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The Steinberg module and the Hecke algebra
Neil P. Strickland

https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf
version of 2 May 2012

Errata and addenda by Darij Grinberg

The list below contains corrections and comments to the preprint “The Stein-
berg module and the Hecke algebra” by Neil P. Strickland. The comments in-
clude alternative proofs and additional details (indeed, most of the comments
below are of the latter kind, and they are the main reason why this list is so
large). I have written this list while I was reading the preprint (over the course
of several months1); since I am not myself an expert in the subject, my comments
are not always particularly learned (I suspect that many of the proofs I am giv-
ing below can be drastically simplified), and they are probably full of mistakes
of their own. (I have tried to be detailed, partly in order to avoid mistakes.)

I will refer to the results appearing in Strickland’s preprint by the numbers
under which they appear in it (specifically, in its version of 2 May 2012, available
from https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf).

Errata and addenda

• §2: I think it would be better if you spent a bit of time defining some of
your notations:

– For any nonnegative integer n, you let Σn denote the symmetric group
of the set {1, 2, . . . , n}. (This is not a notation I have seen very often.
Most combinatorialists call it either Sn or Sn or Sn.)

– The composition αβ of two maps α : Y → Z and β : X → Y is de-
fined as the map X → Z that sends each x ∈ X to α (β (x)). (This
might sound obvious, but irritatingly, a lot of people use the opposite
convention for the order of multiplication, particularly when permu-
tations are concerned.)

– If α : X → Y is a map, then α∗ means the map P (X) → P (Y)
canonically induced by α (where P (Z) denotes the powerset of a set
Z). This is the map that sends every subset T of X to the subset α (T)
of Y.

• §2: Do you ever use the notation L+ (σ) that you define in the beginning
of §2? (I don’t know for sure; just asking.)

1The preprint packs a whole lot of material into just 15 pages. Partly, I wish it would proceed
more slowly and leave less work to the reader; the below comments fill in lots of details that
are omitted.
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• Lemma 2.6: Replace “Σ” by “Σn”.

• Lemma 2.6: The period at the end of the sentence should be outside of the
parentheses.

• Proof of Proposition 2.11: After “are disjoint, and”, add “we have σ =
tn
mn τ; thus, Lemma 2.6 (applied to tn

mn instead of σ) yields

L (σ) = L (τ)∆τ−1
∗ L

(
tn
mn

)
= L (τ) t τ−1

∗ L
(
tn
mn

)
and therefore”.

• Proof of Proposition 2.11: You have not proven the uniqueness that is
claimed in Proposition 2.11. This is not a large gap to fill, and becomes
obvious later on2; but I think it is worth at least briefly mentioning how it
is proven.

• Definition 2.12: Replace “there is a canonical map” by “there is a canonical
homomorphism”.

• Proof of Proposition 2.13: You are slightly abusing notation here: When
you write “Xn =

⋃n
m=1 tn

mXn−1”, you are implicitly suggesting that Σ̃n−1
can be embedded into Σ̃n. This is correct, but is not obvious until Propo-
sition 2.13 is already proven (at which point it is not useful anymore).
A-priori, it is plausible that some nontrivial elements of Σ̃n−1 would col-
lapse to the identity upon adding the extra generator sn−1 of Σ̃n and the
extra relations that come with it.

Fortunately, the proof is easy to fix, by introducing a group homomor-
phism Σ̃n−1 → Σ̃n: Namely, observe that all the generators and the rela-
tions appearing in the definition of Σ̃n−1 also appear in the definition of
Σ̃n (along with one new generator sn−1 and some new relation). Thus,
there is a group homomorphism η : Σ̃n−1 → Σ̃n sending si 7→ si for each
i ∈ {1, 2, . . . , n− 2}. Consider this η. Regard Σ̃n as a right Σ̃n−1-set by
having Σ̃n−1 act through η (that is, set xy = xη (y) for all x ∈ Σ̃n and
y ∈ Σ̃n−1). Then, Xn =

⋃n
m=1 tn

mXn−1 is still correct (where the implied
multiplication in tn

mXn−1 = {tn
mx | x ∈ Xn−1} is now to be understood as

the Σ̃n−1-action on Σ̃n). All the rest of the proof goes through unchanged,
except for one simple modification (namely, “Σ̃n is generated by Σ̃n−1 and
sn−1” must become “Σ̃n is generated by η

(
Σ̃n−1

)
and sn−1”).

2Namely: In the proof of Proposition 2.13, you show that the map ε : Xn → Σn is surjective.
Since |Xn| ≤ n! = |Σn|, this entails that the map ε also is injective. But this means precisely
that no two distinct sequences (m1, m2, . . . , mn) with 1 ≤ mk ≤ k give rise to one and the same
permutation tn

mn tn−1
mn−1
· · · t2

m2
t1
m1

. And this is exactly the uniqueness claim of Proposition 2.11.
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• Proof of Lemma 2.14: Replace “identity permutation” by “identity of Σ̃n”.
(The identification between permutations and elements Σ̃n cannot yet be
used at this point.)

• Definition 2.15: Replace “s1, . . . , sn” by “s1, . . . , sn−1” twice in this defini-
tion.

• Definition 2.15: Replace “usisjsiv = usjsisjv” by “usisjsiv ∼ usjsisjv”.

• Definition 2.15: Replace “Σ” by “Σn” twice in this definition (the second
time is inside the commutative diagram). Or just define Σ to be an abbre-
viation for Σn ?

• Definition 2.15: Please explain that ∼ is defined to be the disjoint union of
the relations ∼r over all r ∈N. (This is a relation on är Wr = W.)

• Definition 2.17: At the end of condition (c), add “and the word uv is
reduced”. Otherwise, condition (c) would always hold!

• Definition 2.17: I think the justification for the equivalence of the four
conditions would be clearer if you replaced “and it follows from Lemma
2.6 that (a) is equivalent to (d)” by “and it follows from Lemma 2.6 (applied
to στ−1 instead of σ) that (b) is equivalent to (d)”.

• Proof of Lemma 2.18: Replace “the 3-cycle (i, i + 1, i + 2)” by “the transpo-
sition (i, i + 2)”.

• Proof of Theorem 2.16: I suspect the LaTeX here is slightly broken: You
want to start the proof by “Proof of Theorem 2.16.” and not by “Proof. Proof
of Theorem 2.16.”.

• Proof of Theorem 2.16: Replace “so u = v” by “so u ∼ v”.

• §2: I suggest adding the following fact to §2 (which is used later, in §9):

Corollary 2.19. (a) We have l
(
σ−1ρ

)
= n (n− 1) /2− l (σ) for each σ ∈ Σn.

(b) We have l (σρ) = n (n− 1) /2− l (σ) for each σ ∈ Σn.

(c) We have l
(
ρσ−1) = n (n− 1) /2− l (σ) for each σ ∈ Σn.

(d) We have l (ρσ) = n (n− 1) /2− l (σ) for each σ ∈ Σn.

[Proof of Corollary 2.19. (c) Recall the four equivalent conditions (a), (b), (c)
and (d) in Definition 2.17. In particular, the two conditions (b) and (d) are
equivalent for each σ ∈ Σn and τ ∈ Σn. In other words, for each σ ∈ Σn
and τ ∈ Σn, we have the following equivalence:(

l
(

στ−1
)
= l (σ)− l (τ)

)
⇐⇒

(
L (τ) ⊆ L (σ)

)
. (1)
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Now, fix σ ∈ Σn. Then, L (σ) ⊆ L (ρ) 3. But the equivalence (1) (applied
to ρ and σ instead of σ and ρ) shows that(

l
(

ρσ−1
)
= l (ρ)− l (σ)

)
⇐⇒

(
L (σ) ⊆ L (ρ)

)
.

Therefore, we have l
(
ρσ−1) = l (ρ)− l (σ) (since we have L (σ) ⊆ L (ρ)).

Thus, l
(
ρσ−1) = l (ρ)︸︷︷︸

=n(n−1)/2

−l (σ) = n (n− 1) /2− l (σ). This proves Corol-

lary 2.19 (c).

(d) Let σ ∈ Σn. Corollary 2.19 (c) (applied to σ−1 instead of σ) shows that
l
(

ρ
(
σ−1)−1

)
= n (n− 1) /2− l

(
σ−1). Since

(
σ−1)−1

= σ, this rewrites as

l (ρσ) = n (n− 1) /2− l
(

σ−1
)

︸ ︷︷ ︸
=l(σ)

(by Lemma 2.3)

= n (n− 1) /2− l (σ) .

This proves Corollary 2.19 (d).

(a) Let σ ∈ Σn. Then, Lemma 2.3 (applied to ρσ instead of σ) shows that
l
(
(ρσ)−1

)
= l (ρσ) = n (n− 1) /2 − l (σ) (by Corollary 2.19 (d)). Since

(ρσ)−1 = σ−1 ρ−1︸︷︷︸
=ρ

= σ−1ρ, this rewrites as l
(
σ−1ρ

)
= n (n− 1) /2− l (σ).

This proves Corollary 2.19 (a).

(b) Let σ ∈ Σn. Then, Lemma 2.3 (applied to σρ instead of σ) shows
that l

(
(σρ)−1

)
= l (σρ). Since (σρ)−1 = ρ−1︸︷︷︸

=ρ

σ−1 = ρσ−1, this rewrites

as l
(
ρσ−1) = l (σρ). Hence, l (σρ) = l

(
ρσ−1) = n (n− 1) /2− l (σ) (by

Corollary 2.19 (c)). This proves Corollary 2.19 (b). � ]

• §3: In the definition of T, a whitespace is missing between “gei ∈ Fpei”
and “for all i”.

3Proof. Let U ∈ L (σ). Then, U ∈ L (σ) = {{i, j} | (i, j) ∈ L (σ)} = {{u, v} | (u, v) ∈ L (σ)}.
In other words, U = {u, v} for some (u, v) ∈ L (σ). Fix this (u, v). We have 0 < u < v ≤ n
(since (u, v) ∈ L (σ)). The definition of ρ yields ρ (u) = n + 1− u and ρ (v) = n + 1− v.
Hence, ρ (u) = n + 1− u︸︷︷︸

<v

> n + 1− v = ρ (v). Thus, 0 < u < v ≤ n and ρ (u) > ρ (v).

In other words, (u, v) is an element (i, j) such that 0 < i < j ≤ n and ρ (i) > ρ (j). In other
words, (u, v) ∈ {(i, j) | 0 < i < j ≤ n and ρ (u) > ρ (v)}. This rewrites as (u, v) ∈ L (ρ)
(since L (ρ) = {(i, j) | 0 < i < j ≤ n and ρ (u) > ρ (v)} (by the definition of L (ρ))). Now,
recall that U = {u, v}. Hence, U = {i, j} for some (i, j) ∈ L (ρ) (namely, for (i, j) = (u, v)).
In other words, U ∈ {{i, j} | (i, j) ∈ L (ρ)}. This rewrites as U ∈ L (ρ) (since L (ρ) =
{{i, j} | (i, j) ∈ L (ρ)} (by the definition of L (ρ))).

Now, forget that we fixed U. We thus have shown that U ∈ L (ρ) for each U ∈ L (σ). In
other words, L (σ) ⊆ L (ρ), qed.
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• §3: Add a period before “With this convention”.

• §3: After “and (g.x)i = ∑
j

gijxj”, add “for x = (x1, x2, . . . , xn)
T”.

• §4: Before Example 4.1, it would be good to say the following: “We shall
call δ (U, V) the Jordan permutation of the flags U and V.”. This way, the
words “Jordan permutation” (which are used in Definition 8.2) are actually
defined.

• §4: It would also be useful to point out explicitly that δ (U, U) = 1 for each
U ∈ Flag (W). This is very easy to prove (it is a corollary of Lemma 4.5,
but it is also pretty easy to check using just the definition); but I think it’s
worth explicitly stating.

• Example 4.1: At the very beginning of this example, add the following
sentence: “Set E =

(
E0 < E1 < · · · < En = Fn

p

)
∈ Flag

(
Fn

p

)
.”.

• Example 4.1: At the end of the last formula on page 5 (the formula that
defines Qij), add a period.

• Example 4.1: At the end of the first displayed formula on page 6 (the
formula that defines Cij), a closing parenthesis is missing.

• Example 4.2: Before “Then Q15”, add: “Set Ui = span {u1, . . . , ui} and
Vi = Ei for each i.”. (Otherwise it is not clear how the Qij are defined.)

• Lemma 4.5: It might be better to split the second sentence of this propo-
sition as follows: “Assume that Ui−1 = Vi−1. Then, σ (i) = i iff Ui = Vi.”
(Otherwise, the order of precedence between the “then” and the “iff” is
ambiguous.)

• Proof of Proposition 4.7: Replace “Ui < Vi+1” by “Ui ≤ Vi+1” (unless you
really mean to use the symbol < for not-necessarily-proper submodules;
but in that case, you would need to replace several <’s by other symbols).

• Proof of Proposition 4.7: Remove the word “we” in “Of course we also”.

• Proof of Proposition 4.7: You replace dim (Ui ∩Vi) by i− 1 in the long dis-
played equation. I would suggest explaining why this is allowed: Namely,
you argue that Ui ∩Vi = A = Ui−1, and thus dim (Ui ∩Vi) = dim (Ui−1) =
i− 1.

• Proof of Proposition 4.7: After “Symmetrically, we have Ui+1 = Ui + Vi.”,
I would add “Hence, Ui+1 = Vi+1.”.

• Proof of Proposition 4.7: Replace “Uj = Vj for all such j” by “Uj = Vj for
all j ≥ i + 1” (since the induction starts at j = i + 1, not at j = i + 2).

5
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• Proof of Lemma 5.1: After the first sentence, add: “Thus, assume that
gii = 1 from now on.”

• Proof of Lemma 5.1: Replace “iff aij = 0” by “iff gij = 0”.

• Proposition 5.2: You write: “and thus |Y (σ, V)| = pl(σ) for any V”. This is
correct, but I find it a bit too nontrivial to just state without further expla-
nation. Maybe it’s even worth moving this claim into a separate corollary:

Corollary 5.2a. Let σ ∈ Σn and V ∈ Flag (W), where W is an n-dimensional
Fp-vector space. Then, |Y (σ, V)| = pl(σ).

[Proof of Corollary 5.2a. Pick a basis ( f1, f2, . . . , fn) of W such that each
0 ≤ i ≤ n satisfies Vi = span { f1, f2, . . . , fi}. (Such a basis exists, because
we can start with the empty basis of V0, then extend it to a basis of V1, then
extend it to a basis of V2, etc..) Let α be the Fp-linear map Fn

p → W that
sends each ek to fk. Then, α is a vector space isomorphism (since it sends
the basis (e1, e2, . . . , en) of Fn

p to the basis ( f1, f2, . . . , fn) of W). Moreover, it
satisfies αEi = Vi for each 0 ≤ i ≤ n. In other words, αE = V.

But the naturality of the definition of δ (U, V) yields an important fact
(which is a slight generalization of your Remark 4.3): If W1 and W2 are two
Fp-vector spaces, and if β : W1 →W2 is an isomorphism, then:

(a) any P, Q ∈ Flag (W1) satisfy δ
(

βP, βQ
)
= δ

(
P, Q

)
.

(b) for any σ ∈ Σn and any Q ∈ Flag (W1), the map Flag (W1)→ Flag (W2) , P 7→
βP maps the subset Y

(
σ, Q

)
bijectively onto Y

(
σ, βQ

)
.

Applying part (b) of this fact to W1 = Fn
p, W2 = W, β = α and Q = E, we

see that the map Flag
(

Fn
p

)
→ Flag (W) , P 7→ αP maps the subset Y (σ, E)

bijectively onto Y (σ, αE). Thus, |Y (σ, αE)| = |Y (σ, E)|. Since αE = V and
Y (σ, E) = Y (σ), this rewrites as |Y (σ, V)| = |Y (σ)|.
But the first sentence of Proposition 5.2 entails |Y (σ)| = |X (σ)| = pl(σ)

(by Lemma 5.1). Hence, |Y (σ, V)| = |Y (σ)| = pl(σ). This proves Corollary
5.2a. � ]

• Proof of Proposition 5.2: Replace “that X (σ) acts freely on σE” by “that
X (σ) acts freely on the X (σ)-orbit of σE” (just to use more standard ter-
minology).

• Proof of Proposition 5.2: Replace “We claim that there is a unique element
vi ∈ Vi ∩ Ti such that εσ(i) (vi) = 1, and moreover that v1, . . . , vi is a basis
for Vi over Fp” by “We claim that, for each i ∈ {1, 2, . . . , n}, there is a
unique element vi ∈ Vi ∩ Ti such that εσ(i) (vi) = 1, and moreover that
v1, . . . , vi is a basis for Vi over Fp (if the elements vj for all j < i are defined
similarly)”.
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• Proof of Proposition 5.2: Add a period at the end of the displayed equation
that defines Si.

• Proof of Proposition 5.2: The word “leading term” might use a definition.
Actually, it is probably best to introduce a number of related notions before
the proof of Proposition 5.2:

– For each i ∈ {1, 2, . . . , n}, let εi : Fn
p → Fp be the i-th coordinate

projection. Thus, for any x ∈ Fn
p and i ∈ {1, 2, . . . , n}, the element

εi (x) ∈ Fp is the i-th coordinate of the vector x.

– The leading index of a nonzero vector x ∈ Fn
p is defined to be the high-

est k ∈ {1, 2, . . . , n} satisfying εk (x) 6= 0. This leading index is de-
noted by lind (x). The definition of the leading index can be rewritten
as follows: The leading index of a nonzero vector x = (λ1, λ2, . . . , λn) ∈
Fn

p is the highest k ∈ {1, 2, . . . , n} satisfying λk 6= 0.

– The leading term of a nonzero vector x ∈ Fn
p is defined to be εk (x) ek,

where k = lind (x). In other words, the leading term of a nonzero
vector x = (λ1, λ2, . . . , λn) ∈ Fn

p is λkek, where k is the highest element
of {1, 2, . . . , n} satisfying λk 6= 0.

Here are some basic properties of leading indices:

– Lemma 5.2b. Let x ∈ Fn
p is a nonzero vector.

(a) If i ∈ {1, 2, . . . , n} is such that i > lind (x), then εi (x) = 0.

(b) We have εlind(x) (x) 6= 0.

[Proof of Lemma 5.2b: (a) Let i ∈ {1, 2, . . . , n} be such that i > lind (x).
But lind (x) is the highest k ∈ {1, 2, . . . , n} satisfying εk (x) 6= 0 (by
the definition of lind (x)). Hence, every k ∈ {1, 2, . . . , n} satisfying
εk (x) 6= 0 must satisfy k ≤ lind (x). Applying this to k = i, we
conclude that if εi (x) 6= 0, then i ≤ lind (x). Hence, we cannot have
εi (x) 6= 0 (since we cannot have i ≤ lind (x) (since we have i >
lind (x))). In other words, we have εi (x) = 0. This proves Lemma
5.2b (a).

(b) We know that lind (x) is the highest k ∈ {1, 2, . . . , n} satisfying
εk (x) 6= 0 (by the definition of lind (x)). Hence, lind (x) is a k ∈
{1, 2, . . . , n} satisfying εk (x) 6= 0. Thus, εlind(x) (x) 6= 0. This proves
Lemma 5.2b (b). �]

– Lemma 5.2c. Let (ws)s∈S be a finite family of nonzero vectors in Fn
p.

Assume that the leading indices of the ws (for s ∈ S) are pairwise
distinct.

(a) Each nonzero vector x ∈ Fp {ws | s ∈ S} satisfies

lind (x) ∈ {lind (ws) | s ∈ S} .

7
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(b) The family (ws)s∈S is Fp-linearly independent.

(c) Let (λs)s∈S ∈ FS
p be a family of elements of Fp. Assume that there

exists at least one s ∈ S satisfying λs 6= 0. Set x = ∑
s∈S

λsws. Then,

x 6= 0 and lind (x) ∈ {lind (ws) | s ∈ S}.
[Proof of Lemma 5.2c: (c) There exists at least one s ∈ S satisfying
λs 6= 0. Among all these s ∈ S satisfying λs 6= 0, pick one for which
lind (ws) is maximum, and denote this s by t. Thus, λt 6= 0, and
lind (wt) is the highest among the lind (ws) for all s ∈ S satisfying
λs 6= 0. As a consequence,

every s ∈ S satisfying λs 6= 0 satisfies lind (ws) ≤ lind (wt) (2)

(since lind (wt) is the highest among the lind (ws) for all s ∈ S satisfy-
ing λs 6= 0).

Moreover, recall that the leading indices of the ws (for s ∈ S) are
pairwise distinct. In other words,

every two distinct elements p and q of S satisfy lind
(
wp
)
6= lind

(
wq
)

.
(3)

Now,

εlind(wt) (λsws) = 0 for every s ∈ S satisfying s 6= t (4)

4. Furthermore, if i ∈ {1, 2, . . . , n} is such that i > lind (wt), then

εi (λsws) = 0 for every s ∈ S (5)

4Proof of (4): Let s ∈ S be such that s 6= t. Then, (3) (applied to p = s and q = t) yields
lind (ws) 6= lind (wt).

If λs = 0, then εlind(wt)

 λs︸︷︷︸
=0

ws

 = εlind(wt) (0ws) = 0. Hence, if λs = 0, then (4)

holds. Thus, for the rest of this proof of (4), we WLOG asume that λs 6= 0. Hence, (2)
shows that lind (ws) ≤ lind (wt). Combining this with lind (ws) 6= lind (wt), we obtain
lind (ws) < lind (wt). Thus, lind (wt) > lind (ws). Hence, Lemma 5.2b (a) (applied to x = ws
and i = lind (wt)) yields εlind(wt) (ws) = 0. Thus, εlind(wt) (λsws) = λs εlind(wt) (ws)︸ ︷︷ ︸

=0

= 0. This

proves (4).
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5. If i ∈ {1, 2, . . . , n} is such that i > lind (wt), then

εi

 x︸︷︷︸
= ∑

s∈S
λsws

 = εi

(
∑
s∈S

λsws

)
= ∑

s∈S
εi (λsws)︸ ︷︷ ︸

=0
(by (5))

= ∑
s∈S

0 = 0. (6)

But

εlind(wt)

 x︸︷︷︸
= ∑

s∈S
λsws


= εlind(wt)

(
∑
s∈S

λsws

)
= ∑

s∈S
εlind(wt) (λsws)

= εlind(wt) (λtwt)︸ ︷︷ ︸
=λtεlind(wt)(wt)

+ ∑
s∈S;
s 6=t

εlind(wt) (λsws)︸ ︷︷ ︸
=0

(by (4))

(here, we have split off the addend for s = t from the sum)

= λtεlind(wt) (wt) + ∑
s∈S;
s 6=t

0

︸ ︷︷ ︸
=0

= λt︸︷︷︸
6=0

εlind(wt) (wt)︸ ︷︷ ︸
6=0

(by Lemma 5.2b (b), applied
to x=wt)

6= 0.

Hence, x 6= 0. It remains to show that lind (x) ∈ {lind (ws) | s ∈ S}.
But lind (wt) is a k ∈ {1, 2, . . . , n} satisfying εk (x) 6= 0 (since εlind(wt) (x) 6=
0). Moreover, lind (wt) is the highest such k (because any i ∈ {1, 2, . . . , n}
satisfying i > lind (wt) satisfies εi (x) = 0 (by (6))). Thus, lind (wt) is
the highest k ∈ {1, 2, . . . , n} satisfying εk (x) 6= 0. In other words,
lind (wt) is the leading index of x (by the definition of the leading
index). In other words, lind (wt) = lind (x). Thus,

lind (x) = lind (wt) ∈ {lind (ws) | s ∈ S} .

This completes the proof of Lemma 5.2c (c).

5Proof of (5): Let s ∈ S. If λs = 0, then εi

 λs︸︷︷︸
=0

ws

 = εi (0ws) = 0. Hence, if λs = 0, then (5)

holds. Thus, for the rest of this proof of (5), we WLOG asume that λs 6= 0. Hence, (2) shows
that lind (ws) ≤ lind (wt) < i (since i > lind (wt)). Thus, i > lind (ws). Hence, Lemma 5.2b
(a) (applied to x = ws) yields εi (ws) = 0. Thus, εi (λsws) = λs εi (ws)︸ ︷︷ ︸

=0

= 0. This proves (5).

9
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(b) Let (λs)s∈S ∈ FS
p be a family of elements of Fp satisfying ∑

s∈S
λsws =

0. Thus, 0 = ∑
s∈S

λsws. Then, no s ∈ S satisfies λs 6= 0 6. In other

words, every s ∈ S satisfies λs = 0.

Now, forget that we fixed (λs)s∈S. We thus have shown that if (λs)s∈S ∈
FS

p is a family of elements of Fp satisfying ∑
s∈S

λsws = 0, then every

s ∈ S satisfies λs = 0. In other words, the family (ws)s∈S is Fp-linearly
independent. This proves Lemma 5.2c (b).

(a) Let x ∈ Fp {ws | s ∈ S} be a nonzero vector. We must prove that
lind (x) ∈ {lind (ws) | s ∈ S}.
We have x ∈ Fp {ws | s ∈ S}. Hence, we can write x in the form
x = ∑

s∈S
λsws for some elements λs of Fp. Consider these λs. There

exists at least one s ∈ S satisfying λs 6= 0 7. Thus, Lemma 5.2c (c)
yields x 6= 0 and lind (x) ∈ {lind (ws) | s ∈ S}. This proves Lemma
5.2c (a). �]

– Lemma 5.2d. If W is a vector subspace of Fn
p, then

dimW = |{lind (x) | x ∈W \ {0}}| .

[Proof of Lemma 5.2d (sketched). Lemma 5.2d is well-known and not
hard to prove. We shall only use it on one occasion, which is not
central to our argument; thus, I shall only outline the proof.

Define the energy of a basis (w1, w2, . . . , wk) of W to be the nonnega-
tive integer lind (w1) + lind (w2) + · · ·+ lind (wk). Then, there clearly
exists a basis (w1, w2, . . . , wk) having minimum energy. Fix such a
basis8. Then, no two among the elements w1, w2, . . . , wk can have
equal leading indices (because if wi and wj had equal leading indices
for some i and j, then we could replace wj by some linear combina-
tion αwi + wj with α ∈ Fp, and by choosing α and β appropriately
we would ensure that lind

(
αwi + wj

)
< lind

(
wj
)
, so that the result-

ing basis would have a smaller energy than (w1, w2, . . . , wk); but this

6Proof. Assume the contrary. Thus, there exists at least one s ∈ S satisfying λs 6= 0. Hence,
Lemma 5.2c (c) (applied to x = 0) yields 0 6= 0 and lind (0) ∈ {lind (ws) | s ∈ S}. But 0 6= 0
is clearly absurd. Hence, we have obtained a contradiction. This shows that our assumption
was wrong. Qed.

7Proof. Assume the contrary. Thus, λs = 0 for all s ∈ S. Now, x = ∑
s∈S

λs︸︷︷︸
=0

ws = ∑
s∈S

0ws = 0.

This contradicts the fact that x is nonzero. This contradiction shows that our assumption was
wrong, qed.

8This argument is not constructive, but we could easily replace it by a constructive argument
by induction.

10
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would contradict our choice of (w1, w2, . . . , wk) as the basis with min-
imum energy). Hence, the indices of the elements w1, w2, . . . , wk are
distinct. Thus, |{lind (x) | x ∈W \ {0}}| ≥ k = dimW. It remains to
prove that dimW ≥ |{lind (x) | x ∈W \ {0}}|. In order to do so, we
assume the contrary. Thus, |{lind (x) | x ∈W \ {0}}| > dimW = k.
Hence, there exists some x ∈W \ {0} such that lind (x) equals none of
lind (w1) , lind (w2) , . . . , lind (wk). Consider the x. The k + 1 nonzero
vectors w1, w2, . . . , wk, x in Fn

p have the property that their leading in-
dices are pairwise distinct. Thus, Lemma 5.2c (b) shows that they are
Fp-linearly independent. Since these k + 1 vectors all belong to W, we
thus have found k+ 1 linearly independent vectors in W. But this con-
tradicts the fact that dimW = k < k + 1. This contradiction completes
our proof. �]

• Proof of Proposition 5.2: Before the sentence that begins with “The leading
terms”, I would suggest adding the following text: “For each j < i, the
leading term of the vector vj is eσ(j) (since ej ∈ Vj ∩ Tj ⊆ Tj ⊆ Eσ(j) and
εσ(j)

(
vj
)
= 1). Hence, the leading terms of the vectors vj in Si are precisely

the vectors eσ(j) with j < i and σ (j) < σ (i). In other words,”.

• Proof of Proposition 5.2: Before the sentence that begins with “Using this,
we see that Eσ(i) = Si⊕ Ti”, I would add the following: “Now, consider the
vectors vj spanning Si and the vectors em spanning Ti. Altogether, these
are σ (i) vectors lying in the σ (i)-dimensional space Eσ(i). Each of the
vectors em with m ≤ σ (i) is the leading term of exactly one of these σ (i)
vectors (as we have just shown). Thus, each of the numbers 1, 2, . . . , σ (i)
is the leading index of exactly one of these σ (i) vectors. Consequently,
the leading indices of these σ (i) vectors are pairwise distinct. Lemma 5.2c
(b) (applied to the family of these σ (i) vectors) therefore shows that these
σ (i) vectors are Fp-.linearly independent. Hence, these σ (i) vectors form
a basis of Eσ(i) (because they are σ (i) linearly independent vectors lying in
the σ (i)-dimensional space Eσ(i)).”.

• Proof of Proposition 5.2: You claim that “and thus that Vi ∩ Eσ(i) = Si ⊕ Li
for some (unique) subspace Li ≤ Ti”. It would be friendlier to the reader
to explain why this follows.

Namely, you are using the following (easy) fact from linear algebra: If A
and B are two subspaces of a vector space V, and if C is a subspace of
V satisfying A ≤ C ≤ A ⊕B, then there is a unique subspace D ≤ B
satisfying C = A⊕D. (Namely, this D can be constructed as D = C∩B.)

Applying this fact to V = Fn
p, A = Si, B = Ti and C = Vi ∩ Eσ(i) (and

renaming D as Li) shows that there is a unique subspace Li ≤ Ti satisfying
Vi ∩ Eσ(i) = Si ⊕ Li (since Si ≤ Vi ∩ Eσ(i) ≤ Eσ(i) = Si ⊕ Ti). This is exactly
your claim. �

11
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• Proof of Proposition 5.2: You claim that “Si = Vi−1 ∩ Eσ(i)” and write that
“This is straightforward”. Again, I do not agree that this is straightforward
enough to be left to the reader. Let me flesh out this proof; more precisely,
let me give one proof of the fact that Si = Vi−1 ∩ Eσ(i), and one alternative
proof of the existence of vi that sidesteps this and other confusing points
in your proof.

Proof of Si = Vi−1 ∩ Eσ(i): Let x ∈
(

Vi−1 ∩ Eσ(i)

)
\ {0}. Thus, x is nonzero.

Also, x ∈
(

Vi−1 ∩ Eσ(i)

)
\ {0} ⊆ Vi−1 ∩ Eσ(i) ⊆ Eσ(i), so that lind (x) ∈

{1, 2, . . . , σ (i)}. But we also have

x ∈
(

Vi−1 ∩ Eσ(i)

)
\ {0} ⊆ Vi−1 ∩ Eσ(i)

⊆ Vi−1 = Fp {v1, v2, . . . , vi−1} = Fp
{

vj | j ∈ {1, 2, . . . , i− 1}
}

.

For each j < i, the leading term of vj is eσ(j) (since ej ∈ Vj ∩ Tj ≤ Tj ≤ Eσ(j)
and εσ(j)

(
vj
)
= 1). Thus, for each j < i, the leading index of vj is σ (j).

Thus, the leading indices of v1, v2, . . . , vi−1 are σ (1) , σ (2) , . . . , σ (i− 1).
Therefore, these leading indices are pairwise distinct (since σ is injective).
In other words, the family

(
vj
)

j∈{1,2,...,i−1} of nonzero vectors in Fn
p has

the property that the leading indices of the vj (for j ∈ {1, 2, . . . , i− 1}) are
pairwise distinct. Thus, Lemma 5.2c (c) (applied to {1, 2, . . . , i− 1} and(
vj
)

j∈{1,2,...,i−1} instead of S and (ws)s∈S) shows that

lind (x) ∈
{

lind
(
vj
)
| j ∈ {1, 2, . . . , i− 1}

}(
since x ∈ Fp

{
vj | j ∈ {1, 2, . . . , i− 1}

}
is a nonzero vector

)

=


lind

(
vj
)︸ ︷︷ ︸

=σ(j)
(since the leading index of vj is σ(j))

| j < i


= {σ (j) | j < i} .

Combining this with lind (x) ∈ {1, 2, . . . , σ (i)}, we find

lind (x) ∈ {1, 2, . . . , σ (i)} ∩ {σ (j) | j < i}
= {σ (j) | j < i and σ (j) < σ (i)} .

Now, forget that we fixed x. We thus have proven that
lind (x) ∈ {σ (j) | j < i and σ (j) < σ (i)} for each x ∈

(
Vi−1 ∩ Eσ(i)

)
\

{0}. In other words,{
lind (x) | x ∈

(
Vi−1 ∩ Eσ(i)

)
\ {0}

}
⊆ {σ (j) | j < i and σ (j) < σ (i)} . (7)

12
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But Lemma 5.2d (applied to W = Vi−1 ∩ Eσ(i)) yields

dim
(

Vi−1 ∩ Eσ(i)

)
=
∣∣∣{lind (x) | x ∈

(
Vi−1 ∩ Eσ(i)

)
\ {0}

}∣∣∣
≤ |{σ (j) | j < i and σ (j) < σ (i)}| (because of (7))
= |{j | j < i and σ (j) < σ (i)}| (8)

(since the map σ is injective).

But (v1, v2, . . . , vi−1) is a basis for Vj−1 (by the induction hypothesis). Hence,
the vectors v1, v2, . . . , vi−1 are linearly independent. Thus, the vectors vj for
all j < i satisfying σ (j) < σ (i) are also linearly independent (since these
vectors form a subfamily of the vectors v1, v2, . . . , vi−1), and therefore dis-
tinct. The definition of Si yields that the vector space Si is spanned by these
vectors vj for all j < i satisfying σ (j) < σ (i). Therefore, these vectors vj
for all j < i satisfying σ (j) < σ (i) form a basis of Si (because they are
linearly independent). Hence, the dimension of Si equals the number of
these vectors. In other words,

dim (Si) =
∣∣{vj | j < i and σ (j) < σ (i)

}∣∣
= |{j | j < i and σ (j) < σ (i)}|(

since the vectors vj for all j < i satisfying σ (j) < σ (i) are distinct
)

≥ dim
(

Vi−1 ∩ Eσ(i)

)
(by (8)) . (9)

On the other hand, Si ≤ Vi−1 ∩ Eσ(i) (this follows by combining

Si = Fp
{

vj | j < i and σ (j) < σ (i)
}︸ ︷︷ ︸

⊆{vj | j<i}

⊆ Fp
{

vj | j < i
}
= Vi−1

with

Si = Fp
{

vj | j < i and σ (j) < σ (i)
}
⊆ Eσ(i) since each j < i satisfying σ (j) < σ (i) satisfies

lind
(
vj
)
= σ (j) ∈ {1, 2, . . . , σ (i)} and thus

vj ∈ Fp

{
e1, e2, . . . , eσ(i)

}
= Eσ(i)


). Thus, Si is a vector subspace of the finite-dimensional vector space Vi−1∩
Eσ(i). Since the dimension of this subspace Si is at least as high as the
dimension of Vi−1 ∩ Eσ(i) (indeed, this is what (9) says), we conclude that
this subspace Si is the whole Vi−1 ∩ Eσ(i). In other words, Si = Vi−1 ∩ Eσ(i),
qed. �

Alternative proof of the existence of an vi ∈ Vi ∩ Ti such that εσ(i) (vi) = 1 and
moreover that v1, v2, . . . , vi is a basis for Vi over Fp: Let me now show another

13
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way to prove that there is an element vi ∈ Vi ∩ Ti such that εσ(i) (vi) = 1
and moreover that v1, v2, . . . , vi is a basis for Vi over Fp. This argument will
not show the uniqueness of this vi (but you don’t ever use this uniqueness
anyway).

I proceed by induction over i (as you do). As in your proof, I define Si, and
show that Si ≤ Vi ∩ Eσ(i) and that Eσ(i) = Si ⊕ Ti.

But V ∈ Y (σ) = Y (σ, E). In other words, δ (V, E) = σ (by the definition
of Y (σ, E)). By the definition of δ, this yields that Qi,σ(i) 6= 0, where Qi,j =

Vi ∩ Ej

Vi−1 ∩ Ej + Vi ∩ Ej−1
. In other words,

Vi ∩ Eσ(i)

Vi−1 ∩ Eσ(i) + Vi ∩ Eσ(i)−1
6= 0.

Hence,

Vi ∩ Eσ(i) > Vi−1 ∩ Eσ(i) + Vi ∩ Eσ(i)−1 ≥ Vi ∩ Eσ(i)−1. (10)

Now, εσ(i) |Vi∩Eσ(i)
6= 0 9. Hence, the Fp-linear map εσ(i) |Vi∩Eσ(i)

: Vi ∩
Eσ(i) → Fp has rank ≥ 1, and therefore must be surjective (since its target
is the 1-dimensional Fp-vector space Fp). Therefore, there exists some x ∈
Vi ∩ Eσ(i) satisfying

(
εσ(i) |Vi∩Eσ(i)

)
(x) = 1. Consider this x.

We have εσ(i) (x) =
(

εσ(i) |Vi∩Eσ(i)

)
(x) = 1. Furthermore, x ∈ Vi ∩ Eσ(i) ⊆

Eσ(i) = Si ⊕ Ti. In other words, there exist y ∈ Si and z ∈ Ti such that
x = y + z. Consider these y and z. We have x ∈ Vi ∩ Eσ(i) ≤ Vi and
y ∈ Si ≤ Vi ∩ Eσ(i) ≤ Vi. Now, x = y + z, so that z = x − y ∈ Vi (since
x ∈ Vi and y ∈ Vi, and since Vi is an Fp-vector space). Combining this with
z ∈ Ti, we obtain z ∈ Vi ∩ Ti.

For each j < i, the leading term of vj is eσ(j) (since ej ∈ Vj ∩ Tj ≤ Tj ≤ Eσ(j)
and εσ(j)

(
vj
)
= 1). Thus, for each j < i, the leading index of vj is σ (j). In

9Proof. Assume the contrary. Thus, εσ(i) |Vi∩Eσ(i)
= 0.

Fix x ∈ Vi ∩ Eσ(i). Then, x ∈ Vi ∩ Eσ(i) ⊆ Eσ(i) = Fp

{
e1, e2, . . . , eσ(i)

}
. Also, x ∈

Vi ∩ Eσ(i), so that εσ(i) (x) =
(

εσ(i) |Vi∩Eσ(i)

)
︸ ︷︷ ︸

=0

(x) = 0. In other words, the σ (i)-th coor-

dinate of the vector x is 0. Combining this with x ∈ Fp

{
e1, e2, . . . , eσ(i)

}
, we conclude

x ∈ Fp

{
e1, e2, . . . , eσ(i)−1

}
= Eσ(i)−1. Combining x ∈ Vi ∩ Eσ(i) ⊆ Vi with x ∈ Eσ(i)−1,

we find x ∈ Vi ∩ Eσ(i)−1.
Now, forget that we fixed x. We thus have proven that x ∈ Vi ∩ Eσ(i)−1 for each x ∈

Vi ∩ Eσ(i). In other words, Vi ∩ Eσ(i) ⊆ Vi ∩ Eσ(i)−1. Hence, Vi ∩ Eσ(i)−1 is not a proper subset
of Vi ∩ Eσ(i). This contradicts (10). This contradiction shows that our assumption was wrong,
qed.
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other words, for each j < i, we have lind
(
vj
)
= σ (j). Thus, every j < i

satisfying σ (j) < σ (i) must satisfy

lind
(
vj
)
= σ (j) ∈ {1, 2, . . . , σ (i)− 1} (since σ (j) < σ (i))

and therefore
vj ∈ Fp

{
e1, e2, . . . , eσ(i)−1

}
= Eσ(i)−1. (11)

Now,

y ∈ Si = Fp
{

vj | j < i and σ (j) < σ (i)
}
⊆ Eσ(i)−1

(since each j < i satisfying σ (j) < σ (i) satisfies (11))

and thus εσ(i) (y) = 0. Now,

εσ(i)

 x︸︷︷︸
=y+z

 = εσ(i) (y + z) = εσ(i) (y)︸ ︷︷ ︸
=0

+εσ(i) (z) = εσ(i) (z) .

Comparing this with εσ(i) (x) = 1, we find εσ(i) (z) = 1.

Furthermore, z /∈ Vi−1
10.

10Proof. Assume the contrary. Then, z ∈ Vi−1 = Fp {v1, v2, . . . , vi−1} =

Fp
{

vj | j ∈ {1, 2, . . . , i− 1}
}

. Also, z is nonzero (since εσ(i) (z) = 1 6= 0).
For each j < i, the leading term of vj is eσ(j) (as we have already seen). Thus, for each

j < i, the leading index of vj is σ (j). Thus, the leading indices of v1, v2, . . . , vi−1 are
σ (1) , σ (2) , . . . , σ (i− 1). Therefore, these leading indices are pairwise distinct (since σ is
injective). In other words, the family

(
vj
)

j∈{1,2,...,i−1} of nonzero vectors in Fn
p has the prop-

erty that the leading indices of the vj (for j ∈ {1, 2, . . . , i− 1}) are pairwise distinct. Thus,
Lemma 5.2c (c) (applied to {1, 2, . . . , i− 1},

(
vj
)

j∈{1,2,...,i−1} and z instead of S, (ws)s∈S and x)
shows that

lind (z) ∈
{

lind
(
vj
)
| j ∈ {1, 2, . . . , i− 1}

}(
since z ∈ Fp

{
vj | j ∈ {1, 2, . . . , i− 1}

}
is a nonzero vector

)

=


lind

(
vj
)︸ ︷︷ ︸

=σ(j)
(since the leading index of vj is σ(j))

| j < i


= {σ (j) | j < i} .

But z ∈ Ti ≤ Eσ(i) = Fp

{
e1, e2, . . . , eσ(i)

}
. Hence, the k-th coordinate of z is 0 for all k > σ (i).

But the σ (i)-th coordinate of z is εσ(i) (z) = 1 6= 0. Combining the preceding two sentences,
we conclude that the leading index of z is σ (i). In other words, lind (z) = σ (i). Hence,
σ (i) = lind (z) ∈ {σ (j) | j < i}, so that σ (i) = σ (j) for some j < i. This is absurd, since σ
is injective. Thus, we have obtained a contradiction. This completes our proof of the fact that
z /∈ Vi−1.
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Finally, the list v1, v2, . . . , vi−1, z is a basis for Vi over Fp
11.

Thus, we have shown that z is an element of Vi ∩ Ti such that εσ(i) (z) =
1 and moreover that v1, v2, . . . , vi−1, z is a basis for Vi over Fp. Hence,
there is an element vi ∈ Vi ∩ Ti such that εσ(i) (vi) = 1 and moreover that
v1, v2, . . . , vi is a basis for Vi over Fp (namely, vi = z). This completes our
proof. (As I have said, the uniqueness of this vi is not proven here, but it is
not needed in your argument either.) �

• Proof of Proposition 5.2: Before the words “Now define g”, add the fol-
lowing sentences: “Notice that, for each i ∈ {1, 2, . . . , n}, the leading term
of vi is eσ(i) (because vi ∈ Ti ≤ Eσ(i) = Fp

{
e1, e2, . . . , eσ(i)

}
has its σ (i)-th

coordinate equal to εσ(i) (vi) = 1). Hence, for each i ∈ {1, 2, . . . , n}, the
leading term of vσ−1(i) is ei.”

• Proof of Proposition 5.2: Replace “Now define g” by “Now define an Fp-
linear map g”.

• Proof of Proposition 5.2: Replace “Fp

{
eσ(k), eσ(k+1), . . . , eσ(m)

}
” by

“Fp

{
eσ(k), eσ(k+1), . . . , eσ(n)

}
”.

• Proof of Proposition 5.2: Replace “so σ−1gσ is a lower-triangular ma-
trix” by: “so σ−1gσ (ek) ∈ Fp {ek, ek+1, . . . , en}. Hence, σ−1gσ is a lower-
triangular matrix”.

• Proof of Proposition 5.2: Replace “so g ∈ Uρσ−1
” by “so g ∈ Uρσ−1

=

U(σρ)−1
”.

11Proof. We have Vi−1 + Fpz > Vi−1 (since z ∈ Fpz ⊆ Vi−1 + Fpz but z /∈ Vi−1). Hence,
dim

(
Vi−1 + Fpz

)
> dim (Vi−1) = i − 1. Since dim

(
Vi−1 + Fpz

)
and i − 1 are integers, this

entails that dim
(
Vi−1 + Fpz

)
≥ (i− 1) + 1 = i = dim (Vi). Furthermore, Vi−1︸︷︷︸

≤Vi

+ Fpz︸︷︷︸
≤Vi

(since z∈Vi)

≤

Vi + Vi = Vi.
Now, it is well-known that if U is a subspace of a finite-dimensional vector space V, and

if dimU ≥ dimV, then U = V. Applying this to U = Vi−1 + Fpz and V = Vi, we obtain
Vi−1 + Fpz = Vi (since Vi−1 + Fpz is a subspace of Vi and satisfies dim

(
Vi−1 + Fpz

)
≥

dim (Vi)). Now,

Fp {v1, v2, . . . , vi−1, z} = Fp {v1, v2, . . . , vi−1}︸ ︷︷ ︸
=Vi−1

(since (v1,v2,...,vi−1)
is a basis for Vi−1)

+Fpz = Vi−1 + Fpz = Vi.

Hence, the list (v1, v2, . . . , vi−1, z) spans the Fp-vector space Vi. Since the size i of this list
equals the dimension of Vi (because dim (Vi) = i), this shows that the list (v1, v2, . . . , vi−1, z)
is a basis for Vi. Qed.
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• Proof of Proposition 5.2: Replace “and φ (g) = V” by “and φ (g) =
gσ (E) = V”.

• Example 5.3: Replace “g =


1 0 0 b a
0 1 0 d c
0 0 1 f e
0 0 0 1 g
0 0 0 0 1

” by “g =


1 0 0 e a
0 1 0 f b
0 0 1 g c
0 0 0 1 d
0 0 0 0 1

”.

(Otherwise, the equation after it wouldn’t be true.)

• Example 5.3: Rename “g” as “h” in the contexts “g =”, “For such g”,
“gσ =” and “φ (g)”. (In fact, the notation “g” here clashes with the notation
“g” for the (4, 5)-th entry of the matrix g.)

• Corollary 5.4: I think you should define what you mean by “isomorphism”
here. Namely, an isomorphism from a triple (V, U, W) (where V is an n-
dimensional Fp-vector space, and U and W are two complete flags in V) to
a triple (V′, U′, W ′) (where V′ is an n-dimensional Fp-vector space, and U′

and W ′ are two complete flags in V′) means an isomorphism φ : V → V′

of Fp-vector spaces satisfying φU = U′ and φW = W ′.

• Corollary 5.4: Replace “Σ” by “Σn”.

• Corollary 5.4: Replace “if and only iff” by “if and only if” (or by “iff”).

• Proof of Corollary 5.4: Replace “a pair as above” by “a triple as above”.

• Proof of Corollary 5.4: Replace “by f (a) = ∑
i

aiwi” by “by f (a1, a2, . . . , an) =

∑
i

aiwi”.

• Proof of Corollary 5.4: Replace “so F = xσE” by: “. Since the map X (σ)→
Y (σ) , g 7→ gσE is a bijection (by Proposition 5.2), we thus see that F =
xσE”.

• Proof of Corollary 5.4: At the end of this proof, add the following sentence:
“Hence,

(
Fn

p, σE, E
)
'
(

Fn
p, F, E

)
' (V, U, W) (since the map f : Fn

p → V

is an isomorphism
(

Fn
p, F, E

)
→ (V, U, W)).”

• Proof of Corollary 5.5: After “such bases exist iff δ (U, W) = σ”, add “(be-
cause the first claim of Corollary 5.4 shows that

(
Fn

p, σE, E
)
∼= (V, U, W)

holds if and only if δ (U, W) = δ (σE, E); but in light of Example 4.1 this
condition rewrites as δ (U, W) = σ)”.

• Proof of Corollary 5.5: I think the last sentence of this proof would be
better off taken out into a separate result:

17
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Lemma 5.5a. Let σ ∈ Σn. Then, |Bσ ∩ B| = (p− 1)n pl(σ−1ρ).

[Proof of Lemma 5.5a. The definition of X
(
σ−1ρ

)
yields

X
(

σ−1ρ
)
= U ∩U(σ−1ρρ)

−1

= U ∩Uσ

since

σ−1 ρρ︸︷︷︸
=1

−1

=
(

σ−1
)−1

= σ


= Uσ ∩U.

But the last sentence of Lemma 5.1 (applied to σ−1ρ instead of σ) yields∣∣X (σ−1ρ
)∣∣ = pl(σ−1ρ).

Consider the short exact sequence

1 −→ Uσ ∩U −→ Bσ ∩ B −→ T −→ 1,

where the arrow Uσ ∩U −→ Bσ ∩ B is the canonical inclusion, and where
the arrow Bσ ∩ B −→ T is the map that replaces all off-diagonal entries of
a matrix g ∈ Bσ ∩ B by 0. 12 This short exact sequence shows that

|Bσ ∩ B| = |T| ·

∣∣∣∣∣∣∣ Uσ ∩U︸ ︷︷ ︸
=X(σ−1ρ)

∣∣∣∣∣∣∣ = |T| ·
∣∣∣X (σ−1ρ

)∣∣∣︸ ︷︷ ︸
=pl(σ−1ρ)

= |T|︸︷︷︸
=(p−1)n

·pl(σ−1ρ) (12)

= (p− 1)n · pl(σ−1ρ).

Thus, Lemma 5.5a is proven. �]

• Proof of Proposition 6.1: Before “Moreover, if”, add the following sen-
tence: “Thus, π (BgB) = {π (g)} for each g ∈ G.”.

• Proof of Proposition 6.1: Replace “from which it follows directly that
π (σ) = σ” by “and the definition of π yields π (σ) = δ (σE, E) = σ (by
Example 4.1)”.

• Proof of Proposition 6.1: After “This means that π (BσB) = {σ}.”, add
“Hence, BσB ⊆ π−1 {σ}.”.

• Proof of Proposition 6.1: Replace “Conversely, suppose that π (h) = σ.”
by “Conversely, let h ∈ π−1 {σ}. Thus, h ∈ G and π (h) = σ. Hence,
σ = π (h) = δ (hE, E), so that hE ∈ Y (σ, E) = Y (σ). Hence,”.

12This is indeed a short exact sequence, because the matrices g ∈ Bσ ∩ B whose diagonal entries
all equal 1 are exactly the elements of Uσ ∩U. It is actually a split extension, since the arrow
Bσ ∩ B −→ T is split by the canonical inclusion T −→ Bσ ∩ B.

18
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• Proof of Proposition 6.1: Replace “Propsition” by “Proposition”.

• Proof of Proposition 6.1: After “we find that b ∈ B”, add “(since bE =

(gσ)−1 hE︸︷︷︸
=gσE

= (gσ)−1 gσE = E)”.

• Proof of Proposition 6.1: After “shows that h ∈ BσB”, add “(since g ∈
X (σ) ≤ U ≤ B and b ∈ B). Hence, we have shown that π−1 {σ} ⊆ BσB
(since h was assumed to be any element of G satisfying π (h) = σ)”.

• Proof of Proposition 6.1: Replace “we see that gσE = g′σE” by “and gσb =
h = g′σb′, we see that gσ E︸︷︷︸

=bE

= gσb︸︷︷︸
=g′σb′

E = g′σ b′E︸︷︷︸
=E

= g′σE”.

• Proof of Corollary 6.2: The claim “B = T ×U” is wrong, or at least seri-
ously misleading (the group B is not a direct product of T and U). I would
replace the whole sentence containing it by “Applying (12) to ρσ−1 instead

of σ, we obtain
∣∣∣Bρσ−1 ∩ B

∣∣∣ = |T| · pl
(
(ρσ−1)

−1
ρ
)
. Since Bρσ−1 ∩ B = B∩ Bρσ−1

and
(
ρσ−1)−1

ρ = σ, this rewrites as
∣∣∣B ∩ Bρσ−1

∣∣∣ = |T| · pl(σ).

• Proof of Corollary 6.2: After the displayed equation “|BσB| = pl(σ) |B| =
|U| |T| pl(σ)”, add “(since the short exact sequence 1 −→ U −→ B −→
T −→ 1 yields |B| = |U| |T|)”.

• Proof of Corollary 6.3: Before “We have a bijection”, add “Proposition 6.1
(applied to σ−1 instead of σ) shows that”.

• Proof of Corollary 6.3: Replace “given by φ (g, b) = gσb” by “given by
φ (g, b) = gσ−1b”.

• Proof of Proposition 6.4: The statement in the first sentence of your proof
is worth stating as a separate lemma:

Lemma 2.6a. Let σ, τ ∈ Σn. Then, the following two conditions are equiv-
alent:

Condition C1: We have l (στ) = l (σ) + l (τ).

Condition C2: For any T ⊆ {1, 2, . . . , n} with |T| = 2, at most one of the two
maps T τ−→ τ (T) σ−→ στ (T) is order-reversing.

[Proof of Lemma 2.6a. Let us prove the implications C1 =⇒ C2 and C2 =⇒ C1
separately.

Proof of the implication C1 =⇒ C2: Assume that Condition C1 holds. In other
words, we have l (στ) = l (σ) + l (τ).
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Lemma 2.6 shows that L (στ) = L (τ)∆τ−1
∗ L (σ). Also, l (σ) = |L (σ)| =∣∣L (σ)

∣∣ and similarly l (τ) =
∣∣L (τ)

∣∣ and l (στ) =
∣∣L (στ)

∣∣. Now,∣∣L (τ)
∣∣+ ∣∣∣τ−1

∗ L (σ)
∣∣∣︸ ︷︷ ︸

=|L(σ)|
(since τ∗ is a bijection)

=
∣∣L (τ)

∣∣︸ ︷︷ ︸
=l(τ)

+
∣∣L (σ)

∣∣︸ ︷︷ ︸
=l(σ)

= l (τ) + l (σ) = l (σ) + l (τ)

= l (στ) =

∣∣∣∣∣∣∣∣ L (στ)︸ ︷︷ ︸
=L(τ)∆τ−1

∗ L(σ)

∣∣∣∣∣∣∣∣ =
∣∣∣L (τ)∆τ−1

∗ L (σ)
∣∣∣ .

But a simple and fundamental fact states that if A and B are two finite
sets satisfying |A|+ |B| = |A∆B|, then A ∩ B = ∅. Applying this to A =
L (τ) and B = τ−1

∗ L (σ), we find that L (τ) ∩ τ−1
∗ L (σ) = ∅ (since

∣∣L (τ)
∣∣+∣∣τ−1

∗ L (σ)
∣∣ = ∣∣L (τ)∆τ−1

∗ L (σ)
∣∣).

Now, let T ⊆ {1, 2, . . . , n} with |T| = 2. We shall show that at most one of
the two maps T τ−→ τ (T) σ−→ στ (T) is order-reversing.

Indeed, assume the contrary. Thus, both maps T τ−→ τ (T) σ−→ στ (T) are
order-reversing.

One of the characterizations of L (σ) shows that the two-element subset
τ (T) of {1, 2, . . . , n} belongs to L (σ) if and only if the map σ : τ (T) →
στ (T) is order-reversing. Hence, the two-element subset τ (T) of {1, 2, . . . , n}
belongs to L (σ) (since the map σ : τ (T) → στ (T) is order-reversing).
Thus, τ (T) ∈ L (σ). But τ∗ (T) = τ (T) ∈ L (σ), so that T ∈ τ−1

∗ L (σ).

One of the characterizations of L (τ) shows that the two-element subset T
of {1, 2, . . . , n} belongs to L (τ) if and only if the map τ : T → τ (T) is
order-reversing. Hence, the two-element subset T of {1, 2, . . . , n} belongs
to L (τ) (since the map τ : T → τ (T) is order-reversing). In other words,
T ∈ L (τ). Combining this with T ∈ τ−1

∗ L (σ), we obtain T ∈ L (τ) ∩
τ−1
∗ L (σ) = ∅. In other words, T belongs to the empty set. This is clearly

absurd.

Thus, we have obtained a contradiction. Hence, our assumption was wrong.
We thus have proven that at most one of the two maps T τ−→ τ (T) σ−→
στ (T) is order-reversing.

Now, forget that we fixed T. We thus have shown that for any T ⊆
{1, 2, . . . , n} with |T| = 2, at most one of the two maps T τ−→ τ (T) σ−→
στ (T) is order-reversing. In other words, Condition C2 holds.

Thus, we have derived Condition C2 from Condition C1. In other words,
we have proven the implication C1 =⇒ C2.

We omit the proof of the implication C2 =⇒ C1 (since you don’t actually
use this implication in your arguments, and since this proof is rather easy
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to obtained by “walking backwards” our above proof of the implication
C1 =⇒ C2).

Combining the implications C1 =⇒ C2 and C2 =⇒ C1, we obtain the equiv-
alence C1 ⇐⇒ C2. Thus, Lemma 2.6a is proven.]

• §6: Let me suggest an alternative way of proving Proposition 6.4 and
Proposition 6.5. This alternative way has the advantage that it does not
use the finiteness of the field Fp, and so can be directly generalized to an
arbitrary field.13

First, let me show a few useful lemmas:

Lemma 6.4a. Let σ ∈ Σn and g =
(

gi,j
)n

i,j=1 ∈ G.

(a) If g ∈ X (σ), then

(gi,i = 1 for all i ∈ {1, 2, . . . , n}) (13)

and(
gi,j = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i 6= j and (i, j) /∈ L

(
σ−1

))
.

(14)

(b) If (13) and (14) hold, then g ∈ X (σ).

[Proof of Lemma 6.4a. From the first sentence of Lemma 5.1, we see that
g ∈ X (σ) holds if and only if we have

gi,j =


1, if i = j;
arbitrary, if (i, j) ∈ L

(
σ−1) ;

0, otherwise
.

In other words, g ∈ X (σ) holds if and only if (13) and (14) hold. This
proves both parts (a) and (b) of Lemma 6.4a. �]

Lemma 6.4b. Let g =
(

gi,j
)n

i,j=1 ∈ G.

(a) If g ∈ U, then

(gi,i = 1 for all i ∈ {1, 2, . . . , n}) (15)

and (
gi,j = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i > j

)
. (16)

(b) If (15) and (16) hold, then g ∈ U.

13A few comments on your proofs:
– In the proof of Proposition 6.4, before “We now show that φ (g, h) ∈ X (στ)”, I would

suggest adding “Let g ∈ X (σ) and h ∈ X (τ).”.
– In the proof of Proposition 6.4, “apply Corollary 6.1” should be replaced by “apply

Proposition 6.1”.
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[Proof of Lemma 6.4b. Recall that U is the set of all upper-unitriangular
n× n-matrices. Hence, g ∈ U holds if and only if g is upper-unitriangular.
By the definition of upper-triangular, this rewrites as follows: g ∈ U holds
if and only if (15) and (16) hold. This proves both parts (a) and (b) of
Lemma 6.4b. �]

Lemma 6.4c. Let σ ∈ Σn. Then, the map X (σ)× B→ BσB, (g, b) 7→ gσb is
well-defined and is a bijection.

[Proof of Lemma 6.4c. Lemma 6.4c is the first claim of Proposition 6.1, and
thus we already have proven it. �]

Lemma 6.4d. Let σ ∈ Σn and τ ∈ Σn be such that l (στ) = l (σ) + l (τ).
Then:

(a) We have L (τ) ∩ τ−1
∗ L (σ) = ∅.

(b) We have X (σ) ∩ (X (τ))σ−1
= 1.

(c) We have X (σ) ⊆ Uρτ−1σ−1
.

(d) We have (X (τ))σ−1
⊆ U.

(e) We have X (σ) · (X (τ))σ−1
⊆ X (στ).

(f) We have BσBτB = BστB.

(g) The map

X (σ)× X (τ)→ X (στ) , (g, h) 7→ ghσ−1

is well-defined and bijective.

[Proof of Lemma 6.4d. (a) This was shown in the proof of Claim 1 during the
proof of Lemma 2.6a given above.

(b) Let g ∈ X (σ) ∩Uσ−1
. Thus, g ∈ X (σ) and g ∈ Uσ−1

. Write the matrix

g in the form g =
(

gi,j
)n

i,j=1. Then, gσ =
(

gσ(i),σ(j)

)n

i,j=1
. But g ∈ Uσ−1

, so

that
gσ ∈

(
Uσ−1

)σ
= Uσ−1σ = U1 = U.

Hence, Lemma 6.4a (a) (applied to gσ and gσ(i),σ(j) instead of g and gi,j)
yields that (

gσ(i),σ(i) = 1 for all i ∈ {1, 2, . . . , n}
)

(17)

and (
gσ(i),σ(j) = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i > j

)
. (18)

On the other hand, g ∈ X (σ). Hence, Lemma 6.4a (a) yields that

(gi,i = 1 for all i ∈ {1, 2, . . . , n}) (19)
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and(
gi,j = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i 6= j and (i, j) /∈ L

(
σ−1

))
.

(20)

Now, let i, j ∈ {1, 2, . . . , n}. We shall show that gi,j = δi,j.

Indeed, assume the contrary. Thus, gi,j 6= δi,j. Hence, i 6= j 14, so that
δi,j = 0 and thus gi,j 6= δi,j = 0.

If we had (i, j) /∈ L
(
σ−1), then we would have gi,j = 0 (by (20)), which

would contradict gi,j 6= 0. Thus, we cannot have (i, j) /∈ L
(
σ−1). Hence,

we have (i, j) ∈ L
(
σ−1). In other words, i < j and σ−1 (i) > σ−1 (j) (by

the definition of L
(
σ−1)). Thus, (18) (applied to

(
σ−1 (i) , σ−1 (j)

)
instead

of (i, j)) yields

gσ(σ−1(i)),σ(σ−1(j)) = 0. This contradicts gσ(σ−1(i)),σ(σ−1(j)) = gi,j 6= 0. This
contradiction shows that our assumption was false. Hence, gi,j = δi,j is
proven.

Now, forget that we fixed i, j. We thus have shown that gi,j = δi,j for all
i, j ∈ {1, 2, . . . , n}. In other words,

(
gi,j
)n

i,j=1 =
(
δi,j
)n

i,j=1 = 1. Hence,

g =
(

gi,j
)n

i,j=1 = 1.

Now, forget that we fixed g. Thus we have proven that g = 1 for each
g ∈ X (σ) ∩Uσ−1

. In other words, X (σ) ∩Uσ−1
= 1.

But the definition of X (τ) yields X (τ) = U∩U(τρ)−1
⊆ U. Thus, (X (τ))σ−1

⊆
Uσ−1

, so that X (σ) ∩ (X (τ))σ−1︸ ︷︷ ︸
⊆Uσ−1

⊆ X (σ) ∩ Uσ−1
= 1. Hence, X (σ) ∩

(X (τ))σ−1
= 1. This proves Lemma 6.4d (b).

(c) Let g ∈ X (σ). We shall prove that g ∈ Uρτ−1σ−1
.

Write the matrix g in the form g =
(

gi,j
)n

i,j=1.

We have g ∈ X (σ). Hence, Lemma 6.4a (a) yields that

(gi,i = 1 for all i ∈ {1, 2, . . . , n}) (21)

and(
gi,j = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i 6= j and (i, j) /∈ L

(
σ−1

))
.

(22)

14Proof. Assume the contrary. Thus, i = j. Hence, j = i, so that gi,j = gi,i = 1 (by (19)). But
from i = j, we also obtain δi,j = 1. Comparing this with gi,j = 1, we obtain gi,j = δi,j. This
contradicts gi,j 6= δi,j. This contradiction shows that our assumption was wrong. Qed.
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Let η = στρ. Thus, η ∈ Σn, so that η is an injective map. From η = στρ,
we obtain η−1 = (στρ)−1 = ρ−1︸︷︷︸

=ρ

τ−1σ−1 = ρτ−1σ−1.

Let i, j ∈ {1, 2, . . . , n} be such that i > j. We shall show that gη(i),η(j) = 0.

Indeed, assume the contrary. Thus, gη(i),η(j) 6= 0. From i > j, we obtain i 6=
j and therefore η (i) 6= η (j) (since η is injective). If we had (η (i) , η (j)) /∈
L
(
σ−1), then we would have gη(i),η(j) = 0 (by (22), applied to η (i) and η (j)

instead of i and j), which would contradict gη(i),η(j) 6= 0. Hence, we cannot
have (η (i) , η (j)) /∈ L

(
σ−1). Thus, we must have (η (i) , η (j)) ∈ L

(
σ−1).

In other words, η (i) < η (j) and σ−1 (η (i)) > σ−1 (η (j)) (by the definition
of L

(
σ−1)). From η (i) < η (j), we obtain η (j) > η (i).

Now, the definition of ρ yields ρ (i) = n + 1− i︸︷︷︸
>j

< n + 1− j = ρ (j)

(since ρ (j) = n + 1 − j (by the definition of ρ)). But η = στρ, so that
σ−1η = τρ. Now, σ−1 (η (i)) =

(
σ−1η

)
︸ ︷︷ ︸

=τρ

(i) = (τρ) (i) = τ (ρ (i)) and sim-

ilarly σ−1 (η (j)) = τ (ρ (j)). Thus, τ (ρ (i)) = σ−1 (η (i)) > σ−1 (η (j)) =
τ (ρ (j)).

Combining ρ (i) < ρ (j) with τ (ρ (i)) > τ (ρ (j)), we obtain (ρ (i) , ρ (j)) ∈
L (τ) (by the definition of L (τ)). Thus, {ρ (i) , ρ (j)} ∈ L (τ) (by the defini-
tion of L (τ)).

On the other hand, τ (ρ (j)) < τ (ρ (i)) (since τ (ρ (i)) > τ (ρ (j))) and
σ (τ (ρ (j))) = (στρ)︸ ︷︷ ︸

=η

(j) = η (j) > η︸︷︷︸
=στρ

(i) = (στρ) (i) = σ (τ (ρ (i))).

Combining these two inequalities, we obtain (τ (ρ (j)) , τ (ρ (i))) ∈ L (σ)
(by the definition of L (σ)). Hence, {τ (ρ (j)) , τ (ρ (i))} ∈ L (σ) (by the
definition of L (σ)).

Now,

τ∗ ({ρ (i) , ρ (j)}) = τ ({ρ (i) , ρ (j)}) (by the definition of τ∗)

= {τ (ρ (i)) , τ (ρ (j))} = {τ (ρ (j)) , τ (ρ (i))} ∈ L (σ) ,

so that {ρ (i) , ρ (j)} ∈ τ−1
∗ L (σ). Combining this with {ρ (i) , ρ (j)} ∈ L (τ),

we obtain {ρ (i) , ρ (j)} ∈ L (τ) ∩ τ−1
∗ L (σ) = ∅. Thus, {ρ (i) , ρ (j)} belongs

to the empty set. This is clearly absurd. Thus, we have obtained a contra-
diction. This shows that our assumption was false. Hence, gη(i),η(j) = 0 is
proven.

Now, forget that we fixed i, j. We thus have shown that(
gη(i),η(j) = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i > j

)
. (23)
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Moreover, if i ∈ {1, 2, . . . , n}, then gη(i),η(i) = 1 (by (21), applied to η (i)
instead of i). Thus, we have shown that(

gη(i),η(i) = 1 for all i ∈ {1, 2, . . . , n}
)

. (24)

Now, gη =
(

gη(i),η(j)

)n

i,j=1
(since g =

(
gi,j
)n

i,j=1). Hence, Lemma 6.4b (b)

(applied to gη and gη(i),η(j) instead of g and gi,j) shows that gη ∈ U (since

(24) and (23) hold). Hence, (gη)η−1
∈ Uη−1

. Since (gη)η−1
= gηη−1

=

g1 = g, this rewrites as g ∈ Uη−1
. Since η−1 = ρτ−1σ−1, this rewrites as

g ∈ Uρτ−1σ−1
.

Now, forget that we fixed g. We thus have shown that g ∈ Uρτ−1σ−1
for

each g ∈ X (σ). In other words, X (σ) ⊆ Uρτ−1σ−1
. This proves Lemma 6.4d

(c).

(d) Let g ∈ X (τ). We shall prove that g ∈ Uσ.

Write the matrix g in the form g =
(

gi,j
)n

i,j=1.

We have g ∈ X (τ). Hence, Lemma 6.4a (a) (applied to τ instead of σ)
yields that

(gi,i = 1 for all i ∈ {1, 2, . . . , n}) (25)

and(
gi,j = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i 6= j and (i, j) /∈ L

(
τ−1

))
.

(26)

Let η = σ−1. Thus, η ∈ Σn. Hence, η is an injective map.

Let i, j ∈ {1, 2, . . . , n} be such that i > j. We shall show that gη(i),η(j) = 0.

Indeed, assume the contrary. Thus, gη(i),η(j) 6= 0. From i > j, we obtain i 6=
j and therefore η (i) 6= η (j) (since η is injective). If we had (η (i) , η (j)) /∈
L
(
τ−1), then we would have gη(i),η(j) = 0 (by (26), applied to η (i) and η (j)

instead of i and j), which would contradict gη(i),η(j) 6= 0. Hence, we cannot
have (η (i) , η (j)) /∈ L

(
τ−1). Thus, we must have (η (i) , η (j)) ∈ L

(
τ−1).

In other words, η (i) < η (j) and τ−1 (η (i)) > τ−1 (η (j)) (by the definition
of L

(
τ−1)). From η (i) < η (j), we obtain η (j) > η (i).

Set x = τ−1 (η (j)) and y = τ−1 (η (i)). Then, x, y are elements of {1, 2, . . . , n}.
Furthermore, y = τ−1 (η (i)) > τ−1 (η (j)) = x, so that x < y. Besides,
from x = τ−1 (η (j)), we obtain τ (x) = η (j). From y = τ−1 (η (i)), we ob-
tain τ (y) = η (i). Thus, τ (y) = η (i) < η (j) = τ (x), so that τ (x) > τ (y).

From x < y and τ (x) > τ (y), we obtain (x, y) ∈ L (τ) (by the definition of
L (τ)). Thus, {x, y} ∈ L (τ) (by the definition of L (τ)).
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On the other hand, the elements η (i) , η (j) ∈ {1, 2, . . . , n} satisfy η (i) <

η (j) and σ (η (i)) > σ (η (j)) (since σ

 η︸︷︷︸
=σ−1

(i)

 = σ
(
σ−1 (i)

)
= i >

j = σ

σ−1︸︷︷︸
=η

(j)

 = σ (η (j))). In other words, (η (i) , η (j)) ∈ L (σ) (by

the definition of L (σ)). Hence, {η (i) , η (j)} ∈ L (σ) (by the definition of
L (σ)).

But

τ∗ ({x, y}) = τ ({x, y}) (by the definition of τ∗)

=

τ (x)︸ ︷︷ ︸
=η(j)

, τ (y)︸ ︷︷ ︸
=η(i)

 = {η (j) , η (i)} = {η (i) , η (j)} ∈ L (σ) ,

so that {x, y} ∈ τ−1
∗ L (σ). Combining this with {x, y} ∈ L (τ), we obtain

{x, y} ∈ L (τ) ∩ τ−1
∗ L (σ) = ∅. Thus, {x, y} belongs to the empty set. This

is clearly absurd. Thus, we have obtained a contradiction. This shows that
our assumption was false. Hence, gη(i),η(j) = 0 is proven.

Now, forget that we fixed i, j. We thus have shown that(
gη(i),η(j) = 0 for any i, j ∈ {1, 2, . . . , n} satisfying i > j

)
. (27)

Moreover, if i ∈ {1, 2, . . . , n}, then gη(i),η(i) = 1 (by (25), applied to η (i)
instead of i). Thus, we have shown that(

gη(i),η(i) = 1 for all i ∈ {1, 2, . . . , n}
)

. (28)

Now, gη =
(

gη(i),η(j)

)n

i,j=1
(since g =

(
gi,j
)n

i,j=1). Hence, Lemma 6.4b (b)

(applied to gη and gη(i),η(j) instead of g and gi,j) shows that gη ∈ U (since
(28) and (27) hold). Hence, (gη)σ ∈ Uσ. Since

(gη)σ = gησ = g1

since η︸︷︷︸
=σ−1

σ = σ−1σ = 1


= g,

this rewrites as g ∈ Uσ.
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Now, forget that we fixed g. We thus have shown that g ∈ Uσ for each
g ∈ X (τ). In other words, X (τ) ⊆ Uσ. Hence, (X (τ))σ−1

⊆ (Uσ)σ−1
=

Uσσ−1
= U1 = U. This proves Lemma 6.4d (d).

(e) The definition of X (στ) yields X (στ) = U ∩U(στρ)−1
. Hence, X (στ) is

the intersection of two subgroups of G (namely, of the subgroup U and of
the subgroup U(στρ)−1

). Thus, X (στ) is itself a subgroup of G. Therefore,
X (στ) · X (στ) ⊆ X (στ).

Now, (στρ)−1 = ρ−1︸︷︷︸
=ρ

τ−1σ−1 = ρτ−1σ−1, so that U(στρ)−1
= Uρτ−1σ−1

.

The definition of X (σ) yields X (σ) = U∩U(σρ)−1
⊆ U. But Lemma 6.4d (c)

yields X (σ) ⊆ Uρτ−1σ−1
= U(στρ)−1

. Combining X (σ) ⊆ U with X (σ) ⊆
U(στρ)−1

, we obtain X (σ) ⊆ U ∩U(στρ)−1
= X (στ).

On the other hand, the definition of X (τ) yields X (τ) = U ∩U(τρ)−1
⊆

U(τρ)−1
. Hence, (X (τ))σ−1

⊆
(

U(τρ)−1
)σ−1

= U(τρ)−1σ−1
= U(στρ)−1

(since

(τρ)−1 σ−1 = (στρ)−1). Combining (X (τ))σ−1
⊆ U (which follows from

Lemma 6.4d (d)) with (X (τ))σ−1
⊆ U(στρ)−1

, we obtain (X (τ))σ−1
⊆ U ∩

U(στρ)−1
= X (στ).

Now,
X (σ)︸ ︷︷ ︸
⊆X(στ)

· (X (τ))σ−1︸ ︷︷ ︸
⊆X(στ)

⊆ X (στ) · X (στ) ⊆ X (στ) .

This proves Lemma 6.4d (e).
(f) Let r ∈ BσBτB. Then, r ∈ BσBτB = Bσ (BτB). In other words, there
exist c ∈ B and p ∈ BτB such that r = cσp. Consider these c and p.

Lemma 6.4c (applied to τ instead of σ) yields that the map X (τ)× B →
BτB, (g, b) 7→ gτb is well-defined and is a bijection. Hence, the element
p ∈ BτB is an image under this map. In other words, there exists some
(g, b) ∈ X (τ)× B such that p = gτb. Consider this (g, b).
From (g, b) ∈ X (τ)× B, we obtain g ∈ X (τ) and b ∈ B. From g ∈ X (τ),
we obtain gσ−1 ∈ (X (τ))σ−1

⊆ U (by Lemma 6.4c (d)), so that gσ−1 ∈ U ⊆
B. Since gσ−1

=
(

σ−1
)−1

︸ ︷︷ ︸
=σ

gσ−1 = σgσ−1, this rewrites as σgσ−1 ∈ B.

Now, σg σ−1σ︸ ︷︷ ︸
=1

τb = σ gτb︸︷︷︸
=p

= σp, so that σp = σgσ−1︸ ︷︷ ︸
∈B

στ b︸︷︷︸
∈B

∈ BστB. Now,

r = c︸︷︷︸
∈B

σp︸︷︷︸
∈BστB

∈ BB︸︷︷︸
⊆B

(since B is a group)

στB ⊆ BστB.
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Now, forget that we fixed r. We thus have proven that r ∈ BστB for each
r ∈ BσBτB. In other words, BσBτB ⊆ BστB. Combining this with the
inclusion

B σ︸︷︷︸
=σ1

τB = Bσ 1︸︷︷︸
∈B

τB ⊆ BσBτB,

we obtain BσBτB = BστB. This proves Lemma 6.4d (f).

(g) For every (g, h) ∈ X (σ)× X (τ), we have

g︸︷︷︸
∈X(σ)

(since (g,h)∈X(σ)×X(τ))

hσ−1︸︷︷︸
∈(X(τ))σ−1

(since h∈X(τ)
(since (g,h)∈X(σ)×X(τ)))

∈ X (σ) · (X (τ))σ−1
⊆ X (στ)

(by Lemma 6.4d (e)). Thus, the map

X (σ)× X (τ)→ X (στ) , (g, h) 7→ ghσ−1

is well-defined. It remains to prove that this map is bijective. In order to
do so, we denote this map by Φ. Thus, Φ (g, h) = ghσ−1

for each (g, h) ∈
X (σ)× X (τ). Our goal is to prove that Φ is bijective.

Let us first prove that Φ is surjective. Indeed, let k ∈ X (στ). Then,
k ∈ X (στ) = U ∩ U(στρ)−1

(by the definition of X (στ)), so that k ∈
U ∩U(στρ)−1

⊆ U ⊆ B. Hence, kσ = k︸︷︷︸
∈B

σ 1︸︷︷︸
∈B

∈ BσB.

Lemma 6.4c yields that the map X (σ)× B → BσB, (g, b) 7→ gσb is well-
defined and is a bijection. Hence, the element kσ ∈ BσB is an image
under this map. In other words, there exists some (u, d) ∈ X (σ)× B such
that kσ = uσd. Consider this (u, d). From (u, d) ∈ X (σ) × B, we obtain
u ∈ X (σ) and d ∈ B.

We have dτ = d︸︷︷︸
∈B

τ 1︸︷︷︸
∈B

∈ BτB.

Lemma 6.4c (applied to τ instead of σ) yields that the map X (τ)× B →
BτB, (g, b) 7→ gτb is well-defined and is a bijection. Hence, the element
dτ ∈ BτB is an image under this map. In other words, there exists some
(h, c) ∈ X (τ)× B such that dτ = hτc. Consider this (h, c). From (h, c) ∈
X (τ)× B, we obtain h ∈ X (τ) and c ∈ B.

We have (u, h) ∈ X (σ) × X (τ) (since u ∈ X (σ) and h ∈ X (τ)). Thus,

the definition of Φ yields Φ (u, h) = u hσ−1︸︷︷︸
=(σ−1)

−1
hσ−1

= u
(

σ−1
)−1

︸ ︷︷ ︸
=σ

hσ−1 =

uσhσ−1, so that
Φ (u, h) σ = uσh. (29)
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We have
kσ︸︷︷︸

=uσd

τ1︸︷︷︸
=τ

= uσ dτ︸︷︷︸
=hτc

= uσh︸︷︷︸
=Φ(u,h)σ
(by (29))

τc = Φ (u, h) στc.

Notice that (k, 1) ∈ X (στ)× B (since k ∈ X (στ) and 1 ∈ B) and (Φ (u, h) , c) ∈
X (στ)× B (since Φ (u, h) ∈ X (στ) and c ∈ B).

But Lemma 6.4c (applied to στ instead of σ) yields that the map X (στ)×
B → BστB, (g, b) 7→ gστb is well-defined and is a bijection. In partic-
ular, this map is bijective, thus injective. In other words, if (g1, b1) and
(g2, b2) are two elements of X (στ) × B satisfying g1στb1 = g2στb2, then
we have (g1, b1) = (g2, b2). Applying this to (g1, b1) = (k, 1) and (g2, b2) =
(Φ (u, h) , c), we obtain (k, 1) = (Φ (u, h) , c) (since (k, 1) ∈ X (στ) × B
and (Φ (u, h) , c) ∈ X (στ)× B and kστ1 = Φ (u, h) στc). In other words,
k = Φ (u, h) and 1 = c. Hence, k = Φ (u, h) ∈ Φ (X (σ)× X (τ)).

Now, forget that we fixed k. We thus have shown that every k ∈ X (στ) sat-
isfies k ∈ Φ (X (σ)× X (τ)). In other words, X (στ) ⊆ Φ (X (σ)× X (τ)).
In other words, the map Φ is surjective. (This proof was a more detailed
paraphrase of an argument that you included in your proof of Proposition
6.4.)

Let us now show that the map Φ is injective. Indeed, let (g1, h1) and (g2, h2)
be two elements of X (σ)×X (τ) satisfying Φ (g1, h1) = Φ (g2, h2). We shall
show that (g1, h1) = (g2, h2).

We have (g1, h1) ∈ X (σ) × X (τ). In other words, g1 ∈ X (σ) and h1 ∈
X (τ).

We have (g2, h2) ∈ X (σ) × X (τ). In other words, g2 ∈ X (σ) and h2 ∈
X (τ).

The definition of Φ yields Φ (g1, h1) = g1 (h1)
σ−1

. The definition of Φ yields
Φ (g2, h2) = g2 (h2)

σ−1
. Now,

g1 (h1)
σ−1

= Φ (g1, h1) = Φ (g2, h2) = g2 (h2)
σ−1

.

Multiplying both sides of this equality by g−1
2 from the left and by

(
(h1)

σ−1)−1

from the right, we obtain

g−1
2 g1 = (h2)

σ−1 (
(h1)

σ−1)−1
=
(

h2h−1
1

)σ−1

(since the map G → G, x 7→ xσ−1
is a group automorphism).

But the definition of X (σ) yields X (σ) = U ∩ U(σρ)−1
. Hence, X (σ) is

the intersection of two subgroups of G (namely, of the subgroup U and of
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the subgroup U(σρ)−1
). Thus, X (σ) is itself a subgroup of G. The same

argument (applied to τ instead of σ) shows that X (τ) is a subgroup of G.

From g2 ∈ X (σ) and g1 ∈ X (σ), we obtain g−1
2 g1 ∈ X (σ) (since X (σ) is a

subgroup of G).

From h2 ∈ X (τ) and h1 ∈ X (τ), we obtain h2h−1
1 ∈ X (τ) (since X (τ) is a

subgroup of G), so that
(

h2h−1
1

)σ−1

∈ (X (τ))σ−1
.

Combining g−1
2 g1 ∈ X (σ) with g−1

2 g1 =
(

h2h−1
1

)σ−1

∈ (X (τ))σ−1
, we

obtain g−1
2 g1 ∈ X (σ) ∩ (X (τ))σ−1

= 1 (by Lemma 6.4d (b)). In other
words, g−1

2 g1 = 1. Thus, g1 = g2.

Comparing g−1
2 g1 = 1 with g−1

2 g1 =
(

h2h−1
1

)σ−1

, we obtain 1 =
(

h2h−1
1

)σ−1

=(
σ−1

)−1

︸ ︷︷ ︸
=σ

h2h−1
1 σ−1 = σh2h−1

1 σ−1. Multiplying both sides of this equality by

σ from the right, we obtain σ = σh2h−1
1 . Cancelling σ from this equality,

we find 1 = h2h−1
1 . Thus, h1 = h2.

Now,

 g1︸︷︷︸
=g2

, h1︸︷︷︸
=h2

 = (g2, h2).

Let us now forget that we fixed (g1, h1) and (g2, h2). We thus have shown
that if (g1, h1) and (g2, h2) are two elements of X (σ) × X (τ) satisfying
Φ (g1, h1) = Φ (g2, h2), then (g1, h1) = (g2, h2). In other words, the map Φ
is injective. Since we also know that Φ is surjective, we therefore conclude
that the map Φ is bijective. In other words, the map

X (σ)× X (τ)→ X (στ) , (g, h) 7→ ghσ−1

is bijective (since this map is Φ). This proves Lemma 6.4d (g). �]

Now, your Proposition 6.4 is precisely Lemma 6.4d (g), whereas your
Proposition 6.5 is exactly Lemma 6.4d (f). Hence, both Proposition 6.4
and Proposition 6.5 are proven.

• Definition 7.1: Remove the comma in “preserves the sets,”.

• Definition 7.1: After “it is the largest subgroup of Σn that preserves these
sets”, I would add “(actually, it is the set of all permutations σ ∈ Σn that
preserve these sets)”. (This is a more concrete description of ΣI , and you
use it in the proof of Proposition 7.3 below.)

I would also suggest replacing the word “sets” by “intervals” whenever
you are talking about these sets.
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• Definition 7.2: At the beginning of this definition, I would add the follow-
ing sentences: “Let I be a subset of {1, 2, . . . , n− 1}. Set Ic = {0, 1, . . . , n} \
I. Again, write this set Ic as {i0, i1, . . . , ir} with 0 = i0 < i1 < · · · < ir = n.”.

• Definition 7.2: Replace “write Pi for P{i} and Pij for P{i, j}” by “write Pi
for P{i} and Pij for P{i,j}”.

• Definition 7.2: Replace “This gives a functor from n-dimensional vector
spaces to sets” by “This gives a functor from the category
(n-dimensional vector spaces, isomorphisms) to the category (sets, bijections)”.
(If you try to apply a linear map that is not an isomorphism to a flag, then
the resulting flag might have different dimensions.)

• Definition 7.2: After “We let PI denote the stabilizer of this flag”, add “in
G”.

• Proof of Proposition 7.3: For the sake of clarity, I would replace the two
sentences

“Let σ be the permutation such that g ∈ BσB. Recall from Section 6 that
this is characterised by characterised by Qi,σ(i) 6= 0, where

Qij =
(
Ui ∩ Ej

)
/
((

Ui−1 ∩ Ej
)
+
(
Ui ∩ Ej−1

))
.

”

by

“Let σ = δ (gE, E). Then, σ ∈ Σn. If we define the map π : G → Σn as in the
proof of Proposition 6.1, then π (g) = δ (gE, E) = σ, so that g ∈ π−1 {σ} =
BσB (as was proven in the proof of Proposition 6.1). Hence, it suffices to
show that σ ∈ ΣI (because then, it will follow that g ∈ B σ︸︷︷︸

∈ΣI

B ⊆ BΣI B, so

that PI ⊆ BΣI B and therefore PI = BΣI B). We have σ = δ (gE, E); in other
words, each i ∈ {1, 2, . . . , n} satisfies Qi,σ(i) 6= 0, where

Qij =
(
Ui ∩ Ej

)
/
((

Ui−1 ∩ Ej
)
+
(
Ui ∩ Ej−1

))
.

”.

• Proof of Proposition 7.3: After “Ua ≤ Ui−1”, add “(since a ≤ i− 1)”.

• Proof of Lemma 7.4: Replace “the element g = σgσ−1” by “the element
b = σgσ−1”.

• Proof of Lemma 7.4: Replace “b
(

eσ(k)

)
= eσ(k+1)” by “b

(
eσ(k)

)
= b︸︷︷︸

=σgσ−1

σ (ek) =

σg σ−1σ︸ ︷︷ ︸
=1

(ek) = σ g (ek)︸ ︷︷ ︸
=ek+ek+1

= σ (ek + ek+1) = eσ(k) + eσ(k+1)”.
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• Proof of Proposition 7.5: After “Put I = {i | si ∈ P}”, add “. Hence,
ΣI ≤ P and thus PI = BΣI B ≤ P, ”.

• Proof of Proposition 7.5: Replace the sentence “Suppose that g ∈ P, and
put σ = π (g).” by the following: “Thus, it remains to show that P ≤ PI .
Let g ∈ P; our goal is to prove that g ∈ PI . Define the map π : G → Σn
as in the proof of Proposition 6.1. Set σ = π (g). We showed in the proof
of Proposition 6.1 that π−1 {σ} = BσB. Now, from σ = π (g), we obtain
g ∈ π−1 {σ} = BσB, so that BgB = BσB.”.

• Proof of Proposition 7.5: Before “If l (σ) = 0”, add the following sentences:
“Thus, it suffices to prove that σ ∈ PI . Now, let us forget how σ was
defined. Our goal is to show that σ ∈ PI for every σ ∈ Σn satisfying σ ∈ P.
We shall do this by induction over l (σ):”.

• Proof of Proposition 7.5: Replace “Now suppose that l (σ) > 1” by “Now
suppose that l (σ) > 0”. Also, remove the preceding sentence (“If l (σ) = 1
then σ = si for some i and σ ∈ P so i ∈ I so σ ∈ PI”) completely (it is
unnecessary and complicates the structure of the proof).

• Proof of Proposition 7.5: Replace “so sk ∈ PI” by “so sk ∈ ΣI ⊆ BΣI B =
PI”.

• Proof of Proposition 7.5: Replace “so we can assume by induction that”
by “so the induction hypothesis yields”.

• Proof of Proposition 7.5: Remove “and thus that g ∈ PI”.

• Proof of Proposition 7.5: I would notice that your proof of Proposition 7.5
proves a slightly slonger claim:

Proposition 7.5a. Let P be a subgroup of G such that P ≥ B. Let I =
{i | si ∈ P}. Then, P = PI .

Furthermore, let me state another fact (that will be used later):

Lemma 7.5b. Let I ⊆ {1, 2, . . . , n− 1}. Then, I = {i | si ∈ PI}.
[Proof of Lemma 7.5b. Define a subset J of {1, 2, . . . , n− 1} by J = {i | si ∈ PI}.
Then, J = {i | si ∈ PI} ⊇ I (since every i ∈ I satisfies si ∈ ΣI ⊆ BΣI B =
PI).

Now, let j ∈ J. We are going to prove that j ∈ I.

Indeed, assume the contrary. Hence, j /∈ I, so that j ∈ Ic. Hence, Ej

is one of the entries of the obvious flag E ∈ FlagI

(
Fn

p

)
. Therefore, the

group PI fixes the subspace Ej (since the group PI fixes the obvious flag

E ∈ FlagI

(
Fn

p

)
). In other words, pEj ⊆ Ej for each p ∈ PI .
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But j ∈ J = {i | si ∈ PI}. In other words, sj ∈ PI . But we have pEj ⊆ Ej
for each p ∈ PI . Applying this to p = sj, we conclude that sjEj ⊆ Ej
(since sj ∈ PI). Now, sjej = ej+1, so that ej+1 = sj ej︸︷︷︸

∈Ej

∈ sjEj ⊆ Ej. This

contradicts the (obvious) fact that ej+1 /∈ Ej. This contradiction proves that
our assumption was false. Hence, we have j ∈ I.

Now, forget that we fixed j. We thus have shown that j ∈ I for each j ∈ J.
In other words, J ⊆ I. Combining this with J ⊇ I, we obtain J = I. Hence,
I = J = {i | si ∈ PI}. This proves Lemma 7.5b. �]

• Proposition 7.7: Add “Let V = Fn
p.” at the beginning of the theorem.

(Otherwise, FlagI (V) and FlagJ (V) wouldn’t canonically be G-sets.)

• Proof of Proposition 7.7: Again, I’d prefer some more details:

1. You claim that “the orbits of B in V are precisely the sets Ek \ Ek−1”. In
order for this claim to be fully correct, you should set E−1 = ∅, and allow k
to range over {0, 1, . . . , n} (rather than {1, 2, . . . , n} only). (Otherwise, you
are missing the orbit {0} = E0 \ E−1.)

Let me also prove this claim:

[Proof of the fact that the orbits of B in V are precisely the sets Ek \ Ek−1: For
every k ∈ {1, 2, . . . , n}, we have

Ek \ Ek−1 = Bek (30)

15.

15Proof of (30): Let k ∈ {1, 2, . . . , n}. Hence, the vector ek is well-defined.
Let b ∈ B. Then, bEk = Ek and bEk−1 = Ek−1 (by the definition of B). But the element b

of G is invertible (since G is a group), thus a bijection. Hence, b (Ek \ Ek−1) = bEk︸︷︷︸
=Ek

\ bEk−1︸ ︷︷ ︸
=Ek−1

=

Ek \ Ek−1.
Now, ek ∈ Ek \ Ek−1 (since ek ∈ Ek and ek /∈ Ek−1), and thus b ek︸︷︷︸

∈Ek\Ek−1

∈ b (Ek \ Ek−1) =

Ek \ Ek−1.
Now, forget that we fixed b. We thus have shown that bek ∈ Ek \ Ek−1 for each b ∈ B. In

other words, Bek ⊆ Ek \ Ek−1.
On the other hand, fix ζ ∈ Ek \ Ek−1. Thus, ζ ∈ Ek and ζ /∈ Ek−1. The last n− k coordinates

of ζ are zero (since ζ ∈ Ek), but the last n − k + 1 coordinates of ζ are not all zero (since
ζ /∈ Ek−1). Hence, the k-th coordinate of ζ must be nonzero.

Let c ∈ Fn×n
p be the n× n-matrix whose k-th column is ζ whereas all its other columns are

the corresponding columns of the identity matrix (i.e., for each i 6= k, the i-th column of c
shall be ei). Then, the k-th column of c is the vector ζ, whose last n− k coordinates are zero.
Thus, the last n− k entries of the k-th column of c are zero. Moreover, the k-th column of c
is the vector ζ, whose k-th coordinate is nonzero. Hence, the k-th entry of the k-th column
of c is nonzero. Now, the matrix c is upper-triangular (since the last n− k entries of the k-th
column of c are zero, while all other columns are the corresponding columns of the identity

33



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

Every set of the form Ek \ Ek−1 (with k ∈ {0, 1, . . . , n}) is an orbit of B in
V 16. The union of these orbits Ek \ Ek−1 is the whole space Fn

p (because
this union is

⋃n
k=0 (Ek \ Ek−1) = En︸︷︷︸

=Fn
p

\ E−1︸︷︷︸
=∅

= Fn
p \∅ = Fn

p). Hence, these

orbits Ek \ Ek−1 are all the orbits of B in V. This is exactly what we wanted
to prove. �]

2. You claim that “the spaces Ek are the only B-invariant subspace of V”.
This claim has a little typo in it (“subspace” should be “subspaces”), and
again needs a proof.

[Proof of the fact that the subspaces Ek (for k ∈ {0, 1, . . . , n}) are the only B-
invariant subspaces of V: For each k ∈ {0, 1, . . . , n}, the subspace Ek is
a B-invariant subspace of V (because every b ∈ B satisfies bEk = Ek).
Conversely, every B-invariant subspace of V has the form Ek for some
k ∈ {0, 1, . . . , n} 17. Hence, the subspaces Ek (for k ∈ {0, 1, . . . , n}) are the

matrix) and its diagonal entries are nonzero (since the k-th entry of the k-th column of c
is nonzero, while all other columns are the corresponding columns of the identity matrix).
Thus, the matrix c is an invertible upper-triangular matrix. In other words, c ∈ B. Now,
cek = (the k-th column of c) = ζ, so that ζ = c︸︷︷︸

∈B

ek ∈ Bek.

Now, forget that we fixed ζ. We thus have proven that ζ ∈ Bek for each ζ ∈ Ek \ Ek−1. In
other words, Ek \ Ek−1 ⊆ Bek. Combining this with Bek ⊆ Ek \ Ek−1, we obtain Ek \ Ek−1 =
Bek. This proves (30).

16Proof. Let k ∈ {0, 1, . . . , n}. We must show that the set Ek \ Ek−1 is an orbit of B in V.
If k = 0, then this is fairly clear (indeed, if k = 0, then Ek︸︷︷︸

=E0={0}

\ Ek−1︸︷︷︸
=E−1=∅

= {0} \ ∅ =

{0} = B0, which is clearly an orbit of B in V). Thus, we WLOG assume that k 6= 0. Hence,
k ∈ {1, 2, . . . , n} (since k ∈ {1, 2, . . . , n}). Hence, (30) shows that Ek \ Ek−1 = Bek. Thus,
Ek \ Ek−1 is an orbit of B in V (since Bek is an orbit of B in V). Qed.

17Proof. Let Q be a B-invariant subspace of V. We must show that Q has the form Ek for some
k ∈ {0, 1, . . . , n}.

We have Q ⊆ V = Fn
p = En. Hence, there exists some k ∈ {−1, 0, . . . , n} such that Q ⊆ Ek

(namely, k = n). Let ` be the largest such k. Thus, Q ⊆ E`.
We have 0 ∈ Q (since Q is a subspace of V) but 0 /∈ ∅. If we had E` = ∅, then we would

have 0 ∈ Q ⊆ E` = ∅, which would contradict 0 /∈ ∅. Hence, we cannot have E` = ∅. Thus,
we have E` 6= ∅ = E−1. Consequently, ` 6= −1. Hence, ` ≥ 0, so that ` ∈ {0, 1, . . . , n} and
therefore `− 1 ∈ {−1, 0, . . . , n}.

But ` is the largest k ∈ {−1, 0, . . . , n} such that Q ⊆ Ek (by the definition of `). Thus, every
k ∈ {−1, 0, . . . , n} satisfying k < ` satisfies Q 6⊆ Ek. Applying this to k = `− 1, we obtain
Q 6⊆ E`−1 (since ` − 1 < `). Thus, there exists some q ∈ Q such that q /∈ E`−1. Consider
this q. Combining q ∈ Q ⊆ E` with q /∈ E`−1, we obtain q ∈ E` \ E`−1 = Be` (by (30)).
In other words, there exists some b ∈ B such that q = be`. Consider this b. Since B is a
group, we have Bb = B (since b ∈ B). Now, B q︸︷︷︸

=be`

= Bb︸︷︷︸
=B

e` = Be` = E` \ E`−1. Thus,

E` \ E`−1 = B q︸︷︷︸
∈Q

⊆ BQ ⊆ Q (since the subspace Q is B-invariant).

Now, let r ∈ E`. We will show that r ∈ Q. In fact, if r ∈ E` \ E`−1, then this is obvious
(because if r ∈ E`−1, then r ∈ E` \ E`−1 ⊆ Q). Thus, we WLOG assume that we don’t have
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only B-invariant subspaces of V. This completes the proof. �]

• Proof of Proposition 7.7: Replace “the point EI ∈ FlagI (V)” by “the point
E ∈ FlagI (V)”.

• Proof of Proposition 7.7: Replace “any map” by “any G-equivariant map”.

• Proof of Proposition 7.7: You write that “It is also clear that PI ≤ PJ iff
I ⊆ J”. Maybe it is worth giving a proof of this:

[Proof of the fact that PI ≤ PJ iff I ⊆ J: We want to show that PI ≤ PJ iff
I ⊆ J. One direction of this equivalence is clear (namely: if I ⊆ J, then
PI ≤ PJ). It remains to prove the other. In other words, it remains to prove
that if PI ≤ PJ , then I ⊆ J. So let us assume that PI ≤ PJ . We must show
that I ⊆ J.

Lemma 7.5b yields I = {i | si ∈ PI} ⊆
{

i | si ∈ PJ
}

(since PI ≤ PJ).

But Lemma 7.5b (applied to J instead of I) yields J =
{

i | si ∈ PJ
}

. Hence,
I ⊆

{
i | si ∈ PJ

}
= J. Thus, I ⊆ J is proven. This completes our proof. �]

• §7: I think it is worthwhile stating three additional facts as consequences
of the proof of Proposition 7.7:

Proposition 7.7a. Let V = Fn
p. Let I ⊆ {1, 2, . . . , n− 1}. Then, FlagI (V) ∼=

G/PI as G-sets.

[Proof of Proposition 7.7a. In the proof of Proposition 7.7, we have shown
that G acts transitivitely on FlagI (V). Thus, for any X ∈ FlagI (V), we
have FlagI (V) ∼= G/GX as G-sets, where GX denotes the stabilizer of X.
Applying this to X = E (where E is the “obvious flag” defined in Definition
7.2), we conclude that FlagI (V) ∼= G/GE as G-sets. But the stabilizer of E
is PI (by the definition of PI). In other words, GE = PI . Hence, FlagI (V) ∼=
G/ GE︸︷︷︸

=PI

= G/PI as G-sets. This proves Proposition 7.7a. �]

r ∈ E` \ E`−1. In other words, we have r /∈ E` \ E`−1. Combining r ∈ E` with r /∈ E` \ E`−1,
we obtain r ∈ E` \ (E` \ E`−1) ⊆ E`−1.

If we had r− q ∈ E`−1, then we would have q = r︸︷︷︸
∈E`−1

− (r− q)︸ ︷︷ ︸
∈E`−1

∈ E`−1− E`−1 ⊆ E`−1 (since

E`−1 is a vector space), which would contradict q /∈ E`−1. Hence, we do not have r− q ∈ E`−1.
In other words, we have r − q /∈ E`−1. But r︸︷︷︸

∈E`\E`−1⊆E`

− q︸︷︷︸
∈E`

∈ E` − E` ⊆ E` (since E` is a

vector space). Combining this with r − q /∈ E`−1, we obtain r − q ∈ E` \ E`−1 ⊆ Q. Now,
r = q︸︷︷︸

∈Q

+ (r− q)︸ ︷︷ ︸
∈Q

∈ Q + Q ⊆ Q (since Q is a vector space). Hence, we have proven that

r ∈ Q.
Now, forget that we fixed r. We thus have shown that r ∈ Q for each r ∈ E`. In other

words, E` ⊆ Q. Combining this with Q ⊆ E`, we obtain Q = E`. Thus, Q = Ek for some
k ∈ {0, 1, . . . , n} (namely, k = `). In other words, Q has the form Ek for some k ∈ {0, 1, . . . , n}.
Qed.
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Proposition 7.7b. Let V = Fn
p. Let I ⊆ {1, 2, . . . , n− 1}. For any g ∈ G, we

shall use the notation g for the coset gPI of g in G/PI .

(a) There is precisely one B-fixed point in G/PI . This B-fixed point is 1,
and will be called the basepoint of G/PI . We have

(G/PI)
B =

{
1
}

. (31)

(b) Let i ∈ {1, 2, . . . , n− 1}. Then, (G/PI)
Pi =

{{
1
}

, if i ∈ I;
∅, otherwise

.

[Proof of Proposition 7.7b. Proposition 7.7a yields FlagI (V) ∼= G/PI as G-
sets.

We have the following general fact about group actions: If A is a subgroup
of a group G, and if X is a G-set, then

XA ∼= MapG (G/A,X) (32)

as sets18.

(a) In the proof of Proposition 7.7, we have seen that the point E ∈ FlagI (V)

is the unique B-fixed point in FlagI (V). In other words, (FlagI (V))B =

{E}. But FlagI (V) ∼= G/PI as G-sets. Hence, (FlagI (V))B ∼= (G/PI)
B as

sets. Thus, (G/PI)
B ∼= (FlagI (V))B = {E} as sets. Hence, (G/PI)

B is a
1-element set (since {E} is a 1-element set).

For every b ∈ B, we have b1 = b1 = b = 1 in G/PI (since b ∈ B ≤ PI).
Therefore, 1 ∈ (G/PI)

B. Therefore, (G/PI)
B =

{
1
}

(since (G/PI)
B is a 1-

element set). In other words, the set of all B-fixed points in G/PI is
{

1
}

. In
other words, there is precisely one B-fixed point in G/PI , and this B-fixed
point is 1. This completes the proof of Proposition 7.7b (a).

(b) Applying (32) to G = G, A = Pi and X = G/PI , we conclude that
(G/PI)

Pi ∼= MapG (G/Pi, G/PI) as sets. But recall that FlagI (V) ∼= G/PI as
G-sets. Also, Proposition 7.7a (applied to {i} instead of I) yields Flag{i} (V) ∼=

18This is easy to prove. (In fact, for each g ∈ G, let g denote the coset gA of g in G/A. Then, the
map MapG (G/A,X) → XA sending each f ∈ MapG (G/A,X) to f

(
1
)
∈ XA is a bijection.

Indeed, its inverse map sends each u ∈ XA to the G-map G/A→ X, g 7→ gu.)
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G/P{i} = G/Pi as G-sets. Hence,

(G/PI)
Pi ∼= MapG

 G/Pi︸ ︷︷ ︸
∼=Flag{i}(V)

=Flagi(V)

, G/PI︸ ︷︷ ︸
∼=FlagI(V)

 ∼= MapG (Flagi (V) , FlagI (V))

=

{
(a singleton) , if {i} ⊆ I;
∅, otherwise(

by Proposition 7.7 (applied to {i} and I
instead of I and J)

)
=

{
(a singleton) , if i ∈ I;
∅, otherwise

.

Therefore, if i /∈ I, then (G/PI)
Pi ∼= ∅ and thus (G/PI)

Pi = ∅. Hence,
Proposition 7.7b (b) is proven in the case when i /∈ I. We thus WLOG
assume that we don’t have i /∈ I. Hence, we have i ∈ I. We must show that
(G/PI)

Pi =
{

1
}

.

Now, (G/PI)
Pi ∼=

{
(a singleton) , if i ∈ I;
∅, otherwise

= (a singleton) (since i ∈ I).

Hence, (G/PI)
Pi is a 1-element set.

But i ∈ I, so that {i} ⊆ I and thus P{i} ⊆ PI . Therefore, every p ∈ Pi

satisfies p1 = p1 = p = 1 in G/PI (since p ∈ Pi = P{i} ⊆ PI). In other
words, 1 ∈ (G/PI)

Pi . Since (G/PI)
Pi is a 1-element set, we can therefore

conclude that (G/PI)
Pi =

{
1
}

. This completes the proof of Proposition
7.7b (b).]

Proposition 7.7c. Let V = Fn
p. Let X be a parabolic G-set. For each y ∈ XB,

set Iy =
{

i ∈ {1, 2, . . . , n− 1} | y ∈ XPi
}

. For each y ∈ X, let Gy denote
the stabilizer of y in G.

(a) If y ∈ XB, then PIy = Gy.

(b) Let y1 ∈ XB, y2 ∈ XB, q1 ∈ G and q2 ∈ G be such that q1y1 = q2y2.
Then, y1 = y2 and q1Gy1 = q2Gy1 .

[Proof of Proposition 7.7c. (a) Let y ∈ XB. Then, B ⊆ Gy (since y ∈ XB), so
that Gy ≥ B. Thus, Gy is a subgroup of G such that Gy ≥ B.

Let I =
{

i | si ∈ Gy
}

. Hence, Proposition 7.5a (applied to P = Gy) shows
that Gy = PI .

Now, let j ∈ Iy. Then, j ∈ Iy =
{

i ∈ {1, 2, . . . , n− 1} | y ∈ XPi
}

. In other
words, j is an element of {1, 2, . . . , n− 1} and satisfies y ∈ XPj . But Pj =
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P{j} = BΣ{j}B (by Proposition 7.3, applied to {j} instead of I). Now, sj =
1︸︷︷︸
∈B

sj︸︷︷︸
∈Σ{j}

1︸︷︷︸
∈B

∈ BΣ{j}B = Pj.

From y ∈ XPj , we conclude that py = y for each p ∈ Pj. Applying this to
p = sj, we obtain sjy = y (since sj ∈ Pj). In other words, sj ∈ Gy. In other
words, j ∈

{
i | si ∈ Gy

}
. This rewrites as j ∈ I (since I =

{
i | si ∈ Gy

}
).

Now, forget that we fixed j. We thus have proven that j ∈ I for each j ∈ Iy.
In other words, Iy ⊆ I.

On the other hand, let k ∈ I. Thus, k ∈ I =
{

i | si ∈ Gy
}

. In other words,
k is an element of {1, 2, . . . , n− 1} and satisfies sk ∈ Gy. In other words,
sky = y.

But Pk = P{k} = BΣ{k}B (by Proposition 7.3, applied to {k} instead of I).
The definition of Σ{k} yields Σ{k} = 〈sk〉 = {1, sk}. Hence, gy = y for each
g ∈ Σ{k} (since 1y = y and sky = y). In other words, y ∈ XΣ{k} .

Now, let p ∈ Pk. Then, p ∈ Pk = BΣ{k}B. In other words, there exist b1 ∈ B,
g ∈ Σ{k} and b2 ∈ B such that p = b1gb2. Consider these b1, g and b2. Now,

p︸︷︷︸
=b1gb2

y = b1g b2y︸︷︷︸
=y

(since y∈XB)

= b1 gy︸︷︷︸
=y

(since y∈X
Σ{k} )

= b1y = y

(since y ∈ XB).

Now, forget that we fixed p. We thus have proven that py = y for each
p ∈ Pk. In other words, y ∈ XPk . Hence, k is an element of {1, 2, . . . , n− 1}
and satisfies y ∈ XPk . In other words, k ∈

{
i ∈ {1, 2, . . . , n− 1} | y ∈ XPi

}
.

In other words, k ∈ Iy (since Iy =
{

i ∈ {1, 2, . . . , n− 1} | y ∈ XPi
}

).

Now, forget that we fixed k. We thus have proven that k ∈ Iy for each k ∈ I.
In other words, I ⊆ Iy. Combining this with Iy ⊆ I, we obtain Iy = I.
Hence, PIy = PI = Gy. This proves Proposition 7.7c (a).

(b) Let Y = Gy1 be the G-orbit of y1. Then, Y is a G-subset of XB. Moreover,
Y ∼= G/Gy1 as G-sets (by the orbit-stabilizer theorem). Proposition 7.7c (a)
(applied to y = y1) yields PIy1

= Gy1 . But Proposition 7.7b (a) (applied to

I = Iy1) yields
(

G/PIy1

)B
=
{

1
}

. Hence,
∣∣∣∣(G/PIy1

)B
∣∣∣∣ = ∣∣{1

}∣∣ = 1.

We have Y ∼= G/ Gy1︸︷︷︸
=PIy1

= G/PIy1
as G-sets, and thus YB ∼=

(
G/PIy1

)B
as

sets. Hence,
∣∣YB
∣∣ = ∣∣∣∣(G/PIy1

)B
∣∣∣∣ = 1.
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Both y1 and y2 are B-fixed points (since y1 ∈ XB and y2 ∈ XB). We have
q1y1 = q2y2. Multiplying both sides of this equality by q−1

2 , we obtain
q−1

2 q1y1 = q−1
2 q2︸ ︷︷ ︸
=1

y2 = y2, so that y2 = q−1
2 q1︸ ︷︷ ︸
∈G

y1 ∈ Gy1 = Y.

We have y1 ∈ Y (since Y is the G-orbit of y1). Thus, y1 ∈ YB (since y1 is a
B-fixed point). We also have y2 ∈ Y. Thus, y2 ∈ YB (since y2 is a B-fixed
point).

But YB is a 1-element set (since
∣∣YB
∣∣ = 1). Thus, any two elements of YB are

identical. Applying this to the two elements y1 and y2 of YB, we conclude
that y1 and y2 are identical (since y1 ∈ YB and y2 ∈ YB). In other words,
y1 = y2.

Now, q−1
2 q1y1 = y2 = y1. In other words, q−1

2 q1 ∈ Gy1 . In other words,
q1Gy1 = q2Gy1 . This completes the proof of Proposition 7.7c (b). �]

• Definition 7.8: Replace “the category of finite sets Y equipped with a list
(Y1, . . . , Yn−1) of subsets.” by “the category whose objects are finite sets Y
equipped with a list (Y1, . . . , Yn−1) of subsets. Such an object will be de-
noted (Y; Y1, . . . , Yn−1). Morphisms (Y; Y1, . . . , Yn−1) → (Z; Z1, . . . , Zn−1)
in P ′ shall be maps Y → Z mapping each Yi into Zi.”

• Proof of Proposition 7.9: Replace “Consider an object Y ∈ P ′.” by “Con-
sider an object (Y; Y1, . . . , Yn−1) ∈ P ′ (abbreviated as Y).”.

• Proof of Proposition 7.9: Replace “Now consider a morphism f : Y → Z in
P ′” by “Now consider a morphism f : (Y; Y1, . . . , Yn−1)→ (Z; Z1, . . . , Zn−1)
in P ′”.

• Proof of Proposition 7.9: You write: “so there is a unique G-map G/PIy →
G/PI f (y)

”. The uniqueness of this G-map might need a proof19.

19Proof. We have Iy ⊆ I f (y). Thus, PIy ⊆ PI f (y)
(because if two subsets I and J of {1, 2, . . . , n− 1}

satisfy I ⊆ J, then they also satisfy PI ⊆ PJ). Hence, there clearly exists a G-map G/PIy →
G/PI f (y)

(namely, the map that sends any coset gPIy of PIy to the coset gPI f (y)
of PI f (y)

). It
remains to prove that there exists at most one G-map G/PIy → G/PI f (y)

.
Let V = Fn

p. If I is any subset of {1, 2, . . . , n− 1}, then we have FlagI (V) ∼= G/PI as
G-sets (because G acts transitively on the G-set FlagI (V), and the stabilizer of the element
E ∈ FlagI (V) is PI). In other words, if I is a subset of {1, 2, . . . , n− 1}, then G/PI ∼= FlagI (V)
as G-sets. Thus, if I and J are two subsets of {1, 2, . . . , n− 1}, then

MapG

 G/PI︸ ︷︷ ︸
∼=FlagI(V)

, G/PJ︸ ︷︷ ︸
∼=FlagJ(V)

 ∼= MapG

(
FlagI (V) , FlagJ (V)

)
=

{
a singleton, if I ⊆ J
∅, otherwise

(by Proposition 7.7). Hence, if I and J are two subsets of {1, 2, . . . , n− 1}, then the set
MapG

(
G/PI , G/PJ

)
has at most one element. In other words, if I and J are two subsets
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• Proof of Proposition 7.9: Replace “this gives us a functor P ′ → P” by
“this gives us a functor F′ : P ′ → P”.

• Proof of Proposition 7.9: You write: “Note that

(G/PI)
Pi = MapG (Flagi (V) , FlagI (V)) =

{
1 if i ∈ I
∅ otherwise.

Using this we see that FF′ = 1P ′ .”.

I would suggest replacing this by the following (more detailed) argument:

“Let Y ∈ P ′ be an object. Then, F′Y = äy∈Y G/PIy , so that

(
F′Y
)B

=

(
ä
y∈Y

G/PIy

)B
∼= ä

y∈Y

(
G/PIy

)B

︸ ︷︷ ︸
={1}

(by (31), applied to I=Iy)

= ä
y∈Y

{
1
}

.

Hence, there exists a bijection Y → (F′Y)B that sends each y ∈ Y to the
element 1 of G/PIy . Denote this bijection by ηY.

We have FF′Y = (F′Y)B as sets (by the definition of the functor F). Thus,
the bijection ηY : Y → (F′Y)B is a bijection Y → FF′Y.

This bijection ηY is an isomorphism in the category P ′ 20.

Now, forget that we fixed Y. Thus, for each object Y ∈ P ′, we have con-
structed an isomorphism ηY : Y → FF′Y in the category P ′. It is straight-
forward to see that this isomorphism ηY is functorial in Y. Thus, we have

of {1, 2, . . . , n− 1}, then there exists at most one G-map G/PI → G/PJ . Applying this to
I = Iy and J = I f (y), we conclude that there exists at most one G-map G/PIy → G/PI f (y)

.
This concludes our proof.

20Proof. Fix j ∈ {1, 2, . . . , n− 1}.
For each y ∈ Y, we have Iy = {i ∈ {1, 2, . . . , n− 1} | y ∈ Yi} (by the definition of Iy).

Hence, for each y ∈ Y and i ∈ {1, 2, . . . , n− 1}, we have the following logical equivalence:(
i ∈ Iy

)
⇐⇒ (y ∈ Yi) .

Applying this to i = j, we conclude that for each y ∈ Y, we have the following logical
equivalence: (

j ∈ Iy
)
⇐⇒

(
y ∈ Yj

)
. (33)

For every y ∈ Y, we have(
G/PIy

)Pj
=

{{
1
}

, if j ∈ Iy;
∅, otherwise

(by Proposition 7.7b (b), applied to j instead of i)

=

{{
1
}

, if y ∈ Yj;
∅, otherwise

(34)

(because of the equivalence (33)).
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defined a natural isomorphism η : 1P ′ → FF′. Therefore, FF′ ∼= 1P ′ as
functors.”.

• Proof of Proposition 7.9: After “The only B-fixed point in G/PI is the
basepoint”, I would add “(by Proposition 7.7b (a))”.

• Proof of Proposition 7.9: After “and the basepoint is fixed by Pi iff i ∈ I”,
I would add “(by Proposition 7.7b (b))”.

• Proof of Proposition 7.9: Replace “X = F′FX” by “X ∼= F′FX by a functo-
rial isomorphism (i.e., we have 1P ∼= F′F)”.

More importantly, I believe that this claim should be proven. Here is my
proof:

[Proof of the functorial isomorphism 1P ∼= F′F: Let X ∈ P be an object. Then,
FX =

(
XB; XP1 , . . . , XPn−1

)
(by the definition of the functor F). Hence, the

definition of the functor F′ shows that F′FX = äy∈XB G/PIy , where we
set Iy =

{
i ∈ {1, 2, . . . , n− 1} | y ∈ XPi

}
for each y ∈ XB. We shall now

define a map εX : F′FX → X as follows:

Let p ∈ F′FX. Then, p ∈ F′FX = äy∈XB G/PIy . In other words, p ∈ G/PIy

for some y ∈ XB. Consider this y. Write p in the form p = q for some
q ∈ G (where q denotes the coset qPIy of q in G/PIy). Then, the element qy

From F′Y = äy∈Y G/PIy , we obtain

(
F′Y
)Pj =

(
ä
y∈Y

G/PIy

)Pj

∼= ä
y∈Y

(
G/PIy

)Pj︸ ︷︷ ︸
=


{

1
}

, if y ∈ Yj;
∅, otherwise

(by (34))

= ä
y∈Y

{{
1
}

, if y ∈ Yj;
∅, otherwise

= ä
y∈Yj

{
1
}
= ηY

(
Yj
)

(because the definition of ηY yields ηY
(
Yj
)
= äy∈Yj

{
1
}

).
Now, forget that we fixed j. We thus have proven that(

F′Y
)Pj = ηY

(
Yj
)

for each j ∈ {1, 2, . . . , n− 1}. Hence, we have ηY
(
Yj
)
⊆ (F′Y)Pj and (ηY)

−1
(
(F′Y)Pj

)
⊆ Yj

for each j ∈ {1, 2, . . . , n− 1}.
Recall that Y = (Y; Y1, . . . , Yn−1) and FF′Y =

(
(F′Y)B ; (F′Y)P1 , . . . , (F′Y)Pn−1

)
(by the

definition of F). Hence, the bijection ηY : Y → FF′Y is a morphism in P ′ (since ηY
(
Yj
)
⊆

(F′Y)Pj for each j ∈ {1, 2, . . . , n− 1}), and its inverse (ηY)
−1 : FF′Y → Y is also a morphism

in P ′ (since (ηY)
−1
(
(F′Y)Pj

)
⊆ Yj for each j ∈ {1, 2, . . . , n− 1}). Thus, ηY is an isomorphism

in the category P ′. Qed.
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of X does not depend on the choice of q 21. Hence, we can define εX (p)
to be the element qy of X. Thus, a map εX : F′FX → X is defined.

This map εX : F′FX → X is G-equivariant22. Moreover, this map εX is
injective23 and surjective24. Hence, the map εX is bijective, and thus is a

21Proof. Let q1 and q2 be two elements q ∈ G satisfying p = q. We must prove that q1y = q2y.
We know that q1 is an element q ∈ G satisfying p = q. In other words, q1 is an element of G

and satisfies p = q1. Similarly, q2 is an element of G and satisfies p = q2. From q1 = p = q2,
we conclude that q1PIy = q2PIy . In other words, q1 = q2h for some h ∈ PIy .

Let Gy denote the stabilizer of y in G. Then, Proposition 7.7c (a) yields PIy = Gy. Therefore,
h ∈ PIy = Gy. In other words, hy = y.

Now, q1︸︷︷︸
=q2h

y = q2 hy︸︷︷︸
=y

= q2y. This completes our proof.

22Proof. Let p ∈ FF′X and g ∈ G. We must show that εX (gp) = gεX (p).
Indeed, we have p ∈ F′FX = äy∈XB G/PIy . In other words, p ∈ G/PIy for some y ∈ XB.

Consider this y. Write p in the form p = q for some q ∈ G (where q denotes the coset qPIy

of q in G/PIy ). Then, εX (p) = qy (by the definition of εX). On the other hand, gp ∈ G/PIy
(since p ∈ G/PIy ) and g p︸︷︷︸

=q

= gq = gq with gq ∈ G. Hence, the definition of εX yields

εX (gp) = g qy︸︷︷︸
=εX(p)

= gεX (p).

Now, forgot that we fixed p and g. We thus have shown that εX (gp) = gεX (p) for each
p ∈ FF′X and g ∈ G. In other words, the map εX : F′FX → X is G-equivariant. Qed.

23Proof. Let p1 ∈ F′FX and p2 ∈ F′FX be such that εX (p1) = εX (p2). We shall show that
p1 = p2.

For each y ∈ X, let Gy denote the stabilizer of y in G.
We have p1 ∈ F′FX = äy∈XB G/PIy . In other words, p1 ∈ G/PIy for some y ∈ XB. Denote

this y by y1. Thus, y1 ∈ XB and p1 ∈ G/PIy1
. Write p1 in the form p1 = q1

/Iy1 for some

q1 ∈ G (where q1
/Iy1 denotes the coset q1PIy1

of q1 in G/PIy1
). Then, εX (p1) = q1y1 (by the

definition of εX).
We have p2 ∈ F′FX = äy∈XB G/PIy . In other words, p2 ∈ G/PIy for some y ∈ XB. Denote

this y by y2. Thus, y2 ∈ XB and p2 ∈ G/PIy2
. Write p2 in the form p2 = q2

/Iy2 for some

q2 ∈ G (where q2
/Iy2 denotes the coset q2PIy2

of q2 in G/PIy2
). Then, εX (p2) = q2y2 (by the

definition of εX).
Now, q1y1 = εX (p1) = εX (p2) = q2y2. Hence, Proposition 7.7c (b) shows that y1 = y2 and

q1Gy1 = q2Gy1 .
On the other hand, Proposition 7.7c (a) (applied to y = y1) shows that PIy1

= Gy1 . Thus,
the equality q1Gy1 = q2Gy1 rewrites as q1PIy1

= q2PIy1
.

The definition of q1
/Iy1 yields q1

/Iy1 = q1PIy1
= q2PIy1

= q2PIy2
(since y1 = y2). Hence,

p1 = q1
/Iy1 = q2PIy2

.

The definition of q2
/Iy2 yields q2

/Iy2 = q2PIy2
. Hence, p2 = q2

/Iy2 = q2PIy2
. Comparing this

with p1 = q2PIy2
, we obtain p1 = p2.

Now, let us forget that we fixed p1 and p2. We thus have proven that if p1 ∈ F′FX and
p2 ∈ F′FX are such that εX (p1) = εX (p2), then p1 = p2. In other words, the map εX is
injective. Qed.

24Proof. Let x ∈ X.
Let Y = Gx be the G-orbit of x. Then, Y ∼= G/Gx (by the orbit-stabilizer theorem). However,
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G-set isomorphism (since it is G-equivariant).

Now, forget that we fixed X. Thus, for each object X ∈ P , we have con-
structed a G-set isomorphism εX : F′FX → X. Moreover, this isomorphism

X is a parabolic G-set; thus, the stabilizer of every element of X is parabolic. In other words,
for every ξ ∈ X, the subgroup Gξ of G is parabolic. Applying this to ξ = x, we conclude
that the subgroup Gx of G is parabolic. In other words, Gx contains a conjugate of B (by the
definition of “parabolic”). In other words, there exists some q ∈ G such that Gx ⊇ qBq−1.
Consider this q.

Set z = q−1x. Clearly, z = q−1︸︷︷︸
∈G

x ∈ Gx = Y.

Recall that Grx = rGxr−1 for each r ∈ G. Applying this to r = q−1, we obtain Gq−1x =

q−1 Gx︸︷︷︸
⊇qBq−1

(
q−1
)−1

︸ ︷︷ ︸
=q

⊇ q−1q︸︷︷︸
=1

B q−1q︸︷︷︸
=1

= B. Since z = q−1x, we obtain Gz = Gq−1x ⊇ B. Hence,

B ⊆ Gz. In other words, z ∈ YB (since z ∈ Y). Thus, G/PIz is a component of the disjoint
union äy∈XB G/PIy .

Let q denote the coset qPIz of q in G/PIz . We have q ∈ G/PIz ⊆ äy∈XB G/PIy (since G/PIz is
a component of the disjoint union äy∈XB G/PIy ). Thus, q ∈ äy∈XB G/PIy = FF′X. Therefore,
εX (q) is well-defined. Moreover, the definition of εX shows that εX (q) = qz (since q ∈ G/PIz

and since q = q). Thus, εX (q) = q z︸︷︷︸
=q−1x

= qq−1︸︷︷︸
=1

x = x, so taht x = εX

 q︸︷︷︸
∈F′FX

 ∈ εX (F′FX).

Now, forget that we fixed x. We thus have shown that x ∈ εX (F′FX) for each x ∈ X. In
other words, X ⊆ εX (F′FX). In other words, the map εX is surjective. Qed.
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εX is functorial in X 25. Hence, we have defined a natural isomorphism
ε : F′F → 1P . Therefore, 1P ∼= F′F as functors.]

• §8: I would begin this section with the following introduction:

“We consider the localization Z(p) of the ring Z at its prime ideal (p) = pZ.
Explicitly, Z(p) is the subring{ a

b
| (a, b) ∈ Z×Z and gcd (b, p) = 1

}
of Q.

Lemma 8.0a. Let V be an n-dimensional Fp-vector space. Then:

(a) We have |Flag (V)| = ∑
σ∈Σn

pl(σ).

25Proof. Let Y and Z be two objects of P , and let f : Y → Z be a G-equivariant map. We must
prove that the diagram

F′FY
εY //

F′F f
��

Y

f
��

F′FZ
εZ
// Z

(35)

is commutative.
Let p ∈ F′FY. Then, FY =

(
YB; YP1 , . . . , YPn−1

)
(by the definition of the functor F).

Hence, the definition of the functor F′ shows that F′FY = äy∈YB G/PIy , where we set
Iy =

{
i ∈ {1, 2, . . . , n− 1} | y ∈ YPi

}
for each y ∈ YB.

We have p ∈ F′FY = äy∈YB G/PIy . In other words, p ∈ G/PIy for some y ∈ YB. Consider
this y. Write p in the form p = q for some q ∈ G (where q denotes the coset qPIy of q in
G/PIy ). Then, εY (p) = qy (by the definition of εY).

The definition of the action of the functor F on the morphism f : Y → Z shows that F f :
YB → ZB is the restriction of the map f : Y → Z to the B-fixed points. Thus, (F f ) (y) = f (y).

On the other hand, the definition of the action of the functor F′ on the morphism F f :
FY → FZ yields (F′F f ) (q) = q ∈ G/PI(F f )(y)

= G/PI f (y)
(since (F f ) (y) = f (y)). Hence, the

definition of εZ yields εZ ((F′F f ) (q)) = q f (y). Hence,

(
εZ ◦

(
F′F f

)) p︸︷︷︸
=q

 =
(
εZ ◦

(
F′F f

))
(q) = εZ

((
F′F f

)
(q)
)
= q f (y) .

Comparing this with

( f ◦ εY) (p) = f

εY (p)︸ ︷︷ ︸
=qy

 = f (qy) = q f (y) (since the map f is G-equivariant) ,

we obtain (εZ ◦ (F′F f )) (p) = ( f ◦ εY) (p).
Now, let us forget that we fixed p. We thus have proven that (εZ ◦ (F′F f )) (p) = ( f ◦ εY) (p)

for each p ∈ F′FY. In other words, εZ ◦ (F′F f ) = f ◦ εY. In other words, the diagram (35) is
commutative. This completes the proof.
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(b) We have |Flag (V)| ≡ 1 mod p and |Flag (V)|−1 ∈ Z(p).

[Proof of Lemma 8.0a. Fix some W ∈ Flag (V). (Such a W clearly ex-
ists.) For each σ ∈ Σn, there is a subset Y (σ, W) ⊂ Flag (V) defined by
Y (σ, W) = {U ∈ Flag (V) | δ (U, W) = σ}. (Here, δ (U, W) is the Jordan
permutation, defined as in §4.)

Clearly, Flag (V) is the union of its disjoint subsets {U ∈ Flag (V) | δ (U, W) = σ}
for all σ ∈ Σn (because for each U ∈ Flag (V), there is exactly one σ ∈ Σn
satisfying δ (U, W) = σ). Hence,

|Flag (V)| = ∑
σ∈Σn

∣∣∣∣∣∣∣{U ∈ Flag (V) | δ (U, W) = σ}︸ ︷︷ ︸
=Y(σ,W)

∣∣∣∣∣∣∣ = ∑
σ∈Σn

|Y (σ, W)|︸ ︷︷ ︸
=pl(σ)

(by Corollary 5.2a, applied
to V and W instead of W and V)

= ∑
σ∈Σn

pl(σ).

This proves Lemma 8.0a (a).

(b) Lemma 8.0a (a) yields

|Flag (V)| = ∑
σ∈Σn

pl(σ) = pl(id)︸ ︷︷ ︸
=p0=1

+ ∑
σ∈Σn;
σ 6=id

pl(σ)︸︷︷︸
≡0 mod p

(since l(σ)≥1
(since σ 6=id ))

≡ 1 + ∑
σ∈Σn;
σ 6=id

0

︸ ︷︷ ︸
=0

= 1 mod p.

Hence, |Flag (V)| is coprime to p. Thus, |Flag (V)|−1 ∈ Z(p). This proves
Lemma 8.0a (b). � ]”

You use Lemma 8.0a (b) implicitly in Definition 8.5.

• Definition 8.1: Replace “ring” by “Z(p)-algebra”.

• Definition 8.1: Replace “Z [Flag]” by “Z(p) [Flag]”.

• §8, between Definition 8.1 and Definition 8.2: You write: “this construc-
tion gives an equivalence [V , {sets}] = {G− sets}”.

This argument is non-constructive26 and (in my opinion) overkill. It ap-
26Namely, it seems to use

– either the fact that every category is equivalent to its skeleton,

– or the fact that any functor that is essentially surjective, full and faithful must be an equiv-
alence of categories.

As far as I know, none of these two facts has a constructive proof.
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pears to me that you are not actually using the full power of this equiv-
alence either; instead, you seem to only use the natural Z(p)-algebra iso-
morphism

H = EndVA
(

Z(p) [Flag]
)
∼= EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
∼= EndZ(p)[G]

(
Z(p) [G/B]

)
,

which has an elementary and constructive proof. Namely, this isomor-
phism follows from Proposition 8.1b further below.

Before I state this proposition, let me state a simple fact from category
theory:

Proposition 8.1a. Let C and D be two categories. Let C ∈ C be an object.
Let F : C → D is a functor. Let EF (C) denote the subset

{ f ∈ EndD (F (C)) | f ◦ F (k) = F (k) ◦ f for each k ∈ EndC C}

of EndD (F (C)).

(a) The subset EF (C) is a submonoid of EndD (F (C)). Moreover, there is a
canonical monoid homomorphism ε : End[C,D] F → EF (C) that sends each
natural transformation α : F =⇒ F to its component αC : F (C)→ F (C).

(b) Consider this ε. Assume that each two objects of C are isomorphic.
Then, ε is a monoid isomorphism.

[Proof of Proposition 8.1a. (a) This is a simple exercise in category theory.

(b) The map ε is injective27. We shall now show that ε is surjective.

27Proof. Let α and β be two elements of End[C,D] F such that ε (α) = ε (β). We shall show that
α = β.

Let A ∈ C be any object. Then, the objects A and C of C are isomorphic (since each two
objects of C are isomorphic). In other words, there exists an isomorphism j : A → C in C.
Consider this j. Thus, the morphism j−1 exists (since j is an isomorphism).

Recall that α ∈ End[C,D] F. In other words, α is a natural transformation from F to F. Thus,
the diagram

F (A)
αA //

F(j)
��

F (A)

F(j)
��

F (C)
αC
// F (C)

is commutative. In other words, we have αA ◦ F (j) = F (j) ◦ αC. But F is a functor; thus,
F
(

j−1) = (F (j))−1. The definition of ε yields ε (α) = αC. Thus,

F (j) ◦ ε (α)︸︷︷︸
=αC

◦ F
(

j−1
)

︸ ︷︷ ︸
=(F(j))−1

= F (j) ◦ αC︸ ︷︷ ︸
=αA◦F(j)

◦ (F (j))−1 = αA ◦ F (j) ◦ (F (j))−1︸ ︷︷ ︸
=id

= αA.

Hence, αA = F (j) ◦ ε (α) ◦ F
(

j−1). The same argument (applied to β instead of α) shows that
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Indeed, fix any ρ ∈ EF (C). Let A ∈ C be any object. We are going to
construct a morphism αA : F (C)→ F (C) in D.

We have

ρ ∈ EF (C) = { f ∈ EndD (F (C)) | f ◦ F (k) = F (k) ◦ f for each k ∈ EndC C}

(by the definition of EF (C)). In other words, ρ is an element of EndD (F (C))
and satisfies

(ρ ◦ F (k) = F (k) ◦ ρ for each k ∈ EndC C) . (36)

The objects A and C of C are isomorphic (since each two objects of C are
isomorphic). In other words, there exists an isomorphism j : C → A in C.
Consider this j. Thus, the morphism j−1 exists (since j is an isomorphism).

Now, define a morphism αA : F (C) → F (C) in D by αA = F (j) ◦ ρ ◦
F
(

j−1). This morphism αA is independent on the choice of j 28.

Now, forget that we fixed A. Thus, for each A ∈ C, we have defined a
morphism αA : F (C)→ F (C) in D. This morphism αA satisfies

αA = F (j) ◦ ρ ◦ F
(

j−1
)

for every isomorphism j : C → A in C (37)

(by the definition of αA).

If A and B are two objects in C, and if f : A → B is a morphism in C, then
the diagram

F (A)
αA //

F( f )
��

F (A)

F( f )
��

F (B) αB
// F (B)

(38)

βA = F (j) ◦ ε (β) ◦ F
(

j−1).
Now,

αA = F (j) ◦ ε (α)︸︷︷︸
=ε(β)

◦F
(

j−1
)
= F (j) ◦ ε (β) ◦ F

(
j−1
)
= βA.

Now, forget that we fixed A. We thus have proven that αA = βA for each object A ∈ C. In
other words, α = β.

Now, forget that we fixed α and β. We thus have shown that if α and β are two elements
of End[C,D] F such that ε (α) = ε (β), then α = β. In other words, the map ε is injective. Qed.

28Proof. Let j1 and j2 be two isomorphisms j : C → A in C. We will prove that F (j1) ◦ ρ ◦
F
(

j−1
1

)
= F (j2) ◦ ρ ◦ F

(
j−1
2

)
.

We recall that j1 and j2 are two isomorphisms C → A in C. Thus, j−1
1 ◦ j2 : C → C

is an isomorphism in C as well. In particular, j−1
1 ◦ j2 ∈ EndC C. Thus, (36) (applied to

k = j−1
1 ◦ j2) yields ρ ◦ F

(
j−1
1 ◦ j2

)
= F

(
j−1
1 ◦ j2

)
◦ ρ. But F is a functor; thus, F

(
j−1
1 ◦ j2

)
=
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is commutative29. Therefore, the morphisms αA (defined for all objects
A ∈ C) can be assembled to a natural transformation α : F =⇒ F. Consider
this α. We have α ∈ End[C,D] F (since α is a natural transformation F =⇒ F).
Moreover, the definition of ε shows that ε (α) = αC.

But id : C → C is an isomorphism in C. Hence, (37) (applied to A = C and

(F (j1))
−1 ◦ F (j2). But

F (j1) ◦ ρ ◦ F
(

j−1
1

)
︸ ︷︷ ︸
=(F(j1))

−1

(since F is a functor)

= F (j1) ◦ ρ ◦ (F (j1))
−1

= F (j1) ◦ ρ ◦ (F (j1))
−1 ◦ F (j2)︸ ︷︷ ︸

=F(j−1
1 ◦j2)

◦ (F (j2))
−1︸ ︷︷ ︸

=F(j−1
2 )

(since F is a functor)since F (j1) ◦ ρ ◦ (F (j1))
−1 ◦ F (j2) ◦ (F (j2))

−1︸ ︷︷ ︸
=id

= F (j1) ◦ ρ ◦ (F (j1))
−1


= F (j1) ◦ ρ ◦ F

(
j−1
1 ◦ j2

)
︸ ︷︷ ︸

=F(j−1
1 ◦j2)◦ρ

◦F
(

j−1
2

)

= F (j1) ◦ F
(

j−1
1 ◦ j2

)
︸ ︷︷ ︸

=F(j1◦j−1
1 ◦j2)

(since F is a functor)

◦ρ ◦ F
(

j−1
2

)

= F

j1 ◦ j−1
1︸ ︷︷ ︸

=id

◦j2

 ◦ ρ ◦ F
(

j−1
2

)
= F (j2) ◦ ρ ◦ F

(
j−1
2

)
.

Now, forget that we fixed j1 and j2. We thus have shown that if j1 and j2 are two isomor-

phisms j : C → A in C, then F (j1) ◦ ρ ◦ F
(

j−1
1

)
= F (j2) ◦ ρ ◦ F

(
j−1
2

)
. In other words, the

morphism F (j) ◦ ρ ◦ F
(

j−1) is independent on the choice on j. In other words, the morphism
αA is independent on the choice of j (since αA = F (j) ◦ ρ ◦ F

(
j−1)). Qed.

29Proof. Let A and B be two objects in C. Let f : A→ B be a morphism in C.
The objects A and C of C are isomorphic (since each two objects of C are isomorphic). In

other words, there exists an isomorphism j : C → A in C. Consider this j. Thus, (37) yields
αA = F (j) ◦ ρ ◦ F

(
j−1).

The objects B and C of C are isomorphic (since each two objects of C are isomorphic). In
other words, there exists an isomorphism i : C → B in C. Consider this i. Thus, (37) (applied
to B and i instead of A and j) yields αB = F (i) ◦ ρ ◦ F

(
i−1).

Since i : C → B is an isomorphism, its inverse i−1 : B → C is well-defined and an
isomorphism as well. The composition i−1 ◦ f ◦ j : C → C is thus an endomorphism of C
in C. In other words, i−1 ◦ f ◦ j ∈ EndC C. Hence, (36) (applied to k = i−1 ◦ f ◦ j) yields
ρ ◦ F

(
i−1 ◦ f ◦ j

)
= F

(
i−1 ◦ f ◦ j

)
◦ ρ. But F is a functor; thus, F

(
i−1 ◦ f ◦ j

)
= (F (i))−1 ◦
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j = id) yields

αC = F (id) ◦ ρ ◦ F

id−1︸︷︷︸
=id

 = F (id)︸ ︷︷ ︸
=id

(since F is a functor)

◦ρ ◦ F (id)︸ ︷︷ ︸
=id

(since F is a functor)

= ρ.

Comparing this with ε (α) = αC, we obtain ρ = ε

 α︸︷︷︸
∈End[C,D] F

 ∈ ε
(

End[C,D] F
)

.

Now, forget that we fixed ρ. We thus have shown that ρ ∈ ε
(

End[C,D] F
)

for each ρ ∈ EF (C). In other words, EF (C) ⊆ ε
(

End[C,D] F
)

. In other
words, the map ε is surjective.

So we know that the map ε is both injective and surjective. Thus, ε is
bijective. Furthermore, ε is a monoid homomorphism. Thus, ε is a bijective
monoid homomorphism. Therefore, ε is a monoid isomorphism. This
proves Proposition 8.1a (b). � ]

Proposition 8.1b. We have

H = EndVA
(

Z(p) [Flag]
)
∼= EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
∼= EndZ(p)[G]

(
Z(p) [G/B]

)
as Z(p)-algebras. More precisely, the following holds:

F ( f ) ◦ F (j). Now,

αB︸︷︷︸
=F(i)◦ρ◦F(i−1)

◦F ( f ) ◦ F (j) = F (i) ◦ ρ ◦ F
(

i−1
)
◦ F ( f ) ◦ F (j)︸ ︷︷ ︸

=F(i−1◦ f ◦j)

= F (i) ◦ ρ ◦ F
(

i−1 ◦ f ◦ j
)

︸ ︷︷ ︸
=F(i−1◦ f ◦j)◦ρ

= F (i) ◦ F
(

i−1 ◦ f ◦ j
)

︸ ︷︷ ︸
=(F(i))−1◦F( f )◦F(j)

◦ρ = F (i) ◦ (F (i))−1︸ ︷︷ ︸
=id

◦F ( f ) ◦ F (j) ◦ ρ

= F ( f ) ◦ F (j) ◦ ρ,

so that
αB ◦ F ( f ) ◦ F (j)︸ ︷︷ ︸

=F( f )◦F(j)◦ρ

◦F
(

j−1
)
= F ( f ) ◦ F (j) ◦ ρ ◦ F

(
j−1
)

︸ ︷︷ ︸
=αA

= F ( f ) ◦ αA.

Comparing this with

αB ◦ F ( f ) ◦ F (j) ◦ F
(

j−1
)

︸ ︷︷ ︸
=(F(j))−1

(since F is a functor)

= αB ◦ F ( f ) ◦ F (j) ◦ (F (j))−1︸ ︷︷ ︸
=id

= αB ◦ F ( f ) ,

we obtain F ( f ) ◦ αA = αB ◦ F ( f ). In other words, the diagram (38) is commutative. Qed.
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(a) Recall the definition of EF (C) in Proposition 8.1a (where C and D are
two categories, C ∈ C is an object, and F : C → D is a functor). Ap-
plying this to C = V , D = A, C = Fn

p and F = Z(p) [Flag], we ob-

tain a set EZ(p)[Flag]

(
Fn

p

)
. Proposition 8.1a (a) (applied to C = V , D =

A, C = Fn
p and F = Z(p) [Flag]) shows that this set EZ(p)[Flag]

(
Fn

p

)
is

a submonoid of EndA
((

Z(p) [Flag]
) (

Fn
p

))
, and that there is a monoid

homomorphism ε : End[V ,A]

(
Z(p) [Flag]

)
→ EZ(p)[Flag]

(
Fn

p

)
. Consider

this ε. Then, ε is a Z(p)-algebra isomorphism EndVA
(

Z(p) [Flag]
)
→

EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
. Thus,

EndVA
(

Z(p) [Flag]
)
∼= EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
as Z(p)-algebras.

(b) Consider the complete flag E =
(

E0 < E1 < · · · < En = Fn
p

)
∈ Flag

(
Fn

p

)
defined in §4.

There is a natural isomorphism G/B → Flag
(

Fn
p

)
of G-sets, which sends

each coset hB ∈ G/B of B to the complete flag hE ∈ Flag
(

Fn
p

)
. The inverse

of this isomorphism is an isomorphism Flag
(

Fn
p

)
→ G/B of G-sets. This

isomorphism gives rise to a Z(p)-module isomorphism Z(p)

[
Flag

(
Fn

p

)]
→

Z(p) [G/B] and thus to a Z(p)-algebra isomorphism EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
→

EndZ(p)[G]

(
Z(p) [G/B]

)
. Thus,

EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
∼= EndZ(p)[G]

(
Z(p) [G/B]

)
as Z(p)-algebras.

[Proof of Proposition 8.1b. (a) Recall that V is the category whose objects are
n-dimensional vector spaces over Fp, and whose morphisms are the iso-
morphisms between these vector spaces. In particular, the endomorphisms
of Fn

p in V are the vector space isomorphisms Fn
p → Fn

p. In other words,

EndV
(

Fn
p

)
=
(

the set of the vector space isomorphisms Fn
p → Fn

p

)
=
(

the set of the vector space automorphisms of Fn
p

)
= GLn

(
Fp
)
= G.
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Let F be the functor Z(p) [Flag] : V → A. Hence, F
(

Fn
p

)
=
(

Z(p) [Flag]
) (

Fn
p

)
=

Z(p)

[
Flag

(
Fn

p

)]
. This Z(p)-module Z(p)

[
Flag

(
Fn

p

)]
is a Z(p) [G]-module,

because the set Flag
(

Fn
p

)
is a G-set. The action of G on Z(p)

[
Flag

(
Fn

p

)]
has the property that

F (k) =
(

the action of k on Z(p)

[
Flag

(
Fn

p

)])
(39)

for each k ∈ G 30.

Now, it is easy to see that

EF

(
Fn

p

)
= EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
(40)

31.

Each two objects of V are isomorphic (since the objects of V are n-dimensional
Fp-vector spaces, and since any two such vector spaces are isomorphic).
Hence, Proposition 8.1a (b) (applied to C = V , D = A, C = Fn

p and
F = Z(p) [Flag]) shows that ε is a monoid isomorphism. Therefore, the map

30Proof of (39): Let k ∈ G. Then, k ∈ G = EndV
(

Fn
p

)
. Hence, F (k) is a well-defined endomor-

phism of F
(

Fn
p

)
= Z(p)

[
Flag

(
Fn

p

)]
. Moreover,

F︸︷︷︸
=Z(p) [Flag]

(k) =
(

Z(p) [Flag]
)
(k) = Z(p) [Flag (k)] .

Now, fix X ∈ Flag
(

Fn
p

)
. Then, (Flag (k)) (X) = kX (where the kX on the right hand side

means the image of X under the action of k ∈ G on Flag
(

Fn
p

)
). Now,

(F (k))︸ ︷︷ ︸
=Z(p) [Flag(k)]

(X) =
(

Z(p) [Flag (k)]
)
(X) = (Flag (k)) (X) = kX.

Now, forget that we fixed X. We thus have shown that (F (k)) (X) = kX for each X ∈
Flag

(
Fn

p

)
. In other words,

F (k) =
(

the endomorphism of Z(p)

[
Flag

(
Fn

p

)]
that sends each X ∈ Flag

(
Fn

p

)
to kX

)
=
(

the action of k on Z(p)

[
Flag

(
Fn

p

)])
(since the action of k on Z(p)

[
Flag

(
Fn

p

)]
is defined as the endomorphism of

Z(p)

[
Flag

(
Fn

p

)]
that sends each X ∈ Flag

(
Fn

p

)
to kX). This proves (39).

31Proof of (40): Recall that F
(

Fn
p

)
= Z(p)

[
Flag

(
Fn

p

)]
. Also, EndA

(
F
(

Fn
p

))
=

EndZ(p)

(
F
(

Fn
p

))
(because the morphisms in the category A are just the Z(p)-linear maps).
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ε is bijective. Moreover, ε is a Z(p)-algebra homomorphism (this follows di-

Hence,

EndA
(

F
(

Fn
p

))
= EndZ(p)

 F
(

Fn
p

)
︸ ︷︷ ︸

=Z(p)[Flag(Fn
p)]

 = EndZ(p)

(
Z(p)

[
Flag

(
Fn

p

)])
.

For each f ∈ EndZ(p)

(
Z(p)

[
Flag

(
Fn

p

)])
, we have the following chain of equivalences: f ◦ F (k) = F (k) ◦ f for each k ∈ EndV

(
Fn

p

)
︸ ︷︷ ︸

=G


⇐⇒ ( f ◦ F (k) = F (k) ◦ f for each k ∈ G)

⇐⇒

 f commutes with F (k)︸︷︷︸
=(the action of k on Z(p)[Flag(Fn

p)])
(by (39))

for each k ∈ G


⇐⇒

(
f commutes with the action of k on Z(p)

[
Flag

(
Fn

p

)]
for each k ∈ G

)
⇐⇒ ( f is G-equivariant)

⇐⇒
(

f is a Z(p) [G] -linear map
) (

since f is a Z(p)-linear map
)

⇐⇒
(

f ∈ EndZ(p) [G]

(
Z(p)

[
Flag

(
Fn

p

)]))
. (41)

Now, the definition of EF

(
Fn

p

)
yields

EF

(
Fn

p

)
=

 f ∈ EndA
(

F
(

Fn
p

))
︸ ︷︷ ︸

=EndZ(p)(Z(p)[Flag(Fn
p)])

| f ◦ F (k) = F (k) ◦ f for each k ∈ EndV
(

Fn
p

)


=


f ∈ EndZ(p)

(
Z(p)

[
Flag

(
Fn

p

)])
| f ◦ F (k) = F (k) ◦ f for each k ∈ EndV

(
Fn

p

)
︸ ︷︷ ︸

⇐⇒
(

f∈EndZ(p) [G](Z(p)[Flag(Fn
p)])

)
(by (41))


=
{

f ∈ EndZ(p)

(
Z(p)

[
Flag

(
Fn

p

)])
| f ∈ EndZ(p) [G]

(
Z(p)

[
Flag

(
Fn

p

)])}
= EndZ(p) [G]

(
Z(p)

[
Flag

(
Fn

p

)])
(since EndZ(p) [G]

(
Z(p)

[
Flag

(
Fn

p

)])
⊆ EndZ(p)

(
Z(p)

[
Flag

(
Fn

p

)])
). This proves (40).
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rectly from the definition of the Z(p)-algebra structure on End[V ,A]

(
Z(p) [Flag]

)
).

Hence, the map ε is a Z(p)-algebra isomorphism End[V ,A]

(
Z(p) [Flag]

)
→

EZ(p)[Flag]

(
Fn

p

)
(since ε is a Z(p)-algebra homomorphism and is bijective).

Since [V ,A] = VA and

EZ(p)[Flag]

(
Fn

p

)
= EF

(
Fn

p

) (
since Z(p) [Flag] = F

)
= EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
(by (40)) ,

this rewrites as follows: The map ε is a Z(p)-algebra isomorphism

EndVA
(

Z(p) [Flag]
)
→ EndZ(p)[G]

(
Z(p)

[
Flag

(
Fn

p

)])
. This proves Propo-

sition 8.1b (a).

(b) The orbit GE of E ∈ Flag
(

Fn
p

)
is the whole G-set Flag

(
Fn

p

)
(since

the G-set Flag
(

Fn
p

)
is transitive). Thus, Flag

(
Fn

p

)
= GE. But the orbit-

stabilizer theorem shows that GE ∼= G/GE as G-sets, where GE denotes
the stabilizer of E in G. However, the stabilizer of E in G is B (this is
essentially the definition of B). In other words, GE = B. Altogether, we

thus have Flag
(

Fn
p

)
= GE ∼= G/ GE︸︷︷︸

=B

= G/B as G-sets. This isomorphism

is natural. Hence, there is a natural isomorphism G/B → Flag
(

Fn
p

)
of

G-sets. This isomorphism sends each coset hB ∈ G/B of B to the complete
flag hE ∈ Flag

(
Fn

p

)
(because of how it is constructed). The remaining

statements of Proposition 8.1b (b) follow from this immediately.]

• §8: Replace “Note that Z(p) [X] has an obvious inner product” by “Note
that Z(p) [X] (for any set X) has an obvious inner product”. (This is to
disambiguate the meaning of X; you have previously used X for functors
as well.)

• §8: Replace “Given f : Z(p) [X] → Z(p) [Y] we let f t : Z(p) [Y] → Z(p) [X]”
by “Given a Z(p)-linear map f : Z(p) [X] → Z(p) [Y] we let f t : Z(p) [Y] →
Z(p) [X]”.

• §8: When you write “if f comes from a map f : X → Y”, you are slightly
abusing notation (you are using the same notation for the map f : X → Y
and the Z(p)-linear map Z(p) [X] → Z(p) [Y] induced by it); it might be
good to explicitly point this out. Better yet, I suggest replacing the whole
sentence (“In particular, if f comes from a map f : X → Y then f t [y] =

∑
f (x)=y

[x].”) by the following paragraphs:
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“Notice that if f : Z(p) [X] → Z(p) [Y] and g : Z(p) [Y] → Z(p) [Z] are two
Z(p)-linear maps, then

(g ◦ f )t = f t ◦ gt. (42)

To each map f : X → Y between two sets X and Y corresponds a Z(p)-
linear map Z(p) [ f ] : Z(p) [X]→ Z(p) [Y] defined by((

Z(p) [ f ]
)
[x] = [ f (x)] for every x ∈ X

)
.

The adjoint
(

Z(p) [ f ]
)t

of this map Z(p) [ f ] is given by

(
Z(p) [ f ]

)t
[y] = ∑

x∈X;
f (x)=y

[x] for each y ∈ Y. (43)

We shall often (by abuse of notation) denote the Z(p)-linear map Z(p) [ f ]
by f again. (This is a natural thing to do, because if we regard X and Y as
subsets of Z(p) [X] and Z(p) [Y] in the obvious way, then the original map
f : X → Y becomes a restriction of the map Z(p) [ f ] : Z(p) [X] → Z(p) [Y].)
Thus, the equality (43) rewrites as

f t [y] = ∑
x∈X;

f (x)=y

[x] for each y ∈ Y. (44)

Next, let us state two basic facts about adjoints:

Lemma 8.1d. Let X and Y be two sets. Let f : X → Y be a bijection.

Then,
(

Z(p) [ f ]
)t

= Z(p)
[

f−1]. (Relying on our abuse of notation, we can

rewrite this as f t = f−1.)

[Proof of Lemma 8.1d. Let y ∈ Y. Recall that f is a bijection. Hence, there
exists exactly one x ∈ X satisfying f (x) = y (namely, x = f−1 (y)). Thus,

∑
x∈X;

f (x)=y

= ∑
x∈{ f−1(y)}

(an equality of summation signs). Now, (43) yields

(
Z(p) [ f ]

)t
[y] = ∑

x∈X;
f (x)=y︸ ︷︷ ︸

= ∑
x∈{ f−1(y)}

[x] = ∑
x∈{ f−1(y)}

[x] =
[

f−1 (y)
]

.

Comparing this with
(

Z(p)
[

f−1]) [y] = [ f−1 (y)
]
, we obtain

(
Z(p) [ f ]

)t
[y] =(

Z(p)
[

f−1]) [y].
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Now, forget that we fixed y. We thus have proven that
(

Z(p) [ f ]
)t

[y] =(
Z(p)

[
f−1]) [y] for each y ∈ Y. In other words, the two maps

(
Z(p) [ f ]

)t

and Z(p)
[

f−1] are equal to each other on each of the elements of the ba-
sis ([y])y∈Y of the Z(p)-module Z(p) [Y]. Since these two maps are Z(p)-
linear, we can therefore conclude that they are equal. In other words,(

Z(p) [ f ]
)t

= Z(p)
[

f−1]. This proves Lemma 8.1d. � ]

Lemma 8.1e. Let P and Q be two functors from V to F . Let α : P =⇒ Q be
a natural transformation.

(a) Define a family β = (βV)V∈V of morphisms βV : Z(p) [P (V)] →
Z(p) [Q (V)] by (

βV = Z(p) [αV ] for each V ∈ V
)

.

Then, β is a natural transformation Z(p) [P] =⇒ Z(p) [Q].

(b) Define a family γ = (γV)V∈V of morphisms γV : Z(p) [Q (V)] →
Z(p) [P (V)] by (

γV = (βV)
t for each V ∈ V

)
.

Then, γ is a natural transformation Z(p) [Q] =⇒ Z(p) [P].

[Proof of Lemma 8.1e. (a) This is straightforward to prove.

(b) We need to prove that if V and W are two objects of V , and if g : V →W
is a morphism of V , then the diagram

Z(p) [Q (V)]
γV //

Z(p)[Q(g)]
��

Z(p) [P (V)]

Z(p)[P(g)]
��

Z(p) [Q (W)] γW
// Z(p) [P (W)]

(45)

is commutative.

So let V and W be two objects of V , and let g : V → W be a morphism of
V . We must prove that the diagram (45) is commutative.

The morphisms of V are isomorphisms of Fp -vector spaces (by the defini-
tion of V). Thus, each morphism of V is an isomorphism. In particular, g
is an isomorphism (since g is a morphism of V). Since P is a functor, this
shows that P (g) is an isomorphism and that (P (g))−1 = P

(
g−1).

The map P (g) is an isomorphism in F . In other words, P (g) is a bijection.
Hence, Lemma 8.1d (applied to X = P (V), Y = P (W) and f = g) shows
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that (
Z(p) [P (g)]

)t
= Z(p)

(P (g))−1︸ ︷︷ ︸
=P(g−1)

 = Z(p)

[
P
(

g−1
)]

.

Hence, Z(p)

[
P
(

g−1
)]

︸ ︷︷ ︸
=(Z(p)[P(g)])

t


t

=

((
Z(p) [P (g)]

)t
)t

= Z(p) [P (g)]

(since the adjoint of the adjoint of a linear map is the original map). The

same argument (applied to Q instead of P) shows that
(

Z(p)
[
Q
(

g−1)])t
=

Z(p) [Q (g)].

But the definition of γV shows that

γV =

 βV︸︷︷︸
=Z(p)[αV ]


t

=
(

Z(p) [αV ]
)t

.

The same argument (applied to W instead of V) shows that γW =
(

Z(p) [αW ]
)t

.

But α is a natural transformation. Hence, the diagram

P (W)
αW //

P(g−1)
��

Q (W)

Q(g−1)
��

P (V) αV
// Q (V)

is commutative. In other words, we have Q
(

g−1) ◦ αW = αV ◦ P
(

g−1).
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ButZ(p)

[
Q
(

g−1
)]
◦Z(p) [αW ]︸ ︷︷ ︸

=Z(p)[Q(g−1)◦αW ]


t

=

Z(p)

Q
(

g−1
)
◦ αW︸ ︷︷ ︸

=αV◦P(g−1)




t

=

Z(p)

[
αV ◦ P

(
g−1
)]

︸ ︷︷ ︸
=Z(p)[αV ]◦Z(p)[P(g−1)]


t

=
(

Z(p) [αV ] ◦Z(p)

[
P
(

g−1
)])t

=
(

Z(p)

[
P
(

g−1
)])t

︸ ︷︷ ︸
=Z(p)[P(g)]

◦
(

Z(p) [αV ]
)t

︸ ︷︷ ︸
=γV(

by (42) (applied to P (W) , P (V) , Q (V) , Z(p)
[
P
(

g−1)]
and Z(p) [αV ] instead of X, Y, Z, f and g)

)
= Z(p) [P (g)] ◦ γV .

Hence,

Z(p) [P (g)] ◦ γV

=
(

Z(p)

[
Q
(

g−1
)]
◦Z(p) [αW ]

)t
=
(

Z(p) [αW ]
)t

︸ ︷︷ ︸
=γW

◦
(

Z(p)

[
Q
(

g−1
)])t

︸ ︷︷ ︸
=Z(p)[Q(g)](

by (42) (applied to P (W) , Q (W) , Q (V) , Z(p) [αW ]

and Z(p)
[
Q
(

g−1)] instead of X, Y, Z, f and g)

)
= γW ◦Z(p) [Q (g)] .

In other words, the diagram (45) is commutative. This is precisely what we
wanted to prove. Hence, Lemma 8.1e (b) is proven. � ]

The natural transformations β and γ defined in Lemma 8.1e will be de-

noted by Z(p) [α] and
(

Z(p) [α]
)t

, respectively. By abuse of notation, we

shall often denote these natural transformations β and γ by α and αt, re-
spectively. Notice that this abuse of notation is compatible with composi-
tion of functors, because of the following remark:

Remark 8.1f. (a) For every functor P : V → F , we have Z(p) [idP] =
idZ(p)[P].
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(b) Let P, Q and R be three functors from V to F . Let α1 : P =⇒ Q and
α2 : Q =⇒ R be two natural transformations. Then, Z(p) [α2] ◦Z(p) [α1] =
Z(p) [α2 ◦ α1].

[Proof of Remark 8.1f. These are straightforward computations. � ]”

The purpose of Lemma 8.1e is to explain the meaning of “π1πt
0” in Defini-

tion 8.2.

• Definition 8.2: I suggest adding the sentence “Let σ ∈ Σn.” at the begin-
ning of this definition.

• Definition 8.2: For the sake of completeness, I suggest actually defining
the projection maps π0 and π1: Namely, the natural transformation π0 :
Z (σ) → Flag (or, rather, its component (π0)V : (Z (σ)) (V) → Flag (V)
for a given V ∈ V) sends each (U, W) ∈ (Z (σ)) (V) to U, whereas the
natural transformation π1 : Z (σ)→ Flag (or, rather, its component (π1)V :
(Z (σ)) (V)→ Flag (V) for a given V ∈ V) sends each (U, W) ∈ (Z (σ)) (V)
to W.

• Definition 8.2: After “that Tt
σ = Tσ−1”, add “(since δ (U, W) = δ (W, U)−1

for all U, W ∈ Flag (V)).

• Proof of Proposition 8.3: After “Consider an element f : Z(p) [Flag] →
Z(p) [Flag]”, add “of H”.

• Proof of Proposition 8.3: I would replace “well-defined numbers nσ” by
“well-defined numbers nσ ∈ Z(p)” (in order to avoid creating the false
impression that they must necessarily be integers).

• Proposition 8.4: Replace “Let U be a flag, let F be the set of flags W such
that Wj = Uj for all j 6= i, and put a = ∑

W∈F
[W].” by: “Let V ∈ V . Let

U ∈ Flag (V). Let F be the set of all W ∈ Flag (V) satisfying Wj = Uj for
all j 6= i. Set a = ∑

W∈F
[W] ∈ Z(p) [Flag (V)].”

• Proof of Proposition 8.4: I would suggest replacing the “∑
W

” sign by an

“ ∑
W∈F

” sign (seeing that you otherwise always use “ ∑
W∈F

” signs).

• Proof of Proposition 8.4: Replace “so Ti (a) = pa” by “so Ti (a) =

 |F|︸︷︷︸
=p+1

−1

 a =

pa, thus (Ti − p) a = 0”.
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• Proof of Proposition 8.4: Replace “It follows that (Ti − p) (Ti + 1) [W] =
(Ti − p) (a) = 0 as claimed” by “From (Ti + 1) [U] = Ti [U]︸ ︷︷ ︸

=a−[U]

+ [U] = a, it

follows that (Ti − p) (Ti + 1) [U] = (Ti − p) (a) = 0 as claimed”. (The claim
of Proposition 8.4 does not involve W !)

• Definition 8.5: Replace “We define” by “For each V ∈ V , we define a
Z(p)-linear map”.

• Definition 8.5: Replace “We also define a map” by “We also define a Z(p)-
linear map”.

• Definition 8.5: Replace “∑
σ

pl(σ)” by “∑
σ

nσ pl(σ) whenever nσ ∈ Z(p)”.

• Proof of Proposition 8.6: Replace “so ê [U] = x for all W” by “so ê [U] = x
for all U”.

• Proof of Proposition 8.6: Replace “|Flag|−1” by “|Flag (V)|−1”.

• Proof of Proposition 8.6: I’d suggest more detail once again: Replace
“Next, we have

êTσ [U] = ∑
δ(U,W)=σ

ê [W] =
∣∣∣{W | δ (W, U) = σ−1

}∣∣∣ x = pl(σ−1)x = pl(σ) ê [W] .

(using Proposition 5.2 and the fact that l
(
σ−1) = l (σ))” by “Next, observe

that each σ ∈ Σn satisfiesW | δ (U, W)︸ ︷︷ ︸
=δ(W,U)−1

= σ


=

W | δ (W, U)−1 = σ︸ ︷︷ ︸
⇐⇒ (δ(W,U)=σ−1)

 =
{

W | δ (W, U) = σ−1
}

= Y
(

σ−1, U
)

(using the notation from §5)

and therefore∣∣∣∣∣∣∣∣{W | δ (U, W) = σ}︸ ︷︷ ︸
=Y(σ−1,U)

∣∣∣∣∣∣∣∣ =
∣∣∣Y (σ−1, U

)∣∣∣ = pl(σ−1)

(
by Corollary 5.2a, applied to σ−1, V and U

instead of σ, W and V

)
= pl(σ)

(
since l

(
σ−1

)
= l (σ)

)
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and thus

êTσ [U] = ∑
δ(U,W)=σ

ê [W]︸ ︷︷ ︸
=x

since Tσ [U] = ∑
δ(U,W)=σ

[W]


= ∑

δ(U,W)=σ

x = |{W | δ (U, W) = σ}|︸ ︷︷ ︸
=pl(σ)

x = pl(σ) x︸︷︷︸
=ê[U]

= pl(σ) ê [U]

”. (Notice that I replaced the “ê [W] .” at the end of the long equation by an
“ê [U]”, as I think this is what you meant.)

• Proof of Proposition 8.6: After “we deduce that ξ̂ is a ring map”, I sug-
gest adding “(in fact, we compare êab = ê (ab) = ξ̂ (ab) ê with êa︸︷︷︸

=ξ̂(a)ê

b =

ξ̂ (a) êb︸︷︷︸
=ξ̂(b)ê

= ξ̂ (a) ξ̂ (b) ê, and thus we find ξ̂ (ab) ê = ξ̂ (a) ξ̂ (b) ê, which

leads to ξ̂ (ab) = ξ̂ (a) ξ̂ (b) because ê is a nonzero vector in a free Z(p)-
module)”.

• Proof of Proposition 8.6: Replace “aê = ξ
(
at) ê” by “aê = ξ̂

(
at) ê”.

• Proof of Lemma 8.7: I would replace the last sentence of this proof by the
following (more detailed) argument:

“Since every U ∈ Flag
(

Fn
p

)
satisfies the chain of equivalences

(
δ (E, U) = σ−1

)
⇐⇒

δ (E, U)−1︸ ︷︷ ︸
=δ(U,E)

= σ

 ⇐⇒ (δ (U, E) = σ)

⇐⇒

U ∈ Y (σ, E)︸ ︷︷ ︸
=Y(σ)

 (by the definition of Y (σ, E))

⇐⇒ (U ∈ Y (σ)) ,

this rewrites as Tσ−1 [E] = ∑
U∈Y(σ)

[U]. But Proposition 5.2 shows that the

map g 7→ gσE gives a bijection X (σ) → Y (σ). Hence, ∑
U∈Y(σ)

[U] =

∑
g∈X(σ)

[gσE]. Hence,

Tσ−1 [E] = ∑
U∈Y(σ)

[U] = ∑
g∈X(σ)

[gσE] = ∑
x∈X(σ)

[xσE] , (46)

as required.”.
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• §8: Between Lemma 8.7 and Corollary 8.8, you write: “note that Base (V)

is canonically the same as Iso
(

Fn
p, V

)
”. I suggest adding “(in fact, there is

a canonical bijection Iso
(

Fn
p, V

)
→ Base (V) sending each φ ∈ Iso

(
Fn

p, V
)

to (φe1, φe2, . . . , φen) ∈ Base (V))” after this.

• §8: Between Lemma 8.7 and Corollary 8.8, replace “gives a map g∗ :
Base→ Base” by “gives a natural transformation g∗ : Base→ Base (whose
V-component for any given V ∈ V is the map

Iso
(

Fn
p, V

)
→ Iso

(
Fn

p, V
)

, φ 7→ φ ◦ g,

interpreted as a map Base (V)→ Base (V) via the canonical bijection
Iso
(

Fn
p, V

)
→ Base (V))”.

• §8: Just before Corollary 8.8, I would add the following two lemmas:

Lemma 8.7a. Let e ∈ Base
(

Fn
p

)
be the basis (e1, e2, . . . , en) of Fn

p. Let g ∈ G.

(a) We have g∗e = (ge1, ge2, . . . , gen).

(b) We have π (g∗e) = gE.

[Proof of Lemma 8.7a. (a) Set V = Fn
p. Recall that the V-component of the

natural transformation g∗ : Base→ Base is the map

Iso
(

Fn
p, V

)
→ Iso

(
Fn

p, V
)

, φ 7→ φ ◦ g,

interpreted as a map Base (V)→ Base (V) via the canonical bijection
Iso
(

Fn
p, V

)
→ Base (V) (because this is how g∗ was defined). In other

words, every b ∈ Base (V) satisfies g∗b = α
(
α−1 (b) ◦ g

)
, where α is the

canonical bijection Iso
(

Fn
p, V

)
→ Base (V). Consider this α. Notice that

idFn
p ∈ Iso

Fn
p, Fn

p︸︷︷︸
=V

 = Iso
(

Fn
p, V

)
. The definition of α shows that

α
(

idFn
p

)
= (id e1, id e2, . . . , id en) = (e1, e2, . . . , en) = e.

Hence, α−1 (e) = idFn
p . Now, recall that every b ∈ Base (V) satisfies g∗b =

α
(
α−1 (b) ◦ g

)
. Applying this to b = e, we obtain

g∗e = α

α−1 (e)︸ ︷︷ ︸
=idFn

p

◦g

 = α (g) = (ge1, ge2, . . . , gen) .
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This proves Lemma 8.7a (a).

(b) We have g∗e = (ge1, ge2, . . . , gen) (by Lemma 8.7a (a)). Applying the
natural transformation π to both sides of this equality, we obtain

π (g∗e) = π (ge1, ge2, . . . , gen) = g π (e1, e2, . . . , en)︸ ︷︷ ︸
=E

= gE.

This proves Lemma 8.7a (b). � ]

Lemma 8.7b. Let Y ∈ VA be a functor. Let X be the functor Z(p) [Base] ∈
VA. Let α : X =⇒ Y and β : X =⇒ Y be two natural transformations. Let
e ∈ Base

(
Fn

p

)
be the basis (e1, e2, . . . , en) of Fn

p. Assume that α [e] = β [e]

in Y
(

Fn
p

)
. Then, α = β.

[Proof of Lemma 8.7b. Fix V ∈ V . Let u ∈ X (V). We are going to show
that α (u) = β (u). Notice that ([u])u∈Base(V) is a basis of the Z(p)-module

Z(p) [Base (V)] =
(

Z(p) [Base]
)

︸ ︷︷ ︸
=X

(V) = X (V).

The V-components of α and β are morphisms in the category A. In other
words, the V-components of α and β are Z(p)-linear maps. Hence, both
α (u) and β (u) depend Z(p)-linearly on u. Hence, the equation α (u) =
β (u) (which we want to prove) is linear in u. Thus, for the proof of this
equation, we can WLOG assume that u belongs to the basis ([u])u∈Base(V)

of the Z(p)-module X (V). Assume this.

We have assumed that u belongs to the basis ([u])u∈Base(V) of the Z(p)-
module X (V). In other words, u = [u] for some u ∈ Base (V). Consider
this u.

We have u ∈ Base (V). Thus, u is a basis of the n-dimensional Fp-vector
space V. Write u in the form (u1, u2, . . . , un).

Let φ be the Fp-linear map Fn
p → V that sends the basis vectors e1, e2, . . . , en

of Fn
p to u1, u2, . . . , un, respectively. Then, the Fp-linear map φ sends the

basis (e1, e2, . . . , en) of Fn
p to the basis (u1, u2, . . . , un) of V. Hence, φ is an

isomorphism of vector spaces. In other words, φ is a morphism in the
category V .

Now, the morphism Base φ : Base
(

Fn
p

)
→ Base (V) (induced by the mor-

phism φ : Fn
p → V) satisfies

(Base φ) (e) = (Base φ) (e1, e2, . . . , en) (since e = (e1, e2, . . . , en))

= (u1, u2, . . . , un)

(
since φ sends the basis vectors

e1, e2, . . . , en to u1, u2, . . . , un

)
= u.
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But the morphism X (φ) : X
(

Fn
p

)
→ X (V) satisfies X︸︷︷︸

=(Z(p)[Base])

(φ)

 [e] =
((

Z(p) [Base]
)
(φ)
)
[e] =

(Base φ) (e)︸ ︷︷ ︸
=u

 = [u] = u.

(47)

But α : X =⇒ Y is a natural transformation. Hence, the diagram

X
(

Fn
p

) αFn
p
//

X(φ)

��

Y
(

Fn
p

)
Y(φ)
��

X (V) αV
// Y (V)

is commutative (since φ : Fn
p → V is a morphism in the category V). In

other words, we have Y (φ) ◦ αFn
p = αV ◦ X (φ). Hence,

(
Y (φ) ◦ αFn

p

)
︸ ︷︷ ︸

=αV◦X(φ)

[e] = (αV ◦ X (φ)) [e] = αV

(X (φ)) [e]︸ ︷︷ ︸
=u

 = αV (u) = α (u) .

Hence,

α (u) =
(

Y (φ) ◦ αFn
p

)
[e] = (Y (φ))

αFn
p [e]︸ ︷︷ ︸

=α[e]

 = (Y (φ)) (α [e]) .

The same argument (applied to β instead of α) shows that β (u) = (Y (φ)) (β [e]).

Comparing this with α (u) = (Y (φ))

α [e]︸︷︷︸
=β[e]

 = (Y (φ)) (β [e]), we obtain

α (u) = β (u). Thus, α (u) = β (u) is proven.

Now, forget that we fixed u. We thus have shown that α (u) = β (u) for each
u ∈ X (V). In other words, the V-component of α equals the V-component
of β.

Now, forget that we fixed V. We thus have proven that the V-component
of α equals the V-component of β for each V ∈ V . In other words, α = β.
This proves Lemma 8.7b. � ]

• Corollary 8.8: The map π should be defined! I guess you want to define it
as follows: “Let π : Base → Flag be the natural transformation whose V-
component (for any given V ∈ V) is the map Base (V)→ Flag (V) sending
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each basis (v1, v2, . . . , vn) ∈ Base (V) to the flag

(0 = span {} < span {v1} < span {v1, v2} < · · · < span {v1, v2, . . . , vn} = V)

∈ Flag (V) .

” (At least, this is the definition you give later, in Definition 9.1.)

• Proof of Corollary 8.8: I would replace the proof by the following (clearer)
argument:

[Proof of Corollary 8.8. First of all, the diagram makes sense, since all its
arrows are well-defined natural transformations. It thus remains to prove
that it commutes. In other words, it remains to prove that Tt

σ ◦ π = π ◦(
∑

x∈X(σ)
(xσ)∗

)
.

Let e ∈ Base
(

Fn
p

)
be the basis (e1, e2, . . . , en) of Fn

p. Then, π (e) = E.

Now, the natural transformation π : Z(p) [Base] → Z(p) [Flag] satisfies

π [e] =

π (e)︸ ︷︷ ︸
=E

 = [E]. Hence,

(
Tt

σ ◦ π
)
[e] = Tt

σ︸︷︷︸
=T

σ−1

π [e]︸︷︷︸
=[E]

 = Tσ−1 [E] = ∑
x∈X(σ)

[xσE]

(by (46)). Comparing this withπ ◦

 ∑
x∈X(σ)

(xσ)∗

 [e] = π

 ∑
x∈X(σ)

(xσ)∗

 [e]


︸ ︷︷ ︸

= ∑
x∈X(σ)

(xσ)∗[e]

= π

 ∑
x∈X(σ)

(xσ)∗ [e]



= π

 ∑
x∈X(σ)

(xσ)∗ [e]

 = ∑
x∈X(σ)

π
(
(xσ)∗ [e]

)︸ ︷︷ ︸
=[π((xσ)∗e)]

= ∑
x∈X(σ)


π
(
(xσ)∗ e

)︸ ︷︷ ︸
=xσE

(by Lemma 8.7a (b)
(applied to g=xσ))


= ∑

x∈X(σ)

[xσE] ,
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we obtain (
Tt

σ ◦ π
)
[e] =

π ◦

 ∑
x∈X(σ)

(xσ)∗

 [e] .

Hence, Lemma 8.7b (applied to Y = Z(p) [Flag], X = Z(p) [Base], α = Tt
σ ◦π

and β = π ◦
(

∑
x∈X(σ)

(xσ)∗
)

) yields that Tt
σ ◦ π = π ◦

(
∑

x∈X(σ)
(xσ)∗

)
. This

completes the proof of Corollary 8.8. � ]

• Proof of Corollary 8.9: After “The right hand side is ∑
z∈X(στ)

[gzστB]”, add

“(by Lemma 8.7, applied to στ instead of σ)”.

• Corollary 8.10: The notion of a “reduced word for σ” should be explained.
(It means a reduced word w ∈W such that π (w) = σ, where π is the map
W → Σ introduced in §2.)

• Proof of Proposition 8.11: Replace “Now consider T2
i ” by “Now fix i ∈

{1, 2, . . . , n− 1} and consider T2
i ”.

• Proof of Proposition 8.11: After “so |A| = p + 1”, add “(because the el-
ements of A are in bijection with the nonzero proper subspaces of the
2-dimensional Fp-vector space Ui+1/Ui−1, and because the number of the
latter subspaces is p + 1)”.

• Proof of Proposition 8.11: Replace “Put

φ (W) = (0 = U0 < · · · < Ui−1 < W < Ui+1 < · · · < Un = V)

” by “For each W ∈ A, put

φ (W) = (0 = U0 < · · · < Ui−1 < W < Ui+1 < · · · < Un = V) ∈ Flag (V) .

”.

• Proof of Proposition 8.11: Replace “One checks that the flags with δ (W, U) =
si are” by “Proposition 4.7 shows that the flags W with δ (U, W) = si
are”. (I have made three changes here. The replacement of “δ (W, U)”
by “δ (U, W)” is due to the fact that the explicit formula for Ti shows
Ti [U] = ∑

δ(U,W)=si

[W] rather than Ti [U] = ∑
δ(W,U)=si

[W], even though both

formulas are equivalent upon a closer look.

• Proof of Proposition 8.11: I would replace “It follows that Ti [U] = ∑
W 6=Ui

[φ (W)]”

by “It follows that ∑
δ(U,W)=si

[W] = ∑
W 6=Ui

[φ (W)]. Hence, Ti [U] = Tsi [U] =

∑
δ(U,W)=si

[W] = ∑
W 6=Ui

[φ (W)]”.

65



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

• Proof of Proposition 8.11: Replace “as claimed.” by “and thus the first
relation T2

i = p + (p− 1) Ti holds. (Alternatively, this also follows from
Proposition 8.4.)”.

• Proof of Proposition 8.11: Replace “Now let H′ be generated” by “Now
let H′ be the Z(p)-algebra generated”.

• Proof of Proposition 8.11: After “subject only to the relations in the state-
ment of the proposition”, add “(with the Tk replaced by T′k)”.

• Proof of Proposition 8.11: Replace “and the Ti generate” by “and the Ti
generate H”.

• Proof of Proposition 8.11: Replace “ring map θ” by “Z(p)-algebra map θ”.

• Proof of Proposition 8.11: You write: “any reduced word u = si1 · · · sir
such that π (u) = σ”. Here, π denotes the map π : W → Σ from §2, not
the natural transformation π : Base→ Flag from Corollary 8.8. I think this
should be explained.

• Proof of Proposition 8.11: After “This is well-defined”, add “(i.e., inde-
pendent of the choice of u)”.

• Proof of Proposition 8.11: Replace “Define a map φ” by “Define a Z(p)-
linear map φ”.

• Proof of Proposition 8.11: Replace “To see this, consider an element T′σ ∈
A” by “To see this, it suffices to check that T′σT′i ∈ A for each σ ∈ Σn (since
the Z(p)-module A is spanned by the φ (Tσ) = T′σ for σ ∈ Σn). Choose any
σ ∈ Σn”.

• Proof of Proposition 8.11: Replace “If σ (i) > σ (i + 1)” by “If σ (i) <
σ (i + 1)”.

• Proof of Proposition 8.11: Replace “We choose any reduced word” by “In
this case, we choose any reduced word”.

• Proof of Proposition 8.11: Before the long equation that begins with “T′σT′i =
T′τ
(
T′i
)2”, I would add “T′σ = T′τT′i and thus”.

• Proof of Proposition 8.11: I would replace “pT′τ + (p− 1) T′τsi
∈ A” by

“pT′τ + (p− 1) T′τT′i︸︷︷︸
=T′σ

= pT′τ + (p− 1) T′σ ∈ A”.

• Proof of Proposition 8.11: I would replace “1 ∈ A” by “1 = T′id ∈ A”.

• Proof of Proposition 8.11: Replace “injectve” by “injective”.

66



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

• §9: I suggest using the LaTeX syntax \operatorname{St} instead of \text{St}
in order to achieve the “St” subscripts. Otherwise, these subscripts are ital-
icized whenever they appear inside propositions (because text in proposi-
tions is italicized).

• §9: At the very beginning of §9, I would add the following lemma (which
is tacitly used in the definition of ω):

Lemma 9.0a. We have |G/U| ≡ (−1)n mod p and thus |G/U|−1 ∈ Z(p).

[Proof of Lemma 9.0a. Lemma 8.0a (b) (applied to V = Fn
p) yields

∣∣∣Flag
(

Fn
p

)∣∣∣ ≡
1 mod p and

∣∣∣Flag
(

Fn
p

)∣∣∣−1
∈ Z(p).

Proposition 8.1b (b) shows that there is a natural isomorphism G/B →
Flag

(
Fn

p

)
of G-sets. Hence, |G/B| =

∣∣∣Flag
(

Fn
p

)∣∣∣ ≡ 1 mod p.

But from |G/U| = |G| / |U| and |G/B| = |G| / |B|, we obtain

|G/U|
|G/B| =

|G| / |U|
|G| / |B| =

|B|
|U| =

(p− 1)n pn(n−1)/2

pn(n−1)/2(
since |B| = (p− 1)n pn(n−1)/2 and |U| = pn(n−1)/2

)
= (p− 1)n . (48)

Thus,

|G/U| =

 p− 1︸ ︷︷ ︸
≡−1 mod p


n

· |G/B|︸ ︷︷ ︸
≡1 mod p

≡ (−1)n mod p.

Thus, |G/U| is coprime to p (since (−1)n is coprime to p). Hence, |G/U|−1 ∈
Z(p). This proves Lemma 9.0a. � ]

• §9: I believe some more work is needed in order to justify the claim that
“End

(
Z(p) [Base]

)
= Z(p) [G]op” (again, an isomorphism, not a literal

equality). Here is how I would prove this claim:

Lemma 9.0b. Let τ : G → Base
(

Fn
p

)
be the map sending each g ∈ G to

the basis (ge1, ge2, . . . , gen) ∈ Base
(

Fn
p

)
. This map τ is well-defined and

bijective.

[Proof of Lemma 9.0b. If g ∈ G, then (ge1, ge2, . . . , gen) ∈ Base
(

Fn
p

)
32.

Hence, the map τ is well-defined. It remains to prove that this map τ is
bijective.

32Proof. Let g ∈ G. Hence, g is an automorphism of the Fp-vector space Fn
p. But (e1, e2, . . . , en)

is a basis of the Fp-vector space Fn
p. Thus, the image of this basis (e1, e2, . . . , en) under g

must also be a basis of the Fp-vector space Fn
p (since g is an automorphism of the Fp-vector
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The map τ is injective33 and surjective34. Hence, the map τ is bijective.
This completes the proof of Lemma 9.0b. � ]

Lemma 9.0c. Recall that for every g ∈ G, we have defined a natural trans-
formation g∗ : Base =⇒ Base, and thus we also obtain a natural trans-
formation Z(p) [g∗] : Z(p) [Base] =⇒ Z(p) [Base]. The latter natural trans-

formation is an element of the ring End
(

Z(p) [Base]
)

. (By abuse of nota-
tion, we can denote this natural transformation Z(p) [g∗] : Z(p) [Base] =⇒
Z(p) [Base] by g∗ again; but we shall not do so in this lemma, because
this would risk confusing it with the natural transformation g∗ : Base =⇒
Base.)

Let γ : Z(p) [G] → End
(

Z(p) [Base]
)

be the Z(p)-linear map that sends

each each [g] ∈ G to Z(p) [g∗] ∈ End
(

Z(p) [Base]
)

. (This is well-defined,
since the family ([g])g∈G is a basis of the Z(p)-module Z(p) [G].)

space Fn
p). In other words, (ge1, ge2, . . . , gen) must be a basis of the Fp-vector space Fn

p
(since the image of the basis (e1, e2, . . . , en) under g is (ge1, ge2, . . . , gen)). In other words,

(ge1, ge2, . . . , gen) ∈ Base
(

Fn
p

)
. Qed.

33Proof. Let g ∈ G and h ∈ G be such that τ (g) = τ (h). We shall show that g = h.
The definition of τ yields τ (g) = (ge1, ge2, . . . , gen) and τ (h) = (he1, he2, . . . , hen). Thus,

(ge1, ge2, . . . , gen) = τ (g) = τ (h) = (he1, he2, . . . , hen). In other words, gei = hei for each
i ∈ {1, 2, . . . , n}. But g and h are elements of G = GLn

(
Fp
)
. Thus, g and h are Fp-linear maps.

These two Fp-linear maps are equal to each other on each entry of the basis (e1, e2, . . . , en)
of the Fp-vector space Fn

p (since gei = hei for each i ∈ {1, 2, . . . , n}). Hence, these two maps
must be identical. In other words, g = h.

Now, forget that we fixed g and h. We thus have shown that if g ∈ G and h ∈ G are such
that τ (g) = τ (h), then g = h. In other words, the map τ is injective. Qed.

34Proof. Let b ∈ Base
(

Fn
p

)
. Thus, b is a basis of the Fp-vector space Fn

p. Hence, b is a list of

dim
(

Fn
p

)
= n elements of Fn

p. Write b in the form (b1, b2, . . . , bn). (This is possible, since b
is a list of n elements of Fn

p). Thus, (b1, b2, . . . , bn) is a basis of the Fp-vector space Fn
p (since

(b1, b2, . . . , bn) = b ∈ Base
(

Fn
p

)
).

Let g : Fn
p → Fn

p be the unique Fp-linear map that sends each ei (with i ∈ {1, 2, . . . , n})
to bi. (This is well-defined, since (e1, e2, . . . , en) is a basis of the Fp-vector space Fn

p.) Then,
gei = bi for each i ∈ {1, 2, . . . , n}. Hence, the map g sends the basis (e1, e2, . . . , en) of Fn

p to the
list (b1, b2, . . . , bn). Therefore, the map g sends a basis of Fn

p to a basis of Fn
p (since both lists

(e1, e2, . . . , en) and (b1, b2, . . . , bn) are bases of Fn
p). Thus, g is an isomorphism of Fp-vector

spaces between Fn
p and Fn

p. In other words, g is an automorphism of the Fp-vector space Fn
p.

Thus, g ∈ Aut
(

Fn
p

)
= GLn

(
Fp
)
= G. The definition of τ yields τ (g) = (ge1, ge2, . . . , gen) =

(b1, b2, . . . , bn) (since gei = bi for each i ∈ {1, 2, . . . , n}). Thus, τ (g) = (b1, b2, . . . , bn) = b.

Hence, b = τ

 g︸︷︷︸
∈G

 ∈ τ (G).

Now, forget that we fixed b. We thus have proven that b ∈ τ (G) for each b ∈ Base
(

Fn
p

)
.

In other words, Base
(

Fn
p

)
⊆ τ (G). In other words, the map τ is surjective. Qed.
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This map γ is a Z(p)-algebra isomorphism Z(p) [G]op → End
(

Z(p) [Base]
)

.

Thus, End
(

Z(p) [Base]
)
∼= Z(p) [G]op as Z(p)-algebras.

[Proof of Lemma 9.0c. Consider the map τ : G → Base
(

Fn
p

)
defined in

Lemma 9.0b. Lemma 9.0b shows that this map τ is well-defined and bijec-
tive. Hence, τ is an isomorphism of sets. Thus, it induces an isomorphism
Z(p) [τ] : Z(p) [G]→ Z(p)

[
Base

(
Fn

p

)]
of Z(p)-modules.

Let e ∈ Base
(

Fn
p

)
be the basis (e1, e2, . . . , en) of Fn

p. Then,

g∗e = τ (g) for every g ∈ G (49)

35.

For every u ∈ Z(p) [G], the element γ (u) ∈ End
(

Z(p) [Base]
)

can be ap-

plied to the element [e] ∈ Z(p)

[
Base

(
Fn

p

)]
=
(

Z(p) [Base]
) (

Fn
p

)
, and the

result is a new element γ (u) · [e] of
(

Z(p) [Base]
) (

Fn
p

)
= Z(p)

[
Base

(
Fn

p

)]
.

We have

γ (u) · [e] =
(

Z(p) [τ]
)
(u) for every u ∈ Z(p) [G] (50)

36.

35Proof of (49): Let g ∈ G. Then, τ (g) = (ge1, ge2, . . . , gen) (by the definition of τ). Comparing
this with g∗e = (ge1, ge2, . . . , gen) (by Lemma 8.7a (a)), we obtain g∗e = τ (g). This proves
(49).

36Proof of (50): Let u ∈ Z(p) [G]. We must prove the equality (50).

Both γ (u) and
(

Z(p) [τ]
)
(u) depend Z(p)-linearly on u. Hence, the equality (50) is Z(p)-

linear in u. Thus, for the proof of this equality, we can WLOG assume that u belongs to the
basis ([g])g∈G of the Z(p)-module Z(p) [G]. Assume this. Hence, u = [g] for some g ∈ G.
Consider this g.

Now, γ

 u︸︷︷︸
=[g]

 = γ ([g]) = Z(p) [g∗] (by the definition of γ). Hence, γ (u)︸ ︷︷ ︸
=Z(p) [g∗ ]

· [e] =

(
Z(p) [g∗]

)
[e] =

 g∗e︸︷︷︸
=τ(g)

(by (49))

 = [τ (g)].

On the other hand,
(

Z(p) [τ]
) u︸︷︷︸

=[g]

 =
(

Z(p) [τ]
)
([g]) = [τ (g)] (by the definition of

Z(p) [τ]). Comparing this with γ (u) · [e] = [τ (g)], we obtain γ (u) · [e] =
(

Z(p) [τ]
)
(u).

This proves (50).
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The map γ is injective37 and surjective38. Hence, the map γ is bijective.
Also, γ is a Z(p)-linear map Z(p) [G]→ End

(
Z(p) [Base]

)
. In other words,

γ is a Z(p)-linear map Z(p) [G]op → End
(

Z(p) [Base]
)

(since Z(p) [G]op =

Z(p) [G] as a Z(p)-module).

We have γ (1) = idZ(p)[Base]
39. Also, recall that any g ∈ G and h ∈ G

satisfy
(gh)∗ = h∗g∗. (51)

37Proof. Let u ∈ Ker γ. Thus, u ∈ Z(p) [G] and γ (u) = 0. But (50) yields γ (u) · [e] =(
Z(p) [τ]

)
(u). Hence,

(
Z(p) [τ]

)
(u) = γ (u)︸ ︷︷ ︸

=0

· [e] = 0, so that u ∈ Ker
(

Z(p) [τ]
)

.

But the map Z(p) [τ] is an isomorphism. Thus, Z(p) [τ] is injective, so that Ker
(

Z(p) [τ]
)
=

0. Hence, u ∈ Ker
(

Z(p) [τ]
)
= 0, so that u = 0.

Now, forget that we fixed u. We thus have shown that u = 0 for each u ∈ Ker γ. In other
words, Ker γ = 0. Hence, the map γ is injective (since γ is Z(p)-linear). Qed.

38Proof. Let X be the functor Z(p) [Base] ∈ VA. Thus, X
(

Fn
p

)
=
(

Z(p) [Base]
) (

Fn
p

)
=

Z(p)

[
Base

(
Fn

p

)]
. Hence, [e] ∈ Z(p)

[
Base

(
Fn

p

)]
= X

(
Fn

p

)
.

Let α ∈ End (X). Then, α can be applied to the element [e] of X
(

Fn
p

)
. The result is an

element α [e] ∈ X
(

Fn
p

)
= Z(p)

[
Base

(
Fn

p

)]
.

The map Z(p) [τ] : Z(p) [G] → Z(p)

[
Base

(
Fn

p

)]
is an isomorphism, and thus is surjec-

tive. Hence, Z(p)

[
Base

(
Fn

p

)]
=
(

Z(p) [τ]
) (

Z(p) [G]
)

. Thus, α [e] ∈ Z(p)

[
Base

(
Fn

p

)]
=(

Z(p) [τ]
) (

Z(p) [G]
)

. In other words, there exists an u ∈ Z(p) [G] such that α [e] =(
Z(p) [τ]

)
(u). Consider this u.

We have α ∈ End X and γ (u) ∈ End

Z(p) [Base]︸ ︷︷ ︸
=X

 = End X. Thus, both α and γ (u) are

elements of End X. In other words, both α and γ (u) are natural transformations X =⇒ X.
Also, α [e] =

(
Z(p) [τ]

)
(u) = γ (u) · [e] (by (50)). Hence, Lemma 8.7b (applied to Y = X and

β = γ (u)) yields α = γ

 u︸︷︷︸
∈Z(p) [G]

 ∈ γ
(

Z(p) [G]
)

.

Now, forget that we fixed α. We thus have proven that α ∈ γ
(

Z(p) [G]
)

for each α ∈

End (X). In other words, End (X) ⊆ γ
(

Z(p) [G]
)

. Since X = Z(p) [Base], this rewrites as

End
(

Z(p) [Base]
)
⊆ γ

(
Z(p) [G]

)
. In other words, the map γ is surjective. Qed.

39Proof. The definition of γ yields γ (1) = Z(p)

 1∗︸︷︷︸
=idBase

 = Z(p) [idBase] = idZ(p) [Base] (by Remark

8.1f (a), applied to P = Base). Qed.
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Now, any v ∈ Z(p) [G] and u ∈ Z(p) [G] satisfy

γ (uv) = γ (v) ◦ γ (u) (52)

40. In other words, γ is multiplicative when viewed as a map Z(p) [G]op →
End

(
Z(p) [Base]

)
(because uv is the product of v and u in the Z(p)-algebra

Z(p) [G]op). Combining this with γ (1) = idZ(p)[Base], we conclude that γ

is a Z(p)-algebra homomorphism Z(p) [G]op → End
(

Z(p) [Base]
)

(because

γ is a Z(p)-linear map Z(p) [G]op → End
(

Z(p) [Base]
)

). Since γ is bijec-

tive, we thus conclude that γ is a Z(p)-algebra isomorphism Z(p) [G]op →
End

(
Z(p) [Base]

)
. Thus, End

(
Z(p) [Base]

)
∼= Z(p) [G]op as Z(p)-algebras.

This proves Lemma 9.0c. � ]

• Proposition 9.2: Replace “The map” by “The Z(p)-linear map”.

• Proof of Proposition 9.2: After “in the i’th space”, add “(whenever v ∈
Base (V))”.

40Proof of (52): Let v ∈ Z(p) [G] and u ∈ Z(p) [G]. We must prove the equality (52). This equality
is Z(p)-linear in each of u and v (since γ is a Z(p)-linear map). Hence, for the proof of this
equality, we can WLOG assume that both u and v belong to the basis ([g])g∈G of the Z(p)-
module Z(p) [G]. Assume this. Thus, u = [g] and v = [h] for some elements g ∈ G and h ∈ G.
Consider these g and h. We have

γ

 u︸︷︷︸
=[g]

v︸︷︷︸
=[h]

 = γ

[g] [h]︸ ︷︷ ︸
=[gh]

 = γ ([gh])

= Z(p)

 (gh)∗︸ ︷︷ ︸
=h∗g∗

(by (51))

 (by the definition of γ)

= Z(p) [h
∗g∗] .

Comparing this with

γ

 v︸︷︷︸
=[h]

 ◦ γ

 u︸︷︷︸
=[g]

 = γ ([h])︸ ︷︷ ︸
=Z(p) [h

∗ ]
(by the definition of γ)

◦ γ ([g])︸ ︷︷ ︸
=Z(p) [g

∗ ]
(by the definition of γ)

= Z(p) [h
∗] ◦Z(p) [g

∗]

= Z(p) [h
∗ ◦ g∗](
by Remark 8.1f (b), applied to P = Base , Q = Base , R = Base ,

α1 = g∗ and α2 = h∗

)
= Z(p) [h

∗g∗] ,

we obtain γ (uv) = γ (v) ◦ γ (u). This proves (52).

71



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

• Proof of Proposition 9.2: Replace “a reduced word si1 · · · sir for Σ” by “a
reduced word si1 · · · sir for σ”.

• Proof of Proposition 9.2: Replace every appearance of “ξ̂” in this proof by
“ξ”.

• Proof of Proposition 9.2: After “(−1)r µ = ξ̂ (Tσ) µ”, add “(since (−1)r =
sgn (σ) = ξ (Tσ))”.

• Proof of Proposition 9.2: After “It follows that ξ (ab) µ = ξ (a) ξ (b) µ”,
add “(since abµ = ξ (ab) µ and thus ξ (ab) µ = a bµ︸︷︷︸

=ξ(b)µ

= aξ (b) µ =

ξ (b) aµ︸︷︷︸
=ξ(a)µ

= ξ (b) ξ (a) µ = ξ (a) ξ (b) µ)”.

• Proof of Proposition 9.2: You write: “(This could also have been deduced
from Proposition 8.11.)”. A few details about this deduction would be
useful. Namely, here is how it works:

[Proof of the fact that ξ is a ring map: Clearly, we have

(−1)2 = p + (p− 1) (−1) ,
(−1) (−1) (−1) = (−1) (−1) (−1) ,

(−1) (−1) = (−1) (−1) .

Thus, the relations in Proposition 8.11 remain valid if each Tk in them is
replaced by −1. Hence, Proposition 8.11 shows that there exists a unique
Z(p)-algebra homomorphism η : H → Z(p) that sends each Tk to −1. Con-
sider this η. Now, if σ ∈ Σn, then we can fix any reduced word si1si2 · · · sir
for σ, and then we find

η

 Tσ︸︷︷︸
=Ti1

Ti2 ···Tir
(by Corollary 8.10)

 = η
(
Ti1 Ti2 · · · Tir

)
= η

(
Ti1
)

η
(
Ti2
)
· · · η (Tir)

(
since η is a Z(p)-algebra homomorphism

)
= (−1) (−1) · · · (−1)︸ ︷︷ ︸

r times(
since η

(
Tip

)
= −1 for each p (by the definition of η)

)
= (−1)r = sgn (σ)(

since σ = si1si2 · · · sir and thus sgn (σ) = (−1)r)
= ξ (Tσ) .

72



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

Thus, we have found that η (Tσ) = ξ (Tσ) for each σ ∈ Σn. In other words,
the maps η and ξ are equal to each other on the basis (Tσ)σ∈Σn

of the Z(p)-
moduleH. Hence, these two maps η and ξ must be identical (since they are
both Z(p)-linear). In other words, ξ = η. Thus, ξ is a ring homomorphism
(since η is a ring homomorphism). � ]

• Proof of Proposition 9.3: This proof has several flaws. In particular, the
expression “

〈
σ∗πt [U] , [W]

〉
” makes no sense, and the formula πσ∗πt =

|B/U| pl(σ−1ρ)Tσ is false. Let me show a correct (and more detailed) proof:

[Proof of Proposition 9.3. Fix σ ∈ Σn. Let V ∈ V , and let W ∈ Flag (V). For
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each U ∈ Flag (V), we have〈
πσ∗πt [W] , [U]

〉
=

〈
πσ∗ ∑

w∈Base(V);
π(w)=W

[w] , [U]

〉 since πt [W] = ∑
w∈Base(V);

π(w)=W

[w]


= ∑

w∈Base(V);
π(w)=W

〈
πσ∗ [w]︸ ︷︷ ︸
=[π(σ∗w)]

, [U]

〉
= ∑

w∈Base(V);
π(w)=W

〈[π (σ∗w)] , [U]〉︸ ︷︷ ︸
=δπ(σ∗w),U

= ∑
w∈Base(V);

π(w)=W

δπ(σ∗w),U

= (the number of all w ∈ Base (V) such that π (w) = W and π (σ∗w) = U)

= (the number of all (v1, v2, . . . , vn) ∈ Base (V) such

that π (v1, v2, . . . , vn) = W and π

σ∗ (v1, v2, . . . , vn)︸ ︷︷ ︸
=(vσ(1),vσ(2),...,vσ(n))

 = U


(

here, we have substituted (v1, v2, . . . , vn) for the index w,
since each element of Base (V) is an n-tuple

)
= (the number of all (v1, v2, . . . , vn) ∈ Base (V) such

that π (v1, v2, . . . , vn) = W︸ ︷︷ ︸
⇐⇒ (Wi=span{v1,v2,...,vi} for all i)

and π
(

vσ(1), vσ(2), . . . , vσ(n)

)
= U︸ ︷︷ ︸

⇐⇒ (Ui=span{vσ(1),vσ(2),...,vσ(i)} for all i)


= (the number of all (v1, v2, . . . , vn) ∈ Base (V) such

that (Wi = span {v1, v2, . . . , vi} for all i))

and
(

Ui = span
{

vσ(1), vσ(2), . . . , vσ(i)

}
for all i

))
= (the number of all bases (v1, v2, . . . , vn) of V such that for all i

we have Ui = span
{

vσ(1), vσ(2), . . . , vσ(i)

}
and Wi = span {v1, v2, . . . , vi}

)
=

{
(p− 1)n pl(σ−1ρ), if δ ([U] , [W]) = σ;
0, otherwise
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(by Corollary 5.5). Hence,

πσ∗πt [W] = ∑
U∈Flag(V)

{
(p− 1)n pl(σ−1ρ), if δ ([U] , [W]) = σ;
0, otherwise

[U]

= ∑
U∈Flag(V);

δ([U],[W])=σ

(p− 1)n pl(σ−1ρ) [U]

= (p− 1)n pl(σ−1ρ) ∑
U∈Flag(V);

δ([U],[W])=σ︸ ︷︷ ︸
= ∑

U∈Flag(V);
δ([W],[U])=σ−1

(because for each U∈Flag(V),
the condition (δ([U],[W])=σ) is
equivalent to (δ([W],[U])=σ−1)
(since δ([W],[U])=δ([U],[W])−1))

[U]

= (p− 1)n pl(σ−1ρ) ∑
U∈Flag(V);

δ([W],[U])=σ−1

[U] .

Comparing this with

(p− 1)n pl(σ−1ρ) Tσ−1 [W]︸ ︷︷ ︸
= ∑

U∈Flag(V);
δ([W],[U])=σ−1

[U]

= (p− 1)n pl(σ−1ρ) ∑
U∈Flag(V);

δ([W],[U])=σ−1

[U] ,

we obtain πσ∗πt [W] = (p− 1)n pl(σ−1ρ)Tσ−1 [W].

Now, forget that we fixed W. We thus have shown that πσ∗πt [W] =

(p− 1)n pl(σ−1ρ)Tσ−1 [W] for each W ∈ Flag (V). In other words, the two
maps πσ∗πt and (p− 1)n pl(σ−1ρ)Tσ−1 are equal to each other on the basis
([W])W∈Flag(V) of the Z(p)-module Z(p) [Flag (V)]. Since these two maps
are Z(p)-linear, we can thus conclude that they are identical. In other

words, πσ∗πt = (p− 1)n pl(σ−1ρ)Tσ−1 .

Now, forget that we fixed σ. We thus have shown that

πσ∗πt = (p− 1)n pl(σ−1ρ)Tσ−1 for each σ ∈ Σn. (53)

On the other hand, every σ ∈ Σn satisfies

l (σρ) = l
(

σ−1ρ
)

(54)
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41.

Now,

e = πωπt

= π |G/U|−1 ∑
σ∈Σn

sgn (σ) σ∗πt

(
since ω = |G/U|−1 ∑

σ∈Σn

sgn (σ) σ∗
)

= |G/U|−1 ∑
σ∈Σn

sgn (σ)︸ ︷︷ ︸
=sgn(σ−1)

πσ∗πt︸ ︷︷ ︸
=(p−1)n pl(σ−1ρ)T

σ−1
(by (53))

= |G/U|−1 ∑
σ∈Σn

sgn
(

σ−1
)
(p− 1)n pl(σ−1ρ)Tσ−1

= |G/U|−1 (p− 1)n︸ ︷︷ ︸
=
|G/U|
|G/B|

(by (48))

∑
σ∈Σn

sgn
(

σ−1
)

pl(σ−1ρ)Tσ−1︸ ︷︷ ︸
= ∑

σ∈Σn
sgn(σ)pl(σρ)Tσ

(here, we have substituted σ for σ−1

in the sum, since the map Σn→Σn, σ 7→σ−1

is a bijection)

= |G/U|−1 |G/U|
|G/B|︸ ︷︷ ︸

=|G/B|−1

∑
σ∈Σn

sgn (σ) pl(σρ)︸ ︷︷ ︸
=pl(σ−1ρ)

(since l(σρ)=l(σ−1ρ)
(by (54)))

Tσ

= |G/B|−1 ∑
σ∈Σn

sgn (σ) pl(σ−1ρ)Tσ.

This proves Proposition 9.3. � ]

• Proof of Proposition 9.4: Replace “First, we have” by “Proposition 9.3
yields”.

• Proof of Proposition 9.4: The first chain of equalities in the proof needs
some justification (e.g., why do we have ∑

σ
pl(σ−1ρ) =

∣∣äσ X
(
σ−1ρ

)∣∣, and

why is |G/B|−1 |äτ X (τ)| = 1 ?). I would actually suggest the following
alternative argument:

Proposition 8.1b (b) shows that there is a natural isomorphism G/B →
Flag

(
Fn

p

)
of G-sets. Hence, |G/B| =

∣∣∣Flag
(

Fn
p

)∣∣∣. But every V ∈ V satis-

fies |Flag (V)| = ∑
σ∈Σn

pl(σ) (by Lemma 8.0a (b)). Applying this to V = Fn
p,

41Proof of (54): Let σ ∈ Σn. Then, Corollary 2.19 (a) yields l
(
σ−1ρ

)
= n (n− 1) /2− l (σ). But

Corollary 2.19 (b) yields l (σρ) = n (n− 1) /2− l (σ). Thus, l
(
σ−1ρ

)
= n (n− 1) /2− l (σ) =

l (σρ). This proves (54).
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we obtain
∣∣∣Flag

(
Fn

p

)∣∣∣ = ∑
σ∈Σn

pl(σ). The map Σn → Σn, σ 7→ σ−1ρ is a

bijection (since Σn is a group). Hence, we can substitute σ−1ρ for σ in the
sum ∑

σ∈Σn

pl(σ). We thus obtain ∑
σ∈Σn

pl(σ) = ∑
σ∈Σn

pl(σ−1ρ). Hence,

|G/B| =
∣∣∣Flag

(
Fn

p

)∣∣∣ = ∑
σ∈Σn

pl(σ) = ∑
σ∈Σn

pl(σ−1ρ). (55)

Now, Proposition 9.3 yields

e = |G/B|−1 ∑
σ∈Σn

sgn (σ) pl(σ−1ρ)Tσ.

Applying the map ξ to both sides of this equality, we find

ξ (e) = ξ

(
|G/B|−1 ∑

σ∈Σn

sgn (σ) pl(σ−1ρ)Tσ

)
= |G/B|−1 ∑

σ∈Σn

sgn (σ) pl(σ−1ρ) ξ (Tσ)︸ ︷︷ ︸
=sgn(σ)

(by the definition of ξ)(
since the map ξ is Z(p)-linear

)
= |G/B|−1 ∑

σ∈Σn

sgn (σ) pl(σ−1ρ) sgn (σ) = |G/B|−1 ∑
σ∈Σn

(sgn (σ))2︸ ︷︷ ︸
=1

pl(σ−1ρ)

= |G/B|−1 ∑
σ∈Σn

(sgn (σ))2︸ ︷︷ ︸
=1

pl(σ−1ρ)

= |G/B|−1 ∑
σ∈Σn

pl(σ−1ρ)

︸ ︷︷ ︸
=|G/B|
(by (55))

= |G/B|−1 |G/B| = 1.

• Proof of Proposition 9.4: Replace “ξ̂ (e) µ” by “ξ (e) µ”.

• Proof of Proposition 9.4: I would replace “As eSt = πtµ we see that
πt (MSt) = image

(
πtµ

)
= M′St” by the more detailed argument “As MSt =

image (µ), we see that πt (MSt) = image

πtµ︸︷︷︸
=eSt

 = image (eSt) = M′St”.

• Proof of Proposition 9.4: I would replace “Thus, if we let β be the re-
striction of πt to MSt, we see that β gives an epimorphism MSt → M′St”
by “Thus, πt restricts to an epimorphism β : MSt → M′St”. (This is both
shorter and also explains unambiguously what the codomain of β is.)
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• Proof of Proposition 9.4: After “As the map µπt = e restricts to 1 on MSt”,
I would add “(because e is idempotent, and MSt is its image)”.

• Proof of Proposition 9.5: I don’t understand the first sentence of this proof:
Why does the Yoneda isomorphism exist? (I only know Yoneda isomor-
phisms for functors to Set, not for functors to A; but even if I were to
write down the obvious generalization, there remains the question why
Z(p) [Base] is a Hom-functor.) And supposing that the Yoneda isomor-
phism exists, why does it yield that Z(p) [Base] is projective?

What I do see is that the functor Z(p) [Base] is “pointwise projective”, in
the sense that the image of each object of V under this functor is a pro-
jective Z(p)-module. (This is obvious, because the image of an object V ∈
V under the functor Z(p) [Base] is the Z(p)-module

(
Z(p) [Base]

)
(V) =

Z(p) [Base (V)], which is free and therefore projective.) Therefore, the func-
tor MSt is “pointwise projective” as well (since, as youpoint out, MSt (V) is
a direct summand in

(
Z(p) [Base]

)
(V)).

• Proof of Proposition 9.5: After “the image of eSt, which is a summand in
Z(p) [Base]”, I suggest adding “(since eSt is idempotent)”.

• Proof of Proposition 9.5: After “MSt is also the image of a self-adjoint
idempotent on Z(p) [Flag]”, I suggest adding “(namely, of e)”.

• Proof of Proposition 9.5: After “the rank of MSt is the trace of e”, I suggest
adding “(since MSt is the image of the idempotent endomorphism e)”.

• Proof of Proposition 9.5: After “the map Tσ is the identity”, I would add
“(by Corollary 4.6)”.

• Proof of Proposition 9.5: I would suggest replacing “with trace |Flag| =
|G/B|” by “with trace

|Flag (V)| =
∣∣∣Flag

(
Fn

p

)∣∣∣ (
since V ∼= Fn

p as Fp-vector spaces
)

= |G/B|
(

since Proposition 8.1b (b) shows that there is a
natural isomorphism G/B→ Flag

(
Fn

p

)
of G-sets

)

”.

• Proof of Proposition 9.5: I suggest replacing “Next, note that Z(p) [Flag] =
MSt⊕N” by “But e is idempotent; thus, Z(p) [Flag] = image (e)︸ ︷︷ ︸

=MSt

⊕ image (1− e)︸ ︷︷ ︸
=N

=

MSt ⊕ N”.
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