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I shall use the following notations:

• If G is a group, and if S is a G-set, then SG shall denote the set of all fixed
points under G in S. (In other words, SG = {s ∈ S | gs = s for all g ∈ G}.)

• If G is a group, and if S is a G-set, then S/G shall denote the set of all G-orbits
on S. (In other words, S/G = {Gs | s ∈ S}.)

• If U and V are two rings, then Ring (U, V) denotes the set of all ring homo-
morphisms from U to V.

The crux of [KucSch16, Lemma 4.9] is the following elementary fact:

Proposition 0.1. Let A be a commutative ring. Let G be a finite group acting on
A by ring automorphisms. Let k be an integral domain. Notice that Ring (A, k)
becomes a G-set in an obvious way (namely, by setting (gx) (a) = x

(
g−1a

)
for

all g ∈ G, x ∈ Ring (A, k) and a ∈ A). Then, the map

Ring (A, k) /G → Ring
(

AG, k
)

,

Gx 7→ x |AG

is injective.

In other words, this says that if two ring homomorphisms x : A→ k and y : A→
k are identical on the invariant ring AG (that is, we have x |AG = y |AG ), then x and
y are in the same G-orbit on Ring (A, k).

I shall give an elementary proof of Proposition 0.1 (using nothing but Viete’s
formulas and basic properties of polynomial rings). First, let me prove a lemma:
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Lemma 0.2. Let A be a commutative ring. Let G be a finite group acting on A by
ring automorphisms. Let k be an integral domain. Let x and y be two elements
of Ring (A, k) such that x |AG = y |AG . Let a ∈ A. Then, there exists some g ∈ G
such that x (a) = y (ga).

Proof of Lemma 0.2. If S is a finite set, if R is a commutative ring, if (bs)s∈S ∈ RS is a
family of elements of R, and if ` ∈ N, then we shall let e`

(
(bs)s∈S

)
denote the `-th

elementary symmetric polynomial of the elements bs (with s ∈ S). Explicitly, it is
given by

e`
(
(bs)s∈S

)
= ∑

T⊆S;
|T|=`

∏
t∈T

bt.

For example,

e0
(
(bs)s∈S

)
= 1 and e1

(
(bs)s∈S

)
= ∑

s∈S
bs

and e|S|
(
(bs)s∈S

)
= ∏

s∈S
bs.

The following fact is a form of Viete’s relations:

Fact 1: Let S be a finite set. Let R be a commutative ring. Let (bs)s∈S ∈ RS

be a family of elements of R. Let t ∈ R. Then,

∏
s∈S

(t− bs) =
|S|

∑
`=0

t|S|−` (−1)` e`
(
(bs)s∈S

)
.

(Fact 1 follows easily by expanding the product ∏
s∈S

(t− bs) and collecting like

powers of t.)
Now, let us return to the proof of Lemma 0.2. Fix ` ∈N. Set ε` = e`

(
(ga)g∈G

)
∈

A.
Each element of the group G merely permutes the elements of the family (ga)g∈G.

Thus, the element e`
(
(ga)g∈G

)
is invariant under G (being defined as a symmetric

polynomial in this family), and thus lies in AG. Thus, e`
(
(ga)g∈G

)
∈ AG, so that

ε` = e`
(
(ga)g∈G

)
∈ AG. Hence,

x (ε`) = (x |AG)︸ ︷︷ ︸
= y|AG

(ε`) = (y |AG) (ε`) = y (ε`) . (1)

But from ε` = e`
(
(ga)g∈G

)
, we obtain

x (ε`) = x
(

e`
(
(ga)g∈G

))
= e`

(
(x (ga))g∈G

)
(2)
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(since x is a ring homomorphism while e` is a natural transformation) and similarly

y (ε`) = e`
(
(y (ga))g∈G

)
. (3)

Hence, (2) yields

e`
(
(x (ga))g∈G

)
= x (ε`) = y (ε`) = e`

(
(y (ga))g∈G

)
. (4)

Now, forget that we fixed `. We thus have shown that (4) holds for every ` ∈N.
In the polynomial ring k [t], we have

∏
g∈G

(t− x (ga)) =
|G|

∑
`=0

t|G|−` (−1)` e`
(
(x (ga))g∈G

)
(5)

(by Fact 1, applied to R = k [t] and S = G and (bs)s∈S = (x (ga))g∈G) and similarly

∏
g∈G

(t− y (ga)) =
|G|

∑
`=0

t|G|−` (−1)` e`
(
(y (ga))g∈G

)
. (6)

From (4), we see that the right hand sides of (5) and (6) are equal. Hence, so are
the left hand sides. In other words,

∏
g∈G

(t− x (ga)) = ∏
g∈G

(t− y (ga))

in k [t]. If we evaluate both sides of this equality at t = x (a), we obtain

∏
g∈G

(x (a)− x (ga)) = ∏
g∈G

(x (a)− y (ga)) . (7)

The factor of the product ∏
g∈G

(x (a)− x (ga)) for g = 1 is 0. Thus, the whole product

is 0. In other words, the left hand side of (7) is 0. Hence, so is the right hand side.
In other words, ∏

g∈G
(x (a)− y (ga)) = 0. Since k is an integral domain, this shows

that there exists some g ∈ G such that x (a) − y (ga) = 0. In other words, there
exists some g ∈ G such that x (a) = y (ga). Lemma 0.2 is proven.

Proof of Proposition 0.1. We must show that if x and y are two elements of Ring (A, k)
such that x |AG = y |AG , then Gx = Gy.

Indeed, assume the contrary. Then, there exist two elements x and y of Ring (A, k)
such that x |AG = y |AG but Gx 6= Gy. Consider these x and y. From Gx 6= Gy, we
obtain x /∈ Gy. Hence, for every g ∈ G, we have x 6= gy. Hence, for every g ∈ G,
there exists some ag ∈ A such that x

(
ag
)
6= (gy)

(
ag
)
. Consider this ag.

For each g ∈ G, introduce a new indeterminate sg. For each commutative ring
B, we let B̃ denote the polynomial ring B

[
sg | g ∈ G

]
in all these indeterminates.
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The polynomial ring k̃ = k
[
sg | g ∈ G

]
is an integral domain (since k is an integral

domain). The polynomial ring Ã = A
[
sg | g ∈ G

]
is equipped with a G-action by

automorphisms: namely, we let G act on the coefficients (that is, the inclusion
A → Ã should be G-equivariant), while leaving all indeterminates sg unchanged
(that is, we have hsg = sg for all g, h ∈ G; not hsg = shg).

Thus, a polynomial f ∈ Ã = A
[
sg | g ∈ G

]
is a fixed point under G if and only

if all its coefficients are fixed points under G. In other words, ÃG = AG [sg | g ∈ G
]
.

Define an element a of Ã by a = ∑
h∈G

ahsh.

Any ring homomorphism f : A → k canonically induces a ring homomorphism
f̃ from Ã = A

[
sg | g ∈ G

]
to k̃ = k

[
sg | g ∈ G

]
which homomorphism acts as

f on the coefficients (that is, f̃ (α) = f (α) for each α ∈ k) while leaving the inde-
terminates sg unchanged (that is, f̃

(
sg
)
= sg for each g ∈ G). Thus, in particular,

the two ring homomorphisms x and y from A to k canonically induce two ring
homomorphisms x̃ and ỹ from Ã = A

[
sg | g ∈ G

]
to k̃ = k

[
sg | g ∈ G

]
(which

homomorphisms act as x and y (respectively) on the coefficients while leaving the
indeterminates unchanged). These new ring homomorphisms x̃ and ỹ have the
property that

x̃ |AG[sg | g∈G] = ỹ |AG[sg | g∈G]

(since x |AG = y |AG and since x̃
(
sg
)
= sg = ỹ

(
sg
)

for each g ∈ G). This rewrites
as

x̃ |ÃG = ỹ |ÃG

(since ÃG = AG [sg | g ∈ G
]
). Hence, Lemma 0.2 (applied to Ã, k̃, x̃ and ỹ instead

of A, k, x and y) shows that there exists some g ∈ G such that x̃ (a) = ỹ (ga).
Consider this g.

From a = ∑
h∈G

ahsh, we obtain

x̃ (a) = x̃

(
∑

h∈G
ahsh

)
= ∑

h∈G
x (ah) sh (8)

(by the definition of x̃), but also

ga = g ∑
h∈G

ahsh = ∑
h∈G

gahsh.

Applying the map ỹ to the latter equality, we find

ỹ (ga) = ỹ

(
∑

h∈G
gahsh

)
= ∑

h∈G
y (gah) sh (by the definition of ỹ) .

Hence, (8) yields

∑
h∈G

x (ah) sh = x̃ (a) = ỹ (ga) = ∑
h∈G

y (gah) sh.
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Comparing coefficients before sh in this equality, we conclude that

x (ah) = y (gah) for all h ∈ G. (9)

Applying this to h = g−1, we find x
(

ag−1

)
= y

(
gag−1

)
. But the definition of

ag−1 yields x
(

ag−1

)
6=
(

g−1y
) (

ag−1

)
= y

(g−1
)−1

︸ ︷︷ ︸
=g

ag−1

 = y
(

gag−1

)
, which

contradicts x
(

ag−1

)
= y

(
gag−1

)
. This contradiction completes our proof.
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