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Finite group algebras: Basics

∗ Let k be any commutative ring. (Usually Z, Q or a
polynomial ring.)

∗ Let G be a finite group. (We will only use symmetric groups.)

∗ Let k [G ] be the group algebra of G over k. Its elements are
formal k-linear combinations of elements of G . The
multiplication is inherited from G and extended bilinearly.

Example: Let G be the symmetric group S3 on the set
{1, 2, 3}. For i ∈ {1, 2}, let si ∈ S3 be the simple transposition
that swaps i with i + 1. Then, in k [G ] = k [S3], we have

(1 + s1) (1− s1) = 1 + s1 − s1 − s21 = 0

(since s21 = 1);

(1 + s2) (1 + s1 + s1s2) = 1 + s2 + s1 + s2s1 + s1s2 + s2s1s2

=
∑
w∈S3

w .
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Finite group algebras: L (a) and R (a)

∗ For each a ∈ k [G ], we define two k-linear maps

L (a) : k [G ] → k [G ] ,

x 7→ ax (“left multiplication by a”)

and

R (a) : k [G ] → k [G ] ,

x 7→ xa (“right multiplication by a”) .

(So L (a) (x) = ax and R (a) (x) = xa.)

Note: The symbol ∗ denotes important points.

Studying a, L (a) and R (a) is often (but not always)
equivalent, because the maps

L : k [G ] → Endk (k [G ]) and

R : (k [G ])op︸ ︷︷ ︸
opposite ring

→ Endk (k [G ])

are two injective k-algebra morphisms (known as the left and
right regular representations of the group G ).
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Finite group algebras: Minimal polynomials

∗ Each a ∈ k [G ] has a minimal polynomial, i.e., a
minimum-degree monic polynomial P ∈ k [X ] such that
P (a) = 0. It is unique when k is a field.
The minimal polynomial of a is also the minimal polynomial
of the endomorphisms L (a) and R (a).

When k is a field, we can also study the eigenvectors and
eigenvalues of L (a) and R (a).

Theorem 1.1. Assume that k is a field. Let a ∈ k [G ]. Then,
the two linear endomorphisms L (a) and R (a) are conjugate in
Endk (k [G ]) (that is, similar as matrices).
(Thus, they have the same eigenstructure.)

This is surprisingly nontrivial!
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Finite group algebras: The antipode

∗ The antipode of the group algebra k [G ] is defined to be the
k-linear map

S : k [G ] → k [G ] ,

g 7→ g−1 for each g ∈ G .

We shall write a∗ for S (a).

∗ Proposition 1.2. The antipode S is an involution:

a∗∗ = a for all a ∈ k [G ] ,

and a k-algebra anti-automorphism:

(ab)∗ = b∗a∗ for all a, b ∈ k [G ] .
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Finite group algebras: Proof of Theorem 1.1

Lemma 1.3. Assume that k is a field. Let a ∈ k [G ]. Then,
L (a) ∼ L (a∗) in Endk (k [G ]).

Proof: Consider the standard basis (g)g∈G of k [G ]. The
matrices representing the endomorphisms L (a) and L (a∗) in
this basis are mutual transposes. But the Taussky–Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT .

Lemma 1.4. Let a ∈ k [G ]. Then, L (a∗) ∼ R (a) in
Endk (k [G ]).

Proof: We have R (a) = S ◦ L (a∗) ◦ S and S = S−1.

Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.

Remark (Martin Lorenz). Theorem 1.1 generalizes to
arbitrary finite-dimensional Frobenius algebras.

6 / 46

https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/


Finite group algebras: Proof of Theorem 1.1

Lemma 1.3. Assume that k is a field. Let a ∈ k [G ]. Then,
L (a) ∼ L (a∗) in Endk (k [G ]).

Proof: Consider the standard basis (g)g∈G of k [G ]. The
matrices representing the endomorphisms L (a) and L (a∗) in
this basis are mutual transposes. But the Taussky–Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT .

Lemma 1.4. Let a ∈ k [G ]. Then, L (a∗) ∼ R (a) in
Endk (k [G ]).

Proof: We have R (a) = S ◦ L (a∗) ◦ S and S = S−1.

Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.

Remark (Martin Lorenz). Theorem 1.1 generalizes to
arbitrary finite-dimensional Frobenius algebras.

6 / 46

https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/


Finite group algebras: Proof of Theorem 1.1

Lemma 1.3. Assume that k is a field. Let a ∈ k [G ]. Then,
L (a) ∼ L (a∗) in Endk (k [G ]).

Proof: Consider the standard basis (g)g∈G of k [G ]. The
matrices representing the endomorphisms L (a) and L (a∗) in
this basis are mutual transposes. But the Taussky–Zassenhaus
theorem says that over a field, each matrix A is similar to its
transpose AT .

Lemma 1.4. Let a ∈ k [G ]. Then, L (a∗) ∼ R (a) in
Endk (k [G ]).

Proof: We have R (a) = S ◦ L (a∗) ◦ S and S = S−1.

Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.

Remark (Martin Lorenz). Theorem 1.1 generalizes to
arbitrary finite-dimensional Frobenius algebras.

6 / 46

https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/


Symmetric groups: Notations

∗ Let N := {0, 1, 2, . . .}.
∗ Let [k] := {1, 2, . . . , k} for each k ∈ N.
∗ Now, fix a positive integer n, and let Sn be the n-th symmetric

group, i.e., the group of permutations of the set [n].
Multiplication in Sn is composition:

(αβ) (i) = (α ◦ β) (i) = α (β (i))

for all α, β ∈ Sn and i ∈ [n] .

(Warning: SageMath has a different opinion!)
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Symmetric group algebras

What can we say about the group algebra k [Sn] that doesn’t
hold for arbitrary k [G ]?
There is a classical theory (“Young’s seminormal form”) of
the structure of k [Sn] when k has characteristic 0. See:

Murray Bremner, Sara Madariaga, Luiz A. Peresi,
Structure theory for the group algebra of the symmetric
group, ..., Commentationes Mathematicae Universitatis
Carolinae, 2016. (Quick and to the point.)
Daniel Edwin Rutherford, Substitutional Analysis,
Edinburgh 1948. (Dated but careful and quite readable;
perhaps the best treatment.)
Adriano M. Garsia, Ömer Egecioglu, Lectures in
Algebraic Combinatorics, Springer 2020. (Messy but full
of interesting things.)

Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of
characteristic 0, then

k [Sn] ∼=
∏

λ is a partition of n

Mf λ (k)︸ ︷︷ ︸
matrix ring

(as k-algebras) ,

where f λ is the number of standard Young tableaux of shape
λ.

The structure of k [Sn] for 0 < char k ≤ n is far less
straightforward. See, e.g.,

Matthias Künzer, Ties for the integral group ring of the
symmetric group, thesis 1998.

Remark. If k is a field of characteristic 0, then each
a ∈ k [Sn] satisfies a ∼ a∗ in k [Sn].
But not for general k.

From now on, we shall focus on concrete elements in k [Sn].
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The YJM elements: Definition and commutativity

∗ For any distinct elements i1, i2, . . . , ik of [n], let cyci1,i2,...,ik be
the permutation in Sn that cyclically permutes
i1 7→ i2 7→ i3 7→ · · · 7→ ik 7→ i1 and leaves all other elements of
[n] unchanged.

Note. We have cyci = id, whereas cyci ,j is the transposition
ti ,j .

∗ For each k ∈ [n], we define the k-th Young–Jucys–Murphy
(YJM) element

Jk := cyc1,k +cyc2,k + · · ·+ cyck−1,k ∈ k [Sn] .

Note. We have J1 = 0. Also, J∗k = Jk for each k ∈ [n].

∗ Theorem 3.1. The YJM elements J1, J2, . . . , Jn commute:
We have JiJj = JjJi for all i , j .

Proof: Easy computational exercise.
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The YJM elements: Eigenvalues

∗ Theorem 3.2. The minimal polynomial of Jk over Q divides

k−1∏
i=−k+1

(X − i) = (X − k + 1) (X − k + 2) · · · (X + k − 1) .

(For k ≤ 3, some factors here are redundant.)

Thus, the eigenvalues of Jk are −k + 1,−k + 2, . . . , k − 1
(except for 0 when k ≤ 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:
The seminormal basis exists only for char k = 0 (or, more
generally, when n! is invertible in k).
But Theorem 3.2 and the algebraic multiplicities transfer
automatically to all rings k.
Question. Is there a self-contained algebraic/combinatorial
proof of Theorem 3.2 without linear algebra or representation
theory? (Asked on MathOverflow:
https://mathoverflow.net/questions/420318/ .)
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(except for 0 when k ≤ 3). Their multiplicities can be
computed in terms of standard Young tableaux. Even better:
The seminormal basis exists only for char k = 0 (or, more
generally, when n! is invertible in k).
But Theorem 3.2 and the algebraic multiplicities transfer
automatically to all rings k.
Question. Is there a self-contained algebraic/combinatorial
proof of Theorem 3.2 without linear algebra or representation
theory? (Asked on MathOverflow:
https://mathoverflow.net/questions/420318/ .)
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Symmetric polynomials in the YJM elements, 1

Theorem 3.4. For each k ∈ N, we can evaluate the k-th
elementary symmetric polynomial ek at the YJM elements
J1, J2, . . . , Jn to obtain

ek (J1, J2, . . . , Jn) =
∑
σ∈Sn;

σ has exactly n−k cycles

σ.

Proof: Nice homework exercise (once stripped of the algebra).

There are formulas for other symmetric polynomials applied to
J1, J2, . . . , Jn (see Garsia/Egecioglu).
There is also a general fact:
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Symmetric polynomials in the YJM elements, 2

Theorem 3.5 (Murphy).

{f (J1, J2, . . . , Jn) | f ∈ k [X1,X2, . . . ,Xn] symmetric}
= (center of the group algebra k [Sn]) .

Proof: See any of:
Gadi Moran, The center of Z [Sn+1] ..., 1992.
G. E. Murphy, The Idempotents of the Symmetric Group
..., 1983, Theorem 1.9 (for the case k = Z, but the
general case easily follows).
Ceccherini-Silberstein/Scarabotti/Tolli, Representation
Theory of the Symmetric Groups, 2010, Theorem 4.4.5
(for the case k = Q, but the proof is easily adjusted to all
k).
This book also has more on the J1, J2, . . . , Jn (but mind
the errata).
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The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1, 2, . . . , n.
A permutation σ ∈ Sn corresponds to the state in which the
cards are arranged σ (1) , σ (2) , . . . , σ (n) from top to bottom.
A random state is an element

∑
σ∈Sn

aσσ of R [Sn] whose

coefficients aσ ∈ R are nonnegative and add up to 1. This is
interpreted as a distribution on the n! possible states, where
aσ is the probability for the deck to be in state σ.

An R-vector space endomorphism of R [Sn], such as L (a) or
R (a) for some a ∈ R [Sn], acts as a (random) shuffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.
For example, if k > 1, then the right multiplication R (Jk) by
the YJM element Jk corresponds to swapping the k-th card
with some card above it (chosen uniformly at random).
Transposing such a matrix means time-reversing the random
shuffle.
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Bottom-to-random and random-to-bottom shuffles: definitions

∗ Another family of elements of k [Sn] are the
k-bottom-to-random shuffles

Bn,k :=
∑
σ∈Sn;

σ−1(1)<σ−1(2)<···<σ−1(n−k)

σ

defined for all k ∈ {0, 1, . . . , n}. Thus,

Bn,n = Bn,n−1 =
∑
σ∈Sn

σ;

Bn,1 =
n∑

i=1

cycn,n−1,...,i ;

Bn,0 = id .

We set Bn := Bn,1.

Bn := Bn,1 is known as the bottom-to-random shuffle or the
Tsetlin library.
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σ;

Bn,1 =
n∑

i=1

cycn,n−1,...,i ;

Bn,0 = id .

We set Bn := Bn,1.
As a random shuffle, Bn,k (to be precise, R (Bn,k)) takes the
bottom k cards and moves them to random positions.
Its antipode B∗

n,k takes k random cards and moves them to
the bottom positions.
Bn := Bn,1 is known as the bottom-to-random shuffle or the
Tsetlin library.

14 / 46



Bottom-to-random and random-to-bottom shuffles: definitions

∗ Another family of elements of k [Sn] are the
k-bottom-to-random shuffles

Bn,k :=
∑
σ∈Sn;

σ−1(1)<σ−1(2)<···<σ−1(n−k)

σ

defined for all k ∈ {0, 1, . . . , n}. Thus,

Bn,n = Bn,n−1 =
∑
σ∈Sn

σ;

Bn,1 =
n∑

i=1

cycn,n−1,...,i ;

Bn,0 = id .

We set Bn := Bn,1.
Bn := Bn,1 is known as the bottom-to-random shuffle or the
Tsetlin library.

14 / 46



Bottom-to-random and random-to-bottom shuffles: facts

Theorem 5.1 (Diaconis, Fill, Pitman). We have

Bn,k+1 = (Bn − k)Bn,k for each k ∈ {0, 1, . . . , n − 1} .

Corollary 5.2. The n + 1 elements Bn,0,Bn,1, . . . ,Bn,n

commute and are polynomials in Bn, namely

Bn,k =
k−1∏
i=0

(Bn − i) for each k ∈ {0, 1, . . . , n} .

Theorem 5.3 (Wallach). The minimal polynomial of Bn

over Q is ∏
i∈{0,1,...,n−2,n}

(X − i) = (X − n)
n−2∏
i=0

(X − i) .

These are not hard to prove in this order. See
https://mathoverflow.net/questions/308536 for the
details.
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Bottom-to-random and random-to-bottom shuffles: more

More can be said: in particular, the multiplicities of the
eigenvalues 0, 1, . . . , n − 2, n of R (Bn) over Q are known.

The antipodes

B∗
n,k :=

∑
σ∈Sn;

σ(1)<σ(2)<···<σ(n−k)

σ

of Bn,k are known as the k-random-to-bottom shuffles and
have the same properties (since S is an algebra
anti-automorphism).

Moreover, there are top-to-random and random-to-top
shuffles defined in the same way but with renaming 1, 2, . . . , n
as n, n − 1, . . . , 1. They are just images of the Bn,k and B∗

n,k

under the automorphism a 7→ w0aw
−1
0 of k [Sn], where w0 is

the permutation with one-line notation (n, n − 1, . . . , 1).
Thus, top vs. bottom is mainly a matter of notation.
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Bottom-to-random and random-to-bottom shuffles: references

Main references:

Nolan R. Wallach, Lie Algebra Cohomology and
Holomorphic Continuation of Generalized Jacquet
Integrals, 1988, Appendix.
Persi Diaconis, James Allen Fill and Jim Pitman, Analysis
of Top to Random Shuffles, 1992.
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Random-to-random shuffles: Definition

∗ Here is a further family. For each k ∈ {0, 1, . . . , n}, we let

Rn,k :=
∑
σ∈Sn

noninvn−k (σ) · σ,

where noninvn−k (σ) denotes the number of (n − k)-element
subsets of [n] on which σ is increasing. This is called the
k-random-to-random shuffle.

Note: Rn,0 = id and Rn,n−1 = n
∑
σ∈Sn

σ and Rn,n =
∑
σ∈Sn

σ.

The card-shuffling interpretation of Rn,k is “pick any k cards
from the deck and move them to k randomly chosen
positions”.
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Example: Writing permutations in one-line notation,
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+ 4[1, 4, 2, 3] + 3[1, 4, 3, 2] + 5[2, 1, 3, 4] + 4[2, 1, 4, 3]
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Random-to-random shuffles: Two surprises

∗ Theorem 6.1 (Reiner, Saliola, Welker). The n + 1
elements Rn,0,Rn,1, . . . ,Rn,n commute (but are not
polynomials in Rn,1 in general).

∗ Theorem 6.2 (Dieker, Saliola, Lafrenière). The minimal
polynomial of each Rn,k over Q is a product of X − i ’s for
distinct integers i . For example, the one of Rn,1 divides

n2∏
i=0

(X − i) .

The exact factors can be given in terms of certain statistics on
Young diagrams.
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Random-to-random shuffles: References

Main references: the “classics”

Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.
A.B. Dieker, F.V. Saliola, Spectral analysis of
random-to-random Markov chains, 2018.
Nadia Lafrenière, Valeurs propres des opérateurs de
mélanges symétrisés, thesis, 2019.

and the two recent preprints

Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui
Chiang, Patricia Commins, Veronica Lang, Spectrum of
random-to-random shuffling in the Hecke algebra,
arXiv:2407.08644.
Sarah Brauner, Patricia Commins, Darij Grinberg, Franco
Saliola, The q-deformed random-to-random family in the
Hecke algebra, arXiv:2503.17580.
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Random-to-random shuffles: What we do

The “classical” proofs are complicated, technical and long.
In this talk, I will outline some parts of the two recent
preprints, including a simpler proof of Theorem 6.1 and most
of Theorem 6.2. (The full proof of Theorem 6.2 is still long
and hard.)
Moreover, I will show how all these results can be generalized
to the (Iwahori–)Hecke algebra Hn = Hn (q), a
q-deformation of k [Sn].
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R vs. B

The first step is a formula that is easy to prove
combinatorially:

∗ Proposition 6.3. For each k ∈ {0, 1, . . . , n}, we have

Rn,k =
1

k!
· B∗

n,k Bn,k .

However, the Bn,k do not commute with the B∗
n,k , so this is

not by itself an answer.
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The Hecke algebra: Definition

∗ Let q ∈ k be a parameter.
The n-th Hecke algebra (or Iwahori–Hecke algebra to be more
historically correct) is a q-deformation of the group algebra
k [Sn]. It has generators T1,T2, . . . ,Tn−1 and relations

T 2
i = (q − 1)Ti + q for all i ∈ [n − 1] ;

TiTj = TjTi whenever |i − j | > 1;

TiTi+1Ti = Ti+1TiTi+1 for all i ∈ [n − 2] .

We call this algebra Hn.

∗ For q = 1, this is the group algebra k [Sn] (and the generator
Ti is the simple transposition si = cyci ,i+1).

∗ For general q, it still is a free k-module of rank n!, with a
basis (Tw )w∈Sn indexed by permutations w ∈ Sn. The basis
vectors are defined by Tw := Ti1Ti2 · · ·Tik , where si1si2 · · · sik
is a reduced expression for w . For q = 1, this Tw is just w .
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The Hecke algebra: What for?

∗ Much of the theory of k [Sn] exists in a subtler form for Hn.
Sometimes, the added difficulty brings the best proofs to light.

Hn shows up in many places: as a better-behaved model for
the modular representation theory of Sn; as a nonunital
subalgebra of k [GLn (Fq)] (when q is a prime power); as an
algebraic model for some random walks (when q ∈ [0, 1]), ....
It also can be defined for other types of groups.
Cf. Taylor–Wiles, Ring-Theoretic Properties of Certain Hecke
Algebras, 1995.

I think of Hn as a “biased” version of k [Sn], which breaks the
symmetry in favor of “entropy”.
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The Hecke algebra: Structure

∗ Theorem 7.1 (Dipper–James). Assume that k is a field,
and that q ̸= 0 and qn! ̸= 1. Then, the Hecke algebra Hn is
semisimple and in fact isomorphic to k [Sn] (in a nontrivial
way).
Thus, its irreducible representations are again some kind of
Specht modules Sλ, deforming the ones for k [Sn].

This was proved for generic q by Dipper/James
(Representations of Hecke algebras of general linear groups,
1984), and in the general case by Murphy (The
Representations of Hecke algebras of type An, 1995), modulo
the semisimplicity, which can be found in most texts now
(e.g., Mathas, Iwahori-Hecke Algebras and Schur Algebras of
the Symmetric Group, 1999).

In the following, unless I say otherwise, I am working in Hn.
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The Hecke algebra: The antipode

∗ The antipode S : k [Sn] → k [Sn] can be generalized to the
Hecke algebra. The generalization is the k-linear map

S : Hn → Hn,

Tw 7→ Tw−1 (thus Ti 7→ Ti ) .

∗ Again, this is a k-algebra anti-automorphism and an
involution.

∗ Again, we write a∗ for S (a).
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The Hecke algebra: The YJM elements

∗ When q ∈ k is invertible, we can define the
Young–Jucys–Murphy (YJM) elements in the Hecke algebra
Hn. These are the elements J1, J2, . . . , Jn ∈ Hn defined by

Jk :=
k−1∑
i=1

qi−kTcyci,k ∈ Hn.

Setting q = 1 recovers the YJM elements of k [Sn].
∗ Again, J1 = 0. Also, J∗k = Jk for each k ∈ [n].

∗ The elements J1, J2, . . . , Jn commute.

∗ The eigenvalues of each Jk are

[−k + 1]q , [−k + 2]q , . . . , [k − 1]q ,

where we are using the q-integers

[m]q :=
1− qm

1− q
=

{
1 + q + q2 + · · ·+ qm−1, if m ≥ 0;

−q−1 − q−2 − · · · − qm, if m ≤ 0.

Their multiplicities are as in the k [Sn] case.
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The Hecke algebra: Bottom-to-random and back, 1

∗ We define the q-deformed k-bottom-to-random shuffles Bn,k

and the q-deformed k-random-to-bottom shuffles B∗
n,k for

k ∈ {0, 1, . . . , n} by

Bn,k :=
∑
σ∈Sn;

σ−1(1)<σ−1(2)<···<σ−1(n−k)

Tσ ∈ Hn

and
B∗
n,k :=

∑
σ∈Sn;

σ(1)<σ(2)<···<σ(n−k)

Tσ ∈ Hn.

Note that Bn,0 = B∗
n,0 = 1. We also set Bn,k = B∗

n,k = 0 for
k > n.
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The Hecke algebra: Bottom-to-random and back, 2

∗ Theorem 7.2
(Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024).
We have

Bn,k = Bn−k+1Bn−k+2 · · · Bn,

where we arrange the Hecke algebras in a chain of inclusions:

k = H0 ⊆ H1 ⊆ H2 ⊆ · · · .
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The Hecke algebra: Bottom-to-random and back, 3

∗ Theorem 7.3 (essentially Brauner–Commins–Reiner
2023, to be made explicit in Grinberg 2025+ on
q-deformed somewhere-to-below shuffles). The n + 1
elements Bn,0,Bn,1, . . . ,Bn,n commute and are polynomials in
Bn, namely

Bn,k =
k−1∏
i=0

(
Bn − [i ]q

)
for each k ∈ {0, 1, . . . , n} .

∗ Theorem 7.4 (same). The minimal polynomial of Bn over k
(when k is a field) divides∏

i∈{0,1,...,n−2,n}

(
X − [i ]q

)
.
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The Hecke algebra: Bottom-to-random and back, 4

The proofs here are similar to the q = 1 case, but attention
needs to be paid to the lengths of the permutations as they
get multiplied.

There is a bespoke interpretation of Bn as a “q-Tsetlin
library”, where decks of cards are replaced by flags of vector
subspaces of Fn

q. (See arXiv:2407.08644 for details.)
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The Hecke algebra: Random-to-random, definition

∗ We can also generalize the k-random-to-random shuffles Rn,k :
For each k ≥ 0, we set

Rn,k :=
1

[k]!q
B∗
n,k Bn,k ∈ Hn,

where we use the q-factorial [k]!q = [1]q [2]q · · · [k]q.
∗ The coefficients of Rn,k are actually in Z [q], since the

denominator can be cancelled.
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The Hecke algebra: Random-to-random, example

Example: Again using one-line notation,

R4,2 =
(
q4 + q3 + 2q2 + q + 1

)
T[1,2,3,4] +

(
q3 + 2q2 + q + 1

)
T[1,2,4,3]

+
(
q4 + q3 + q2 + q + 1

)
T[1,3,2,4] +

(
q3 + q2 + q + 1

)
T[1,3,4,2]

+
(
q3 + q2 + q + 1

)
T[1,4,2,3] +

(
q3 + q + 1

)
T[1,4,3,2]

+
(
q4 + q3 + 2q2 + q

)
T[2,1,3,4] +

(
q3 + 2q2 + q

)
T[2,1,4,3]

+
(
q4 + q3 + q2 + q

)
T[2,3,1,4] +

(
q3 + q2 + q

)
T[2,3,4,1]

+
(
q3 + q2 + q

)
T[2,4,1,3] +

(
q3 + q

)
T[2,4,3,1]

+
(
q4 + q3 + q2 + q

)
T[3,1,2,4] +

(
q3 + q2 + q

)
T[3,1,4,2]

+
(
q4 + q3 + q2 + q − 1

)
T[3,2,1,4] +

(
q3 + q2 + q − 1

)
T[3,2,4,1]

+
(
q3 + q

)
T[3,4,1,2] +

(
q3 + q − 1

)
T[3,4,2,1]

+
(
q3 + q2 + q

)
T[4,1,2,3] +

(
q3 + q

)
T[4,1,3,2]

+
(
q3 + q2 + q − 1

)
T[4,2,1,3] +

(
q3 + q − 1

)
T[4,2,3,1]

+
(
q3 + q − 1

)
T[4,3,1,2] +

(
q3 + q − 2

)
T[4,3,2,1].

Note: The last coefficient becomes 0 in the q = 1 case!
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The Hecke algebra: The main theorems

We have been able to extend the main properties of
k-random-to-random shuffles from k [Sn] to Hn:

∗ Theorem 7.5 (Brauner–Commins–G.–Saliola 2025). The
n + 1 elements Rn,0,Rn,1, . . . ,Rn,n of Hn commute (but are
not polynomials in Rn,1 in general).

∗ Theorem 7.6 (Brauner–Commins–G.–Saliola 2025). All
eigenvalues of each Rn,k over a field k can be written as
polynomials in q with coefficients in N.

∗ Theorem 7.7 (Brauner–Commins–G.–Saliola 2025). If k
is a field and q is generic, then there is a basis of Hn in which
all the Rn,k (that is, all the R (Rn,k)) are diagonal.
For k = 1, the above was done in:

Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui
Chiang, Patricia Commins, Veronica Lang, Spectrum of
random-to-random shuffling in the Hecke algebra,
arXiv:2407.08644.

We use this work in our proofs (mostly for computing the
eigenvalues).
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The Hecke algebra: The recursion

∗ Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based
on Axelrod-Freed–Brauner–Chiang–Commins–Lang
2024). For any 1 ≤ k ≤ n, we have

Bn Rn,k =
(
qk Rn−1,k +

(
[n + 1− k]q + qn+1−kJn

)
Rn−1,k−1

)
︸ ︷︷ ︸

=:Wn,k

Bn.

The proof takes about 5 pages, relying on some more
elementary computations from prior work (ca. 10–15 pages in
total).

This recursion does not actually compute Rn,k . But it says
enough about Rn,k to be the key to our proofs.

Note also that Rn,k ∈ B∗
n Hn by its definition (when k ≥ 1).

This makes the recursion so useful.
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The Hecke algebra: Commutativity of random-to-random

Theorem 8.1 leads fairly easily to a proof of commutativity
(Theorem 7.5).
Indeed, inducting on n, we observe that the Wn,ks all
commute by the induction hypothesis (and the easy fact that
Jn commutes with everything in Hn−1). Thus, using
Bn Rn,k = Wn,k Bn, we find

Bn Rn,i Rn,j = Wn,i Bn Rn,j = Wn,i Wn,j Bn

= Wn,j Wn,i Bn = Wn,j Bn Rn,i = Bn Rn,j Rn,i .

Remains to get rid of the Bn factor at the front. Recall that
all Rn,i (except for the trivial Rn,0) lie in B∗

n Hn. But it can
be shown that when q is a positive real, Bn B∗

n a = 0 entails
B∗
n a = 0 (positivity trick! cf. linear algebra:

Ker
(
ATA

)
= KerA for real matrix A).

Now extend back to arbitrary q using polynomial identity trick.

Alternatively, the tricks can also be avoided (see our preprint).
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The Hecke algebra: The approach to eigenvalues, 1

Now to Theorem 7.6: Why are all eigenvalues of Rn,k integer
polynomials in q ? (Let’s drop the nonnegativity for now.)

We have a theory of “split elements” that can help answer
such questions in general. Here is an outline:

∗ An element a of a k-algebra A is said to be split (over k) if
there exist some scalars u1, u2, . . . , un ∈ k (not necessarily

distinct) such that
n∏

i=1
(a− ui ) = 0.

∗ When k is an integral domain and A is a free k-module of
finite rank, this is the same as saying that R (a) has all
eigenvalues in k.

In particular, for k = Z [q] and A = Hn, this means that all
eigenvalues of a are ∈ Z [q]. This is what we want to show for
a = Rn,k .

So we must show that Rn,k is split over Z [q].
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The Hecke algebra: The approach to eigenvalues, 2

So we must show that Rn,k is split over Z [q].

It suffices to show that Rn,k is split over Z
[
q, q−1

]
(Laurent

polynomials), since then an integral closure argument will
yield that the eigenvalues are in fact ∈ Z [q]. This is easier
because we have YJM elements over Z

[
q, q−1

]
.
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General theory of split elements, 1

We prove several general properties of split elements (nice
exercises on commutative algebra!):

∗ Theorem 9.1. If two commuting elements a, b ∈ A are split,
then both a+ b and ab are split.

∗ Corollary 9.2. A commutative subalgebra of A generated by
split elements consists entirely of split elements.

∗ Theorem 9.3. If b, c , f are elements of A such that f is split
and such that bc = fb and c ∈ Ab, then c is split.

Theorem 9.3 is tailored to our use:

bc = fb c ∈ Ab

Bn Rn,k = Wn,k Bn Rn,k ∈ Hn Bn

.

The splitness of Wn,k follows from the splitness of the
commuting elements Jn, Rn−1,k−1 and Rn−1,k (induction!)
by Corollary 9.2. We need the splitness of the YJM elements,
which was proved (e.g.) by Murphy.
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General theory of split elements, 2

Theorem 9.3 looks baroque, but in fact it easily decomposes
into two particular cases:
Corollary 9.4. If ba is split, then ab is also split.
Corollary 9.5. If a is split and b2 = ab, then b is split.
(Both times, a, b ∈ A are arbitrary.)

40 / 46



The Hecke algebra: Formulas for eigenvalues, 1

The splitness theory proves easily that all eigenvalues of Rn,k

belong to Z [q], but it fails to show that they belong to N [q].
Indeed, it produces “phantom eigenvalues” which do not
actually appear; some of them have negative coefficients. It
also does not compute the multiplicities.

With a lot more work (Specht modules, seminormal basis for
Hn, Pieri rule, etc.), we have been able to compute the
eigenvalues with their multiplicities fully.

I only have time to state the main result.
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The Hecke algebra: Formulas for eigenvalues, 2

Theorem 10.1. Let n, k ≥ 0. The eigenvalues of R (Rn,k) on Hn

are the elements

Eλ\µ(k) := qnk−(
k
2)

∑
j<(ℓ1<ℓ2<···<ℓk )≤n

k∏
m=1

q−ℓm [ℓm+1−m+ctλ\µ (ℓm)]q

for all horizontal strips λ \ µ that satisfy λ ⊢ n and dµ ̸= 0. Here,
dµ denotes the number of desarrangement tableaux of shape µ
(that is, standard tableaux of shape µ whose smallest
non-descent is even);
j is the size of µ;
tλ\µ is the skew tableau of shape λ \ µ obtained by filling in
the boxes of λ \ µ with j + 1, j + 2, . . . , n from top to bottom;
ctλ\µ (p) = y − x if the cell of tλ\µ containing the entry p is
(x , y).

Moreover, the multiplicity of each such eigenvalue Eλ\µ(k) is dµf λ,

where f λ is the number of standard tableaux of shape λ (unless
there are collisions).

The right hand side can be rewritten as an evaluation of a factorial

h-polynomial, but this may not be much of a simplification.
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The Hecke algebra: Formulas for eigenvalues, 3

We have explicit formulas for specific shapes and strips:

E(n)\∅(k) = [k]!q

[
n

k

]2
q

;

E(n−1,1)\(j,1)(k) = [k]!q

[
n − j − 1

k

]
q

[
n + j

k

]
q

for all j ∈ [n − 1] .

But E(4,1,1)\(1,1) (1) is not a quotient of products of q-integers.
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The Hecke algebra: Open questions

Question: Any nicer formulas for the eigenvalues Eλ\µ (k) ?
Question: As polynomials in q, are the eigenvalues Eλ\µ (k)
unimodal?

Question (Reiner): How big is the subalgebra of Q [Sn]
generated by Rn,0,Rn,1, . . . ,Rn,n ? Some small values:

n 1 2 3 4 5 6 7 8 9 10 11 12

dim (subalgebra) 1 2 4 7 15 30 54 95 159 257 400 613

(sequence not in the OEIS as of 2025-03-17).

The same numbers hold for the q-deformation!
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The affine Hecke algebra: Open questions

Generalization (implicit in Reiner, Saliola, Welker). For
each k ∈ {0, 1, . . . , n}, we let

R̃n,k :=
∑
σ∈Sn

∑
I⊆[n];

|I |=n−k;
σ increases on I

σ ⊗
∏
i∈I

xi

in the twisted group algebra

T := k [Sn]⊗ k [x1, x2, . . . , xn]

with multiplication (σ ⊗ f ) (τ ⊗ g) = στ ⊗ τ−1 (f ) g .

Then, the R̃n,0, R̃n,1, . . . , R̃n,n commute.
This twisted group algebra T acts on k [x1, x2, . . . , xn] in two
ways: by multiplication ((σ ⊗ f ) (p) = σ (fp)) or by
differentiation ((f ⊗ σ) (p) = σ (f (∂) (p))). (In either case,
the Sn part permutes the variables.)
Question: Simpler proof for this generalization?
q-deformation? (The obvious one in the affine Hecke algebra
does not work!) 45 / 46
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