Why Ring (A,k)/G injects into Ring (A^G,k)

Darij Grinberg January 30, 2020

I shall use the following notations:

- If *G* is a group, and if *S* is a *G*-set, then S^G shall denote the set of all fixed points under *G* in *S*. (In other words, $S^G = \{s \in S \mid gs = s \text{ for all } g \in G\}$.)
- If *G* is a group, and if *S* is a *G*-set, then S/G shall denote the set of all *G*-orbits on *S*. (In other words, $S/G = \{Gs \mid s \in S\}$.)
- If U and V are two rings, then Ring (U, V) denotes the set of all ring homomorphisms from U to V.

The crux of [KucSch16, Lemma 4.9] is the following elementary fact:

Proposition 0.1. Let A be a commutative ring. Let G be a finite group acting on A by ring automorphisms. Let k be an integral domain. Notice that Ring (A, k) becomes a G-set in an obvious way (namely, by setting $(gx)(a) = x(g^{-1}a)$ for all $g \in G$, $x \in \text{Ring}(A, k)$ and $a \in A$). Then, the map

Ring
$$(A,k)/G \to \text{Ring}(A^G,k)$$
,
$$Gx \mapsto x \mid_{A^G}$$

is injective.

In other words, this says that if two ring homomorphisms $x: A \to k$ and $y: A \to k$ are identical on the invariant ring A^G (that is, we have $x|_{A^G} = y|_{A^G}$), then x and y are in the same G-orbit on Ring (A,k).

I shall give an elementary proof of Proposition 0.1 (using nothing but Viete's formulas and basic properties of polynomial rings). First, let me prove a lemma:

Lemma 0.2. Let A be a commutative ring. Let G be a finite group acting on A by ring automorphisms. Let k be an integral domain. Let x and y be two elements of Ring (A, k) such that $x \mid_{A^G} = y \mid_{A^G}$. Let $a \in A$. Then, there exists some $g \in G$ such that x(a) = y(ga).

Proof of Lemma 0.2. If S is a finite set, if R is a commutative ring, if $(b_s)_{s \in S} \in R^S$ is a family of elements of R, and if $\ell \in \mathbb{N}$, then we shall let $e_{\ell}((b_s)_{s \in S})$ denote the ℓ -th elementary symmetric polynomial of the elements b_s (with $s \in S$). Explicitly, it is given by

$$e_{\ell}\left(\left(b_{s}\right)_{s\in S}\right)=\sum_{\substack{T\subseteq S;\ |T|=\ell}}\prod_{t\in T}b_{t}.$$

For example,

$$e_0\left((b_s)_{s\in S}\right)=1 \qquad \text{ and } \qquad e_1\left((b_s)_{s\in S}\right)=\sum_{s\in S}b_s$$
 and
$$e_{|S|}\left((b_s)_{s\in S}\right)=\prod_{s\in S}b_s.$$

The following fact is a form of Viete's relations:

Fact 1: Let S be a finite set. Let R be a commutative ring. Let $(b_s)_{s \in S} \in R^S$ be a family of elements of R. Let $t \in R$. Then,

$$\prod_{s \in S} (t - b_s) = \sum_{\ell=0}^{|S|} t^{|S|-\ell} (-1)^{\ell} e_{\ell} ((b_s)_{s \in S}).$$

(Fact 1 follows easily by expanding the product $\prod_{s \in S} (t - b_s)$ and collecting like powers of t.)

Now, let us return to the proof of Lemma 0.2. Fix $\ell \in \mathbb{N}$. Set $\varepsilon_{\ell} = e_{\ell}\left((ga)_{g \in G}\right) \in A$.

Each element of the group G merely permutes the elements of the family $(ga)_{g \in G}$. Thus, the element $e_{\ell}\left((ga)_{g \in G}\right)$ is invariant under G (being defined as a symmetric polynomial in this family), and thus lies in A^G . Thus, $e_{\ell}\left((ga)_{g \in G}\right) \in A^G$, so that $\varepsilon_{\ell} = e_{\ell}\left((ga)_{g \in G}\right) \in A^G$. Hence,

$$x\left(\varepsilon_{\ell}\right) = \underbrace{\left(x\mid_{A^{G}}\right)}_{=y\mid_{A^{G}}}\left(\varepsilon_{\ell}\right) = \left(y\mid_{A^{G}}\right)\left(\varepsilon_{\ell}\right) = y\left(\varepsilon_{\ell}\right). \tag{1}$$

But from $\varepsilon_{\ell} = e_{\ell} \left((ga)_{g \in G} \right)$, we obtain

$$x\left(\varepsilon_{\ell}\right) = x\left(e_{\ell}\left(\left(ga\right)_{g \in G}\right)\right) = e_{\ell}\left(\left(x\left(ga\right)\right)_{g \in G}\right) \tag{2}$$

(since x is a ring homomorphism while e_{ℓ} is a natural transformation) and similarly

$$y(\varepsilon_{\ell}) = e_{\ell}\left(\left(y(ga)\right)_{g \in G}\right).$$
 (3)

Hence, (2) yields

$$e_{\ell}\left(\left(x\left(ga\right)\right)_{g\in G}\right) = x\left(\varepsilon_{\ell}\right) = y\left(\varepsilon_{\ell}\right) = e_{\ell}\left(\left(y\left(ga\right)\right)_{g\in G}\right).$$
 (4)

Now, forget that we fixed ℓ . We thus have shown that (4) holds for every $\ell \in \mathbb{N}$. In the polynomial ring k[t], we have

$$\prod_{g \in G} (t - x(ga)) = \sum_{\ell=0}^{|G|} t^{|G|-\ell} (-1)^{\ell} e_{\ell} (x(ga))_{g \in G}$$
 (5)

(by Fact 1, applied to R = k[t] and S = G and $(b_s)_{s \in S} = (x(ga))_{g \in G}$) and similarly

$$\prod_{g \in G} (t - y(ga)) = \sum_{\ell=0}^{|G|} t^{|G|-\ell} (-1)^{\ell} e_{\ell} ((y(ga))_{g \in G}).$$
 (6)

From (4), we see that the right hand sides of (5) and (6) are equal. Hence, so are the left hand sides. In other words,

$$\prod_{g \in G} (t - x (ga)) = \prod_{g \in G} (t - y (ga))$$

in k[t]. If we evaluate both sides of this equality at t = x(a), we obtain

$$\prod_{g \in G} (x(a) - x(ga)) = \prod_{g \in G} (x(a) - y(ga)). \tag{7}$$

The factor of the product $\prod_{g \in G} (x(a) - x(ga))$ for g = 1 is 0. Thus, the whole product

is 0. In other words, the left hand side of (7) is 0. Hence, so is the right hand side. In other words, $\prod_{g \in G} (x(a) - y(ga)) = 0$. Since k is an integral domain, this shows

that there exists some $g \in G$ such that x(a) - y(ga) = 0. In other words, there exists some $g \in G$ such that x(a) = y(ga). Lemma 0.2 is proven.

Proof of Proposition 0.1. We must show that if x and y are two elements of Ring (A, k) such that $x \mid_{A^G} = y \mid_{A^G}$, then Gx = Gy.

Indeed, assume the contrary. Then, there exist two elements x and y of Ring (A, k) such that $x \mid_{A^G} = y \mid_{A^G}$ but $Gx \neq Gy$. Consider these x and y. From $Gx \neq Gy$, we obtain $x \notin Gy$. Hence, for every $g \in G$, we have $x \neq gy$. Hence, for every $g \in G$, there exists some $a_g \in A$ such that $x (a_g) \neq (gy) (a_g)$. Consider this a_g .

For each $g \in G$, introduce a new indeterminate s_g . For each commutative ring B, we let \widetilde{B} denote the polynomial ring $B[s_g \mid g \in G]$ in all these indeterminates.

The polynomial ring $\widetilde{k} = k \left[s_g \mid g \in G \right]$ is an integral domain (since k is an integral domain). The polynomial ring $\widetilde{A} = A \left[s_g \mid g \in G \right]$ is equipped with a G-action by automorphisms: namely, we let G act on the coefficients (that is, the inclusion $A \to \widetilde{A}$ should be G-equivariant), while leaving all indeterminates s_g unchanged (that is, we have $hs_g = s_g$ for all $g, h \in G$; not $hs_g = s_{hg}$).

Thus, a polynomial $f \in \widetilde{A} = A \left[s_g \mid g \in G \right]$ is a fixed point under G if and only if all its coefficients are fixed points under G. In other words, $\widetilde{A}^G = A^G \left[s_g \mid g \in G \right]$.

Define an element a of \widetilde{A} by $a = \sum_{h \in G} a_h s_h$.

Any ring homomorphism $f: A \to k$ canonically induces a ring homomorphism \widetilde{f} from $\widetilde{A} = A \left[s_g \mid g \in G \right]$ to $\widetilde{k} = k \left[s_g \mid g \in G \right]$ which homomorphism acts as f on the coefficients (that is, $\widetilde{f}(\alpha) = f(\alpha)$ for each $\alpha \in k$) while leaving the indeterminates s_g unchanged (that is, $\widetilde{f}(s_g) = s_g$ for each $g \in G$). Thus, in particular, the two ring homomorphisms x and y from A to k canonically induce two ring homomorphisms \widetilde{x} and \widetilde{y} from $\widetilde{A} = A \left[s_g \mid g \in G \right]$ to $\widetilde{k} = k \left[s_g \mid g \in G \right]$ (which homomorphisms act as x and y (respectively) on the coefficients while leaving the indeterminates unchanged). These new ring homomorphisms \widetilde{x} and \widetilde{y} have the property that

$$\widetilde{x}\mid_{A^G\left[s_g\mid g\in G\right]}=\widetilde{y}\mid_{A^G\left[s_g\mid g\in G\right]}$$

(since $x|_{A^G} = y|_{A^G}$ and since $\widetilde{x}(s_g) = s_g = \widetilde{y}(s_g)$ for each $g \in G$). This rewrites as

$$\widetilde{x}\mid_{\widetilde{A}^G}=\widetilde{y}\mid_{\widetilde{A}^G}$$

(since $\widetilde{A}^G = A^G [s_g \mid g \in G]$). Hence, Lemma 0.2 (applied to \widetilde{A} , \widetilde{k} , \widetilde{x} and \widetilde{y} instead of A, k, x and y) shows that there exists some $g \in G$ such that $\widetilde{x}(a) = \widetilde{y}(ga)$. Consider this g.

Consider this g. From $a = \sum_{h \in G} a_h s_h$, we obtain

$$\widetilde{x}(a) = \widetilde{x}\left(\sum_{h \in G} a_h s_h\right) = \sum_{h \in G} x(a_h) s_h$$
 (8)

(by the definition of \tilde{x}), but also

$$ga = g \sum_{h \in G} a_h s_h = \sum_{h \in G} g a_h s_h.$$

Applying the map \widetilde{y} to the latter equality, we find

$$\widetilde{y}(ga) = \widetilde{y}\left(\sum_{h \in G} ga_h s_h\right) = \sum_{h \in G} y(ga_h) s_h$$
 (by the definition of \widetilde{y}).

Hence, (8) yields

$$\sum_{h \in G} x(a_h) s_h = \widetilde{x}(a) = \widetilde{y}(ga) = \sum_{h \in G} y(ga_h) s_h.$$

Comparing coefficients before s_h in this equality, we conclude that

$$x(a_h) = y(ga_h)$$
 for all $h \in G$. (9)

Applying this to $h=g^{-1}$, we find $x\left(a_{g^{-1}}\right)=y\left(ga_{g^{-1}}\right)$. But the definition of $a_{g^{-1}}$ yields $x\left(a_{g^{-1}}\right)\neq \left(g^{-1}y\right)\left(a_{g^{-1}}\right)=y\left(\underbrace{\left(g^{-1}\right)^{-1}}_{=g}a_{g^{-1}}\right)=y\left(ga_{g^{-1}}\right)$, which contradicts $x\left(a_{g^{-1}}\right)=y\left(ga_{g^{-1}}\right)$. This contradiction completes our proof. \square

References

[KucSch16] Robert A. Kucharczyk, Peter Scholze, *Topological realisations of absolute Galois groups*, arXiv:1609.04717v2.