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I shall use the following notations:

e If G is a group, and if S is a G-set, then SGC shall denote the set of all fixed
points under G in S. (In other words, S® = {s € S | gs = s forall g € G}.)

e If Gisa group, and if S is a G-set, then S/ G shall denote the set of all G-orbits
on S. (In other words, S/G = {Gs | s € §}.)

e If U and V are two rings, then Ring (U, V) denotes the set of all ring homo-
morphisms from U to V.

The crux of [KucSch16, Lemma 4.9] is the following elementary fact:

Proposition 0.1. Let A be a commutative ring. Let G be a finite group acting on
A by ring automorphisms. Let k be an integral domain. Notice that Ring (A, k)
becomes a G-set in an obvious way (namely, by setting (gx) (a) = x (¢~ 'a) for
all g € G, x € Ring (A, k) and a € A). Then, the map

Ring (A, k) /G — Ring (AG,k) ,

Gx — x | 40

is injective.

In other words, this says that if two ring homomorphisms x : A — kandy: A —
k are identical on the invariant ring A® (that is, we have x | ;c = v | 4¢), then x and
y are in the same G-orbit on Ring (A, k).

I shall give an elementary proof of Proposition (using nothing but Viete’s
formulas and basic properties of polynomial rings). First, let me prove a lemma:
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Lemma 0.2. Let A be a commutative ring. Let G be a finite group acting on A by
ring automorphisms. Let k be an integral domain. Let x and y be two elements
of Ring (A, k) such that x | ,c = y |4c. Leta € A. Then, there exists some g € G
such that x (a) = y (ga).

Proof of Lemmal[0.2} If S is a finite set, if R is a commutative ring, if (bs),.5 € R° is a
family of elements of R, and if £ € IN, then we shall let e, ((bs),.s) denote the ¢-th
elementary symmetric polynomial of the elements bs (with s € S). Explicitly, it is

given by
2 ((b seS 2 Hbt
TCS; teT

| T[=t

For example,

w((blis) =1 and e (b)) = L

seS
seS Hb

seS

and e|s|

The following fact is a form of Viete’s relations:

Fact 1: Let S be a finite set. Let R be a commutative ring. Let (bs), g € RS
be a family of elements of R. Let t € R. Then,

S|

H Z t‘s| E ((bS)ses) :

seS

(Fact 1 follows easily by expanding the product [] (t — bs) and collecting like
ses
powers of t.)

Now, let us return to the proof of Lemma Fix ¢ € IN. Set ey = ¢y <(ga)gec) €

A.

Each element of the group G merely permutes the elements of the family (ga) geG-

Thus, the element ¢, (( Qa) g€G> is invariant under G (being defined as a symmetric

polynomial in this family), and thus lies in A®. Thus, e, (( ga) geG) € AS, so that

€0 = ey ((ga)gec> € A®. Hence,

x(e¢) = (x [4¢) (e0) = (¥ [ ac) (e0) =y (1) - (1)

:y|AC

But from ¢y = ¢y <(ga)gec>, we obtain

x(er) = x (er ((89)gec ) ) = ev ((+ (89))gec) @
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(since x is a ring homomorphism while ¢, is a natural transformation) and similarly

y(er) =er ((v(39)gec ) - 3)
Hence, (2) yields

er (¥ (30)gec) = (e0) =y (er) = e (4 (39))ge ) - @

Now, forget that we fixed ¢. We thus have shown that @[) holds for every ¢ € IN.
In the polynomial ring k [¢], we have

|G|
[T (k= (gm) = ¥ 89 (—1) e, ((x (1) )gec) ©)

geG =0

(by Fact 1, applied to R = k[t] and S = G and (bs), g = (x (ga))gec) and similarly

|G|
T (= wgm) = 519 (-1 er (0 (89)gec)- ©)

geG

From (@), we see that the right hand sides of (5) and (6) are equal. Hence, so are
the left hand sides. In other words,

[1(t=x(ga)) =T (t-y(sa)

geG geG

in k [t]. If we evaluate both sides of this equality at t = x (a), we obtain

[[(x(a)—x(ga)) =[] (x(a) —y(ga)). (7)

g€G g€t

The factor of the product [] (x(a) —x(ga)) for ¢ = 1is 0. Thus, the whole product
geG

is 0. In other words, the left hand side of @ is 0. Hence, so is the right hand side.
In other words, [] (x(a) —y(ga)) = 0. Since k is an integral domain, this shows
G

g€
that there exists some ¢ € G such that x (a) —y (ga) = 0. In other words, there
exists some g € G such that x (2) = y (ga). Lemma [0.2]is proven. O

Proof of Proposition We must show that if x and y are two elements of Ring (A, k)
such that x |4 = vy |4, then Gx = Gy.

Indeed, assume the contrary. Then, there exist two elements x and y of Ring (A, k)
such that x |46 = y | 4¢c but Gx # Gy. Consider these x and y. From Gx # Gy, we
obtain x ¢ Gy. Hence, for every ¢ € G, we have x # gy. Hence, for every g € G,
there exists some a4, € A such that x (ag) # (gy) (ag). Consider this a,.

For each g € G, introduce a new indeterminate Sg- For each commutative ring

B, we let B denote the polynomial ring B [s¢ | g €G] in all these indeterminates.
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The polynomial ring k=k [s¢ | g € G] is an integral domain (since k is an integral
domain). The polynomial ring A = A [s¢ | g € G] isequipped with a G-action by
automorphisms: namely, we let G act on the coefficients (that is, the inclusion
A — A should be G-equivariant), while leaving all indeterminates s¢ unchanged
(that is, we have hsg = so for all g, h € G; not hsg = shg).

Thus, a polynomial f € A = A [s¢ | g €G] isa fixed point under G if and only
if all its coefficients are fixed points under G. In other words, AG = AG [s¢ | §€G]J.

Define an element a of A by a = ). aysy.
heG
Any rlng homomorphism f : A — k canonically induces a ring homomorphism

ffrom A= Alsg | g€ G| tok =k[sy | g €G] which homomorphism acts as
f on the coefficients (that is, f () = f () for each a € k) while leaving the inde-
terminates sy unchanged (that is, f (s;) = s, for each g € G). Thus, in particular,
the two ring homomorphisms x and y from A to k canonically induce two ring
homomorphisms ¥ and 7 from A = A s | g€ G| tok = k[sg | g € G] (which
homomorphisms act as x and y (respectively) on the coefficients while leaving the
indeterminates unchanged). These new ring homomorphisms x and y have the
property that

X |Ac[sg | §€G] =Yy |AG[sg | §€G]
(since x |46 = ¥ [4¢ and since X (sg) = s; = J (s¢) for each g € G). This rewrites
as
X|z6 =V lze
(since AC = AC [s, | g € G]). Hence, Lemma (applied to A, k, ¥ and 7 instead
of A, k, x and y) shows that there exists some ¢ € G such that X (a) = y(ga).

Consider this g.
From a = Y ays;, we obtain
heG

X (a) = 97(2 ﬂh5h> = Y x(ap) sy (8)

heG heG
(by the definition of X), but also

ga =g Z aysy = Z 8aysy.
heG heG

Applying the map y to the latter equality, we find

=y < Z 8ah5h> = Z v (gay) sn (by the definition of ) .
heG heG

Hence, (8) yields

ZX ay) sy = X (a) Zygﬂh

heG heG
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Comparing coefficients before s, in this equality, we conclude that

x (ap) =y (gap) forall h € G. )

Applying this to h = ¢!, we find x (agq) =y <gag71>. But the definition of
-1

a,-1 yields x (ag71> # (g7 1y) (agq) =y (g_l) a1 | =y <gag71), which
———

=8
contradicts x (ag_l) =y <gag_1). This contradiction completes our proof. O
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