only need to find Py.

Since we want to compute Ps, let us pick £ = 2. Now we need to pick some m > k
and n > k; the best choice is m = n = 2 (choosing greater m or n would lead to
the same polynomial P, in the end, but the computations required to obtain it would
involve some longer terms). So let m = n = 2. Then, the left hand side of is

2. 11 v,

SC{1,2,...;m}x{1,2,..n}; (i,§)€S
|S|=k

- Y I

SC{1,2}x{1,2}; (irj)ES
|S|=2

= I wvi+ I uwvi+ ] uV

(1.7){(1,1),(1,2)} (1,7)e{(1,1),(2,1)} (1.7)e{(1,1),(2,2)}
+ I uwvvi+ I uvvi+ JI uv
(1.7)€{(1,2),(2,1)} (1,7)€{(1,2),(2,2)} (1.7)€{(2,1),(2,2)}

= UViVa + U1 Ua VY + 201 Un Vi Vs + Uh Un Vi + U3 VA VA,
while the right hand side is
Py (X1, Xo, oo, X3, Y1, Y5, . V) = Py (X, X0, Y1, Y5) .
Thus our polynomial P, must satisfy
UViVy 4 UyUsVE + 200U ViV + UL USVE + URViVS = Py (X, Xo, Y1, Y5)

in Z[Uy,Us, Vi, Vs]. According to Theorem 4.2 (a), the polynomial P, is uniquely
determined by this condition, but in order to actually compute it, we need to recall
how Theorem 4.2 (a) was proven. In other words, we need to recall how to write a
UV-symmetric polynomial as a polynomial in the elementary symmetric polynomials
X1, Xo, ... and Yy, Yo, ...

Let us look what we did in our proof of Theorem 4.2 (a) above, in the particular
case of the UV-symmetric polynomial

UiViVa + U URVE + 2U U ViV + U UV + UZV V.

In this case, the proof begins by considering U2V, Vy +2U, Uy V2 + Uy Us Vi Vo + Uy Us Vi +
U2V, Vs as a polynomial in the indeterminates Vi, Vs over the ring Z [Uy, Uy]. This is
a symmetric polynomial in these indeterminates Vi, V5. Thus, Theorem 4.1 (a) yields
the existence of one and only one polynomial Q € (K [Uy, Us)) [B1, B2] such that

U2ViVy + UL U VE + 20, Us ViV + Uy Us V2 + U2ViVa = Q (Y3, Ya) .

2L Proof. Theorem 4.2 (a) yields that the elements X, Xo, ..., X,,, Y1, Yo, ..., ¥, of the poly-
nomial ring Z[Uy,Us,...,Up, V1, Vo, ..., V,] are algebraically independent. Since m > k and
n > k, this yields that the elements X;, X5, ..., X, Y1, Y5, ..., Y of the polynomial
ring Z[Uy,Us,...,Upm, Vi, Va, ..., V,,] are algebraically independent. Hence, a polynomial p €
Z oy, gy ...y g, B1, P2, ..., O] is uniquely determined by the value p (X7, Xo, ..., X, Y7, Yo, ..., Y%).
Thus, the polynomial P, is uniquely determined by the equation (because the equation
determines the value Py (X1, Xs, ..., Xi, Y1,Ys, ..., Y%)).
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This polynomial @ can be obtained by any algorithm which writes a symmetric poly-
nomial as a polynomial in the elementary symmetric polynomials; I assume that you
know such an algorithm (if not, read it up; most proofs of Theorem 4.1 (a) give such
an algorithm). Applying this algorithm, we get

UViVo 4+ UiUsVE + 201 Us ViV + Un Us Vi + U3 ViV = (U + Us) Ya + U Us Y7,

so that Q = (U2 + U2) By + U Uy 82,

Now, for every 2-tuple (A1, o) € N2, the coefficient Q(y,,) of this polynomial CA)
before the monomial /6’{\1,85‘2 is a symmetric polynomial in the variables Uy, U,. Hence,
by Theorem 4.1 (a), there exists a polynomial R, ,) € Z [a1, ] such that this co-
efficient is Ry, »,) (X1, X2). This Ry, »,) can generally be computed by any algorithm
which writes a symmetric polynomial as a polynomial in the elementary symmetric
polynomials. In our case, the polynomial () has only two nonzero coefficients: the
coefficient U? + U3 before (3, and the coefficient U;U, before 37. So we get two poly-
nomials R 1) and R0y, whereas all the other Ry, »,) are zero. More concretely, in
order to obtain R 1), we write the symmetric polynomial Q1) = U} + U3 (which is
the coefficient of @ before 541 = 3,) as a polynomial in the elementary symmetric
polynomials; this gives us Uf + Uj = X7 — 2X, so that Ry 1) = af — 2a,. Similarly,
R(g’g) = (9.

Now, according to the proof of Theorem 4.2 (a), a polynomial P satisfying U;V; +
U Vo + UV 4+ UV = Py (X4, Xo, Y1, Ys) can be defined by the equation

Py = Z Rix g (a1, 00, s ) 5?155\2---52"-

()\17)\27~~'7>‘n)€Nn

In our case, this simplifies to

Py = R (a1, az) 5?521“‘1%(2,0) (a1, ) B9 = (Oé% — 2062) BotaafBi = aiBatanBi—200.
N— —

:a% —2a =aQz

So we have found P,. Similarly we can compute P, for all £ € N, even though the
computations get longer with increasing k very rapidly. Here are the values for small

k:

Py =1;

Py = a1 81;

Py = aifs + aofff — 200

Py = a}fs + a3 + aroe 182 — 3araafs — 3asf1 P2 + 3ass;

Py = aufl} + anasfiBa + ajasfi B + o By — doufi B + a3 85 — 2000385 — 20551 B
— aya3f1 B3 — 4af oy + 20485 + 4185 + 2054 + danas By — doufy;

Ps = a5 + arauf3 Ba + ajas i s + ofawfi Ba + of By — Ba 35 B2 + asas i35
- 30610445153 - 20620435%53 - @106451253 + 0410435253 - 204?0435253
— 31036184 — afas BBy — Bafan s + bas B 85 + o Bi By — s Bafs
+ 5ar a8 + Sawasfi By + B By + banasfs + 5afasfs
— B[ B3 — Has P18y — dasasBs — Sy Bs + Sas Bs.

Now, let us return to the general case.
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4.4. Grothendieck’s polynomials P}, ;

Just as our above definition of the polynomials P, and Theorem 4.3 based upon The-
orem 4.2, we can make another definition basing upon Theorem 4.1:

Definition. For every set H and every j € N, let us denote by P; (H) the
H

set of all j-element subsets of H. (This is also often denoted as ( ))
J

Let j € N. Let £ € N. Our goal now is to define a polynomial P ; €
Z o, ag, ..., o] such that

S TV = Py (X0, X, Xoy) (22)

SCP;({1,2,....,m}); I€S i€l
|S|=k

in the polynomial ring Z[Uy, Us, ..., Uy,,] for every m € N, where X; =

> [T Uk is the i-th elementary symmetric polynomial in the vari-
SC{1,2,..,m}; k€S

|S]=i
ables Uy, Us, ..., U, for every ¢ € N.

In order to do this, we first fix some m € N. The polynomial

> [TIIv: € zvn. U, ... U]

SCP;({1,2,....,m}); I€S i€l
|S]=k

is symmetric. Thus, Theorem 4.1 (a) yields that there exists one and only
one polynomial Q) € Z [ay, ag, ..., ;] such that

Z HHUZ:Q(X17X2a7Xm>
SCP;({1,2,..,m}); I€S i€l
S_

Since the polynomial > [T I U: has total degree < kj in the
SCP;({1,2,...,m}); [eS iel
S —

variables Uy, Us, ..., Uy, Theorem 4.1 (b) yields that

> TTTIU: = Qus (X1, Xa, ... Xy)

SCP;({1,2,...,m}); €S i€l
|S|=k

where i ; is the image of the polynomial ¢ under the canonical homo-
morphism Z [ay, ag, ..., 4| = Z [aq, g, ..., oy;]. However, this polynomial
Qk,; is not independent of m yet (as the polynomial P ; that we intend to
construct should be), so we call it Qy, jm) rather than just Q.

Now we forget that we fixed m € N. We have learnt that

Z H H Ui = Qr jim) (X1, X, ..., Xij)

SCP;({1,2,....m}); I€S i€l
|S|=k

31



in the polynomial ring Z [Uy, U, ..., Uy,| for every m € N. Now, define a
polynomial Py ; € Z [, ay, ..., aij] by Prj = Qujijrj)-

Theorem 4.4. (a) The polynomial P ; just defined satisfies the equation
(22) in the polynomial ring Z [Uy, Uy, ..., U,,] for every m € N. (Hence, the
goal mentioned above in the definition is actually achieved.)

(b) For every m € N and j € N, we have

11 (1+HUi.T> = Pej (X1, Xo, ., Xi) TF - (23)

IeP;({1,2,....,m}) iel keN

in the ring (Z[Uy, U, ...,Upn)) [[T]]. (Note that the right hand side of this
equation is a power series with coefficient 1 before TV, since Pp; = 1.)

Proof of Theorem 4.4. (a) 1st Step: Fix m € N such that m > kj. Then, we claim
that Qk,j,[m] = Pk,j'
Proof. The definition of Q. j ) yields

> TV = Qujm (X1, Xs, .o, Xij)

SCP;({1,2,...m}); I€S i€l
|S|=Fk

in the polynomial ring Z[Uy, Us, ...,Uy]. Applying the canonical ring epimorphism

Z[Uy,Us, ..., U] — Z[Uy,Us,...,Uyj] (which maps every U; to { 0. if i > kj ) to
this equation (and noticing that this epimorphism maps every X; with ¢ > 1 to the
corresponding X; of the image ring!), we obtain

> TTT1U: = Qrim (X1 X, ..., Xiy)

SCP;({1,2,...kj}); I€S i€l
|S|=Fk

in the polynomial ring Z [Uy, Uy, ..., Uy;]. On the other hand, the definition of Qy ;)

yields
Z H H Ui = Qi) (X1, Xo, ..o, Xij)

SCP;({1,2,....kj}); I€S iel
|S|=k

in the same ring. These two equations yield

Qrjim) (X1, Xoy oy Xij) = Qi) (X1, Xo, ooy Xij) -

Since the elements X;, Xo, ..., Xj; of Z[Uy, Uy, ..., Uy;] are algebraically independent
(by Theorem 4.1 (a)), this yields Qg jm] = Qk,jkj- In other words, Qkjm = Fr;,
and the 1st Step is proven.

2nd Step: For every m € N, the equation is satisfied in the polynomial ring
Z7|Uy,Us, ..., Uy).

Proof. Let m' € N be such that m’ > m and m’ > kj (such an m’ clearly exists).
Then, the 1st Step (applied to m’ instead of m) yields that Qs = P ;-
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The definition of Qy ;s yields

> [TV = Quimr) (X1, X, e, Xi)

SCP;({1,2,...m'}); I€S i€l
|S|=Fk

in the polynomial ring Z [Uy, U, ..., Uy]. Applying the canonical ring epimorphism
ZUy,Us, ..., U] — Z[Uy,Us,...,Upy] (which maps every U; to { 0. ifi>m
this equation (and noticing that this epimorphism maps every X; with ¢ > 1 to the
corresponding X; of the image ring!), we obtain

> IIIvi = Qk] (X1, Xo, ooy X))

SCP;({1,2,....,m}); I€S i€l
|S|=k

) to

= Pk’,] (X17X27 an‘])

in the polynomial ring Z [Uy, Uy, ..., U,,]. This means that the equation is satisfied
in the polynomial ring Z [Uy,Us,...,Uy]. This completes the 2nd Step and proves
Theorem 4.4 (a).

(b) We have

I1 <1+HUZ~T>

IeP;({1,2,....,m}) i€l

=2 2 1w

keEN SCP;({1,2,...,m}); I€S i€l
|S|=k

(aécording to (22))
by Exercise 4.2 (d), applied to
Q=P;({1,2,..m}), A= (Z[U,Us,...,Uy)) [[T]],
t=Tand a; =[] U;
i€l
= Puj (X1, Xo, ., Xiy) T,

keN
This proves Theorem 4.4 (b). O

Example. Computing the polynomials P ; can be done by retracking their def-
inition, just as in the case of P,. It is even easier than computing P, because the
definition of P, made use of Theorem 4.2 (a), while that of P ; did not. Thus all we
need is and an algorithm to write a symmetric polynomial as a polynomial in the
elementary symmetric ones. I am not doing any example computations for this here,
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but here are some results:

Pyj=1 for all j € N;

Pro=1;

P = a for all positive j € N;
Po=0 for all integers k > 2;
P.1=aqy for all positive k € N;

Pry = aras — ay;

Py3 = ag — aras + anay;

Ps o = ag + 04%044 — 20904 — Q15 + a%;

P3 3 = OélOéi + 063065 - 20(10(30[5 — 1 Qigg + 063067 — Q5 + 30(30(6 — Qipiy — (\ Qg + Qug;

3 2 2
Py = ajas + ajozoy — 3oonas — ajag — o + aszas + 20006 + opor — ag.

Do you see the pattern in the P, ;7 See Exercise 4.4 for the answer.

4.5. Exercises

Ezxercise 4.1. (Computing Py and Py ; as coefficients of determinants.)
The definitions of the polynomials P, and Py ; provide a possibility to re-
cursively compute them for given values of k and j (at least if one knows
the constructive proof of Theorem 4.1, which is fortunately the one given in
most books). In this exercise, we will show another way to compute explicit
formulas for P, and P ;:

(a) Let m € N. In the polynomial ring Z[Uy,Us,...,Up], let X; =

> [T Uk be the i-th elementary symmetric polynomial in the vari-
SC{1,2,..,m}; k€S

|S]=i
ables Uy, Us, ..., U, for every ¢ € N.

Define a matrix Fyy € (Z[X1, Xa, ..., X;u])™™ ™ by

Fy
0 1 0 0 0
0 1 0
0 0 0 1 0
0 0 0 0 1
(D" ' X (D)X ()" Xy (D" Xy - (10X,

Prove that the polynomial

det (TFy + Iy) € (Z[X1, X, ooy Xon]) [T]

m

equals [] (1 + U,T).
i=1
(b) Let m € Nand n € N. In the polynomial ring Z [Uy, Us, ..., Uy, Vi, Va, ..., Vi,

let X; = > I Uk be the i-th elementary symmetric polynomial in
SC{1,2,...,m}; k€S
|S|=i
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the variables Uy, Uy, ..., Uy, for every i € N, and Y, = > IT Vi be
SC{1,2,....n}; keS
|S]=j

the j-th elementary symmetric polynomial in the variables Vi, V5, ..., V,
for every j € N.

Similarly to the matrix Fy; defined in part (a), we can define a matrix
Fy € (Z[Y1,Ys, ..., Y,])"™" by

Fy
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
(_1>n_1 Yn (_1)n_2 Ynfl (_1)n_3 Yn72 (_1>n_4 Ynfi’m T (_1>OYl

Also, define a matrix Fyy € (Z X1, Xo, ..., X)) ™ as in part (a). Let R
be the ring Z [ X1, Xo, ..., X, Y1, Y2, ..., Y,]. We can thus regard both Fy
and Fy as matrices over the ring R: namely, Fyy € R™*™ and Fy € R™".
Hence, the tensor product Fyy ® Fy of these two matrices is deﬁned@; it is
an mn X mn-matrix over R. Prove that the polynomial

det (=T (Fy @ Fv) + Iny) € (Z[X1, Xo, ..., Xon, Y1, Yo, ., Yo ]) [T

equals 11 (1+U;V;T). Conclude that the coefficient of
(4,7)€{1,2,....m}x{1,2,....,n}
this polynomial before T% equals the Q. (n.m) (X1, Xo, ..., Xk, Y1, Ya, ..., Yy)
defined in the definition of P;. How to compute P, now? (Don’t forget to
choose n and m such that n > k and m > k.)
(c) Let m € N and j € N. Define the polynomials X; and an m x m-

matrix Fy as in part (a). Then, an (m) X (m
J

J

)—matrix N Fy; over the
ring Z [X1, X, ..., X,,] is defined®] Prove that the polynomial

m

det | (1) T (N Fy) +1<
J

) € (Z[X1, Xo, o, Xon]) [T

221t is defined as follows: The m x m-matrix Fy; induces an endomorphism of the free R-module R™,
whereas the n X m-matrix Fy induces an endomorphism of the free R-module R™. The tensor
product of these two endomorphisms is an endomorphism of the free R-module R" ®% R". This
latter endomorphism can be represented by an mn X mn-matrix once we have chosen a basis of
the free R-module R"™ @7 R™. For the purposes of this exercise, it makes no matter which basis
we choose, as long as we do choose a basis. Anyway, we have thus obtained an mn x mn-matrix;
this matrix is called Fy ® Fy .

23Tt is defined as follows: Let M be the ring Z [X1, X2, ..., X;m]- The m x m-matrix Fyy induces an
endomorphism of the free R-module R™. The j-th exterior power of this endomorphism is an
endomorphism of the free R-module AYR™. This latter endomorphism can be represented by an

m m )
< . > X ( . >—matrix once we have chosen a basis of the free R-module A7R™. For the purposes of
J J

this exercise, it makes no matter which basis we choose, as long as we do choose a basis. Anyway,

we have thus obtained an AJR™-matrix; this matrix is called A7 Fy;.
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equals I1 (1 +11U:-T ) Conclude that the coefficient of this
)

1€P;({1,2,..om iel
polynomial before T* equals the Qk,jjm] (X1, X2, ..., Xi;) defined in the def-
inition of P ;. How to compute P ; now? (Don'’t forget to choose m such

that m > kj.)
Ezxercise 4.2.
(a) Let ay, ag, ..., a;, be any elements of a commutative ring A. Prove
that .
Morar= ¥ Tlo
i=1 SC{1,2,....,m} k€S
b) Let ay, as, ..., a,, and t be any elements of a commutative ring A.
y g

Then, prove that

m

H 1+ a4t) Z Z Hakti.

iEN SC{1,2,...,m}; k€S
[S|=1

1

(c) Let ay, ag, ..., a,, and t be any elements of a commutative ring A.
Then, prove that

H (1 —aut) Z(—l)i Z Hakti.

iEN SC{1,2,...m}; k€S
|S|=i

(d) Let @ be a finite set, and let A be a commutative ring. Let o, be an
element of A for every ¢ € Q). Let t € A. Then, prove that

H 1+ ayt) ZZHaqtk

qeQ kEN SCQ; gesS
|S|=Fk

(These are four variants of one and the same identity, which is very easy
but basic and used in much of the theory of symmetric polynomials.)

Exercise 4.3. Let K be a ring. Let S be a K-algebra. Let T be a K-
subalgebra of S. Let pi, po, ..., pm be m elements of T', and let ¢, ¢q,

...y ¢n be n elements of S. Assume that the elements pq, po, ..., p,, are
algebraically independent over K, and that the elements qi, ¢o, ..., ¢, are
algebraically independent over T'. Prove that the m +n elements pq, po, ...,
Pm, 41, G2, ---, Gn are algebraically independent over K.

Jj—1 L
Exercise 4.4. Prove that Pp; = > (—1)Z+]_1Oéia2j—i for every j € N,

where o has to be interpreted as 1.

2Note that a product of the form [] ajt® has to be read as ( 11 ozk> t', rather than as [] (out?).
keS keS keS
This is a particular case of the general convention about parsing product expressions that we made

in Section 0.

36



[The result of Exercise 4.4 is a result by John Hopkinson ([Hopkin06)
Proposition 2.1]). His proof is different from the one I give in the solutions.
He also gives a similar, even if more complicated formula for Ps;: see
[Hopkin06, Proposition 2.2].]

5. A \-ring structure on A (K) =1+ K [[T]]"

5.1. Definition of the A-ring A (K)

Now we are going to introduce a A-ring structure on a particular set defined for any
given ring K.

Definition. Let K be a ring. Consider the ring K [[T]] of formal power
series in the variable T' over K. Let K [[T]]" denote the subset

TK[[T)] = {Zam‘ c K[[T)] | a; € K for all i, and ay = o}
ieN
={pe K|[[T]] | pis a power series with constant term 0}

of the ring K [[T']]. We are going to define a ring structure on the set

1+ K[T])" ={l+u|ue K[T]"}
={pe€ K|[[T]] | pis a power series with constant term 1} .

First, we define an Abelian group structure on this set:

Define an addition + on the set 1+ K [[T]]" by utv = uv for every u €
1+ K[[T)]" and v € 1+ K [[T]]". In other words, addition on 1+ K [[T]]*
is defined as multiplication of power series. The zero of 1 + K [[T]]" will

be 1. The subtraction = on the set 1+ K [[T]]* is given by u—v = Y for
v

every u € 1+ K [[T]]" and v € 1+ K [[T]]" (since every v € 1+ K [[T]]" is
an invertible power series).

Then, clearly, (1+ K [T]]",¥) is an Abelian group with zero 1.
Now, define a multiplication ~on the set 1 + K [[T]]" by

<Z azT1>A<Z bZT2> = Zpk (al,(lg, ceey A, bl,bQ, ,bk) Tk

1€N i€EN keN

ieN ieN
(where a; and b; lie in K for every i € N). [

The multiplicative unity of the ring 1 + K [T]]* will be 1+ T

ifor any two power series > ;7" € 1+ K [[T]]" and Y. b,T% € 14+ K [[T]]"

ZHere, the > sign means addition in K [[T]], not in 1+ K [[T]]+ The same holds for the > sign.
keN i€N
260f course, it is not obvious that this multiplication ~ is associative. See Theorem 5.1 (a) for the

proof of this.
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Also, for every j € N, define a mapping M : 1+ K [[T]]" — 1+ K [[T]]" by

:\\j <Z azT2> - Zpk’j (al,(lg, ...,akj)Tk

ieN keN

for every power series > a; 7% € 1+ K [[T]]" (where a; € K for every i € N).
i€N
Note that we have denoted the newly-defined addition, subtraction and multiplica-
tion on the set 1+ K [[T]]* by F, = and ~in order to distinguish them from the addition
+, subtraction — and multiplication - inherited from K [[T]]. We will later continue in
this spirit (for instance, we will denote a finite sum with respect to the addition F by

—~

the sign >, while a finite sum with respect to the addition + will be written using the

normal Y sign) |

Theorem 5.1. (a) The multiplication™ just defined makes (1 + K [[T]]",+,7)
a ring with multiplicative unity 14 7". We will call this ring A (K).

(b) The above defined maps A make (A (K), (/):Z> N) a A\-ring.
ie

We repeat again that the notation A (K) has nothing to do with exterior algebras,
even though some authors use it for them.

Before we prove this Theorem 5.1, we will have to do some preparatory work: We
will introduce a subset 1 4+ K [T]" of 1 + K [[T]]" which consists of polynomials with
constant term 1. We will show (Theorem 5.2) how we can factorize such polynomials
into linear factors in an extension of our ring K (similarly to Galois theory, but easier,
because we don’t have to worry about the extension not being a field). Then, we will
see how the operations F, = and N act on factorized linear polynomials (Theorem 5.3).
Then, with the help of some very basic point-set topology, we will see that the subset
1+ K [T]" is dense in an appropriate topology on 1+ K [[T]]" (Theorem 5.5 (a)), that
this topology is Hausdorff (Theorem 5.5 (e)), and that the operations I, ~ and N are
continuous with respect to it (Theorem 5.5 (d)); hence, in order to prove the ring and
A-ring axioms for A (K'), we only need to prove them on elements of this dense subset
14 K [T]". This will then be done using Theorems 5.2 and 5.3.

Even if you are willing to believe me that Theorem 5.1 holds, you are advised to
read this proof, since the ideas and notions it uses will be reused several times (e. g.,
in Sections 9 and 10).

5.2. Preparing for the proof of Theorem 5.1: introducing
14+ K [T]°

Before we prove this Theorem 5.1, we try to motivate the above definition of A (K):

2In [Knut73], Knutson writes ” + 7, ” —” and ” - ” (with quotation marks) instead of +, = and ~
for the newly-defined operations. In [FulLan85|, Fulton and Lang simply write +, — and - for +,
— and ~, approving the danger of confusion with the “old” operations +, — and - inherited from
K[[T1].
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Definition. Let K be a ring. Let K [T]" be the subset of the polynomial
ring K [T'] defined by

K[|t =TK[T] = {Zam‘ € K[T] | a; € K for all i, and aq = o}
ieN
={pe K[T] | pis a polynomial with constant term 0} .

Then, the set 1 + K [T]" is a subset of 1 + K [[T]]". The elements of
14 K [T]" are polynomials.

So 14 K [T]" is the set of all polynomials p € K [T with constant term 1. Loosely
speaking, this means that the elements of 14 K [T]" are monic polynomials “turned

upside down” (in the sense that if 3 a; 7% is a polynomial in 1 4+ K [T]* of degree
i=0

n
n (with a; € K for every i), then ) a,_;7" is a monic polynomial of degree n, and
i=0
conversely). This allows us to take some properties of monic polynomials and use them

to derive similar properties for polynomials in 1 + K [T]+. For example, we can take
Exercise 5.1 (which says that whenever P is a monic polynomial of degree n over a ring
K, we can find a finite-free extension ring of K over which the polynomial P factors
into a product of monic linear polynomials), and “turn it upside down”, obtaining the
following fact about polynomials in 14 K [T

Theorem 5.2. Let K be a ring. For every element p € 1 + K [T]", there
exists an integer n (the degree of the polynomial p), a finite-free extension
ring K, of the ring K and n elements pq, ps, ..., p, of this extension ring
K, such that p = [[ (1 +p,T) in K, [T].

i=1

Proof of Theorem 5.2. Write the polynomial p in the form p = > ;T%, where n =
i=0

degp. Then, ag = 1 (since p € 1 + K [T]7).

Define a new polynomial p = >_ a, ;/T" € K [T]. Then, the polynomial p is monic
i=0
(since ag = 1) and satisfies n = degp. Hence, by Exercise 5.1 (applied to P = p), there

exists a finite-free extension ring Kj of the ring K and n elements p1, pa, ..., p, of this
n

extension ring K such that p= [[ (T — p;) in Kz [T].
i=1
Consider this ring K5 and these n elements pi, pa, ..., p,. Let K, be the extension
ring K, and let p; be the element —p; € K, for every i € {1,2,...,n}. Then,

i anfiTi = 5 =
=0

(T 5) =

1 %

T+ =T +p)=]]wi+1).

n n n
= =1 =1

n

(7

i 1

n

Therefore, Exercise 5.2 (a) (applied to L = K,) yields that Y a;7" = [] (1 + p,T).
i=0 =1

Since p = >~ a;T", this rewrites as p = [ (1 4+ p;T). Thus, Theorem 5.2 is proven. [J
i=0 i=1
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5.3. Preparing for the proof of Theorem 5.1: extending the ring to
make polynomials split

Theorem 5.2 shows us that we can split every polynomial p € 1 + K [T]" into linear
factors in a suitably large (but finite-free) extension ring of K. This is a rather useful
fact: Whenever we have to prove some facts about polynomials in 1+ K [T]+, it allows
us to “adjoin roots of these polynomials” to K. In this sense it is a partial replacement
of the fundamental theorem of algebra for arbitrary commutative rings. Of course, its
use is limited by the fact that we don’t know much about the extension ring of K in
which p factors, but the fact that it is finite-free is enough for many things!
To make systematic use of Theorem 5.2, let us introduce some notation again:

Definition. Let S be a set. Let J; be a set for each s € S. Then U Js (the
seS
so-called disjoint union of the sets Js over all s € S) is defined to be the set

of all pairs (s, j) with s € S and j € J,. In other words, |J Js = U {s}x Js.
s€S seS

Definition. For every set H, let Pg, (H) denote the set of all finite mul-
tisets which consist of elements of H. Also, we recall that we denote
the multiset formed by the elements uy, us, ..., u, (with multiplicity) by
[uq, Uz, ..., Up).

For our ring K, let Exten K be the set of all finite-free extension rings of
K. (Again, this is not a set, but a proper class. Again, we don’t care.
Basically it is enough to consider all finite-free extension rings of the form
K [Xy, X5, ..., X,,] /I with I being an ideal of K [X7, X5, ..., X;], and these
extension rings do form a set.)

Let K™ be the subset?d

{(}?,[ul,w,...,un])e U Pr(K') | H(H—uiT)eK[T]}

K'eExten K i=1

of U Pi. (K'). We then define a map

K'CExten K
Im: K™ - 14 K[T]"
through

1 (f{ [r, s, un]) - f[ (1+wT) el+K [T

=1

for every <K, [u, ug, ,un]> e Kt

Z8Recall that U P, (K') denotes the disjoint union of the sets Pg, (K') over all K’ € Exten K;

K'’cExten K
it is defined by U Pi, (K') = U {K'} x P, (K").
K’eExten K K’eExten K
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P
Every polynomial p € 1+K [T]" can be written as p = II ([?, [y, ug, ..., un]>

for some (K, [u1, ug, ..., un]> € K . In other words, the map II is sur-
jective.

The surjectivity of the map II should remind you of the correspondence between
polynomials over a field and their roots over extensions of that field (and the proof of

Theorem 5.2 explains why); it will help us understand T, % and M better.

5.4. Preparing for the proof of Theorem 5.1: the ring structure on
A (K) explained

In fact, the following fact how the ring operations + and = and the A-operations N on
14 K [T]" act on images under the map II:

Theorem 5.3. Let K be a ring.

Letu € 14+K [T]" andv € 1+K [T]". Assume that u = II (I?u, [uq, ug, ,um]>
for some ([?u, [uy, us, ,um]> € K™ and that v = II ([?v, [v1, Vg, ...,vn]>
for some (I?U, [v1, Vg, ...,vn]> € K™, This, in particular, implies that K,

and I?U are finite-free extension rings of K. Let l?u,v be a finite-free exten-
sion ring of K which contains both K, and K, as subrings.

(a) Such a ring l?w always exists. For instance K, ® K, is a finite-free
extension ring of K, and we can canonically identify K, with the subring
I?u ® 1 of I?u ® I?w and icientifx[?v with the subring 1 ® [?v of [?u ® [?1,;
hence, we can set K,,, = K, ® K,.

29This map is well-defined, because every (IN(, [u1, uz, ,un]> € K™ satisfies [ (1 +uT) € K [T)
i=1
and therefore H (1+u;T) € 1+ K[T]" (since the polynomial [] (1 + u;T) clearly has constant
—1 i=1

term 1).

30 Proof. Let p€ 1+ K [T]Jr be a polynomial. Then, Theorem 5.2 shows that there exists an integer
n (the degree of the polynomial p), a finite-free extension ring K, of the ring K and n elements

n
D1, P2s ..., Pn Of this extension ring K, such that p = [] (1 + p;T) in K, [T]. Consider these n and
i=1

K, and these py, p2, ..., pn. Then, (K, [p1,p2,...,pn]) € K™ (since H (14+pT)=pe K[T)).
i=1
Moreover, the definition of II yields

n
H(Kp’[p17p27"’7pn H 1+p1 =p.
=1
Hence, p can be written as p = I (IN(, [u1,ug, ..., un]) for some (f(, [ug,uz, ..., Un}) € K™ (namely,

for (K, w1, uz, o un]) = (Kps [p1,p2,- - 2a])). Qed.
31Tn the following, the ® sign always means ®x until stated otherwise.
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(b) We have uFv = II (Ku,v, (U1, U, ..oy Uy, V1, V2, ...,vn]>.

(c) Also, v = II (Kuv,[u i | (i,7) € {1,2, ym} x {1,2,...,n}]>.
(d) Let j € N. Then, X (u) = II ([N(u, [Hluz | I€P;({1,2, ,m})])

Proof of Theorem 5.3. The assumption that u = II (Ku, [ug, ug, ..., um]) is just a dif-

ferent way to say that v = [[ (1 +wT). Similarly, v = [[ (1+v,7). Write the
i=1 =1

polynomials « and v in the forms u = Y a;7" (with ¢; € K) and v = >_ b;T* (with
i€N ieN

b € K).

Recall that > ;7" = u = [] (1 + u;T). Hence, for every i € N, the element a; is

ieN i=1
the i-th elementary symmetric polynomial applied to wy, us, ..., u,, (that is, we have
a; = > IT w)-
SC{1,2,...,;m}; k€S
15| =i

Similarly, for every j € N, the element b; is the j-th elementary symmetric polyno-

mial applied to vy, vs, ..., v, (that is, we have b; = > [T v)-
SC{1.2,....n}; kES
15]=j

(a) The K-module K, ® K, is finite-free (being the tensor product of two finite-free
K-modules). The embedding K — K is injective; hence, the map Ku®K — Ku®K it
induces must also be injective (since K, is finite-free, and hence tensoring with K, is an
exact functor) Thus, we can canonically identify K, with the subring KU®K Ku® 1
of K,®K,. Similarly, we can canonically identify K, with the subring 10K, of K,®K,.
These two identifications are “compatible at K” (that is, they lead to one and the same
embedding of K into K ® K, »)- As a consequence, K ® K is an extension ring of K.
This proves Theorem 5.3 (a).

(b) We have

=[[+wD)J] (1 +vT)
i=1 =1
(sinceu:ﬁ(1+u,~T) andv=ﬁ(1+va))

i=1 j=1

=1I <Ku7v7 [ulau% coey Uy, V1, V2, ..y Un])

(by the definition of II ([N(w, (U1, Ug, ..oy Uy, V1, Ve, ,vn]>) This proves Theorem 5.3
(b).

(c) Consider the ring Z [Uy, Us, ..., Uy, V1, Va, ..., V3] (the polynomial ring in m + n
indeterminates Uy, Us, ..., Uy, Vi, Va, ..., V,, over the ring Z). For every i € N, let

X; = > [T Ux be the i-th elementary symmetric polynomial in the variables
5C{1,2,...,m}; k€S
|S|=i
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Uy, Uy, ..., Upy,. For every j € N, let Y; = > [T Vi be the j-th elementary
5C{1,2,...,n}; k€S
IS|=3j
symmetric polynomial in the variables Vi, V5, ..., V.
There exists a ring homomorphism

Z [U17 UQa sy Um7 ‘/17 ‘/27 sy Vn] — [}u,v

which maps U; to u; for every ¢ € {1,2,...,m} and V; to v; for every j € {1,2,...,n}.
This homomorphism maps X; to a; for every i € N (because a; is the i-th elementary
symmetric polynomial applied to uy, ug, ..., u,,) and Yj to b; for every j € N (for a sim-
ilar reason). Hence, applying this homomorphism (or, rather, the ring homomorphism
21U, Uy, Uy, Vi, Vo VAT — [?u,v [T] that it induces) to , we obtain

H (14 wv,T) ZPk (ar, ag, ..., ag, by, by, ..., by) T*.
(4,7)€{1,2,....m}x{1,2,....,n} keN

Z Pk (al, ag, ..., Ak, bl, bg, caey bk) Tk = (Z ale)A(Z blTZ> = U;\U,

keEN
so this becomes
H (14 wv;T) = uv,
(i.5)€{1,2,..m}x{1,2,...n}

and thus

U = H (1 + wv;T)

(4,5)€{1,2,....m}x{1,2,...n}

- (f( lwgv; | (3, 5) € {1,2, .,m} x {1,2, ...,n}])

(by the definition of IT (f{u (wiy | (6, §) € {1,2,.ym} x {1,2, ...,n}])). This proves
Theorem 5.3 (c).
(d) Consider the polynomial ring Z[Uy,Us,...,U,]. For every i € N, let X; =
> [T Uk be the i-th elementary symmetric polynomial in the variables Uy, Us,
SC{1,2,...,m}; k€S
|S|=i
ey Unp. B
There exists a ring homomorphism Z [Uy, Uy, ..., U,,]| — K, which maps U; to u; for
every i € {1,2,...,m}. This homomorphism maps X; to a; for every ¢ € N (because q;
is the i-th elementary symmetric polynomial applied to u;, us, ..., u,,). Hence, applying
this homomorphism (or, rather, the ring homomorphism Z [Uy, Us, ..., Uy, [T] = K, [T]
that it induces) to (23)), we obtain

H <1+HUZT> = Z‘kaj (al,ag,...,akj) Tk.

1€P;({1,2,....,m}) iel kEN

keN €N

Z P].%j ((Il, agy, ..., ak] )\j (Z aZT’) X )
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so this becomes

I1 <1+Hui~T):Aj(u),

1€P;({1,2,....,m}) iel

N (u) = 1T <1+Hui-T> —1I (f( [Hu | [P, ({1,2,...,m})]>

IeP;({1,2,...,m}) iel iel

el

5.3 (d). O

(by the definition of II ( ws [H w | TeP;({1,2,. })})) This proves Theorem

Corollary 5.4. Let K be a ring. Let K be a finite-free extension ring of
K. Let I be some finite set, and let T; be a finite set for every i € I. Let
u;; be an element of K for every ¢ € I and every j € T;. We will write
[u; ;| i € I and j € T;] for the multiset formed by all these u; ; (where each
element occurs as often as it occurs among these w; ;).

(a) Then,

ZH( u”|j€T]> H([N(,[ui7j|ielandj€7}]>.

el

Here, the sign /Z\ means a finite sum based on the addition + of the ring

iel
A (K) (for instance, Y a; means a;+astas and not a; + as + as).
1€{1,2,3}

(b) Also,

HH(K u”|jET> < [Huj Gier €[] T

el i€l i€l

)

Here, the sign [[ means a finite product based on the multiplication *~ of

1
1€ o L
the ring A (K) (for instance, [] a; means aj-as-az and not a; - as - ag).
1€{1,2,3}

Proof of Corollary 5.4. Part (a) follows by induction from Theorem 5.3 (b), and part
(b) follows by induction from Theorem 5.3 (c). O

For later use, we restate parts (b), (c) and (d) of Theorem 5.3 in somewhat more
flexible notations (and in a slightly extended form). First, let us deal with Theorem

5.3 (b):

Theorem 5.3’ (b). Let K bearing. Let u € 14+K [T]" andv € 1+K [T]".
Assume that u = II <[?u, [u; | i € I}) for some <I?u, [u; | 1 € I]) € K™ and
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that v =11 (Kv, [vj|je€ J]) for some (Kv, [vj|je€ J]) e K™ Let K be
a finite-free extension ring of K such that K, and K, are subrings of K.
We have utv = II (IA{', [u; |1 €IlUv; | € J]) Here, for any two multi-

sets X and Y, we let X UY denote the multiset such that every object z
satisfies

(the multiplicity of z in X UY)
= (the multiplicity of z in X') + (the multiplicity of z in Y).

Proof of Theorem 5.3” (b). The set I is a finite set used merely for labelling. Hence,
we can WLOG assume that I = {1,2,...,m} for some m € N. Assume this; thus,

[u; | i€ 1] = [uy,ug,...,uy,]. Hence, u =11 (I?u, [ui | i€ []) rewrites as
uw=1I (I?u, [ug, ug, ... ,um])

The set J is a finite set used merely for labelling. Hence, we can WLOG assume
that J = {1,2,...,n} for some n € N. Assume this; thus, [v; | j € J] = [v1, v2, ..., vy].

Hence, v =11 <I?U, v |J€ J]) rewrites as v = II <Kv, [U1, V2, ooy U] ).

From [w; | i € I] = [u1,ug, ..., up] and [v; | j € J] = [v1,v9, ..., v,], we obtain
(u; |1 € INUv; | 7€ J] = [ur,uz, ... up|Ulv,vs,..., 0]
= [U1, Ug, ooy Uy V1, Vo, ooy U] (24)

But Theorem 5.3 (b) shows that uFv = II (K, (U1, Uz, ...y Uy, V1, Vo, ...71)”]). In view

of , this rewrites as utv = II <I?, [u; | 1€ IfUv; | j € J]) This proves Theorem
5.3 (b). O

Theorem 5.3’ (c). Let K bearing. Letu € 1+K [T]" andv € 1+ K [T]".
Assume that u =11 <I?u, [u; | i € I}) for some (I?u, [u | i€ I]> € K™ and

that v =11 (Kv, [v; | 7€ J]) for some (Kv, [vj|Jje J]) € Kt Let K be
a finite-free extension ring of K such that I?u and [?U are subrings of K.
We have u-v =11 ([?, [uv; | (i,7) € I % J])

Proof of Theorem 5.3 (¢). We can derive Theorem 5.3’ (¢) from Theorem 5.3 (c) in
the same way as Theorem 5.3’ (b) was derived from Theorem 5.3 (b). O

Finally, let us restate Theorem 5.3 (d):

Theorem 5.3’ (d). Let K be a ring. Let w € 1+ K [T]". Assume that
w = H([?, [we | £ € L]) for some (f(, [we | £ € L]) € K™, Let k € N.

Then,

M (w) =11 <f{ [HW | S eP(L)

Les
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Proof of Theorem 5.3 (d). Since L is a finite set used only for labelling, we can WLOG
assume that L = {1,2,...,m} for some m € N. Thus, w =11 <IA€, (we | £ € L]> rewrites

as w = II (IN(, [we | £ € {1,2, ,m}]) =1I (lN(, [wy, wa, ...,wm]>. Hence, we can apply

Theorem 5.3 (d) tou =w, j =k, K, = K, and u, = wy , and obtain

No(w) =T ( K, |[Jwi | T €Pe|{1,2...m} =TI <f< [Hwi | 1€ Py (L) )
: N——— »
el - el
=TI (f{ [ng | S e Pk(L)]>
les
(here, we renamed ¢ and I as ¢ and S). This proves Theorem 5.3’ (d). O

5.5. Preparing for the proof of Theorem 5.1: the (7')-topology

We are approaching the proof of Theorem 5.1. The idea of the proof is: We have to show
some identities for elements of 1 + K [[T]]" (such as associativity of multiplication).
Computing with elements of 1+ K [[T]]" can be difficult, but computing with elements
of 1 + K [T]" is rather easy thanks to Theorem 5.3. Hence, we are going to reduce
Theorem 5.1 to the case when our elements are in 1+ K [T]". The reader is encouraged
to try doing this on his own. In practice, it is a matter of noticing that for every
k € N, only the first so and so many coefficients of the power series v and v matter
when computing the k-th coefficient of u-v (for instance), and thus we can truncate
the power series at these coefficients, thus turning it into a polynomial. The abstract
algebraical way to formulate this argument is by introducing the so-called (T')-topology
(also called the (T)-adic topology) on K [[T]:

Definition. Let K be a ring. As a K-module, K [[T]] = [[ KT*. Now,
kEN
we define the so-called (T)-topology on the ring K [[T]] as the topology

generated by
{fu+TYK[T)] | we K[T]] and N € N}.

In other words, the open sets of this topology should be all translateﬂ
of the K-submodules TV K [[T]] for N € N, as well as the unions of these
translate’] (Note that, for each N € N, the set TV K [[T]] is actually an

32To be fully precise, we also need to specify v, (f(w [v1, 09, .. .,vn]) and I?u’v in order to apply

Theorem 5.3 (d). But v and (f(v, [v1,v2,... ,vn]) have not been used in the proof of Theorem 5.3

(d), and I}uﬂ, can just be taken to be K.
33The notion of a “translate” is defined as follows: If A is an additive group and B is a subset of A,
then a translate of B (in A) means a subset of A having the form

a+B={a+b | be B}

for some a € A.
34This includes the empty union, which is @.
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ideal of K [[T], and consists of all power series f € K [[T]] whose coef-
ficients before T°, T, ..., TN~1 all vanish. This ideal TV K [[T]] can also
be described as the N-th power of the ideal TK [[T]]; therefore, the (T)-
topology on K [[T]] is precisely the so-called T K [[T]]-adic topology. Also
note that every translate of the submodule TV K [[T]] for N € N actually
has the form p + TV K [[T]] for a polynomial p € K [T] of degree < N,
and this polynomial is uniquely determined.) It is well-known that the
(T')-topology makes K [[T]] into a topological ring.

This (T')-topology is a particular case of several known constructions; for example,
a similar way exists to define a topology on the completion of any graded ring, or on a
ring with a given ideal, or on the ring with a given sequence of ideals satisfying certain
properties. We will need only the (T')-topology, however.

Now, an easy fact:

Theorem 5.5. Let K be a ring. The (T')-topology on the ring K [[T]]
restricts to a topology on its subset 1 4+ K [[T]]"; we call this topology the
(T')-topology again. Whenever we say “open”, “continuous”’, “dense”, etc.,
we are referring to this topology.

(a) The subset 1+ K [T]" is dense in 1 + K [[T]]".

(b) Let f: 14+ K [[T]]* — 1+ K [[T]]" be a map such that for every n € N
there exists some N € N such that the first n coefficients of the image of a
formal power series under f depend only on the first N coefficients of the
series itself (and not on the remaining ones). Then, f is continuous.

() Let g: (1+ K[[T]]") x (1+ K [[T]]") = 1+ K[[T]]" be a map such
that for every n € N there exists some N € N such that the first n coef-
ficients of the image of a pair of formal power series under f depend only
on the first IV coefficients of the two series itself (and not on the remaining
ones). Then, g is continuous.

(d) The map

(I+K[T]") x 1+ K[T)") =1+ K[[T]",

(u,v) — utv,
the map

L+ K[T]]") x A+ K [[T)]7) = 1+ K[[7]]",

(u,v) — u=wv,
the map

(L+K[T]") x 1+ K[T)") = 1+ K [T]]*,

(u,v) — u-w,

and the map M : 1+ K ([T]]" — 1+ K [[T]]" for every j € N are continuous.
(e) The topological spaces K [[T]] and 1 + K [[T]]* are Hausdorff spaces.
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Note that Theorem 5.5 (d) yields that any finite compositions of the maps +, =, ~and
M are continuous (since finite compositions of continuous functions are continuous). In
particular, any polynomial with integral coefficients acts on 1+ K [[T]]" as a continuous
map.

Proof of Theorem 5.5. (a) and (e) are done in any commutative algebra book such as
[AtiMac69, Chapter 10].

(b) and (c) are basic exercises in topology.

(d) follows from (b) and (c) together with the definitions of I, ~and M. O

5.6. Proof of Theorem 5.1

Now it comes:

Proof of Theorem 5.1. (a) We have to prove the ring axioms for (1+ K [[T]]",+,7)
(including the unity axiom for 1+ 7). There are several axioms to be checked, but the
idea is always the same, so we will only check the associativity of = and leave the rest
to the reader.

In order to prove that the operation * is associative, we must show that u- (v-w) =
(u~v)~w for all u,v,w € 1+ K [[T]]". Since the operation ~is continuous (by Theorem
5.5 (d)), and since 1 4+ K [T]" is a dense subset of 1+ K [[T]]" (by Theorem 5.5 (a)),
this needs only to be shown for all u,v,w € 1+ K [T]". So let us assume that
u,v,w € 1 + K [T]". Recall that the map II is surjective. Hence, there exist

e some (Ku, [ug, ug, ..., um]) € K™ such that u = II <IA€U, [u1, ug, ..., um]),

e some <Kv, [v1, Vg, ...,vn]> € K™ such that v = II (I?U, [v1, Vg, ...,vn]>,

e some (Kw, [wy, we, ...,wd) € K™ such that w = II (I?w, [wy, we, ...,wg]).
Consider these elements of K™, Notice that

w=TI | Ky w1, uz, st | =11 (f{ [w; | i€ {1,2, ... ,m}])
—_——

=[u;]i€{1,2,...,m}]

and

w=1I | Ky, [w1,ws,.owy] | =11 (f{w, fwy | k€ {1,2,... ,5}]) .
—_—
=[wg|k€{1,2,...,£}]
Let L = f(u ® I?U ® l~(w. Clearly, L is a finite-free K-module (since it is the tensor

product of the ﬁnitg-free K —modul(is K,, K,, Kw).NWe identify the rings Ky, Ky, Ky
with the subrings K, ® 1®1, 1 K, ®1,1®1® K, of thering L = K, ® K, ® K,

35 At this point, we are actually also using Theorem 5.5 (e). In fact, what we are using is the fact
that if two continuous maps from a topological space B to a Hausdorff topological space Q are
equal to each other on a dense subset of B3, then they are equal to each other on the whole 3.
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respectivelyﬂ. This way, L becomes a finite-free extension ring of K which contains
all three rings K., K,, K, as subrings. Now, Theorem 5.3 (c) yields

o = T1(L, [u; | (i) € {1,2, ....m} x {1,2, ..., n}]).

Hence, Theorem 5.3 (c) (applied to u-v, w, L, [uv; | (i,5) € {1,2,...,m} x {1,2,...,n}],
Kw, [we | k€ {1,2,....0}] and L instead of u, v, Ky, [u; | i € I], Kv, [v; | j € J] and
K) yields

(uv)w =11 (L, [(wv;) wi | ((3,7).k) € ({1,2,....,m} x{1,2,...,n}) x {1,2,...,0}]).

Also, Theorem 5.3 (c) (applied to v, w, K., [U1, V2, ..., Us], Ky, [w1,ws, ... we and
L instead of u, v, K, [ur,us, ..., unyl, Ky, [U1,02,...,v,] and K, ,) yields

vw =I1(L, [vjwy | (J, k) € {1,2,...,n} x {1,2,...,}]).

Hence, Theorem 5.3 (¢) (applied to u, v-w, Ko, [u; | i€l L, [vjwe | (4, k) € {1,2,...,n} x {1,2, ...

and L instead of u, v, Ky, [u; | i € I], K,, [v; | j € J] and K) yields
u-(vw) = I (L, [u; (vjwg) | (4, (4, k) € {1,2,....m} x ({1,2,...,n} x {1,2,...,0})]).
But there is a canonical isomorphism of sets
({1,2,...m} x {1,2,...,n}) x{1,2,....0} = {1,2,....m} x ({1,2,...,n} x {1,2,...,0}),
mapping every ((i,7),k) to (4, (j,k)). Hence,

L, [(wv;)wg | ((3,7),k) € ({1,2,...,m} x{1,2,....,n}) x {1,2,...,£}])

=u,; ijk)

( uzvj we | (4, (4, k) €{1,2,....,m} x ({1,2,....,n} x {1,2,....£})
(L, [u;

wi (vjwy) | (4, (4, k) € {1,2,...,m} x ({1,2,...,n} x {1,2,....0})]).
Thus,
(uv)w =11 (L, [(wv;) wi | ((3,7),k) € ({1,2,...,m} x{1,2,...,n}) x {1,2,...,£}])
=1I(L, [u; (vywy) | (4, (4, k) € {1,2,...,m} x ({1,2,...,n} x {1,2,....£})])

= u- (vw) .

This proves the associativity of the operation™. As I said above, the other ring axioms
can be proven similarly, so we can consider Theorem 5.1 (a) as proven.
(b) It is easy to see that

A0 () =14+T= (the multiplicative unity of the ring (1 + K[[T]]", —T—,T))

36 This is legitimate, because the canonmical ring homomorphisms [N( RI1IR1L — I? ® I~( ® I?w,
1®K ®1— Ku®K @Ky and 1010 K, — K, ® K, ® K, are injective (indeed, the K-modules
Ku, K, and K,, are finite free, and therefore tensoring with each of these K-modules is an exact
functor).
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and R
M(r) =2

for every x € A (K). It now remains to prove that

(utv) Z)\’ YN (v (25)

—~

forevery j € N;u € A(K) and v € A (K). Here, the sign i means that the summation
i=0

is based on the addition F of the ring A (K).

__Let us fix some j € N. Since the addition F, the multiplication = and the map

A for every i € N are continuous (by Theorem 5.5 (d)), and since 1 + K [T]" is a

dense subset of 1 + K [[T]]" (by Theorem 5.5 (a)), we only need to check for

all u,v € 14+ K[T]". So let us assume that u,v € 1 + K [T]". Then, there exist

some (lN(u, [ul,u2,...,um]> € K™ such that v = II (IN(u, [ul,u2,...,um]), and some
<IA€U, [v1, Vg, ...,vn]> € K™ such that v = II (f(v, [v1, Vg, ...,Un]>. Let [?u,v be a finite-
free extension ring of K" which contains both K, and K, as subrings. (Such an extension

ring exists, as was proven in Theorem 5.3 (a).) Theorem 5.3 (b) yields

utv =11 <Ku,v, (U1, U, ooy Uy, V1, V2, ...,vn]> )

In other words, if we define m + n elements wy, wo, ..., Wy, by
u;, if i < m; ,
w; = e for every 1 1.2,...m+n
! {vi_m,lfz>m yi€{Ll2...m+nt,

then

utv =TI (Ku’v, [wy, wa, ..., wm+n]> :
Thus, Theorem 5.3 (d) yields

/):j (uiv) =11 (IA{/%U, [le | I e Pj ({1,2,,m—|—n})

i€l

) |
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But since

[[w | TeP{1.2,...;m+n})

il

= [Jw, | TeP;({1,2,....m+n})

Lvel

= | JI w I iefo1, ..}, JeP({1,2,...m}), K' € Pii({m+1,m+2,...m+n})
Lye JUK'

because every set I € P; ({1,2,...,m +n}) can be uniquely
written as a union J U K’ of two sets J € P; ({1,2,...,m}) and
K eP;,_i({m+1,m+2,..,m+n}) for some i€ {0,1,..,5}
(namely, these two sets are J =T N{1,2,...,m} and
K'=In{m+1,m+2,...,m+n}, and i is the cardinality of .J)

- [Hwa H wg | 1€40,1,....5}, J€Pi({1,2,...m}), K' e Py ({m+1,m+2,...,m+n})

acJ  BEK’

(Since H W, = H We H wg (because J N K' = @))

~EJUK' o€  BEK’

= [T we [] wmss | i€40,1,..5}, J € Pi({1,2,...m}), M € P;_; ({1,2,...,n})]

LaeJ BeEM
(here, we have substituted M = {u —m |u € K'} for K')

= [ ue [T vs | i€€0.1,..5}, JePi({1,2,...,m}), M € P, ({1,2,...,n})]

LacJ BEM

since w; = e )
Viem, if i >m
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this becomes

¥ (uFv)
—1I (f{u [H ua [Jvs | i€{0.1,..5}, J€Pi({1,2,....,m}), M € P;_; ({12, ...,n})])
acJ pseM
J
=31 (Ku [H ua [Jvs | T€P({1,2,....m}), M € P, ({1,2,...,n})]>
=0 acJ BEM

(& J/
-

_H<I~<u{ T ua | JEP:({1,2,..., m}):| )An(%{ [T vg | MeP;_i({1,2,..., n})D
acJ BeM
(by Theorem 5.3’ (c))

(by Corollary 5.4 (a))

j

= I (Ku, [H uo | J€P({1,2,..,m}) )71_[ (Kv, [H vg | M e P ({1,2,...,71})])

i=0 acJ peM

=N (u) ()
(by Theorem 5.3 (d)) (by Theorem 5.3 (d))

R
=3 R A ),

=0
proving (27). Theorem 5.1 (b) is proven. O

5.7. Ay : K — A(K) is an additive group homomorphism

The following trivial fact is a foreshadowing of the notion of “special A-rings”:

Theorem 5.6. Let (K, (Ai)ieN) be a A-ring. Consider the map A : K —
A (K) defined by

Ar (z) = Z N (z) T for every x € K.

1€EN

Then, Az is an additive group homomorphism (where the additive group
structure on A (K) is given by +).

Proof of Theorem 5.6. The map A is well-defined (i. e. every r € K satisfies Y A (z) T €
ieN
A (K)) because X° (z) = 1 for every z € K. The assertion that Ay is an additive
group homomorphism follows from Theorem 2.1 (b) (because as an additive group,
A(K) = (A(K),+) = (A(K),-)). Theorem 5.6 is thus proven. O
While Theorem 5.6 says that Ay is an additive group homomorphism, it is not in
general a ring homomorphism. But for many A-rings K, it is one - and even a A-ring

homomorphism. These A-rings will be studied in the next Section.
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5.8. On the evaluation (substitution) map
The following properties of the map ev defined in Section 3 will turn out useful to us
later:

Theorem 5.7. Let K be a ring.

(a) For every p € K, the map ev,r : K [[T]] = K [[T]] is continuous (with
respect to the (T)-topology).

(b) Let u € 1+ K [T]*. Assume that u = II (}?u, [u1, ug, ,um]) for some

([?u, [u1, Uz, ,um]) € K™, Let u € K. Then, ev,r (u) =11 ([?u, [y, pus, ...,pum]) =

11 (K i | 1 € {12, .0, m}]).

(c) Let u € A(K) and v € A (K). Let u € K. Then, ev,r (u) ¥ ev,r (v) =
evyr (u+v).

(d) Let w € A(K) and v € A(K). Let p € K and v € K. Then,
evur (u)~evyr (v) = evy,r (U).

(e) Let u € A(K). Let p € K. Let k € N. Then, A (evur (u)) =
ev b ()\k (u))

Proof of Theorem 5.7. (a) Obvious from Theorem 5.5 (b) (or, more precisely, from
the assertion you get if you replace 1 + K [[T]]" by K [[T]] in Theorem 5.5 (b); but
this assertion is proven in the same way as Theorem 5.5 (b)).

(b) By assumption, u = II <l~(u, [y, ug, ..., um]) =[] (1 +w;T), so that
=1

evyr (u) = H (1+wuT) = H (1+ pu,T) =11 <I?u, [y, pus, ...,,uum]> ,
i=1 =1

and Theorem 5.7 (b) is proven.

(d) Since the operation ~ and the maps ev,r, ev,r and ev,,; are continuous (by
Theorem 5.5 (d) and Theorem 5.7 (a)), and 14 K [T]" is a dense subset of 1+ K [[T]]"
(by Theorem 5.5 (a)), this needs only to be shown for all u,v € 1+ K [T]*. So let

us assume that u,v € 1 + K [T]". Then, there exist some <[?u, [uq, ug, ..., um]> c K™

such that v = II <Ku, [uy, ug, ...,um]>, and some (KU, [v1, Vg, ...,vn]> € K™ such that
v =1II <[?U, [v1, Vg, ...,Un]>. Theorem 5.3 (a) says that there exists an extension ring

[?uﬂ, containing both K, and K, as subrings. Now, Theorem 5.3 (c) yields uv =
11 (fé v | (3, 5) € {1,2, ., m} x {1,2, ...,n}]>, so that Theorem 5.7 (b) gives us

evr (uv) =11 <[?u,v, [pvuvg | (4,7) € {1,2,...,m} x {1,2, ,n}])

— 11 (f(u s - v | (3, 5) € {1,2,om} x {1,2, ...,n}]> .

53



On the other hand, Theorem 5.7 (b) yields ev,r (u) = II <IA€U, [y, pusg, ...,,uum])
and (similarly) ev,r (v) =11 ([?U, [vvy, v, ...y yvn]>. Thus, Theorem 5.3 (c) yields

evur (u)~evyr (v) =11 <}N(W), [p; - vv; | (i, 7) € {1,2,...,m} x {1, 2, ,n}]) :

Hence, ev,r (u)~ev,r (v) = ev,r (u-v). This proves Theorem 5.7 (d).

(c) We can prove Theorem 5.7 (c) similarly to our above proof of Theorem 5.7 (d).
However, there is also a much simpler proof of Theorem 5.7 (c): Since ev,r is a ring
homomorphism, we have ev,r (u)-ev,r (v) = ev,r (u - v). Since + is the multiplication
on 1+K [[T]]", this rewrites as ev,r (u) + ev,r (v) = ev,r (uFv). This proves Theorem
5.7 (c).

(e) Since the maps A* and ev,r and ev, .y are continuous (by Theorem 5.5 (d) and
Theorem 5.7 (a)), and 1 + K [T]" is a dense subset of 1 + K [[T]]" (by Theorem 5.5

(a)), this needs only to be shown for all u € 14 K [T]*. So, from now on we assume
that u € 1+ K [T]". Then, there exists some <[?u, [u1, ug, ,um]> € K™ such that

u=1II (Ku, [, ug, ..., um]) Theorem 5.3 (d) then yields

X’f(u):H(féu, [Hui | IePk({l,Z,...,m})]> = 11 (1+Hui«T>,

icl 1€PL({1,2,....m}) icl

so that

ev iy (Xk (u)) = H (1 + l_Iuz . ,ukT> = o (H (l + H (puy) - T)

IePr({1,2,...,m}) iel {1,2,...,m}) iel
il

On the other hand, Theorem 5.7 (b) yields ev, (u) = II (Ku, [y, pug, ... ,uum]) and
thus, by Theorem 5.3 (d) again,

A (evur (u) =11 (l?u, [H (pw;) | T€Pp({1,2, ,m})]) :

so that we conclude A¥ (evur (u)) = evur (X’“ (u)), and Theorem 5.7 (e) is proven. [

5.9. The functor A

Finally, a small definition that turns A into a functor:

Definition. Every homomorphism ¢ : K — L of rings canonically induces
a A-ring homomorphism A (K) — A (L) (which sends every > a,T" € A (K)
ieN
to > ¢ (a;)T" € A(L)). This homomorphism A (K) — A (L) will be de-
i€N

noted by A (¢).

o4



It is easy to see that this A (¢) indeed is a A-ring homomorphismm Besides, it has
some obvious properties: If ¢ is surjective, then so is A (). If ¢ is injective, then A (¢)
is injective as well; thus, if L is an extension ring of K, then A (L) can be canonically
considered an extension ring of A (K).

5.10. Exercises

FEzercise 5.1. Let K be a ring. For every monic polynomial P € K [T,
there exists a finite-free extension ring Kp of the ring K and n elements py,
P2y .., pn of this extension ring Kp such that P = [[ (T — p;) in Kp|[T],

i=1
where n = deg P.

[This exercise is a particular case of [Laksov09, Theorem 5.5], and (more
generally) a simple corollary of Laksov’s theory of splitting algebras.]

Ezercise 5.2. Let L be a ring. Let n € N, let ag, a4, ..., a, be some
elements of L, and let P1, P2, -y Pn be some elements of L.

(a) If Z an_iT" = H (p; + T) in the polynomial ring L [T], then prove

=1
n

that Z a;T" =[] (1 + pT).

i=0 i=1
(b) If Z a;T" = [] (1 + p;T) in the polynomial ring L [T], then prove

i=1
n

that Z an_iT" =T (pi +T).
=0 =1

Ezxercise 5.3. Let K be a ring. Let p be an element of K. Let P € K [T]
be a monic polynomial such that P (p) = 0. Let n = deg P. Then, there
exists a finite-free extension ring K} of the ring K and n elements p;, po,
.., pn of this extension ring K% such that P = [[ (T'— p;) in K} [T] and
such that p = p,. =

FExercise 5.4. Let K be a ring, and L an extension ring of K. For some
n € N, an element u of L is said to be n-integral over K if there exists a
monic polynomial P € K [T] such that deg P =n and P (u) = 0.

Let n € N and m € N. Let o and 8 be two elements of L such that « is
n-integral over K and [ is m-integral over K. Prove that af is nm-integral
over K.

[This is a known fact, but it turns out to also be a corollary of our
construction of the polynomials Py further above.]

FEzercise 5.5. Let K be a ring, and I be an ideal of K. Let I [[T]] denote
the K-submodule

{ZaT’eK T | alelforallz}

ieN
={p e K|[[T]] | pis a power series with all its coefficients lying in I}

37Basically, this is because the P, and Py ; are polynomials, and polynomials commute with ring
homomorphisms.
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of K [[T]]. Let I[[T]]* denote the subset

TI[[T]] = {Zam‘ e I[[T]] | a; €1 for all i, and ag = 0}
ieN
={p e l[[T]] | pisa power series with constant term 0}

of I'[[T]]. Consider the subset 1 + I'[[T]]* of 1 + K [T]]" = A (K).
Prove the following:

(a) We have 1+1 [[T]]" = Ker (A (7)), where 7 is the canonical projection
K~ K/I

(b) The set 1 + I [[T]]" is a M-ideal of the A-ring A (K).

6. Special \-rings

6.1. Definition

Now we will define a particular subclass of A-rings that we will be interested in from
Nnow on:

Definition. 1) Let (K, (\’),.y) be a A-ring. The map Ay defined in The-
orem 5.6 is an additive group homomorphism (by Theorem 5.6). We call

(K, (A\"),cy) a special A-ring if this map Ar : (K, (A\),cy) — (A (K), (XZ> N)
ic
is a A-ring homomorphism.

2) Let (K, (\"),cy) be a A-ring. Let L be a sub-A-ring of K. If (L, (A’ |1),cy)

is a special A\-ring, then we call L a special sub-A-ring of K.
A different, more down-to-earth characterization of special A-rings:

Theorem 6.1. Let (K, (\),.y) be a A-ring.
Then, (K7 (/\i)ieN) is a special A\-ring if and only if

N (zy) = P (A (), A% (@), AT (2), A (), 2% (1) 5 s AF (1)
forevery ke Nyx € K and y € K (26)

and

N (N (2) = Pry (M (2), X (), ..., A (2))
for every k € N, j e Nand z € K. (27)

Proof of Theorem 6.1. According to the preceding definition, (K , (A9 Z,EN) is a special
A-ring if and only if the map Ar is a A-ring homomorphism. This map is always an

38 Notice that I [T]]" # I - (K [[T]]+) in general!
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additive group homomorphism (by Theorem 5.6); hence, it is a A-ring homomorphism
if and only if it satisfies the three conditions

Ar (xy) = Ar () A (y) for every x € K and y € K,
Ar (1) =1+T, and
M (N (z)) = N (Ar (2)) for every j e Nand z € K

(note that 1 + 7" is the multiplicative unity of A (K)). The second of these three
conditions actually follows from the third one (since A (M (z)) = M (A7 (z)), applied
to j =0, yields Ay (1) = 1+ T'), so we see that the map Ay is a A-ring homomorphism
if and only if it satisfies the two conditions
Ar (zy) = Ar ()" Ar (y) for every x € K and y € K, and
Ar (N () = N (Ar () for every j € Nand z € K.
But these two conditions are equivalent to and , respectively (because of

the definitions of ~and A and because two formal power series are equal if and only if
their respective coefficients are equal). This proves Theorem 6.1. O

6.2. A(K) is special

Theorem 6.2 (Grothendieck). Let K be aring. Then, (A (K), (Xz> N)
ic

is a special \-ring.
Proof of Theorem 6.2. According to Theorem 6.1, we only have to prove that
N (o) = Py (N (), 32 () 3 () X (0), 32 (0), o X ()
for every k e Ny u € A(K) and v € A (K), (28)

and

N (V@) = Py (M (@), 32 (), 3 ()
for every k€ N, je Nand u € A (K). (29)

Here, we are using the following notation: If S € Z oy, as, ..., ay;] is a polynomial,
then S <Xl (u) A2 (u), oy AR (u)) denotes the polynomial S applied to A! (u), 22 (u),
ey AR (u) as elements of the ring A (K) (and not as elements of the ring K [[T1]]).
For instance, if S = aj + ay + ... + ay;, then S <X1 (u), A2 (), ..., kI (u)) means
AL (u) FA2 (u) T FAM (u) (and not A! (u) + A2 (u) 4 ... + A% (u), where + denotes the

addition in the ring K [[T]]). This explains how the right hand sides of the equations

and should be understood.
Let us first prove : Since the subset 1+ K [T]" is dense in 1+ K [[T]]" = A (K)

(by Theorem 5.5 (a)), and since =~ and A" are continuous (by Theorem 5.5 (d)), it
will be enough to verify foru € 1+ K[T]" and v € 1+ K[T]". Then, there

exist some (I?u, [, ug, ..., um]) € K™ such that v = II <[?, [uq, uz, ...,um]>, and some
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<I?v, [v1, Vg, ...,vn]> € K™ such that v = II (IA{', [v1, V2, ...,vn]>. By Theorem 5.3 (a),

there exists a finite-free extension ring IN(W of K which contains both [N(u and IN(U
as subrings. We replace K by K,, now (silently using the obvious fact that the

injection K — [N(W canonically yields an injection A (K) — A ([N(M)) Hence, we
can now assume that uj, ug, ..., Upy, V1, Vs, ..., v, all lie in K. Theorem 5.3 (c)
yields uv = 11 (I?M, [uv; | (4,7) € {1,2,...,m} x {1,2,...,n}]>. Since we identified
I?W with K, this becomes

uwv =I1(K, [uv; | (4,7) € {1,2,...,m} x {1,2,...,n}]).

Thus, Theorem 5.3’ (d) (applied to w = u-v, K = K, L={1,2..m}x{1,2..,n}
and w(; ;) = w;v;) yields

N (i) =1 | K, H wiv; | S €Pr({L,2,....,m} x{1,2,...,n})
(1,5)€8
There exists a ring homomorphism
21U, Uy Uy, Vi, Vo, o V] — A (K

which maps U; to 1+, for every ¢ and V; to 1+v;T for every j. This homomorphism

maps X; = > IT Uk to
SC{1,2,...m}; keS
|S|=i
> Merun- > e - 2 (K[HD
SC{1,2,...,m};k€S —TI(K[uy]) SC{1,2,....,m}; kesS SC{1,2,...,m}; kES
|S|=i - ’ |S|=i —— |S|=i

)
keS

according to Corollary 5.4 (b)

— 1 (K, [Tue|SC{t2.,m}; |S| :@D
Lkes

—1I (K, [ux15eP ({12, --~,m})]>
Lkes

=\ (u) (after Theorem 5.3 (d))

and Y; to N (v) for every j € N (according to a similar argument). Hence, applying
this homomorphism to (20)), we obtain

> (1+wT)~(1+v;T)
SC{1,2,...m}x{1,2,....n};(i,5)€S
|S|=k

~

~ P (Xl (), N2 (1) s N (1), N (0), N2 (1) ooy AF (v)) .
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But combined with

— o —

> H (1+u,T) (14 v;T) = > HH , [uiv;])

SC{1,2,...m}x{1,2,....,n};(i,7)€S SC{1,2,....m}x{1,2,....n}; (3,j)€S

i (6 fug I (K, [v5]) R P N _
|SI=k =II(K,[u;v;]) after |S|=k g
Theorem 5.3 (c) —II <K I uv:|>
- ; 1Uj
(i,5)es
after Corollary 5.4 (b)
—_—
= E II K, H U;v;
SC{1,2,....m}x{1,2,...n}; (i,)€S

|S|=k

=T | K, | J] wov; | SC{L2,...m}x{1,2,...n}; S| =k
| (i.5)€S
(after Corollary 5.4 (a))

=T | K, | J] woi|S€Pe({L,2,....,m} x{1,2,...,n})
| (1.4)€S
=\ (i),

this yields
N o) = P (W ()32 () o, W ) X (0), 32 (0) 0 A ()

Thus, (28]) is proven.
Next we are going to prove (the argument will be similar to the above proof of

(28)):
Since the subset 1+ K [T]" is dense in 14+ K [[T]]" = A (K) (by Theorem 5.5 (a&and

since all the A" are continuous (by Theorem 5.5 (d)), it will be enough to verify (29) for
the case u € 1+ K [T]". But in this case, there exists some (I?u, [y, ug, ... um]> € Kint

such that u =11 (f(, [ug, ug, ..., um]> By definition, l~(u is a finite-free extension of K.
We replace K by I?u now (silently using the obvious fact that the injection K — I?u

canonically yields an injection A (K) — A (f(u)) Hence, we can now assume that wuy,

Us, ..., Up all lie in K. Theorem 5.3 (d) yields M (u) = II (l?u, [H w | IeP;({L,2,..,

icl
Since we identified K, with K, this becomes

N (u) =11 <K, [Hui | TeP;({1,2, ...,m})]) .

Thus, Theorem 5.3 (d) (applied to w = X (u), K = K, L = P; ({1,2,...,m}) and
wr = [] u;) yields

PR (XJ (u)) =11 (K, [HHU | S € P (P; ({1,2,...,m}))]> .

1esS iel

59

m)]).



There exists a ring homomorphism

7 [Ul, UQ, ceey Um] — A (K)

which maps U; to 1+wu,;T for every ¢. This homomorphism maps X; = > I Uk
SC{1,2,...m}; k€S
|1S|=i
to )\Z l Hence, applying this homomorphism to 1' we obtain

S TIII+wT) = By (Xl (), A2 (1) , ooy NV (u)) .
SCP;({1,2,...m});I€Sicl
|S|=k

But combined with

S T Ioswn - 5 ﬁn( [H])

SCP; ({12, m)ilES el SCP;({1,2,..;m}); I€S el
—— ~~
|S|=k IS|=k
=I( K, | [T u =I( K,| [T IT ws
i€l IeSiel
after Corollary 5.4 (b) after Corollary 5.4 (b)

- E bl

SCP;({1,2,...,m}); IeS iel
|S|=F

:H(K, HHUZ | SCP;({1,2,....,m}); |S|:k]>

L Ies icr
(after Corollary 5.4 (a))

:H(K, HHUz | Sepk(Pj({1v2""7m}))])

LIS i€l

this becomes o L R o
N ()J (u)) — P, (Al (), A2 (1) , ..o, NP (u)> .
Thus, we have verified . Theorem 6.2 is thus proven. O]

Theorem 6.1 gives us an alternative definition of special A-rings via the polynomials
P, and P, ;. Why, then, did we define the notion of special A-rings via the map

Ar: (K, (N)ey) = <A (K), <Xi>ieN> rather than using Theorem 6.17 The reason is

that while Theorem 6.1 provides an easy-to-formulate definition of special A-rings, it is

39This can be proven exactly in the same way as we have showed, during the proof of , that the
ring homomorphism
ZU, Uy, Uy, Vi, Vo, o, Vi ] = A (K)

which maps U; to 14-u;T for every i and V; to 1+v;T for every j must map X; = > 1T Uk
SC{1,2,....m}; k€S
|S|=i

to Al (u) (where the notations are the ones we introduced in our above proof of )
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rather hard to work with. In order to check that some given ring is a special A\-ring using
Theorem 6.1, we would have to prove the identities and , which is a difficult
task since the polynomials P, and P ; are very hard to compute explicitly. Using
the definition that we gave, we would instead have to check that Ay : (K, (\"),.y) —

<A (K), <X’> ) is a A-ring homomorphism, and this is often easier since Exercise 2.1
ieN

reduces this to checking some identity at Z-module generators of K.

6.3. Exercises

Ezercise 6.1. Let K be aring. Consider the localization (1 + K [T]+)_1 K [T]
of the polynomial ring K [T at the multiplicatively closed subset 1+K [T]*.
This localization (1 + K [T]+)_1 K [T] can be considered a subring of
K [[T]] (since K [T] € K [[T]], and every element of 1+ K [T]" is invertible
in K [[T]]). Prove that the set (1 + K[T]+)_1K [T] N A (K) is a special
sub-A-ring of A (K).

Exercise 6.2. Let (K, ()\i)ieN) be a special A-ring. Then, prove that:

(a) Every n € Z and i € N satisfy \'(n-1) = (n) -1, where 1 denotes
i

the unity of the ring K.

(b) None of the elements 1, 2, 3, ... of the ring K equals zero in K, unless
K is the trivial ring.

Exercise 6.3. Consider the ring Z[X] / (X?,2X) = Z|[z], where x de-
notes the residue class of X modulo the ideal (X?,2X).

Define amap Ay : Z [z] — (Z [2]) [[T]] by Ar (a + bz) = (1 +T)* (1 + 2T)°
for every a € Z and b € Z.

Define a map A : Z[z] — Z[x] for every i € N through the condition
A (z) = >° N (x) T for every o € Z [x].

i€N

Prove that (Z [z], (X"),.y) is a special A-ring. [This way, we see that the
additive group of a special A-ring needs not be torsion-free.|

Exercise 6.4. Let (K, ()\i)ieN) be a A-ring. Let E be a generating set of
the Z-module K.

Prove that the A-ring (K, (A\),.y) is special if and only if it satisfies

N (zy) = P (A (2), A2 (2) o A (2) AT (1), A% (1), A ()
forevery ke Ny x € Eand y € E (30)

OWhen K is a field, this localization is simply the (local) ring of the (so-called) rational functions
in one variable over K which have no pole at 0. (Note that the term “rational function” is being
used here for an element of the quotient field Quot (K [T7]). This is the standard meaning that the
term “rational function” has in modern literature. This meaning is somewhat confusing: In fact,
rational functions are not functions in the standard meaning of this word; they induce functions
(although no functions on K, but instead only functions on an open subset of K), but even these
induced functions don’t determine them uniquely, so the word “function” in “rational function”
should not be taken literally. However, lacking a better word, everybody keeps calling the elements
of Quot (K [T]) “rational functions”, and so do I.)

61



and

A (VN (2) = Poy (A (), A2 (2), ..., A (2))
for every k€ N, j € Nand z € FE. (31)

Exercise 6.5. Let K be a ring. Let ¢ € N. Define a mapping coeff; :
A (K) — K by setting

coeff; (Z ajTj> =a;

jeN
for every > ;77 € A (K) (with a; € K for every j € N)
jeN
(In other words, coeff; is the mapping that takes a power series and returns
its coefficient before T%.)
Prove that

coeff; (u) = coeff; (Z\\Z (u)) for every u € A (K).

Exercise 6.6. Let (K, ()\i)ieN) be a special A-ring, and A be a ring. Let
¢ : K — A be a ring homomorphism, and let coeff{ : A(A) — A be

the mapping defined by coeffs (Z ajTj> = ay for every > a;77 € A(A)
jeN jeN

(with a; € A for every j € N). (In other words, coeff? is the mapping that

takes a power series and returns its coefficient before T.)

As Theorem 5.1 (b) states, (A (A), (%;)le

ng :A(A) — A (A) are defined in the same way as the maps N A (K) —
A (K) (which we have defined in Section 5) but for the ring A instead of
K.

Prove that there exists one and only one A-ring homomorphism ¢ : K —
A (A) such that coeff{ o = .

Exercise 6.7. Let (K, ()\i)ieN) be a special A-ring, and I be an ideal of
K. Let S be a subset of I which generates the ideal /. Assume that every
s € S and every positive integer i satisfy A\’ (s) € I. Then, prove that I is
a A-ideal of K.

Ezercise 6.8. Let K be a ring. For every ¢ € N, we define a mapping
Coeff; : K [[T]] — K by setting

( Coeff; (P) = (the coefficient of P before T%) )

) is a A-ring, where the maps

for every power series P € K [[T]

H. (In other words, Coeff; is the mapping that takes a power series and
returns its coefficient before 7%.) [

41 Equivalently, Coeff; <Z a;T7 | = a; for every > a;T9 € K [[T]] (with a; € K for every j € N).
JEN jEN
42Note that we are denoting this mapping by Coeff; with a capital “C” to distinguish it from the
mapping coeff; defined in Exercise 6.5. This distinction is necessary because these two mappings
have different domains (namely, the map Coeff; is defined on all of K [[T]], whereas the map coeff;
is defined only on A (K)).
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Let m € N. For every i € {1,2,...,m}, let ®; € K [[T]] be a power series.
(a) We have Coeff (H P, ) =[] Coeffy (P;).

=1

(b) Assume that Coeff, (®;) = 1 for every i € {1,2,...,m}. Then,
Coeft (H(I)) = 1 and Coeft; (H@) ZCoeffl( i)

Ezercise 6.9. Let K be a ring. For each 1 € N, define the mapping
coeff; : A (K) — K as in Exercise 6.5. Then, show that coeff; : A (K) — K
is a ring homomorphism®]

Exercise 6.10. In this exercise, the ® sign shall always mean ®y. Let A,
B and C' be three rings. Let t; : A - A ® B be the ring homomorphism
sending each a € Atoa®1 € A® B. Let 15 : B — A® B be the ring
homomorphism sending each b € Bto 1®@be A® B. Let a: A — C and
B : B — C be two Z-module homomorphisms.

(a) There exists a unique Z-module homomorphism ¢ : A ® B — C
satisfying

(p(a®b) =al(a)pB(b) for every (a,b) € A x B).

(b) Assume that a and (8 are ring homomorphisms. Consider the unique
Z-module homomorphism ¢ : A® B — C' constructed in Exercise 6.10 (a).
Then, this ¢ is a ring homomorphism and satisfies pot; = o and oy = .

[This exercise is not directly related to A-rings; it is just a mostly trivial
fact that will be cited in the next exercise.]

Exercise 6.11. In this exercise, the ® sign shall always mean ®z. Let
(A, (\),ey) and (B, (1');oy) be two A-rings. Define a map Ay : A — A (A)

by
= Z N (z) T for every x € A.
ieN
Define a map pr : B — A (B) by
:Z,ui(x)Ti for every z € B.
ieN

Notice that Ar is an additive group homomorphism from A to A (A) (by
Theorem 5.6, applied to A instead of K), and thus a Z-module homomor-
phism. Similarly, ur is a Z-module homomorphism.

Let t; : A - A® B be the ring homomorphism sending each a € A to
a®1le Aw B. Let 13 : B —+ A® B be the ring homomorphism sending
eachb€ Btol®0b e A® B. The ring homomorphisms ¢; : A - A® B
and 15 : B = A ® B canonically induce A-ring homomorphisms A (¢1) :
A(A) > A(A® B) and A (1) : A(B) - A(A® B) (since A is a functor).
Exercise 6.10 (a) (applied to €' = A(A® B), a = A(11) o Ay and 8 =
A (12) o ur) thus yields that there exists a unique Z-module homomorphism
¢: A® B — A (A® B) satisfying

( ¢(a@b) = (A () 0 Ar) (@)~ (A (12) © pr) () ) ‘

for every (a,b) € Ax B

43but, generally, not a A-ring homomorphism, even when (K , ()\Z) ) is a special A-ring!

€N
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Let us denote this ¢ by 7. For every i € N, we define amap 7 : A® B —
A ® B as follows: For every ¢ € A® B, let 7/ (c) be the coefficient of
the power series 77 (¢) € A (A® B) C (A® B)[[T]] before T*. Prove the
following facts:

(a) The pair (A® B, (7%),y) is a A-ring.

(b) If (C, ("),oy) is a special A-ring, and if o : (A, (X)), ) = (C, (11),cn)
and B : (B, (1');en) — (C, (V'),ey) are two A-ring homomorphisms, then
the unique Z-module homomorphism ¢ : A ® B — C' constructed in Exer-
cise 6.10 (a) is a A-ring homomorphism (A ® B, (77),.y) = (C, (V"))

(c) Assume that the A-rings (A, (A\),oy) and (B, (u'),oy) are special.
Then, the map ¢; is a A-ring homomorphism from (A, (\"),.y) to (A® B, (79),x),
and the map ¢ is a A-ring homomorphism from (B, (11'),.y) to (A ® B, (7%),cy)-

(d) Assume that the A-rings (A, (X),.y) and (B, (u'),oy) are special.

Then, the A-ring (A ® B, (17),.y) is special.

7. Examples of special )\-rings

7.1. Binomial \-rings

We have learned a lot of examples for A-rings, but which of them are special? Of
course, the trivial ring 0 with the trivial maps A\’ : 0 — 0 is a special A-ring. Also, we
know a vast class of special A-rings from Theorem 6.2. Obviously, every sub-A-ring of a
special A-ring is special. On the other hand, the A-ring (K , ()\i)ieN) defined in Exercise
3.3 (a) is not special unless p = 1. What happens to the other examples from Section
37

Theorem 7.1. The A-ring (Z, ()\i)ieN) defined in Theorem 3.1 is special.

Proof of Theorem 7.1. According to Theorem 6.1, we just have to verify the identities
and for K = Z. In other words, we have to prove that

()= (GG ()0 0-G) o

for every k € N, x € Z and y € Z and

Dm0

for every k € N, 7 € Nand z € Z.

Let us prove : Fix k£ € N. Then, is a polynomial identity in x and in y.
Hence, (for the same reason as in the proof of Theorem 3.1) it is enough to prove
for all natural x and y. In this case, let m = x and n = y. There exists a ring
homomorphism Z [Uy, Us, ..., Uy, Vi, Vs, ..., V] — Z mapping every U; to 1 and every

V; to 1. This homomorphism maps X; = > I Uk to
SC{1,2,...,m}; k€S
S|~
m
>, M= > 1= > 1=PL2.mhl= (]
SC{1,2,.,m}; k€S SC{1,2,...m}; SEP;({1,2,...,m})
|S|=i :T" |S|=i
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n
for every ¢ € N, and (for similar reasons) maps Y; to ( for every j € N. Thus,
J

applying this homomorphism to the polynomial identity (20]), we obtain

m m m n n n
> o I e=n (7)) () GG ()
SC{1,2,....m}x{1,2,....,n}; (3,j) €S

|S|=k
Since m = x, n =y and

S| R S D D

SC{1,2,...m}x{1,2,....n}; (i,j) €S SC{1,2,....m}x{1,2,...,n}; SePr({1,2,....m}x{1,2,....,n})
‘S‘:k N — |S|:k

i = [Py ({1,2,.;m} x {1,2,....,n})| = (”Z”) - (f)

this equality transforms into (32). Hence, is proven (since, as we said, once
is proven for natural z and v, it follows that holds for all integers = and y). Just
as we have derived from , we can derive from (22)), and Theorem 7.1 is
proven. 0

Theorem 7.1 generalizes to the following fact:

Theorem 7.2. Let K be a binomial ring. The A-ring (K, (\)
in Theorem 3.2 is special.

) defined

€N

Proof of Theorem 7.2. This follows from our proof of Theorem 7.1 in the same way as
Theorem 3.2 followed from our proof of Theorem 3.1. To be more precise: According
to Theorem 6.1, the A-ring (K , ()\i)ieN) is special if it satisfies the identities and
. This means for every k € N, x € K and y € K and for every k € N,
j € Nand x € K. In the proof of Theorem 7.1, we have proven these identities for all
x € Z and y € Z; but being polynomial identities (for fixed k£ and j), these identities
therefore also hold for every x € K and y € K, and Theorem 7.2 is proven. O]

7.2. Adjoining a polynomial variable to a )\-ring
Theorem 3.3 has a special version as well:
Theorem 7.3. Let (K, (Ai)iGN) be a special A-ring. Then, the A-ring
<K [S], (7) N) defined in Theorem 3.3 is special.
ic

Proof of Theorem 7.3. As in the proof of Theorem 3.3, we can define a map A\p :
K [S] = (K [SDI[T]] by

Ar (u) = in (u) T for every u € K [S].

€N

Noting that Ay (u) € A (K [S]) for every u € K [S] (since (K [S], (T) N) is a A-ring),
- i€
we see that we can actually consider A\ as a map K [S] — A (K [9]).

65



Theorem 5.6 (applied to (K ST, <T> N) and Ar instead of (K, (X'),.y) and Ar)
1€

yields that the map Ay is an additive group homomorphism. In order to show that
the A-ring (K (9], (XZ) > is special, we must prove that this map Ay is a A-ring
homomorphism. <

Observe that Ap is a A-ring homomorphism (as (K, (X)) is a special A-ring). In
particular, Ay is a ring homomorphism. Thus, Ay maps the unity 1 of the ring K to
the unity 1 + 7" of the ring A (K). In other words, A\r (1) =1+ 1T.

Let £ = {aS® |a € K, a € N}. Obviously, £ is a generating set of the Z-module

K [S]. Notice that B
)\T ((ZSa) = )\SQT (CI,) (34)

for every a € K and «a € N (as shown in the proof of Theorem 3.3 (b)). Applying this
to a =1 and o = 0, we obtain

Ar (18°%) = Agor (1) = A (1) =1+ T.

In other words, Ay (1) = 1+ T (since 15° = 1).
For every a € K, o« € N, b € K and 8 € N, we have

Ar (aS*)~ Ar (bS7)
—— ——
=Asar(a) =Agap(b)

(by (34)) (by (34), applied to

b and S instead of a and «)
= Aser(a) = Agor (b)
——— ——
=evgar(Ar(a)) :evng()\T(b))

(since Ar (aS®) = Agar (a) and similarly Ar (bS”) = Agsr (b))

= evgar (A7 (a))~evgsr (Ar (b)) = evgagsr | Az (a) Az (b)
(ab)
=>\T a

(since A is a ring
homomorphism)

by Theorem 5.7 (d), applied to K [S], Ar(a), A (b), S* and S”
instead of K, u, v, p and v

= €VgagBT ()\T (ab)) = )\SQSBT (ab) = )\Sa+ﬁT (ab) = XT ab . Sa_‘_ﬁ
=aS<-bSh
since Ap (ab . Sa+5) = Agatsr (ab) (by (34), applied to
ab and « + ( instead of a and b)
= Ar (aS* - bS7).

In other words, Ay (¢)"Ar (f) = Ar (ef) for any two elements e and f of E. Since £
is a generating set of the Z-module K [S], and since \r is already known to be an
additive group homomorphism, it thus follows that Ay (z)"Ar (y) = A (xy) for any
two elements z and y of K [S]. Since A7 also maps the multiplicative unity 1 of K [S]
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to the multiplicative unity 1+ 7 of A (K [S]) (because Ar (1) = 14 1T), it thus follows
that Ar : K [S] — A (K [S]) is a ring homomorphism.

Now, for every i € N, let us define a map X A(K[S]) = A(K[S]) in the same
way as the map X’ : A (K) — A (K) was defined in Section 5 (but with K replaced by
K [S]). Then, the diagram

AK)—2— A (K) (35)

A(K [SDTA(K [51)

(where the vertical arrows are induced by the canonical inclusion K — K [S]) is com-

mutative (since the maps N A(K) = A(K) and A : A(K[S]) = A(K[S]) were
defined in the same natural way).
For every a € K and a € N, we have

(jz o XT) (aS%) = il (Ar (aS))
= /X\Z (evger ()\T (a))) (since Ar (aS®) = Agar (a) = evgar (A7 (a)))
—evigepr (3 O @)

(by Theorem 5.7 (e), applied to K [S], Ar(a), S and i instead of K, u, p and k)
( because the commutative diagram (135) )

= eVigayr (X Or (a)))
= eVigayip (Ar (V' (a)))

since A o Ar = Ar o X’ (because Ar is a A-ring homomorphism)
and thus A (A7 (a)) = Ap (A (a))

shows that A (Ar (a)) = X' (Ar (a))

- )‘(Sa)iT ()‘i (a)) = Agair ()\i (a)) = Ar N (a) 8™

=X (aS?)
(by Theorem 3.3 (b))

since Ar (X (a) %) = Agair (A (a)) (by (34), applied to
X (a) and «i instead of a and b)

. (T asa)) ()\T o\ ) (aS®)
for every i € N. In other words, every e € E satisfies (iz o XT) (e) = (XT S Xi> (e) for

every ¢ € N. B
Altogether, we now know that Ap : K [S] — A (K [S]) is a ring homomorphism,
that E is a generating set of the Z-module K [S], and that every e € E satisfies
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(il oXT) (e) = (XT oxi) (e) for every i € N. Thus, by Exercise 2.1 (b), it follows

that Ay is a A-ring homomorphism. This proves Theorem 7.3. O

7.3. Exercises

Exercise 7.1. Let M be a commutative monoid. Prove that the A-ring
(Z[M], (N\");oy) defined in Exercise 3.4 is special.
Ezercise 7.2. Let M be a commutative monoid. Let (K, (A),oy) be a

special A-ring. Prove that the A-ring (K [M], (Xz) N) defined in Exercise
i€
3.5 (a) is special.

8. The )\-verification principle

8.1. n-operations of special )\-rings

In Section 5, we have constructed a family of A-rings A (K) which are (comparatively)
easy to work with due to the following property: If you want to prove an identity
involving the ring structure of A (K) (the addition F, the corresponding subtraction
Z, the zero 1, the multiplication =, and the multiplicative unity 1+7") and the mappings
i, then it is enough to verify it for elements of 14+ K [T]" only (by continuity, according
to Theorem 5.5); and this is usually much easier since we know what F,and ' mean
for elements of 1 + K [T]" (this is what Theorem 5.3 is for).

As a consequence of this, it is no wonder that often an identity is more easily proven
in A (K) than in arbitrary A-rings. However, it turns out that if an identity can be
proven in A (K), then it automatically holds for arbitrary special A-rings! This is one
of the so-called A-verification princz’ples{z‘_z]. Before we formulate this principle, let us
first formally define what kind of identities it will hold for:

Definition. Let Rng®* denote the so-called category of special A-rings,
which is defined as the category whose objects are the special A-rings and
whose morphisms are A-ring homomorphisms between its objects.

Let USet : Rng®* — Set be the functor which maps every special A-ring to
its underlying set. Let n € N. Let USet™ : Rng®* — Set be the functor
which maps every special A\-ring K to the set K™ (the n-th power of K with
respect to the Cartesian product), and maps every homomorphism f : K —
L of special A-rings to the map f** : K® — L". (Thus, USet" = USet.)
An n-operation of special A-rings will mean a natural transformation from
the functor USet" to USet.

In other words, an n-operation m of special A-rings is a family of mappingg™]|

MUK (M) e) K" — K for every special \-ring (K, ()\i)ieN) such that the

“UWe are following [Knut73, pp. 25-27] here, though our Theorem 8.1 is not exactly what [Knut73]
calls “verification principle”.

45Here, “mapping” actually means “mapping” and not “group homomorphism” or “ring homomor-
phism”.
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diagram

(O A— 5 (36)

m(K’(V)ieN)l lm(L,(ui)ieN)

K———1L

commutes for any two special A\-rings (K, (X'),.y) and (L, (1),oy) and any
A-ring homomorphism f : (K, (X),.y) = (L, (1"),y). Here, f*™ means
the map from K" to L™ which equals f on each coordinate.

In practice, what are n-operations of special A-rings? The answer is: Pretty much
every map K" — K which is defined for every special A-ring (K , (A9 Z.GN) just using
addition, subtraction, multiplication, 0 and 1 and the maps A’ is an n-operation. In
particular, every polynomial map (where the polynomial has integer coefficients) is an
n-operation, and so are the maps \' : K — K. To give a different example, the family
of maps MK ) ie) K3 — K for every special A-ring (K, (\),oy) defined by

m(K,(Ai)iGN) (a’lv az, Clg) = >\5 ()\2 (al) — >\4 ((1/2) . CL3)

is a 3-operation of special A\-rings.

8.2. A useful triviality

Now, here is the theorem we came for:

Theorem 8.1 (\-verification principle). Let (K, (X)), y) be a special
A-ring. Let n € N. Let m and m’ be two n-operations of special A-rings.

/

:m( /

— m(K7()\Z)L€N) .

Assume that m< ) Then, M (K (x0)

AL (M), ) AR, (3) ien)

1€EN
The proof of this result turns out to be surprisingly simple. First a trivial lemma:

Theorem 8.2. Let (K, (%) ) be a A-ring. Define a mapping coeff; :

ieN

A(K) — K by coeff; | 3" a;T7 | = a1 for every > a;77 € A(K) (with
jEN jEN

a; € K for every j € N). (In other words, coeff; is the mapping that takes

a power series and returns its coefficient before T*.)

Then, coeff; oAr = idk.

Note that the definition of coeff; in Theorem 8.2 is a particular case of the definition
of coeff; in Exercise 6.5.

Proof of Theorem 8.2. This is clear, since

(coeffy oAr) (x) = coeffy (Ar (x)) = coeff; (Z N () Ti) =\N(z)=2

€N

for every x € K. Theorem 8.2 is now proven. O
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Proof of Theorem 8.1. Since (K, (\"),_y) is a special A-ring, the map Ay : K — A (K)
is a A-ring homomorphism. According to , we thus have the two commutative
diagrams

Kn (}\T)Xn

(A(K))"

m(K,()\i)ieN) m(A(K),(Xz’)ieN)

K—A(K)

AT
and
n ()\T)Xn n
K (A (K))
(K’()‘i)ieN) m(A(K%(”)ieN)
K———A(K)
At
. / 3
Hence, m(A(K)’(Xi)iGN) = m(A(K)’(Xi)iGN) yields
_ Xn / Xn __ /
ATom<K’(>\i)ieN) N m<A(K)7(/>‘\i)ieN) ° (AT) B m<A(K)7(Xi)ieN> ° <)\T) B )\Tom(K’(M)iEN)‘

!/

Hence, Mk (W) = ™ ) because Ar is injective (due to Theorem 8.2). Theo-

Kv()‘i)ieN
rem 8.1 is thus proven! [

8.3. 1-dimensional elements

Before we move on to concrete properties of special A-rings, let us merge Theorems 8.1
and 5.5 into one simple principle for proving facts about A-rings — our Theorem 8.4
below. Before we formulate it, let us define the notion of 1-dimensional elements of a
A-ring.

Definition. Let (K, (\),.y) be a A-ring, and let € K be an element of
K. Then, z is said to be 1-dimensional if and only if A\ (z) = 0 for every
integer 7 > 1.

Theorem 8.3.

(a) Let (K, (X\),cy) be a A-ring. Let z € K be an element of K. The
element x is 1-dimensional if and only if Ar () = 1+ 2T (where Ay : K —
K [[T]] is the map defined in Theorem 2.1).

(b) Let (K, (X\"),.y) be a special A-ring. Let = and y be two 1-dimensional
elements of K. Then, xy is 1-dimensional as well.

(c) Let K be a ring. Let e € K. Then, the element 1 + eT" of the A-ring
A (K) is 1-dimensional.
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Proof of Theorem 8.3. (a) In fact,

A (z) =Y N (2) TP = X0 (2) + A (2) T+ ; N(2)T" =1+ 2T + ; A () T

€N _ _
=1 =T integer integer

Hence, Ay () = 1 + 2T if and only if A’ (z) = 0 for every integer 7 > 1 (which means
that x is 1-dimensional). Theorem 8.3 (a) is thus proven.

(b) Since the A-ring (K, (A\),oy) is special, the map Ar, seen as a map from K to
A (K), is a ring homomorphism, so that Ay (zy) = A (z)“Ar (y). But Theorem 8.3
(a) yields Ap (z) = 1+ 2T = I (K, [z]). Similarly, Ay (y) = II (K, [y]). Thus,

Ar (zy) = A (2) A7 (y) = (K, [2])"TL(K, [y]) = 1 (K, [zy]) (after Theorem 5.3 (c))
=1+ ayT.

By Theorem 8.3 (a) (applied to xy instead of x), this yields that zy is 1-dimensional.
Thus, Theorem 8.3 (b) is proven.
(c) For every integer i > 1, the element

N(1+el)=1| K, [He | 167%-({1}>]

i€l

[

TV
empty multiset,
since i>1 yields P;({1})=2

(by Theorem 5.3 (d), since 1 + T =TI (K, [¢]))
= [T (K, empty multiset) = 1

is the zero of A (K). Thus, 1 + €7 is 1-dimensional. Theorem 8.3 (c) is proven. O

8.4. The continuous splitting \-verification principle

Now, we can formulate the desired result:

Theorem 8.4 (continuous splitting A-verification principle). Let
n € N. Let m and m’ be two n-operations of special A-rings.

Assume that the following two assumptions hold:

Continuity assumption: The maps m<A(K) ()., (A(K))" = A(K) and
’ ieN

m,(A(K)7(Xi)ieN) : (A(K))" — A (K) are continuous with respect to the (T)-
topology for every special A-ring (K, (\"), y)-

Split equality assumption: For every special A-ring (K , (A9 z.GN) and every

(w1, ug, ..., u,) € K™ such that u; is the sum of finitely many 1-dimensional

elements of K for everyi € {1,2,...,n}, we have UK () ) (U1, Uy ooy Up) =
/

m(K’()‘i)ieN) (U1, Usg, ooy Up).

Then, m = m/.
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Proof of Theorem 8.4. We have to prove that m = m’. In other words, we must show
that MR ien) = m’(K(/\i)iEN) for every special A-ring (K, (\),.y). According to
Theorem 8.1, this will immediately follow once we have shown that m ( AK), <Xi)'EN) =
m/<A(K)’(Xi)ieN

Consider a special A\-ring (K , (N9 ZEN). We must prove that m<

) for every special A-ring (K, ()\i)iEN). So it remains to prove this.

oo
A(K), (Xi)zeN> B m(A(K)’(Xi)ieN)‘

Consider the (T')-topology on A (K). The maps m(A(K (%) ) and m( AL(R) )
i€N ’ iEN

are continuous, while the subset 1 + K [T]" of 1 + K[[T]]" = A(K) is dense (by
Theorem 5.5 (a)). Hence, in order to prove that m<A(K) (),) = m’ it

(409.(3) )’

i€EN

will be enough to show that

_ !/
m(A(K) ZEN) (U1, Ugy ey Up) = m<A(K)’(Xi)ieN> (u, ug, ...y Up) (37)
for every (uy,us, ... (1 )
Fix some (uy, ua, .. ) € ( [T] ) For every i € {1,2,...,n}, there exists some

(R [y () <“i)m]> € K such that u; = 1 (Ko, [(w) () o (u),,]).
According to Theorem 5.3 (a) (applied several times)™| there exists a finite-free exten-
sion ring K’ of K which contains the I?u for all i € {1,2,...,n} as subrings. Consider
such a K'. Hence, u; = IT (K7, [(u;); , (i), ..., (w;),, ]) for every i € {1,2,...,n}.

We have K C K’. Thus, A (K’) is an extension ring of A (K) (since A is a functor).
In this extension ring A (K’), we have

wi = T(K, [(u)y s () (02),,,]) = H (14 (), ) = Z (1+ (w),T)
(since addition in A (K') is multiplication in K’ [[T]]) (38)

for each i € {1,2,...,n}. On the other hand, for every j € {1,2,...,n;}, the element
14 (u;); T of A (K') is 1-dimensional (by Theorem 8.3 (c), applied to e = (u;);). Thus,
shows that u; is a sum of 1-dimensional elements of A (K”) for every i € {1,2,...,n}.

Hence, applying the split equality assumption to the special A-ring (A (K", (XZ>
instead of (K, (\"),oy), we see that

€N

o
m(A(K/)’(Xi)iel\J (U1, Ugy ooy Up) = m(A(K/)’(Xi)iGN) (U1, Uy ooy Up,) - (39)

This is an equality in the ring A (K”), but since A (K) can be canonically seen as a
sub-A-ring of A (K’) (because K is a subring of K’), it easily yields the equality

o
m(A(K)’</>\\i)z‘eN) (Up, Uy oey Up) = m<A(K)7(Xi)ieN> (U1, Ug, ..., Up)

46More precisely, what we are using here is the following lemma:
Lemma. Let Lq, Lo, ..., L, be finitely many finite-free extension rings of a ring K. Then, there
exists a finite-free extension ring K’ of K which contains all of the Lq, Lo, ..., L, as subrings.
Proof of the lemma. By induction over n, it suffices to show that for any two finite-free extension
rings L and L' of K, there exists a finite-free extension ring K’ of K which contains both L and
L’ as subrings. But this was essentially shown in our proof of Theorem 5.3 (a).
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in the ring A (K). m Thus we have proven (37)). This proves Theorem 8.4. O

Roughly speaking, Theorem 8.4 says that whether some identity holds on every
special A-ring or not can be checked just by looking at the sums of 1-dimensional
elements. This is why it is worthwhile to study such sums. Let us record a property
of these:

8.5. )\ of a sum of 1-dimensional elements

Theorem 8.5. Let (K, ()\i)ieN) be a A-ring. Let uq, us, ..., u,, be 1-
dimensional elements of K. Let i € N. Then,

No(ug + g+ oo+ Upy) = Z Huk

SC{1,2,...m}; keS
|S|=1

4T Proof. Let ¢ denote the canonical inclusion A (K) — A (K’). Since m was defined as a natural
transformation, and since the inclusion ¢ : A (K) — A (K’) is a A-ring homomorphism, we then

have ¢ o m(A(K)’(Xi)iGN) = m<A(K/)7(Xi)i€N) o™, Now,

m(A(K),(Xi)i@J (u1,ug, ..., Up)

_ . « . . . ’
= (m(A(K)’(Xi)q‘,eN> (u1,us, 7un)> (since ¢ is just the inclusion map A (K) — A (K'))

=(tom N UL, U, ey Up) = (M P o™ ) (ug, Uz, ..., Un
(om0, 0o = (a5, 27 o
ZMl(A(K/)=(Xi)ieN)OLXH

:m(A(K,)’(Xi)ieNJ (L><n (upug,...,un)) :m(A(K'),(X'i)
=(e(ur),t(u2),....,t(un))

=(u1,u2,...,Un
(since ¢ is just an inclusion map)

) (u1, ug, ..., up)
1EN

and similarly m/ N (uy,ug, ..., up) =m/ N (u1,ug, ..., up). Thus, 1' rewrites
(A, (%), ) (AN, (3, )
as
m ~ UL, U, ooy Upy) = M - UL, U,y oy Un )
(A(K%(Al)ieN)( 1, U2 ) (A(K),()J)“EN)( 152 )
qed.
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Proof of Theorem 8.5. We have

Z)\’(ul—l—u2++um)T’:)\T(u1+u2—|—+um)

€N

= H A7 (uy) (by Theorem 2.1 (a), applied several times)

= ﬁ(l + u;T)

(since the element w; is 1-dimensional and thus satisfies Ay (u;) = 1 + ;T

Y Y e

ieN SC{1,2,...,m}; k€S
|S|=i

(by Exercise 4.2 (b), applied to A = K [T], a; =u; and t =T).

Comparing coefficients yields the assertion of Theorem 8.5. m

8.6. Exercises

Exercise 8.1. Give a new solution to Exercise 6.9.

Exercise 8.2. Let (K, ()\i)ieN) be a special A-ring. If z € K is an invertible
1-dimensional element of K, then prove that 2! is 1-dimensional as well.

Ezercise 8.3. Let (K, ()\i)ieN) be a A-ring. Let F be a generating set of
the Z-module K such that every element e € F is 1-dimensional.

Prove that the A-ring (K, (X)) is special.

9. Adams operations

9.1. The Hirzebruch-Newton polynomials

We are now ready to define Adams operations of special A-rings. There are two different
ways to do this; we will take one of these as the definition and the other one as a
theorem.

Remember how we defined the “universal” polynomials P, and Py ; in Section 47
Prepare for some more:

Definition. Let j € N\ {0}. Our goal is to define a polynomial N; €
Z oy, s, ..., o] such that

m

D Ul = N; (X1, Xa, ., X5) (40)

i=1

in the polynomial ring Z [Uy, U, ...,Uy,] for every m € N, where X; =

> [ Uk is the i-th elementary symmetric polynomial in the vari-
SC{1.,2,...,m}; kES
[S|=i

ables Uy, Us, ..., U, for every i € N.
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In order to do this, we first fix some m € N. The polynomial >’ Uij €
i=1
Z7|Uy,Us, ...,Uy] is symmetric. Thus, Theorem 4.1 (a) yields that there

exists one and only one polynomial @ € Z [ay, ag, ..., ay,] such that Z Ul =

Q (X1, Xs, ..., X;,). Since the polynomial Z U/ has total degree < j in the
variables Uy, Us, ..., U,,, Theorem 4.1 (b) ylelds that

Z Uz] - Qj (Xl,XQ, ...7Xj) 5
i=1

where @); is the image of the polynomial ) under the canonical homomor-
phism Z [ay, g, ..., u| = Z[on, ag, ..., ;). However, this polynomial @Q); is
not independent of m yet (as the polynomial N; that we intend to construct
should be), so we call it (), [, rather than just Q);.

Now we forget that we fixed m € N. We have learnt that
Z UZJ - QJ,[m] (X17X27 sy XJ) )
i=1

in the polynomial ring Z [Uy, Us, ..., U,,| for every m € N. Now, define a
polynomial N; € Z [y, as, ..., o] by Nj = Qj ;-

This polynomial Nj; is called the j-th Hirzebruch-Newton polynomial.ﬁ

Theorem 9.1. (a) The polynomial N; just defined satisfies the equation
in the polynomial ring Z [Uy, Us, ..., Uy,| for every m € N. (Hence, the
goal mentioned above in the definition is actually achieved.)

(b) For every m € N, we have

TS s X N X )T )
i=1 jeN\{o}

in the ring (Z [Uy, Us, ..., Uy]) [[T]].
Proof of Theorem 9.1. (a) This proof is going to be very similar to that of Theorem
4.4 (a).

Ist Step: Fix m € N such that m > j. Then, we claim that Q; ) = V.
Proof. By the definition of Q; ], we have

Z Uzj - Q],[m} (X17X27 7Xj)
i=1

48The “Newton” in the name of this polynomial N; probably refers to the fact that the explicit form
of N; can be easily computed (recursively) from the so-called Newton identities (which relate the
power sums and the elementary symmetric polynomials). See Theorem 9.6 and Corollary 9.7 for
details.
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in the polynomial ring Z[Uy, Us,...,Uy]. Applying the canonical ring epimorphism
Z[Uy,Us, ..., U] = Z[Uy,Us, ..., Uj] (which maps every U; to { ({) ;le;j
equation (and noticing that this epimorphism maps every X; with ¢ > 1 to the corre-
sponding X; of the image ring), we obtain

) to this

ZU” m] (X1, Xo, o0 X))

in the polynomial ring Z [U;,Us, ...,U;]. On the other hand, the definition of Q;;
yields

J
Z Uj = Qj 15 (X1, Xa, ..., Xj)
=1

in the same ring. These two equations yield Q) (X1, X2, ..., X;) = Q; ;) (X1, X2, ..., Xj).
Since the elements X1, Xs, ..., X; of Z [Uy, Us, ..., U;] are algebraically independent (by
Theorem 4.1 (a)), this yields Qj ) = @j[;- In other words, @, = Nj, and the 1st
Step is proven.

2nd Step: For every m € N, the equation is satisfied in the polynomial ring
ZUy,Us, ..., Uy

Proof. Let m' € N be such that m’ > m and m’ > j. Then, the 1st Step (applied to
m/ instead of m) yields that Q; . = N;.

The definition of Q) yields

Z Qj i (X1, Xa, o0y X))

in the polynomial ring Z [Uy, Us, ..., Uy]. Applying the canonical ring epimorphism
ZUy,Us, ..., U] — Z[Uy,Us,...,Upy] (which maps every U; to { 0 ifi>m
this equation (and noticing that this epimorphism maps every X; with ¢ > 1 to the
corresponding X; of the image ring), we obtain

) to

Z UZJ — Qj,[m’] (Xl,XQ, ...,Xj)

in the polynomial ring Z [Uy, Uy, ..., U,,]. This means that the equation is satisfied
in the polynomial ring Z [Uy, Us, ..., Uy, (since Q) = Nj). This completes the 2nd
Step and proves Theorem 9.1 (a).

(b) We have
T . Y (1-UT)~ (U;T)" ! (U;TY
; Z ‘_—Z*(;;’ 2% ;]g\%}
JEN
> Em: > iU{ 9= Y Nj(X1,Xp,... X)) TV,
JEN\{0} i=1 JEN\{0} i=1 JEN\{0}
7N (X1 )&...,Xj)
by (40
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and Theorem 9.1 (b) is proven. O

Remark: There is a subtle point here: We have defined, for every j € N\ {0}, a poly-
nomial N; € Z [y, as, ..., a;] which satisfies in the polynomial ring Z [Uy, Us, ..., Up,|
for every m € N. We cannot define such a polynomial N; for j = 0. In fact, if we
would try to do this as we did above, then the proof of Theorem 9.1 would fail (in fact,
the canonical ring epimorphism Z[Uy, Uy, ..., Up| — Z Uy, Us, ..., U;] would not send

Z U’ to Z U’ anymore, because 07 is not 0 for j = 0). This is why N, is well-defined
only for j 6 N\ {0} and not for all j € N.

Example. We can compute the polynomials /V; in the same way as we have com-
puted the polynomials Py ; in Section 4 - by unraveling the definition. Here are the
first few N;:

Ny = ay;

Ny = a% — 2au;

N3 = oz? — daay + 3as;

Ny = ozl 4041042 + dayas + 2@2 — 4oy,

There are easier ways to compute the N;, however. For example, Corollary 9.7 gives
a recurrent formula, and Exercise 9.6 (c) gives an explicit determinantal one.

9.2. Definition of Adams operations

Now, let us define Adams operations:

Definition. Let (K, (X)) be a A-ring. For every j € N\ {0}, we define
amap ¥’ : K — K by

W (z) = N; (A (2), N2 (2), ..., N (2)) for every z € K. (42)

We call 47 the j-th Adams operation (or the j-th Adams character) of the
A-ring (K, (AY),cn)-

9.3. The equality ¢y (z) = —T - 2 log \_r (z) for special \-rings
Before we prove a batch of properties of these Adams characters, let us show another
approach to these Adams characters:

Theorem 9.2. Let (K, (\),.y) be a special A-ring.

Define a map ¢r : K — K[[T]] by ¥r(z) = S o ()T for every
jeN\{o}
re K. [

Let z € K.

49Note that we call this map {/;T to distinguish it from the map 7 in [FulLan85] (which is more or
less the same but differs slightly).
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(a) We have

Y (z) = (=1 Zi)\i () N7 (—2) for every j € N\ {0}.

=0

~ d
(b) We have ¢7 (x) = =T - —log A_r (x). Here, for every power series

T
d
u € 1+ K[[T]]", the logarithmic derivative d—Tlogu of u is defined by
d
d ar’ o i, .
a7 logu = “=— (this definition works even in the cases where the loga-
u

rithm doesn’t exist, such as rings of positive characteristic), and A_7 (z)
denotes ev_r (Ar (2)).

Before we start proving this, let me admit that Theorem 9.2 can be generalized: It
still holds if (K, (X\"),.y) is an arbitrary (not necessarily special!) A-ring. However,
the proof of Theorem 9.2 that we are going to give right now cannot be generalized to
this situation; it requires the A-ring (K , (N9 ieN) to be special. The generalized version
of Theorem 9.2 will be proven later (see the proof of Theorem 9.5 below), yielding
another proof of Theorem 9.2. The reader is still advised to read the following proof of
Theorem 9.2, even if it is not directly generalizable. In fact, its first two steps will be
used at later times (in particular, its 1st step will be used in the proof of the generalized
version), whereas its 4th step gives a good example of how Theorem 8.4 can be applied
to prove properties of special A-rings.

Proof of Theorem 9.2. 1st step: For any fixed special A\-ring (K, ()\i)ieN) and any fixed
x € K, the assertions (a) and (b) are equivalent.
Proof. In K [[T]], we have

A (@) = 3N (@) (<T) =3 (~1)'N (2) T,

ieN ieN
but also
A ()™ = Ar(—2) (since (Ar (2))”" = A (—x) by Theorem 2.1 (b))
. due to Ay (2) = 3 (~1)' X (2) T"
- % CUX =T ( applied to — Zxl\ilnstead of >
and
L (z) = 4 d (=)' N (2) T (Since A (z) =) (1) N (x) Ti)
ar dT e g
= Z (—1)" N (z) "

(by the definition of the derivative of a formal power series) .
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Thus,
d

d>\ 7 () d
o d Y A o )
T o () T dT/\—T() (A ())

=3 (—1)iNi(2)iTi—1 :i%( DX (=z)T"

i€EN

—_T. Z YiT ™"y (1) N (=) T

ieN ieN
= 3 (N @) Z (~1)' N (- "
-2 Z DN (@) i (<1 TN () T = 30 ()TN (@) W () - T
eN =0 JeN =0
Z ]—HZZ')\i(x))\jfi (—x)'Tj ( 1)0-&—12@)\1( ))\0 Z(_ ).TO

N J/
-~

=0

On the other hand, ¥y (z) = 3 7 (2)T¢. Hence, ¢y (z) = —T - ilog)\ (7)
jem{o) dr
holds if and only if

W () = (1)) X (1) N (—x) for every j € N\ {0}.

=0

This proves that the assertions (a) and (b) are equivalent, and thus the 1st step is
complete.

2nd step: We will now show that the assertion (b) holds for every special A-ring
(K , (/\i)ieN) and every x € K such that z is the sum of finitely many 1-dimensional
elements of K.

Proof. Let (K, ()\i)ieN) be a special A\-ring, and let © € K be a sum of finitely
many 1-dimensional elements of K. In other words, x = uy + us + ... + u,, for some

1-dimensional elements uq, us, ..., u,, of K. Consider these elements uy, us, ..., Up,.
Then,

)\_T(x):)\_T(u1+u2+...+um H 1—u]
7=1

(since Ap (ug +ug + ... + up) = [[ (1 +u;7T), as shown in the proof of Theorem 8.5),

Jj=1
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so that, by the Leibniz formula,

d “ d
ZmAr () = > o= (L= wT) | - | 1T a-wD
k=1 | ——— je{1,2,...mM\{k}
=—Uug S ~~
=(1-uD)" I (1-wyT)
je{1,2,...,m}
= _ - . 1— - .
Zl—ukT . H ( Uj Zl—ukT T(l’)
k=1 je{1,2,...m} k=1
A1)
Hence,
d o~ Uk
— A
T L logAr(e) = T at ST ut
— — O _ — —_— .
ar % A1 (7) Ar(z)
—~ w o
=T =T 43
On the other hand, Theorem 8.5 yields
No(z) = N (uy +ug + o+ Upy) = Z Huk for every i € N.
SC{1,2,....,m}; k€S
15| =i
Consider the polynomial ring Z [Uy, Us, ..., U,,]. Foreveryi € N, let X; = > I Uk
SC{1,2,...,m}; k€S
|1S|=i
be the i-th elementary symmetric polynomial in the variables Uy, Us, ..., U,,. There

exists a ring homomorphism Z [Uy, Uy, ..., U,,] — K which maps U; to u; for every i.

This homomorphism therefore maps X; to > [T ux = X' () for every i € N.
SC{1,2,...,m}; keS
1S|=i

Hence, applying this homomorphism to , we obtain

m

TZ1—UZ,T: SN @) N @), N @) T = Y (@) T = (2).

i=1 jEN\{0} :W(x;rby JEN\{0}

Comparing this with , we obtain

7 tog A (2) = i ().
Hence, the assertion (b) holds for every special A-ring (K, (X'),.y) and every z € K
such that x is the sum of finitely many 1-dimensional elements of K. This completes
the 2nd step.
3rd step: We will now show that the assertion (a) holds for every special A-ring
(K , (/\i)ieN) and every x € K such that z is the sum of finitely many 1-dimensional
elements of K.
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Proof. This follows from the 2nd step, since (a) and (b) are equivalent (by the 1st
step).

4th step: We will now show that the assertion (a) holds for every special A-ring
(K, (\),cy) and every z € K.

Proof. We want to derive this from the 3rd step by applying Theorem 8.4.

Fix some j € N\ {0}.

Define a 1-operation m of special A-rings by m( = 17 for every special \-ring

K, (M)jen)
(K, (A\"),cy)- (This is indeed a l-operation, since shows that ¢’ is a polynomial
in A% AL A2\ with integer coefficients.)

Define a 1-operation m’ of special A-rings by

J

m’( ) (z) = (=1)’*! Z iIX (2) N (=) for every z € K

K,()\i)ieN —
7=

for every A-ring (K , (Ai)iGN). (This is, again, a l-operation, since it is a polynomial in
N (z), A (), ..y M (2), A\ (=), A (=), ..., M (—x) with integer coefficients.)
These two 1-operations m and m' satisfy both conditions of Theorem 8.4: The
continuity assumption holds (since the operations m and m’ are polynomials in A!,
A2, ..., M with integer coefficients, so that the maps m ~ and m/ -
& PSR (A(r0), (39, ,) (A (3),)

are polynomials in Xl, X2, e N with integer coefficients, and therefore continuous
because of Theorem 5.5 (d)), and the split equality assumption holds (since it states
that for every special A-ring (K, (A\),.y) and every x € K such that z is the sum of

finitely many 1-dimensional elements of K, we have MK (X)) (x) = m'(

€N

i€EN

K,()\i)ieN) (:L')’

. . J ) .
but this simply means that ¢/ (z) = (=1)"*" 324\ (z) N~/ (—z), which was proven in

1=0

the 3rd step). Hence, by Theorem 8.4, we have m = m/. Hence, for every special A-ring
(K, (A\),ey) and every z € K, we have

) () = m'(KW)iGN) (z) = (—1)" Zz‘)\i (2) N7 (—x).

=0

W (z) = m(K,(Ai)

i€EN

Thus, the assertion (a) holds for every special A-ring (K, (\),.y) and every = € K.
This completes the 4th step.

5th step: We will now prove that the assertion (b) holds for every special A-ring
(K, (\),cy) and every z € K.

Proof. This follows from the 4th step, since (a) and (b) are equivalent (by the 1st

step).
Thus, the proof of Theorem 9.2 is completed. O

9.4. Adams operations are ring homomorphisms when the )-ring is
special

The Adams operations ¢/ have a lot of interesting properties (that make them easier
to deal with than A-operations!):
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Theorem 9.3. Let (K, (\'),.y) be a special A-ring.
(a) For every a € K, we have ¥ (a) = a.
(b) For every j € N\ {0}, the map ¢ : (K, (N),oyy) = (K, (A),oy) is a

A-ring homomorphism.

(c) For every i € N\ {0} and j € N\ {0}, we have ¢’ 0 ¢pJ = )7 0 ¢)* = )",

Before we come to prove this, let us first show an analogue of Theorem 8.5 for the

v

Theorem 9.4. Let (K, (X)) be a Aring. Let wui, ua, ..., uy be 1-
dimensional elements of K. Let j € N\ {0}. Then,

W (g + g A o A U) = U Ul

Proof of Theorem 9.4. Let x = uy + us + ... + u,,. Just as in the proof of Theorem 9.2
(in the 2nd step)’’} we can show that

=2 V@

: —u; T
i=1 JjeN\{0}
Thus,
S ()T = Tzl_u :iuiT(l—uiT)_lIiUiTZ(UiT>k
JENV(0} i=1 i=1 keN
DN 3D WREIED o) ey
i=1 keN i=1 jeN\{0} i=1 jeN\{0}

NZ Em: wlT

Comparing coefficients yields 17 (z) = 3. u] for every j € N\ {0}, and thus Theorem
i=1
9.4 is proven. O
Proof of Theorem 9.3. (a) is trivial (for instance, by Theorem 9.2 (a)).
(b) Fix some j € N\ {0}. First, let us prove that ¢ : K — K is a ring homomor-

phism.
This means proving that

49 (0) = 0, (44)
W (z+y) =y (2) + 97 (y) for any 2 € K and y € K; (45)
(1) = 1, (46)
@Z)J (zy) = 7 (x) - ¢ (y) for any r € K and y € K. (47)

%0Here, we use the fact that the 2nd step of the proof of Theorem 9.2 works for any A-ring
(K, (/\i)ieN>, not only for special ones.
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Out of these four equations, two (namely, and ([46])) are trivial (just apply Theorem
9.4, remembering that 1 is a 1-dimensional element), so it remains to prove the other
two equations - namely, and ([47).

First, let us prove (47):

Define a 2-operation m of special A\-rings as follows: For every special A-ring K, let
MK M) ie) K? — K be the map defined by MK (A (r,y) = ¥’ (zy) for every
r € K and y € K. (This is indeed a 2-operation of special A-rings, since 17 is a
polynomial in the ', A2, ..., A with integer coefficients.)

Define a 2-operation m’ of special A-rings as follows: For every special A-ring K, let

/ . 2 / —. cahd
m(Kv(Ai)ieN) : K — K be the map defined by m(K(/\i)ieN) (x,y) = ¢ (x) - (y) for

every ¢ € K and y € K. (Again, this is really a 2-operation of special A-rings.)

We want to prove that m = m/. According to Theorem 8.4, this will be done
once we have verified the continuity assumption and the split equality assumption.
The continuity assumption is obviously satisfied (since for every ring K, the maps
m < (A (K))? = A(K) and m/ - (A (K))* = A (K) are contin-

(v (), * U = MG amd o3 (M) = A (K)

uous by Theorem 5.5 (d), because they are polynomials in Xl, XQ, e N with integer
coefficients). Hence, it remains to verify the split equality assumption. This assump-
tion claims that for every special A-ring (K, (X'),.y) and every (z,y) € K? such that
each of x and y is the sum of finitely many 1-dimensional elements of K, we have

_ /
m(Kv(Ai)ieN) (ZE, y) - m(K,(XL) ) (.Z', y)

i€N

Since MK (A (r,y) = ¥’ (xy) and m/(K,(/\i)ieN) (z,y) = ¢’ (x) - ¢ (y), this is
equivalent to claiming that for every special A-ring (K , (A9 ieN) and every (z,y) € K?
such that each of x and y is the sum of finitely many 1-dimensional elements of K, we
have 7 (zy) = 47 () - P (y).

So let us verify this assumption. Let (K, ()\i)ieN) be a special A-ring, and let (x,y) €
K? be such that each of z and y is the sum of finitely many 1-dimensional elements
of K. Thus, there exist 1-dimensional elements ui, us, ..., u,, of K such that z =
Uy + U + ... + Uy, and there exist 1-dimensional elements vy, vs, ..., v, of K such that
y=wv1 + vs + ... + v,. Consider these 1-dimensional elements. Then,

(K () ) (EY)

= (zy) = ¢ ((ug + ug + oo+ Up) (V1 + V2 + ... +0))

= ¢’ (Z w Y Ui’) = ¢ (Z > Uz%) =33 (wiwy)’
=1 i'=1 =1 i'=1 =1 i'=1

by Theorem 9.4, applied to the 1-dimensional elements w;v;/,
which are 1-dimensional because of Theorem 8.3 (b)

m n m n
— Jod J J o (,J J J J J J
= E E U vy = E u; E vi,f(u1+u2+...+um) (v1+v2—|—...+vn)1
i=1 /=1 =1 =1 . ~ . ~
=7 (u1+uz+...4um) =7 (v14+v2+...4vn)
by Theorem 9.4 by Theorem 9.4

=l U+ Uy A+ Uy 7 vt vt Uy, :W(@.W(y):m’(K’(/\i)iEN)(m,y),

=x =y
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and the proof of the split equality assumption is complete. Thus, using Theorem 8.4,
we obtain that ¢ (zy) = 17 (x) - 17 (y) holds for any z € K and any y € K.

The main idea of the above proof was that, using Theorem 8.4, we can reduce our goal
- which was to show that ¢/ (zy) = 17 (z)-4’ (y) for any x € K and y € K - to a simpler
goal - namely, to prove that under the additional condition that each of x and y is the
sum of finitely many 1-dimensional elements of K, we have 17 (zy) = 97 (z) - 7 (y).
In other words, when proving the equality ¢’ (zy) = ¥ (z) - ¢’ (y), we could WLOG
assume that each of x and y is the sum of finitely many 1-dimensional elements of K.
Under this assumption, the equality 7 (zy) = ¢’ (z) - 17 (y) was an easy consequence
of Theorem 9.4. This way, we have proven . Similarly, we can show (45)).

Again, for every ¢ € N, we can use the same tactic to show that (17 o \") (z) =
(Ao )7) (z) for every x € K (namely, we use Theorem 8.4 to reduce the proof to the
case when z is the sum of finitely many 1-dimensional elements of K, and we apply
Theorems 9.4, 8.5 and 8.3 (b) to verify it in this case). Hence, ¥¥ o X' = X" 0 ¢)? for
every i € N, and thus ¢’ is a A-ring homomorphism. Theorem 9.3 (b) is proven.

(c) Fixi € N\ {0} and j € N\ {0}. We have to prove that 1 o ¢)J = )7 0 p" = ).
In other words, we have to prove that (1" o) (x) = (¢ 0 ") (z) = ¥ (z) for every
x € K. This can be done by the same method as in the proof of part (b): First, reduce
the proof to the case when x is the sum of finitely many 1-dimensional elements of K (by
an application of Theorem 8.4); then, verify (¢' o ¢?) (x) = (¢7 0 ¢?) (z) = ¥ (z) in
this case by applying Theorems 9.4 and 8.3 (b). Thus, Theorem 9.3 (c) is proven. [J

9.5. The equality ¢ () =-T- diT log A_7 (x) for arbitrary A\-rings

Now, as promised, we are going to prove a generalization of Theorem 9.2 to arbitrary
A-rings:

Theorem 9.5. Let (K, (\),.y) be a A-ring.
Define a map ¢r : K — K[[T]] by ¥r(z) = Y 7 (2)T9 for every

jeN\{o}
re K. P
Let z € K.
(a) We have
. - J . . .
W (x) = (—1)71! Zz‘)\l (x) N7 (—x) for every j € N\ {0}.
i=0
~ d '
(b) We have ¢p () = =T - d—Tlog A_r (z). Here, for every power series
u € 1+ K[[T]]", the logarithmic derivative %logu of u is defined by
d
d art o . :
a7 logu = “=— (this definition works even in the cases where the loga-
u

rithm doesn’t exist, such as rings of positive characteristic), and A_r (z)
denotes ev_r (Ar (2)).

51Note that we call this map ¢ to distinguish it from the map 17 in [FulLan85] (which is more or
less the same but differs slightly).
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Before we prove this, let us show a lemma about symmetric polynomials first - a
kind of continuation of Theorem 9.1:

Theorem 9.6. Let m € N. Let us recall that, for every j € N\ {0},
we denote by N, the j-th Hirzebruch-Newton polynomial (defined at the
beginning of Section 9). Let us also recall that for every i € N, we denote
by X; the i-th elementary symmetric polynomial in the polynomial ring
Z|Uy,Us, ..., Uy).

Then, every n € N satisfies
nX, =Y (=17 X, jN; (X1, Xa, ., X5)
j=1

in the ring Z [Uy, Uy, ..., Uy, ].

This theorem is more or less a rewriting of the famous Newton identities.

Proof of Theorem 9.6. In the power series ring (Z [Uy, Us, ..., Uy]) [[T]], we have

1-uT)=> -1 Y J]ur

i=1 ieN SC{1,2,...,m}; k€S
|S|=i
-~ S/
=X;

by Exercise 4.2 (c), applied to A = (Z [Uy, Ua, ..., Up]) [[T]] ,
o =U;and t =T

=> (-1 X1 (48)

1€eN

But the product rule for several factors says that whenever oy, as, ..., a,, are power
series in K [[T]] (where K is a commutative ring), we have

d 1 "/ d
il () I o
i=1 j=1 iG{l,;é,.].'.,m};
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Applying this to the power series a; = 1 — U;T', we obtain

d%g(l—UiT) :Z (%(1 —UjT)) I a-un

j=1 N _ ie{l,?,..'.,m};
J U, T 7
= U,=— 1-U;
1oyt

i( 1—UT)) I a-un

j=1 i€{1,2,...,m};
1#]
- Em: Y _a-um I[I a-um
1-U;T
j=1 i€{1,2,...,m};
\ 1#] J
- I a-un)
i€{1,2,...,m}
m Uj m Uz
Yoigr I a-un=-37g I a-um
=1 i€{1,2,....m} i=1 1€{1,2,...,m}

(here, we renamed j as ¢ in the first sum).

Since

iT ﬁ (1-UT)
_ % S () XT (by (43))

ieN
= Z (—1)" X1t (by the definition of the derivative of a power series) ,
i€N\{0}
this rewrites as

m

> () XT = - Z - —U(Z}ZT I a-um. (49)

ieN\{0} i=1 T ie{1,2,...m}
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Now,

D (=D)"nX, T =) (-1)"XunT" = Y (=1)" XynT" + (=1)" X,07°

neN neN neN\{0} -0
— Z (—1)" X,nT"
neN\{0}
= Z (1) Xy T (here, we renamed n as 7)
~—~
1eN\{0} =TTi-1
— (' Xartt = —Ti v (1-UT)
. — 1 -UT
1€N\{0} i=1 ie{1,2,....,m}
o U UiT
- 1—
z';l 1-UT: 6{1 g,[.“,m}( )
(by ()
— Ti Ui I «a-umn
— 1 -U,T ,
N =1 o \ue{1.2,m}
" T g
(by (@) (by ([@8))
== > Ni(Xy, Xp, . X) T (-1) X, T
JEN\{0} iEN
3N (X0 Xy X)) TS (— (—1)") X.T
jeN\{o} ieN
=S (ZN (X1, Xo, o, X;) ( (— 1)"*1) Xn_j) ™"
neN

(by the definition of the product of two formal power series) .

Comparing the coefficients before T™ on the two sides of this equation, we obtain
(~1)"nX, = Y N; (X1, Xo o, X)) (- (-1)”‘]‘) Xo_j
=1
for every n € N. Dividing this equation by (—1)", we arrive at

nX, =Y N; (X1, Xa, .., X;)

n Xn*]
, —-1)
Jj=1 %,_/
=) =)
1 , -
— | — | =—(=1)i=(=1)I—
1 (=1)/=(-1)
=) N (X0 Xy X)) (1T X = (1T XN (X X, X)
j=1 j=1
This proves Theorem 9.6. O]

87



As a consequence of Theorem 9.6, we get the following fact (which can be used as a
recurrence equation to easily compute the Hirzebruch-Newton polynomials N;):

Corollary 9.7. Let us recall that, for every j € N\ {0}, we denote by
N; the j-th Hirzebruch-Newton polynomial (defined at the beginning of
Section 9). Then, every n € N satisfies

n

na,, = Z (_1)j—1 Oén—ij (Otla o, ..., aj)

Jj=1

in the polynomial ring Z [y, a, ..., a,]. Here, ay is to be understood as 1.

Proof of Corollary 9.7. We WLOG assume that n > 0 (since for n = 0, Corollary 9.7
is trivial).
Let Q1 € Zlay,an,...,a,] be the polynomial defined by Q; = na,. Let Qy €

Z[ay, as, ..., ay] be the polynomial defined by Q, = 3 (=1)’ " a,,_; N, (ay, ag, ..., a;).
j=1
We are going to prove that Q; = Q.
Consider the ring Z [Uy, Us, ..., U,] (the polynomial ring in n indeterminates Uy, Us,

., Uy, over the ring Z). For every i € N, let X; = > I Uk be the so-called i-th
SC{1,2,...,n}; k€S
|S|=i
elementary symmetric polynomial in the variables Uy, Uy, ..., U,. (In particular, Xy = 1

and X; = 0 for every ¢ > n.) Applying Theorem 4.1 (a) to K = Z, m =n and P =
nX,, we conclude that there exists one and only one polynomial Q € Z[a1, ag, ..., ]
such that nX, = Q (X, Xy, ..., X,). In particular, there exists at most one such
polynomial @ € Z [y, s, ..., o] Hence,

if Q1 € Z[ayg,ag, ...,a,) and Qy € Z [y, g, ..., ap] are two polynomials
such that nX,, = Q; (X1, Xs, ..., X,,) and nX,, = Qs (X1, Xo, ..., X)), . (50)
then Q; = Q»

Clearly, 9, (X3, Xo, ..., X)) = nX,, (since Q; = nay,). On the other hand,

QQ = Z (—1)j_1 Oén,ij (Oél, o, ..., Oéj)

j—l

= L, a1, gy ey ) 4+ (=) e Ny (a1, g, . i,
Z —iNj (a1, g i)+ (=1) (o, az )
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so that

= (=1 X, N (X, Xy X))+ (=D 1 N, (X, X, e, X))

j:1 =Xo=Xn-n
n—1
= (=17 X N (X, Xy, X)) 4 (D) XN, (X, X, X))
j=1
=Y (=17 X, N (X1, Xy, ., X)
j=1
=nX, (by Theorem 9.6, applied to m =n).

Hence, 1 = Q5 (due to ) Since Q; = nay, and Qo = Y (—1)].71 an—iNj (01, ag, ..., ),
j=1
this rewrites as na,, = > (—1)
j=1

i1 an—iNj (a1, ag, ..., ;). This proves Corollary 9.7. [

Proof of Theorem 9.5. 1st step: For any fixed A-ring (K, ()\i)ieN) and any fixed r € K,
the assertions (a) and (b) are equivalent.

Proof. This proof is exactly the same as the proof of the 1st step of the proof of
Theorem 9.2. (In fact, during the 1st step of the proof of Theorem 9.2, we have never
used the assumption that the A-ring (K, (A\"),.y) is special.)

2nd step: For any A-ring (K, ()\i)ieN) and any z € K, we have

n

nA" (z) = (=17 A (@) ¢ ()

j=1

for every n € N.
Proof. Let n € N. Corollary 9.7 yields

n

no, = Z (—1)" 1 an—;Nj (a1, ag, ..., )

=1
= Yo, an, gy ey ) 4+ (=) apen Ny (01, gy .oy
Z iNj (an, @ i)+ (1) (a1, ao )
=ap=1
Z L, _j (al,ag,...,aj)—l—(—l)"fl 1IN, (a1, ag, ... )

=1

This is a polynomial identity in Z [y, s, ..., . Hence, we can apply this identity to
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ar = A (2), ag = A2 (2), ..., a,, = A" (z), and obtain

nA" (z) = Z (—1)j71 A" () N; ()\1 (), A2 (2), ..., M (x))
DT L N (M (@), N (@) N (2)
=X0(@)=A" " (z)
= (—1)]'_1 N (1) N; ()\1 (), N (), ..., N (x))

+ (=)' A" (z) N, ()\1 (), N2 (z), ..., A" (z))

3

(=17 N (2) Ny (A (2), 22 (), N ()

Il
{

3

(~1 X (2) 09 ().

<.
Il
-

This proves the 2nd step.
3rd step: For any A-ring (K, ()\i)ieN) and any z € K, we have

d ~
=T 25 (@) = Ar () - Yor (),
where we denote the power series ev_r <JT (x)) by ¢_r (z).

Proof. We have

bor (@) = evor (r ()

=ev_p ( Z Y (1) Tj) (since Uy (z) = Z Y () Tj)

JEN\{0} jEN\{0}
= Z W (z) (=T (by the definition of ev_r)
MO o
= Y W@ () T == Y W@ ()T
. e .
JEN\{0} —(—1)i1 jeN\{0}

so that B 4 ' '
@)= 3 ()~

jeN\{0}
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Multiplying this formula with the equality Ay (x) = >_ A\ (z) T?, we obtain

<—157T (I)) Ar(x)={ Y W (Z N (z 7’)
JEN\{0} €N
—Z<ZW “A””())T”

(by the definition of the product of two power series)

=D (Z (—1)7 7 A () ¢ <:c>) =) N (@) T

neN \j=1 neN

vV
=nA"(z)
(by the 2nd step)

= 3 N @T N (@) T = > nA(z) T

nen\{0} ~ nen\{0} —rTn-1
=T. Z nA" (x) T L
neN\{0}

Now, Ar (z) = Y. N (z)T" = > A" (z) T™, so that

1€N neN

d d n n n n—1
ﬁ)\T(q;):ﬁZ)\ @)T"= Y n\"(@)7T

neN neN\{0}

(by the definition of the derivative of a formal power series),

and thus

d n n— 1
T (@) = =T+ Y ad (@) T = - <—1/)_T (a:)) A (@)
neN\{0}

J

=(*1’/LT\(;))')\T($)
= A (2) - U1 (z).

This proves the 3rd step.

4th step: For any fixed A-ring (K, ()\")ZEN) and any fixed x € K, the assertion (b)
holds.

Proof. By the 3rd step, we have

d -
T 5 (@) = Ar () - Yor (2).

N formal ies o € K [[T]] satisfi L

Oow, every lormal power series « SatlsIles ev_r dT = dT evV_r

d d
Applied to o = Ay (), this yields ev_g (ﬁ)\T (oc)) =7 (ev_r (Ar (x))). Since

°2 Proof. Let o € K [[T] be a formal power series. Write « in the form Y o;T" with o; € K for every
i€N
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d
ev_r (Ar (z)) = A_r (x), this rewrites as ev_rp (—)\T ) = _ﬁ/\ r(x). On the

other hand, every formal power series o € K [[T]] satlsﬁes ev_r(ev_ra) = a. ﬁ Ap-
plied to a = IZT (x), this yields ev_g (eV,T ( T (:c))) (). Since ev_r <¢T (x )) _
U_r (x), this becomes ev_y <{LT (x)) = ¢ ().

i € N. Then, ev_ra =ev_g (Z aiTi) = Y a; (=1)' T (by the definition of ev_r), so that

€N i€N
d z @ i—1
T (ev_r ) =7 Z a; ( = Z a; (=1)"4iT
i€N 1€N\{0}

(by the definition of the derivative of a formal power series) .

On the other hand, a = > «;T*, so that
i€N

d d i i1
d—Ta: d—TZaiT = | Z a1
ieN ieN\{0}
(by the definition of the derivative of a formal power series)
= Z Q41 (7, + 1) 11Z
ieN

(here we substituted 4 for ¢ — 1). Thus,

d
ev_r <dTa> =ev_r <Za2+1 i+1)T ) Zazﬂ (i4+1)( 1) T

1€N 1€EN
(by the definition of ev_g)

= Z i (1)t (here, we substituted i for i + 1)
ieN\{0} ——(—1)i
T eri— d
== > wi(-1)'Tt == > e (-1)'iT 1:fﬁ(ev_Ta),
ey T i€N\ {0}
:dfT(ev,T @)
qed.
53 Proof. Let a € K [[T]] be a formal power series. Write « in the form " o;T" with o; € K for every
ieN
i € N. Then, ev_ra =ev_g (Z aiTZ) = Y o, (=1)' T (by the definition of ev_7), so that
ieN ieN
ev_r(ev_ra) =ev_r (Z a; (—1)° Ti> = Z o (1) (=)' T (by the definition of ev_r)
ieN ieN ~
= Z T = a,
ieN
qed.
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Now,

ev_r (—T~ %AT (:c)) ——evr(T)evr (%)\T (a:))

4,
T —7(z)
(since ev_r is a K-algebra homomorphism)
d
=-T. d—TA_T (.I')
and
evr (A (2) - 6 (2)) = ev_r O (@) -ev 7 (V7 ()
\*/ ,
=\_7(z) gy
=7 (z)
(since ev_r is a K-algebra homomorphism)
=\ r () - gr (2).
Hence,
TN @) =evr | T @) | = evor (r (@) dr (2)) = Aoy () (a)
dT _7\Xx) =¢ev_p dTTJI = eV_p T (T 7 \X = A_T\T T\T),
~—
=Ar ()P _1(z)
so that
d d
=T —)\,T (I) —)\,T (LC) d
5 dT T
_ —_T. =-T -—log\_ .
@DT ($> )\7T (1’) >\7T (.CL') dT 0g T (IIZ')
d
:d—Tlog)\,T(:c)

Hence, assertion (b) holds. This completes the proof of the 4th step.
5th step: For any fixed A-ring (K, (\'),oy) and any fixed 2 € K, the assertion (a)
holds.

Proof. This follows from the 4th step, since (a) and (b) are equivalent (by the 1st

step).
Thus, the proof of Theorem 9.5 is complete. O

Theorem 9.5 is clearly a generalization of Theorem 9.2, and thus our above proof of
Theorem 9.5 is, at the same time, a new proof of Theorem 9.2.

0.6. Exercises

Ezercise 9.1. Let K be a ring. Let u € 1+ K [T]". For every j €
N\ {0}, let us denote by 7 the j-th Adams operation of the A-ring
(A, ()

€N
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Assume that u =TT <Ku, [u1, ug, ..., um]> for some <Ku, [ug, ug, ..., um]) €
K™ Let j € N\ {0}. Then, ¢ (u) =II <[~(u, (], ud, ,u{nD

[This gives a formula for @/D\j similar to the formula for A given in Theorem
5.3 (d).]

Exercise 9.2. Let K be a ring. For each i € N, define a mapping Coeft; :
K [[T]] = K as in Exercise 6.8.

Let i € N\ {0}.

(a) Prove that the map

A(K) = K,

u — (—1)" Coeff; (—T% log u)

is a ring homomorphism.
(b) This fact, combined with Theorem 9.2 (b), can be used to give a
new proof of a part of Theorem 9.3 (b). Which part, and how?

Ezercise 9.3. Let (K, (X'),.y) be a A-ring.
(a) Prove that

1€N

n\" (z) = Z (=) A () () for every € K and n € N.
i=1
(b) Let # € K and n € N. Let A, = (aij) i<, 1<j<n € K™ be the
matrix defined by I

Yt (z), if > g
a;; = i, ifi=7j—1;
0, ifi<j—1

Prove that n!\" (z) = det A,.
[The matrix A, has the following form:

W (2) 1 0 0 0
V2 (x) O (x) 2 0 0
P2 (x) Y (x) P (x) 0 0

V@) ) @) (@) i
O @) (@) () e 0P (a)

(c) Let z € K and n € N. Let B,, = (b;,) € K™™ be the

matrix defined by

1<i<n, 1<j<n

i (z), if j = 1;
) N, itz > L
i = 1, ifi=j—1; '

0,ifi<j—1
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Prove that 9" (z) = det B,,, where we define ¢° (x) to mean 1.
[The matrix B,, has the following form:

AL (2) 1 0 - 0 0
2)\% () A () 1 o0 0
B. 3A (m) A (:c) A (x) -. O 0
(n—1) A" (z) X 2(x) A3 (x) - M(z) 1
nA" () AN (z) A2 (x) oo A2 (z) A(a)

Ezercise 9.4. Let (K, (X\"),.y) be a binomial A-ring. Prove that ¢" = id
for every n € N\ {0}.

[Note that, if we recall the definition of a binomial A-ring and Exercise
9.3 (c), then we could reformulate this result without reference to A-rings.|

Ezercise 9.5. Let (K, (X'),.y) be a (not necessarily special) A-ring. Prove
that ¢/ : K — K is a homomorphism of additive groups for every j &€
N\ {0}.

[This shows that at least part of Theorem 9.3 (b) does not require the
A-ring (K, (A);cy) to be special.]

FEzercise 9.6. In this exercise, we are going to view Z [aq, g, ..., ayy] as a
subring of Z [y, s, ..., o, ] for any two m € N and n € N satisfying m < n.
Thus, the polynomial N,, € Z[ay,as, ..., ;] automatically becomes an
element of Z [, g, ..., o] whenever 1 < m < n.

(a) Prove that

n

na,, = Z (=) " ap_iN; in Z o, g, ..., o] for every n € N.
=1

Here, ay is to be understood as 1.
(b) Let n € N. Let An = (ai,j)
matrix defined by

nxn
\<i<n, 1<j<n € L [ag, gy .oy be the

Ni—j1, it i > j;
Qg5 = i, le:]—]_,
0,ifi<y—1
Prove that nla,, = det A,,.
[The matrix A, has the following form:

N, 1 0 0 0

Ny Ny 2 0 0

s N, ]Y2 N, 0 0
Np1 Npa Npg -+ Np n—1

Np Npot Npz -0 N2 Ny
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(c) Let n € N. Let B, = (b;)
matrix defined by

nxn
I<i<n, 1<j<n € Z oy, g, ..., o be the

i, if j = 1;
Gy, iF0 > § > 1
1, ifi=7j—1;
0, ifi<j—1

bij =

Prove that N,, = det B,,, where we define Ny to mean 1.
[The matrix B, has the following form:

oy 1 o --- 0 O
20[2 (03] 1 0 0
3a « « -« 0 0
B, — 3 2 1
m—1)ap_1 apo Qu3 -+ a 1
naoy, Op—1 Qp_2 -~ Q2

]
(d) Derive the results of Exercise 9.3 from Exercise 9.6 (a), (b), (c).

Ezercise 9.7. Let p be a prime number. Let (K, (\),.y) be a (not
necessarily special) A\-ring. Prove that ¢? (z) = 2P mod pK for every z € K.

10. Todd homomorphisms of power series
We now devote a section to the notion of Todd homomorphisms. First, two warnings:

e Warning: The following may be wrong or differ from the standard notations.
I am trying to generalize [FulLan85, I §6] (mostly because it is slightly flawed™]
and the generalization looks more natural to me), but I cannot guarantee that
this is the “right” generalization.

e Another warning: In the following, we will often formulate results over a ring
which we will call Z. The letter Z will denote any ring (commutative with unity,
of course). Please don’t confuse it with the similarly-looking letter Z, which
always denote the ring of integers. The reason why I chose the letter Z for the
ring is that in most applications the ring Z will indeed be the ring Z of integers.

10.1. The universal polynomials Td, ;

We begin this section with a construction similar to the construction of the Adams
operations in Section 9. The goal of this construction is to find, for every ring Z (in
most cases, this ring will be the ring Z of integers) and every power series ¢ € 1+Z [[t]"

*4[FulLan8F, 1 §6, p. 24] states that td, (e) is a universal polynomial in A! (e), ..., A" (e), determined
by ¢ alone. I think it isn’t; instead, it is just a power series. On the other hand, my generalization
tdy, 7 is a universal polynomial.
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with constant term equal to 1, a polynomial Td, ; € Z [ay, oy, ..., o] for every j € N
such that

[[eWT) =) Td,; (X1, X, ..., X;) T
i=1 jeN
in the ring (Z [Uy, Uy, ..., Up)) [[T]] for every m € N, where X; = > I] Uy as
SC{1,2,..,m}; keS
|S|=i

usual. To achieve this goal, we must again work with symmetric polynomials. First a
definition:

Definition. Let R be any ring. Let ¢ € N. Then, we define a map
Coeff; : R[[T]] — R (where R[[T]] is, as always, the R-algebra of all formal
power series in the variable T over the ring R) by

Coeff; (P) = (the coefficient of P before T")
for every power series P € R|[[T]]

In other words, we define a map Coeff; : R[[T]] — R by

Coeft; (Z ajTj> = a;

jEN
for every > a;77 € R[[T]] (with a; € R for every j € N)
jeN

Two remarks about this definition:

e The definition of Coeff; that we just gave is clearly equivalent to the definition
of Coeff; given in Exercise 9.2.

e The only difference between the map Coeff; just defined and the map coeff;
defined in Exercise 6.5 is that they have different domains (namely, the map Coeff;
is defined on all of R [[T]], whereas the map coeff; is defined only on A (R)). This
looks like a minor difference, but is substantial enough to cause confusion if we
neglect it! For example, when we say that coeff; is a homomorphism of additive
groups, we mean that it maps sums in A (R) to sums in R; however, when we say
that Coeff; is a homomorphism of additive groups, we mean that it maps sums in
R|[[T]] to sums in R. These are two completely different assertions, even though
A (R) is a subset of R[[T]] and the maps coeff; and Coeff; are pointwise equal
on this subset! (Actually, it is very easy to see that the assertion that coeff; is a
homomorphism of additive groups is completely different from the assertion that
Coeff; is a homomorphism of additive groups. The latter assertion holds for all
i € N, whereas the former assertion holds only for i = 1 (in general).)

e [t is clear that for every ring R and for every ¢ € N, the map Coeff; : R[[T]] — R
is an additive group homomorphism. It is also clear that if two power series
P € RI[[T]] and Q € R[[T]] satisfy (Coeff; (P) = Coeff; (Q) for all i € N), then
P=qQ.

Now let us define what we mean by 1 + Z [[t]]":

97



Definition. Let Z be a ring. Consider the ring Z [[t]] of formal power series
in the variable t over Z. Let Z[[t]]" denote the subset

tZ [[t]] = {Z a;it' € Z[[t]] | a; € Z for all 4, and ag = O}
ieN
={p € Z|[t]] | pisa power series with constant term 0}

of the ring Z [[t]]. Note that

1+ Z[t] = {1+u|uecZ[t]}
={p e Z][t]] | pisa power series with constant term 1}.

We notice that this is an exact copy of a definition we made in Section 5 (namely, of
the definition of K [[T]]7), with the only difference that the ring that used to be called
K in Section 5 is called Z here, and that the variable that used to be T" in Section 5 is
t here.

Now to our universal polynomials:

Definition. Let Z be a ring. Let ¢ € 1+ Z[[t]]" be a power series with
constant term equal to 1. Our goal is to define a polynomial Td,; €
Z oy, ag, ..., o] for every j € N such that

m

[[eWir)=> Td,; (X1, Xs,... X;) TV (51)
i=1 jEN
in the ring (Z [Uy, Uy, ..., Uy)) [[T]] for every m € N, where X; = > I1 U
SC{1,2,...,m}; k€S
|S|=i
is the ¢-th elementary symmetric polynomial in the variables Uy, Us, ..., U,,

for every ¢ € N.

In order to do this, we first fix some m € N and 5 € N. Consider the polyno-

mial Coeff; (H © (Uﬂ’)) € Z Uy, U,,...,Up,] (this is the coefficient of the
i=1

power series [| ¢ (U;T) € (Z Uy, Us, ..., Uy]) [[T]] before T7). This polyno-

i=1
mial Coeft; (ﬁ © (UZ-T)> is symmetric. Thus, Theorem 4.1 (a) yields that
there exists 0;=61 and only one polynomial Todd, ;) € Z a1, g, ..., ] such
that Coeft (ﬁ © (UiT)) = Todd, ;) (X1, X3, ..., Xin). Since Coeft; (ﬁ © (UZ-T)>
is a polynomzi:& of total degree < j in the variables Uy, Us, ..., U, ZZIFEL

55 Proof. There are several ways to prove this; here is the simplest one: We use the notion of an
“equigraded” power series over a graded ring; this notion was defined in [Grin-w4a]. Now let A be
the graded ring Z [Uy, Us, ..., U,, |, where the grading is given by the total degree (thus Uy, Us, ...,
U, all lie in the 1-st graded component A;). According to [Grin-w4al Theorem 1 (a)], the set

{a € A[[T]] | the power series « is equigraded}
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Theorem 4.1 (b) yields that

Cocff, (H © (UJ’)) = Todd, ), (X1, Xo, ..., X;)
i=1

where Toddy, ;) ; is the image of the polynomial Todd,, ;) under the canon-
ical homomorphism Z [y, ag, ..., ] — Z[ag, a9, ..., ]. However, this
polynomial Todd, ;) ; is not independent of m yet (as the polynomial Td,, ;
that we intend to construct should be), so we call it Todd, ;) jm rather
than just Todd, ;) ;.

Now we forget that we fixed m € N (but still fix j € N). We have learnt
that

Coeffj (H Y2 (UIT)> = TOdd(%j)’ij] (Xl, XQ, ceey X])
i=1

in the polynomial ring Z [Uy, Us, ..., Uy,| for every m € N. Now, define a
polynomial Td,; € Z oy, g, ..., o] by Td, ; = Todd g ;.15

This polynomial Td,, ; is called the j-th Todd polynomial of .

Theorem 10.1. The polynomials Td, ; just defined satisfy the equation
in the ring (Z [Uy, Us, ..., Uy]) [[T]] for every m € N. (Hence, the goal
mentioned above in the definition is actually achieved.)

Before we prove this, we need a lemma,; it is not really a fact of independent impor-
tance, but if we don’t formulate it as a lemma we will have to run through its proof
several times:

Lemma 10.2. Let Z be a ring. Let ¢ € 1 + Z[[t]]” be a power se-
ries with constant term equal to 1. Let m € N and n € N be such
that m > n. Then, in the polynomial ring Z[Uy,Us,...,U,], we have
TOdd(%j)J’[m] (Xl, XQ, ...,Xj) = TOdd(%j)J',[n] (Xl, X27 . X])

Proof of Lemma 10.2. By the definition of Toddy, j) jm), We have

Coeffj (H (%2 (UzT)> = TOdd(<p7j)7j7[m] (Xl, XQ, ey X]) (52)
i=1

is a sub-Ag-algebra of A[[T]]. Since the power series ¢ (U1T), ¢ (U2T), ..., ¢ (UnT) all lie in this
set (because they are equigraded - just look at them), it therefore follows that [] ¢ (U;T) also lies
i=1
in this set. In other words, the power series [] ¢ (U;T) is equigraded. Hence, the coefficient of
i=1
the power series [] ¢ (U;T) before TV lies in the j-th graded component of A (by the definition
i=1
of “equigraded”). In other words, the coefficient of the power series [] ¢ (U;T) before T is
i=1
a homogeneous polynomial of degree j in the variables Uy, Us, ..., Uy,,. Since this coefficient is

Coeff (H © (UiT)> , this yields that Coeff; (H ® (UiT)) is a homogeneous polynomial of degree
i=1 i=1
Jj in the variables Uy, Us, ..., Uy,. Hence, Coeft; (H © (UiT)) is a polynomial of total degree < j

i=1
in the variables Uy, Us, ..., Up,.
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in the polynomial ring Z [Uy, Us, ..., Uy,).

Let proj,, ,, be the canonical Z-algebra epimorphism Z [Uy, Uy, ..., Up] — Z [U1, Us, ..., Uy]
U;, if 1 <y
0, ifi>n
duces a Z-algebra homomorphism proj,, ,, [[T]] : (Z [Uy, Us, ..., Un]) [T]] = (Z [U1, Us, ..., Uy)) [[T]]

which maps every power series > a;T* (with aj, € Z [Uy,Us, ..., U, for every k € N)
keN
to Y proj,, ., (ax) T*. For every i € {1,2,...,m}, this homomorphism proj,,, ,, [[T]] sat-
keN

which maps every U; to . This Z-algebra homomorphism proj,, ,, in-

R
isfies (projy,., [71]) (12 (UT)) :{ P, e < . Now, since proj,» [(T]] is

% Proof. Write the power series » € Z [[t]] in the form ¢ = > @xt* with ¢ € Z for every k € N.
keN
Notice that ¢y = 1 since ¢ has constant term 1.

Let i € {1,2,....,m}. Since ¢ = ¥ ¢ut*, we have ¢ (U;T) = 3 o (UT)* = 3 @uUFT*.

kEN keN N—— keEN
Thus,
(Projy ., [[T]]) (¢ (UIT))
= (proj,u,, [71]) (Z WkaTk> =Y proju, (eUf) T (by the definition of proj,, , [[7]])
keN keN —_—

. k

=@k (Projyn,, Us)
(since proj,, ., is a Z-algebra

homomorphism)

K U, ifi <n; \"
:Z%(projm,nUi) Tk:Z‘Pk ({ 017 ifi;n’ ) ™
keN keN ’
TSR
(Since proj””’n U?, = { U(;“ llff:’j ; /;L’ by the deﬁnition Of proj,"%n)

UFTF, if i < n;
_ k%:NSDk ' nrer _J o WUT), ifi<mn;
S opOFTF if i >n 1, ifi>n
keN

since Y prUFTF =  (U;T) for i < n, but on the other hand
ke

S oR0FTF = g 00 T° + 35 ¢ 0F  TF=14+) 07" =1fori>n
STTYTYT kel Y > :
=1 = = k£0 . =0 ;
(since k#0) k#0
————

=0

qed.
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a Z-algebra homomorphism, we have

(i 1) ([T 0] = T oimalir) etwimy - TT{ #721

=1 i=1 ~~ i=1
_ SD(UzT),leSn
B 1, ifi >n
_ﬁ o (UT), ifi <m ﬁ o (UT), ifi < n:
o 1, ifi>n , 1, ifi >n
=1 P ,i=n+1 ~— ,
=p(UsT) (since i<n) =1 (since i>n)
=[]« H 1=[]ewm).
=1 i=n-+1 i=1

=1

But the diagram

Proj,, » [T1]

(Z[U1, Uz oo, Upn)) [[TN] ———— (Z[U1, Uy, ..., Up]) [[T]

Coeffjl Coeffjl

Z Uy, Us, ..., Uyl Pom Z (U1, Us, ..., Uy]

is commutative (this is clear from the definitions of Coeff; and proj,, , [[1]), so that
proj,, , © Coeff; = Coeff; o (proj,, ,, [[T]]) and thus

m

(proj,,.,, o Coeff;) (H(p (U;T) ) (Coeff; o (proj,,., [[T1])) <H o (U;T)

1

= Coeff; | (proj,... [T]]) (ng(Uﬁ))

= Coeft; (ﬁ @ (UZ-T)>

= TOdd(go,j),j,[n] (Xla XQ, ceny X])
(by (52)), applied to n instead of m) .
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Comparing this with

(proj,,., o Coeff;) (H © (UiT)>

=1

= pI‘ijm Coeffj (H (2 (UZT)> = pI‘ijm (TOdd(%j)’j7[m] (Xl, X27 ceey X]))

=1

-~

=Todd g, j),j,(m] (X1, X2,.... X;)
(by (52))

= Todd, ) 5,im) (projmvn X1, PT0] 10 X2, 43 PTO] 1, Xj)

since Todd(, j)j,mm) 18 a polynomial over Z

and proj,, , is a Z-algebra homomorphism,

and since polynomials over Z commute
with Z-algebra homomorphisms

= Toddy).5,im) (X1, Xo, .., Xj)

since proj,,, is the Z-algebra homomorphism which maps
U, if i <mn;
0,ifi>n ~’

and thus we know that it maps every X; with ¢ > 1 to
the corresponding X; of the image ring, so

that proj,, , X1 = X1, proj,,, Xo = Xo, ..., proj,,, X; = X;

every U; to

we obtain
TOdd(deMn] (Xl, XQ, ceey Xj) = TOdd(<p7j)’j7[m} (Xl, Xg, ceey Xj)
in the polynomial ring Z [Uy, Us, ..., U,]. This proves Lemma 10.2. O

Proof of Theorem 10.1. This proof is going to be very similar to the proofs of Theorem
4.4 (a) and Theorem 9.1 (a) - except that this time, we already have done most of our
work when proving Lemma 10.2.

Ist Step: Fixm € Nand j € Nsuch that m > j. Then, we claim that Toddy j) j m] =
Tdsp’j.

Proof. Lemma 10.2 (applied to n = j) yields that Todd, ;) m] (X1, X2, ..., X;) =
Todd, ;)55 (X1, X2, ..., Xj) in the polynomial ring Z [Uy, U, ..., U;]. Since the elements
X1, Xs, ..., Xj of Z[Uy,Us, ..., U;] are algebraically independent (by Theorem 4.1 (a)),
this yields TOdd(¢’j)7j7[m] = TOdd( Thus, TOdd(%j)vjv[m} = TOdd(%j)’j’[j] =Td
and the 1st Step is proven.

2nd Step: For every m € N and j € N, we have

‘ij)uja[j]. ©,37

ngD,] (X17 X27 Y XJ) = TOdd(907])7j7[m] <X17 XQ’ o X‘])

in the ring Z [Uy, Us, ..., Uy,].

Proof. Let m' € N be such that m’ > m and m’ > j. Then, the 1st Step (applied to
m/ instead of m) yields that Todd, ;) ;mq = Td, ;. On the other hand, Lemma 10.2
(applied to m’ and m instead of m and n) yields that Todd, j) ;w1 (X1, X2, ..., Xj) =
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Todd,j),j,im] (X1, X2, ..., X;) in the polynomial ring Z [Uy, Us, ..., Uy,]. Since Todd, j) jm1 =
Td%]’, this rewrites as Td(p,j (Xl,Xg, ceey XJ) = TOdd(@J)’j’[m] (Xla XQ, ,Xj) This
proves the 2nd Step.
3rd Step: For every m € N, the equation is satisfied in the ring (Z [Uy, Us, ..., Un)) [[T]]-
Proof. Every power series P € (Z[Uy, Uy, ..., Uy]) [[T]] satisfies P = Y (Coeff; P) TV
jeN

(by the definition of Coeff;). Applied to P = [ ¢ (U;T), this yields
=1

[Le W) =3 Coeff; (H v m)) T/ =% Todd,),ijm (X1, Xa, o, X;) T/
=1 JeN N lilr - JjeN Zwa,j(X:XQ,...,Xj)
=Todd(y ;,j,(m] (X1,X2,...,X;) (by the 2nd step)
(by (52)
= Tdy; (X1, Xa, ..., X;) T

jEN

in the ring (Z [Uy, Us, ..., Uy)) [[T]]. This proves the 3rd Step, and thus Theorem 10.1
is proven. O

10.2. Defining the Todd homomorphism

Now, let us define the Todd homomorphism:

Definition. Let Z be aring. Let (K, (A\),.y) be a A-ring such that K is a

Z-algebra. Let o € 1+ Z[[t]]" be a power series with constant term equal
to 1. We define a map td, r : K — K [[T]] by

tdyr (z) = Z Td,; (A (), A (2), .., N (z)) T for every = € K.
jeN
(53)
We call td,, 7 the ¢-Todd homomorphism of the A-ring (K, (A\),.y)-

As already mentioned above, this notation td, r and the name “p-Todd homomor-
phism” by which I denote it might not be standard terminology[”"|

10.3. The case when the power series is 1 + ut

As complicated as this definition was, we might wonder whether there is a more explicit
approach to ¢-Todd homomorphisms. It turns out that there is, if ¢ is a polynomial
factoring into linear polynomials of the form 1 + ut with v € Z. Let us begin with
computing the p-Todd homomorphism for ¢ itself being of this form:

>TFor instance, what [FulLan85| calls “Todd homomorphism” is the map td, := td,; (where td 1
means “take the formal power series td, 7 and replace every T' by 1”), which is only defined on z
if z is finite-dimensional, i. e. if z satisfies A’ (x) = 0 for all sufficiently large i. But I prefer the
power series td, 7 () since it is defined on every x.

I am not even sure whether there exists standard terminology for Todd homomorphisms - there
does not seem to be much literature about them.
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Proposition 10.3. Let Z be a ring. Let (K, (A\"),.y) be a A-ring such that
K is a Z-algebra. Let u € Z. For every x € K, we have td; iy 7 () =
Aot (2), where Ayr (z) means ev,r (Ar (x)).

To prove this, we need to compute the j-th Todd polynomials of 14 ut. This can be
done explicitly:

Proposition 10.4. Let Z be a ring. Let u € Z. Then, Tdy 4y, ; = v/  (in
the polynomial ring Z [ay, as, ..., j]) for every positive j € N.

Note that Proposition 10.4 makes no sense for 7 = 0; this will cause us some minor
trouble in the proof of Proposition 10.3.

Proof of Proposition 10.4. Let m € N. Consider the ring Z [Uy, Uy, ..., U,,] (the poly-

nomial ring in m indeterminates Uy, Us, ..., Uy, over the ring Z). For every i € N, let
X, = > [ Uk be the so-called i-th elementary symmetric polynomial in the
SC{1,2,...,m}; k€S
|S|=i

variables Uy, Us, ..., U,,.

We know from Theorem 10.1 that holds in the ring (Z Uy, Us, ..., Uy]) [[T]]
whenever ¢ € 1+ Z[[t]]" is a power series with constant term equal to 1. Applying
this to ¢ = 1 4 ut, we obtain

m

H (]. + Ut) (U1T> = ZTd1+ut,j (X17X27 teey XJ) TJ?

i=1 jEN

where (1 + ut) (U;T) means “the power series 1+ut, applied to U;7” (and not a product
of 14+ ut and U;T, whatever such a product could mean). Since

m

I (@ +ut) @)

1

= 14U, T=14U; uT

m

=[[a+vi-ur)=>"" > []Us 1)
=1 €N SC{1,2,...,m}; keS — i T
1S|=i =
by Exercise 4.2 (b), applied to U;, (Z[Uy,Us, ...,Uy]) [[T]], and uT
instead of «;, A, and ¢t
= ZXiuiTi = Z X/ T (here, we renamed the index i as j),
ieN jEN

this rewrites as o ,
S X =Y Tdyjpuy (X1, Xa, .., X;) T7.
jEN jeN

By comparing coefficients in this equation, we conclude that

Xjuj = le—l-ut,j (Xl, XQ, ...,Xj) inZ [Ul, UQ, ceey Um] for all ] € N.
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Now we forget that we fixed m. Instead, fix some positive ;7 € N, and take m = j.
Then, we have just proved that

Xjuj = le—l—ut,j (XI,XQ, ...,Xj) in Z [Ul, UQ, ceny UJ] .

Applying Theorem 4.1 (a) to K = Z, m = j and P = X;u/, we conclude that
there exists one and only one polynomial @ € Zay,as,...,a;] such that X;u/ =

Q (X1, X, ..., X;). In particular, there exists at most one such polynomial Q) € Z [y, aa, ...

Hence,

if Q1 € Z]oy,ay,...,q;] and Qy € Z[ay, o, ..., o] are two polynomials
such that Xjuj :Dl (X17X2,...,Xj) and Xjuj :QQ (Xl,XQ,...,Xj), . (54)
then Q; = Q»

Let Q) € Z]ay,as,...,a;] be the polynomial defined by Q; = w/a;. Let Qy €
Z oy, ag, ..., o] be the polynomial defined by Qs = Tdjiu ;. We are now going to
prove that Q; = Q».

Since our two polynomials £; and £, satisfy

Ql (Xl, XQ, ...,Xj) = Uij (since Ql = UjOéj)
= Xjuj
and
QQ (Xl,XQ, ceey XJ> = leJrut,j (Xl, XQ, ...,Xj) (SiIlCe QQ = leJrut,j)
= Xjuj,

we can conclude from that Q; = Q,. Hence, w/a; = Q1 = Qs = Tdyyy;. This
proves Proposition 10.4. O

10.4. The 0-th and 1-st coefficients of td, r ()

We keep back the proof of Proposition 10.3 for a moment - instead, we first show a
proposition which gives the first two coefficients of the power series td,r (z) in the
general case (with ¢ arbitrary):

Proposition 10.5. Let Z be a ring. Let (K, (X’),.y) be a A-ring such that

K is a Z-algebra. Let ¢ € 14+ Z[[t]]" be a power series with constant term
equal to 1.

(a) Then, Coeff) (td, 7 (z)) =1 for every z € K.
(b) Let ¢; be the coefficient of the power series ¢ € Z[[t]] before t'. Then,
Coefty (tdy, 1 (z)) = w12 for every z € K.

To prove this, we need to compute the 0-th and the 1-st Todd polynomials of ¢:

Proposition 10.6. Let Z be a ring. Let ¢ € 1+ Z[[t]]" be a power series
with constant term equal to 1.

(a) Then, Td,o = 1.

(b) Let ¢, be the coefficient of the power series ¢ € Z[[t]] before t'. Then,
Td%l = 9010[1.
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Proof of Proposition 10.6. Let m € N. Consider the ring Z [Uy,Us, ...,U,] and its

elements X; = > I1 Uk as in the definition of Td,, ;.
SC{1,2,...,m}; k€S
|S|=i

We know from Theorem 10.1 that holds in the ring (Z [Uy, Us, ..., Uy]) [[T]]. In

other words,
m

[[e W) =) Td,; (X1, X,, ... X;) T’
i=1 jEN

Thus,

COGHO <H (2 (UZT)> = COGHO (Z Td%]‘ (Xl, X27 ciey X]) TJ> = Td@’o (Xl, XQ, ey X())
1=1

jEN

P (by the definition of Coeffy) and

Coeff1 (H 2 (UZT)> = Coeffl (Z Td%]‘ (X17 X27 ceey X]) Tj) = Td%l (Xl, XQ, ceey Xl)
i=1 jeN
(56)

(by the definition of Coeff;). Both of these equations and hold in the ring
ZU.,Us,....Up,].

(a) Let m = 0. Then, the polynomial rings Z [Uy, Us, ..., U] = Z [Uy, U, ..., Up] and
Z [y, g, ..., ] can be canonically identified with the ring Z (because they are polyno-
mial rings in zero variables, and a polynomial ring in zero variables over a ring K is the
same as the ring K itself). Under this identification, the “value” Td, o (X7, X, ..., Xo)
corresponds to the polynomial Td, g, so that we can write Td, o (X1, Xs, ..., Xo) =
Tdy 0.

But the equation holds in the ring Z [Uy,Us, ..., Uy = Z Uy, Us, ..., U] = Z.
Hence, we have

Td%g (Xl, XQ, ceey X()) = COGHO H Y2 (UZT> = COGHO (empty pI‘OdU_Ct) =1
i—1 >

=(empty product)
(since m=0)

in the ring Z. Hence, Td, o = Td, o (X1, X2, ..., Xo) = 1. This proves Proposition 10.6

(a).
(b) Let m = 1. Then, Z[U;,Us,,...,U,] = Z [U;], and in this ring Z [Uy, Us, ..., Uy,]
we have X; = U; (because X is the 1-st elementary symmetric polynomial of the one

®8The notation Td, o (X1, X2, ..., Xo) is somewhat unusual, but it should not be surprising: The
polynomial Tdy o is an element of Z [y, g, ..., ], that is, a polynomial in zero variables. (Of
course, polynomials in zero variables are just elements of the base ring - in this case, elements of
Z.)
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variable Up). Thus, in this ring, we have

wa’l (U1> = Td«p,l (Xl) - Td%l (Xl, Xz, ...,Xl)

= Coeffy [ [ @) (by (B6))
i=1
=p(U1T) (since m=1)
= Coeff; (¢ (U1 T)) = (the coefficient of the power series ¢ (U3T) before T)

=0 (the coefficient of the power series ¢ before tl) = Uy1.

. >
v~

=1

Now, let  be the Z-algebra homomorphism Z [oy] — Z [U;] which maps oy to Uy.
This homomorphism x must be an isomorphism (since U; is obviously algebraically
independent). Since k is a Z-algebra homomorphism and Td,; is a polynomial, we
have k (Tdy1 (0q)) = Tdy, 1 (k (1)) (because Z-algebra homomorphisms commute with
polynomials). Now,

K Td%l = K (Td%l (Ozl)) = Td%l K (011) = Td%l (Ul)
—— ——
=Tdy 1 (a1) =U;
= U o1=r(1)p1 =ik (1) =k (pro0)
=k(a1)

(since k is a Z-algebra homomorphism). Thus, Td,; = @104 (since x is an isomor-
phism). This proves Proposition 10.6 (b). O

Proof of Proposition 10.5. Let x € K.
(a) We have

Coeffy (tdyr (z)) = Coeffy <Z Td,; (A (), A (2), ..., N (2)) Tj> (by (G3))

jeN
=Tdyo (A" (2), 2 (2), ... A (2)) (by the definition of Coeffy)
=Td,o =1 (by Proposition 10.6 (a)).

(b) We have

Coefty (tdy,r (z)) = Coeffy <Z Td,; (A (), A (2), ..., N (2)) Tj> (by (G3))

=Tdy1 (A" (2), 2 (2), ... A (2)) (by the definition of Coeff;)

=Td,, | M (2) | = Td,1 (z) = g1
~

(since Proposition 10.6 (b) yields Td,; = p104) .

Proposition 10.5 is now proven. O]
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10.5. Proof of Proposition 10.3
Proof of Proposition 10.3. Let x € K. Applying to ¢ = 1 + ut, we obtain

td1+ut,T (.’13)
— Z Tdijue; (A (@), N (2) ., N (2)) TV

jeEN
:Td1+ut70 ()‘1 (I)v)\z (ZL’),...,/\O (I)) TO+Z Td1+ut,j (>‘1 (x)a)‘Q (x)w-'v)\] (I)) T’
~ ~\~ jEN; V
=Td1+ut70=1 j>07 :UJOCJ'
(by Proposition 10.6 (a), (by Proposition 10.4)

applied to p=1+ut)

=17+ ) (Way) (M (2) X (), ... ¥ (2)) TV = 17° + > N (2) W TV

jEN; oo ; ; jeN;

Compared with

At (T) = evyr Ar () = evyr (Z N (z) Tj>

=S M (2)T9 JeN
jen

= Z N (z)u! T’ (by the definition of ev,r)
jeN
o 0 0 . . . -
=\ (x) uw T —|—Z)\] ()W T? = 1T —|—Z)\] ()T,
-1 =1 JEN; JjeN;
7>0 7>0

this yields that tdiyyu 7 () = Ay (2). This proves Proposition 10.3. O

10.6. The Todd homomorphism is multiplicative in ¢

Our next proposition is another step to making the ¢-Todd homomorphism manage-

able:

Proposition 10.7. Let Z be a ring. Let (K, (\),.y) be a A-ring such

that K is a Z-algebra. Let ¢ € 1+ Z[[t]]" and ¢ € 1+ Z[[t]]" be two
power series with constant terms equal to 1. For every x € K, we have
tdsml%T (27) = td%T (QT) tdwj (1’)

Again, this boils down to an identity for Todd polynomials:

Proposition 10.8. Let Z be aring. Let p € 1+Z[[t]]" and ¢ € 1+Z[[t]]"
be two power series with constant terms equal to 1. Then,

J
ngow,j (Oél, Ao, ..., Oéj) = Z Td%i (Oél, Ao, ..., Oéi) . wavj*i (@1, Qo, ..., Ojj,i)

=0

(in the polynomial ring Z [ay, g, ..., ]) for every j € N.
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Proof of Proposition 10.8. 1st Step: We have @i € 14 Z [[t]]™.

Proof. The constant term of the product of two power series always equals the
product of the constant terms of these power series. Applying this to the power series
 and 1), we obtain

(constant term of the power series o))

= (constant term of the power series ¢) - (constant term of the power series 1))

. 7\ S

-~

=1 (since pel+Z[[t]]1) =1 (since J;l—&-Z[[t]]Jr)
—1.1=1,

so that oy € 1+ Z[[t]]". The 1st Step is thus proven.
2nd Step: We are going to show that for every m € N, we have

J
Tdyy; (X1, Xa, 0 X)) = Y Tdy (X1, Xo, .0, Xy) - Ty (X1, Xa, oy Xj2)

=0

in the polynomial ring Z [Uy, Uy, ..., Uy,] for every j € N (where, as usual, X; denotes

the polynomial > [T Ur (the i-th elementary symmetric polynomial in the
SC{1,2,...,m}; k€S
|S|=i

variables Uy, Us, ..., Up,) for every i € N).
Proof. Let m € N. By Theorem 10.1, the equality holds in the ring (Z [Uy, Us, ..., Uy )) [[T]-

In other words,
m

[[e WD) =) Td,; (X1, X,, ... X;) T’

i=1 jeN

Applying this equality to v instead of ¢, we get

[[v@T)=> Tdy; (X1, X,... X;) T.
i=1 jeN

On the other hand, applying it to (1 instead of ¢, we get

m

[T 09) (UT) =D Tdpy; (X1, Xoy oo, X,) TV

i=1 jEN
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Hence,

> Tdyy (X1, Xa, oo, X)) TV

jEN
=1 (ev) W) =] (¢ (UT) v (UIT))
=l o i
=p(U;T)Y(U;T)
= Jlewn [Tvw)
=1 i=1
=3 Tde,j(X1,X2,., X))T3 =3 Tdy, ;(X1,X2,...,X;)T7
JEN JEN
= (Zwa (XI,XQ,...,XJ-)TJ) : (ZTdM (XI,XQ,...,Xj)Tj)
JEN jEN

J
=> (Z Td, (X1, X, .o, Xi) - Tdy i (X1, Xo, ...,Xj_z-)> T

jeEN \i=0

(by the definition of the product of two formal power series) .

Comparing coefficients in this equation, we conclude that
J
Tdgy; (X1, Xa, ., Xj) = > Ty (X1, Xa, o, Xi) - Tdy i (X1, X, o0y Xj5)

=0

for every j € N. This proves the 2nd Step.

3rd Step: Let us now prove Proposition 10.8.

Fix some j € N. Let m = j. We are going to work in the ring Z [Uy, Us, ..., Up,] =
Z [Ul, UQ, ceey U]]

Applying Theorem 4.1 (a) to K = Z, m = j and P = Tdyy; (X1, X, ..., Xj), we
conclude that there exists one and only one polynomial Q) € Z [ay, g, ..., ] such that
Tdyy,; (X1, X2, ..., X;) = Q (X1, Xs,...,X;). In particular, there exists at most one
such polynomial @ € Z [y, as, ..., ;]. Hence,

if Q) € Z]oy,as,...,q;] and Qs € Z[ay, as, ..., o] are two polynomials
such that Tdtpt/},j (Xl,XQ, ceey XJ) = Dl (Xl,XQ, ceey Xj) and . (57)
TdSDTZJJ (Xl,Xg, ...,Xj) = QQ (Xl,XQ, ...,X]’) y then Ql = 5:22

Let Q) € Z [y, ag, ..., o] be the polynomial defined by Q; = Tdyy; (a1, ag, ..., ;).
J
Let Qs € Z a1, as, ..., a;] be the polynomial defined by Qo = >~ Td,; (ou, g, ..., @) -
=0

=
Tdy,j—i (a1, 9, ..., a;—;). We are now going to prove that Q; = Qs.
Since our two polynomials £ and £, satisfy

Ql (Xl,XQ, ceey XJ) = Tdtpw,j (Xl,XQ, ey Xj) (since Ql = Tdtplﬁ,j (Oél, o, ..., C(j))
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and

J
Qo (X1, Xo, o, Xj) = Y Ty (X1, X, o, X5) - Tdy i (X1, Xo, oo, Xj)
i=0
J
(SiIlCe QQ = Z Td%i (0617 A, ..., Ofi) . Td%j—i (061, Qo, ..., Cl{j_i)>
i=0
= Tdyy ; (X1, Xa, ..., X)) (by the 2nd Step),

we can conclude from that Q; = Q,. Hence,

J
TdWZ}J (ozl, Qo, ..., Oéj) == Ql == QQ == ZTd@’i (Oél, o, ..., Oéi) . Td¢7j_i (al, Qo, ..., Ozj_i) .

This proves Proposition 10.8. 0

Proof of Proposition 10.7. 1st Step: For every j € N and z € K, we have
Tdyp; (A (2), X (2),..., N (z))

= Z Tdg; (A (2), 22 (2), .o, N (@) - Tdy i (A (), N2 (@) 0, N0 ()

Proof. Let j € N and x € K. Since the polynomials Tdyy ; (o1, a2, ..., ;) and
J
> Tdy,,; (a1, g, ..., q5) - Tdy j—i (a1, ag, ..., ;) are equal (by Proposition 10.8), their
=0

evaluations at (AL (2),A?(2),..., M (z)) must also be equal. But since the evaluation
of Tdyy,j (aq, ag, ..., q;) at
(At (@), A2 (), ooy N (2)) 18 Tdyy; (A (x) ,A? (2) , ..., N (z)), whereas the evaluation of

j .
Z Tdy; (1, g, .oy ag) - Tdy j—; (1, gy oy i) at (A (), A2 (2), ..., M (2)) is

Z Tdy; (A (@), A2 (@), ...y X (2)) - Tdyj—i (A (2) , A2 (2), ..., M~% (x)), this yields that
the values Tdyy; (A (), A (2), ..., N (z)) and
Z Tdy; (A (2), A (x), ..., A" (2)) - Tdy ;- (A (2), A (), ..., N (z)) are equal. This

proves the 1st step.
2nd Step: Now let us prove Proposition 10.7.
Let z € K. By (applied to @1 instead of ¢), we have

tdppr (2) = > Tdgy; (A (2), X% (), ... N (2)) TV

JEN
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But

td%T (.CE) tdd,j (.T)
—— ——
:%;NTdm(Al(m),A?(m) ..... N (z))T9 :%wa,j(xl(w),x%w) ..... X (z))T9
J J
(by ) (by , applied to ¢ instead of ¢)
= (Z Tdy; (A (), A% (2) ..., N (2)) TJ) : (Z Tdy; (A (2), A2 (2) ..., N (2)) Tj)
jEN jEN

=> (Z Tdg; (A (2), A2 (2), .o, N (@) - Tdy i (A (), A% (2) ey N @))) Ti

jeN \i=0

-

=Tdgy,; (A(2),A2(2),...\ ()
(by the 1st Step)

(by the definition of the product of two formal power series)
= Tdgy; (A (2), A (2), ... N (2)) T9 = tdgyr ().
jeN
This proves Proposition 10.7. O

An easy consequence of Proposition 10.7:

Proposition 10.9. Let Z be a ring. Let (K, (A\"),.y) be a A-ring such that
K is a Z-algebra. Let m € N. For every i € {1,2,...,m}, let ¢; € 1+Z [[t]]"
be a power series with constant term equal to 1. For every x € K, we have

tdn o (2) = 1} tdy, 7 (2) .

i=1

Proof of Proposition 10.9. This can be proven by induction over m. The induction base
(the case m = 0) requires showing that td; r () = 1, but this follows from Proposition
10.ﬂ The induction step is a straightforward application of Proposition 10.7. Thus
Proposition 10.9 is proven. O]

10.7. td,r takes sums into products

Our next goal is to show the following general property of td, r:

Theorem 10.10. Let Z be a ring. Let (K, (\),.y) be a A-ring such that

K is a Z-algebra. Let ¢ € 14+ Z[[t]]" be a power series with constant term
equal to 1. Let x € K andy € K. Then, td, 1 (x)-tdyr (y) = tdy, 7 (x + 7).

In fact, Proposition 10.3 (applied to u = 0) yields tditor7 () = Xor (x). Now Aor (z) =
evor (Ar (z)).  Since evor is the map K|[[T]] — K/[[T]] which sends every power se-
ries to its constant term (viewed as a constant power series), we have evor (Ar(x)) =
(constant term of the power series Ay (z)) = 1. Thus, td; 7 () = tditor,r () = dor(x) =
evor ()\T (a:)) =1.
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How can we prove a theorem like this? By using Proposition 10.3, we could prove it
in the case of ¢ being a polynomial of the form 1 + ut with v € Z. Using Proposition
10.9, we could therefore also prove it in the case of ¢ being a product of finitely many
such polynomials. However, the case of ¢ being a general power series does not directly
follow from any of our above-proven propositions. Not even the case of ¢ being a general
polynomial - in fact, a general polynomial does not always factor into polynomials of
the form 1 + ut with u € Z.

However, we can prove Theorem 10.10 (and similar results) using the following two
tricks: First, we need a kind of continuity (similar to the one we used in Section 5) to
reduce the case of ¢ a power series to the case of ¢ a polynomial. Second, we need
to split every arbitrary polynomial ¢ with constant term equal to 1 into a product of
polynomials of the form 1 + wt; this will be done by an appropriate extension of the
ring Z (again, similarly to how we extended K in Section 5). However, these tricks do
not yet give us a proof of Theorem 10.10 unless we change our viewpoint to a more
general one: Rather than working in a A-ring (K , ()\")ieN), we work with power series
over an arbitrary ring. Here is what we do, precisely:

10.8. The To0d, map

Definition. Let Z be a ring. Let K be a Z-algebra. Let ¢ € 1+ Z[[t]]"
be a power series with constant term equal to 1. We define a map Todd,, :
K[[T]] = K [[T] by

To0d, (p) = Z Td,, ; (Coeff; p, Coeffs p, ..., Coeff; p) T for every p € K [[T]].
jeN

(58)

The reason why we can consider this a generalization of the ¢-Todd homomorphism
is the following:

Proposition 10.11. Let Z be a ring. Let (K, ()\")ieN) be a A-ring such

that K is a Z-algebra. Let ¢ € 1+ Z [[t]]” be a power series with constant
term equal to 1. Then, every z € K satisfies td, r (z) = Todd, (Ar (7)).

Proof of Proposition 10.11. Let x € K. Then, A (z) = Y X (z)T", so that every
ieN
k € N satisfies Coeffy (Ar (z)) = Coeffy, (Z N (z) Ti> = M\ (z) (by the definition of
ieN
Coeffy). Thus, (Coeff; (Ar (z)), Coeffy (Ar (2)), ..., Coeff; (Ar (z))) = (A (z) , A2 (z), ..., N (2))
for every j € N. Now, (applied to p = A (x)) yields

To00, (Ar ()
= 3 T, (Coelty (A (2)) Coty (v (1) Coelf, (A (2))) T
= Z Td,; (A (z), A (2),..., N () TV

(since (Coeff; (Ar (z)), Coeffs (Ar (), ..., Coeff; (Ar (2))) = (A" (z), A* (), ..., ¥ (2)))
= td%T (I’) .

113



This proves Proposition 10.11. 0

Now let us generalize our above results about td, r to results about odd,. This
will be rather easy since our proofs generalize.
Here comes the generalization of Proposition 10.3:

Proposition 10.12. Let Z be a ring. Let K be a Z-algebra. Let u € Z.
Let p € 1+ K [[T]]". Then, T0001 .y (p) = evur (p).

Proof of Proposition 10.12. The coefficient of the power series p before T° is 1 (since
p € 1+ K[[T]]"). In other words, Coeffop = 1 (since Coeffyp is defined as the
coefficient of the power series p before T°).

For every j € N, the coefficient of p before 77 is Coeff; p. Hence, p = 3 (Coeff; p) -

. jEN
T7. Thus,
eVyr P = €Vyr <Z (Coeft; p) - Tj> = Z (Coeff; p) - wT? (by the definition of ev,7)
jEN jEN
= Z u’ (Coeff; p) TV = u® (Coeffyp) T° + Z u (Coeff; p) TV
JEN =1 -1 JeN;
7>0
=17° + Z u’ (Coeff; p) T7.
JEN;
5>0
Compared with
T0001 yut (P)
= Z Tdy e ; (Coeffy p, Coeffy p, ..., Coeff,; p) TV (by (58)), applied to ¢ =1 + ut)
jEN
= Tdy 41,0 (Coeff; p, Coeffy p, ..., Coeffy p) T°
—Tdy 4 ut,0=1
(by Proposition 10.6 (a),
applied to p=1+ut)
+ Z Tdy (Coeff, p, Coeffy p, ..., Coeff; p) TV
JEN; v
§>0 =ul
(by Proposition 10.4)
= 17" + Z (ujaj) (Coeff; p, Coeffy p, ..., Coeff; p) TV
i R o
= 17° + Z u’ (Coeff; p) TV,
JEN;
3>0
this yields that ev,r p = T0001,,; (p). This proves Proposition 10.12. O

60Let us recall that ev,r denotes the map K [[T]] — K [[T]] defined by

evyT (Z aiTi’> = Z a;u'T! for every power series Z a;T' e K [[T]] (with a; € K for every ).
ieN ieN =N
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Next, the generalization of Proposition 10.5:

Proposition 10.13. Let Z be a ring. Let K be a Z-algebra. Let ¢ €
1+Z[[t]]" be a power series with constant term equal to 1. Let p € K [[T]].

(a) Then, Coeff, (Todd, (p)) = 1.

(b) Let ¢, be the coefficient of the power series ¢ € Z [[t]] before t!. Then,
Coeff; (Todd,, (p)) = ¢1 Coeffy p.

Proof of Proposition 10.15. (a) We have

Coett( (Todd,, (p))

= Coeff, (Z Td, ; (Coeffy p, Coeffy p, ..., Coeff; p) Tj> (by (53))
jeN

= Td, (C(jeffl p, Coeffy p, ..., Coeffy p) (by the definition of Coeffy)

=Td,o=1 (by Proposition 10.6 (a)).

(b) We have

Coeff; (T000,, (p))

= Coetl; (Z Td,, ; (Coett; p, Coetfy p, ..., Coeff, p) Tj> (by (G3))
€N

= Td,, (C(jeffl p, Coeffy p, ..., Coeff; p) (by the definition of Coeff;)

= Td,; (Coefty p) = ¢y Coetty p
(since Proposition 10.6 (b) yields Td,; = ¢101).

Proposition 10.13 is now proven. 0

Our next generalization is that of Proposition 10.7:

Proposition 10.14. Let Z be a ring. Let K be a Z-algebra. Let ¢ €
1+ Z[[]]" and ¢ € 1+ Z[[t]]" be two power series with constant terms
equal to 1. Let p € K [[T]]. Then, Todd,y, (p) = Todd, (p) - Toddy, (p).

Proof of Proposition 10.14. For every j € N, we will abbreviate Coeff; p by p;. Then,
(Coefty p, Coefty p, ..., Coeft; p) = (p1,p2, ..., j)-
1st Step: For every j € N, we have

J
Tdyy,; (1, P2, "'7pj) = ZTdWL (p1, P25 -5 Pi) - Tdy i (1, P2, -~-7pjfi) .
i=0
J
Proof. Let j € N. Since the polynomials Td ; (o1, a2, ..., ;) and > Td,; (a1, ag, ..., o)
i=0

Tdy j—i (a1, a9, ..., aj_;) are equal (by Proposition 10.8), their evaluations at (p1, P2, - Dj)
must also be equal. But since the evaluation of Tdy ; (o1, a2, ..., ;) at (p1,pa, ..., p;) 18

j
Tdyy,; (p1,D2, .., pj), whereas the evaluation of ) Td,; (a1, g, ..., ;) Tdy j—i (a1, g, ..., j_;)
i=0
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J
at (pl,pg, ...,pj) 1S Z Td@’i (pl,pg, ,]%) . Td¢7j_i (pl,pg, ~~;pj—i); this ylelds that the
=0

J
values Tdcpd),j (p17p27 ...,pj) and Z Td(pﬂ' (p17p27 ,pz) 'wa,j—i (pl,pg, --~;pj—i) are equal.
=0

This proves the 1st step.
2nd Step: Now let us prove Proposition 10.14.

By (applied to o1 instead of ), we have

To00,y (p) = Z Tdyy,; (Coetty p, Coeffy p, ..., Coett; p)JTj

JeN =(p1,p2->D;)
= Z TdSmpJ (p17p27 apj) Tj
JEN
But
To0d,, (p) Tod0y (p)
—— ‘ —
= ZN Tdy, ;(Coeff1 p,Coeffa p,...,Coeff ; p)T7 = ZN Tdy, j(Coeff1 p,Coeffs p,...,Coeff; p)T7
J€ Je
(by (8)) (by (58), applied to 1 instead of ¢)
= | Y Td,,; (Coeff; p, Coeffs p, ..., Coeff; p) 77 | - | Y Tdy,; (Coeff; p, Coeffy p, ..., Coeft; p) TV
JeN —(p1,P2P5) Jen =1 p2.2)
= (Z Td@y] (p17p27 7pj) Tj) ' (Z Tdd&] <p17p27 7p]) T])
jEN jEN

J )

= Z Zwa,i (p1>p2>“'7pi) 'Tdd),jfi (p17p27"'>pjfi) 7
jeN \i=0 .
=waw,j(;'zypz,~~~:ﬁj)
(by the 1st Step)
(by the definition of the product of two formal power series)
- Z Tdﬂm/’»]' (p17p27 "'7pj) T’ = (S”UDDS‘W (p) :
JEN

This proves Proposition 10.14. O

Next, Proposition 10.9 generalizes to the following result:

Proposition 10.15. Let Z be a ring. Let K be a Z-algebra. Let m € N.
For every i € {1,2,..,m}, let ¢; € 1+ Z[[t]]"” be a power series with
constant term equal to 1. Let p € K [[T]]. Then,

iooaﬁ L (0) = H%D% (p).

i=1

Proof of Proposition 10.15. This can be proven by induction over m. The induction
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base (the case m = 0) requires showing that Todd; (p) = 1, but this is easyP’} The
induction step is a straightforward application of Proposition 10.14. Thus Proposition
10.15 is proven. O

We now formulate our generalization of Theorem 10.10 - it is through this general-
ization that we are going to prove Theorem 10.10:

Theorem 10.16. Let Z be a ring. Let K be a Z-algebra. Let ¢ € 1 +
Z [[t]]" be a power series with constant term equal to 1. Let p € 1+ K [[T]]"
and ¢ € 1 + K [[T]]". Then, To0d,, (p) - Todd,, (q) = Todd,, (pq).

To prove this theorem, we first reduce it to the case when K = Z:

Lemma 10.17. Let K be a ring. Let ¢ € 1+ K [[t]]" be a power series
with constant term equal to 1. Let p € 1 + K [[T])]" and ¢ € 1+ K [[T]]".
Then, T000,, (p) - Todd, (¢) = T00d, (pq).

We will now prepare to the proof of this lemma. First, let us introduce the version
of continuity that we need.

10.9. Preparing for the proof of Lemma 10.17

The following two definitions are copies of two definitions which we made in Section
5, with the only difference that the variable that used to be T in Section 5 is called ¢
here.

Definition. Let K be a ring. Let K [t]™ be the subset of K [t] defined by

K" =tK|[t] = {Zaiti € K[t] | a; € K for all i, and ag = 0}
ieN
={pe€ K|[t] | pisa polynomial with constant term 0} .

Then, the set 1+ K [t]" is a subset of 1+ K [[t]]*. The elements of 1+ K [t]*
are polynomials.

61 Proof. Applying to ¢ = 1, we obtain

Todd (p) = Z Td, ; (Coeffy p, Coeffs p, ..., Coeff ; p) TV

jEN
= Td, o (Coeff; p, Coeffy p, ..., Coeff p) T® + Z Td; ; (Coeffy p, Coeffa p, ..., Coeff; p) TV
4 ——
N; B
=Td1,0=1 Jje>0 =Td140t,;=0" o
(by Proposition 10.6 (a), (by Proposition 10.4,

applied to ¢=1) applied to u=0)
0 ) .
=17° + % 07 a; (Coeffy p, Coefts p, ..., Coeff; p) T’

=1 JEN; =0

J>0 (since j>0)

=1+ Z 0ca; (Coeffy p, Coeffy p, ..., Coeff; p) TV = 1.

JEN;
>0

117



Definition. Let K be a ring. As a K-module, K [[t]] = [] Kt*. Now, we
keN
define the so-called (t)-topology on the ring K [[t]] as the topology generated

by
{u+t"K[{t)] | we K][[t]] and N € N}.

In other words, the open sets of this topology should be all translates of
the K-submodules YK [[t]] for N € N, as well as the unions of these
translated”)] (Note that, for each N € N, the set ¢V K [[t]] is actually an
ideal of K [[t]], and consists of all power series f € K [[t]] whose coefficients
before t° ¢!, ... t¥~1 all vanish. This ideal ¢V K [[t]] can also be described as
the N-th power of the ideal tK [[t]]; therefore, the (¢)-topology on K [[t]] is
precisely the so-called tK [[t]]-adic topology. Also note that every translate
of the submodule VK [[t]] for N € N actually has the form p + tV K [[t]]
for a polynomial p € K [t] of degree < N, and this polynomial is uniquely
determined.) It is well-known that the (¢)-topology makes K [[t]] into a
topological ring.

Now, we have:

Theorem 10.18. Let K be a ring. The (t)-topology on the ring K [[t]]
restricts to a topology on its subset 1 4+ K [[t]]7; we call this topology the
(t)-topology again. Whenever we say “open”, “continuous”, “dense”, etc.,
we are referring to this topology.

(a) The subset 1+ K [t]* is dense in 1 + K [[t]]".

(b) Let f: 1+ K [[t]]” — K [[T]] be a map such that for every n € N there
exists some N € N such that the first n coefficients of the image of a formal
power series under f depend only on the first NV coefficients of the series
itself (and not on the remaining ones). Then, f is continuous. (Here, the
topology on K [[T]] is supposed to be the (T')-topology defined in Section
5.)

(c) The topological spaces K [[t]] and 1 + K [[t]]" are Hausdorff spaces.

Proof of Theorem 10.18. The parts (a) and (c) of Theorem 10.18 are obviously ob-
tained from the parts (a) and (e) of Theorem 5.5 by renaming the variable T as t.
Hence, they follow from Theorem 5.5. Part (b) of Theorem 10.18 is also true (it is
an exercise in topology, proven in the same way as Theorem 5.5 (b)). This proves

Theorem 10.18. 0

The good thing about the topology on 1+ K [[t]]* just defined is that it makes the
map 1+ K [[t]|" — K [[T]], ¢ = To0d,, (p) continuous for every given p € K [[T7]:

Proposition 10.19. Let K be a ring. Let p € K [[T]]. Then, the map
1+ K[ — K[[T]], @ — To0d, (p)

is continuous. Here, the topology on 1+ K [[t]] is supposed to be the (t)-
topology, and the topology on K [[T]] is supposed to be the (T)-topology
defined in Section 5.

62This includes the empty union, which is @.
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Proof of Proposition 10.19. Let f denote the map
L+ K[ — K[[17], p — To0dy, (p).

Then, in order to verify Proposition 10.19, we must prove that this map f is continuous.

1st Step: Let n € N. Let ¢ € 1+ K [[t]]" and ¥ € 1+ K [[t]]" be two power series
such that the first n Coefﬁcientﬁ of ¢ are equal to the respective coefficients of .
Then, the first n coefficients of the power series Tod0,, (p) are equal to the respective
coeflicients of the power series Toddy, (p).

Proof. Let m € {0,1,...,n — 1} be arbitrary.

Since the first n coefficients of the power series ¢ are equal to the respective coef-
ficients of the power series 1), we have ¢ = ¥y modt" in the ring K [[t]]. Thus, there
exists some formal power series € K [[t]] such that ¢ — 1 = nt". Consider such an 7.

Consider the polynomial ring K [Uy, Us, ..., Uy,] and its elements X; = > I Uk
SC{1,2,..,m}; k€S
|S|=i

as in the definition of Td,, ;.
Every i € {1,2,...,m} satisfies

@ (UiT) =4 (UT) = (¢ — ) (UiT) = (nt") (UiT)

:nt"
where (nt") (U;T") means the application of the formal
power series nt" € K [[t]] to U;T, and not a product of nt"
with U;T" (whatever that could mean)
=n(UT) - (UT)" =n(UT) - UM
~——
—UrTn
and thus 7" | ¢ (U;T) — ¢ (U;T), so that ¢ (U;T) = 1 (U;T)modT" in the ring
(K [U,Us,...,Un]) [[T]]. Multiplying the congruences ¢ (U;T) = ¢ (U;T) mod T™ for
all i € {1,2,...,m}, we obtain [[ ¢ (U;T) = [[ ¥ (U;T) modT". In other words, the
=1 i=1
first n coefficients of the power series [[ ¢ (U;T) are equal to the respective coef-
i=1

ficients of the power series [[ ¢ (U;T). In other words, every k € {0,1,...,n—1}
=1

1

satisfies Coeffy, (H gp(UiT)) = Coeffy, (H Y (UiT)) Applied to k = m, this yields
i=1 i=1

Coeff,, (ﬁl o (UZ-T)) — Cocff,, ( ﬁl o (UT)

According to Theorem 10.1, the equation (51)) holds in the ring (K [Uy, Us, ..., Up]) [[T]].
Thus,

Coeft,, (Hgo (UJ)) = Coeff,, (Z Td,; (X1, Xa, ..., X;) Tj> (by (51))
i=1 JEN

= Tdym (X1, Xa, ..., Xi)

63Note that when we say “the first n coefficients” (of some power series), we mean the coefficients
before 9, ¢!, ..., L.
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The same argument, but applied to v instead of ¢, yields

Coeff,,, <H¢ (UJ)) = Tdym (X1, X, o0y X)) .
=1

Thus,

Tdym (X1, X, ..., X,) = Coeff,, (H‘P UT)

= Coeff,, (H¢ (UJ)) = Tdym (X1, Xy ooy Xon) -
=1

We will now use this to prove Tdy ,, = Tdym.

In fact, applying Theorem 4.1 (a) to Tdy,, (X1, Xs, ..., X,,) instead of P, we con-
clude that there exists one and only one polynomial Q) € K [a1, ag, ..., ayy,] such that
Tdym (X1, X2, ..., Xin) = Q (X1, Xs, ..., Xy). In particular, there exists at most one
such polynomial @ € K [y, g, ..., vy, ]. Hence,

if Q1 € Ko, e, ...,a] and Qs € K [y, a, ..., ayy| are two polynomials
such that Td, ., (X1, X, ..., X;n) = Q1 (X1, Xo, ..., X,,) and
Td%m (Xl,XQ, . Xm) = DQ (X17X27 ceey Xm) s then Ql = QQ
(59)
Let 9, € Ko, s, ..., o) be the polynomial defined by 9 = Td, . Let Qs €
K |oq, g, ..., ] be the polynomial defined by Qs = Tdy,,. We are now going to
prove that Q; = Q.
Since our two polynomials £, and £, satisfy

Ql (Xl,XQ, . Xm) = Td%m (Xl, XQ, ,Xm> (since Ql = Td%m)
and

QQ (Xl, XQ, ey Xm) = Tdi/hm (Xl, XQ, 7Xm> (since QQ = Tdd),m)
== Td«p,m (Xl,XQ, 7Xm) 5

we can conclude from that Q; = Q,. Hence, Td,,, = Q1 = Qy = Tdy .
Now,

Coeft,, (000, (p)) = Coeft,, <Z Td, ; (Coeft; p, Coefty p, ..., Coeft; p) Tj> (by (B3))
jEN
= Td,m (Coeff; p, Coeffs p, ..., Coeft,, p) .
The same argument, applied to v instead of ¢, yields
Coeft,, (T000y (p)) = Tdy,m (Coeff; p, Coefts p, ..., Coett,, p) .
Thus,

Coeft,, (Todd,, (p)) = Tdym (Coefty p, Coefty p, ..., Coeff,, p)
Td
~Tdy.m

= Tdy ., (Coetty p, Coefts p, ..., Coeft,, p) = Coeft,, (To00, (p)) .
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So we have proven that Coeff,, (2000, (p)) = Coeft,, (Todd, (p)) for every m €
{0,1,...,n — 1}. In other words, for every m € {0, 1,...,n — 1}, the m-th coefficient of
the power series T000,, (p) equals the respective coefficient of the power series 000, (p).
In other words, the first n coefficients of the power series Todd,, (p) are equal to the
respective coefficients of the power series T000, (p).

This proves the 1st Step.

2nd Step: Let n € N. Let ¢ € 1+ K[[t]]” and ¢ € 1+ K[[t]]” be two power
series such that the first n coefficient{™] of ¢ are equal to the respective coefficients of
1. Then, the first n coefficients of the power series f (¢) are equal to the respective
coefficients of the power series f (¢).

Proof. This is just an equivalent restatement of the 1st Step, since f () = Todd,, (p)
(by the definition of f) and f (¢)) = T000, (p) (by the definition of f).

3rd Step: We can rewrite the result of the 2nd Step as follows: If, for some n € N,
two power series ¢ and ¢ in 14 K [[t]]" have the same first n coefficients (i. e., the first
n coefficients of ¢ are equal to the respective coefficients of ¢), then the images f ()
and f () of these two power series under f also have the same first n coefficients. In
other words, for every n € N, the first n coefficients of the image of a formal power
series under f depend only on the first n coefficients of the series itself (and not on the
remaining ones).

Hence, for every n € N, there exists some N € N such that the first n coefficients of
the image of a formal power series under f depend only on the first N coefficients of
the series itself (and not on the remaining ones)E]. According to Theorem 10.18 (b),
this yields that f is continuous.

Since f was defined as the map

L+ K[ — K[[17], p = T000, (p),
this shows that the map
1+ K [[t]" — K [[1], p = o0, (p)

is continuous. Proposition 10.19 is thus proven. O

So much for the topology on 1+ K [[t]]*. We now discuss extensions of K that make
polynomials factor.

By renaming the polynomial p as ¢ and the variable 7" as ¢ in Theorem 5.2, we
obtain the following fact:

Theorem 10.20. Let K be a ring. For every element p € 1+ K [t]7, there
exists an integer n (the degree of the polynomial ¢), a finite-free extension
ring K, of the ring K and n elements pi, ps, ..., p, of this extension ring
K, such that ¢ = [] (1 + p;t) in K, [t].

=1

64Note that when we say “the first n coefficients” (of some power series), we mean the coefficients
before 9, t1, ..., t" L.
55Namely, we can take N = n.
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10.10. Proof of Lemma 10.17
Now, finally, to the proof of Lemma 10.17:

Proof of Lemma 10.17. Fixp € 1+ K [[T]]" and ¢ € 1+K [[T]]", but let ¢ € 1+K [[t]]"
vary.
1st Step: For every ¢ € 1+ K [t]", we have Tod0,, (p) - Tod0,, (¢) = Todd, (pq).
Proof. Assume that ¢ € 1+ K [t]". According to Theorem 10.20, there exists an
integer n (the degree of the polynomial ¢), a finite-free extension ring K, of the ring

K and n elements py, ps, ..., p, of this extension ring K, such that ¢ = [ (1 + p;t) in
i=1

K, [t]. Consider this ring K, and these n elements py, pa, ..., Pn.

Since K is a subring of K, we can canonically view the ring K [t] as a subring of
K, [t], and similarly we can view the ring K [[t]] as a subring of K, [[t]], and we can
view the ring K [[T']] as a subring of K, [[17].

Here is a trivial observation that we will tacitly use: For every r € K [[T]], the value
of the term Todd, () does not depend on whether we interpret ¢ as an element of
1+ K [t]" or as an element of 1 + K, [t], and also does not depend on whether we
interpret r as an element of K [[T] or as an element of K, [[T]]. This is because the
definition of Todd,, (r) was functorial both in Z and in K.

Let r € 1+ K [[T]]" be arbitrary. Proposition 10.15 (applied to 7, K,, K,, n and

1 + p;t instead of p, K, Z, m and ;) yields that Tod0 » (r) = ][ T00014,,. (7).
1] i=1

[T (1+pit)
Since [] (1 + pit) = ¢, this rewrites as
i=1
To00, (r) =[] Toovip(r)  =]]evr(r). (60)
1=1 i=1
:evpiT(r)

(by Proposition 10.12,
applied to Ky, K, r and p;
instead of Z, K, p and u)

Applying to r = p, we obtain Todd,, (p) = [] evy,r (p). Applying tor =g,
i=1

we obtain F000, (¢) = [] evy,r (¢). Applying to r = pg, we obtain
i=1

T000, (pg) = [[  evpr 0) =] (evpr ®) - evpr (@) = [ [ evpir ) - [ [ evpur ()
=1 \ i=1 i=1 i=1
=evp,1(p)-evp,1(q) ~ ~ ~~
(since evy, 7 is a ring =T000,(p) =T000,(q)

homomorphism)

= To00,, (p) - Tod0,, (q) -

This proves the 1st Step.

2nd Step: Let §1 : 1+ K [[t]]* — K [[T]] be the map which sends every ¢ € 1+K [[t]]*
to Todd,, (p) - Todd, (¢).

Let fy : 1+ K[[t]]T — K [[T]] be the map which sends every ¢ € 1+ K [[t]]™ to

To00,, (pq).
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These maps f; and f, are equal to each other on a dense subset of 14 K [[¢]]".

Proof. Every p € 1+ K [t]" satisfies f; (¢) = To00,, (p) - Todd,, (¢) (by the definition
of f;) and fa (¢) = Todd, (pg) (by the definition of f,). Thus, every ¢ € 1+ K [t]"
satisfies

f1 (¢) = Todd, (p) - Todd, (¢) = Tod,, (pq) (by the 1st Step)
= f2 () -

In other words, the maps f; and f, are equal to each other on the subset 1 4+ K [t]+.
Since 14 K [t]" is a dense subset of 1 + K [[t]]* (by Theorem 10.18 (a)), this yields
that the maps §; and f, are equal to each other on a dense subset of 1 + K [[t]]". This
proves the 2nd Step.

3rd Step: Consider the maps f; and f, defined in the 2nd Step.

The map 1+ K [[t]]" — K [[T]], ¢ + Todd,, (p) is continuous (by Proposition 10.19),
and the map 1 + K [[t]]” — K[[T]], ¢ + Todd,(q) is continuous (by Proposition
10.19, applied to ¢ instead of p). The pointwise product of these two maps is the map
L+ K[t = K[[T]], ¢ = Todd, (p) - Todd, (q); this is clearly the map f;. Hence,
we see that the map f; is the pointwise product of two continuous maps. Thus, the
map f; itself is continuous (because the multiplication map K [[T]] x K [[T]] — K [[T]]
is continuous, and therefore the pointwise product of two continuous maps to K [[T7]
must be continuous itself).

On the other hand, the map f, equals the map 1+ K [[t]]" — K [[T]], ¢ — Todd,, (pq),
and this map is continuous (by Proposition 10.19, applied to pq instead of p). We thus
see that the map f, is continuous.

Recall the known fact that if two continuous maps from a topological space B to a
Hausdorff topological space Q are equal to each other on a dense subset of B, then
they are equal to each other on the whole B. Applying this to the two continuous
maps f; and f, from the topological space 1 + K [[t]]* to the Hausdorff topological
space K [[T]], we conclude that the maps f; and f, are equal to each other on the whole
14+ K [[t]]" (because we know from the 2nd Step that they are equal to each other on
a dense subset of 1 + K [[t]]").

In other words, every ¢ € 1+ K [[t]]" satisfies f, () = f2(¢). Since every ¢ €
L+ K [[t]]" satisfies §; (p) = To0d,, (p) - Todd,, (q) (by the definition of ;) and f, (¢) =
To00,, (pq) (by the definition of f,), this rewrites as follows: Every ¢ € 1+ K [[t]]"
satisfies Todd,, (p) - T000, (¢) = Todd,, (pg). This proves Lemma 10.17. O

10.11. Preparing for the proof of Theorem 10.16: some trivial
functoriality facts

We will eventually derive Theorem 10.16 from Lemma 10.17. This requires a very easy
proposition and its corollary:

Proposition 10.21. Let Z and Z’' be two rings, and let p : Z — Z'
be a ring homomorphism. Let j € N. Clearly, the ring homomorphism
p 1 Z — 7' canonically induces a ring homomorphism p [, ag, ..., a4 :
Z[ay, g, ..., 0] = Z' [aq, o, ..., o] and a ring homomorphism p [[t]] : Z [[t]] —
Z'[[t]]. Tt is also clear that the latter homomorphism p [[¢]] maps the subset
1+ Z[[t]]" to the subset 1+ Z/[[t]".
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Every @ el + Z [[t“+ satisﬁes Td(p[[t]])(@),j =P [Ozl, Ao, ..., aj] (Td%j).

All that this proposition tells us is that the object Td, ; is canonical with respect
to the ring Z. You may consider this obvious (it does, indeed, become obvious if you
add to Theorem 4.1 (a) the additional assertion that the polynomial @, for fixed P, is
canonical with respect to the ring K); if you do so, then you can immediately continue
to Corollary 10.22. Here is, however, an alternative proof of Proposition 10.21 which
does not resort to this kind of handwaving;:

Proof of Proposition 10.21. Let ¢ € 1 +Z[[t]]".

Let m = j. We are going to work in the ring Z' Uy, Us, ..., Uy, = Z' Uy, Uy, ..., Uj].
Note that the ring homomorphism p : Z — Z’ canonically induces a ring homomor-
phism p [Uy, Us, ..., Uy) : Z[Uy, Uy, ..., Uy] — Z' Uy, Us, ..., Uy]. Also note that

(,0 [Oél, Ao, ..., Oéj] (wa’])) (X17X2, ,XJ> =p [Ula Ug, ceny Um] (Td%j (Xla XQ, ,XJ)) .

F9]
The ring homomorphism p [Uy,Us, ...,Uy] :+ Z[Uy,Us,...,Up| — Z' Uy, Us, ..., Uy
canonically induces a ring homomorphism p [Uy, U, ..., Up| [[T]] : Z [Ur, U, ..., U] [[T]] —

56 Proof. Let p' = p[U,Us,...,Upy]. Then, p’ is the ring homomorphism Z[Uy,Us,...,U,] —
Z' [Uy,Us,...,Uy,] canonically induced by the ring homomorphism p : Z — Z’. Hence, p’ is a
Z-algebra homomorphism (where Z’ becomes a Z-algebra by virtue of the ring homomorphism
p: Z — Z') satistying p’ (Uy) = Uy, for every k € {1,2,...,m}. Thus,

p(Xi)=p Z H U since X; = Z H Uy,
SC{1,2,....m}; k€S SC{1,2,....m}; keS
|S|=i |S|=i
= Z H o' (Uk) (since p’ is a Z-algebra homomorphism)
——
SC{1,2,....m}; keS _
_{‘S‘:i } —U,

>, Iuv=x

SC{1,2,....m}; keS
|S|=i
for every i € N. Thus, (p' (X1),p" (X2),...,0" (X;)) = (X1, X2, ..., X;).

Since p’ is a Z-algebra homomorphism and Td,; is a polynomial over Z, we have
P (Tdy; (X1, X2,..,X;)) = Tde; (0 (X1),p (X2),...,p" (Xj)) (because Z-algebra homomor-
phisms commute with polynomials over Z).

On the other hand, whenever U € Z[a1, aa, ..., o;] is a polynomial and z1, x2, ..., ; are j ele-
ments of a commutative Z’-algebra, we have (p (a1, g, ..., ;] (U)) (21, 22, ..., x;) = U (1, 2, ..., ;)
(because this is more or less how U (x1, ®2, ..., ;) is defined). Applied to U = Td,, ; and x = X,
this yields

(p [Oél, a9, ...,C%j} (Td%j)) (X1, )(27 ...7Xj) = Td%j (Xl,XQ, ...,Xj)
—_——
=(p' (X1),p" (X2),..,p" (X))
= Td@,j (pl (Xl) 7p/ (X2) ) "'7p/ (XJ))
= / Td 1 X,X,...,X‘
p ( w,y( 1,42 i)
:p[U17U2="‘aUm]

= ,O[U1,U2, ceny Um] (Td<‘9’j (Xl,XQ, ...,Xj)),

qed.
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Z' Uy, Us, ...,Up] [[T]] which is continuous with respect to the (T')-topology. By defini-
tion of this ring homomorphism, the diagram

Coeft ;

Z Uy, Us, ... U] [T]] Z Uy, Us, ..., U]

7/ Uy, Us, .., Up] [[T]] —— 7/ (U, Us, ..., Up]
commutes. Hence,
pUr, Us, ..., Upy] (Coeffj (ng(UJ))) = Coeff, (p (U1, Us, ..., Un] [[T]] (ng(UJ))) .

Also,

~——

=Todd(, ;) 5,151

=Todd(y,;),5,(m]
(since j=m)

(by (52))), so that

Td(p’j (Xl,XQ, ceny Xj) = TOdd((p’j)’j?[m] (Xla XQ, 7X]) = Coeffj (Hgﬁ (UZT))

=1

1% [Ul, UQ, ceey Um] (Td%]‘ (Xl,XQ, ceny XJ)) =p [Ul, UQ, ceny Um] <C0effj (ﬁg@ (UZT)>
= Coeff; <,0 (U1, Us, ..., U] [[T] (H‘P(UzT))>

The map p [Uy, Us, ..., Uy ] [[T]] is a Z-algebra homomorphism continuous with respect
to the (T')-topology. Hence, it commutes with power series over Z. Thus, for every
i€ {l,2,...,m}, we have

p (UL, U,y oo, U] [[T]] (@ (UiT)) = 0 (p [Us, Ua, .., Un] [[T]] (UIT)) .

Since p Uy, Us, ..., U] [[T)] (U;T) = U;T (because the map p[Uy, Us, ..., U] [[T]] is a
ring homomorphism which (by its definition) maps U; to U; and T to T'), this simplifies
to

p UL, U, oo, U] [[T]] (@ (UiT)) = 0 (UT) = ((p[[t]]) () (UIT) -

Now,

p U, Uz, .., Un] [[T]] <H P (Uﬁ)) = Lo, Us, ... Un] ITT] (0 (UIT))
' = = (D) (W)
(since p[Uy, Uy, ...,Up] [[T]] is a ring homomorphism)
= H ((p [[2]]) (@) (UT)

=1
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so that becomes

=1

p UL U, ..., Up] (Tdy j (X1, X, ..., X)) = Coeff; (H((P [[]]) () (UiT>> -

Compared with

Tdaye)s (X1, Xa, .y X5) = Todd (o)) ()5 m) (X1, X2, -0, X)
————

=Todd(p((1]])(¢).).414]

=Todd((o[1t]]) (#),7),5,Im]
(since j=m)

= Coel; (H ((p [[t]]) () (UiT)>

i=1

(by (2. applied to ( (1]} (¢) instead of ),
this yields
P [Ul, UQ, ceny Um] (Td@’j (Xl, XQ, ceny X])) = Td(p[[t]])(cp),j (Xl, Xg, ceey XJ) . (62)

Applying Theorem 4.1 (a) to K = Z', m = j and P = Td,u))(p).; (X1, X2, ..., Xj),
we conclude that there exists one and only one polynomial () € Z/ [ozl, Qg, ..., ;] such
that Td ) p); (X1, X2, .. Xj) = Q (X1, Xs,...,X;). In particular, there exists at
most one such polynomial Q) € Z' [, ag, ..., a;]. Hence,

if Q) € Z' [0, 9, ..., 5] and Qo € Z' [y, Qg ..., 0] are two polynomials
such that Td (o[l (¢ (Xl, XQ, ...,Xj) = Ql (Xl,Xg, ...,Xj) and
Td, (LIt (). (Xl,Xg, e Xj) =0y (X1, Xo, ..., Xj) , then Q; = 9y )
63
Let Q € Z'[ay, a9, ..., ] be the polynomial defined by Q1 = Td)p),;- Let
Qy € Z'[a1, ag, ..., o] be the polynomial defined by Qs = play, as, .. aj} (wa) We
are now going to prove that 9Q; = Q.
Since our two polynomials £Q; and £, satisfy

Ql (Xl, XQ, ceey Xj) = Td(p[[t]])(cp),j (Xl, XQ, ceey Xj) (since Ql Td RIGING )
and

Qs (X1, Xo, ..., Xj) = (plag, a2, ..., 0] (Tdy ;) (X1, Xa, ..., Xj)
(since Qy = plag, ag, ..., o] (Tdy;))
=p[U1,Us, ..., Up) (Tdy; (X1, Xo, ..., X))
= Tde).s (X1, Xa, - X5) (by (©2)),

we can conclude from that 9Q; = Q,. Hence,
Td ) = Q1 = Qo = ploan, ag, ..., o] (Tdy ;) -

This proves Proposition 10.21. O
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Corollary 10.22. Let Z and Z’ be two rings, and let p : Z — Z' be a ring
homomorphism. Clearly, the ring homomorphism p : Z — Z’ canonically
induces a ring homomorphism p [[t]] : Z[[t]] — Z'[[t]]. It is also clear that
the latter homomorphism p [[t]] maps the subset 1 + Z [[t]]" to the subset
L+ 7' [[t]".

Let K be a Z'-algebra. Then, K also becomes a Z-algebra by virtue of the
ring homomorphism p. Let ¢ € 1+ Z [[t]]" be a power series with constant
term equal to 1.

Let p € K [[T]]. Then, Todd,, (p) = Tod0 (1)) (P)-

Proof of Corollary 10.22. Clearly, the ring homomorphism p : Z — Z’ canonically
induces a ring homomorphism p [ay, @, ..., o] : Z [, ag, ..., 5] = Z' [aq, 0, ..., 0y

Let j € N. Since K is a Z-algebra by virtue of the ring homomorphism p, the value
of Td, j (Coett; p, Coefty p, ..., Coeft; p) is actually defined as

(ploa, ag, ..., a5] (Tdy, ;) (Coefty p, Coefty p, ..., Coeft; p)
(since Td, ; itself is a polynomial over Z rather than over Z’). Thus,

Td, ; (Coeft; p, Coeffs p, ..., Coef; p) = (plaa, o, ..., a;] (Tdy ;) (Coefty p, Coeffs p, ..., Coeff; p)

-~

=Tdeee).s
(by Proposition 10.21)

= Tda)(¢),; (Coefly p, Coeffy p, ..., Coeft; p) .

Now, forget that we fixed j. By , we have

To0d, (p) = Y Td,; (Coefty p, Coeffs p, ..., Coeff; p) T

jEN

Ty 1) (.4 (Coeff1 p.Coeff p.... Coel p)
= Tdy) () (Coefts p, Coeff p, ..., Coeff; p) T7.

jeN

On the other hand, (applied to Z’ and (p[[t]]) (¢) instead of Z and ¢) yields

000 (,(1))( Z Td ) (0).5 ; (Coeft; p, Coeffs p, ..., Coeft; P) T7.
JEN
Thus,
Tod0,, Z Td 1)), (Coefly p, Coeffy p, ..., Coeft; p) TV
JEN
= To00 () () (P)
This proves Corollary 10.22. O
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10.12. Proof of Theorems 10.16 and 10.10

Proof of Theorem 10.16. Since K is a Z-algebra, there is a canonical ring homomor-
phism p : Z — K. This homomorphism induces a canonical ring homomorphism
pllt]] : Z[[t]] — K[[t]], which maps the subset 1 4+ Z[[t]]" to 1 + K [[t]]". Thus,
(p[[t]) (¢) € 1+ K [[t]]" (since p € 1+ Z[[t]]").

Corollary 10.22 yields T0dd,, (p) = Tod0( (1)) (). Corollary 10.22 (applied to ¢
instead of p) yields Todd,, (¢) = Tod0( (1) (e) ( ). Corollary 10.22 (applied to pq instead
of p) yields Todd, (pg) = To00 () (e) (Pg). Lemma 10.17 (applied to (p[[t]) (¢) instead
of ) yields To00 (i) (1) - T00V(, )y () (4) = TOVO(a) () (Pa). Now,

Fo0d, (p) - Todd, (q) = To0d)p) (P) TVt (7) = TO (i () (PT) = F00D, (p) -

=T000(y[))) () (P) =T ((11]]) () (@)

Theorem 10.16 is thus proven. O]
Proof of Theorem 10.10. Theorem 2.1 (a) yields Ay (x) - Ar (y) = Ar(z+y) (since
(K, (X\"),cy) is a A-ring). Proposition 10.11 yields td,r (z) = To0d, (Ar (z)). Proposi-
tion 10.11 (applied to y instead of z) yields td, r (y) = Todd, (Ar ( )). Hence,

tde,T (ff) : tdgo,T (y) - ‘IODDw (/\T (l’)) ' TODDSO ()‘T (y)) = T000¢ ()‘T (:)3) ' )\T (y))
——— ——
=To00,, (A (z)) =T0d0, (A7 (y))

(by Theorem 10.16, applied to p = A (z) and ¢ = A (y)) .

Proposition 10.11 (applied to x + y instead of x) yields

tder (z+y) = Todd, | Ar(x+y) | =T0dd, (A (z) - Ar (v)).
———
=Ar(z)-Ar(y)
Thus,
tdy,r (2) - tdpr (y) = Todd, (Ar (2) - Ar (y)) = tdpr (z 4+ y) -
Theorem 10.10 is thus proven. ]

10.13. td,r is a homomorphism of additive groups

A slightly improved restatement of Theorem 10.10:

Corollary 10.23. Let Z be a ring. Let (K, (A\),.y) be a A-ring such that
K is a Z-algebra. Let ¢ € 1+ Z[[t]]" be a power series with constant
term equal to 1. Then, td,r (K) € A(K), and tdyr : K — A(K) is a
homomorphism of additive groups.

Proof of Corollary 10.23. Every x € K satisfies td,r (z) € A(K) (since Proposi-
tion 10.5 (a) says that Coeffy (td, 7 (z)) = 1, so that the power series td, s (z) has
the constant term 1, and thus td,r (v) € 1+ K[[T]]" = A(K)). In other words,
td,r (K) C A(K).
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Now we are going to prove that td,r : K — A (K) is a homomorphism of additive
groups.

Theorem 10.10 (applied to = 0 and y = 0) yields td, 7 (0)-td, 7 (0) = td, 7 (04 0) =
td, 7 (0). Since td, 7 (0) is an invertible element of K [[T]] (because td, 1 (0) is a power
series with constant term 1 [/ and every such power series is an invertible element
of K [[T]]), we can cancel td, s (0) from this equation, and obtain td, r (0) = 1. Since
0 is the neutral element of the additive group K, while 1 is the neutral element of the
additive group A (K), this yields that the map td, 1 respects the neutral elements of
the additive groups K and A (K).

Any z € K and y € K satisfy

tder (2 +y) = tdyr (2) - tder (y) (by Theorem 10.10)
B ~ since multiplication of power series
= tor (@) tdor (y) ( in 1+ K [[T]]" is addition in the ring A (K) >

Combined with the fact that the map td, r respects the neutral elements of the additive
groups K and A (K), this yields: The map td,r : K — A (K) is a homomorphism of
additive groups. Corollary 10.23 is proven. O]

10.14. td,r of a 1-dimensional element

Next on our plan is to compute td, s (z) for x any 1-dimensional element of K. We
recall that we defined the notion of a 1-dimensional element of a A-ring in Section 8.
Our main claim here is:

Proposition 10.24. Let Z be aring. Let (K, (Ai)ieN) be a A-ring such that

K is a Z-algebra. Let u be a 1-dimensional element of K. Let ¢ € 1+Z [[t]]”
be a power series with constant term equal to 1. Then, td, 7 (u) = ¢ (uT).

For the proof of this, we again have to study the universal polynomials Td,, ;:

Proposition 10.25. Let Z be a ring. Let ¢ € 1+Z [[t]]" be a power series
with constant term equal to 1. Let j € N. Let ¢, denote the coefficient of
the power series ¢ € 1+ Z[[t]]" before t/. Then, in the polynomial ring
Z15], we have Td,; (S,0,0,...,0) = ;S7. (Here, when j = 0, the term
Td,; (S,0,0,...,0) is understood to denote Td,, ;.)

And again, we can generalize Proposition 10.24 (and in fact, we are going to prove
Proposition 10.24 via this generalization):

Proposition 10.26. Let Z be a ring. Let ¢ € 1+Z[[t]]" be a power series
with constant term equal to 1. Let K be a Z-algebra. Let u € K. Then,
To00, (1 +uT) = ¢ (uT).

Proof of Proposition 10.25. Let m = 1. Consider the ring Z [Uy, Us, ..., U] and its

elements X; = > [1 Uk as in the definition of Td,, ;.
SC{1,2,...,m}; keS
|S]=i

7since tdy, 1 (0) € tdyr (K) C A(K) =1+ K [[T]]*
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Since m = 1, we have Z [Uy, Uy, ...,U,,] = Z[U,], and in this ring Z [Uy, Us, ..., Uy,
we have X; = U; (because X is the 1-st elementary symmetric polynomial of the one
variable Uy).

For every integer i > 1, we have

X; = Z H Uy = Z H Uk (since m = 1, so that {1,2,...,m} = {1})

SC{1,2,....,m}; k€S SC{1}; keS
|S|=i |S|=i
= (empty sum) (since there doesn’t exist any S C {1} with |S| =i (because i > 1))
=0

in the ring Z [U;, Uy, ..., Uy,]. Thus, (X2, X3, ..., X;) = (0,0, ...,0). Combining this with
X1 = Ul, we obtain (Xl,XQ, ...,Xj) = (Ul,0,0, ,O)
We know from Theorem 10.1 that holds in the ring (Z [Uy, Us, ..., Uy)) [T]]- In

other words,
m

[[e W)= Tdy (X1, Xao. X) T'

i=1 ieN

(this follows from li upon renaming the index j as 7). Since [[ ¢ (U;,T) = ¢ (U,T)
i=1

(because m = 1), this rewrites as

P (hT) = Tdy; (X1, Xa, .., X;) T".
€N

Thus,

Coeff; (¢ (U, T)) = Coeft; (Z Td,; (X1, Xa, ..., X) Ti> = Tdy; (X1, X5, ..., X;)

ieN P
=Td,; (U1,0,0,...,0).

Compared with

Coeft; (¢ (U1 T)) = (the coefficient of the power series ¢ (UT') before T7)

= U/ (the coefficient of the power series ¢ before ¢/) = Ulp; = o,;U],

J/

-~

=p;
this yields '
Td«p,j (Ul, O, 0, ceey 0) = ()OjUf

Now, let x be the Z-algebra homomorphism Z[S] — Z[U;] which maps S to Uj.
This homomorphism x must be an isomorphism (since U; is obviously algebraically in-
dependent). Since k is a Z-algebra homomorphism and Td, ; is a polynomial, we have
k (Tdy,,; (S,0,0,...,0)) = Tdy,; (k£ (S),x(0),x(0),...,£(0)) (because Z-algebra homo-
morphisms commute with polynomials). But (s (5),(0),x(0),...,x(0)) = (Uy,0,0,...,0)
(since k (S) = Uy and x (0) = 0). Thus,

k£ (Tdy; (5,0,0,...,0) = Tdy (5 (S) £ (0),5(0) ... 5 (0)) = T (U1,0,0, ..., 0) = ;U]

—(U1,0.0,....0)
= ;1 (S) (since Uy = Kk (9))
= £ (;57) (since k is a Z-algebra homomorphism) .

130



Thus, Td,; (S,0,0,...,0) = ¢;S7 (since & is an isomorphism). This proves Proposition
10.25. ]

Proof of Proposition 10.26. For every j € N, let ¢; denote the coefficient of the power
series o € 1+ Z [[t]]" before #7. Let p = 1+ uT. Then, Coeff; p = u (by the definition
of Coeff;) and Coeff; p = 0 for every integer i > 1.

Let j € N be arbitrary. Proposition 10.25 yields Td,; (S,0,0,...,0) = ;57 in
the polynomial ring Z[S]. Applying this polynomial identity to S = u, we obtain
Td,; (u,0,0,...,0) = ;ul.

On the other hand, (Coeffy p, Coefts p, ..., Coeff; p) = (0,0, ...,0) (since Coeff;p =0
for every integer ¢ > 1). Combining this with Coeff; p = u, we obtain

(Coetty p, Coefts p, ..., Coeft; p) = (u,0,0,...,0).
Thus,

Td,,; (Coeff; p, Coeffs p, ..., Coeff; p) = Td,; (u,0,0,...,0) = p;u’.

. J/
-~

=(,0,0,...,0)

Now forget that we fixed j € N. By , we have

Todd, (p) = szdw» (Coeft; p, Coeffs p, ..., Coeff; pZTj = Z 0; WTI = Z ©j (uT) .

jeN jEN =(uT)j jeN

On the other hand, ¢ = >~ ¢;t’ (since the coefficient of the power series ¢ before ¢/ is
jEN
@; for every j € N) and thus ¢ (uT) = > ¢, (uT').
jeN
Altogether, To0d, (p) = > ¢; (uT) = ¢ (uT). Since 14+uT" = p, we have Todd, (1 +uT') =
jeN

+
To00,, (p) = ¢ (uT). This proves Proposition 10.26. O

Proof of Proposition 10.24. Proposition 10.11 (applied to z = u) yields td, 7 (u)
To00, (Ar (u)). But Theorem 8.3 (a) (applied to z = u) yields that Ay (u) = 1

+

uT' (since the element w is 1-dimensional). Thus, td,r (u) = Todd, | Ar(u) | =
=14uT
T000, (1 +uT) = ¢ (uT') (by Proposition 10.26). This proves Proposition 10.24. [

As a consequence of Proposition 10.24, we can obtain the following formula for td, 1
on sums of 1-dimensional elements:

Theorem 10.27. Let Z be a ring. Let ¢ € 1+ Z[[t]]" be a power series
with constant term equal to 1. Let (K, (A\),.) be a A-ring such that K is

a Z-algebra. Let uq, us, ..., u,, be 1-dimensional elements of K. Then,
tdpr (u +uz + oo+ um) = [ [ (w).
i=1
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Proof of Theorem 10.27. By Corollary 10.23, we know that td,r : K — A(K) is a
homomorphism of additive groups. Hence,

m “m m
td, 7 (Z u) = tdpr (w) = [ [ tdpr (w)
i=1 i=1 i=1
since the addition in the ring A (K) is the multiplication of power series,
m m
so that > =[]
=1 =1

B ﬁ (u,T) because every i € {1,2,...,m} satisfies td, 7 (u;) = ¢ (w;T)
N = LA (by Proposition 10.24, applied to u = u;) '

Since Y u; = uy +Ug+ ...+ Up,, this rewrites as tdy, 7 (w1 + ug + ... + up) = [ ¢ (wT).
i=1 i=1

Theorem 10.27 is thus proven. O

s

10.15. td, r for special \-rings

Theorem 10.27 gives us a shortcut to working with td, r in the case when (K , (A9 ieN)
is a special A-ring: In fact, in this case, we can often prove a property of an arbitrary
element of a special A-ring just by proving it for sums of 1-dimensional elements (be-
cause of Theorem 8.4), and Theorem 10.27 gives us an explicit formula for the value
of td,r at every sum of 1-dimensional elements. The next theorem (Theorem 10.28)
will give an example of this. First, a definition.

Definition. Let j € N\ {0}. Let (K, (\),.y) be a A-ring. Define a
homomorphism 67, : K — A (K) of additive groups by 07 = td,, 7, where

: 11—t
©; € Z[t] is the polynomial 1 4+ ¢+ t* + ... + /71 = —
[Again, [Fullan85] considers only 67 := #7, which again is defined on z only if =

is finite-dimensional. These ¢’ (or 67 (x) ?) are called Bott’s cannibalistic classes, for
whatever reason.]

Theorem 10.28. Let (K, (\),.y) be a special A-ring. Let z € K. Let
j € N\ {0}. Let fr; : K[[T]] - K[[T]] be the map which sends every

power series Y a;T" (with a; € K for every i € N) to the power series
ieN

5 . Then, fy (6 [71) Or (1)) =t () = Ao ()6 (0

1€

(where 97 [[T]] means the homomorphism K [[T]] — K [[T]] defined by

(7 [[T]]) (2 aiTi) = Y47 (a;) T" for every power series > a;T" € K [[T1]]).

ieN ieN ieN
Proof of Theorem 10.28. 1st Step: The equality tdy_y 7 (2) = A\_r (x) 6}, () holds for
every z € K (no matter whether the A-ring (K, (A\),) is special or not).
. 1—t
Proof. Let ¢, € Z[t] be the polynomial 1 +t+¢*+ ...+ ¢! = 1—]; According to

the definition of 67, we have 6}, = tdy, 7

132



Let x € K. Applying Proposition 10.7 to Z = Z, ¢ = 1 —t and 9 = ¢;, we obtain
tdeyr () = tdyr () tdy r (7). Since

11—t
because p =1 —t and ¥ = ¢; = T
tdtpw,T (ZE) = tdl_tjj“ (ZL’) 1 — tj B ' s
so that ¢ = (1 — 1) - T3 =1-#
tdyr () = tdiy (1 () (since p=1—t=14(=1)1)
= A-nr (z) (by Proposition 10.3, applied to Z = Z and u = —1)
= A7 ()
and
tdyr (z) = tdy, 7 (2) (since ¥ = ;)
~——
=03,
=07 (2),

this rewrites as tdy_y 7 () = A_p (2) 9{} (). This proves the 1st Step.

2nd Step: A remark about the map fr;: This map sends every power series P €
K [[T]] to the power series P (T7). It is easy to see that this map fr; is a K-algebra
homomorphism continuous with respect to the (T')-topology. It satisfies fr; (T') = 17
(obviously) and can be shown to be the only continuous (with respect to the (7')-
topology) K-algebra homomorphism K [[T]] — K [[T]] which sends T to T7.

3rd Step: The equality fr; ((¢7 [[T]]) (A-r (z))) = tdi_4 7 (z) holds for every spe-
cial Aring (K, (X),.y) and every z € K such that z is the sum of finitely many
1-dimensional elements of K.

Proof. Let o =1 — .

Let z € K be such that x is the sum of finitely many 1-dimensional elements of K.

In other words, x = u; + us + ... + u,, for some 1-dimensional elements uq, us, ..., Un,
of K. Consider these elements uy, us, ..., U,,. Then,
tdyr (2) = tdpr (U +ug + ... +up,) = H ¢ (w;T) (by Theorem 10.27)
=1 \ﬁf—/
=1—(u;T)’

(since p=1—t7)

— H 1—(wTY | =] (1 -1,
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On the other hand, x = uy + ug + ... + uy, = > uy, S0 that
i=1

= Ar <Z ul) = Z)\T (u;) (since Ar is a ring homomorphism)

i=1
since the addition in the ring A (K) is the

:H)\T(ui) e . o i

multiplication of power series, and thus > = []

=1
=1 =1
m because every i € {1,2,...,m} satisfies A\ (u;) = 1 + w;T
= H (1+w;T) (by Theorem 8.3 (a) (applied to u; instead of z),
i=1 since u; is 1-dimensional)
Now,
Ar(z)=ev_rp Ar () =ev_yp (H +u, T )
i=1
= ev_r (14 u;T) (since ev_r is a ring homomorphism)
=1 =1-u;T

Thus,

(6 IT1)) Oror () = (49 [7]) (H (- uz-T>> 11| @) wr)
= =¢;(;i)T
(by the definition of 47 [[T]])

(since ¢/ [T]] is a ring homomorphism)

ﬁ 1—W u;)T),
=1

so that
fiy (4 [T])) O (2))) = Ty (H (197 () ) ~I1 | 1- o () iy ()

=T7
(since fr; is a K-algebra homomorphism)

0w )T

=1
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Now, for every i € {1,2,...,m}, we can apply Theorem 9.4 to 1 and u; instead of m
and wu;, and obtain ¥’ (u;) = u}. Hence,

f (T Oor @) = [ | 1= ) 77 ) = L1 =00 T”) = tdoir (@) =t (@)

0
=u;

(since ¢ =1 — t7). This proves the 3rd Step.

4th Step: The equality fr; ((¢7 [[T]]) (A—r ())) = tdi_4i 7 (z) holds for every special
A-ring (K, (A),cy) and every z € K.

Proof. We want to derive this from the 3rd Step by applying Theorem 8.4.

Fix some k£ € N.

Define a 1-operation m of special A-rings by MUK () o) = Coeffy, o frj o (¢ [[T]])oA_r

for every special A-ring (K , ()\i)ieN). (This is indeed a l-operation, since shows
that 17 is a polynomial in A', \?, ..., M with integer coefficients.)

Define a 1-operation m’ of special A-rings by m’( K. = Coeff;, otd;_4 1 for every
’ €N

A-ring (K, ()\i)ieN). (This is, again, a 1-operation, since |D shows that Coeff; otd; 4+ =
Tdy_y i (AL, X%, .., AF) is a polynomial in A', A2, ..., A* with integer coefficients.)

These two 1-operations m and m' satisfy both conditions of Theorem 8.4: The
continuity assumption holds (since the operations m and m' are obtained by taking
polynomials (with integer coefficients) and compositions of finitely many of the Al
A2, A3, ..., so that the maps m(A(K)’(Xi)ieN> and m,(A(K),(Xi)ieN) are obtained by taking

polynomials (with integer coefficients) and compositions of finitely many of the Xl, X2,
A3, ..., and therefore continuous because of Theorem 5.5 (d)), and the split equality
assumption holds (since it states that for every special A-ring (K , ()\i)ieN) and every
x € K such that x is the sum of finitely many 1-dimensional elements of K, we have
MK (M) ) () = m/(Kv()‘i)ieN> (x); but this simply means that Coeffy, (fr; (47 [T]]) (A_7 (2)))) =

Coeff), (tdl_tjﬂ“ (.Z‘)), which was proven in the 3rd step). Hence, by Theorem 8.4, we
have m = m’. Hence, for every special A-ring (K, ()\i)ieN) and every x € K, we have
M0 0) () = M (@) Sincemye 3 () = Coey (8 (4 [71) o (2)))
(by the definition of m(KW)ieN)) and m,(KV(Ai)iEN) (z) = Coeffy, (td;_ 7 (2)) (by the def-
inition of m’(

K, (/\i)ieN))7 this rewrites as follows: For every special A-ring (K, (A),.y)

and every z € K, we have Coeff, (fr; (¢7 [T]]) (A_r (2)))) = Coeffy, (td;_p 7 (2)).
Now fix some special A-ring (K , (/\i)z.eN) and some z € K, and forget that we fixed
k. We have just proven that Coeffy, (fr; (¢7 [[T]]) (A—z (2)))) = Coefly (td;_u 7 (2))
for every k € N. In other words, we have just proven that each coefficient of the power
series fr; (47 [[T]]) (A_7 (x))) equals to the corresponding coefficient of the power series
td; s 7 (z). Thus, fr; ((¢7 [[T]]) (A-7 (2))) = tdy_s 7 (x). This proves the 4th Step.
5th Step: Theorem 10.28 now follows by combining the 1st Step and the 4th Step. [
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10.16. A somewhat more general context for Todd
homomorphisms

Having proven Theorem 10.28, we are done proving all important properties of the -
Todd homomorphisms. One thing that I still want to do is to give a (not particularly
unexpected, and apparently not particularly useful) generalization of our notion of ¢-
Todd homomorphisms to the case when the power series ¢ does not lie in 1 + Z [[¢]]"
but, instead, lies in 1 + Z'[[t]]" for Z’ being a Z-algebra. In this case, it turns out,
not much will change - but, of course, td, r will no longer be a map K — K [[T] but
instead will be a map K — (K ®z Z') [[T]]. Here is the precise definition:

Definition. Let Z be a ring. Let (K, (Ai)ieN) be a A-ring such that K is a
Z-algebra. Let Z/ be a Z-algebra. Let ¢ € 1+Z/[[t]]" be a power series with
constant term equal to 1. We define a map td,rz : K — (K ®z Z') [T]
by

tdy 1z (x) = Zwa’ N (@) 1L, (@)L, ,N(@)e1)T/ for every x € K.
jeN

(64)
Let me explain what I mean by Td,; (A (z) ® 1, () ® 1,.., M () ® 1)
here: The tensor product K ®z Z’ is both a K-algebra and a Z’-algebra
(since the tensor product of two commutative Z-algebras is an algebra over
each of its tensorands). Since it is a Z’-algebra, we can apply the poly-
nomial Td,; € Z' [y, as, ..., ;] to the elements \' (z) ® 1, A (z) ® 1, ...,
N () @ 1 of K ®z Z'; the result of this application is what we denote by
Td,; M (2) @1, A2 () ®@1,..,N (z) @ 1).
We call td,, 7,z the (¢, Z')-Todd homomorphism of the A-ring (K, (A),y)-

Note that, in the particular case when Z' = Z, the map td, 7,z is identical with the
map td, 7 if we make the canonical identification of K with K ®z Z.

All results about maps of the form td,r that we have formulated possess analoga
pertaining to td, rz. Proving these analoga is usually as simple as repeating the
proofs of the original results and replacing some of the Z’s by Z"’s, some of the K’s by
(K ®z Z')’s, and some of the A" (z)’s by ' (z) ® 1’s. However, it is yet easier to prove
these analoga by deriving them from the corresponding properties of the maps To00,,.
What makes this possible is the following generalization of Proposition 10.11:

Proposition 10.29. Let Z be a ring. Let (K, (\),.y) be a A-ring such
that K is a Z-algebra. Let Z’ be a Z-algebra. Let ¢ € 14+ Z'[[t]]” be a
power series with constant term equal to 1. Let ¢ : K — K ®gz Z’ be the
canonical map (mapping every £ € K to £ ® 1 € K ®z Z'). Then, every
r € K satisfies tdy, 1z (2) = Todd,, (¢ [[T]] (Ar (2))).

The proof of this is very similar to that of Proposition 10.11, and is part of Exercise
10.2.

Let us formulate the analoga of our above-proven results about td, 7. The proofs of
all these analoga will be done in Exercise 10.2.

Here is the analogue of Proposition 10.3:
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Proposition 10.30. Let Z be aring. Let (K, (\"),_y) be a A-ring such that
K is a Z-algebra. Let Z' be a Z-algebra. Let u € Z'. For every x € K, we
have tdi 1wz () = Aagwr (), Where Aqgyyr () means evigyr (Ar (2)).

Similarly, here is the analogue of Proposition 10.5:

Proposition 10.31. Let Z be a ring. Let (K, (\),.y) be a A-ring such
that K is a Z-algebra. Let Z’ be a Z-algebra. Let ¢ € 14 Z'[[t]]" be a
power series with constant term equal to 1.

(a) Then, Coefty (td, 7.2 (z)) = 1 for every = € K.

(b) Let ¢ be the coefficient of the power series ¢ € Z' [[t]] before t!. Then,
Coefly (tdyrz () = @1 (x ® 1) for every z € K.

The analogue of Proposition 10.7:

Proposition 10.32. Let Z be a ring. Let (K, (\),.y) be a A-ring such
that K is a Z-algebra. Let Z’ be a Z-algebra. Let ¢ € 1+ Z/[[t]]" and
¢ € 1+ Z'[[t]]" be two power series with constant terms equal to 1. For
every r € K, we have tdw/,,T’z/ (x) = td%T’Z/ (l’) tdw,T,Z’ (.%)

Next, the analogue of Proposition 10.9:

Proposition 10.33. Let Z be a ring. Let (K, (\),.y) be a A-ring such
that K is a Z-algebra. Let Z’ be a Z-algebra. Let m € N. For every
i€ {1,2,...,m}, let v; € 14+ Z'[[t]]" be a power series with constant term
equal to 1. For every x € K, we have

tdﬁl oz B = th%T’Z, ().

Next, the analogue of Theorem 10.10:

Theorem 10.34. Let Z be a ring. Let (K, (\),.y) be a A-ring such that

K is a Z-algebra. Let Z' be a Z-algebra. Let o € 1+ Z/[[t]]" be a power
series with constant term equal to 1. Let + € K and y € K. Then,

td%TZ/ (ZE) . tdtp,T,Z’ (y) = td%Tz/ (ZL‘ + y)
The analogue of Corollary 10.23 is what one would expect it to be:

Corollary 10.35. Let Z be a ring. Let (K, (X'),.y) be a A-ring such that
K is a Z-algebra. Let Z' be a Z-algebra. Let o € 1+ Z/[[t]]" be a power
series with constant term equal to 1. Then, td, 72z (K) C A(K ®z Z'),
and td,rz : K — A (K ®z Z') is a homomorphism of additive groups.

We can also generalize Proposition 10.24:
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Proposition 10.36. Let Z be a ring. Let (K, (\),.y) be a A-ring such
that K is a Z-algebra. Let u be a 1-dimensional element of K. Let Z' be a
Z-algebra. Let ¢ € 1+ Z/[[t]]" be a power series with constant term equal
to 1. Then, tdy,rz (u) = ¢ ((u®1)T), where u ® 1 denotes the element
u®1of K®yZ.

Finally, the analogue to Theorem 10.27:

Theorem 10.37. Let Z be a ring. Let Z' be a Z-algebra. Let ¢ €
1+Z' [[t]]" be a power series with constant term equal to 1. Let (K, (X%),.y)
be a A-ring such that K is a Z-algebra. Let uy, us, ..., u,, be 1-dimensional
elements of K. Then,

tderz (U1 +ug + ...+ Up) = H p((u;@1)T).

10.17. Exercises

Ezercise 10.2. Prove Proposition 10.29, Proposition 10.30, Proposi-
tion 10.31, Proposition 10.32, Proposition 10.33, Theorem 10.34, Corollary
10.35, Proposition 10.36 and Theorem 10.37.

]

Appendix X. Positive structure on A-rings

’WARNING: The following appendix is incomplete. ‘
Almost all A-rings in Fulton/Lang [FulLan85] and many A-rings in nature carry an
additional structure called a positive structure:

Definition. 1) Let (K, (\),.y) be a A-ring. Let ¢ : K — Z be a surjec-
tivd"™| ring homomorphism. Let E be a subset of K such that E is closed
under addition and multiplication and contains the subset Z* of K (that
is, the image of ZT under the canonical ring homomorphism Z* — K).
Also assume that K = E — E (that is, every element of K can be written
as difference of two elements of E). Furthermore, assume that every e € E
satisfies

e(e) > 0; No(e)=0 for any i > ¢ (e), and that A*® (e) is a unit in the ring K.

Besides, we assume that for every invertible element v € E, the inverse of
u must lie in E as well.

68T am quoting this from [FulLan85]. Personally, I have never have met a non-surjective ring homo-
morphism to Z in my life.
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Then, (g, E) is called a positive structure on the A-ring. The homomorphism
e : K — Z is called an augmentation for the A-ring (K, (\’),oy) with its
positive structure (e, E). The elements of the set E are called the positive
elements of the A-ring (K, (\),.y) with its positive structure (g, E).

[Some assumptions may still be missing here. For example, we might want
to require that \' (E) C E.] [#2]

2) Let (K, (A\),cy) be a A-ring with a positive structure (e, E). The subset
{u€e E | e(u) =1} of E is usually denoted as L. The elements of L are
called the line elements of the A-ring (K, ()\i)ieN) with its positive structure
(e, E).
Theorem X.1. Let (K, ()\i)ieN) be a A-ring with a positive structure
(e, E).

(a) Then, L = {u € E | £(u) = 1} is a subgroup of the (multiplicative)
unit group K* of K.

(b) WehaveL={u € E | M (u) =1+uT} ={u€ E | uis 1-dimensional}.

Proof of Theorem X.1. (b) 1st Step: We have L C {u € E | w is 1-dimensional}.

Proof. For every u € L, we have ¢ (u) = 1 (by the definition of L) and X\* (u) = 0
for any ¢ > e (u) (by the axioms of a positive structure, since u € L C E). Thus,
for every u € L, we have X (u) = 0 for any i > 1 (because for any i > 1, we have
i >1=¢(u) and thus A" (u) = 0). In other words, every u € L is 1-dimensional. Thus,
L C{ue€E | uis l-dimensional}.

590ne remark about the assumption that for every invertible element v € E, the inverse of v must lie
in E as well:
Fulton and Lang do not make this assumption in [FulLan85], but this is a mistake on their side.
In fact, they claim that the set of all u € E such that & (u) = 1 is a subgroup of K*. But to make
this claim, they need the above-mentioned assumption (or another similar one). In fact, here is an
example of a A-ring K which satisfies all of their assumptions, but for which the set of all u € E
such that € (u) =1 is not a subgroup of K*:
Let Z be the free group on one generator. (This group Z is, of course, none other than Z,
written multiplicatively; however we must avoid calling it Z, lest it is confused with the ring Z.)

Let X be the generator of Z. Applying Exercise 3.4 to M = Z, we get a A-ring (Z 7], ()\i)ieN)'
Now define a map ¢ : Z[Z] — Z by

€ (Z amm> = Z m, for all (aum),,cy, € Z9).

meZ meZ

Then, ¢ is a surjective ring homomorphism. Define E to be the additive and multiplicative closure
of the subset
{1,X,Xx*, Ju{l+ X N1+X21+X7% .}

of Z[Z]. Tt is easy to see that all of our conditions are satisfied, except for the assumption that
for every invertible element u € E, the inverse of u must lie in E as well. Hence, if we would
omit this assumption (as Fulton and Lang do in [FulLan85]), the pair (¢, E) would be a positive
structure on our A-ring (Z Z], (/\i)ieN)' However, the set of all u € E such that € (u) = 1

is not a subgroup of K in this case, since this set contains X but not its inverse X! (in
fact, it is easy to see that X ! ¢ E; otherwise X ! would be a sum of products of elements of
{1, x,x2, . Ju{1+ X114+ X21+ X3 ..}, and applying € we would conclude that the sum
has only 1 summand, which is easy to rule out).
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2nd Step: We have {u € E | wis l-dimensional} C{u € E | Ar(u) =1+ uT}.
Proof. Every 1-dimensional u € E satisfies A’ (u) = 0 for any ¢ > 1 (by the definition
of “l-dimensional”). Now, every 1-dimensional v € E satisfies

=D XN T =X (u)+ N (u T+Z A(u) TP =1+ uT.
€N =1 = —0 since
i>1
Thus, we have shown that every 1-dimensional u € E satisfies Ar (u) = 1 +«7. In
other words, {u € E | u is 1-dimensional} C {u € E | Ar(u) =1+ uT}.
3rd Step: We have {u € E | Ar(u) =1+uT} C L.
Proof. Let u € E be an element satisfying Ay (u) = 14+«7. Then this u must satisfy

> XN (u) T = Ar (u) = 1 +uT,

€N

and thus (by comparison of coefficients) A\ (u) = 0 for every i > 1, so that e (u) < 1
(because A*) (u) is a unit in the ring K (since u € E), so that A** (u) # 0 and thus
e (u) < 1). Together with € (u) > 0, this yields € (u) = 1 and thus u € L.

We have thus proven that every u € E satisfying Ay (u) = 14 uT must satisfy u € L.
In other words, we have proven that {u € E | Ay (u) =1+ uT} C L.

4th Step: Combining the results of the 1st Step, the 2nd Step and the 3rd Step, we
conclude that L={u € E | A\p(u) =1+ uT} ={u € E | uis l-dimensional}. This
proves Theorem X.1 (b).

(a) Ist Step: Every u € L is invertible in K, and the inverse of every u € L lies in
L.

Proof. Let u € L. Then, A**) (u) is a unit in the ring K (since u € E). But € (u) = 1
(since u € L) and thus A*® (u) = A! (u) = u. Thus, u is a unit in K that is, u is
invertible. Its inverse u~! must lie in E as well (because u € L C E, and because of
our assumption that for every invertible element v € E, the inverse of u Ilnust lie in E
as well). Since € is a ring homomorphism, we have ¢ (u™!) = | € (u) =1"1=1

=1
This, together with u=! € E, yields u=! € L (by the definition of L).

We have thus proven that every u € L is invertible in K, and the inverse of every
u € L lies in L.

2nd Step: The set L is closed under multiplication and contains the multiplicative
unity of K.

Proof. This is trivial.

3rd Step: Theorem X.1 (a) trivially follows from the 1st Step and the 2nd Step. [J

Theorem X.2. Let (K, (X)), y) be a special(?) A-ring with a positive

structure (¢,E). Let e € E, and let r = € (e) — 1. Define a polynomial
e+l .

pe € K[T] by pe (T) =3 (=1)" X' (e) T"'7%. Set K, = K [T],/ (p. (T)) =
i=0

K [¢], where ¢ denotes the equivalence class of T modulo p, (T'). Then, K, is

a finite-free extension ring of K. There exists a map \* : K, — K, for every

1 € N such that (Ke, (XZ> ) is a A-ring such that the inclusion K — K,
ieN
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is a A-ring homomorphism and such that ¢ € K, is a 1-dimensional element.
Moreover, there exists a positive structure (g., E.) on K, defined by ¢, (£) =

1andEe:{ S aili(e—0) | az;€EforallicNandjeN

€N, jeN

By iterating the construction in Theorem X.2, we can find, for any e € E, an
extension ring of K with a A-ring structure in which e is the sum of r 1-dimensional
elements. This is called the splitting principle, and is what Fulton/Lang [FulLan85| use
instead of Theorem 8.4 above when they want to prove an identity just by verifying
it for sums of 1-dimensional elements. However, this way they can only show it for
positive elements, while Theorem 8.4 yields it for arbitrary elements.

11. Hints and solutions to exercises

11.1. To Section 1
11.2. To Section 2

FEzercise 2.1: Solution: (a) Theorem 2.1 (c) says that f is a homomorphism of A-rings
if and only if pp o f = f[[T]] o Ayr. Thus, it remains to show that puro f = f[[T]] o Ar
holds if and only if every e € E satisfies (ur o f) (e) = (f[[T]] o Ar) (e). Since E is
a generating set of the Z-module K, this comes down to proving the following three
facts:

e We have (pr o f) (0) = (f [[TT]  Az) (0).

e We have (uro f)(—x) = (f[[T]]oAr)(—x) for every x € K which satisfies
(ur o f) (x) = (f[[T] o Ar) ().
(f
Jo

e We have (uro f)(z+y) =
satisfy (pro f) (z) = (f[[T]

[[T]] o Ar) (x +y) for any x € K and y € K which
Ar) () and (pr o f) (y) = (F [T Ar) (y).

We will only prove the last of these three assertions (the other two are similar): If

(r o f) (x) = (f[[T]] o Ar) () and (ur o f) (y) = (f[[T]] o Ar) (y), then

(pr o f) (z +y)
=pr (f(x+y) =pr (f(x)+ f(y) (since f is a ring homomorphism)
=pur (f(z)) pr (f(v)) <by Theorem 2.1 (a), applied to the A-ring (L, (,ui)ieN)>

= (pro f)(x)- (uro f) (y) = (f[[T)] o Ar) (x) - (f[[T]] o A7) (y)
Dy ST S

= (1T A (2) - Ar (y) = ([T o Ar) (x +y),

=Ar(z+y) by Theorem 2.1 (a)

qed.
(b) This follows from (a) in the same way as Theorem 2.1 (c) was proven.
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Exercise 2.2: Solution: It is an exercise in basic algebra to see that L — L is a subring
of K. Thus, it only remains to show that A’ (L — L) C L — L for every i € N. In other
words, we have to prove that X (¢ — ¢') € L — L for every { € L and ¢’ € L.

We are going to prove this by induction, so we assume that M (¢ —¢') € L — L for
all 7 <i. Then,

N =N ((—=0)+ 1) = Z N (0 — YN (2 (by the definition of A\-rings)

—Z/\J (0—0) X (£)+X(€ YN ()

EL L, since EL since =1
J<’L K'EL

€ (L-L)L +N({—0)C(L-L)+X({-1).
N———

CLL-LLCL-L
(since LLCL)

But A\ (¢) itself lies in L — L (since ¢ € L, so that \'(¢) € L and thus \' (¢{) =
M (0) —\()/ € L — L), so this yields \X'({ —¢') € L — L, and this completes our
€L €L
induction.
Ezercise 2.3: Solution:

Proof of Theorem 2.2. (a) Let x € K /I. Let y € K and z € K be two elements of
K satistying y = z and Z = x. Then, §y = x = Z, so that y = zmod I. In other words,
y—zel

We know (from the definition of A-ideals) that I is a A-ideal of K if and only if every
t € I and every positive integer 7 satisfy A’ (t) € I. Since we know that I is a A-ideal,
we conclude that every t € I and every positive integer 7 satisfy A’ (¢) € I. Applied to
t =y — z, this yields that every positive integer i satisfies \' (y — z) € I.

Fix k € N. The equality , applied to y — z and z instead of x and y, yields

k k

A‘“((@/—Z)H):;Ai(y—z)A’“‘i(@=Ao(y—z> A:k:(zw; My—2) A7()

el
(since AO(t)=1 (since 7 is a positive
for every teK) integer)

El)\’“ ZM’“ (z) CN(2)+1.

:/\’“(z)
cI
(since I is an ideal)

Since (y — z)+2z = y, this rewrites as \¥ (y) € A\¥ (2)+1. In other words, \* (y) = M (2).
Now, forget that we fixed k. We thus have proven that A\* (y) = A¥(z) for every
k € N. Renaming k as ¢ in this claim, we conclude that we have A (y) = A (z) for

every i € N. Theorem 2.2 (a) is proven.
(b) First of all,

(XO (x) =1 for every z € K/I) (65)
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m. Next,

(Xl (x) = x for every z € K/I) (66)
M Finally,
k
Mo (z+y) = ZXI (z) N~ () for every ke N, x € K /T andy € K /1
- (67)

™
Now, according to the definition of a A-ring, we know that (K S, <>\’> ) is a \-
i€N

ring if and only if it satisfies the relations , and . Since we have shown that

70 Proof of (@): Let # € K/I. By the definition of A, the value A (z) is defined as A0 (w), where
w is an element of K satisfying @ = x. So let w be an element of K satisfying w = x (such a w
clearly exists). Then, A0 (r) = X0 (w). But A (w) = 1 (since every t € K satisfies \° (t) = 1).
Thus, A0 (w) =T =1, so that A? (z) = A% (w) = 1. This proves .

™ Proof of : Let € K /I. By the definition of X!, the value A! () is defined as AT (w), where
w is an element of K satisfying @ = x. So let w be an element of K satisfying W = = (such a w
clearly exists). Then, A! (z) = Al (w). But A! (w) = w (since every ¢ € K satisfies A! (t) = ¢).
Thus, A (w) =W = «, so that A! (z) = A (w) = . This proves .

™2 Proof of cLetze K/I,ye K /I and k € N.

Pick any u € K satisfying w = x. (Such a u clearly exists.) Pick any v € K satisfying 7 = y.
(Such a v clearly exists.)

Let i € {0,1,..., k}.

By the definition of A?, the value A’ () is defined as A (w), where w is an element of K satisfying
w = z. Thus, X’( ) = )\l( ) for every w € K satisfying w = . Applied to w = u, this yields
X (x) = X (u) (since T = ).

By the definition of A*~, the value A*~ (y) is defined as A¥—7 (w), where w is an element of K
satisfying w = y. Thus, k=i (y) = M7 (w) for every w € K satisfying w = y. Applied to w = v,
this yields A*~¢ (y) = AF=7 (v) (since v = y).

Now forget that we fixed i € {0,1, ..., k}. We thus have shown that every i € {0, 1, ..., k} satisfies
X (z) = A (u) and AF~% () = AN¥=7 (v). Thus,

=Xiuw) =3 (0)

By the definition of A¥, the value A¥ (z + y) is defined as AF (w), where w is an element of K
satisfying w = x +y. Thus, A\¥ (z + y) = A\* (w) for every w € K satisfying w = = +y. Applied to
w = u + v, this yields \F (z +y) = A\ (u+v) (sincew +tv=_u +_ o = +y). Thus,

=z =y

Nz +y) = A (u+v) Z)\l ) AR (v

since (5)) (applied to u and v instead of  and y) yields
koo .
N (i) = 3 N (1) X (0)
i=0

This proves .
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it satisfies the relations , and , we thus conclude that (K 1, (Xl) N) is
ic

a A-ring. Theorem 2.2 (b) is proven.

(c) Let 7 be the canonical projection K — K /1.

The definition of a A-ring homomorphism tells us: The map 7 is a A-ring homomor-
phism if and only if 7 is a ring homomorphism and satisfies X o 7 = 7 o \! for every
i € N. But since 7 is a ring homomorphism (because it is a canonical projection of a
ring onto a factor ring) and satisfies X' o m = 7 o X for every i € N , this yields
that 7 is a A-ring homomorphism. Since 7 is the canonical projection K — K /I, we
thus have proven that the canonical projection K — K /I is a A-ring homomorphism.
Theorem 2.2 (c) is proven. O

Ezxercise 2.4: Solution:

Proof of Theorem 2.3. Let t € Ker f, and let ¢ be a positive integer. Since t € Ker f,
we have f (t) = 0, thus p* (f (t)) = p* (0) = 0 (by Theorem 2.1 (d)).

Since f is a A-ring homomorphism, we have p’ o f = f o X', so that (u'o f) (t) =
(foX) () = f (N (). Thus, f (X' (t)) = (u' o f)(t) = p' (f (t)) =0, so that ' (t) €
Ker f.

Now forget that we fixed ¢ and 7. We have thus proven that every ¢ € Ker f and
every positive integer i satisfy A\ (¢) € Ker f.

But the definition of a A-ideal tells us that Ker f is a A-ideal if and only if every
t € Ker f and every positive integer i satisfy A’ (¢) € Ker f. Since we know that every
t € Ker f and every positive integer i satisfy A (t) € Ker f, we thus conclude that
Ker f is a A-ideal. Theorem 2.3 is proven. [

11.3. To Section 3

Exercise 3.1: Solution:
First solution: The localization {1, p, p?, ...}_1 Z is the subring {3 | ueZ, ic N}
pZ

of Q. Let z € {1,p,p% ...} " Z. We then must show that (m) e {1,p,p?, ..} " Z for
n
every n € N.

_ u u
Since x € {1,p,p% ..} ' Z = {—i | weZ, ie N}, we can write x in the form —
p p

" Proof. Let i € N. Let z € K. Then, 7 (z) = Z (because 7 is the canonical projection K — K /I
and 7 (X (2)) = i (z) (for the same reason).

By the definition of A?, the value A (z) is defined as A (w), where w is an element of K satisfying

w = 7. Thus, (Z) = N (w) for every w € K satisfying w = z. Applied to w = z, this yields

A (Z) = A (2) (since Z = Z).

Now, (Xor) (z) =X (fl)) = X(E) = N2 = (N (2) = (moX) (2)

=z

Now forget that we fixed z. We thus have proven that (XZ ow) (z) = (mo XY (2) for every

z € K. In other words, Nor=mo A, qed.
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for some u € Z and i € N. Thus,

n! n! n!

(x)_x(x—l)...(x—n—l—l) :ﬁ;@_k)_:ﬁ:(z%_k) ( u)

n—=1,, — kpl n—1 ]
I1 [ (u—Fkp)

=0 D k=0
n! n!-(p')"

n!
Now, let p¥ be the highest power of p that divides n!. Then, — is a positive integer
p’U

n!
not divisible by p. Denoting — by r, we thus have shown that r is a positive integer
p

not divisible by p. Thus, p is coprime to 7 (since p is prime), so that p*™ = 1 modr
(by Euler’s theorem), where ¢ is Euler’s totient function.

Notice that r = = yields n! = p¥r, so that n! = 0modr. On the other hand,
p'U

n—1 n—1 n—1
PV T (= k) = ] 000 (u— k) = [ (0902 — p#0 Vi)
k=0 k=0 k=0

Since p#—Vifpi = plet)=Ditip — peif — p#) k = 1"k = kmodr, this
d
=lmodr
becomes
o = (p(r)~D)i
r)—1)in i\ — r)—1): b U
pPr=h 'H(u—kp):H(p(“"()l)u—k): n! ( , )
k=0 k=0 =0modr
TT (p@®) iy — o
since = ( ) = pler =iy
n! n
= Omodr.
- n—1 )
pe)=Din TT (4 — kp?)
Thus, h=0 is an integer. Now,
r
n—1 ) ) _
[T (u—Fkp) pPO=m T (u — kp')
T\ _ k=0 r 0
(n) n! - (pt)" pler)=Din . (pi)" p) r
n—1 ]
. ple(r)=Dyin., (u — kpi)
_ ) k=0 , L
— pem)Din (i) prr . ; (since n! = pr)
:pfvfmjr(w(r)q)m an integer
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is a product of a negative power of p with an integer, and therefore lies in {1, p, p?, ...}f1 7.

So we have shown that ($) € {1,p,p% ...}_1Z for every z € {1,p, p? ...}_1Z and
n

every n € N. This proves that {1, p, p?, ...}71 7Z is a binomial ring, qed.
Second solution (sketched): Let x € {1,p,p?, ...}_1 Z. Just as in the First solution,

u _ x
we can write z in the form — for some u € Z and ¢ € N, and we see that ( ) =
P n

n—1 )
[T (u—kp')
k:o' T A careful analysis now shows that every prime ¢ that is distinct from
n! - (p
n—1 )
p appears in the prime factor decomposition of [] (u — kp') at least as often as it
k=0

n—1 )

[T (u—kp')

A=0 —— once brought
n!-(p')

to simplest form, can have no primes distinct from p in its denominator. Thus, this

appears in that of n!- (p')". As a consequence, the ratio

ratio (which, as we know, is (x)> lies in {1, p, p?, ...}_1 Z. So we have shown that
n

(:c) € {1,p,p% ...}712 for every z € {1,p, p?, ...}71Z and every n € N. This proves
n

that {1,p,p? ...}71 7 is a binomial ring, qed.
Third solution: [Grin-detn| Exercise 3.26] shows that if a and b are two integers such
that b # 0, and if n € N, then

n

b
there exists some N € N such that b" (a/ ) €. (68)

Let z € {1,p,p?, ...}71 7. We then must show that (3:) € {1,p,p? ...}71 Z for every
n

n € N.
Fix n € N. We have z € {1,p,p2,...}71Z: {E | ueZ, i€ N}. Thus, z = % for
P’ P’

some u € Z and ¢ € N. But (applied to @ = u and b = p') shows that there exists
some N € N such that (p%)" (u/p) € 7. Consider this N. We have o = — = u/p',
n P

so that
(-(D)egr (om0 ()2
C {1,pp%. ) 2.

So we have shown that (:c) e {1L,p.p% ..} " Z for every x € {1,p,p?, ..} ' Z and
n

every n € N. This proves that {1, p, p?, ...}71 7 is a binomial ring, qed.
Ezercise 3.2: Hints to solution: Let Nj. be the subset {1,2,3,...} of K. Obvi-
ously, this subset is multiplicatively closed and contains no zero-divisors. Hence, the
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o -1 : Co
localization (Nj;) K can be considered as an extension ring of K. We now can de-

fine (x € (Nj{()_1 K for every z € (N}})_l K and i € N. It remains to show that
i

x x
. ) € K for every x € K and ¢ € N, given that | | € K for every x € F and 7 € N.
i i

This will follow once we show the following three claims:

X+Y
Claim 1: Let i € N. Then, the polynomial ( + € Q[X,Y] is a polynomial in
i

X X X Y Y Y\ ... .
, U N S , s ey | . | with integer coefficients.
0 1 1 0 1 1

-X X
Claim 2: Let ¢ € N. Then, the polynomial ( ] ) € Q[X] is a polynomial in (0 ),
i

X X
( ] ), ey ( , ) with integer coefficients.
i

XY
Claim 3: Let ¢ € N. Then, the polynomial ( , ) € Q[X,Y] is a polynomial in
i

X X X Y Y Y 4l int Freient

o\ ) ) Lo )Ly ) | ) with integer coefficients.

Proof of Claim 1: In our proof of Theorem 3.1, we have proven the identity for
every k € N, x € Z and y € Z. Renaming 7 as j in this identity, we can rewrite it as

(-2 0)

Applying this to k = i, we obtain

(-0 g

Now, in the polynomial ring Q [X, Y], we have the following equality:

(XJ.FY>:Z(X)(.Y.). (70)
i = \iJ\i—]
(Proof of (70): Both sides of the equality are polynomials in X and Y with rational
coefficients. Hence, in order to prove this equality, we only need to check that it holds
whenever it is evaluated at X = x and Y = y for two nonnegative integers x and y.
But the latter follows from (69). Thus, is proven.)

The equality immediately proves Claim 2.

X (X +i—1
Proof of Claim 2: We have the identity ( ) ) = (1) < +.Z

1

) (this is the
so-called upper negation identity). Thus,

(o () e
= ()0

i/ \i—J
(by (70), with i—1 substituted for Y)
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This proves Claim 2.

Claim 3 is noticeably harder than each of Claims 1 and Claim 2. One way to
prove Claim 3 is to use the proof of Theorem 7.1 below. For a completely elementary
(combinatorial) proof of Claim 3 (leading to a different polynomial!!), see [Grin-detn|
Exercise 3.8]. Let me finally sketch a third proof of Claim 3:

Proof of Claim 3: Recall the fact ([Harts77, Proposition 1.7.3]) that the subset

{peQ[X] | p(n) €Z for every n € Z}

X X
of the polynomial ring Q [X] is the Z-linear span of the polynomials (0), (1),

X
(2 ), .... This generalizes to two variables: The subset

{peQ[X,Y] | p(n,m) € Z for every n € Z and every m € Z}

X\ (Y
of the polynomial ring Q [X, Y] is the Z-linear span of the polynomials ( , ) ( ) for
v J

XY
1 € Nand j € N. Of course, the polynomial ( . belongs to this subset, so we
i

conclude that it belongs to this Z-linear span. This proves Claim 3 again.
Now, all three Claims 1, 2 and 3 are proven. Using these claims, we can see (by
induction) that the values

(f) forx € Kandi e N

can be written as polynomials (with integer coefficients) in the values

(x> for z € E and ¢ € N.
1

Since we have assumed that the latter values belong to K, we can therefore conclude
that the former values also belong to K. This solves the exercise.

FEzercise 3.3: Hints to solution: (a) Use Theorem 2.1 (a) and (1 + pT)* (14 pT)? =
(1+pT)* ™.

(b) Use the binomial formula.

Detailed solution: (a) Define a map Ay : K — K [[T]] by

()\T (x) = Z)\i (z)T" for every z € K) :
ieN
Then,
Ar(z) = (1+pT)* for every z € K (71)

[ Thus, we can easily see that every € K satisfies Ap (v) = 1+ 2T mod T%K [[T]]
™ Proof of .' Fix 2 € K. Then, Ay (z) = >, oy A’ (2) T". Hence, for every i € N, we have

(the coefficient of 7" in the power series Ay (z))
= A (z) = (the coefficient of the power series (1+ pT)” before T7)
(by the definition of A’ (z))
= (the coefficient of T* in the power series (1 + pT)").
In other words, Ar () = (1 + pT)*. This proves .

148



[@] Hence, we have A\’ (z) =1 and A! (z) = x for every z € K [

On the other hand, the equality holds for every k € N,z € K and y € K m

In other words, every k € N, x € K and y € K satisfy

()2 062)

Proof. Fix x € K. Recall that the power series p has coefficient 1 before T°.
1mod TK [[T]], so that p—1 € TK [[T]]. Hence, pT —T =T (p—1) € TTK [[T]]
——

ETKI[T]]
other words, pT' = T'mod T?K [[T]].

Now, yields

X
Ar (z) = (1+pT)”* :Z<k>
keN
X
e Qerosl) e
=1 \\/ =pT ]};€>N2 —pF Tk —phTh—272
:1 (since k>2)
=14z @ + Z i>kak2 72
=Tmod T2K[[T]] 455 =0mod T2 K[[T]]

=1+aT+ ) (@ka“o =1+ 2T mod T?K [[T]],

keN;
k>2

qed.
"6 Proof. Let x € K. Then, Ay () =1 + 2T mod T?K [[T]]. In other words,

(the coefficient of T° in the power series Ay (z)) = 1

and
(the coefficient of T in the power series Ar (2)) = .

But from Ap (z) = Y, o A (2) T, we obtain
A (z) = (the coefficient of T in the power series Ar (z)) = 1

and

Al (z) = (the coefficient of T" in the power series Ar (7)) = .

Qed.

"TThis was proven during our proof of Theorem 3.2.
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Now, every x € K and y € K satisfy

(1+1)" (1+4+1)Y
N——’ ~——
—ZukeN k —£4keN k

(by the definition of (14+7)%) (by the definition of (14+7)Y)

(O (=0r)
B0

[Tty
\ K
(by the definition of the product of two power series)

- (x;:y)Tk — (1+T)""

keN

T+y

(since (14 7)""" is defined as Y, ( k

)T’Ic ). We can substitute pT" for T in this
equality; thus, we obtain

(1+pT)" (1 +pT)" = (1+pT)""
for every x € K and y € K. Now, if z and y are elements of K, then

Ar(z) « Ar(y)  =(1+pT)" (1 +pT) = (14 pT)" .
S~—— S~——

=(14+pT)* =(1+pT)Y

(by (71))  (by (71), applied

to y instead of x)

Comparing this with

M (z+y) = (14 pT)™™ (by (71), applied to = + y instead of ),
we obtain
Ar (z) - A (y) = Ar (z+y) for every x € K and y € K. (73)

(K, (A\"),cy) is a A-ring (since (73) holds). This solves Exercise 3.3 (a).
(b) Assume that p = 1. Define a map Ay : K — K [[T]] as in our solution to Exercise
3.3 (a). Then,

But Theorem 2.1 (a) shows that (73) holds if and only if (K, (\"),cy) is a A-ring. Thus,

Ar(z) = (1+pT)" for every x € K.
(This is the identity , and has already been proven above.) Now,

MNo(z) = (:f) for every x € K and i € N (74)
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[ Thus, the maps A’ defined in Exercise 3.3 (a) are identical with the maps A’ defined
in Theorem 3.2. Hence, the A-ring (K, (A\),.y) defined in Exercise 3.3 (a) is identical
with the A-ring (K, (A\),.y) defined in Theorem 3.2. This solves Exercise 3.3 (b).
Exercise 3.4: Hints to solution: 1t is clear from the very definition of A* that Theorem
2.1 (a) is to be applied here.
Ezercise 3.5: Hints to solution: Same idea as for Exercise 3.4.

11.4. To Section 4

Ezercise 4.2: Detailed solution: There are several ways to solve Exercise 4.2 (many
people would call it trivial). Here is not the simplest one, but the easiest-to-formalize
one:

(a) Let us prove that every n € {0,1,...,m} satisfies

(14 ;) = Z H Q. (75)

SC{1,2,...n} k€S

(2

Proof of . We will prove by induction over n:

Induction base: If n =0, then [] (1 + ;) = (empty product) = 1 and
i=1

S o= ¥ Te=Tle

SC{1,2,...,n} k€S SC{1,2,...,0} keS ke
(since the only subset S of {1,2,...,0} is @)
= (empty product) = 1.

n

Thus, [[(14+a;)= >, ] ax holds for n = 0. In other words, we have proven
i=1 SC{1,2,...,n} k€S

for n = 0. This completes the induction base.
Induction step: Let N € {0,1,...,m — 1}. Assume that holds for n = N. Now
let us prove forn =N + 1.
Since holds for n = N, we have
N
Mocw= ¥ Tl

i=1 5C{1,2,...,.N} k€S

™8 Proof of : Let # € K. Comparing the identity Ap (z) = >, oA (2) 7" with Ap (z) =

1+ p T| = (1+T7)", we obtain Y, A (2)T" = (14 pT)". Hence, for every i € N,
~—
=1
we have

A (z) = (the coefficient of the power series (1+7')" before T")

(f) <since (1+7T)° = % (i) T’“) .

This proves .
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Now, let P be the set of all subsets of {1,2,..., N}. Then, P is the set of all subsets .S
of {1,2,..., N + 1} satisfying N+1 ¢ S (because subsets S of {1,2, ..., N 4 1} satisfying
N + 1 ¢ S are the same thing as subsets of {1,2,..., N}). Therefore, summing over
all S € P is the same as summing over all subsets S of {1,2,..., N 4+ 1} satisfying

N+1¢ 5. Hence, > [] an = > IT cu.
SePkes SC{1,2,..,N+1}; k€S
N+1¢S
On the other hand, summing over all S € P is the same as summing over all subsets

S of {1,2,...,N} (since P is the set of all subsets of {1,2,..., N}). Thus, > [] ax =
SEP KES
> Il o

SC{1,2,..,N} k€S

Notice that every S € P is a subset of {1,2,..., N} (since P is the set of all subsets
of {1,2,..., N}) and thus satisfies N +1 ¢ S.

Now, let @ be the set of all subsets T of {1,2,..., N + 1} satisfying N+1 € T. Then,
summing over all 7' € @ is the same as summing over all subsets 7" of {1,2,..., N + 1}

satisfying N +1 € T. Thus, > [] ax = > [ ax. Renaming the index T’
TEQ keT TC{12,...N+1}; keT
N+1eT
as S in both sides of this equation, we obtain Y [[ cx = > IT ox.
SEQ keS SC{1,2,,N+1}; k€S
N+1ES

From the definitions of P and @), it easily follows that every S € P satisfies S U
{N+1} €@ m Hence, we can define a map ¢ : P — () by

(t(S)=SU{N +1} for any S € P).

This map ¢ is injective (because if two sets S € P and S’ € P satisfy ¢(S5) = ¢(5),
then S = S [) and surjective (because every T € Q satisfies T = ¢ (S) for some
SeP E[) Thus, ¢ is a bijective map. Hence, we can substitute S for ¢ (S) in the

™ Proof. Let S € P. Then, S is a subset of {1,2, ..., N} (since P is the set of all subsets of {1,2, ..., N}).
Thus, SU{N + 1} is a subset of {1,2,..., N + 1}. Clearly, N+1 € SU{N + 1}. Thus, SU{N + 1}
is a subset of {1,2,..., N + 1} satisfying N +1 € SU{N + 1}. In other words, SU{N + 1} € Q
(since @ is the set of all subsets T of {1,2,..., N + 1} satisfying N +1 € T, qed.
80 Proof. Let S € P and S’ € P be two sets satisfying ¢ (S) = ¢ (5).
The set S is a subset of {1,2,..., N} (since S € P and since P is the set of all subsets of
{1,2,...,N}). Hence, N+1¢ S. But ¢ (S) = SU{N + 1}, so that

LONIN 1} = (SU{N + 1D\ (N +1} = (S\{N+1}) UGN+ 1\ {N+1})=SUD =S.

=S (since N+1¢5) =2

Similarly, ¢ (S")\ {N +1} = 5". Hence, S = ¢ (S) \{N +1} = (S)\{N +1} =95, qed.
——
=u(S")
81 Proof. Let T € Q. We want to find an S € P such that T = ¢ (S).

We have T' € Q. In other words, T is a subset of {1,2,..., N + 1} satisfying N + 1 € T (since @
is the set of all subsets T of {1,2,..., N + 1} satisfying N +1 € T).

Let S =T\ {N +1}. Since T is a subset of {1,2,..., N + 1}, it is clear that T\ {N + 1} is a
subset of {1,2,..., N+ 1} \{N + 1} = {1,2,..., N}, so that T\ {N + 1} € P (since P is the set of
all subsets of {1,2,...,N}). Hence, S =T\ {N +1} € P.

Since N +1 € T, we have {N + 1} C T and thus (T\ {N +1}) U{N + 1} =T. Now, ¢(5) =
SU{N +1} = (T\{N +1})U{N + 1} = T. Hence, we have found an S € P such that T' = ¢ (5).
Qed.
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sum Y. ] ag,sothat > [ ar= > ][ ax. Since every S € P satisfies

SEP keu(S) SEP keu(S) SEQ keS
ITaw= JI o (since + (S) = SU{N +1})
keu(S) keSU{N+1}
:aN+1H05k (since S € P, so that N +1¢ S5),
kes

this rewrites as »_ (aN+1 IT ozk) = > I o

Sep kES SEQ keS
Now,
> M= > Jlew+ > e
SC{1,2,...N+1} k€S SC{1,2,...N+1}; k€S SC{1,2,...N+1}; k€S
N+1¢5S ) _ N+IES )
:S%:Pklgsak =3 Il =X (CVNJrl I1 C“k>
SeQ kesS SepP keS
= ZHak—i- Z <O‘N+1Hak> = Z (Hak+OéN+1 H&k)
SeP keS SeP kes seP \kes kes /.
~(tan ) I o
kesS
:Z(1+OAN+1)HO%:(1+04N+1) ZHOék
Sep kesS SeP keS
N
= X [T ar=I](+ai)
SC{1,2,...,N} keS i=1
N N+1
=(Q+anve) [JO+e) =] Q+).
i=1 i=1
N+1
We have thus shown that [ (1+ ;) = > [ ax. In other words, ([75) holds
i=1 SC{1,2,..,N+1} k€S

for n = N 4 1. This completes the induction step.
We have thus shown that holds for every n € {0,1,...,m}. Thus, we can now

apply (75) to n = m, and obtain [[ (14+ ;) = > [ ax. This solves Exercise
i=1 SC{1,2,..,m} k€S
4.2 (a).
(b) Applying Exercise 4.2 (a) to a4t instead of ay, we obtain
H (14 at) = Z H (cut)
i=1 SC{1,2,.,m}  keS
> 2
= —( 1T o )¢5
ieN Sg{‘léQ‘,:..Z:,m}; (kl;[S k>t
— |S| _ i
Y Y (Me) & % ¥ Mo
i€N SC{1,2,....,m}; \keS —¢i 1€N SC{1,2,...,m}; k€S
|S|=1 (since |S|=t) |S|=i
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This solves Exercise 4.2 (b).
(c) Applying Exercise 4.2 (b) to —ay instead of ay, we obtain

togn=> > Jle@=> > JlaCyr

1 ie€N SC{1,2,...,m}; k€S ieN SC{1,2,...,m}; k€S

—

(2

|| =i :HW |S|=i
U S | O
1€EN SC{1,2,...,m}; k€S
15| =

This simplifies to

H (1 — at) Z(—l)i Z Hakti.

=1 1€EN SC{1,2,.. ,m} kesS
|S|=i

This proves Exercise 4.2 (c).
(d) Since @ is a finite set, and we only use the elements of @ as labels, we can
WLOG assume that Q = {1,2,...,m} for some m € N (because otherwise, we can just

relabel the elements of @ as 1, 2, ..., m for some m € N). Then,
H (14 ayt) = H (1+ at) (here we substituted i for ¢)
q€qQ i€Q

:H(l—l—ait) (since @ ={1,2,...,m})
= Z Z H att (by Exercise 4.2 (b))

ieN SC{1,2,...;m}; keS
[S|=i

_ Z Z Hakti (since {1,2,...m} = Q)

i€N SCQ; kesS
|S|=i

= Z Z H agth (here we renamed i and k as k and q) .
keN SCQ; geS

|ST=k
This solves Exercise 4.2 (d).
Ezercise 4.3: Detailed solution: Let P € K a1, g, ..., iy, B1, B2, .., Bn] be a polyno-

mial satisfying P (p1,pa, -, Pm» G1, @25 -y Gn) = 0 (where K [aq, o, ..., Qu, 1, B2, vy Bn]
denotes the polynomial ring in the m + n indeterminates oy, g, ..., ap, B1, Ba, -, Bn
over K). We want to prove that P = 0 (as a polynomial).

n 1 nomial in a1, 0, ..., Oy, B1, B2, .., Bnl, W n write it in rm
Since P is a polynomial in K [aq, s, ..., &, b1, Bo, .-, Bnl, We ca te it in the fo
— E o i1 02 i . Birpiz pgi
P = )\(11,12»~~:ZM)7(.717.]27-“7.711) ap Qg ..o 51 2 --Pn (76)
((il>i27"'7im)7(j19j27""jn))€NmXN”

where g ig,....in), (]1% Jjn) is the coefficient of the polynomial P before the monomial

ool alm 531 B for every ((i1,42, s im) , (41,92, s Jn)) € N™ x N, So let us
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write it in this way. Then,

0=P (plaan <oy Pmy 41,42, -y qn)
= Z Nirsizoeim) (1 g2dn) * DY DS Dt = Q1 GG

((il7i2a'~~7im)7(jl7j27~~'vjn))€NmXNn

(because of (76))
= > Yo Nrimin)Grisein) - PUPE B @ g (7T7)

(jl,jQ,...,jn)EN” (ilviQ 7777 Zm)ENm

Define a polynomial PeT [B1, B2, - ., Bn] by

P= 2 D Moviseioinei) PYPE 0 BB BT (T8)

(J1,325+--2Jn ) EN™ (i1,i2,...,im ) EN™T

Then,

P(Qlaq27"'7Qn)

= il im | 102
= E E (it iz seemsim )y (Gt jzseenin) * PL P Do @1 G2 Q)"
(J15925+-50n) EN™ (i1,i2,... im ) ENT

=0 (by )

Hence, P =0 as polynomials (since ¢1, qa, ..., g, are algebraically independent over
T). Comparing this with (78], we obtain

0= > > Mivisin) Grdannge) - PLDE Dl BIBE B (79)

(jl,jg,...,jn)EN" (i17i27"'7im)€Nm

For every (41, j2, ..., jn) € N, define a polynomial Py, j, . j.) € K [aq, g, ...y gy | by

_ ) o PN I 5 7
P(j17j27...,jn) - Z )\(il,ig,...7zm)7(]17‘727__,,],”) 051 a2 OZT)’?L’L Then,
(1,52,...,8m ) EN™
_ i1, 12 7
Pl jorjn) (D1, D2, o, Pm) = E Airsizosim)s(G1sj2,esjn) = D1 DS Dy

(i17i27-~~7im)€Nm

for every (71, j2, ..., jn) € N™. Thus, in the ring 7[5, fo, - . ., Bn], we have

Z Pl o) (01, D25 s D) - B B3 B
(715325+++3n) ENT
= 2 > Mivizin) Grdavgn) - PLDE Dl B BB =0

(1,925 ) ENT (i1,i2,... 0 ) EN™

(by ) Since the elements 37'83...07n (with (ji, ja, ..., jn) € N") of the T-module
T [p1, B2, .., Bn] are T-linearly independent (because these elements are the monomials),
this yields that P, j,.. ;. (p1,P2,-..,pm) = 0 for every (ji,jo,...,Jn) € N". Hence,
Pl jornjy = 0 for every (ji, ja, ..., jn) € N (since py, pa, ..., pn are algebraically
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independent over K). Now,

_ i1 19 z J1 j
P - Z )\(il7i27"'7i’m)7(j17j27~--’jn) ’ al 042 n /3 * /8 .

((il7i2a'~~7im)7(jl7j27~~'»jn))€NmXNn

= E . . . . . i1, 02 im‘ J1 QJ2 JIn
- : : A(ll77’2v"'77’m)a(]17.727“'»]71) al 042 am 61 2 Bn

(71,9250 ) EN" (i1,i2,...,im ) EN™

-~

=P

= > 0-ppRpr=0.

(J1,325++1n) ENP

J15325000 jn)=0

We have thus proven that every polynomial P € K [y, awa, ..., a4, 1, B2, -, Bn] sat-
isfying P (p1, D2, -y Pm, @15 G2, ---, @n) = 0 must satisfy P = 0. In other words, the m +n
elements py, po, ...y Pm, q1, G2, -, Gn are algebraically independent over K. Exercise
4.3 is solved.

Ezxercise 4.4: Detailed solution: Fix some j € N.

1st Step: Let m € N. We are going to prove that

7j—1

Py (X1, Xo, ..., Xoj) = (—1)i+j_1 XiXoj;

i
o

in the ring Z [Uy, Us, ..., U,,].
Proof. 1t is a known (and very easy) fact that whenever A is a ring, F' is a finite set
and ay is an element of A for every I € F', then

Za; => ai+2 > e (80)

IeF IeF SeP2(F) I€S
mApplied to A=Z[Uy,Us,...,Un), F =P; ({1,2,...,m}) and a; = [ Uj, this yields
el

2 2

> He)- ¥ (o) ¥ IOO=

1€P;({1,2,....m}) i€l 1€P;({1,2,...m}) \icl SEP(P;({1,2,...,m})) T€S icl

82 Proof of . Let A be a ring, let F be a finite set, and let a; be an element of A for every I € F.
We must prove .
The set F' is used only for indexing in . Hence, we can WLOG assume that F = {1,2,...,n}
for some n € N. Assume this, and consider this n.

Since F = {1,2,....,n}, we have > a; = > ar=a+ay+..+a, and Y a? =
IeF I€{1,2,....n} IeF
> ai=d}+a3+..+ad.
1€{1,2,...,n}
On the other hand, let L be the set of all pairs (i,j) € F x F satisfying ¢ < j. Then, »  aa; =
(i)l
> a;a;. From the definition of L, it is clear that every (4, j) € L satisfies i < j.
(i,J)€FXF;

i<j
Let & denote the map
L =Py (F), (i,5) = {i,j}-
This map is a bijection. (In fact, the elements of L are pairs (i,j) € F x F satisfying ¢ < j; such
pairs are clearly in bijection with the 2-element subsets of F', and this bijection is given by the
map &.)
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Since

Z HHU’: Z HHUZ‘:PQ,]' (Xl,Xg,...,XQj)

SEPy(P;({1,2,....m})) I€S i€l SCP;({1,2,....m}); I€S i€l
|S|=2

(by (22)), applied to k = 2),

this becomes

2
S e - oy (me)e s ommne
1eP;({1.2,....m}) i€l 1eP;({1,2,....m}) \i€l SEPQ(Pj({l,z,...in}))lesz‘ef )
=[IU? =Py ;(X1,X2,...,X25)

el
— S LU 42k (X0, X, X))

IeP;({1,2,....,m}) i€l

Since

S o= Y - Y v

IeP;({1,2,....,m}) i€l IC{1,2,....m}; i€l SC{1,2,....,m}; k€S
=3 |Sl=j

(here, we renamed the indices I and i as S and k)

=X since X; was defined as Z H U |,
SC{1,2,...m}; keS
|S|=j
this rewrites as
X]2: Z HU12+2P2,J (X17X2,7X2j) (81)

1€P;({1,2,....,m}) i€l

For every (i,7) € L, we have

H ar = H ar (since & (4,4) = {i,7} by the definition of &)
1€6(i,5) 1€{i,j}
= a;q; (since (i,7) € L, so that i < j).
Now,
Yoo oaway= Yy e, =y [ a= ) Jlu
(z,g)ZE<FJ><F (ig)€L _ \H/ (i.))EL I1€6(i,j) SePy(F) I€S
I€S(i,5)

(here we substituted S for & (4, j) in the sum, since & is a bijection). But > a; = a1 +as+...+an,

IeF
so that
<Za1> (a1 +ag + .. —|—an) = (a%—i—a%—i—..‘—i—ai) +2 Z aiaj:z:a%—ﬂ Z Ha[.
ek B (4,J)EF X F; IeF SePy(F)IES
:I%:Fal i<j

= > Ila
SePgy(F)IES

This proves .
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We will now show that

Z H U2 Z Zﬂ Xi X2J i (82)

IeP;({1,2,....,m}) i€l 1=0

(an identity interesting for its own).
In fact, consider the polynomial [] (1 — U?T?) € (Z[Uy,Us,...,Uy)) [T]. Exercise

i

=i
4.2 (c) (applied to A = (Z[Uy,Us, ..., Uy]) [T], t = T? and «o; = U?) yields

ﬁ —UPT) =) (=) Y HUk (T?)’ > 1=y > J[w |
i=1 ieN sg{tqz‘ ,m}; keS :TQi ieN SQ{‘léQ‘,:..t,m};keS

Thus,

(the coefficient of the polynomial H (1 — UZ-QTQ) before T% )

=1

= | the coefficient of the polynomial —1) U? | T% before T%
k

i€EN SC{1,2,....,m}; keS
|S|=1
i DR | i COED DR | /i C D D |
SC{1,2,...,m}; k&S SeP;({1,2,....,m}) keS IeP;({1,2,....,m}) i€l
1S|=j

SeP;({1.2,....m})
(83)
(here, we renamed the indices S and k as [ and 7).

But Exercise 4.2 (c¢) (applied to A = (Z[Uy,Us,...,Up)) [T], t = T and o; = Uj)
yields

[Ta-vn)=> (-1 > JluT =) (-1)'X71"
i=1 ieN Sg{\léﬁ;l m}; k€S ieN

Also, Exercise 4.2 (b) (applied to A = (Z[Uy,Us,...,Uy])[T], t = T and o; = U;)

yields
[[a+un)=> > JJwr=> xT1"
i=1 ieN sg{|1é2‘;i,m}; keS ieN
mea
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Now,
(ﬁ 1_UT) (ﬁuwg))

I a-vrr*) =] -UuT) (1+UT))
i=1 :(—’_’1_UiT)(1+UL_T) i=1 g =1 - ,
=3 (-1'X,T =3 XiT
ieN ieN
- (Z( XTZ> (ZXT’) > (Z (—l)kaXi_k> T
1€eN €N \ k=0

ieN
(by the definition of the product of two polynomials)

Hence,

(the coefficient of the polynomial H ( 1— UZ-QTQ) before T )
i=1
(Z (—=1)F XkXi_k> T' before T2j>

(the coefficient of the polynomial Z
ieN \ k=0
2j 2j ‘
- Z (—1)k Xk:XZj—k: - Z (—1)1 XiXQj—i
k=0 i=0
(here we renamed the index & as 7). Compared to , this yields
ST Y | (1 yE e
IeP;({1,2,....,m}) i€l =0
Divided by (—1)’, this yields
% (1) 2j
2 _ i+
> [Mot-3 S x-S0
IeP;({1,2,....,m}) i€l , =0
=(-1™*
Thus we have proven (82)).
Substituting into (81]), we obtain
X7 = (=)™ XiXpji+ 2Py (X1, Xa, o0, Xoj)

=0
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2 j 2
D DT XXy =) (DT XX+ Y (D) XX
=0 =0 1=j+1
j . . j_l . . .
= ()™ XiXgj  + (=)™ X s Xoj_@ji
=0 =0 o o v
N ~ _ :(71)2(1—2)+1+J:(71)2+J =X;

L -1
=(=1) X Xoj—j+ 30 (-1 Xi Xy
1=0

(here, we substituted 2j — i for 7 in the second sum)

j—1 Jj—1
( ) J43 25— iz; ( ) 2j ZZ; ( ) i/_/
(1) :Xij:Xf = - =X;Xoj 4
j—1 Jj—1
= )(J2 —+ (—1)1+] XiXQj_i + Z (_1)1+] XiXQj—i
j—1 v .
=2 3 (=) X; X054
i=0
j—1
= X7 +2 Z (—1)"™ XiXo;,
=0

this becomes
Jj—1 o
X7 =X 42> (1) X;Xoj_i + 2Py (X1, X, ..., Xj) .
1=0

Subtracting X 32 from this and dividing by 2 (we are allowed to divide by 2 since 2 is
not a zero-divisor in Z [Uy, Us, ..., U,,]), we obtain

—

0= (=)™ XiXoj_i 4 Poj (X1, Xs, ..., Xo5)

.

ﬁ
Il
o

so that

J Jj—1

1
Py (X1, Xay oo Xo) = = 3 (-1 X, Xpy i = (— (—1)“]’) XiXoj_s
=0 =0 ———
— (it

7

<.
|
—

(=17 X Xy

ﬂ.
[e=]

This proves the 1st Step.
Jj—1 L
2nd Step: Let us now prove Py = > (—1) ! ayay;_; now.

1=0
Proof. Let m = 2j. Applying Theorem 4.1 (a) to K = Z and P = P, ; (X1, Xs, ..., Xa;),
we conclude that there exists one and only one polynomial @ € Z [ay, ag, ..., a;p] such
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that P (X1, Xo, ..., Xoj) = Q (X1, Xo, ..., X;n,). In particular, there exists at most one
such polynomial @ € Z [ay, ag, ..., ay,). Hence,

if Q1 € Z[ag,ag, ..., and Qs € Z [y, g, ..., ] are two polynomials
such that PQJ (Xl, X2, ...,ng) = Ql (Xl, XQ, ,Xm) and
Py (X1, X, .., Xoj) = Qo (X1, Xo, ..., X)), then 9 = Qo

(84)
Define a polynomial Q; € Z [y, as, ..., ap) by Q1 = P, and define a polynomial
Jj—1 o
Qy € Zlag, s, ...;ap] by Qo = > (—1)“LJ_1 a;a;—;. We are going to prove that
i=0

01 = No.

Since our two polynomials £Q; and £, satisfy

Ql (Xl, XQ, 7Xm) = PQJ‘ (Xl,XQ, ey ng) (since Ql = P27j and m = 2])
and

jil . .
Qo (X1, Xo, oo, X)) = (Z G aia2j—i> (X1, Xo, ... Xoj)
i=0
j_l . .
<since 0y = Z (—1)“”_1 ;g and m = 2j>
=0
jil . .
= (D)X X,
i=0
= PZ,j (Xl,XQ, ey XZ]) (by the 1st Step) s
Jj—1 o
we can conclude from 1) that Q; = Q,. Hence, Po; = Q1 = Qo = Y (—1)Z+j_1 0.
i=0

This solves Exercise 4.4.

11.5. To Section 5

Exercise 5.1: Hints to solution: This can be proven by induction over n: The ring
KI[T),(P) is a finite-free extension of K containing a root of the polynomial P
(namely, the equivalence class T of T € K [T] modulo (P)). Now, the polynomial
P(S

% € (K [T], (P))[S] is monic and has degree n — 1, so by induction there ex-
ists a finite-free extension ring Kp of the ring K [T] /(P) and n — 1 elements po,

P(S)
..., Pn of this extension ring Kp such that S ( % = [I (T"=pi) in Kp[S]. Thus,
- i=2

P(S) = (S=T) I (I —p) in Kp[S]. If we denote T by pi, this takes the form
i=2

n

P (S) =[] (T — pi), which shows that we have just completed the induction step.
i=1
Notice the similarity between this solution and the proof of the existence of splitting

fields in Galois theory.
Detailed solution: We first show a lemma:
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Lemma 5.1.S.1. Let K be a ring, and P € K [T] be a monic polynomial.
Then, there exists a finite-free extension ring K’ of the ring K and an
element p € K’ such that P (p) =0 in K.

Proof of Lemma 5.1.5.1. Let n = deg P. Let K’ be the quotient ring K [T'] / (P). For
every @) € K [T, let us denote by @) the projection of @ onto K [T / (P) (that is, the
residue class of ) modulo (P)).

Since the polynomial P is monic of degree n, we can easily see that (ﬁ, T, ..., T”—l)

is a basis of the K-module K’. This is because the sequence <ﬁ, TT, ...,T"—1> is

linearly independentf’] and generates the K-module K’  F% Thus, the K-module
K’ is finite-free. Also, since <’_ZTO, ﬁ,...,T”*) is a basis of the K-module K’, its

83 Proof. In fact, assume that we have a sequence (ap, aq,...,,—1) € K™ such that aoT0 + a;TT +
o+ Oén_lTn_l = O
Then, 0 = agT?+ 1T+ ...+ ap_ 11" 1 = agT + a1 Tt + ... + an_177 1, so that 0 = agT° +
a1Tt + ... + a1 T" ' mod (P). In other words, agT® + ayT! + ... + a1 T"" 1 € (P). In other
words, P | agT°+ a1 T +... 4+, _1T"*. But P is a monic polynomial of degree n, and thus every
polynomial divisible by P has either degree > n or is the zero polynomial. Hence, the polynomial
agT? + a1 T + ... + a,, 1 T""! must have either degree > n or be the zero polynomial (since
P|agT®+a1T + ...+ a1 T™1). Since this polynomial does not have degree > n, it must thus
be the zero polynomial. This means that all its coefficients are zero. That is, a; = 0 for every
ie€{0,1,....,n—1} o o
We have thus proven that whenever a sequence (ag, aq, ..., an—1) € K™ satisfies agT° + a1 T* +
e + 1T~ = 0, it must satisfy a; = 0 for every i € {0,1,...,n — 1}. In other words, the

sequence (ﬁ, T, ..., T"—l) is linearly independent.

84 Proof. Let K; be the K-submodule of K’ generated by (ﬁ, TT, ...,T"—1>. Then, we will prove
that K| = K. B
From the definition of K7, it follows that 77 € K7 for every j € {0,1,...,n — 1}.
Write the polynomial P in the form P = Y 3,T* for some (3o, 51,...,0n) € K" (this is

i=0
possible since deg P = n). Since P is monic of degree n, we must then have 8, = 1.

Let us prove that every j € N satisfies 77 € K.

In fact, we will prove this by strong induction over j:

Induction step: Let j € N be arbitrary. Assume that T € K 1 is already proven for every £ € N
satisfying ¢ < j. We must now prove that 77 € Kj.

If j € {0,1,...,n — 1}, then we are immediately done with proving 77 € K/ (since we already
know that 77 € K/ for every j € {0,1,...,n — 1}). Thus, we assume that j € {0,1,....,n — 1} is
not the case. Hence, j > n, so that j —n > 0. Now, P = zn: B;T*, so that

i=0

1=

n n n—1 n—1

P. Tj—n — E 52Tz _Tj—n _ § ﬂiTH_j_n — E BiTH_j_n 4 Bn Tn-i—j—n — § ﬂiTH_j_n +TJ
; ‘ ~
=0 =0

i=0 > =T i=0

n—1 n—1
Hence, TV = P - T7=" — 3" BT = — Y 3,7 =" mod (P), so that
=0 1=0

-1 n—1
TS i - - g
=0

=0

Every i € {0,1,...,n — 1} satisfies Tti—™ € K/ (since T! € K] is already proven for every ¢ € N
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subsequence <ﬁ> = (T) is linearly independent. Hence, the canonical map K — K’ is
injective (because it maps the basis (1) of the K-module K to the linearly independent
sequence (T) of the K-module K’). Hence, we can view K’ as an extension ring of K.

Let p=T. Then, P(p) = P(T) = P(T) = P = 0 (since P = 0mod (P)). This
proves Lemma 5.1.S.1. O

Another lemma:

Lemma 5.1.S.2. Let Z be a ring and P € Z[T] be a polynomial. Let p
be an element of Z such that P (p) = 0.

(a) Then, there exists a polynomial @ € Z[T] of degree < deg P — 1 such
that P =@ - (T — p).

(b) If the polynomial P is monic, then this polynomial @ is a monic poly-
nomial of degree N — 1, where N = deg P.

Proof of Lemma 5.1.5.2. (a) Lemma 5.1.5.2 (a) is a known fact from basic algebra.
We are not going to prove it.

(b) Assume that the polynomial P is monic. Consider the polynomial ¢ from
Lemma 5.1.S.2 (a).

Let N = deg P. Since () has degree < deg P — 1, we have deg() < degP —1 =
~——

=N
N—1
N — 1. We can thus write the polynomial @ in the form Q@ = > ¢7T" for some
i=0
(qo, q1, -, qn—1) € ZN. Writing it this way, we have
N-1 N-1 N-1
_ i 7 i i+1 %
QT =p)=> 4T (T=p)=3 aZL-> al'p= quT ZquT
1=0 1=0 =Ti+1 1=0 _ Tl
=p
N N-1
= Z G T — Z qpT" (here, we substituted i for i + 1 in the first sum).
i=1 i=0

satisfying ¢ < j, and since every ¢ € {0,1,...,n — 1} satisfies i +j —n < j). Thus,

<n

Z T“FJ " e K| (since K7 is a K-module) .
:0 EK/

This proves that 77 € K 1. The induction step is thus complete.

We have thus proven by strong induction that every j € N satisfies 77 € K 1.

The K-module K [T] is generated by the elements 77 with j € N. Hence, the K-module
K' = K [T]/ (P) (being a quotient module of K [T7]) is generated by the elements 77 with j € N.
Since all of these generators lie in K} (because every j € N satisfies T € K}), we can conclude
that K’ C Kj. Combined with K C K’ (this is trivial), this yields K’ = Kj. Since K7 is the K-
submodule of K’ generated by (ﬁ, Tt .‘.,W), this yields that the K-module K’ is generated

by (ﬁﬁﬁ)
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Thus,
N N-1
P=Q-(T-p)=> qaT" =Y qpl".
i=1 i=0
Hence,

(the coefficient of the polynomial P before T )

N N-1
= (the coefficient of the polynomial Z G T — Z q:pT" before TV )

i=1 =0

N
= (the coefficient of the polynomial Z ¢i1T" before TV )

1=1
N J/
-~

=4qN-1

N-1
— (the coefficient of the polynomial Z qipT* before TV )
i=0

J/

-~

=0
=gn-1—0=gn-1.

Since (the coefficient of the polynomial P before TV ) = 1 (because P is a monic poly-
nomial with deg P = N), this rewrites as 1 = gy_;. Since deggq < N — 1, this yields
that ¢ is a monic polynomial of degree N — 1. This proves Lemma 5.1.S.2. O

Now, let us solve Exercise 5.1:

We will prove the assertion of Exercise 5.1 by induction over n.

Induction base: For n = 0, the assertion of Exercise 5.1 is trivially true (take Kp =
K). This completes the induction base.

Induction step: Let N € N be positive. Assume that the assertion of Exercise 5.1 is
true for n = N — 1. Let us now prove the assertion of Exercise 5.1 for n = N.

First we recall that we assumed that the assertion of Exercise 5.1 is true forn = N—1.
Hence,

If K" is aring, and if () € K'[T] is a monic polynomial such that
deg@ = N — 1, then there exists a finite-free extension ring K, of
the ring K’ and N — 1 elements py, pa, ..., py_1 of this extension (85)

N-1
ring K¢, such that @ = 1:[1 (T'—pi) in K [T]

(this follows from Exercise 5.1, applied to K’, @ and N — 1 instead of K, P and n

Let K be a ring, and let P € K [T] be a monic polynomial such that deg P = N.
According to Lemma 5.1.S.1, there exists a finite-free extension ring K’ of the ring K
and an element p € K’ such that P (p) =0 in K’. Consider these K’ and p.

85In fact, we are allowed to apply Exercise 5.1 to K’, @ and N — 1 instead of K, P and n, because
we assumed that the assertion of Exercise 5.1 is true for n = N — 1.
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By Lemma 5.1.5.2 (a) (applied to Z = K”), there exists a polynomial @ € K’ [T of
degree < deg P — 1 such that P = Q- (T — p) (since P (p) =0) [ Consider this Q.
By Lemma 5.1.S.2 (b) (applied to Z = K'), this polynomial @) is a monic polynomial
of degree N — 1. That is, () is monic and deg) = N — 1. According to , there
therefore exists a finite-free extension ring Ky, of the ring K" and N — 1 elements p,

N—1

P2, -+, pn—1 of this extension ring K, such that Q = [] (7" — p;) in K¢, [T]. Consider
i=1

this K¢, and these p1, p2, ..., pn—_1.

Since Ky, is a finite-free K’-module, and since K’ is a finite-free K-module, it is clear
that K, is a finite-free K —modul@. Also, since K, is an extension ring of K’, and
since K’ is an extension ring of K, it is clear that K é? is an extension ring of K. Thus,
Ky is a finite-free extension ring of K.

Define Kp = K, and py = p. Then, p1, pa, ..., py—1, py are N elements of the ring
Ko = Kp. In Kp [T] = K, [T], we have

N—-1 N
P = T = — T—p;) (T — (T —pi).
Q P H( pi) - (T —pn) H1 Di)

=PN

N—-1
= I1 (T-p)

The ring Kp is a finite-free extension ring of K (since Kp = K, and since we know
that K, is a finite-free extension ring of K).
So we have proven that if K is a ring, and if P € K [T] is a monic polynomial such
that deg P = N, then there exists a finite-free extension ring Kp of the ring K and N
N

elements p, po, ..., px of this extension ring Kp such that P = [[ (T'— p;) in Kp [T].
i=1
In other words, we have proven the assertion of Exercise 5.1 for n = N. Thus, the

induction step is complete, and Exercise 5.1 is solved.

Exercise 5.2: Hints to solution: (a) The idea is to evaluate the identity Y a, ;7" =
i=0
n 1
[[pi+T) at T = < where S is a new variable. The only nontrivial part of the
i=1
solution is to make formal sense of this idea (this is what Lemma 5.2.S.1 in the solution
below is for). (b) is similar.

Detailed solution: First we need the following lemma:

86Note that K'[T] denotes the polynomial ring in one indeterminate 7" over K’. This T here is not
the T that was used to construct K’ in the proof of Lemma 5.1.S.1. In order to avoid confusing
these two T"’s, you are advised to forget the proof of Lemma 5.1.S.1 (you won’t need it any more).
87Here we are using the following general fact from algebra: If K is a ring, if A is a K-algebra which
is a finite-free K-module, and if B is a finite-free A-module, then B is a finite-free K-module.
Proof of this fact. Since A is a finite-free K-module, we have A = K™ as K-modules for some
n € N. Consider this n. Since B is a finite-free A-module, we have B = A™ as A-modules for
some m € N. Consider this m. Since B = A™ as A-modules, we also have

B A"~ (K™M)™ (since A =2 K™)
o Knm

as K-modules. Thus, B is a finite-free K-module, qed.
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Lemma 5.2.S.1. Let L be a ring. Consider the polynomial ring L [T as
a subring of the polynomial ring L [T, S]. Let P € L|[T] be a polynomial
such that TS — 1| P in L[T,S]. Then, P = 0.

This is a known and very basic lemma and can be proven, for instance, using the fact
that the inclusion L [T'| — L [T, S] induces an injective map L [T'| — L [T, S] /(TS —1).
But let us give a slightly different proof of this lemma, in the hope that a clever reader
will find a better use for the trick it involves:

Proof of Lemma 5.2.5.1. Since T'S — 1 | P in L[T,S], there exists a polynomial Q) €
LT, S| such that P = (T'S — 1) - Q. Consider this Q.

Let m be the degree of the polynomial P € L [T].

By the universal property of the polynomial ring L [T, S], there exists a unique
L-algebra homomorphism L [T,S] — L[T] which maps 7" and S to T" and T™, re-
spectively. Denote this homomorphism by . Then, ¢ maps T and S to T" and T™,
respectively, so that ¢ (T') = T and ¢ (S) = T™. Since ¢ is an L-algebra homomor-
phism, we have

P51 Q) = | ¢ T)(S)-1 ] (Q) = (TT" = 1p(Q) = (T = 1)-¢ (@)

=T =Tm

On the other hand, ¢ (P) =P [¥ Now,

P=p| P |=0(TS-1)-Q=(T""~1) ¢(@Q).

=(T5-1)-Q

Hence, the polynomial P is a multiple of 7! — 1 in L [T]. Since T™"! — 1 is a monic
polynomial of degree m + 1, this yields that P is a multiple of a monic polynomial of
degree m + 1. But it is known that a multiple of a monic polynomial of degree m + 1
must either have degree > m + 1 or be the zero polynomial. Hence, the fact that P
is a multiple of a monic polynomial of degree m + 1 yields that P has either degree
> m+1 or is the zero polynomial. Since we know that P does not have degree > m+1
(because deg P = m < m + 1), this tells us that P is the zero polynomial. In other
words, P = (0. Lemma 5.2.5.1 is proven. O]

Now let us solve Exercise 5.2. Consider the polynomial ring L [T'] as a subring of the
polynomial ring L [T, S].

m .
8 Proof. Since P € L[T] and deg P = m, we can write P in the foom P = Y 37" for some
i=0
(/807615 76m) € L™+, Thus,

i
m m
p(P) = (Z ,BiTi> = Z Bi (gp (T)) (since ¢ is an L-algebra homomorphism)
i=0 =0\
=T
=> BT =P
i=0
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n

(a) Assume that > a, ;T° = [] (p; + T). This is a polynomial identity, so we can
i=0

i=1
evaluate it at T = S and obtain Y a,, ;5" = [] (p; + S). Thus,
i=0 i=1
Tnzan—iszz\Tn/H(PmLS):HTH (pi + 5) :H (pi +5))
=0 :ﬁ T i=1 i=1 i=1 1:1 —pi T+TS
=1 |»7T+ IS, =[[(T+1) =] (1 +pT)mod(TS—-1).
1=1 =1mod( TSfl) 1=1 1=1
Combined with
T Zan_is :Zani Zan AT T's
=0 =0 —T" T =(TS)'=1¢ mod(T'S—1)
= Z AT = Z T
i=0 i=0
= Z a;T" mod (TS — 1) (here we renamed n — i as i) ,
=0

this yields > a,T% = H (1+ p;T)mod (T'S —1). In other words, T'S — 1 | > a;T" —
1=0 =1 i=0
H (1+p;T). Thus, Lemma 5.2.5.1 (applied to P = > ;7" — [[ (1 +p,T)) yields
i=1 i=0 i=1
that Z a;T" — [] (1 +p;T) = 0. In other words, > a;7" = [] (1 + p;T). This proves
g =1 i=0 i=1
Exercise 5.2 (a).

(b) Assume that > a;7" = [[ (1+ p;T). This is a polynomial identity, so we can
i=0 i=1

evaluate it at 7 = S and obtain Y @;S* = [] (1 + p;S). Thus,
i=0 i=1

Tnzaisi " H 1+ piS —HTH(l‘i‘PiS):H(T(l‘i‘PiS))
=0 _ 12[ T i=1 =1 =1 =1 —T4p;TS
=17+ =1 +p1) =] i+ T)mod (TS —1).
i=1 =1 mod(TS 1) =1 T i=1
Combined with
" Z a; 9" = Z a I" S =Y T T'S" = Z T A L Z a; T
_Tn i =0 :(TS)izlimod(TSfl) =0 =0
= Z an_T"mod (T'S — 1) (here we renamed n — i as i) ,

1=0
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this yields > a,;/T" = [] (p; + T) mod (T'S — 1). In other words, TS —1| > a,_;T"—
=0 i=1 i=0

(pz +T). Thus, Lemma 5.2.S.1 (applied to P = Z an—iT" =T (pi + T)) yields that

=0 i=1
n

Zan T — H (p; +T) = 0. In other words, Z an_iT" = H (p; +T). This proves

Exermse 5.2 (b) B
Ezxercise 5.3: Hints to solution: Exercise 5.3 follows from Exercise 5.1, applied to

instead of P.

:u::]:

Deﬁaz’led solution: By Lemma 5.1.5.2 (a) (applied to Z = K), there exists a polyno-
mial @ € K [T] of degree < deg P — 1 such that P = @ - (T — p). Consider this Q). By
Lemma 5.1.5.2 (b) (applied to Z = K), this polynomial @ is a monic polynomial of
degree N — 1, where N = deg P. Since N = deg P = n, this rewrites as follows: The
polynomial () is a monic polynomial of degree n — 1.

Thus, Exercise 5.1 (applied to @ and n — 1 instead of P and n) yields that there
exists a finite-free extension ring K¢ of the ring K and n — 1 elements py, po, ..., Pr—1

n—1
of this extension ring K¢ such that Q@ = [[ (7" — p;) in K¢ [T]. Consider this ring K¢
i=1
and these n — 1 elements py, po, ..., Pp_1-
Define a further element p,, of K¢g by p, = p. Then, pi, po, ..., p, are n elements of

K satisfying

n—1 n
P = | T - = T —p; T n) — T i
Q p ll (T — pi) Pn) 11 pi)
n—1 =pn - -
= ,1;11 (T—pi) 8

in KQ [T]

Let K = Kg. Then, K} is a finite-free extension ring of the ring K (since Ky is a
finite-free extension ring of the ring K'), and the n elements py, pa, ..., p, of K¢ satisfy
P=1]](T—=p;) in Kp[T] and p = p,. Thus, Exercise 5.3 is solved.

=1

Exercise 5.4: Hints to solution: First here is a rewriting of Exercise 5.2 (b):

Lemma 5.4.S.1. Let L be aring. Let £ € N. Let ag, aq, ..., a; be elements
of L. Let S be a finite set with |S| = ¢. For every s € S, let ps be an
¢
element of L. If > a;7° = [] (1 + p,T) in the polynomial ring L [T], then
i=0

seSs

Z .
2 ar T = T] (ps + 7).
i=0

seES

¢
Proof of Lemma 5.4.5.1. Assume that > ;7" = [ (1 + psT).
=0 seS
Since the finite set S is used only for labelling the elements py, we can WLOG assume

that S = {1,2,...,¢} (since |S| = ¢). Assume this. Then,

14

V4
[[a+pn) = JI G+pn)=]J0+p0) =[]0 +pT)

seS s€{1,2,....0} s=1
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(here we renamed the index s as ¢) and

14

V4
[He.+m= [ G+D)=]]w:+D)=]]:+1)

seS s€{1,2,...,0} s=1 i=1

(here we renamed the index s as 7).
¢ ¢
Now, > a;T" = [[ 14+ psT) = [ (1 + p;T). Hence, Exercise 5.2 (b) (applied to
i=0 ses i=1
¢ ¢
n=1"{)yields > a,;T" =[] (pi +T) = [] (ps +T). This proves Lemma 5.4.5.1. [
i=0 i=1 ses
The next lemma is more or less the statement of our exercise (except for that it has

—af instead of a3, but this doesn’t make that much of a difference):

Lemma 5.4.S.2. Let K be a ring, and L an extension ring of K. Let
n € Nand m € N. Let a and 8 be two elements of L such that « is
n-integral over K and [ is m-integral over K. Then, —af is nm-integral
over K.

Proof of Lemma 5.4.5.2. Since « is n-integral over K, there exists a monic polynomial
P € K [T] such that deg P = n and P («a) = 0 (by the definition of “n-integral”).
Since ( is m-integral over K, there exists a monic polynomial Q € K [T] such that
deg @ = m and Q () = 0 (by the definition of “m-integral”).
Since deg P = n, we can write the polynomial P € K [T] in the form P = >_ ¢, T" for
i=0
some (g, €1, ..., ¢p) € K™, Consider this (cg, ¢1, ..., ¢,). Then, ¢, = (the coefficient of P before T") =

1 (since P is a monic polynomial with deg P = n).
Since deg @ = m, we can write the polynomial ¢ € K [T] in the form @ =

S"dT" for some (dy,dy, ..., d,,) € K™ Consider this (dy,ds,...,d,,). Then, d,, =

i=0

(the coefficient of @ before T™) =1 (since () is a monic polynomial with deg @ = m).

Cn—i, if ¢ S n;

0.ifi>n For every

For every ¢ € N, define an element a; € K by a; = {
0,ifi >m
Let R € K [T] be the polynomial defined by

1 € N, define an element b; € K by b, =

R= Z Prn—i (a1,a2, .., Qi b1, bay oy b)) T

=0

Now we claim that R is a monic polynomial, that deg R = mn and that R (—af) = 0.
Proof. Exercise 5.3 (applied to a and L instead of p and K) yields that there exists
a finite-free extension ring L’» of L and n elements py, po, ..., p, of this extension ring

L', such that P = [[ (T — p;) in L’s [T] and such that o = p,,. Consider this extension
i=1

ring L’» and these elements D1, P2, -, Pn. Denote this extension ring L', by M. All we
need to know about M is that M is an extension ring of L containing py, po, ..., Pn-
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Exercise 5.3 (applied to @, m, 5 and M instead of P, n, p and K) yields that there
exists a finite-free extension ring Mg, of M and m elements g1, gz, ..., g, of this extension

ring Mg, such that Q = [] (T'— ¢;) in M, [T] and such that 8 = ¢,,. Consider this
i=1

extension ring Mg and these elements qi, gz, ..., ¢n. Denote this extension ring M,
by N. All we need to know about N is that N is an extension ring of L (since N is an
extension ring of M, which, in turn, is an extension ring of L) containing py, pa, ..., pn
(because it contains L and because L contains pq, ps, ..., p,) and containing qi, go, ...,

Am-
Let P € K [T] be the polynomial 3" ¢,_;T%. This polynomial P has constant term
i=0

Cn_o = Cn = 1, hence lies in 1 + K [T]7.

Let @ € K [T] be the polynomial > d,,_;T¢. This polynomial é has constant term
i=0
dp—o = d,, = 1, hence lies in 1 + K [T]f

We have Y ¢pomenT" = > ¢;T" = P = [[ (T —m)
=0 N—— =0 =1 VT
=¢i =—pi+

Exercise 5.2 (a) (applied to N, ¢,_; and —p; instead of L, a; and p;) yields that

= [] (=pi +T). Therefore,
i=1

n n

> e =T[Q+(=p)T).

1=0 1=1

Thus,

n

P= ZC’H'Ti =1+ (=p) T) = LN, [=p1, =p2, ey —p0]) -

i=1

—;
—3

(T —q) =
1 N—— i

We have Y dy(m-yT" = > dT" = Q = (—¢; + T). Therefore,
i=0"~——~— i=0

1

K3
=d =—q;+T

Exercise 5.2 (a) (z;plplied to N, m, d,,,_; and —¢; instead of L, n, a; and p;) yields that

m

de,ﬁi =[[Q+(=a)T).

=1

Thus,

m

Q= de_m‘ =JIQ+(=a)T) =T(N, [~q1, — 2. . ] -

=1

Since @ =1I (Na [_QD:QQa ) _QnD and ﬁ =11 (NaL_pla —D2; - _an? we call apply

Theorem 5.3 (¢) tou = Q, v = P.K,=N,K,=N, Ky, = N,u; = —¢g; and v; = —pj.
As a result we obtain

QP=TII[N, |[(=g)(=p;) | G,7)e{1,2,...,m}x{1,2,..n}
=Pjqi

=T1(N, [pja; | (5,5) € {1,2,....m} x {1,2,...,n}]) = 1T (1+p;qT).
(1,5)€{1,2,....,m}x{1,2,...,n}
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Thus, @Aﬁ is a polynomial of degree

deg (@ﬁ) = deg H (1 +p;jaT)

(4,5)€{1,2,....m}x{1,2,...,n}

since Q°P = H (14 p;qT)
(4,5)€{1,2,....m}x{1,2,...,n}
< > deg (1 + p;q;T)
(1,9)€{1,2,....m}x{1,2,...,n} ;’1

since the degree of a product of some polynomials
is < to the sum of the degrees of these polynomials

< > 1={1,2,...m} x {1,2,...,n} = mn

(4,5)€{1,2,... m}x{1,2,....n}

But
4 c ifi<n; ., . Crs, i1 < m:
ZaiTZ b T since a; = me o =
0,ifi >n 0,ifi >n
€N zEN
B n Cp— z,lfl<n +Z Cp— Z,1f2<n TZ
o 0,ifi>n 0,ifi>n
1=0 ~— 1=n+1 _,
=Cpn_i (since i<n) =0
n n
=) T+ Z 0T = ep T =
=0 i=n+1 =0
=0

and similarly > b;T% = Q. Now,

€N

G — - (Z T) - (Z bm) <smce P S ol and G- 3 w‘)

ieN €N ieN ieN

= ZPk (&1,@2, ...,ak,bl, bg, ,bk) Tk
keN

(by the definition of = at the beginning of Section 5).

Hence, for every k € N, we have

(the coefficient of the polynomial @Aﬁ before Tk> = Py (a1,az,...,ax,b1,ba, ..., bg) .
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But since @Aﬁ is a polynomial of degree < mn, we have

mn

@Aﬁ = Z <the coefficient of the polynomial @Aﬁ before T’ k) "
kIO N -~ J/
=Py (ay,a2,..., ak,bl,bg,...,bk)

= X:P]C (al, asg, ..., AL, bh bg, cees bk) Tk
k=0

= ZH- (ay,as, ..., a;,by, by, ..., b;) T" (here, we renamed k as 7).
i=0
Thus,
ZPz'(G1,&27---7@i,b1752a---J%)Ti:@Tﬁ: H (L +pjaT).
i=0

(4,5)€{1,2,....m}x{1,2,....,n}

Define r(; j) to mean p;q; for every (i,j) € {1,2,...,m} x {1,2,...,n}. Then,

> P (ar a, ooy, by, by, o b) T
1=0

= H 1+ Piqi T = H (1 + T(iJ)T)
(4,5)€{1,2,....m}x{1,2,....,n} =ri) (4,5)€{1,2,....m}x{1,2,...,n}

= 11 (1+rT)

s€{1,2,...,m}x{1,2,...,n}

(here, we renamed the index (i,7) as s). Thus, Lemma 5.4.S.1 (applied to N, mn,
P; (a1, az, ..., a;,b1,ba, ... 0;), {1,2,...,m} x {1,2,...,n} and ry instead of L, ¢, a;, S and
ps) yields that

ZPmn,i (al,(lg,...,amn,i,bl,bg,...,bmn,i)Ti = H (7’5+T)
=0

s€{1,2,....m}x{1,2,....,n}

mn
Since Y Pn_i (a1, a2, ..., Gymp—i, b1, b2, ooy by i) T* = R, this rewrites as
i=0

R= I1 (ry+T) = II ragy +T
s€{1,2,.m}x{1,2,...n} (,) €412, m}x{1,2,....n} :p]’;

(here, we renamed the index s as (i, 7))

= H (pjgi +1T).

(i.5)€{1,2,..,m}x{1,2,...n}

Therefore,

R(—aB) = 11 (pja@i + (—aB)). (36)

(4,7)€{1,2,....m}x{1,2,...,n}
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One of the factors of the product on the right hand side of (namely, the one for
(i,5) = (m,n)) is

Pn  QGm + (_aﬁ> = O‘ﬁ + (—Oéﬁ) = 0.

= =p
Hence, the product on the right hand side of is 0. Thus, simplifies to
R(—ap) =0.

Since R was defined by

mn
R = E Pmnfi (al, ags, ..., dmn—i, bl, bg, ceey bmnfz) Tl,

=0

it is clear that the polynomial R has degree < mn, and that the coefficient of R before
" is

Pmnfmn (al, agy ..., dmyn—mn bla bg, PN bmnfmn) = PO ((Il, as, ..., do, bl) bg, ceey bo) = P[) =1

(here we are using the fact that Py = 1; this is very easy to see from the definition of
Py). Thus, R is a monic polynomial of degree mn. Hence deg R = mn = nm.

So we have found a monic polynomial R € K [T] such that deg R = nm and
R (—af) = 0. By the definition of “nm-integral”, this yields that —a/3 is nm-integral
over K. This proves Lemma 5.4.S.2. ]

Now let us finally solve the problem. Let o and S be two elements of L such that
a is n-integral over K and [ is m-integral over K. Then, Lemma 5.4.S.2 yields that
—af is nm-integral over K. Hence, Lemma 5.4.5.2 (applied to nm, 1, —aff and —1
instead of n, m, a and f3) yields that (—af) (—1) is (nm) - 1-integral over K (since —1
is 1-integral over K'). In other words, af is nm-integral over K. This solves Exercise
5.4.

FEzercise 5.5: Detailed solution: (a) Let m be the canonical projection K — K /1.
Then, 7 is a ring homomorphism, and thus induces a canonical ring homomorphism
7 [[T]]) : K[[T)] = (KI)[[T]] (which sends every > ;7" € K [[T]] to > 7 (a;)T" €

ieN ieN
(K,I)[[T]]). The morphism A (7) is merely the restriction of this homomorphism
7 [[T]] to the subset A (K) of K [[T]] (due to the definition of A (7)).

Notice that 1 + I [[T]]" C 1+ K [[T]]" = A (K).

1st step: We have 1+ I [[T]]" C Ker (A (n)).

Proof: Let ¢ € 14+ I[[T]]". Then, ¢ — 1 € I[[T]]" = TI[[T]] C I[[T]]. Thus, we
can write ¢ — 1 in the form ¢ — 1 = _ r,T" for some sequence (rg, 1,73, ...) of elements

i>0
of I. Consider this (rg,ry, s, ...). Clearly, r; € I for every i > 0. Thus, 7 (r;) = 0 for
every i > 0 (because 7 is the canonical projection K — K I). Now, by the definition

of 7 [[T]], we have

(m [[TT)) (Z mTi> = ZwT = ZOT@' = 0.

Since > r;T" = q — 1, this rewrites as (7 [[T]]) (¢ — 1) = 0. Since

i>0

(w[[T)]) (¢ — 1) = (« [[T]]) (q) — 1 (since 7 [[T]] is a ring homomorphism) ,
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this rewrites as (7[[T]]) (¢) —1 = 0. That is, (7 [[T]]) (¢) = 1. Since A (7) is the
restriction of 7 [[T]] to the subset A (K) of K [[T]], and since ¢ € A (K), we have
(A(m)) (¢) = (7 [[T]]) (q) = 1, so that ¢ € Ker (A (7)) (because the power series 1 €
A (K /1) is the zero of the ring A (K /T)).

Now forget that we fixed q. We thus have proven that every ¢ € 1+ I [[T]]" satisfies
q € Ker (A (). In other words, 1+ I[[T]]" C Ker (A (7). This completes the proof
of the 1st step.

2nd step: We have Ker (A (7)) C 1+ T[[T]]*.

Proof: Let ¢ € Ker(A(n)). Then, ¢ € A(K) and (A(7))(q) = 1 (because 1 €
A (K /1) is the zero of the ring A (K /1)).

Since g € A (K) C K [[T]], we can write ¢ in the form ¢ = Y ¢;T" for some sequence

i>0
(g0, q1, qo2, -..) of elements of K. Consider this (qo, g1, q2,...). Then, qo is the constant
term of the power series q.

Sinceq € A(K) =14+ K [[T]]* = {p € K[[T]] | pis a power series with constant term 1},
we know that ¢ is a power series with constant term 1. In other words, the constant
term of the power series ¢ is 1. Since qq is the constant term of the power series ¢, this
yields that ¢o = 1.

Since A (7) is the restriction of 7 [[T]] to the subset A (K) of K [[T]], we have

(A (7)) (¢) = (= [[T]]) (q) = (= [[T]]) (Z QiTi> <Since q= Z%’Ti)
= Z 7 (q) T (by the definition of 7 [[T7]) .

Since (A (7)) (q) = 1, this rewrites as 1 = > 7 (¢;) T".
i>0

Now, let j be a positive integer. Then, the coefficient of 77 on the left hand side

of the equality 1 = > 7 (¢;)T" is 0, while the coefficient of 77 on the right hand side
i>0

of this equality is 7 (g;). Since the coefficients of 77 on the two sides of an equality
must always be equal, this yields that 0 = 7 (g;). But 7 is the canonical projection
K — K /1. Hence, since we have 7 (g;) = 0, we conclude that ¢; € I.

Now forget that we fixed j. We thus have shown that ¢; € I for every positive integer

j. Thus, > ¢;T7 € I[[T]]. Since > ¢;T7 is a power series with constant term 0, we
>0 >0
thus have

quTj c{peI[[T]] | pisa power series with constant term 0} = T [T]] = I [[T]]*.

>0

Now,
=Y qT'=> ¢T"= q T° +> ¢TI €1 +I[I]".

>0 >0 T =1 >0
—_——
eIyt
Now forget that we fixed g. We thus have proven that every ¢ € Ker (A (7)) satisfies
g € 1+ I[[T]]". In other words, Ker (A (x)) € 1+ I[[T]]". This completes the proof
of the 2nd step.
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3rd step: We have proven that 1 + I [[T]]* € Ker (A (7)) and Ker (A (7)) € 1 +
T[[T]]*. Combining these two relations, we obtain 1+ I [[T]]" = Ker (A (7)). This
solves Exercise 5.5 (a).

(b) We know that A (7) is a A\-ring homomorphism (since 7 is a ring homomorphism).
Thus, Ker (A (7)) is a A-ideal of A (K) (by Theorem 2.3, applied to A (K), A (K /1)
and A (7) instead of (K, (A\),y), (L, (1');ey) and f). Since Ker (A (7)) = 1+ I [[T]]"
(by Exercise 5.5 (a)), this yields that 1 + I[[T]]" is a A-ideal of A (K). This solves
Exercise 5.5 (b).

11.6. To Section 6

Ezercise 6.1: Hints to solution: Recall that — denotes the subtraction of the ring A (K)
(that is, the binary operation on A (K) that undoes the addition F). Then, p=q =
for any p € A (K) and g € A (K) (by the definition of the ring structure on A (K)).

For every two subsets U and U’ of A (K), let U=U’ denote the subset {u=v' | u € U, v’ € U’}
of A(K). Now,

1+K[TY) KT N A(K)
N — o ——

_ +
:{g | peK|[T], q€1+K[T]+} Sl

| pel+ KT, qel1+KI[T]"

because two polynomials p € K [T] and ¢ € 1+ K [T]"
satisfy Pe1vk [[T]]" if and only if p € 14+ K [T]*
q

={p=q | pe1+K[TT", ge1+K[1]"}
= (L+K[T7) = (1 +K[T]7).

The subset 1 + K [T]* of A (K) is closed under the addition F, the multiplication ~
and the maps A" (according to Theorem 5.3, since 1+ K [T]" = II (K™)) and con-
tains the zero 1 and the unity 1 4+ 7. Thus, by Exercise 2.2 (applied to A (K) and
1+ K [T]" instead of K and L), we see that (1+ K [T]7) = (14 K [T]") is a sub-A-
ring of A (K). In other words, (14 K [T]+)_1 KI[T]NA(K) is a sub-A-ring of A (K)
(since (1+ K [T]") 'K [T)NA(K) = (14K [T]*) = (1+ K [T]")). This sub-A-ring
is clearly special (since A (K) is special). This solves Exercise 6.1.

FEzercise 6.2: Solution: (a) Consider the map Ar defined in Theorem 2.1. Fix some
x € K. Define amap Y : Z — K [[T]] by

T (n) = A (nx) for every n € Z.
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This map Y is a group homomorphism from the group (Z, +) to the group (K [[T7]™,")
(because every two elements n and m of Z satisfy

T (n)- T (m)= A (nx) - Ar (mz) = A (nx + mzx)

according to the formula Ay (z) - Ar (y) = A\ (x + y)
given in Theorem 2.1 (b)

=Ar ((n+m)x) =T (n+m),

and we have T (0) = Ar (0z) = Ar(0) = 1 by Theorem 2.1 (b)). Thus, T(n-1) =
(T (1))" for every n € Z. Since T (n-1) = T(n) = A\ (nz) and T (1) = Ay (12) =
Ar (z), this rewrites as Ar (nx) = (Ar (z))". Applying this to z = 1k, we obtain

Ar(n-1) = (Ar(1))" = (1 +T)"
(since Ap (1) = 1+ T, because the A-ring K is special)

= Z (ZL) T (by the binomial formula) .
i€N

Comparing this with Ay (n-1) = Y>> X (n-1)T", we conclude that > X' (n-1)T" =
ieN ieN

Y ieN n) T". Comparing coefficients, we obtain A’ (n - 1) = (n) -1 for every i € N.
i

(b) Assume, for the sake of contradiction, that m = 0 in K for some positive integer
m. Then, Theorem 2.1 (a) yields

NS
Vv
m times

m times

=AM (1)"=010+T)" =1+ Z < )TZ +17m (by the binomial formula)

in K [[T]]. On the other hand, Ay (m) = Ay (0) = 1. Contradiction (unless K is the
trivial ring).

Exercise 6.3: Hints to solution: Use Exercise 6.4 or the very definition of special
A-rings together with Exercise 2.1. Do not forget to check that the map Ar is well-
defined.

Exercise 6.4: Hints to solution: Repeat the proof of Theorem 6.1, replacing every
appearance of “x € K7 by “z € E” and every appearance of “y € K” by “y € E”.
You need the fact that Ar is a A-ring homomorphism if and only if it satisfies the three
conditions

Ar (xy) = Ar () Ar (y) for every x € E and y € E,
Ar() =147, and
Ar (N (z)) = N (Ar (2)) for every j e Nand z € E.

This is because the first two of these conditions, together with the preassumptions
that F is a generating set of K as a Z-module and that Ay is an additive group
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homomorphism, are equivalent to claiming that A\ is a ring homomorphism; and the
third condition then makes Ay a A-ring homomorphism (according to Exercise 2.1 (b)).

Ezercise 6.5: Hints to solution: First, the mapping coeff; : A (K) — K is continuous
(with respect to the (T')-topology on A (K) and any arbitrary topology on K), and the
operation A’ is continuous as well (by Theorem 5.5 (d)); besides, the subset 1+ K [T]"
of 1+ K [[T]]" = A (K) is dense (by Theorem 5.5 (a)). Hence, in order to prove that
coeff; (u) = coeff; (XZ (u)) for every u € A (K), it is enough to verify that coeff; (u) =
coeff; <X’ (u)> for every u € 14+ K [T]*. So let us assume that u € 14K [T]". Then,
there exist some ([?u, [uq, ug, ,um]> € K™ such that u = II ([?u, [uy, ug, ,um]>

Consider this (Ku, [uq, uz, ..., um]> Then,

u:H(f(,[ul,uQ,...,um]) —ﬁ(l—i-uiT)—Z Z Huk T
i=1 ieN | KC{1,2,..,m}; keK

|K|=i

<by Exercise 4.2 (b), applied to A = K [[T]], s = u; and ¢ = T)

(S Iw)r

ieN \ KeP;({1,2,....m}) ke K

and therefore coeff;u = > [T wx. On the other hand, Theorem 5.3 (d)
KeP;({1,2,....m}) k€K
yields
keK
= H (1 + H ukT> =1+ Z H uy - T + (higher powers of T) ,

KeP;({1,2,....,m}) keK KeP;({1,2,....,m}) ke K

so that »
coeff; ()\z (u)) = Z H (.
KeP;({1,2,...,m}) keK
Comparing with coeff;u = > IT wk, we get coeff; (u) = coeff; <X’ (u)),
KeP;({1,2,...,m}) k€K

qed.

Ezercise 6.6: Hints to solution: Consider the maps A’ : A(K) — A(K) that we
have defined in Section 5. Theorem 5.1 (b) yields that (A (K), <X1> > is a A-ring.
ieN

Since (K, (X'),.y) is a special A-ring, the map Ay : K — A (K) defined in Theorem 5.6
is a A-ring homomorphism. Also, we know that the ring homomorphism ¢ : K — A

89At this point, we are slightly cheating: This argument works only if the topological space K is
Hausdorff. Thus we are not completely free in choosing the topology on K. However, there are
still enough Hausdorff topologies on K (for example, the discrete topology) to choose from - the
argument works if we take any of them.
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induces a A-ring homomorphism A (¢) : A (K) — A (A). Now, consider the composed
A-ring homomorphism A (¢) o Ar : K — A (A).

1st Step: We claim that coefff oA (p) o Ay = .

Proof. Define a mapping coeff; : A(K) — K for every i € N as in Exercise 6.5.
Then, coeff{ oA (p) = ¢ o coef‘fl (by the definition of A (p)) and coeff; oAy = idg
(by Theorem 8.2). Thus, coeff{’ oA (¢) oAr = ¢ o coeff; oAr = ¢, and the 1st Step is

=ocoeff] =idg
proven.

2nd Step: We claim that if ¢ : K — A(A) is a A-ring homomorphism such that
coeff o = ¢, then @ = A () 0 Ap.

Proof. For every i € N, define a mapping coeff? : A (A) — A by coeff? (Z ajTj) =
jeN
a; for every 3 a;T7 € A (A) (with a; € A for every j € N). (In other words, coeff:
jEN
is the mapping that takes a power series and returns its coefficient before T%.) Then,
Exercise 6.5 (applied to the ring A instead of K) yields coeff? = coeff?! o\, Hence,

coeff;4 op = coeff{ o ANyop = coeff! oZ o = @ o AL
—— ———
=@o\t, =¢
since @ is a
A-ring

homomorphism

But on the other hand,

ff4 oA Ay = ffi oy = o\
coeff;" oA (p) oAp = @ o coeff; oy =po

=wocoeff; by the =\, by the
definition of A(y) definition of Ap

Therefore, coeff? of = coeff oA (p) o Ay for every i € N. Thus, (coeff;4 0@) (u) =
(coeﬂ“;4 oA (¢) o Ar) (u) for every i € N for every u € K. In other words, for every
u € K and for every ¢ € N, the power series ¢ (u) € A(A) and (A () o Ar) (u) have
the same coefficient before 7%. Since this holds for all i € N at the same time, this
simply means that for every u € K, the power series ¢ (u) € A (A) and (A (p) o Ar) (u)
are equal. In other words, ® = A (¢) o Ap, and thus the 2nd Step is proven.

Together, the 1st and the 2nd Steps yield the assertion of Exercise 6.6 (in fact, the
Ist Step yields the existence of a A-ring homomorphism ¢ : K — A (A) such that
coeff‘l4 op = ¢, namely the homomorphism A (¢) o Ay, and the 2nd Step proves that
this is the only such homomorphism).

Ezxercise 6.7: Solution: Let t € I. Since S generates the ideal I, there exists some

r € N, some elements si, s, ..., s, of S, and some elements a1, as, ..., a, of K such
T

that ¢ = ) a;s;. Consider this r, these sy, So, ..., s, and these ay, as, ..., a,.
Jj=1

Consider the map Ay : K — A (K) defined in Theorem 5.6. Since K is a special \-
ring, this map A7 is a A-ring homomorphism. In particular, A7 is a ring homomorphism.

Consider the set 1 + I [[T]]" defined in Exercise 5.5. By Exercise 5.5 (b), this set
L4+ I[[T]]" is a Mideal of A (K), thus also an ideal of A (K).

178



Now, for every j € {1,2,...,7}, we have A\r(s;) € 1+ I'[[T]]". But since

t =3 a;s;j, we have
j=1

t) = Ar ( E ajsj> g Ar (@)~ A (s5)
=1 N
e1+1[T)*+

(since Ay : K — A (K) is a ring homomorphism)

€ ZAT a;) (14 T[TF) €1+ T[T

(since 1+ I'[[T]]" is an ideal of A (K)). In other words, Ay (t) — 1 € I [[T]]* € I[[T]).
Thus, Ar (t) — 1 is a power series with all its coefficients lying in I.
By the definition of Ap, we have Ar (t) = > X (¢) T*. Thus, (the coefficient before T in Ay (t)) =
ieN
A (t) for every i € N.
Now, let ¢ be a positive integer. Then, (the coefficient before T% in Ay (t) — 1) € T
(because Ar (t) — 1 is a power series with all its coefficients lying in I). In view of

(the coefficient before T" in Ay (t) — 1)
= (the coefficient before T* in Az (t)) — (the coefficient before 7" in 1) = X (t),

Vv Vv
=Ni(t =0
® (since i is positive)

this rewrites as X' (t) € I.

Now, forget that we fixed ¢ and 7. We thus have proven that every ¢ € I and every
positive integer i satisfy A’ (t) € I. But due to the definition of a A-ideal, this means
precisely that [ is a A-ideal of K.

Thus, we have proven that [ is a A-ideal of K. Exercise 6.7 is solved.

Exercise 6.8: Detailed solution: (a) For every i € N, the map Coeft; : K [[T]] - K
is a K-linear map (for obvious reasons). In particular, Coeffy is a K-linear map. Now
let us show that Coeffy is a K-algebra homomorphism.

9 Proof. Let j € {1,2,...,7}. By the definition of Ay, we have

si) =2 _XN(s;)T' = X(s)) T° +§ N(s)TH =143 N (s;)T
———
€N - >0 >0
(since A0 (z)=1
for every z€K)

Now, we have assumed that every s € S and every positive integer i satisfy \?(s) € I. Applied
to s = s;, this yields that every positive integer i satisfies X’ (s;) € I. Thus, > A\ (s;)T" € I [[T]).
i>0
Since Y~ A¥(s;)T? is a power series with constant term 0, we thus have
>0
Z)\i (s;)T € {p € I'[T]] | pis a power series with constant term 0} = TI [[T]] = I [T]]*.
>0
Now, Az (s;) =1+ X (s))T" € 1+ I [[T]]", qed.
>0
—_——
eIyt
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The unity of the ring K [[T]] is 1. Hence, Coeff, sends the unity of the ring K [[T]
to Coeffy (1) = 1, which is the unity of K.

Let ¢ € K[[T]] and ¢ € K [[T]] be two power series. Then, by the definition of the
product of two power series, we have

Coeff,, (o) = Z Coeff}, ¢ - Coeff,,_1 9 for every n € N. (87)

k=0

Applied to n = 0, this yields

0
Coeffy () = Z Coeffy, ¢ - Coeffy_;, ¢b = Coefly ¢ - Coeffy ).
k=0

This yields that Coeff, is a K-algebra homomorphism from K [[T]] to K (because we
also know that Coeff( is a K-linear map and sends the unity of the ring K [[T]] to the

unity of K). Hence, Coeff (H @i) = [] Coeffy (®;). This solves Exercise 6.8 (a).
i=1 =1

1=

(b) Exercise 6.8 (a) yields Coeff (H @i) =[] Coefty (®;) = [[1=1.
i=1 i=l—~— =l

Now let us prove that every pu € {0,1,...,m} satisfies -

Coeffl (ﬁ (I)2> = i Coeffl ((I)l) . (88)

i=1
Proof of . We will prove by induction over u:
[l 7
Induction base: If ;1 = 0, then [ ®; = (empty product) = 1 and thus Coeff; <H CIDi)
i=1 i=1

p p
Coeff; 1 = 0, which rewrites as Coeff; (H CIDZ) = > Coeff; (®;) (because for p = 0
i=1 i=1

m
we also have Y Coeff; (®;) = (empty sum) = 0). Thus, holds for 4 = 0. The
i=1

induction base is thus complete.
Induction step: Let M € {0,1,...,m — 1} be such that holds for p = M. We
must prove that holds for yn = M + 1 as well.

M M M

Since holds for y = M, we have Coeff; (H CI%-) = > Coeffy (®;). Let o = [ ¥;
i=1 i=1 i=1
M+1 M

M
and ¢ = ®p;,1. Then, o = (H q)i) Dy = H ®;. Since p = H ®;, we have

=1 1=1 =1

M
Coefty ¢ = Coeff (H QDZ-)

i=1

L

s
I
—

Coeffy (P;) (since Coeffy is a K-algebra homomorphism)

N——
=1

1=1

—-

1

<.
Il
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and
M M
Coeff; ¢ = Coeff (H <I>i> = Z Coeff; (®
i=1 i=1
Since 1) = @y, we have Coeffy ) = Coeffy (Ppr11) = 1 (because Coeffy (®;) = 1 for
every i € {1,2,...,m}). On the other hand, (applied to n = 1) yields

Coeffy () = ZCoeffkgo Coefty i 1 = Coeff( ¢ - Coeff; 1/1 + Coeft; p - Coeffy)

k=0 I I
= 7(I’M+1 :Z Coeff1 (®;) =
i=1
M
= 1- Coeffy (®pr41) + Y Coeffy (¥;) - 1
i=1
M+1
= Coeffy (Ppr41) Z Coeff; ( Z Coeff; (®

M+1 M+1 M+1
Since 90@/1 H ®,, this rewrites as Coeff; ( 1T <I>) > Coeffy (®;). In other

=1
words, holds for p = M + 1. This completes the induction step.

We have thus proven by induction. Applying (88]) to u = m, we get Coeff, <H @i) =
i=1

Z Coeff; (®;). This concludes the solution of Exercise 6.8 (b).

Exerczse 6.9: Hints to solution: Use the fact that u+v = wv, the definition of ~ and
the fact that P, = ay - (1.

Detailed solution: We need to prove that coeff; : A (K) — K is a ring homomor-
phism. In order to prove this, we must verify that

coeffy (1) = (89)
coeff; (utv) = coeffl u + coeff; v for every u € A(K) and v € A(K); (90)
coeff; (1+7T) = (91)
coeff; (u-v) = coeffl u - coeff; v for every u € A(K) and v € A(K). (92)

The equations and are immediately obvious. It thus remains to prove

and (92).

Proof of (90): For every i € N, we define a mapping Coeff; : K [T]] - K as in
Exercise 6.8. Then, clearly,

coeft; P = Coeff; P for every P € A(K) and ¢ € N. (93)

Let u € A(K) and v € A(K). The definition of the addition I yields utv = uv.
Now, u € A (K), so that u is a power series with constant term 1. Hence, Coeffyu = 1.
Similarly, Coeffyv = 1. But the definition of the product of two power series yields

Coeft,, Z Coeff;, u - Coeff,,_r v for every n € N.
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Applying this to n = 1, we obtain

Coeff; (uv) ZCoeffku Coefl;_, v
k=0
= Coeffyu - Coeff; v + Coeff; u - Coeffyv
—— S——
=1 =1
= Coeff;v + Coeff;u = Coeff;u  + Coefl;v
——— \ﬁ/—/
=coeff1 u ff1 v
(by , applied (by , applied
to P=u and i=1) to P=v and i=1)

= coeffy u + coeff; v.

Now, (93)) (apphed to P =wuv and i = 1) yields coeff; (uv) = Coeff; (uv) = coeff; u +
coeff; v. Since utv = uv, this rewrites as coeff; (u+v) = coefl; u + coeff; v. This

proves ([90).
Proof of (99): Theorem 4.3 (b) (applied to n =1 and m = 1) shows that

I[I Q+uvn) =) P(X, X X Y1, Yo, Vi) T
(i.7)e{1} > {1} kEN

in the polynomial ring (Z [Uy, Vi]) [T]. Hence,

DX X XV Ye . V)T = [ A+ UV =1+ AT
keN (1,5)e{1}x{1}

Comparing coefficients before T on both sides of this equality, we obtain P, (X1,Y]) =
UiVi. But we are working in Z[Uy, Vi]; hence, X; = U; and Yy = V. Thus,

P1 X1 s Yi = Pl (Ul,‘/l), so that P1 (Ub‘/l) = P1 (Xl,Yl) = Ul‘/l Since U1
Raliacy

and V; are algebraically independent, this yields P, = a4 /3;.

Now, write the formal power series u € A (K) C K [[T]] in the form u = )
(with a; € K). Hence, coeff; u = a;.

Also, write the formal power series v € A (K) C K [[T]] in the form v = >, b;/T"
(with b; € K). Thus, coeff; v = b;.

From u =Y, ya;T" and v = Y, b;T", we obtain

U = <Z CLZTZ>A<Z blTZ> = Zpk (al,ag, ...,ak,bl,bg, ...7bk) Tk

ieN ieN keN
(by the definition of the operation ™).

a; T‘Z

1€EN

Hence, coeff; (uv) = P; (a1,b1) = a1by (since P, = a1 0;). In view of coeff; u = a; and
coeff; v = by, this rewrites as coeff; (u-v) = coeff; u - coeff; v. This proves .
Now, all of the equalities 7 (190)), and are proven. This completes the

solution of Exercise 6.9.
FEzercise 6.10: Solution: (a) Define a map n: A x B — C by

(n(a,b) = a(a) B (b) for every (a,b) € A x B).
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This map 7 is Z-bilinear (since the maps « and /8 are Z-linear). Thus, the universal
property of the tensor product A ® B shows that there exists a unique Z-module
homomorphism ¢ : A ® B — C satisfying

(¢ (a®b) =n(a,b) for every (a,b) € A x B).

Since 1 (a,b) = a(a) ® B (b) for every (a,b) € A x B, this statement rewrites as follows:
There exists a unique Z-module homomorphism ¢ : A ® B — C satisfying

(p(a®b) =al(a)pB(b) for every (a,b) € A x B).
This solves Exercise 6.10 (a).
(b) We have
d(a®@b)=al(a)pB(b) for every (a,b) € Ax B (94)

(according to the definition of ¢). Applying this to (a,b) = (1,1), we obtain

ol@l) = all) sy =t

(since « is a ring (since S is a ring
homomorphism) homomorphism)

In other words, the map ¢ sends the unity 1 ® 1 of A ® B to the unity 1 of C'.
Next, we claim that

¢ (7)o (y) = ¢ (vy) (95)

foreveryr € A Bandy € A® B.

Proof of @ Let r € A® B and y € A® B. We need to prove the equality .
Since this equality is Z-linear in each of x and y, we can WLOG assume that x and y
are pure tensors (since the Z-module A ® B is spanned by pure tensors). Assume this.
Thus, r =a®band y = o’ @ for some (a,b) € Ax B and (¢/,V') € A x B. Consider
these (a,b) and (', V).

Multiplying the equalities x = a®b and y = o’ ®V', we obtain zy = (a ® b) (a’ @ V') =
aa’ ® bb'. Applying the map ¢ to both sides of this equality, we find

¢ (zy) = ¢ (ad’ @ bb')

B , , by (94), applied to (ada’,bb')
N w ﬂlib_l ( instead of (a,b)
=a(a)a(a) =B(b)B(b")

(since « is a ring (since 3 is a ring
homomorphism) homomorphism)

— ala)a(d) BB BY) = ala) Bb)a(d) B ).

Comparing this with

ol ol | =¢lsd) o@at) =algibald)sE),
=ash =a' @b =a(a)B(b) =a(a)B(V)

(by (94)) (by , applied to
(a’,b") instead of (a,b))

we obtain ¢ (z) ¢ (y) = ¢ (xy). Thus, is proven.
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Now, we know that the map ¢ is Z-linear, sends the unity 1 ® 1 of A ® B to the
unity 1 of C', and satisfies for every r € A® B and y € A® B. In other words, ¢
is a Z-algebra homomorphism. In other words, ¢ is a ring homomorphism.

Every a € A satisfies

(¢ou)(a) =¢ v (a) =¢(a®l)=ala) (1)
=a®1 =1
(by the dggfi)tion of ¢1) (since Bisa ring

homomorphism)

(by (94), applied to (a,1) instead of (a,b))
=a(a).

In other words, ¢pot; = a. Similarly, ¢pois = . This completes the solution of Exercise
6.10 (b).

Ezercise 0.11: Solution: The definition of 7y shows that 70 : A® B -+ A(A® B) is
a Z-module homomorphism satisfying

( 7r (6@ b) = (A (1) 0 Ar) (a) (A (12) 0 pir) () ) | (96)

for every (a,b) € Ax B

For every i € N and every ring K, we define a mapping coeff; : K [[T]] - K as in
Exercise 6.5. For every two rings K and L, every ring homomorphism f : K — L and
every 7 € N; we have

coeff; oA (f) = f o coeft; (97)

I (This follows from the definition of A (f).)
For every ring two rings K and L, every ring homomorphism f : K — L and every
P e A(K), we have

(A () (P) = (fIT]]) (P). (98)

(This follows from the fact that the definitions of the maps A (f) and f [[T]] are iden-
tical, except for the different domains.)

For every ¢ € A® B and ¢ € N, we have defined 7 (¢) as the coefficient of the power
series 77 (¢) € A (A® B) C (A® B) [[T]] before T*. In other words, for every c € A®Q B
and ¢ € N, we have

7" (¢) = coeff; (77 (¢)) . (99)
Thus, .
7" = coeff; oy for each i € N (100)
911n other words, the diagram
AK) 2250 (1)
K T> L

is commutative.

184



i

For every x € A ® B, we have

() =Y 7 ()T (101)

ieN
&
(a) We have
O (z)=1 for every x € A® B (102)
P Also,
z) =2 for every x € A® B (103)

| Thus, Theorem 2.1 (a) (applied to A® B, (77),.y and 77 instead of K, (A'),.y and
Ar) shows that we have

T (z) - 70 (y) = 71 (x + ¥) for every r € A Band y € A® B (104)

if and only if (A® B, (7%),cy) is a A-ring. Thus, (A ® B, (7'),oy) is a A-ring (because

92 Proof of (100): Let i € N. Then, every c € A® B satisfies

T (c) = coeft; (71 (c)) (by )
= (coeff; orr) (¢) .

In other words, 7° = coeff; or. This proves .

93 Proof of : Let z € A® B. Recall that for every ¢ € A® B and i € N, the coefficient of the
power series 77 (¢) € A(A® B) C (A® B)|[[T]] before T" is 7% (c¢). Applying this to ¢ = =, we
conclude that for every ¢ € N, the coefficient of the power series 77 (z) € A(A® B) C (A® B) [[T]]
before T" is 7 (). Hence, 7 (x) = ;7" (2) T*. This proves

9 Proof of (103): Let + € A® B. Then, 77 (z) € A (A® B) (since 77 is a map A® B — A(A® B)).
Hence, 77 (z) is a power series in (A ® B) [[T]] with constant term 1 (since A (A ® B) is the set of
all such power series). Hence, the constant term of 77 (x) is 1. In other words, coeffy (7r (z)) = 1.
But applied to ¢ = x and i = 0) yields 7° (x) = coeffy (77 (z)) = 1. This proves .

9 Proof of : We have 7! = coeff; orr (by , applied to i = 1).

Exercise 6.5 (applied to K = A ® B) shows that coeff; : A(A® B) - A® B is a ring
homomorphism. Hence, coeff; : A(A® B) - A ® B is a Z-module homomorphism. Thus,
coeff; o7p : A® B — A® B is a Z-module homomorphism (since both coeff; and 7 are Z-module
homomorphisms). In other words, 7! : A® B —+ A ® B is a Z-module homomorphism (since

7! = coeff; orr).

185



holdd™)). This solves Exercise 6.11 (a).

(b) Let (C,(v'),cy) be a special Aring. Let a : (A, (\),.y) — (C, (V'),y) and
B (B, (1);en) = (C,(¥");ey) be two A-ring homomorphisms. Consider the unique
Z-module homomorphism ¢ : A ® B — C constructed in Exercise 6.10 (a). The
definition of ¢ shows that

(p(a®b) =a(a)(b) for every (a,b) € A x B). (105)

Moreover, Exercise 6.10 (b) shows that this ¢ is a ring homomorphism and satisfies

Every (a,b) € A x B satisfies

7' (a ® b) = coeff; 7 (@ ®b) < by (9. appllgd foc=a®b )
N—_—— and 1 =1
=(A(e1)oAT)(a)(A(2)opuT) (D)
(by (96))

= coeffy (A (¢1) o A7) (a)~ (A (¢2) o ur) (b))
= coeffy ((A (1) 0 Ar) (@) - coeffy ((A (t2) o pr) (b))

=(coeff1 oA(1))(Ar(a)) =(coeff1 oA(e2))(pr (D))
(since coeff; : A (A® B) - A® B is a ring homomorphism)
- (coeff; oA (11)) (Ar () - (coeff1 oA (12)) (ur (b))
~—_— —_——
=ty 0coeff; =1q0coeffy
(by (©7), applied to K=A, L=A®B, (by (©7), applied to K=B, L=A®B,
f=t1 and i=1) f=t2 and i=1)
= (11 0 coeffy) (A7 (a)) - (12 © coeffy) (ur (b))
=t1(coeff1 (Ar(a))) =tz (coeffy (nr (b))
=1u coeff; (A7 (a)) “lg coeffy (ur (b))
—_—— —_———
=) =u'®)
(since /\T(U«):%)\l(a)Tl (since “T(b):%Hl(b)Tl
(by the definition of Ar)) (by the definition of ur))
=u A (a) “l2 pt (b) = ul@g - w0
—— —— ~—— ~—~—
(si (:a(,\i) ) gy ® the Aofinit b the dofmit
since N ) since T Yy € delnition Yy e demnnition
is a Moring) o (i(g) of 1) of 12)

=(@®1) - (1®b)=a®b=id(a®Db).

In other words, the two maps 7' : A® B+ A® B andid : A® B — A® B are equal to each
other on each pure tensor. Since these two maps are Z-module homomorphisms, this entails that
these two maps must be identical (because the pure tensors span the Z-module A ® B). In other
words, 71 = id. In other words, 7! (z) = x for every x € A ® B. This proves .

96 Proof of : Let € A® B and y € A® B. Recall that the addition F of the ring A (A ® B) is
defined by the rule that utv = uv for all u € A (A® B) and v € A (A ® B). Applying this rule to
uw =77 (z) and v = 77 (y), we obtain 77 (z) ¥7r (y) = 77 (z) - 77 (y). Thus,

7 (x) - 71 (y) = 71 (@) F70 (y) = 71 (2 + W)
(since the map 77 is a Z-module homomorphism). This proves (104).
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ooty = aand poiy = . Since ¢ : A® B — (C is a ring homomorphism, we
see that A(¢) : A(A® B) — A(C) is a A-ring homomorphism and therefore a ring
homomorphism.

Since A is a functor, we have A (¢)oA (11) = A | pou; | = A(a) and A(p)oA (12) =

=«

A gbOLQ :A(ﬁ)
——

=8
Define a map vy : C — A (C) by

vr (x) = Z V' (z) T for every x € C.
ieN

Notice that (C, (V'),oy) is a special A-ring if and only if the map vy : (C, (V)),oy) —
(A (), (/)\\Z> ) is a A-ring homomorphism (by the definition of a “special A-ring”).
ieN

Thus, the map v : (C, (Vi)ieN) — <A (C) ’ (/)\\i)ieN

(C’, (V%) ieN) is a special A-ring). In particular, vr is a ring homomorphism, and thus
is a Z-module homomorphism. Thus, all four maps 77, ¢, vr and A (¢) are Z-module
homomorphisms. Hence, the compositions A (¢) o 77 and v o ¢ are Z-module homo-
morphisms as well.

Theorem 2.1 (c) (applied to (A, (X),.y), Ar, (C,(V'),ey), vr and « instead of
(K, (AY;en)s Ary (L, (1);en)s pr and f) shows that « is a A-ring homomorphism if
and only if vy o = «[[T]] o Ap. Since « is a A-ring homomorphism, we therefore
conclude that

) is a A-ring homomorphism (since

vroa = al[T]] oM. (106)

Similarly, using the fact that g is a A-ring homomorphism, we can prove that
vro B = BT o pir. (107)

Now, we shall prove that the diagram

A9B—2 ¢ (108)

A(A® B) 5= A (C)

1s commutative.
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Indeed, every (a,b) € A x B satisfies

(A(p)orr) (a®D)

= (A(9)) 7 (a ® D)

=(A(t1)oAr)(a)(A(e2)opT)(b)
(by (96))

= (A(¢)) (A (1) 0 Ar) (@)~ (A (r2) © pir) (b))
= (A(9) (A (1a) 0 Ar) (@)~ (A (9) (A (e2) © pir) (b))

—~ —~

:(A( )OA(U)O)‘T)( ) =(A(p)oA(2)our)(b)
(since A (¢) is a ring homomorphism)
=A@ oA(y o/\T> )o A(LQ) our | (b)
a,_/
f/\(a) =A B)
= Yo Ar) ( a)/ - \A B)o ,u,T) (b)
*(A(a) ()\T —(A(B)) (ur (1))
= 3 (M a) =BT (pr (b))
(by (98), applied to (by l%h applied to

K=A, L=C, f=o and P=Ar(a)) K=B, L=C, f=8 and P=ur(b))

= (a[T]]) Az (@)= (BIITT)) (ur (0)) = (a[TT]] 0 Ar) (@)~ (B [[T]] © pr) ()

N

=(a[[T]]eAr)(a) =(Bl[Tepr)(b) (bj”) (bjl’)
— (vroa) () (vr 0 B) (b) = vr (o (a))wr (B (1))
—vrla()  =vr()
=vr | a(a)B(b) (since vr : C' — A (C) is a ring homomorphism)
—_—
=¢(a®b)
WII

=vr(¢(a®@b)) = (rrod)(a®b).

In other words, the two maps A (¢) o 7p and vr o ¢ are equal to each other on each pure
tensor in A® B. Since these two maps are Z-module homomorphisms, this entails that
these two maps must be identical (since the Z-module A ® B is spanned by the pure
tensors). In other words, A (¢) o 77 = vp o ¢. This proves that the diagram is
commutative.

From this, it is easy to see that

vro¢=¢[[T]]orr
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Now, Theorem 2.1 (c) (applied to (A ® B, (7%),cy), 71, (C, (V")) vr and ¢ instead
of (K,(A\);en), Ary (L, (1);en)» por and f) shows that ¢ is a A-ring homomorphism if
and only if v o ¢ = ¢ [[T]] o 7r. Therefore, ¢ is a A\-ring homomorphism (since we have
vro¢ = ¢[[T]] o). This solves Exercise 6.11 (b).

(c) Assume that the A-rings (A, (A\),.y) and (B, (u'),cy) are special. Notice that
(A, (\"),oy) is a special A-ring if and only if the map Ap : (A, (A),cy) — (A (A), (}\)) )

ieN
is a A-ring homomorphism (by the definition of a “special A-ring”). Thus, the map
Ar: (A, (AN),en) — (A (A), <X2> ) is a A-ring homomorphism (since (4, (X)), y) is
i€N
a special A-ring). In particular, Ay is a ring homomorphism. Hence, A\ sends the unity
1 of the ring A to the unity 1 + 7" of the ring A (A). In other words, Ar (1) =1+ T.
Similarly, pi (1) = 1 + T (because the A-ring (B, (11'),oy) is special).

But ¢5 is a ring homomorphism, and thus A (.2) is a A-ring homomorphism. Hence,
A (12) is a ring homomorphism. Thus, A (12) sends the unity 1+ T of the ring A (B) to
the unity 1 + 7" of the ring A (A ® B). In other words, (A (12)) (1+7) =1+T. Now,

(A (e2) o pr) (1) = (A (e2)) | pr (1) | = (A(12)) A+ T) =1+ T (109)

=1+T

Now, we claim that
tr oty =1 [[T]] o Ar (110)

Proof of (110): Let a € A. Then, Ar (a) € A(A). Hence, (applied to K = A,
L=A®B, f=1 and P = Ar (a)) yields

(A (1)) (Ar (@) = (u [[TT]) (Ar (@) = (e [[TT] © Ar) (a) .

But the definition of ¢; yields ¢; (a) = a ® 1. Now,

(rrou)(a)=1r|u(a) | =rr(a®1)=(A(u)oAr)(a)-(A(w)opr) (1)
——

N

=(A L1V>\ a :YT
Gl o @)
(by (96), applied to (a,1) instead of (a,b))
= (@ [[T]] 0 Ar) (@)~ (1 +T) = ( [[T]] 0 Ar) (a)
(since 1 4+ T is the unity of the ring A (A® B)).

=a®1

9 Proof. Every x € A ® B satisfies

(vrog)  (z)
——
=A(¢)oTr

& commutative)

= (A (@) orr) (x) = (A(9)) (7 () = (¢ [[T]]) (7r ()
(by (3), applied to K = A® B, L=C, f = ¢ and P = 77 (z))

= (¢[[T]orr)(x).

Hence, vr o ¢ = ¢ [[T]] o 71, qed.
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Now, forget that we fixed a. We thus have shown that (77 o ¢1) (a) = (¢1 [[T]] o A1) (a)
for every a € A. In other words, 77 0 t; = ¢1 [[T]] o Ay. This proves ([110).

Now, Theorem 2.1 (c) (applied to (A, (X)), M, (A® B, (7%),cy), 7r and ¢1 in-
stead of (K, (A"),cn), Ay (L, (1');en), e and f) shows that ¢ is a A-ring homomor-
phism if and only if 77 0 1y = ¢ [[T]] o Ar. Therefore, ¢; is a A-ring homomorphism
(since we have 7r o t; = 1 [[T]] o Ar). Similarly, ¢5 is a A-ring homomorphism. This
solves Exercise 6.11 (c).

(d) Assume that the A-rings (A, (\),.y) and (B, (1');oy) are special. Notice that

(A, (\),ey) is a special A-ring if and only if the map Ap : (A, (X)) — (A (A), (XZ> N)
ic

is a A-ring homomorphism (by the definition of a “special A-ring”). Thus, the map

A (A, ()\i)ieN) — (A (A), (X’) N) is a A-ring homomorphism (since (A, ()\i)ieN) is

ic
a special A-ring). Similarly, the map pr : (B, (,ui)l.eN) — <A (B), (XZ)
homomorphism.
The map ¢; : A — A®B is aring homomorphism; thus, the map A (¢1) : (A (A), (XZ> ) —
ieN

(A (A® B), (X’) N) is a A-ring homomorphism. Hence, A (11) 0 Ay : (A, (\),cy) —

ic

(A (A® B), <X1> N) is a A-ring homomorphism (being the composition of the two A-
ic

ring homomorphisms Ay and A (¢1)). Similarly, A (e2)opr = (B, (1'),en) — (A (A® B), (X’) N)
ic

) is a A-ring
ieN

is a A-ring homomorphism. Also, (A (A® B), <X2> N) is a special A\-ring (by Theorem
ic

6.2, applied to K = A®DB). Therefore, Exercise 6.11 (b) (applied to (A (A® B), (XZ> ‘eN)’

A (1) oA, A (1) o pur and 77 instead of (C, (v'),.y), @, # and @) shows that the unique
Z-module homomorphism ¢ : A ® B — A(A® B) constructed in Exercise 6.10 (a)
(applied to C = A(A® B), a = A(11) o Ay and 5 = A(i2) o pur) is a A-ring ho-
momorphism (A ® B, (7%),.y) — (A (A® B), (:\\z> N). Since this unique Z-module
homomorphism ¢ : A® B - A(A® B) is our malg 7r (because this is how we de-
fined 7r), we can rewrite this as follows: The map 77 is a A-ring homomorphism

(A4® B, (")) = (A(A®B), (X) ).
But the A-ring (A ® B, (77),.y) is special if and only if the map 77 : (A ® B, (7%),.y) —
<A (A® B), <3\\’> ) is a A-ring homomorphism (by the definition of a “special \-

€N

ring”). Thus, the A-ring (A ® B, (7),.y) is special (since the map 77 : (A ® B, (7%),.y) —
<A (A® B), (X)

is a A-ring homomorphism). This solves Exercise 6.11 (d).

€N

11.7. To Section 7

Ezercise 7.1: Hints to solution: See the more general Exercise 7.2.
Exercise 7.2: Hints to solution: Repeat the argument used in the proof of Theorem
7.3.
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11.8. To Section 8

FEzercise 8.1: Solution: We need to prove that coeff; : A (K) — K is a ring homomor-
phism. In order to prove this, we must verify that

coeff; (1) = (111)
coeff; (utv) = eff1 u + coeff; v for every u € A (K) and v € A(K); (112)
coeff; (1+7T) = (113)
coeff; (u-v) = Coeff1 u - coeffy v for every u € A(K) andv € A(K). (114)

The equations (111)) and are immediately obvious. In order to verify the equa-
tions and - we notice that coeff; : A(K) — K is a continuous mapping
(with respect to the (T')-topology on A (K) and any arbitrary topology on K) and
the operatlons T and < are continuous as well (by Theorem 5.5 (d)), and the subset
1+ K[T)" of 1+ K[[T]]* = A(K) is dense (by Theorem 5.5 (a)), so it suffices to
verify the equations (112)) and (114) for u € 1+ K [T]" and v € 1 4+ K [T]" only. So
let w14+ K[T] " andvel+ K[T]".

Then, there exist some (I?u, [uy, us, ..., um]> € K™ such that v = II <}~(u, [y, ug, ..., um]>,

and some (Kv, [v1, V2, ...,vn]> € K™ such that v =11 (IN(U, [v1, Vg, ..., vn]> Obviously,

m

u=1I (K, [u1, usg, ,um]> = H (14+uwT)=1+ Zul - T + (higher powers of T')

i=1 =1

yields coeff; u = ) w;. Similarly, coeff; v = )" v;.
=1 j=1

By Theorem 5.3 (a), there exists a finite-free extension ring K, , of K which contains
both K, and K, as subrings. Theorem 5.3 (c) yields

u/-\vzﬂ(f(um,[uivj | (i,5) € {1,2, ..,m} x {1,2,...,n}]) - I1 (1 + u;T)
(4,5)€{1,2,....m}x{1,2,....,n}
=1+ Z w;v; - T + (higher powers of T),
(3,5)€{1,2,....m}x{1,2,....,n}
and thus
coeffy (uv) = Z (ORES Z Z UV = Zuz Z v; = coefl; u-coeft; v,

(4,5)€{1,2,....m}x{1,2,...,n} i=1 j=1 i=1 j=1
——

=coeff u —coeff1 v

so that ([114) is proven.

98 At this point, we are slightly cheating: This argument works only if the topological space K is
Hausdorff. Thus we are not completely free in choosing the topology on K. However, there are
still enough Hausdorff topologies on K (for example, the discrete topology) to choose from - the
argument works if we take any of them.
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Besides,

uFv =uw =11 (I?u, [uy, usg, ,um]> <11 (l?v, [v1, Vo, ...,vn]>

:ﬁ(1+ul ﬁ (1+v,T _1+<Zul+2v]> T + (higher powers of T'),
i=1 j=1

and consequently

coeff; (u?—v) = ZU" + Zvj = coeff; u + coeff; v,

i=1 7=1
S——" N——
=coeff1 u —coeffy v

and is proven. Thus, coeff; : A (K) — K is a ring homomorphism, and Exercise
6.9 is solved again. Thus, Exercise 8.1 is solved.

Ezercise 8.2: Hints to solution: Let y = 2=. We proceed as in the proof of Theorem
8.3 (b), except that we don’t know that Ar (y) = I (K, [y]) and thus cannot conclude
anything from this. Instead, zy = z2~! = 1 yields

since Ay : K — A (K) is a ring homomorphism,
and 14 T is the multiplicative unity of A (K)

=14 2yT =11 (K, [zy]) =11 (K, [z])" 11 (K, [y]) (by Theorem 5.3 (c))
=Ar ()~ (1+yT).

Together with Ar (xy) = A (2)“Ar (y), this yields A ()" Ar (y) = Ar ()~ (1 4+ yT'), so
that Ay (y) = 1+ yT (since A\r (z) € A (K) is invertible, because x € K is invertible
and A\r : K — A (K) is a ring homomorphism), and Theorem 8.3 (a) yields that y is
1-dimensional, qed.

FEzercise 8.3: Hints to solution: We notice first that every € E' is 1-dimensional (by
the assumption on E). Thus, for every x € E, we have A\r (z) = 1 + 2T (by Theorem
8.3 (a)). Thus, for every z € E, the element Ay (x) of A (K) is 1-dimensional (since
Theorem 8.3 (c) shows that the element 1 + 27 of A (K) is 1-dimensional). In other
words, for every z € E, we have \J (Ar (z)) = 1 for every integer j > 1 (since 1 is the
zero of the ring A (K)). Hence, for every z € E, we have

A (zy) = Ap (1) = 14T

. 1+ 7T, if j =0;
N (Ar(x) =1 Ap(x), ifj=1, for every j € N. (115)
1, ifj>1

On the other hand, every z € E is 1-dimensional. In other words, every x € F
satisfies M (z) = 0 for every integer j > 1. Hence, every x € FE satisfies

} 1, if 5 =0;
MN(x)=<¢ z, if j=1; for every j € N. (116)
0, ifj>1

We want to show that the A-ring (K, ()\i)ieN) is special. According to Exercise 6.4,
we only have to prove that and hold. This is equivalent to showing that

Ar (xy) = Ar () Ar (y) for every x € F and y € E, and
Ar (N (z)) = N (Ar () forevery je Nandz € £
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(because of the definitions of = and M and since two formal power series are equal if
and only if their respective coefficients are equal). But this is true, since

Ar (zy) = 1+ ayT (since xy is 1-dimensional (by Theorem 8.3 (b)))
T, [r]) = TH(K, ) TU(K, [y)  (by Theorem 5.3 (c))
=(1+4+2T) - (14+yT) = Ar (z)"Ar (y) (since z and y are 1-dimensional)

for every x € E and y € F, and since

A (¥ (2))
1, if 7 =0;
T A= (by (II6))
0,ifj>1
)\T(l lf]_O 1+T, lfj:(), ' B
= )\T(x), ifj=1;, =< Ar(2), ifj=1; <smce5\ii\(1()0)__1;_T)
Ar(0), ifj>1 1,ifj>1 and Ay (0) =

(
=\ (Ar (7)) (by )

for every j € Nand z € E.

11.9. To Section 9

Ezercise 9.1: Hints to solution: As before, we use the > sign for summation inside
the ring A (K). We remember that the addition inside the ring A (K) was defined by
utv = uv for any u € A (K) and v € A (K) (iE\other words, addition in A (K) is the
multiplication inherited from K [[T]]), so that > = ]][. Now,

—_—
m m

u=1TI (Ku, [u1, us, ...,um]> = H (14+u,T) = Z (1+u,T).

i=1 i=1

But since 1 + «;T" is a 1-dimensional element of A < ) for every i € {1,2,...,m} (by

Theorem 8.3 (c)), Theorem 9.4 (applied to 1 + u;T" and A (KU) instead of u; and K)
yields

where (1 + uiT)? means the j-th power of 1+ w;T in the ring A ([?u> (in other words,

(14 uTY = (14 uT)~(1+ ulT) “(1+w;T), as opposed to
i tlmes

(14 wT) = (1 +u;T) - (14 u;T) - ...- (1 +wT) which is the j-th power of 1+ u;T" in
jt?r;es

the ring K, [[T])).
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1 3 (1)) - 5 R 4)

=1 ~~
=T1(Ky,[wl]) by
Corollary 5.4 (b)
=1I <I?u, [u{,ug, ,u%]) (by Corollary 5.4 (a)).

FEzercise 9.2: Hints to solution: (a) It is easy to see that the map sends the zero
1 of A(K) to the zero 0 of K and the multiplicative unity 1 + T of A (K) to the
multiplicative unity 1 of K. So it only remains to prove that any two power series
u € A(K) and v € A (K) satisfy

. d ~ i d i d
(—1)" Coeff; <_Tﬁ log (u—l—v)) = (—1)" Coeft; (_Tﬁ log u>+(—1) Coeff; ( TdT 1ogv)

(117)
and

(—1)" Coeft; (— d—Tlog (u- v)) =(—1) Coeffz( a7 logu) (—1) Coeffl( TdT logv)

(118)
This needs to be verified for v € 1 + K[T]" and v € 1 + K [T]" only (since the
operations + and = and the mapping

AK)— K,

; d
u — (—1)" Coeft; (—Td—T log u)

are continuous (where the topology on K can be chosen arbitrarily), and 1 + K [T]"
is a dense subset of 1 + K [[T]]" = A(K)) . So let us assume that v € 1 +

K[T)" and v € 1 + K[T]". Then, there exists some <I?u, [ul,ug,...,um]> € Kint
such that u = II (l?u, [uq, uz, ,um]> and some (l?v, [v1, Vg, ...,vn]> € K™ such that
v=1II <IN(7J, [v1, va, ...,vn]>. Then, Theorem 5.3 (c) yields that

o =11 (fé wev; | (6,5) € {1,2,..,m} x {1,2, ...,n}])

(here, we renamed the index ¢ as ¢ in Theorem 5.3 (c), because we are already using
the label ¢ for a fixed element of N\ {0}).

Now,

u=1II ([?u, [u1, ug, ,um]> = H (1 +u,T)
k=1

99At this point, we are slightly cheating: This argument works only if the topological space K is
Hausdorff. Thus we are not completely free in choosing the topology on K. However, there are
still enough Hausdorff topologies on K (for example, the discrete topology) to choose from, and
the argument works if we take any of them.
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entails

d m
k:l
- d o
= Z H (1 4+ wT) - I (1+u,T) (by the Leibniz rule)
=1 ke{1,2,...m\{7} —_—
k=1
I R T
-3 TTa+wn RO
and thus
d
- T—1
ar 8"
d o Ur
—U Z m m
dT =1 1+ UT -1
=-T T A
(2 Tz —|— u T ; L+ uwT)
=2 (cu))_ (-1) =22 () = S IDIE
T=1 peN =1 peN 7=1 {eN\{0}
=2 ) (WwT= 5, (e
7=1 ;eN\{0} 1eN\{0} T=1
d ;I
so that Coeff; <— ﬁlog u) (—1)° Z " (because i € N\ {0}). In other words,
) d m - ~
(—1)" Coeff; (_Td_T log u) Z Similarly, v = 1II (KU, [v1, Vg, ...,vn]> yields
(—1)° Coeff; (— diT logv) Z ;and uv =11 (I?W,, [wev; | (€, 7) € {1,2,...,m} x {1,2, ...
yields (—1)" Coeff; <— —log (u- v)) =3 3 (u,v,)". Thus,
T=10=1
(—1)" Coeft; <_Td_T log (uv)) = ; 2 (Urvy)' = ;;uT%
SRS U o
=1 o=1

= ' Coeff; T—d 1 =(—1)% Coeff; —d 1
=(—1 g (6] ogu = 1 H o€ =T og v
(-1) T g (=1 T g

i d i d
= (—1)" Coeft; (_Tﬁ log u) - (—1)" Coett; (_Tﬁ log v) :
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and is thus proven. Similarly we can show . This completes the proof.

(b) Using Exercise 9.2 (a), we can easily prove the following fact:

Assertion F: If (K, (\),.y) is a special A-ring, then, for any i € N\ {0}, the i-th
Adams operation ¢’ : K — K is a ring homomorphism.

This assertion is a part of Theorem 9.3 (b).

In order to prove Assertion F using Exercise 9.2 (a), we proceed as follows:

Every x € K satisfies

Z V() T = Yy (z) = _TdiT log A\_r (2) (by Theorem 9.2 (b)),
iEN\{0}

what (upon the substitution of —T" for T') becomes

iGNZ\;O} W (2) (=T = — (=T) y (fT) log \_(_7) () = —TdiT log At (2)

. . d
what rewrites as Y. (=1)"¢' (2)T" = —T——log A\r (). Hence, for every x € K
ieNV{0} dT

o d
and ¢ € N\ {0}, we have (—1)"¢"(x) = Coeff; (—Td—T log Ar (x)) and therefore

' (z) = (—1)" Coeff; (_Td_T log A\r (m))
Now fix i € N\ {0}. We have shown that every = € K satisfies

. . d
P (x) = (—1)" Coeff; (| —T— log Ar (x) | .
dT
In other words, the map " is the composition of the map Ay : K — A (K) (which is
a ring homomorphism, since the A-ring (K, (\"),oy) is special) with the map

ANK)— K,

u — (—1)" Coeft; (_TdiT log u)
(which is a ring homomorphism according to Exercise 9.2 (a)). Thus, ¢’ is a ring
homomorphism (since the composition of two ring homomorphisms is a ring homomor-
phism). This proves Assertion F.

FEzercise 9.3: Hints to solution: (a) We have solved Exercise 9.3 (a) in the 2nd step
of the proof of Theorem 9.5 (with the only difference that the index of summation
that was called ¢ in Exercise 9.3 (a) was denoted by j in the 2nd step of the proof of
Theorem 9.5).

(b) We will prove the equation n!\" (z) = det A, by induction over n.

The base case, n = 0, is trivial (for 0! = 1, A\° (z) = 1, and the determinant of a 0 x 0
matrix is 1 by definition). If you do not believe in 0 x 0 matrices, the n = 1 case is
trivial as well (since A! (z) = z and 9! (z) = 2 by Theorem 9.3 (a)["’) and can equally
serve as a base case. The interesting part is the induction step.

100Here we are using the fact that Theorem 9.3 (a) holds for every A-ring (K , ()\i)i eN) (not only for

special ones). This is very easy to see (but not really necessary because, as I said, we can just as
well take n = 0 for the base case).
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For this step, we develop the determinant of the matrix A, along the n-th row. We
obtain

det A, = Xn: (—=1)"F R () - det <An {N—kD , (119)

~ T
k=1

~n
k-th column.

~k
where A, [—} is the matrix obtained from A, by removing the n-th row and the

01 (composed

~n
of four blocks), with the left upper block (of size (k — 1) x (k — 1)) being equal to
Ag_1 and the right lower block (of size (n — k) x (n —k)) being a lower triangular
~k
matrix with the numbers k, £+ 1, ..., n—1 on its diagonal. Hence, det (An {—]) =
~n
det Ag_1-(k(k+1)...(n—1)) (since the determinant of any block-triangular matrix is
known to equal the product of the determinants of its diagonal blocksf'ED. Since we are
proceeding by induction over n, we can take det Ay_; = (k — 1)I\*=1 (z) for granted
(since k — 1 < n), and thus obtain

~k
Now, the matrix A, [—} turns out to be a block-triangular matrix

det (An [N—kD —det Ay - (k(k+1) . (n—1)) = (k = DN (@) - (k(k+ 1) .. (n — 1))

= Sk D (k(k+1D) . (n=1)) N (@) = (n— 1) - N (2).

J

~\~

=(n—1)!

Thus, (119) becomes

det Ay = > (=1)" "y (2) - (n = 1)1 N ()

=(n =11y ()" " (@) A ()

= (=1 ) (1) (@) (@)

i=1

J

~~

—nAn(2) by (a)
(here we substituted i for n — k 4 1 in the sum)
=n—-1nA"(x) =nl\"(2),
—nl

completing the induction step, qed.
(c) The proof (by induction over n) is similar to that of part (b), but this time the

101Here, when I say “block-triangular matrix”, I always mean a block-triangular matrix whose diagonal
blocks are square matrices.

1028ee [Grin-detnl, Exercise 6.30] for a proof of this statement (at least in the case of a block-triangular
matrix with four blocks, and with the upper-right block being the zero matrix; but this is precisely
the case which we are using).
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induction step leads us through

detBn:Z(—l)” A (2), i k= 1 pE (2)

k=1
i [ NE(2), i >0
:;<_1) 1{ (@), iti=o V@)

(here we substituted i for £ — 1 in the sum)

- _k{ AR () i k> 1

ST ) )+ (DTN @0 @

=—(-1)" we deﬁned this 1 =(-1)"(— 1)"”'_1

to mean 1

= —(=1)"nA" (z +Z —D)TINT (@) o ()
= (-1)" (—nv +Z 1) A W(w))

= (=" (— D DTN @)y (2) + i: (=17 A (@) ! (x))

=1 =1
"~

= (=D An (@) (2)

J

(by part (a))
= (1) (= (=1)"AT (@) 9" (2)) = A (@) 9" (2) = 07 (x)

—_——
=X0(z)=1

what completes the proof.

Exercise 9.4: Hints to solution: There are several ways to prove this. Here is one:

We are going to prove that ¢™ = id for all n € N\ {0}. We will do this by strong
induction over n. Since a strong induction does not need an induction base, let us start
with the induction step:

Let n € N\ {0}. Assume (as the induction hypothesis) that we have already proven
' =1id for all 7 € N\ {0} satisfying i < n. We now must prove that 1" = id

Let z € K. Exercise 9.3 (a) yields

A" () = 3 (=17 @) v (@)

=1

Since A" (z) = (x) (since (K, (/\i)ieN) is a binomial A\-ring) and \"™* (z) = ( o )
n
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for every i € {1,2,...,n} (for the very same reason), this rewrites as

(D)= (7 )

i=1

:':2;(_1)“ (,7%) @ @ (" )@

=id ——

(since i<n) n
= =1
(o)
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S () 050)
e ()= (0 20) + (250

by the recurrence equation of the binomial coefficients

S ()R ()

i=1 i=1
n—1 n
2 : ' r—1 - r—1
— -1 i—1 § : 1 (:-1)-1
1= 1= —— (1 i—1 N — )

(7))

(here, we substituted ¢ — 1 for ¢ in the second sum)

- o)+ el

J=1 ., J=2 y
r—1\ na r—1 n—1 _ r—1 r—1
=(-1'* +3 (-1t . =y (== +(=(=n™1)
n—1/ i= n—1 i=2 n—1 n—mn
n—1 n—1
1 rx—1 ) r—1
— (-1 1-1 (T 1 i—1 (_ 1 7J_1>
(G () S e (3

_ 1(:6 - 1) FO+ (= (-1)" 1= (x_ 1) (-1t

n—1

this becomes

103The following computation only makes sense in the case when n > 2. However, in the remaining
case, the result of the computation can be checked independently.
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Since

(x—l)x: (-1 (=2 - ((z—1)— (n—1)+1)

n—1 (n—1)! ‘
r—1\ (z—-1)-(z—=2) .- ((z—=1)—(n—1)+1)
(because (n—l) = (=11 >
_ (x—1)-(m—2)-...-(w—n—|—1)x:x-((m—l)-(a:—Z)-...-(x—n+1))
(n—1)! (n—1)!
::E-(a:—l)-...-(:v—n—i—l) :.:E-(x—l)-...-(a:—n—l—l)
(n—1)! n!/n

(since (n — 1)l =nl/n)

:nx~(:c—1)~...-(x—n—|—1):71(:6),

N J/

this transforms into

n(Z) - n<2) — (D" (D) ()

This simplifies to (—=1)""'z = (=1)""" 4" (z). In other words, 1" (z) = z. Since this
holds for every x € K, this shows that 1™ = id. This completes the induction step.
Thus, " = id for every n € N\ {0}, and Exercise 9.4 is solved.

Ezercise 9.5: Solution: 1st step: Any two power series v € 1+ K [[T]]" and v €
1+ K[[T)]" satisfy

d d d
—T—1 = | -T—:1 —T—1 . 12
7 log (uv) < o7 ogu) + ( o7 0gv> (120)

First proof of @ Let u € 1+ K[[T]]" and v € 14+ K [[T]]". Let us work with
the notations of Exercise 9.2. For every i € N\ {0}, we have

d d ~ , ~
Coeff; (—Td—T log (uv)) = Coeft; (_Td_T log (u+v)) (since uv = utv)

dT dT
(by (1D, divided by (1))

d d
= Coeft; ((_Tﬁ logu) + <_Tﬁ logv)> )

d
In other words, the coefficients of the power series _Td_T log (uv) before T, T2

d d
= Coeft; (—T— log u) + Coeft; (—T— log v)

d
T3, ... are equal to the respective coefficients of the power series (_Tﬁ log u) +

d
(_Tﬁ log v) . Since the same holds for the coefficients before T (in fact, both power
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d
series —T'— log

dr dr dr

d
have the coefficient 0 before T°), this yields that the power series _Td_T log (uv) and
d
—T— log v) are identic. Thus,

d
(_Td_T logu> + a7
Second proof of cLetuel+ KI[[T]]" and v € 1+ K [[T]]". We have

d d
(uv) and (—T— log u) + (—T— log v) are divisible by 7" and thus

120)) is proven.

d (uv) iu vtu iv
d ar dT dT
T —1 =-T%%—=-T
dr og (uv) U \ uv |
d (uv) d d
ar 4T dr’
uv U v
in i( ) = Ll + L by the Leibniz identit
since — (w) = | —zu Jv+u | —zv | by the Leibniz identity
d u d v
dr dT d d
=-T =-T(—-—=1 —1
u - v (dT Ogu+dT ogv)
_ 4 1 _ 4 1
Tar Y Tdr*tt
d d
= (_Tﬁ logu) + (_Tﬁ logv) :
This proves ((120)).

2nd step: For every x € K and y € K, we have JT (x+y) = @ZT (x) + @ZT (y), where
the map 7 is defined as in Theorem 9.5. N
Proof. Let € K and y € K. By Theorem 9.5 (b), we have ¢y (z) = =T -

%log A_r (z). By Theorem 9.5 (b) (applied to y instead of z), we have ¢ (y) =
d
=T ﬁlog A_r (y). By Theorem 9.5 (b) (applied to x + y instead of z), we have

~ d
vr(z+y)=-T: S5logAr(z+y).
By Theorem 2.1 (b), we have Ay (z) - Ar (y) = A (z +y). Now,

At () At (y)
——— ———
=ev_r(Ar(z)) =ev_r(Ar(y))

=ev_r (/\T (x)) sev_r (>\T (y))

=ev_y [ Ar(z) - Ar (y)
———
=Ar(z+y)
=ev_r (>\T (m + y)) = >\—T (.73 + y)

(since ev_r is a ring homomorphism)

(since A_7 (z +y) is defined as ev_r (Ar (x +v))).
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Now,

~ d d
Yp(r+y)=-T-—=log Ap(x+y) =—-T-——log(A_r(x) A1 (y))
ar ° L T dT
A (@)A1 (y)

:\(—T%logx\ (z )),+ <—T% log A_r (y >>,

N

~ —~

=7 () =y (y)
(by (120), applied to u = A_r (z) and v = A_7 (y))
= ¥r (z) + ¥r (y) .

This proves the 2nd step.
3rd step: For every v € K and y € K, we have v/ (x + y) = ¢ (z) + 7 (y) for every
j € N\ {0}. _ _
Proof. Let x € K and y € K. By the definition of ¢r, we have tr (x) =
> W (@) Yr(y)= > ()T andyr(zt+y)= > ¥’ (z+y)T7. Now,

JEN\{0} JEN\{0} JEN\{0}
ST Wty =dr@ty) = drl@) +  dry) (by the 2nd step)
JEN\{0} _ i i j -
= > Qi@)T7 = > Pi(y)TI
JEN\{0} JEN\{0}
=D Y@+ Y HWT =y (¢ @)+ )T
JEN\{0} JEN\{0} JEN\{0}

Comparing coefficients before 77 in this identity of power series, we conclude that
P (x+y) = (x) + 7 (y) for every j € N\ {0}. This proves the 3rd step.

4th step: For every j € N\ {0}, we have ¢/ (0) = 0.

Proof. Let j € N\ {0}. The 3rd step yields that ¢’ (z 4+ y) = ¢ (z) + ¢’ (y) for
every x € K and y € K. Applying this to z = 0 and y = 0, we obtain 97 (0 + 0) =
Y7 (0) + 97 (0). In other words, ¥’ (0) = 7 (0) + 7 (0). This simplifies to 17 (0) = 0.
Thus, the 4th step is proven.

5th step: The map ¢’ : K — K is a homomorphism of additive groups for every
j € N\ {0}.

Proof. This follows from the 3rd and 4th steps. This completes the 5th step and
thus solves the problem.

FEzercise 9.6: Hints to solution: (a) Corollary 9.7 yields

na,, = Z (=1 N (o1, g, ..y )
j=1
Since we identify the polynomial N; (a1, g, ..., ;) with the polynomial N; (because we
view the polynomial ring Z [y, a, ..., ;| as a subring of Z [aq, as, ..., a,]), this becomes

n n

nog, = Z(_l)jil Oénfjg\[j <0517052a ...,CY]‘) = Z(_l ji Qn— ]N Z ) Oén z

-

J=1 =N; J=1

(here, we renamed the index j as ¢). This solves Exercise 9.6 (a).
(b), (c) To obtain a solution to Exercises 9.6 (b) and (c), we only have to make
the following changes to the solution to Exercises 9.3 (b) and (c):
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e Replace every occurence of A’ (z) (where £ is any nonnegative integer) by .
e Replace every occurence of 1* (z) (where ¢ is any nonnegative integer) by Nj.

e Replace the equalities ! (z) = z and ¢! (x) = z by a; = a; and N; = «; (this
is very easy to prove).

e Replace every reference to Exercise 9.3 (a) by a reference to Exercise 9.6 (a).

This solves Exercises 9.6 (b) and (c).

(d) Let (K, (\),cy) be a A-ring. Let z € K. Let n € N. By the universal property
of a polynomial ring, there exists a Z-algebra homomorphism ¢ : Z [a1, ag, ..., ] = K
which maps «; to A (z) for every i € {1,2,...,n}. Consider this homomorphism ¢. By
its construction, this homomorphism ¢ maps every polynomial P € Z [y, s, ..., o] to
its value P (A! (z),A? (z), ..., \" (z)).

Every i € {0,1,...,n} satisfies

o(ai) = X (x) and (V) =i (x). (121)
7

Now, let us derive Exercise 9.3 (a) from Exercise 9.6 (a): According to Exercise 9.6
(a), the equality

n

noy, = Z <—1)i_1 anfiNi

i=1

holds. Applying o to both sides of the equation, we get o (nay,) = o (Z (—1)1'_1 aniNi) .
i=1
Since

o(nay,) =n o(ay) (since p is a Z-algebra homomorphism)
~——

=\"(x
(by )

=n\" (z)

104 Proof of . We distinguish between two cases:
Case 1: We have ¢ = 0.
Case 2: We have ¢ > 0.
First consider Case 1: In this case, a; = ap = 1, X (z) = A (z) = 1, ¢ (z) = ¢ (z) = 1 and

N; = Ng =1. Also, ¢(1) =1 (since g is a Z-algebra homomorphism). Thus, o [ a; | =0 (1) =
-

=1

1=X(z)and p \N{_, o(1)=1=9"(x).

We have thus proven in Case 1.

Now let us consider Case 2: In this case, ¢ > 0and i € {0,1,...,n}, so that ¢ € {1,2,...,n}. Hence,
by the definition of o, we know that o maps a; to A (z). In other words, o (c;) = A\ (). Besides, we
know that ¢ maps every polynomial P € Z [a1, aa, ..., &) to its value P ()\1 (), A2 (z), .0y A (m))
Hence, ¢ maps N; to N; (A (z),A? (z),..., A" (z)) = ¢ (z). In other words, ¢ (N;) = ¥' (z).

We have thus proven ((121)) in Case 2.

So we have proven (121)) in both possible cases, ged.
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and

0 <Z (_1)2 Qp—j ) anfi) 0 (Nz)
(by (@ ) (by )

(since p is a Z-algebra homomorphism)

3

Z 1)\nz )’QDZ(ZL'),
=1

this becomes
n

A" (@) = 3 (<1) T A () o (a).
i=1
Thus we have proved Exercise 9.3 (a) by means of Exercise 9.6 (a). Similarly, we can
derive Exercise 9.3 (b) and (c) from Exercise 9.6 (b) and (c) (again, by applying o).
Exercise 9.7: Detailed solution: First, we will prove that of — N, € pZ [y, aa, ..., )]
(where N, is the p-th Hirzebruch polynomial as defined in the beginning of Section 9).
Due to our implicit construction of N,, this is not easy to prove directly. Instead, we will
prove this by defining a “universal” polynomial sirililar to our Hirzebruch polynomials,
a; — N,

and then prove that this polynomial actually is £,

1
1st step: Let m € N. The polynomial 5 (Uh+Up+ ...+ U —(UP +UY + ...+ UP)) €
Q[Uy,Us, ..., Uy,] actually lies in Z [Uy, Us, ..., Uy ].

Proof. We need the following fact as a lemma:

If m € N, if A is a commutative ring with unity such that p-14 = 0, and
( if 1, 29, ..., T, are m elements of A, then (xy + zo+ ... + z,,)" =27 + ab + ... + 2P, ) '
(122)
]

Now, let A be the ring (Z[Uy,Us,...,Uy)) / (pZ Uy, Us, ..., Upy]). For every u €
Z[Uy,Us, ..., Uy,], let T denote the residue class of u modulo the ideal pZ [Uy, Us, ..., Up];
this @ lies in (Z [Uy,Us, ..., Uyl) / (DZ (U1, Us, ..., Up]) = A. Since p - 1z, v,,..0.] €
pZ Uy, Us, ..., Uy), we have p - 1z, 1v,,..0,,] = 0. Since p- 1z, v, .0,,] = P - 1a, this
rewrites as p- 14 = 0. Thus, (applied to z; = UZ) yields (71 +Us+ ...+ U_m)p =
U+ 0 + ...+ Uy Since (U + Uz + ... + Up)" = (Uy + U + ... + Uy,)P and U7” +

105 Proof of : Let m € N. Let A be a commutative ring with unity such that p-14 = 0. Let z1,
o, ..., T, be m elements of A.
Let ® : A — A be the map defined by (® (y) = y? for every y € A). Then, ® is known to be a
ring homomorphism (since p - 14 = 0). Thus,

O (21 + 22 + oo+ Tm) = O (21)+P (22) +0 P (T) = Y ® (z;) = al = ab+abt. tak,.
i=1 — =

(by the definition of D)

Compared with ® (21 + 22 + ... + Tp) = (21 + T2 + ... + 2,,)" (by the definition of ®), this yields
(21 + 22+ ... + x)" = af + 28 + ... + 2L,. This proves (122).
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U +..4U," =UP + UP + ... 4 Uk, this rewrites as (U + Uy 4 ... + Up)? = UP + UF + ... + UL,
In other words,

U+ U+ ...+ U, =0+ UL + ... + UP mod pZ [Uy, Us, ..., U] .

In other words, (U + Uy + ... + U, )' —(UY + UL + ... + UP)) € pZ|Uy, Us, ..., Up,]. Thus,
1
, (U1 4+Us+ ... +Up)’ = (UY+ UV + ...+ UP)) € Z[Uy, Uy, ...,Uy]. This proves the

1st step.
2nd step: Until now, m could be any nonnegative integer. From now on, set m = p.

1
The polynomial ; (Ui +Us+ ...+ Uy’ — (UL + U + ...+ UP)) liesin Z [Uy, Uy, ..., Uy,

(due to the 1st step) and is symmetric (since it is a Q-linear combination of the polyno-
mials (U + Us + ... + Up,)* and UP+UY +...+UP , both of which are symmetric). Thus,

1
Theorem 4.1 (a) (applied to K = Z and P = . (U, +Uy+ ...+ U) — (U +UY + ...+ UP)))

yields that there exists one and only one polynomial Q) € Z [a1, as, ..., o] such that
1
, (U 4+ U+ ... +Up)P = (U + UL + ..+ UP)) = Q (X1, Xo, ooy Xin) - (123)

Consider this ). Note that Q € Z [on, g, ..., ] = Z oy, Qa, ..., a) (since m = p).
For every i € N, let X; be defined as in Theorem 4.1. For every j € N\ {0}, define
N; as in the beginning of Section 9. Applying to j = p, we obtain

ZUzp = Np (X17X27 ...,sz - Np (X17X27 7Xm) .

=1

On the other hand, X; = Uy +Us+...4+ U, (because X; is the 1-st elementary symmetric
polynomial in the variables Uy, Us, ..., Uy,), so that X¥ = (U; + Uy + ... + U,,,)". Now,

(Oé‘i)—Np) (Xl,XQ,...,Xm) = Xf _sz(XlaX%---;XmZ

m
=3 UP=UY+UL+..+U#,
i=1

k3

Ui+ U+ ...+ Up)’ — (U + Uy + ...+ UL)

(Uy 4+ Us + . + Uy’ — (UP + UP + ...+ UZ))

J/

:p-

(3 | —

= pQ (X17X2, ,Xm) = (pQ) (Xl,XQ, ,Xm) .

Since the elements X, Xy, ..., X,, of Z[Uy,Us,...,U,] are algebraically indepen-
dent (by Theorem 4.1 (a)), this yields of — N, = pQ. This shows that of — N, €
PZ [y, o, ..., o).

3rd step: Let x € K. Applying to 7 = p, we obtain

Y (z) = N, (A (2), A\ (2), ..., A (2)) .
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Now, we recall that of — N, = pQ, so that

(0 = N,) (N (&), X (2) . ¥ (1)) = (pQ) (M (2) A (2) o W7 ()
=pQ (N (1), X (1), ... ¥ (x)) € pIK.

Since
(@ = N,) (A (2), X% (), ..., AP () ngf (A (), X% (), ..., AP () — Ny (A (), N2 (), .0, AP (l’))J
—(AL (@) —p(x)

>

HA
I

SN—r

(by the definition
of a A-ring)

this rewrites as 2P — ¢? (x) € pK. In other words, ¢ (z) = 2P mod pK. Exercise 9.7 is

solved.

11.10. To Section 10

FExercise 10.2: Solution:

Proof of Proposition 10.29. Let x € K. Then, Ar (z) = > X (z) T, so that

[T (A (2 (ZA ) Y. W) T=) (N@enrT.
1€EN €N :)\i(':c)@l 1€EN

(by the definition of ¢)

Hence, every k € N satisfies Coeffy, (¢ [[T]] (\r (z))) = Coeffy, <§](Ai () ® 1)Ti) =

M (2) ® 1 (by the definition of Coeff). Thus,

(Coeffy (+[[TT] (Ar (2))) , Coefts (: [[T]] (Ar (2))) , ..., Coefl; ([[TT] (Ar (2))))
=N (@)eoLXN(@)el,.,N(2)o1) (124)

for every j € N. Now, (applied to p = ¢ [[T]] (Ar (x))) yields

o0, (¢ [[T]] (Ar (2)))

=Y Tdg,; (Coeffy ([[T]] (Ar (x))) , Coeffz (¢ [[TT] (Ar (2))) , ... Coeft; (¢ [[T]] (Ar (2)))) T7

JjEN

= Td,; (M (@)@ 1L,N (2) @1, N (2)®1) T (by (124))

JEN
= td%T’Z/ (CL’) .

This proves Proposition 10.29. O]
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Proof of Proposition 10.30. Let 1 : K — K ®zZ' be the canonical map (mapping every
e Ktol®le K ®zZ'). Proposition 10.29 (applied to ¢ = 1 + ut) yields

tdiurrz (2) = Toupw ([T Az (2))) = evur ([[T]] (Ar (2)))

=eV(1®u)T
(since uT=(1®u)T
in (K®@zZ')([T]])

( by Proposition 10.12, applied to Z', K ®z Z' and ¢ [[T]] (A1 (z))

instead of Z, K and p
= evagur (L[[T]] (Ar (2))) = (eV(1®u)T oL [[T]]) (A (2)) .

But the diagram

K [[T]] [T

(K ®z Z')[[T]]
eV(1@u)T levu@u)T

(K ®zZ') [[T]]

commutes (since the definition of the map ev,r : K [[T]] — L|[[T]] for any ring K,
any K-algebra L and any element p of L was canonical with respect to K). Thus,
evagur ot [[T]] = evagur. Now,

tdiyurrz (2) = (evaswr ot [[T]]) (Ar (2)) = evaswr (Ar (2)) .

(. J/
-~

=eVaQu)T

This proves Proposition 10.30. O]

Alternatively, we could have proven Proposition 10.30 by repeating the proof of
Proposition 10.3 with some minor changes.

We could derive Proposition 10.31 from Proposition 10.13 (just as we derived Propo-
sition 10.30 from Proposition 10.12) using Proposition 10.29, but let us instead prove
it directly:

Proof of Proposition 10.31. Let x € K.
(a) We have

Coefty (tdy 1.2 (2))

= Coeff, (Z Tdy; (A (2) @ LA (2) ®@1,..., X (z) ®1) Tj> (by (64))

jeN
=Tdyo (A (2) @ 1L,N () ®1,.., A (z) @ 1) (by the definition of Coeffy)
=Td,p =1 (by Proposition 10.6 (a), applied to Z’ instead of Z).
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(b) We have

Coefty (tdy 1z (7))

— Coeff; (Z Tde; (M (2) @ 1,2 () @ 1, .., N (2) @ 1) Tj> (by (64))

jeN

=Tdy1 (M (2) @ 1L,N () ®1,.., A" (z) @ 1) (by the definition of Coeff;)

=Tdyy | M (2)@1 | =Td, 1 (r®@1) = ¢ (z®1)
——

=T

since Proposition 10.6 (b) (applied to Z’ instead of Z) yields Td,; = ¢10).
3

Proposition 10.31 is now proven. O

Proof of Proposition 10.32. To obtain a proof of Proposition 10.32, read the proof of
Proposition 10.7, doing the following replacements:

Replace every A* (x) by A¥ (z) ® 1 for k any nonnegative integer (that is, replace
A (z) by M (2) ® 1, replace A% (x) by A2 (z) ® 1, etc.).

Replace every td, 7 by tdy 77

Replace every tdy, r by tdy 77

Replace every tdyy r by tduy 2z

Replace all references to Proposition 10.7 by references to Proposition 10.32.

Replace all references to by references to .

]

Proof of Proposition 10.33. This can be proven by induction over m. The induction
base (the case m = 0) requires showing that td; rz (z) = 1, but this follows from
Proposition 10.3@. The induction step is a straightforward application of Proposition
10.32. Thus Proposition 10.33 is proven. O

Proof of Theorem 10.34. Theorem 2.1 (a) yields Ay (x) - Ay (y) = Ar (z +y) (since
(K, (N),ey) is a A-ring).

Let ¢ : K — K®zZ' be the canonical map (mapping every £ € K to {®1 € K®zZ/').
Then, Proposition 10.29 yields td, 7z (z) = 000, (¢ [T]] (Ar (z))). Proposition 10.29

1961n fact, Proposition 10.30 (applied to u = 0) yields td1yo1,7,2 (2) = Aagoyr (@). Now A1gor (z) =
ev(igoyr (At (2)). Since ev(igo)r = evor is the map K [[T]] — (K ®z Z') [[T]] which sends every
power series to its constant term tensored with 1 (viewed as a constant power series over K @z Z’),
we have ev(ig0yr (Ar (7)) = (constant term of the power series Ay (z)) ®1 = 1 ® 1 = 1. Thus,

=1

tdl,T,Z’ (.%’) = td1+0t,T,Z’ (CC) = )\(1®0)T (:L‘) = eV(1R0)T ()\T (,T)) =1.
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(applied to y instead of ) yields td, 7,z (y) = Todd, (¢ [[T]] (Ar (y))). Hence,

tderz (x) - tderz (v)
—— —— ————

=T000, (L[[TN](Ar(2)))  =To0d, (W[[T]I(A7(¥)))

= T000, (¢ [[T]] (Ar (x))) - Todd, (¢ [[T]] (Ar (y))) = Fo00, | e [[T]] (Ar (2)) - e [T]] (M (y))

[T () A (0)
(since ¢[[T1]] is a ring homomorphism)

(by Theorem 10.16, applied to p = ¢ [[T]] (Ar (z)) and g = ¢[[T]] (Ar (v)))
= T000, (¢ [[T1] (Ar (x) - Az (y))) -

Proposition 10.29 (applied to x + y instead of x) yields

tderz (x4 y) = Todd, | [[T]] | Ar (z+v) = Tod0, (¢ [[T]] (A (z) - Ar (v))) -

=Ar(z)Ar(y)
Thus,
tdprz () - tdp iz (y) = T00d, (¢ [[T]] (Ar (2) - Ar (v)) = tdprz (+y) .
Theorem 10.34 is thus proven. O

Proof of Corollary 10.35. Every x € K satisfies td, 1z (¢) € A (K ®z Z') (since Propo-
sition 10.31 (a) says that Coeffy (tdy, rz (x)) = 1, so that the power series td, 7.z ()
has the constant term 1, and thus td, 7z (z) € 1+ (K @z Z') [[T]]" = A (K ®2 Z')).
In other words, td, 7.z (K) C A (K ®z Z').

Now we are going to prove that td, 7z : K — A (K ®z Z') is a homomorphism of
additive groups.

Theorem 10.34 (applied to x = 0 and y = 0) yields td, 72 (0) - tdy 7,2 (0) =
tdyrz (0+0) = tdy, 1z (0). Since td, 7z (0) is an invertible element of (K ®z Z') [[T7]
(because td, 7z (0) is a power series with constant term 1 [7] and every such power
series is an invertible element of (K ®z Z') [[T]]), we can cancel td, rz (0) from this
equation, and obtain td,rz (0) = 1. Since 0 is the neutral element of the addi-
tive group K, while 1 is the neutral element of the additive group A (K ®z Z'), this
yields that the map td, rz respects the neutral elements of the additive groups K and
AN (K ®zZ).

Any z € K and y € K satisfy

td(p,T,Z’ (l’ + y) = td%'nz/ ({E) . tdcp,T7Z’ (y) (by Theorem 1034)
= tdyrz (2) F tdprz (y)

(since multiplication of power series in 1 + (K ®z Z') [[T]]" is addition in the ring

A (K ®z7')). Combined with the fact that the map td, rz respects the neutral ele-
ments of the additive groups K and A (K ®z Z’), this yields: The map td, 7z : K —
A (K ®z Z') is a homomorphism of additive groups. Corollary 10.35 is proven. ]

07since tdy .z (0) € tdprz (K) CA(K ®zZ') =1+ (K @z Z') [T]]"
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Proof of Proposition 10.36. Let 1 : K — K ®zZ' be the canonical map (mapping every
feKtot®1le K ®zZ). Then, ([[T)](1+ul) =1+ (u®1)T.

Proposition 10.29 (applied to x = w) yields td, 1z (v) = Todd, (¢ [T]] (Ar (u))).
But Theorem 8.3 (a) (applied to x = u) yields that Ay (u) = 14+uT (since the element
w is 1-dimensional). Thus,

tdy 1z (u) = Todd, | [[T]] | M (w) = To00, | [T (14+uT) | =%F0d0, (1 4+ (u®1)T)
—— —————
=1+uT =1+uel)T
_ by Proposition 10.26, applied to
=¢(wal)T) <Z’,K®z 7/ and u ® 1 instead of Z, K and u /-

This proves Proposition 10.36. O]

Proof of Theorem 10.37. Theorem 10.37 can be proven with the help of Proposition
10.36 in the same way as we proved Theorem 10.27 with the help of Proposition 10.24.
We leave the details to the reader. O]
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