The random-to-random shuffles and their *q*-deformations

```
Darij Grinberg (Drexel University) joint work with
Sarah Brauner, Patricia Commins, Franco Saliola
```

```
Kungliga Tekniska högskolan, Stockholm, 2025-03-19;
Rutgers University, 2025-04-30;
CAGE seminar, 2025-05-08
```

```
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/kth2025b.pdf
paper (draft):
https://www.cip.ifi.lmu.de/~grinberg/algebra/r2r2.pdf
```

Finite group algebras: Basics

- Let \mathbf{k} be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- \blacksquare Let G be a finite group. (We will only use symmetric groups.)
- Let k [G] be the group algebra of G over k. Its elements are formal k-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.

Finite group algebras: Basics

- Let \mathbf{k} be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- lacktriangle Let G be a finite group. (We will only use symmetric groups.)
- Let k [G] be the group algebra of G over k. Its elements are formal k-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.
 - **Example:** Let G be the symmetric group S_3 on the set $\{1,2,3\}$. For $i \in \{1,2\}$, let $s_i \in S_3$ be the simple transposition that swaps i with i+1. Then, in $\mathbf{k}[G] = \mathbf{k}[S_3]$, we have

$$(1+s_1)(1-s_1)=1+s_1-s_1-s_1^2=0$$
 (since $s_1^2=1$);

Finite group algebras: Basics

- Let **k** be any commutative ring. (Usually \mathbb{Z} , \mathbb{Q} or a polynomial ring.)
- lacktriangle Let G be a finite group. (We will only use symmetric groups.)
- Let k [G] be the group algebra of G over k. Its elements are formal k-linear combinations of elements of G. The multiplication is inherited from G and extended bilinearly.
 - **Example:** Let G be the symmetric group S_3 on the set $\{1,2,3\}$. For $i \in \{1,2\}$, let $s_i \in S_3$ be the simple transposition that swaps i with i+1. Then, in $\mathbf{k}[G] = \mathbf{k}[S_3]$, we have

$$(1+s_1)(1-s_1)=1+s_1-s_1-s_1^2=0$$

(since $s_1^2=1$);
 $(1+s_2)(1+s_1+s_1s_2)=1+s_2+s_1+s_2s_1+s_1s_2+s_2s_1s_2$
 $=\sum_{s_1^2}w.$

Finite group algebras: L(a) and R(a)

 \bullet For each $a \in \mathbf{k}[G]$, we define two **k**-linear maps

$$L\left(a
ight):\mathbf{k}\left[G
ight]
ightarrow\mathbf{k}\left[G
ight], \ x\mapsto ax \qquad \left(ext{"left multiplication by a"}
ight)$$

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a "). (So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

Note: The symbol * denotes important points.

Finite group algebras: L(a) and R(a)

* For each $a \in \mathbf{k}[G]$, we define two **k**-linear maps

$$L(a): \mathbf{k}[G] o \mathbf{k}[G],$$
 $x \mapsto ax$ ("left multiplication by a ")

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a "). (So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

• Both L(a) and R(a) belong to the endomorphism ring $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$ of the **k**-module $\mathbf{k}[G]$. This ring is essentially a $|G| \times |G|$ -matrix ring over **k**. Thus, L(a) and R(a) can be viewed as $|G| \times |G|$ -matrices.

Finite group algebras: L(a) and R(a)

 \blacksquare For each $a \in \mathbf{k}[G]$, we define two \mathbf{k} -linear maps

$$L\left(a
ight):\mathbf{k}\left[G
ight]
ightarrow\mathbf{k}\left[G
ight], \ x\mapsto ax \qquad \left(ext{"left multiplication by a"}
ight)$$

and

$$R(a): \mathbf{k}[G] \to \mathbf{k}[G],$$
 $x \mapsto xa$ ("right multiplication by a "). (So $L(a)(x) = ax$ and $R(a)(x) = xa$.)

• Studying a, L(a) and R(a) is often (but not always) equivalent, because the maps

$$\begin{array}{c} L: \mathbf{k}\left[G\right] \to \operatorname{End}_{\mathbf{k}}\left(\mathbf{k}\left[G\right]\right) & \text{and} \\ R: \underbrace{\left(\mathbf{k}\left[G\right]\right)^{\operatorname{op}}}_{\operatorname{opposite ring}} \to \operatorname{End}_{\mathbf{k}}\left(\mathbf{k}\left[G\right]\right) & \end{array}$$

are two injective k-algebra morphisms (known as the left and right regular representations of the group G).

Finite group algebras: Minimal polynomials

- * Each $a \in \mathbf{k}[G]$ has a *minimal polynomial*, i.e., a minimum-degree monic polynomial $P \in \mathbf{k}[X]$ such that P(a) = 0. It is unique when \mathbf{k} is a field. The minimal polynomial of a is also the minimal polynomial of the endomorphisms L(a) and R(a).
 - When k is a field, we can also study the eigenvectors and eigenvalues of L(a) and R(a).

Finite group algebras: Minimal polynomials

- * Each $a \in \mathbf{k}[G]$ has a *minimal polynomial*, i.e., a minimum-degree monic polynomial $P \in \mathbf{k}[X]$ such that P(a) = 0. It is unique when \mathbf{k} is a field. The minimal polynomial of a is also the minimal polynomial of the endomorphisms L(a) and R(a).
 - When \mathbf{k} is a field, we can also study the eigenvectors and eigenvalues of L(a) and R(a).
 - Theorem 1.1. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, the two linear endomorphisms L(a) and R(a) are conjugate in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$ (that is, similar as matrices). (Thus, they have the same eigenstructure.)
 - This is surprisingly nontrivial!

Finite group algebras: The antipode

The antipode of the group algebra k[G] is defined to be the k-linear map

$$S: \mathbf{k}[G] o \mathbf{k}[G] \, ,$$
 $g \mapsto g^{-1}$ for each $g \in G$.

We shall write a^* for S(a).

Finite group algebras: The antipode

The *antipode* of the group algebra k[G] is defined to be the k-linear map

$$S: \mathbf{k}\left[G
ight]
ightarrow \mathbf{k}\left[G
ight],$$
 $g \mapsto g^{-1}$ for each $g \in G.$

We shall write a^* for S(a).

 \blacksquare **Proposition 1.2.** The antipode S is an involution:

$$a^{**} = a$$
 for all $a \in \mathbf{k}[G]$,

and a k-algebra anti-automorphism:

$$(ab)^* = b^*a^*$$
 for all $a, b \in \mathbf{k}[G]$.

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .
- Lemma 1.4. Let $a \in \mathbf{k}[G]$. Then, $L(a^*) \sim R(a)$ in End_k ($\mathbf{k}[G]$).
- *Proof:* We have $R(a) = S \circ L(a^*) \circ S$ and $S = S^{-1}$.

Finite group algebras: Proof of Theorem 1.1

- Lemma 1.3. Assume that \mathbf{k} is a field. Let $a \in \mathbf{k}[G]$. Then, $L(a) \sim L(a^*)$ in $\operatorname{End}_{\mathbf{k}}(\mathbf{k}[G])$.
- Proof: Consider the standard basis $(g)_{g \in G}$ of $\mathbf{k}[G]$. The matrices representing the endomorphisms L(a) and $L(a^*)$ in this basis are mutual transposes. But the Taussky–Zassenhaus theorem says that over a field, each matrix A is similar to its transpose A^T .
- Lemma 1.4. Let $a \in \mathbf{k}[G]$. Then, $L(a^*) \sim R(a)$ in End_k ($\mathbf{k}[G]$).
- Proof: We have $R(a) = S \circ L(a^*) \circ S$ and $S = S^{-1}$.
- Proof of Theorem 1.1: Combine Lemma 1.3 with Lemma 1.4.
- Remark (Martin Lorenz). Theorem 1.1 generalizes to arbitrary finite-dimensional Frobenius algebras.

Symmetric groups: Notations

- * Let $\mathbb{N} := \{0, 1, 2, \ldots\}.$
- * Let $[k] := \{1, 2, \dots, k\}$ for each $k \in \mathbb{N}$.

Symmetric groups: Notations

- * Let $\mathbb{N} := \{0, 1, 2, \ldots\}.$
- \blacksquare Let $[k] := \{1, 2, \dots, k\}$ for each $k \in \mathbb{N}$.
- Now, fix a positive integer n, and let S_n be the n-th symmetric group, i.e., the group of permutations of the set [n]. Multiplication in S_n is composition:

$$(\alpha\beta)(i) = (\alpha \circ \beta)(i) = \alpha(\beta(i))$$

for all $\alpha, \beta \in S_n$ and $i \in [n]$.

(Warning: SageMath has a different opinion!)

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- There is a classical theory ("Young's seminormal form") of the structure of $\mathbf{k}[S_n]$ when \mathbf{k} has characteristic 0. See:
 - Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure theory for the group algebra of the symmetric group, ..., Commentationes Mathematicae Universitatis Carolinae, 2016. (Quick and to the point.)
 - Daniel Edwin Rutherford, Substitutional Analysis,
 Edinburgh 1948. (Dated but careful and quite readable;
 perhaps the best treatment.)
 - Adriano M. Garsia, Ömer Egecioglu, Lectures in Algebraic Combinatorics, Springer 2020. (Messy but full of interesting things.)

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda \text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

 Proof: This follows from Young's seminormal form. For the shortest readable proof, see Theorem 1.45 in Bremner/Madariaga/Peresi.

Or, for a different proof, see my introduction to the symmetric group algebra (§5.14).

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda\text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

- The structure of $\mathbf{k}[S_n]$ for $0 < \text{char } \mathbf{k} \le n$ is far less straightforward. See, e.g.,
 - Matthias Künzer, *Ties for the integral group ring of the symmetric group*, thesis 1998.

- What can we say about the group algebra $\mathbf{k}[S_n]$ that doesn't hold for arbitrary $\mathbf{k}[G]$?
- Theorem 2.1 (Artin–Wedderburn–Young). If k is a field of characteristic 0, then

$$\mathbf{k}\left[S_{n}\right]\cong\prod_{\lambda\text{ is a partition of }n}\underbrace{M_{f^{\lambda}}\left(\mathbf{k}\right)}_{\text{matrix ring}}$$
 (as **k**-algebras),

where f^{λ} is the number of standard Young tableaux of shape λ .

- The structure of $\mathbf{k}[S_n]$ for $0 < \text{char } \mathbf{k} \le n$ is far less straightforward. See, e.g.,
 - Matthias Künzer, Ties for the integral group ring of the symmetric group, thesis 1998.
- **Remark.** If **k** is a field of characteristic 0, then each $a \in \mathbf{k}[S_n]$ satisfies $a \sim a^*$ in $\mathbf{k}[S_n]$. But not for general **k**.
- From now on, we shall focus on concrete elements in $\mathbf{k}[S_n]$.

The YJM elements: Definition and commutativity

- * For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note**. We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.

The YJM elements: Definition and commutativity

- * For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note.** We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.
- For each $k \in [n]$, we define the k-th Young-Jucys-Murphy (YJM) element

$$J_k := \operatorname{cyc}_{1,k} + \operatorname{cyc}_{2,k} + \cdots + \operatorname{cyc}_{k-1,k} \in \mathbf{k} [S_n].$$

• **Note.** We have $J_1 = 0$. Also, $J_k^* = J_k$ for each $k \in [n]$.

The YJM elements: Definition and commutativity

- For any distinct elements i_1, i_2, \ldots, i_k of [n], let $\operatorname{cyc}_{i_1, i_2, \ldots, i_k}$ be the permutation in S_n that cyclically permutes $i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_k \mapsto i_1$ and leaves all other elements of [n] unchanged.
 - **Note.** We have $\operatorname{cyc}_i = \operatorname{id}$, whereas $\operatorname{cyc}_{i,j}$ is the transposition $t_{i,j}$.
- For each $k \in [n]$, we define the k-th Young-Jucys-Murphy (YJM) element

$$J_k := \operatorname{cyc}_{1,k} + \operatorname{cyc}_{2,k} + \cdots + \operatorname{cyc}_{k-1,k} \in \mathbf{k} [S_n].$$

- **Note.** We have $J_1 = 0$. Also, $J_k^* = J_k$ for each $k \in [n]$.
- **Theorem 3.1.** The YJM elements $J_1, J_2, ..., J_n$ commute: We have $J_i J_j = J_j J_i$ for all i, j.
 - Proof: Easy computational exercise.

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- First proof: Study the action of J_k on each Specht module (simple S_n -module). See, e.g., G. E. Murphy, A New Construction of Young's Seminormal Representation ..., 1981 for details.
- Second proof (Igor Makhlin): Some linear algebra does the trick. Induct on k using the facts that J_k and J_{k+1} are simultaneously diagonalizable over \mathbb{C} (since they are symmetric as real matrices and commute) and satisfy $s_k J_{k+1} = J_k s_k + 1$, where $s_k := \operatorname{cyc}_{k,k+1}$. See https://mathoverflow.net/a/83493/ for details.

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \leq 3$, some factors here are redundant.)

• Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \leq 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \leq 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- **Theorem 3.3.** Assume that \mathbf{k} is a field of characteristic 0. Then, there exists a basis $(e_{S,T})$ of $\mathbf{k}[S_n]$ indexed by pairs of standard Young tableaux of the same (partition) shape called the *seminormal basis*. This basis has the property that

$$J_k e_{S,T} = c_S(k) \cdot e_{S,T},$$

where $c_S(k) = j - i$ if the number k lies in cell (i, j) of S.

Theorem 3.2. The minimal polynomial of J_k over \mathbb{Q} divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- **Theorem 3.3.** Assume that \mathbf{k} is a field of characteristic 0. Then, there exists a basis $(e_{S,T})$ of $\mathbf{k}[S_n]$ indexed by pairs of standard Young tableaux of the same (partition) shape called the *seminormal basis*. This basis has the property that

$$J_k e_{S,T} = c_S(k) \cdot e_{S,T},$$

10 / 46

where $c_S(k) = j - i$ if the number k lies in cell (i, j) of S.

• Moreover, each Specht module S^{λ} (= irreducible representation of S_n) is spanned by part of the seminormal basis, and thus we find the eigenvalues of J_k on that S^{λ} .

Theorem 3.2. The minimal polynomial of J_k over $\mathbb Q$ divides

$$\prod_{i=-k+1}^{k-1} (X-i) = (X-k+1)(X-k+2)\cdots(X+k-1).$$

(For $k \le 3$, some factors here are redundant.)

- Thus, the eigenvalues of J_k are $-k+1, -k+2, \ldots, k-1$ (except for 0 when $k \le 3$). Their multiplicities can be computed in terms of standard Young tableaux. Even better:
- The seminormal basis exists only for char k = 0 (or, more generally, when n! is invertible in k).
 But Theorem 3.2 and the algebraic multiplicities transfer automatically to all rings k.
- Question. Is there a self-contained algebraic/combinatorial proof of Theorem 3.2 without linear algebra or representation theory? (Asked on MathOverflow:

https://mathoverflow.net/questions/420318/.)

• **Theorem 3.4.** For each $k \in \mathbb{N}$, we can evaluate the k-th elementary symmetric polynomial e_k at the YJM elements J_1, J_2, \ldots, J_n to obtain

$$e_k\left(J_1,J_2,\ldots,J_n
ight) = \sum_{\substack{\sigma \in S_n; \ \sigma ext{ has exactly } n-k ext{ cycles}}} \sigma$$

• Proof: Nice homework exercise (once stripped of the algebra).

• **Theorem 3.4.** For each $k \in \mathbb{N}$, we can evaluate the k-th elementary symmetric polynomial e_k at the YJM elements J_1, J_2, \ldots, J_n to obtain

$$e_k\left(J_1,J_2,\ldots,J_n
ight) = \sum_{\substack{\sigma \in S_n; \ \sigma ext{ has exactly } n-k ext{ cycles}}} \sigma$$

- Proof: Nice homework exercise (once stripped of the algebra).
- There are formulas for other symmetric polynomials applied to J_1, J_2, \ldots, J_n (see Garsia/Egecioglu). There is also a general fact:

• Theorem 3.5 (Murphy).

$$\{f(J_1, J_2, \dots, J_n) \mid f \in \mathbf{k}[X_1, X_2, \dots, X_n] \text{ symmetric}\}\$$

= (center of the group algebra $\mathbf{k}[S_n]$).

Theorem 3.5 (Murphy).

```
\{f(J_1, J_2, \dots, J_n) \mid f \in \mathbf{k} [X_1, X_2, \dots, X_n] \text{ symmetric}\}\
= (center of the group algebra \mathbf{k} [S_n]).
```

- Proof: See any of:
 - Gadi Moran, The center of $\mathbb{Z}[S_{n+1}]$..., 1992.
 - G. E. Murphy, The Idempotents of the Symmetric Group
 ..., 1983, Theorem 1.9 (for the case k = Z, but the
 general case easily follows).
 - Ceccherini-Silberstein/Scarabotti/Tolli, *Representation Theory of the Symmetric Groups*, 2010, Theorem 4.4.5 (for the case $\mathbf{k} = \mathbb{Q}$, but the proof is easily adjusted to all \mathbf{k}).

This book also has more on the J_1, J_2, \ldots, J_n (but mind the errata).

The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
 Imagine a deck of cards labeled 1, 2, ..., n.

A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma(1), \sigma(2), \ldots, \sigma(n)$ from top to bottom.

The card shuffling point of view

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .

The card shuffling point of view

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in \mathcal{S}_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- We drop the "add up to 1" condition, and only require that $\sum_{\sigma \in S_n} a_{\sigma} > 0$. The probabilities must then be divided by $\sum_{\sigma \in S_n} a_{\sigma}$.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1, 2, \ldots, n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma(1), \sigma(2), \ldots, \sigma(n)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- We drop the "add up to 1" condition, and only require that $\sum_{\sigma \in S_n} a_{\sigma} > 0$. The probabilities must then be divided by $\sum_{\sigma \in S_n} a_{\sigma}$.
- For instance, $1+{\rm cyc}_{1,2,3}$ corresponds to the random state in which the deck is sorted as 1,2,3 with probability $\frac{1}{2}$ and sorted as 2,3,1 with probability $\frac{1}{2}$.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.
- For example, if k > 1, then the right multiplication $R(J_k)$ by the YJM element J_k corresponds to swapping the k-th card with some card above it (chosen uniformly at random).

- Permutations are often visualized as shuffled decks of cards: Imagine a deck of cards labeled $1,2,\ldots,n$. A permutation $\sigma \in S_n$ corresponds to the *state* in which the cards are arranged $\sigma\left(1\right),\sigma\left(2\right),\ldots,\sigma\left(n\right)$ from top to bottom.
- A random state is an element $\sum_{\sigma \in S_n} a_{\sigma} \sigma$ of $\mathbb{R}[S_n]$ whose coefficients $a_{\sigma} \in \mathbb{R}$ are nonnegative and add up to 1. This is interpreted as a distribution on the n! possible states, where a_{σ} is the probability for the deck to be in state σ .
- An \mathbb{R} -vector space endomorphism of $\mathbb{R}[S_n]$, such as L(a) or R(a) for some $a \in \mathbb{R}[S_n]$, acts as a *(random) shuffle*, i.e., a transformation of random states. This is just the standard way how Markov chains are constructed from transition matrices.
- For example, if k > 1, then the right multiplication $R(J_k)$ by the YJM element J_k corresponds to swapping the k-th card with some card above it (chosen uniformly at random).
- Transposing such a matrix means time-reversing the random shuffle.

Another family of elements of $k[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} \sigma^{-1}(n-k)$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in S_n} \sigma;$$

$$\mathcal{B}_{n,1} = \sum_{i=1}^{n} \operatorname{cyc}_{n,n-1,...,i};$$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

* Another family of elements of $\mathbf{k}[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} \sigma$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in \mathcal{S}_n} \sigma;$$
 $\mathcal{B}_{n,1} = \sum_{i=1}^n \operatorname{cyc}_{n,n-1,\dots,i};$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

• As a random shuffle, $\mathcal{B}_{n,k}$ (to be precise, $R(\mathcal{B}_{n,k})$) takes the bottom k cards and moves them to random positions. Its antipode $\mathcal{B}_{n,k}^*$ takes k random cards and moves them to the bottom positions.

Another family of elements of $\mathbf{k}[S_n]$ are the k-bottom-to-random shuffles

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} \sigma$$

defined for all $k \in \{0, 1, ..., n\}$. Thus,

$$\mathcal{B}_{n,n} = \mathcal{B}_{n,n-1} = \sum_{\sigma \in S_n} \sigma;$$

$$\mathcal{B}_{n,1} = \sum_{i=1}^{n} \operatorname{cyc}_{n,n-1,...,i};$$
 $\mathcal{B}_{n,0} = \operatorname{id}.$

We set $\mathcal{B}_n := \mathcal{B}_{n,1}$.

• $\mathcal{B}_n := \mathcal{B}_{n,1}$ is known as the *bottom-to-random shuffle* or the *Tsetlin library*.

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k} \qquad \quad \text{for each } k \in \left\{0,1,\ldots,n-1\right\}.$$

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = (\mathcal{B}_n - k) \, \mathcal{B}_{n,k}$$
 for each $k \in \{0,1,\ldots,n-1\}$.

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i\right)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k}$$
 for each $k \in \left\{0,1,\ldots,n-1\right\}$.

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i\right)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.3 (Wallach). The minimal polynomial of \mathcal{B}_n over \mathbb{Q} is

$$\prod_{i \in \{0,1,\dots,n-2,n\}} (X-i) = (X-n) \prod_{i=0}^{n-2} (X-i).$$

• Theorem 5.1 (Diaconis, Fill, Pitman). We have

$$\mathcal{B}_{n,k+1} = \left(\mathcal{B}_n - k\right)\mathcal{B}_{n,k}$$
 for each $k \in \left\{0,1,\ldots,n-1\right\}$.

• Corollary 5.2. The n+1 elements $\mathcal{B}_{n,0}, \mathcal{B}_{n,1}, \dots, \mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - i
ight)$$
 for each $k \in \{0,1,\ldots,n\}$.

• Theorem 5.3 (Wallach). The minimal polynomial of \mathcal{B}_n over \mathbb{Q} is

$$\prod_{i \in \{0,1,\ldots,n-2,n\}} (X-i) = (X-n) \prod_{i=0}^{n-2} (X-i).$$

These are not hard to prove in this order. See
 https://mathoverflow.net/questions/308536 for the
 details.

• More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.

- More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.
- The antipodes

$$\mathcal{B}_{n,k}^* := \sum_{\substack{\sigma \in \mathcal{S}_n; \\ \sigma(1) < \sigma(2) < \dots < \sigma(n-k)}} \sigma$$

of $\mathcal{B}_{n,k}$ are known as the *k-random-to-bottom shuffles* and have the same properties (since S is an algebra anti-automorphism).

- More can be said: in particular, the multiplicities of the eigenvalues $0, 1, \ldots, n-2, n$ of $R(\mathcal{B}_n)$ over \mathbb{Q} are known.
- The antipodes

$$\mathcal{B}_{n,k}^* := \sum_{\substack{\sigma \in S_n; \\ \sigma(1) < \sigma(2) < \dots < \sigma(n-k)}} \sigma$$

of $\mathcal{B}_{n,k}$ are known as the *k-random-to-bottom shuffles* and have the same properties (since S is an algebra anti-automorphism).

• Moreover, there are *top-to-random* and *random-to-top* shuffles defined in the same way but with renaming $1, 2, \ldots, n$ as $n, n-1, \ldots, 1$. They are just images of the $\mathcal{B}_{n,k}$ and $\mathcal{B}_{n,k}^*$ under the automorphism $a \mapsto w_0 a w_0^{-1}$ of $\mathbf{k}[S_n]$, where w_0 is the permutation with one-line notation $(n, n-1, \ldots, 1)$. Thus, top vs. bottom is mainly a matter of notation.

- Main references:
 - Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals, 1988, Appendix.
 - Persi Diaconis, James Allen Fill and Jim Pitman, *Analysis* of Top to Random Shuffles, 1992.

lacktriangle Here is a further family. For each $k \in \{0,1,\ldots,n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in S_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where noninv_{n-k} (σ) denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

lacktriangle Here is a further family. For each $k \in \{0, 1, \dots, n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in S_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

• Example: Writing permutations in one-line notation,

$$\begin{split} \mathcal{R}_{4,2} &= 6[1,2,3,4] + 5[1,2,4,3] + 5[1,3,2,4] + 4[1,3,4,2] \\ &+ 4[1,4,2,3] + 3[1,4,3,2] + 5[2,1,3,4] + 4[2,1,4,3] \\ &+ 4[2,3,1,4] + 3[2,3,4,1] + 3[2,4,1,3] + 2[2,4,3,1] \\ &+ 4[3,1,2,4] + 3[3,1,4,2] + 3[3,2,1,4] + 2[3,2,4,1] \\ &+ 2[3,4,1,2] + [3,4,2,1] + 3[4,1,2,3] + 2[4,1,3,2] \\ &+ 2[4,2,1,3] + [4,2,3,1] + [4,3,1,2]. \end{split}$$

lacktriangle Here is a further family. For each $k \in \{0, 1, \dots, n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in \mathcal{S}_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

• Note: $\mathcal{R}_{n,0} = \text{id}$ and $\mathcal{R}_{n,n-1} = n \sum_{\sigma \in S_n} \sigma$ and $\mathcal{R}_{n,n} = \sum_{\sigma \in S_n} \sigma$.

lacktriangle Here is a further family. For each $k \in \{0, 1, \dots, n\}$, we let

$$\mathcal{R}_{n,k} := \sum_{\sigma \in \mathcal{S}_n} \mathsf{noninv}_{n-k} (\sigma) \cdot \sigma,$$

where $\operatorname{noninv}_{n-k}(\sigma)$ denotes the number of (n-k)-element subsets of [n] on which σ is increasing. This is called the k-random-to-random shuffle.

- Note: $\mathcal{R}_{n,0} = \text{id}$ and $\mathcal{R}_{n,n-1} = n \sum_{\sigma \in S_n} \sigma$ and $\mathcal{R}_{n,n} = \sum_{\sigma \in S_n} \sigma$.
- The card-shuffling interpretation of $\mathcal{R}_{n,k}$ is "pick any k cards from the deck and move them to k randomly chosen positions".

Random-to-random shuffles: Two surprises

* Theorem 6.1 (Reiner, Saliola, Welker). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).

Random-to-random shuffles: Two surprises

- * Theorem 6.1 (Reiner, Saliola, Welker). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- * Theorem 6.2 (Dieker, Saliola, Lafrenière). The minimal polynomial of each $\mathcal{R}_{n,k}$ over \mathbb{Q} is a product of X-i's for distinct integers i. For example, the one of $\mathcal{R}_{n,1}$ divides

$$\prod_{i=0}^{n^2} (X-i).$$

The exact factors can be given in terms of certain statistics on Young diagrams.

Random-to-random shuffles: References

- Main references: the "classics"
 - Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of Symmetrized Shuffling Operators, arXiv:1102.2460.
 - A.B. Dieker, F.V. Saliola, *Spectral analysis of random-to-random Markov chains*, 2018.
 - Nadia Lafrenière, Valeurs propres des opérateurs de mélanges symétrisés, thesis, 2019.

and the two recent preprints

- Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chiang, Patricia Commins, Veronica Lang, Spectrum of random-to-random shuffling in the Hecke algebra, arXiv:2407.08644.
- Sarah Brauner, Patricia Commins, Darij Grinberg, Franco Saliola, The q-deformed random-to-random family in the Hecke algebra, arXiv:2503.17580.

Random-to-random shuffles: What we do

- The "classical" proofs are complicated, technical and long.
 In this talk, I will outline some parts of the two recent
 preprints, including a simpler proof of Theorem 6.1 and most
 of Theorem 6.2. (The full proof of Theorem 6.2 is still long
 and hard.)
 - Moreover, I will show how all these results can be generalized to the (Iwahori–)Hecke algebra $\mathcal{H}_n = \mathcal{H}_n(q)$, a q-deformation of $\mathbf{k}[S_n]$.

- The first step is a formula that is easy to prove combinatorially:
- **Proposition 6.3.** For each $k \in \{0, 1, ..., n\}$, we have

$$\mathcal{R}_{n,k} = \frac{1}{k!} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

- The first step is a formula that is easy to prove combinatorially:
- **Proposition 6.3.** For each $k \in \{0, 1, ..., n\}$, we have

$$\mathcal{R}_{n,k} = rac{1}{k!} \cdot \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k}.$$

• However, the $\mathcal{B}_{n,k}$ do not commute with the $\mathcal{B}_{n,k}^*$, so this is not by itself an answer.

The Hecke algebra: Definition

let $q \in \mathbf{k}$ be a parameter.

The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra* to be more historically correct) is a *q*-deformation of the group algebra $\mathbf{k}[S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) \ T_i + q \qquad ext{for all } i \in [n-1];$$
 $T_i T_j = T_j T_i \qquad ext{whenever } |i-j| > 1;$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \qquad ext{for all } i \in [n-2].$

We call this algebra \mathcal{H}_n .

The Hecke algebra: Definition

Let $q \in \mathbf{k}$ be a parameter. The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra* to be more historically correct) is a *q*-deformation of the group algebra $\mathbf{k} [S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) T_i + q$$
 for all $i \in [n-1]$; $T_i T_j = T_j T_i$ whenever $|i-j| > 1$; $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for all $i \in [n-2]$.

We call this algebra \mathcal{H}_n .

For q = 1, this is the group algebra $\mathbf{k}[S_n]$ (and the generator T_i is the simple transposition $s_i = \text{cyc}_{i,i+1}$).

The Hecke algebra: Definition

Let $q \in \mathbf{k}$ be a parameter. The *n*-th *Hecke algebra* (or *Iwahori–Hecke algebra* to be more historically correct) is a *q*-deformation of the group algebra $\mathbf{k} [S_n]$. It has generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$T_i^2 = (q-1) \ T_i + q \qquad \qquad ext{for all } i \in [n-1] \ ;$$
 $T_i T_j = T_j T_i \qquad \qquad ext{whenever } |i-j| > 1;$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \qquad \qquad ext{for all } i \in [n-2] \ .$

We call this algebra \mathcal{H}_n .

- For q = 1, this is the group algebra $\mathbf{k}[S_n]$ (and the generator T_i is the simple transposition $s_i = \text{cyc}_{i,i+1}$).
- For general q, it still is a free **k**-module of rank n!, with a basis $(T_w)_{w \in S_n}$ indexed by permutations $w \in S_n$. The basis vectors are defined by $T_w := T_{i_1} T_{i_2} \cdots T_{i_k}$, where $s_{i_1} s_{i_2} \cdots s_{i_k}$ is a reduced expression for w. For q = 1, this T_w is just w.

The Hecke algebra: What for?

Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.

The Hecke algebra: What for?

- Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.
 - \mathcal{H}_n shows up in many places: as a better-behaved model for the modular representation theory of S_n ; as a nonunital subalgebra of $\mathbf{k} \left[\mathrm{GL}_n \left(\mathbb{F}_q \right) \right]$ (when q is a prime power); as an algebraic model for some random walks (when $q \in [0,1]$), It also can be defined for other types of groups. Cf. Taylor–Wiles, *Ring-Theoretic Properties of Certain Hecke Algebras*, 1995.

The Hecke algebra: What for?

- Much of the theory of $\mathbf{k}[S_n]$ exists in a subtler form for \mathcal{H}_n . Sometimes, the added difficulty brings the best proofs to light.
 - \mathcal{H}_n shows up in many places: as a better-behaved model for the modular representation theory of S_n ; as a nonunital subalgebra of $\mathbf{k} \left[\mathrm{GL}_n \left(\mathbb{F}_q \right) \right]$ (when q is a prime power); as an algebraic model for some random walks (when $q \in [0,1]$), It also can be defined for other types of groups. Cf. Taylor–Wiles, *Ring-Theoretic Properties of Certain Hecke Algebras*, 1995.
 - I think of \mathcal{H}_n as a "biased" version of $\mathbf{k}[S_n]$, which breaks the symmetry in favor of "entropy".

The Hecke algebra: Structure

- * Theorem 7.1 (Dipper–James). Assume that \mathbf{k} is a field, and that $q \neq 0$ and $q^{n!} \neq 1$. Then, the Hecke algebra \mathcal{H}_n is semisimple and in fact isomorphic to $\mathbf{k}[S_n]$ (in a nontrivial way).
 - Thus, its irreducible representations are again some kind of Specht modules S^{λ} , deforming the ones for $\mathbf{k}[S_n]$.
 - This was proved for generic q by Dipper/James (Representations of Hecke algebras of general linear groups, 1984), and in the general case by Murphy (The Representations of Hecke algebras of type A_n , 1995), modulo the semisimplicity, which can be found in most texts now (e.g., Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, 1999).
 - In the following, unless I say otherwise, I am working in \mathcal{H}_n .

The Hecke algebra: The antipode

The antipode $S: \mathbf{k}[S_n] \to \mathbf{k}[S_n]$ can be generalized to the Hecke algebra. The generalization is the \mathbf{k} -linear map

$$S: \mathcal{H}_n o \mathcal{H}_n, \ T_w \mapsto T_{w^{-1}} \qquad \qquad ext{(thus } T_i \mapsto T_i ext{)} \,.$$

- Again, this is a k-algebra anti-automorphism and an involution.
- * Again, we write a^* for S(a).

The Hecke algebra: The YJM elements

When $q \in \mathbf{k}$ is invertible, we can define the Young-Jucys-Murphy (YJM) elements in the Hecke algebra \mathcal{H}_n . These are the elements $J_1, J_2, \ldots, J_n \in \mathcal{H}_n$ defined by

$$J_k := \sum_{i=1}^{k-1} q^{i-k} T_{\mathsf{cyc}_{i,k}} \in \mathcal{H}_n.$$

Setting q = 1 recovers the YJM elements of $\mathbf{k}[S_n]$.

The Hecke algebra: The YJM elements

When $q \in \mathbf{k}$ is invertible, we can define the Young-Jucys-Murphy (YJM) elements in the Hecke algebra \mathcal{H}_n . These are the elements $J_1, J_2, \ldots, J_n \in \mathcal{H}_n$ defined by

$$J_k := \sum_{i=1}^{k-1} q^{i-k} T_{\mathsf{cyc}_{i,k}} \in \mathcal{H}_n.$$

Setting q = 1 recovers the YJM elements of $\mathbf{k} [S_n]$.

- lacksquare Again, $J_1=0$. Also, $J_k^*=J_k$ for each $k\in [n]$.
- The elements J_1, J_2, \ldots, J_n commute.
- \bullet The eigenvalues of each J_k are

$$[-k+1]_q$$
, $[-k+2]_q$, ..., $[k-1]_q$,

where we are using the q-integers

$$[m]_q := rac{1-q^m}{1-q} = egin{cases} 1+q+q^2+\cdots+q^{m-1}, & ext{if } m \geq 0; \ -q^{-1}-q^{-2}-\cdots-q^m, & ext{if } m \leq 0. \end{cases}$$

Their multiplicities are as in the $\mathbf{k}[S_n]$ case.

The Hecke algebra: Bottom-to-random and back, 1

* We define the *q-deformed k-bottom-to-random shuffles* $\mathcal{B}_{n,k}$ and the *q-deformed k-random-to-bottom shuffles* $\mathcal{B}_{n,k}^*$ for $k \in \{0,1,\ldots,n\}$ by

$$\mathcal{B}_{n,k} := \sum_{\substack{\sigma \in S_n; \\ \sigma^{-1}(1) < \sigma^{-1}(2) < \dots < \sigma^{-1}(n-k)}} T_{\sigma} \in \mathcal{H}_n$$

and

$$\mathcal{B}_{n,k}^* := \sum_{\substack{\sigma \in S_n; \\ \sigma(1) < \sigma(2) < \dots < \sigma(n-k)}} T_{\sigma} \in \mathcal{H}_n.$$

Note that $\mathcal{B}_{n,0} = \mathcal{B}_{n,0}^* = 1$. We also set $\mathcal{B}_{n,k} = \mathcal{B}_{n,k}^* = 0$ for k > n.

Theorem 7.2
(Axelrod-Freed-Brauner-Chiang-Commins-Lang 2024).
We have

$$\mathcal{B}_{n,k} = \mathcal{B}_{n-k+1}\mathcal{B}_{n-k+2}\cdots\mathcal{B}_n,$$

where we arrange the Hecke algebras in a chain of inclusions:

$$\textbf{k}=\mathcal{H}_0\subseteq\mathcal{H}_1\subseteq\mathcal{H}_2\subseteq\cdots.$$

* Theorem 7.3 (essentially Brauner–Commins–Reiner 2023, to be made explicit in Grinberg 2025+ on q-deformed somewhere-to-below shuffles). The n+1 elements $\mathcal{B}_{n,0},\mathcal{B}_{n,1},\ldots,\mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - [i]_q \right)$$
 for each $k \in \{0, 1, \dots, n\}$.

* Theorem 7.3 (essentially Brauner–Commins–Reiner 2023, to be made explicit in Grinberg 2025+ on q-deformed somewhere-to-below shuffles). The n+1 elements $\mathcal{B}_{n,0},\mathcal{B}_{n,1},\ldots,\mathcal{B}_{n,n}$ commute and are polynomials in \mathcal{B}_n , namely

$$\mathcal{B}_{n,k} = \prod_{i=0}^{k-1} \left(\mathcal{B}_n - [i]_q
ight)$$
 for each $k \in \{0,1,\ldots,n\}$.

* Theorem 7.4 (same). The minimal polynomial of \mathcal{B}_n over **k** (when **k** is a field) divides

$$\prod_{i\in\{0,1,\dots,n-2,n\}} \left(X-\left[i\right]_q\right).$$

ullet The proofs here are similar to the q=1 case, but attention needs to be paid to the lengths of the permutations as they get multiplied.

- The proofs here are similar to the q=1 case, but attention needs to be paid to the lengths of the permutations as they get multiplied.
- There is a bespoke interpretation of \mathcal{B}_n as a "q-Tsetlin library", where decks of cards are replaced by flags of vector subspaces of \mathbb{F}_q^n . (See arXiv:2407.08644 for details.)

The Hecke algebra: Random-to-random, definition

We can also generalize the k-random-to-random shuffles $\mathcal{R}_{n,k}$: For each $k \geq 0$, we set

$$\mathcal{R}_{n,k} := rac{1}{[k]!_a} \mathcal{B}_{n,k}^* \mathcal{B}_{n,k} \in \mathcal{H}_n,$$

where we use the q-factorial $[k]!_q = [1]_q [2]_q \cdots [k]_q$.

The Hecke algebra: Random-to-random, definition

We can also generalize the k-random-to-random shuffles $\mathcal{R}_{n,k}$: For each $k \geq 0$, we set

$$\mathcal{R}_{n,k} := rac{1}{[k]!_q} \, \mathcal{B}_{n,k}^* \, \mathcal{B}_{n,k} \in \mathcal{H}_n,$$

where we use the q-factorial $[k]!_q = [1]_a [2]_a \cdots [k]_a$.

The coefficients of $\mathcal{R}_{n,k}$ are actually in $\mathbb{Z}[q]$, since the denominator can be cancelled.

The Hecke algebra: Random-to-random, example

• Example: Again using one-line notation,

$$\mathcal{R}_{4,2} = \left(q^4 + q^3 + 2q^2 + q + 1\right) \ T_{[1,2,3,4]} + \left(q^3 + 2q^2 + q + 1\right) \ T_{[1,2,4,3]} \\ + \left(q^4 + q^3 + q^2 + q + 1\right) \ T_{[1,3,2,4]} + \left(q^3 + q^2 + q + 1\right) \ T_{[1,3,4,2]} \\ + \left(q^3 + q^2 + q + 1\right) \ T_{[1,4,2,3]} + \left(q^3 + q + 1\right) \ T_{[1,4,3,2]} \\ + \left(q^4 + q^3 + 2q^2 + q\right) \ T_{[2,1,3,4]} + \left(q^3 + 2q^2 + q\right) \ T_{[2,1,4,3]} \\ + \left(q^4 + q^3 + q^2 + q\right) \ T_{[2,3,1,4]} + \left(q^3 + q^2 + q\right) \ T_{[2,3,4,1]} \\ + \left(q^3 + q^2 + q\right) \ T_{[2,4,1,3]} + \left(q^3 + q^2 + q\right) \ T_{[3,1,4,2]} \\ + \left(q^4 + q^3 + q^2 + q\right) \ T_{[3,1,2,4]} + \left(q^3 + q^2 + q\right) \ T_{[3,2,4,1]} \\ + \left(q^3 + q^3 + q^2 + q\right) \ T_{[3,4,1,2]} + \left(q^3 + q - 1\right) \ T_{[3,4,2,1]} \\ + \left(q^3 + q^2 + q\right) \ T_{[4,1,2,3]} + \left(q^3 + q - 1\right) \ T_{[4,2,3,1]} \\ + \left(q^3 + q^2 + q - 1\right) \ T_{[4,2,1,3]} + \left(q^3 + q - 2\right) \ T_{[4,3,2,1]}.$$

Note: The last coefficient becomes 0 in the q = 1 case!

• We have been able to extend the main properties of k-random-to-random shuffles from $k[S_n]$ to \mathcal{H}_n :

- We have been able to extend the main properties of k-random-to-random shuffles from $k[S_n]$ to \mathcal{H}_n :
- * Theorem 7.5 (Brauner-Commins-G.-Saliola 2025). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ of \mathcal{H}_n commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).

- We have been able to extend the main properties of k-random-to-random shuffles from $\mathbf{k}[S_n]$ to \mathcal{H}_n :
- * Theorem 7.5 (Brauner–Commins–G.–Saliola 2025). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ of \mathcal{H}_n commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- * Theorem 7.6 (Brauner–Commins–G.–Saliola 2025). All eigenvalues of each $\mathcal{R}_{n,k}$ over a field **k** can be written as polynomials in q with coefficients in \mathbb{N} .

- We have been able to extend the main properties of k-random-to-random shuffles from $\mathbf{k}[S_n]$ to \mathcal{H}_n :
- * Theorem 7.5 (Brauner–Commins–G.–Saliola 2025). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ of \mathcal{H}_n commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- * Theorem 7.6 (Brauner–Commins–G.–Saliola 2025). All eigenvalues of each $\mathcal{R}_{n,k}$ over a field **k** can be written as polynomials in q with coefficients in \mathbb{N} .
- * Theorem 7.7 (Brauner–Commins–G.–Saliola 2025). If k is a field and q is generic, then there is a basis of \mathcal{H}_n in which all the $\mathcal{R}_{n,k}$ (that is, all the $R(\mathcal{R}_{n,k})$) are diagonal.

- We have been able to extend the main properties of k-random-to-random shuffles from $\mathbf{k}[S_n]$ to \mathcal{H}_n :
- * Theorem 7.5 (Brauner–Commins–G.–Saliola 2025). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ of \mathcal{H}_n commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- * Theorem 7.6 (Brauner–Commins–G.–Saliola 2025). All eigenvalues of each $\mathcal{R}_{n,k}$ over a field **k** can be written as polynomials in g with coefficients in \mathbb{N} .
- * Theorem 7.7 (Brauner–Commins–G.–Saliola 2025). If k is a field and q is generic, then there is a basis of \mathcal{H}_n in which all the $\mathcal{R}_{n,k}$ (that is, all the $R(\mathcal{R}_{n,k})$) are diagonal.
 - We also have complicated formulas for the eigenvalues and their multiplicities; more on that later.

- We have been able to extend the main properties of k-random-to-random shuffles from $\mathbf{k}[S_n]$ to \mathcal{H}_n :
- * Theorem 7.5 (Brauner–Commins–G.–Saliola 2025). The n+1 elements $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$ of \mathcal{H}_n commute (but are not polynomials in $\mathcal{R}_{n,1}$ in general).
- **Theorem 7.6 (Brauner–Commins–G.–Saliola 2025).** All eigenvalues of each $\mathcal{R}_{n,k}$ over a field **k** can be written as polynomials in q with coefficients in \mathbb{N} .
- * Theorem 7.7 (Brauner–Commins–G.–Saliola 2025). If k is a field and q is generic, then there is a basis of \mathcal{H}_n in which all the $\mathcal{R}_{n,k}$ (that is, all the $R(\mathcal{R}_{n,k})$) are diagonal.
 - For k = 1, the above was done in:
 - Ilani Axelrod-Freed, Sarah Brauner, Judy Hsin-Hui Chiang, Patricia Commins, Veronica Lang, Spectrum of random-to-random shuffling in the Hecke algebra, arXiv:2407.08644.

We use this work in our proofs (mostly for computing the eigenvalues).

The Hecke algebra: The recursion

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_{n} \mathcal{R}_{n,k} = \underbrace{\left(q^{k} \mathcal{R}_{n-1,k} + \left(\left[n+1-k\right]_{q} + q^{n+1-k} J_{n}\right) \mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}} \mathcal{B}_{n}.$$

The Hecke algebra: The recursion

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_{n} \mathcal{R}_{n,k} = \underbrace{\left(q^{k} \mathcal{R}_{n-1,k} + \left(\left[n+1-k\right]_{q} + q^{n+1-k} J_{n}\right) \mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}} \mathcal{B}_{n}.$$

 The proof takes about 5 pages, relying on some more elementary computations from prior work (ca. 10–15 pages in total).

The Hecke algebra: The recursion

* Theorem 8.1 (Brauner–Commins–G.–Saliola 2025, based on Axelrod-Freed–Brauner–Chiang–Commins–Lang 2024). For any $1 \le k \le n$, we have

$$\mathcal{B}_{n}\mathcal{R}_{n,k} = \underbrace{\left(q^{k}\mathcal{R}_{n-1,k} + \left(\left[n+1-k\right]_{q} + q^{n+1-k}J_{n}\right)\mathcal{R}_{n-1,k-1}\right)}_{=:\mathcal{W}_{n,k}}\mathcal{B}_{n}.$$

- The proof takes about 5 pages, relying on some more elementary computations from prior work (ca. 10–15 pages in total).
- This recursion does not actually compute $\mathcal{R}_{n,k}$. But it says enough about $\mathcal{R}_{n,k}$ to be the key to our proofs.
- Note also that $\mathcal{R}_{n,k} \in \mathcal{B}_n^* \mathcal{H}_n$ by its definition (when $k \geq 1$). This makes the recursion so useful.

The Hecke algebra: Commutativity of random-to-random

 $\mathcal{B}_n \mathcal{R}_{n,k} = \mathcal{W}_{n,k} \mathcal{B}_n$, we find

• Theorem 8.1 leads fairly easily to a proof of commutativity (Theorem 7.5). Indeed, inducting on n, we observe that the $W_{n,k}$ s all commute by the induction hypothesis (and the easy fact that J_n commutes with everything in \mathcal{H}_{n-1}). Thus, using

$$\mathcal{B}_{n} \mathcal{R}_{n,i} \mathcal{R}_{n,j} = \mathcal{W}_{n,i} \mathcal{B}_{n} \mathcal{R}_{n,j} = \mathcal{W}_{n,i} \mathcal{W}_{n,j} \mathcal{B}_{n}$$
$$= \mathcal{W}_{n,j} \mathcal{W}_{n,i} \mathcal{B}_{n} = \mathcal{W}_{n,j} \mathcal{B}_{n} \mathcal{R}_{n,i} = \mathcal{B}_{n} \mathcal{R}_{n,j} \mathcal{R}_{n,i}.$$

Remains to get rid of the \mathcal{B}_n factor at the front. Recall that all $\mathcal{R}_{n,i}$ (except for the trivial $\mathcal{R}_{n,0}$) lie in $\mathcal{B}_n^*\mathcal{H}_n$. But it can be shown that when q is a positive real, $\mathcal{B}_n\mathcal{B}_n^*a=0$ entails $\mathcal{B}_n^*a=0$ (positivity trick! cf. linear algebra: Ker $(A^TA)=\operatorname{Ker} A$ for real matrix A).

Now extend back to arbitrary q using polynomial identity trick.

• Alternatively, the tricks can also be avoided (see our preprint).

• Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)

- Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:

- Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.

- Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When \mathbf{k} is an integral domain and A is a free \mathbf{k} -module of finite rank, this is the same as saying that R(a) has all eigenvalues in \mathbf{k} .

- Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- * An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When k is an integral domain and A is a free k-module of finite rank, this is the same as saying that R (a) has all eigenvalues in k.
 - In particular, for $\mathbf{k} = \mathbb{Z}[q]$ and $A = \mathcal{H}_n$, this means that all eigenvalues of a are $\in \mathbb{Z}[q]$. This is what we want to show for $a = \mathcal{R}_{n,k}$.

- Now to Theorem 7.6: Why are all eigenvalues of $\mathcal{R}_{n,k}$ integer polynomials in q? (Let's drop the nonnegativity for now.)
- We have a theory of "split elements" that can help answer such questions in general. Here is an outline:
- * An element a of a k-algebra A is said to be *split* (over k) if there exist some scalars $u_1, u_2, \ldots, u_n \in k$ (not necessarily distinct) such that $\prod_{i=1}^{n} (a u_i) = 0$.
- When \mathbf{k} is an integral domain and A is a free \mathbf{k} -module of finite rank, this is the same as saying that R(a) has all eigenvalues in \mathbf{k} .
 - In particular, for $\mathbf{k} = \mathbb{Z}[q]$ and $A = \mathcal{H}_n$, this means that all eigenvalues of a are $\in \mathbb{Z}[q]$. This is what we want to show for $a = \mathcal{R}_{n,k}$.
 - So we must show that $\mathcal{R}_{n,k}$ is split over $\mathbb{Z}[q]$.

ullet So we must show that $\mathcal{R}_{n,k}$ is split over $\mathbb{Z}\left[q
ight]$.

- So we must show that $\mathcal{R}_{n,k}$ is split over $\mathbb{Z}[q]$.
- It suffices to show that $\mathcal{R}_{n,k}$ is split over $\mathbb{Z}\left[q,q^{-1}\right]$ (Laurent polynomials), since then an integral closure argument will yield that the eigenvalues are in fact $\in \mathbb{Z}\left[q\right]$. This is easier because we have YJM elements over $\mathbb{Z}\left[q,q^{-1}\right]$.

• We prove several general properties of split elements (nice exercises on commutative algebra!):

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- **Corollary 9.2.** A commutative subalgebra of *A* generated by split elements consists entirely of split elements.

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- **Corollary 9.2.** A commutative subalgebra of *A* generated by split elements consists entirely of split elements.
- **Theorem 9.3.** If b, c, f are elements of A such that f is split and such that bc = fb and $c \in Ab$, then c is split.

- We prove several general properties of split elements (nice exercises on commutative algebra!):
- **Theorem 9.1.** If two commuting elements $a, b \in A$ are split, then both a + b and ab are split.
- **Corollary 9.2.** A commutative subalgebra of *A* generated by split elements consists entirely of split elements.
- **Theorem 9.3.** If b, c, f are elements of A such that f is split and such that bc = fb and $c \in Ab$, then c is split.
 - Theorem 9.3 is tailored to our use:

bc = fb	$c \in Ab$				
$\mathcal{B}_n \mathcal{R}_{n,k} = \mathcal{W}_{n,k} \mathcal{B}_n$	$\mathcal{R}_{n,k} \in \mathcal{H}_n \ \mathcal{B}_n$				

The splitness of $W_{n,k}$ follows from the splitness of the commuting elements J_n , $\mathcal{R}_{n-1,k-1}$ and $\mathcal{R}_{n-1,k}$ (induction!) by Corollary 9.2. We need the splitness of the YJM elements, which was proved (e.g.) by Murphy.

• Theorem 9.3 looks baroque, but in fact it easily decomposes into two particular cases:

Corollary 9.4. If *ba* is split, then *ab* is also split.

Corollary 9.5. If a is split and $b^2 = ab$, then b is split.

(Both times, $a, b \in A$ are arbitrary.)

• The splitness theory proves easily that all eigenvalues of $\mathcal{R}_{n,k}$ belong to $\mathbb{Z}[q]$, but it fails to show that they belong to $\mathbb{N}[q]$. Indeed, it produces "phantom eigenvalues" which do not actually appear; some of them have negative coefficients. It also does not compute the multiplicities.

- The splitness theory proves easily that all eigenvalues of $\mathcal{R}_{n,k}$ belong to $\mathbb{Z}[q]$, but it fails to show that they belong to $\mathbb{N}[q]$. Indeed, it produces "phantom eigenvalues" which do not actually appear; some of them have negative coefficients. It also does not compute the multiplicities.
- With a lot more work (Specht modules, seminormal basis for \mathcal{H}_n , Pieri rule, etc.), we have been able to compute the eigenvalues with their multiplicities fully.
- I only have time to state the main result.

• Theorem 10.1. Let $n, k \ge 0$. The eigenvalues of $R(\mathcal{R}_{n,k})$ on \mathcal{H}_n are the elements

$$\mathcal{E}_{\lambda \setminus \mu}(k) := q^{nk - \binom{k}{2}} \sum_{j < (\ell_1 < \ell_2 < \dots < \ell_k) \leq n} \ \prod_{m=1}^k q^{-\ell_m} [\ell_m + 1 - m + \mathsf{c}_{\mathsf{t}^{\lambda \setminus \mu}} \left(\ell_m\right)]_q$$

for all horizontal strips $\lambda \setminus \mu$ that satisfy $\lambda \vdash n$ and $d^{\mu} \neq 0$. Here,

- d^{μ} denotes the number of desarrangement tableaux of shape μ (that is, standard tableaux of shape μ whose smallest non-descent is even);
- j is the size of μ ;
- $\mathfrak{t}^{\lambda \setminus \mu}$ is the skew tableau of shape $\lambda \setminus \mu$ obtained by filling in the boxes of $\lambda \setminus \mu$ with $j+1, j+2, \ldots, n$ from top to bottom;
- $c_{t^{\lambda \setminus \mu}}(p) = y x$ if the cell of $t^{\lambda \setminus \mu}$ containing the entry p is (x,y).

Moreover, the multiplicity of each such eigenvalue $\mathcal{E}_{\lambda\setminus\mu}(k)$ is $d^\mu f^\lambda$, where f^λ is the number of standard tableaux of shape λ (unless there are collisions).

• Theorem 10.1. Let $n, k \ge 0$. The eigenvalues of $R(\mathcal{R}_{n,k})$ on \mathcal{H}_n are the elements

$$\mathcal{E}_{\lambda \setminus \mu}(k) := q^{nk - \binom{k}{2}} \sum_{j < (\ell_1 < \ell_2 < \dots < \ell_k) \leq n} \prod_{m=1}^k q^{-\ell_m} [\ell_m + 1 - m + c_{\mathfrak{t}^{\lambda \setminus \mu}}(\ell_m)]_q$$

for all horizontal strips $\lambda \setminus \mu$ that satisfy $\lambda \vdash n$ and $d^{\mu} \neq 0$. Here,

- d^{μ} denotes the number of desarrangement tableaux of shape μ (that is, standard tableaux of shape μ whose smallest non-descent is even);
- j is the size of μ ;
- $\mathfrak{t}^{\lambda \setminus \mu}$ is the skew tableau of shape $\lambda \setminus \mu$ obtained by filling in the boxes of $\lambda \setminus \mu$ with $j+1, j+2, \ldots, n$ from top to bottom;
- $c_{\mathfrak{t}^{\lambda\setminus\mu}}(p)=y-x$ if the cell of $\mathfrak{t}^{\lambda\setminus\mu}$ containing the entry p is (x,y).

Moreover, the multiplicity of each such eigenvalue $\mathcal{E}_{\lambda\setminus\mu}(k)$ is $d^\mu f^\lambda$, where f^λ is the number of standard tableaux of shape λ (unless there are collisions).

• The right hand side can be rewritten as an evaluation of a factorial *h*-polynomial, but this may not be much of a simplification.

• We have explicit formulas for specific shapes and strips:

$$\mathcal{E}_{(n)\setminus\varnothing}(k) = [k]!_q {n \brack k}_q^{n};$$

$$\mathcal{E}_{(n,j)}(k) = [k]!_q {n-j-1 \brack n+j} \qquad \text{for all } i \in [n-j-1]$$

$$\mathcal{E}_{(n-1,1)\setminus(j,1)}(k) = [k]!_q {n-j-1\brack k}_q {n+j\brack k}_q \quad \text{ for all } j\in[n-1].$$

But $\mathcal{E}_{(4,1,1)\setminus(1,1)}(1)$ is not a quotient of products of q-integers.

The Hecke algebra: Open questions

- **Question:** Any nicer formulas for the eigenvalues $\mathcal{E}_{\lambda \setminus \mu}(k)$?
- **Question:** As polynomials in q, are the eigenvalues $\mathcal{E}_{\lambda\setminus\mu}(k)$ unimodal?
- **Question (Reiner):** How big is the subalgebra of $\mathbb{Q}[S_n]$ generated by $\mathcal{R}_{n,0}, \mathcal{R}_{n,1}, \ldots, \mathcal{R}_{n,n}$? Some small values:

п	1	2	3	4	5	6	7	8	9	10	11	12
dim (subalgebra)	1	2	4	7	15	30	54	95	159	257	400	613

(sequence not in the OEIS as of 2025-03-17).

The same numbers hold for the *q*-deformation!

The affine Hecke algebra: Open questions

• Generalization (implicit in Reiner, Saliola, Welker). For each $k \in \{0, 1, ..., n\}$, we let

$$\widetilde{\mathcal{R}}_{n,k} := \sum_{\substack{\sigma \in S_n \\ |I| = n - k; \\ \sigma \text{ increases on } I}} \sigma \otimes \prod_{i \in I} x_i$$

in the twisted group algebra

$$\mathcal{T} := \mathbf{k} \left[S_n \right] \otimes \mathbf{k} \left[x_1, x_2, \dots, x_n \right]$$
 with multiplication $(\sigma \otimes f) (\tau \otimes g) = \sigma \tau \otimes \tau^{-1} (f) g$.

Then, the $\widetilde{\mathcal{R}}_{n,0},\widetilde{\mathcal{R}}_{n,1},\ldots,\widetilde{\mathcal{R}}_{n,n}$ commute.

- This twisted group algebra \mathcal{T} acts on $\mathbf{k}[x_1, x_2, \dots, x_n]$ in two ways: by multiplication $((\sigma \otimes f)(p) = \sigma(fp))$ or by differentiation $((f \otimes \sigma)(p) = \sigma(f(\partial)(p)))$. (In either case, the S_n part permutes the variables.)
- Question: Simpler proof for this generalization?
 q-deformation? (The obvious one in the affine Hecke algebra does not work!)

I thank

- Sarah Brauner, Patricia Commins and Franco Saliola for obvious reasons.
- the Mathematisches Forschungsinstitut Oberwolfach for the Research in Pairs program during which most of this was found.
- Nadia Lafrenière, Martin Lorenz, Franco Saliola, Marcelo Aguiar, Vic Reiner, Travis Scrimshaw, Theo Douvropoulos, Volkmar Welker for various ideas shared over the years.
- Lorenzo Vecchi for the invitation (KTH).
- Swee Hong Chan for the invitation (Rutgers).
- you for your patience.