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The Steinberg module and the Hecke algebra
Neil P. Strickland
https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf
version of 2 May 2012
Errata and addenda by Darij Grinberg

The list below contains corrections and comments to the preprint “The Stein-
berg module and the Hecke algebra” by Neil P. Strickland. The comments in-
clude alternative proofs and additional details (indeed, most of the comments
below are of the latter kind, and they are the main reason why this list is so
large). I have written this list while I was reading the preprint (over the course
of several month ; since I am not myself an expert in the subject, my comments
are not always particularly learned (I suspect that many of the proofs I am giv-
ing below can be drastically simplified), and they are probably full of mistakes
of their own. (I have tried to be detailed, partly in order to avoid mistakes.)

I will refer to the results appearing in Strickland’s preprint by the numbers
under which they appear in it (specifically, in its version of 2 May 2012, available
from https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf).

Errata and addenda

e §2: I think it would be better if you spent a bit of time defining some of
your notations:

— For any nonnegative integer 7, you let 2;, denote the symmetric group
of the set {1,2,...,n}. (This is not a notation I have seen very often.
Most combinatorialists call it either S,, or G,, or S,,.)

— The composition af of two maps a : ¥ — Z and B : X — Y is de-
fined as the map X — Z that sends each x € X to a (B (x)). (This
might sound obvious, but irritatingly, a lot of people use the opposite
convention for the order of multiplication, particularly when permu-
tations are concerned.)

-If a : X — Y is a map, then a, means the map P (X) — P (Y)
canonically induced by a (where P (Z) denotes the powerset of a set
Z). This is the map that sends every subset T of X to the subset a (T)
of Y.

e §2: Do you ever use the notation L™ (¢) that you define in the beginning
of §2? (I don’t know for sure; just asking.)

IThe preprint packs a whole lot of material into just 15 pages. Partly, I wish it would proceed
more slowly and leave less work to the reader; the below comments fill in lots of details that
are omitted.



https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf
https://neil-strickland.staff.shef.ac.uk/research/jordan.pdf
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Lemma 2.6: Replace “~” by “%,,”.

Lemma 2.6: The period at the end of the sentence should be outside of the
parentheses.

Proof of Proposition 2.11: After “are disjoint, and”, add “we have ¢ =
tim, T; thus, Lemma 2.6 (applied to t}, instead of ¢) yields

L(o)=L(t)At,'CL(#, ) =L(t)ut, 'L(t)
and therefore”.

Proof of Proposition 2.11: You have not proven the uniqueness that is
claimed in Proposition 2.11. This is not a large gap to fill, and becomes
obvious later orﬂ but I think it is worth at least briefly mentioning how it
is proven.

Definition 2.12: Replace “there is a canonical map” by “there is a canonical
homomorphism”.

Proof of Proposition 2.13: You are slightly abusing notation here: When
you write “X, = U_; t",X,_1”, you are implicitly suggesting that X, 1
can be embedded into ¥,,. This is correct, but is not obvious until Propo-
sition 2.13 is already proven (at which point it is not useful anymore).
A-priori, it is plausible that some nontrivial elements of in_l would col-
lapse to the identity upon adding the extra generator s, 1 of ¥, and the
extra relations that come with it.

Fortunately, the proof is easy to fix, by introducing a group homomor-
phism ¥, 1 — %,: Namely, observe that all the generators and the rela-
tions appearing in the definition of %,_; also appear in the definition of
X, (along with one new generator s,_; and some new relation). Thus,
there is a group homomorphism 7 : Y1 — sending s; — s; for each
i € {1,2,...,n—2}. Consider this 7. Regard Y, as a right Y., q-set by
having %,_; act through # (that is, set xy = x5 (y) for all x € %, and
y € X I 1). Then, X, = U,_; %X, is still correct (where the implied
multiplication in £, X,,_1 = {#},x | x € X;_1} is now to be understood as
the ¥, _j-action on %,). All the rest of the proof goes through unchanged,
except for one simple modification (namely, “%,, is generated by %, ; and

s,_1” must become “%,, is generated by 7 < n_1> and s, _1”).

2Namely: In the proof of Proposition 2.13, you show that the map € : X, — %, is surjective.
Since |X,| < n! = |Z,|, this entails that the map € also is injective. But this means precisely
that no two distinct sequences (my,my, ..., my,) with 1 < my < k give rise to one and the same

permutation ¢}, t%}

2 gl

iy tm, - And this is exactly the uniqueness claim of Proposition 2.11.
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e Proof of Lemma 2.14: Replace “identity permutation” by “identity of %,,”.
(The identification between permutations and elements %, cannot yet be
used at this point.)

e Definition 2.15: Replace “sq,...,s,” by “sq,...,s,-1” twice in this defini-
tion.

e Definition 2.15: Replace “us;s;s;v = us;s;sjv” by “us;sjsjv ~ us;s;s;jv”.

e Definition 2.15: Replace “X” by “X,” twice in this definition (the second
time is inside the commutative diagram). Or just define X to be an abbre-
viation for X, ?

e Definition 2.15: Please explain that ~ is defined to be the disjoint union of
the relations ~, over all r € IN. (This is a relation on [ [, W, = W.)

e Definition 2.17: At the end of condition (c), add “and the word uv is
reduced”. Otherwise, condition (c) would always hold!

e Definition 2.17: I think the justification for the equivalence of the four
conditions would be clearer if you replaced “and it follows from Lemma
2.6 that (a) is equivalent to (d)” by “and it follows from Lemma 2.6 (applied
to ot~ ! instead of ¢) that (b) is equivalent to (d)”.

e Proof of Lemma 2.18: Replace “the 3-cycle (i,i + 1,i + 2)” by “the transpo-
sition (i,i +2)”.

e Proof of Theorem 2.16: I suspect the LaTeX here is slightly broken: You
want to start the proof by “Proof of Theorem 2.16.” and not by “Proof. Proof
of Theorem 2.16.”.

e Proof of Theorem 2.16: Replace “so u = v” by “so u ~ v”.

o §2: I suggest adding the following fact to §2 (which is used later, in §9):
Corollary 2.19. (a) We have [ (¢71p) =n(n—1) /2—1(0) for each o € %,.
(b) We have [ (cp) =n(n—1) /2—1(0) for each o € %,,.

(c) We have [ (po=1) =n(n—1) /2 —1(0) for each o € %,.
(d) We have I (po) =n(n—1) /2 —1(0) for each 0 € %;,.

[Proof of Corollary 2.19. (c) Recall the four equivalent conditions (a), (b), (c)
and (d) in Definition 2.17. In particular, the two conditions (b) and (d) are
equivalent for each o € £, and T € ;. In other words, for each ¢ € %,
and 7 € X,;, we have the following equivalence:

<l <(TT_1) =1(0) -1 (T)) — (

L(t) CL(0)). (1)
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Now, fix ¢ € ¥,,. Then, L (c) C L(p) But the equivalence (1) (applied
to p and ¢ instead of ¢ and p) shows that

(1(ee™) =1(p)=1()) <= (L(e) SL(p)).

Therefore, we have ! (po ) = 1(p) — 1 (o) (since we have L (¢) C L(p)).
Thus, ! (pc~') = 1(p) —I(0)=n(n—1)/2—1(c). This proves Corol-
)2

lary 2.19 (c).
(d) Let 0 € &,,. Corollary 2.19 (c) (applied to o1 instead of ") shows that
! (p (0*1)_1> —n(n—1)/2—1(c1). Since (¢c-1) ' = 0, this rewrites as

[(pr) =n(n—1)/2 - l<0_1> —nn-1)/2-1(c).
——
=I(0)
(by Lemma 2.3)

This proves Corollary 2.19 (d).

(@) Let ¢ € X;,. Then, Lemma 2.3 (applied to pc instead of o) shows that
! <(p(7)_1> = 1l(po) = n(n—1)/2—1(c) (by Corollary 2.19 (d)). Since
(00) ' =071 p7! = ¢ p, this rewrites as | (0 1p) = n(n—1) /2 —1(0).

~—
=P

This proves Corollary 2.19 (a).

(b) Let ¢ € ¥,. Then, Lemma 2.3 (applied to cp instead of o) shows
that [ ((ap)_1> = I (0p). Since (cp) ' = p ' o1 = po?, this rewrites

~—
=p

as [ (po~') = I(op). Hence, I (0p) =1 (oo™ ') =n(n—1)/2—1(c) (by
Corollary 2.19 (c)). This proves Corollary 2.19 (b). O ]

e §3: In the definition of T, a whitespace is missing between “ge; € Fpe;”
and “for all i”.
3Proof. Let U € L(¢). Then, U € L(0) = {{i,j} |
In other words, U = {u,v} for some (u,v) € L(c). Fix this (1,v). Wehave 0 < u < v <n

)-
(since (u,v) € L(c)). The definition of p yields p(u) = n+1—uand p(v) = n+1—vo.
Hence, p (u )—n+1—\ti_/>n+1—v—p() Thus, 0 < u < v < nand p(u) > p(v).

(i,j) € L(@)} = {{w,v} | (wv) € L(0)}.

<v
In other words, (u,v) is an element (i,j) such that 0 < i < j < n and p (i) > p (j). In other
words, (u,v) € {(i,j) | 0<i<j<mnandp(u)>p(v)}. This rewrites as (u,v) € L(p)
(since L(p) = {(i,j) | 0<i<j<mandp(u)>p(v)} (by the definition of L (p))). Now,
recall that U = {u,v}. Hence, U = {i,j} for some (i,j) € L (p) (namely, for (i,j) = (u,v)).
In other words, U € {{i,j} | (i,j) € L(p)}. This rewrites as U € L (p) (since L(p) =
{{i,j} | (i,j) € L(p)} (by the definition of L (p))).

Now, forget that we fixed U. We thus have shown that U € L (p) for each U € L (¢). In
other words, L (¢) C L (p), qed.
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§3: Add a period before “With this convention”.

§3: After “and (g.x); = X g;;x;”, add “for x = (x1,x2, .. Lxn)
j

§4: Before Example 4.1, it would be good to say the following: “We shall
call 6 (U, V) the Jordan permutation of the flags U and V.”. This way, the
words “Jordan permutation” (which are used in Definition 8.2) are actually
defined.

§4: It would also be useful to point out explicitly that 6 (U, U) = 1 for each
U € Flag (W). This is very easy to prove (it is a corollary of Lemma 4.5,
but it is also pretty easy to check using just the definition); but I think it’s
worth explicitly stating.

Example 4.1: At the very beginning of this example, add the following
sentence: “Set E = (Eo <E < ---<E;= IFZ) € Flag <]F$).”.

Example 4.1: At the end of the last formula on page 5 (the formula that
defines Q;;), add a period.

Example 4.1: At the end of the first displayed formula on page 6 (the
formula that defines C;j), a closing parenthesis is missing.

Example 4.2: Before “Then Q5”, add: “Set U; = span{uy,...,u;} and
Vi = E; for each i.”. (Otherwise it is not clear how the Q;; are defined.)

Lemma 4.5: It might be better to split the second sentence of this propo-
sition as follows: “Assume that U; 1 = V;_1. Then, o (i) =i iff U; = V,.”
(Otherwise, the order of precedence between the “then” and the “iff” is
ambiguous.)

Proof of Proposition 4.7: Replace “U; < V;11” by “U; < V;11” (unless you
really mean to use the symbol < for not-necessarily-proper submodules;
but in that case, you would need to replace several <’s by other symbols).

Proof of Proposition 4.7: Remove the word “we” in “Of course we also”.

Proof of Proposition 4.7: You replace dim (U; N V;) by i — 1 in the long dis-
played equation. I would suggest explaining why this is allowed: Namely,
you argue that U; N V; = A = U;_1, and thus dim (U; N V;) = dim (U;_1) =
i—1

Proof of Proposition 4.7: After “Symmetrically, we have U;;, = U; + V}.”,
I would add “Hence, U; 1 = Vj;1.”.

Proof of Proposition 4.7: Replace “U; = V; for all such j” by “U; = V; for
all j > i 41" (since the induction starts at j =i+ 1, not at j = i + 2).
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e Proof of Lemma 5.1: After the first sentence, add: “Thus, assume that
gii = 1 from now on.”

e Proof of Lemma 5.1: Replace “iff a;; = 0” by “iff g;; = 0”.

e Proposition 5.2: You write: “and thus |Y (¢, V)| = p'() for any V”. This is
correct, but I find it a bit too nontrivial to just state without further expla-
nation. Maybe it’s even worth moving this claim into a separate corollary:

Corollary 5.2a. Let 0 € £, and V € Flag (W), where W is an n-dimensional
IF,-vector space. Then, |Y (v, V)| = p'@).

[Proof of Corollary 5.2a. Pick a basis (f1, f2,..., fn) of W such that each
0 <i < n satisties V; = span{fi, f2,..., fi}. (Such a basis exists, because
we can start with the empty basis of V), then extend it to a basis of V;, then
extend it to a basis of V;, etc..) Let a be the IF)-linear map F; — W that
sends each e, to fr. Then, « is a vector space isomorphism (since it sends
the basis (eq, ey, ..., e,) of IF’; to the basis (f1, f2, ..., fn) of W). Moreover, it
satisfies «E; = V; for each 0 < i < n. In other words, aE = V.

But the naturality of the definition of ¢ (U, V) yields an important fact
(which is a slight generalization of your Remark 4.3): If W; and W, are two
IF,-vector spaces, and if  : Wi — W is an isomorphism, then:

(a) any P, Q € Flag (W) satisfy 6 (BP, BQ) =6 (P, Q).
(b) for any ¢ € ¥, and any Q € Flag (W), the map Flag (W;) — Flag (W), P —
BP maps the subset Y (o, Q) bijectively onto Y (¢, BQ).

Applying part (b) of this fact to Wy = F), W, = W, p =aand Q = E, we
see that the map Flag (]FZ) — Flag (W), P — aP maps the subset Y (c, E)

bijectively onto Y (0, «E). Thus, |Y (¢,aE)| = |Y (0, E)|. Since akE = V and
Y (0,E) =Y (0), this rewrites as |Y (o, V)| = |Y (0)|.

But the first sentence of Proposition 5.2 entails |Y ()| = |X ()| = p'(©)
(by Lemma 5.1). Hence, |Y (¢, V)| = |Y (¢)| = p'(?). This proves Corollary
5.2a. ]

e Proof of Proposition 5.2: Replace “that X (¢) acts freely on cE” by “that
X (0) acts freely on the X (¢)-orbit of ¢E” (just to use more standard ter-
minology).

e Proof of Proposition 5.2: Replace “We claim that there is a unique element
v; € V;NT; such that €,(; (v;) = 1, and moreover that vy,...,v; is a basis
for V; over F,” by “We claim that, for each i € {1,2,...,n}, there is a
unique element v; € V;NT; such that €,(; (v;) = 1, and moreover that
v1,-..,0;is a basis for V; over [F) (if the elements v; for all j < i are defined
similarly)”.
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e Proof of Proposition 5.2: Add a period at the end of the displayed equation
that defines S,;.

e Proof of Proposition 5.2: The word “leading term” might use a definition.
Actually, it is probably best to introduce a number of related notions before
the proof of Proposition 5.2:

- For each i € {1,2,...,n}, let ¢ : IF’; — TFp be the i-th coordinate
projection. Thus, for any x € IF’; and i € {1,2,...,n}, the element
€; (x) € [F is the i-th coordinate of the vector x.

— The leading index of a nonzero vector x € IF} is defined to be the high-
est k € {1,2,...,n} satisfying €, (x) # 0. This leading index is de-
noted by lind (x). The definition of the leading index can be rewritten
as follows: The leading index of a nonzero vector x = (A1, Ay,..., Ay) €
IF} is the highest k € {1,2,...,n} satisfying Ay # 0.

— The leading term of a nonzero vector x € Fy is defined to be € (x) e,
where k = lind (x). In other words, the leading term of a nonzero
vector x = (A, Ap, ..., Ay) € ]F’;, is Agex, where k is the highest element
of {1,2,...,n} satisfying Ay # 0.

Here are some basic properties of leading indices:

— Lemma 5.2b. Let x € lF’; 1S a nonzero vector.
@1Ifie{1,2,...,n}is such thati > lind (x), then €; (x) = 0.
(b) We have €jinq(x) (x) # 0.

[Proof of Lemma 5.2b: (a) Let i € {1,2,...,n} be such that i > lind (x).
But lind (x) is the highest k € {1,2,...,n} satisfying €; (x) # 0 (by
the definition of lind (x)). Hence, every k € {1,2,...,n} satisfying
€x (x) # 0 must satisfy k < lind (x). Applying this to k = i, we
conclude that if €; (x) # 0, then i < lind (x). Hence, we cannot have
€i (x) # 0 (since we cannot have i < lind (x) (since we have i >
lind (x))). In other words, we have ¢; (x) = 0. This proves Lemma
5.2b (a).

(b) We know that lind (x) is the highest k € {1,2,...,n} satisfying
€k (x) # 0 (by the definition of lind (x)). Hence, lind (x) is a k €
{1,2,...,n} satisfying €, (x) # 0. Thus, €jnq(x) (x) # 0. This proves
Lemma 5.2b (b). (]

— Lemma 5.2c. Let (ws),c¢ be a finite family of nonzero vectors in Fy.
Assume that the leading indices of the ws (for s € S) are pairwise
distinct.

(a) Each nonzero vector x € IF, {w; | s € S} satisfies

lind (x) € {lind (ws) | s € S}.
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(b) The family (ws),.g is IFp-linearly independent.

(c) Let (As) s € lFf, be a family of elements of [F,. Assume that there
exists at least one s € S satisfying A; # 0. Set x = )} Asws. Then,

seS
x # 0 and lind (x) € {lind (ws) | s € S}.

[Proof of Lemma 5.2c: (c) There exists at least one s € S satisfying
As # 0. Among all these s € S satisfying A; # 0, pick one for which
lind (w;) is maximum, and denote this s by t. Thus, A; # 0, and
lind (wy¢) is the highest among the lind (ws) for all s € S satisfying
As # 0. As a consequence,

every s € S satisfying A; # 0 satisfies lind (w,) < lind (w;) (2)

(since lind (w;) is the highest among the lind (w;) for all s € S satisfy-
ing As # 0).

Moreover, recall that the leading indices of the ws (for s € S) are
pairwise distinct. In other words,

every two distinct elements p and g of S satisfy lind (w,) # lind (w,) .

3)
Now,
€lind(w;) (AsWs) =0 for every s € S satisfyings #t  (4)
ﬂ Furthermore, if i € {1,2,...,n} is such that i > lind (wy), then
€i (Asws) =0 for every s € S (5)

4Proof of : Let s € S be such that s # t. Then, @ (applied to p = s and g = t) yields
lind (ws) # lind (wy).

If As = 0, then €jipq(q,) ( As ws) = €lind(w;) (Ows) = 0. Hence, if As = 0, then
=0
holds. Thus, for the rest of this proof of @), we WLOG asume that A; # 0. Hence,

shows that lind (ws) < lind (w¢). Combining this with lind (ws) # lind (w;), we obtain
lind (ws) < lind (w;). Thus, lind (w;) > lind (ws). Hence, Lemma 5.2b (a) (applied to x = w;
and i = lind (w;)) yields €jjnq(w,) (ws) = 0. Thus, €jind(w,) (AsWs) = As €lind(w,) (ws) = 0. This

~—

=0
proves (4).
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ﬂ Ifi € {1,2,...,n} is such that i > lind (w;), then

€ X =€ (Z )\Sws> = Zsi/\swsl

=Y Asws s€S seS :\’
seS (by )
=) 0=0. (6)
s€S

But

€lind (wy) N

=Y Asws
seS
= €lind (w;) (Z As“’s) = Z €lind (wy) (Asws)
seS seS
= €lind(w;) (Att0r) + Y €lind(wy) (Asts)

~~ SES,’\

=M t€lind (w;) (Wt) s7t (by:&I))

(here, we have split off the addend for s = t from the sum)

= Mt€lind(wy) (Wi) + ), 0= Ay €lind (w;) (W) # 0.
s€S; —_—
s#L #0 £0
N~ (by Lemma 5.2b (b), applied
=0 to x=wy)

Hence, x # 0. It remains to show that lind (x) € {lind (ws) | s € S}.

Butlind (w;) isak € {1,2,...,n} satisfying €, (x) # 0 (since €jinq(w,) (X) #
0). Moreover, lind (w;) is the highest such k (because any i € {1,2,...,n}
satisfying i > lind (w;) satisfies €; (x) = 0 (by (6))). Thus, lind (w;) is
the highest k € {1,2,...,n} satisfying €, (x) # 0. In other words,
lind (w;) is the leading index of x (by the definition of the leading
index). In other words, lind (w;) = lind (x). Thus,

lind (x) = lind (w;) € {lind (ws) | s € S}.

This completes the proof of Lemma 5.2c (c).

5Proofof 5): Let s € S. If Ay = 0, then ¢; ( As ws) = ¢; (Ows) = 0. Hence, if A; = 0, then (H)
=0
holds. Thus, for the rest of this proof of , we WLOG asume that A; # 0. Hence, @) shows
that lind (ws) < lind (w;) < i (since i > lind (w;)). Thus, i > lind (ws). Hence, Lemma 5.2b
(a) (applied to x = ws) yields €; (ws) = 0. Thus, €; (Asws) = As€; (ws) = 0. This proves .
——

=0
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(b) Let (As) s € lFf7 be a family of elements of IF,, satisfying ) Asws =
5€S

0. Thus, 0 = Y A;ws. Then, no s € S satisfies Ay # 0 ﬂ In other
seS

words, every s € S satisfies A = 0.

Now, forget that we fixed (As),.g. We thus have shown thatif (As),.q €

IF;Sj is a family of elements of IF, satistying ) Asws = 0, then every
s€S
s € S satisfies As = 0. In other words, the family (w;),g is IF,-linearly

independent. This proves Lemma 5.2c (b).

(@ Let x € Fy {ws | s € S} be a nonzero vector. We must prove that
lind (x) € {lind (ws) | s € S}.

We have x € F,{ws | s € S}. Hence, we can write x in the form

x = ) Asws for some elements As of IF,. Consider these As. There
seS

exists at least one s € S satisfying A; # 0 H Thus, Lemma 5.2¢ (c)
yields x # 0 and lind (x) € {lind (w;) | s € S}. This proves Lemma
5.2¢ (a). O]

— Lemma 5.2d. If 20 is a vector subspace of IF}, then

dim 2 = |{lind (x) | x € W\ {0}}].

[Proof of Lemma 5.2d (sketched). Lemma 5.2d is well-known and not
hard to prove. We shall only use it on one occasion, which is not
central to our argument; thus, I shall only outline the proof.

Define the energy of a basis (wq, ws, ..., wy) of 2 to be the nonnega-
tive integer lind (w1 ) + lind (wy) + - - - + lind (wy). Then, there clearly
exists a basis (wy, wy, ..., wy) having minimum energy. Fix such a
basiﬂ Then, no two among the elements wj,wy,...,w; can have
equal leading indices (because if w; and w; had equal leading indices
for some i and j, then we could replace w; by some linear combina-
tion aw; + w; with a € Fp, and by choosing « and B appropriately
we would ensure that lind (aw; 4+ w;j) < lind (wj), so that the result-
ing basis would have a smaller energy than (wj,w», ..., wy); but this

®Proof. Assume the contrary. Thus, there exists at least one s € S satisfying As # 0. Hence,
Lemma 5.2¢ (¢) (applied to x = 0) yields 0 # 0 and lind (0) € {lind (ws) | s € S}. But0 # 0
is clearly absurd. Hence, we have obtained a contradiction. This shows that our assumption
was wrong. Qed.

7Proof. Assume the contrary. Thus, A; = 0foralls € S. Now, x = Y, A; ws = ) Ows = 0.
seS~~ seS

This contradicts the fact that x is nonzero. This contradiction shows that our assumption was
wrong, ged.

8This argument is not constructive, but we could easily replace it by a constructive argument
by induction.

10
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would contradict our choice of (w1, wy, ..., wy) as the basis with min-
imum energy). Hence, the indices of the elements wy, wy, ..., wy are
distinct. Thus, |{lind (x) | x € 20\ {0}}| > k = dim 20. It remains to
prove that dim20 > [{lind (x) | x € 20\ {0}}|. In order to do so, we
assume the contrary. Thus, [{lind (x) | x € 20\ {0}}| > dim 20 = k.
Hence, there exists some x € 20\ {0} such that lind (x) equals none of
lind (w1),lind (wy), ..., lind (wg). Consider the x. The k + 1 nonzero
vectors wq, Wy, ..., Wy, X in IFZ have the property that their leading in-
dices are pairwise distinct. Thus, Lemma 5.2¢ (b) shows that they are
IF,-linearly independent. Since these k + 1 vectors all belong to 20, we
thus have found k 4+ 1 linearly independent vectors in 20. But this con-
tradicts the fact that dim 20 = k < k + 1. This contradiction completes
our proof. U]

e Proof of Proposition 5.2: Before the sentence that begins with “The leading
terms”, I would suggest adding the following text: “For each j < i, the
leading term of the vector v; is ¢,(;) (since ¢; € V;NT; € T; C E; ;) and
€o(j) (vj) = 1). Hence, the leading terms of the vectors v; in S; are precisely
the vectors ¢, (;) with j <iand o (j) <o (i). In other words,”.

e Proof of Proposition 5.2: Before the sentence that begins with “Using this,
we see that E;iy =Si®Ti" 1 would add the following: “Now, consider the
vectors v; spanning S; and the vectors e, spanning T;. Altogether, these
are o (i) vectors lying in the ¢ (i)-dimensional space E,(;. Each of the
vectors e, with m < ¢ (i) is the leading term of exactly one of these o (i)
vectors (as we have just shown). Thus, each of the numbers 1,2,...,0 (i)
is the leading index of exactly one of these ¢ (i) vectors. Consequently,
the leading indices of these o (i) vectors are pairwise distinct. Lemma 5.2¢
(b) (applied to the family of these o (i) vectors) therefore shows that these
o (i) vectors are IFp-linearly independent. Hence, these ¢ (i) vectors form
a basis of E, ;) (because they are o (i) linearly independent vectors lying in
the o (i)-dimensional space E,;)).”.

e Proof of Proposition 5.2: You claim that “and thus that V;NE;;) = S; ® L;
for some (unique) subspace L; < T;”. It would be friendlier to the reader
to explain why this follows.

Namely, you are using the following (easy) fact from linear algebra: If 2
and ‘B are two subspaces of a vector space ¥, and if € is a subspace of
¥ satisfying A < € < A @ B, then there is a unique subspace ® < B
satisfying ¢ = A © ®. (Namely, this ® can be constructed as © = ¢ NB.)
Applying this fact to U = IF’;, A=5;,B =T and € = V; N Eq(i) (and
renaming ® as L;) shows that there is a unique subspace L; < T; satisfying
vVin Ea(i) =S5, L;(sinceS; < VN Ea(z’) < Ea(z’) = S; @ T;). This is exactly
your claim. [J
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e Proof of Proposition 5.2: You claim that “S; = V;_1 N Eoiy” and write that
“This is straightforward”. Again, I do not agree that this is straightforward
enough to be left to the reader. Let me flesh out this proof; more precisely,
let me give one proof of the fact that S; = V;_1 N E; (i), and one alternative
proof of the existence of v; that sidesteps this and other confusing points
in your proof.

Proof of S; = Vi1 NE,): Let x € <V,~_1 N Eg(i)) \ {0}. Thus, x is nonzero.

Also, x € (Vi_l N Eg(i)) \ {0} € Vi1 NEy; C Ey), so that lind (x) €
{1,2,...,0(i)}. But we also have

x € (Vi—lﬂEa(i)) \ {0} € Vi1 NEy
CVieg =Fp{oy,05,...,0,4} =Fp{v; | je{1,2,...,i—1}}.

For each j < i, the leading term of v; is € (j) (since GeViNT;, <T,; < EU(]-)
and €,(j) (vj) = 1). Thus, for each j < i, the leading index of v; is ¢ (j).
Thus, the leading indices of v1,v,...,v;_1 are 0 (1),0(2),...,0(i—1).
Therefore, these leading indices are pairwise distinct (since ¢ is injective).

: _ I
In other words, the family (v])]. e1a,.i1y Of nonzero vectors in Fj has

the property that the leading indices of the v; (for j € {1,2,...,i —1}) are
pairwise distinct. Thus, Lemma 5.2¢ (c) (applied to {1,2,...,i—1} and
(vf)je{l,Z,...,i—l} instead of S and (ws),.¢) shows that

lind (x) € {lind (vj) | je€{1,2,...,i—1}}

(sincex € Fp {v; | j€{1,2,...,i—1}} is a nonzero vector)
( 3

- lind (v;) j<ip={oG) | j<i}.
———
=0(j)
(since the leading index of v; is ¢ (j))

J
Combining this with lind (x) € {1,2,...,0 (i)}, we find
lind (x) € {1,2,...,0 (i)} {c(j) | j<i}
={c() | j<iandc(j) <o(i)}.
Now, forget that we fixed x. We thus have proven that
lind () € {o(j) | j<iando(j) <o (i)} for each x € (Via NEqy) \
{0}. In other words,

{lind (x) | x € (Vi NEyp)) \ {0} ]
Clo() | j<iand (i) <o (i)}. )

12
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But Lemma 5.2d (applied to 20 = V;_1 N E,(;)) yields

dim (Vi,1 N E,,(i)) - thd (x) | xe (VH N E,,(i)) \{O}H
<Ho(j) | j<iand o (j) <o (i)} (because of (7))
=[{j | j<iand o (j) <o (i)} (8)

(since the map o is injective).

But (v1,02,...,v;1) isabasis for V;_; (by the induction hypothesis). Hence,
the vectors vy, vy, ..., v;_1 are linearly independent. Thus, the vectors v; for
all j < i satisfying o (j) < o (i) are also linearly independent (since these
vectors form a subfamily of the vectors vy,vy,...,v;_1), and therefore dis-
tinct. The definition of S; yields that the vector space S; is spanned by these
vectors v; for all j < i satisfying ¢ (j) < o (i). Therefore, these vectors v;
for all j < i satisfying o (j) < o (i) form a basis of S; (because they are
linearly independent). Hence, the dimension of S; equals the number of
these vectors. In other words,

dim (S;) = |{v; | j<iand o (j) <o (i)}]

=|{j | j<iand o (j) <o (i)}
since the vectors v; for all 7 < i satisfying ¢ (i) < o (i) are distinct
j ) ymg o (j

> dim <Vi—1 N Ea(i)) (by @))- ©)
On the other hand, S; < V;_1 N Ea(i) (this follows by combining
Si:Ppivj | j<iand o (j) <(T(i)}1g]Fp{U]‘ | j<i} =V,

c{oj | j<i}

with

Si=TFp{vj | j<iando(j) <o (i)} C Ex

since each j < i satisfying o (j) < o (i) satisfies
lind (v;) = (j) € {1,2,...,0 (i)} and thus

Uj € ]Fp {61,62, e (i) E(r(z’)

). Thus, S; is a vector subspace of the finite-dimensional vector space V;_1 N
Ey(;)- Since the dimension of this subspace S; is at least as high as the
dimension of V;_1 N Ey;) (indeed, this is what (9) says), we conclude that
this subspace S; is the whole V;_; N E;;). In other words, S; = Vi1 N Ey;),
ged. O

Alternative proof of the existence of an v; € V; N T; such that €, (v;) = 1 and
moreover that vq,vy,...,v; is a basis for V; over F,: Let me now show another

13
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way to prove that there is an element v; € V; N T; such that €, (v;) = 1
and moreover that v1,v,,...,v; is a basis for V; over IF,,. This argument will
not show the uniqueness of this v; (but you don’t ever use this uniqueness
anyway).

I proceed by induction over i (as you do). As in your proof, I define S;, and
show that S; < Vi N E,(;) and that E,;) = 5; © T;.

ButV € Y (o) = Y (0,E). In other words, 6 (V,E) = o (by the definition

of Y (0, E)). By the definition of ¢, this yields that Q, ,(;) # 0, where Q; ; =
ViNE

Vi N E]' +Vin Ejfl

. In other words,

Vi Eyiy
# 0.
Viein Ea(i) +Vin EU’(i)*l
Hence,
ViNEgi) > Viea NEgiy + ViNEgiy—1 2 ViN Eg(iy—1- (10)
Now, €4(j) |\/imEg<i)$'é 0 Hence, the F)-linear map €, |VI.QEU(Z.): VN

Ey(i) — Fp has rank > 1, and therefore must be surjective (since its target
is the 1-dimensional IF)-vector space ]Fp). Therefore, there exists some x €

Vi N Ey(;) satisfying (eg(i) |VZ.QEU(1.>> (x) = 1. Consider this x.

We have €,;) (x) = <eg(1-) ’VimEa(i)> (x) = 1. Furthermore, x € Vi N E;(;) C
E;iy = Si® T In other words, there exist y € S; and z € T; such that
x = y+z. Consider these y and z. We have x € ViNE,; < V; and
y €S <ViNEy;; < Vi. Now, x = y+2z sothatz = x —y € V; (since
x € Viand y € V;, and since V; is an IF,-vector space). Combining this with
z € T;, we obtain z € V; N T;.

For each j < i, the leading term of v;j is e (j) (sincee; € ViNT; <T; < Eg(j)
and €,(j) (vj) = 1). Thus, for each j < i, the leading index of v; is ¢ (j). In

Proof. Assume the contrary. Thus, €0 (i) |ViﬂEa(i) =

0.
Fix x € ViﬂEU(i). Then, x € ViﬂEa(i) - Ea(i) = ]Fp {61,62,...,60(1')}. Also, x €

Vi N Ey(j), so that €, (x) = (eg(i) |Vimgg(i)) (x) = 0. In other words, the o (i)-th coor-

|
=0

dinate of the vector x is 0. Combining this with x € TF, {61,62,...,60(,»)}, we conclude

x € F, {el,ez,...,ea(i),l} = E,(; 1. Combining x € V;NE,; C Vi with x € Eyq 1,
we find x € VN Ey(;)_1.

Now, forget that we fixed x. We thus have proven that x € V;NE,;_; for each x €
Vi NV Eg ;). In other words, V; N E;(;y € ViN E,(;) 1. Hence, Vi N E; ;)1 is not a proper subset
of V; N Ey ;). This contradicts . This contradiction shows that our assumption was wrong,
ged.

14



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

other words, for each j < i, we have lind (v;) = 0 (j). Thus, every j < i
satisfying o (j) < o (i) must satisfy

lind (v;) = (j) € {1,2,...,0 (i) — 1} (since o () < o (i)
and therefore
Uj € le {61,62,. . .,8(7(1'),1} = Eo’(i)fl' (11)
Now,
yeSi=F,{v; | j<iand o (j) <o (i)} C Eyi)-1
(since each j < i satisfying o (j) < o (i) satisfies (1))

and thus €,(; (y) = 0. Now,

€ty | X | = €o(i) (¥ +2) = €0(i) (¥) T€0i) (2) = €03 (2) -
:y:; —
Comparing this with €,(;) (x) = 1, we find €,(;) (z) = 1.

Furthermore, z ¢ V;_4 H

10prgof. Assume the contrary. Then, z € Viy = Fpy{v,0p...,004} =
Fp {v; | j e{L2...,i- 1}}. Also, z is nonzero (since €,(;) (z) = 1 # 0).

For each j < i, the leading term of v; is ¢,(j) (as we have already seen). Thus, for each

j < i, the leading index of v; is ¢ (j). Thus, the leading indices of vy,vy,...,v; 1 are

c(1),0(2),...,0(i—1). Therefore, these leading indices are pairwise distinct (since ¢ is

injective). In other words, the family (vj)j6 (12,1 of nonzero vectors in IF, has the prop-

erty that the leading indices of the v; (for j € {1,2,...,i —1}) are pairwise distinct. Thus,
Lemma 5.2c (c) (applied to {1,2,...,i —1}, (vj) and z instead of S, (ws),.g and x)

jef12,..,i-1}
shows that

lind (z) € {lind (v) | je{1,2,...,i—1}}
(since z € Fp {v; | j€{1,2,...,i—1}} is a nonzero vector)

= lind (v)) [j<ib={c() | j<i}.
——
=0(j)
(since the leading index of v; is o (j))

Butz € T; < E;; =TFp {el,ez, c o) } Hence, the k-th coordinate of z is 0 for all k > ¢ (i).

But the ¢ (i)-th coordinate of z is €,(;) (z) = 1 # 0. Combining the preceding two sentences,
we conclude that the leading index of z is ¢ (i). In other words, lind (z) = o (i). Hence,
o (i) =1lind (z) € {c(j) | j < i}, sothato (i) = o (j) for some j < i. This is absurd, since o
is injective. Thus, we have obtained a contradiction. This completes our proof of the fact that
z& Vi

15
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Finally, the list v, v,...,0;_1,z is a basis for V; over [F, E

Thus, we have shown that z is an element of V; N T; such that €,(;) (z) =
1 and moreover that vq,v,,...,0;_1,z is a basis for V; over IF,. Hence,
there is an element v; € V; N T; such that €o(i) (v;) = 1 and moreover that
01,02, ...,0; is a basis for V; over IF, (namely, v; = z). This completes our
proof. (As I have said, the uniqueness of this v; is not proven here, but it is
not needed in your argument either.) [

e Proof of Proposition 5.2: Before the words “Now define ¢”, add the fol-
lowing sentences: “Notice that, for each i € {1,2,...,n}, the leading term

of v; is e, (;) (because v; € T; < E ;) = ) {el,ez, : ..,eg(i)} has its o (i)-th
coordinate equal to €, (v;) = 1). Hence, for each i € {1,2,...,n}, the
leading term of v,-1; is €;.”

e Proof of Proposition 5.2: Replace “Now define ¢” by “Now define an IF-
linear map g”.

e Proof of Proposition 5.2: Replace “TF, {eg(k)/ea(k+l)/' -+ €o(m) }” by
“TFy {ea(k), €o(k+1)7 - - -7 €o(n) }”'

e Proof of Proposition 5.2: Replace “so 0~ 'gc is a lower-triangular ma-
trix” by: “so 0~ 'go (ex) € Fp {ex, ex11,...,en}. Hence, 07 1g0 is a lower-
triangular matrix”.

e Proof of Proposition 5.2: Replace “so ¢ € UFY S by “so ¢ € uee ' =
ulee) .

1 Proof. We have V;_; +Fpz > Vg (since z € Fpz C Vi1 +Fpz but z ¢ V;_;). Hence,
dim (V;_1 +Fpz) > dim (V;_1) = i — 1. Since dim (V;_1 4+ Fpz) and i — 1 are integers, this
entails that dim (V;_1 +F,z) > (i—1) +1 =i = dim (V;). Furthermore, V;_1+ Fpz <

—~ ~~
<V, <V,
(since zeV;)
Vi+Vi=V.

Now, it is well-known that if { is a subspace of a finite-dimensional vector space 2, and
if dimy > dim %, then 4 = U. Applying this to & = V;_; +Fpz and ¥ = V;, we obtain
Viiy +Fpz = V; (since Vj_1 + F,z is a subspace of V; and satisfies dim (V;_q +Fpz) >
dim (V;)). Now,

Fy{v1,v2,...,0i_1,2} =Fp{v1,00,...,0;1} +Fpz = Vi1 +Fpz = V,.

=Vi1
(since (U],vz,...,v,‘_])
is a basis for V;_1)

Hence, the list (v1,vy,...,0;_1,2) spans the IF,-vector space V. Since the size i of this list
equals the dimension of V; (because dim (V;) = i), this shows that the list (vq,v,...,v;_1,2)
is a basis for V;. Qed.
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e Proof of Proposition 5.2: Replace “and ¢ (g) = V” by “and ¢ (g) =

go(E)=V".
100 0b a 1 00 e a
0104dc 010 f b
e Example 5.3: Replace“g= |0 0 1 f e |"by“g=1]0 01 g c |”
0001g 00O01d
00001 00001

(Otherwise, the equation after it wouldn’t be true.)

o _r

e Example 5.3: Rename “g¢” as “h” in the contexts “g =", “For such g”,

'es 7

“90 =" and “¢ (g)”. (In fact, the notation “g” here clashes with the notation
“g” for the (4,5)-th entry of the matrix g.)

e Corollary 5.4: I think you should define what you mean by “isomorphism”
here. Namely, an isomorphism from a triple (V,U, W) (where V is an n-
dimensional IF,-vector space, and U and W are two complete flags in V) to
a triple (V/,U’, W’) (where V' is an n-dimensional IF-vector space, and U’
and W' are two complete flags in V') means an isomorphism ¢ : V. — V'
of IF,-vector spaces satisfying ¢U = U’ and ¢W = W'.

e Corollary 5.4: Replace “X” by “X,”.

e Corollary 5.4: Replace “if and only iff” by “if and only if” (or by “iff”).

e Proof of Corollary 5.4: Replace “a pair as above” by “a triple as above”.

e Proof of Corollary 5.4: Replace “by f (a) = }_a;w;” by “by f (a1,az,...,an) =
;aiwi”. l

e Proof of Corollary 5.4: Replace “so F = xcE” by: “. Since the map X (¢) —

Y (0), § — goE is a bijection (by Proposition 5.2), we thus see that F
xoE”.

e Proof of Corollary 5.4: At the end of this proof, add the following sentence:
“Hence, (]FZ, oE, E) ~ (]FZ,E,E) ~ (V,U, W) (since the map f : IF’;, —V
is an isomorphism (]FZ, F, E) — (V,U,W)).”

e Proof of Corollary 5.5: After “such bases exist iff 6 (U, W) = ¢”, add “(be-
cause the first claim of Corollary 5.4 shows that (IF”,(TE, E) = (V,UW)
holds if and only if § (U, W) = 6 (¢E, E); but in light of Example 4.1 this
condition rewrites as § (U, W) = 0)”.

e Proof of Corollary 5.5: I think the last sentence of this proof would be
better off taken out into a separate result:

17
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Lemma 5.5a. Let 0 € £,,. Then, |[B°NB| = (p —1)" pl(aflp).
[Proof of Lemma 5.5a. The definition of X (0~ !p) yields

X (‘7_19) _unule)”
~1
=unu’ since 0'_1\p£/ = <c7_1> B =0
=1

=Uu’nu.

But the last sentence of Lemma 5.1 (applied to ¢~ !p instead of ) yields
‘X (g_lp)‘ = pl(ailp),

Consider the short exact sequence
1—UNnUd—BNB—T—1,

where the arrow U’ N U — BY N B is the canonical inclusion, and where
the arrow B N B — T is the map that replaces all off-diagonal entries of
a matrix ¢ € B N B by 0. H This short exact sequence shows that

TABl=I|T|-|U” — 7| - “15)| = o)
BBl =TI | U0 | =T X (e7)|= U1l p (12)
=X(c7) e ey

= (p—1)"-pll7e).
Thus, Lemma 5.5a is proven. [J]

e Proof of Proposition 6.1: Before “Moreover, if”, add the following sen-
tence: “Thus, 7t (BgB) = {7 (g)} for each g € G.”.

e Proof of Proposition 6.1: Replace “from which it follows directly that
7 (0) = o” by “and the definition of 7 yields 7 (c) = 6 (¢E,E) = o (by
Example 4.1)".

e Proof of Proposition 6.1: After “This means that 7 (BocB) = {c}.”, add
“Hence, BeB C w~! {c}.”.

e Proof of Proposition 6.1: Replace “Conversely, suppose that 7 (h) = ¢.”
by “Conversely, let h € 7= '{c}. Thus, h € G and 7t (h) = 0. Hence,
oc=rm(h)=06(hE,E),sothat hE € Y (0,E) = Y (0). Hence,”.

12This is indeed a short exact sequence, because the matrices ¢ € B’ N B whose diagonal entries
all equal 1 are exactly the elements of U’ N U. It is actually a split extension, since the arrow
BN B — T is split by the canonical inclusion T — B’ N B.
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e Proof of Proposition 6.1: Replace “Propsition” by “Proposition”.

e Proof of Proposition 6.1: After “we find that b € B”, add “(since bE =

-1 -1
o hE = (go cE = E)”.
(go) ~ ME = (g0) " goE = E)
:ggE
e Proof of Proposition 6.1: After “shows that h € BoB”, add “(since g €
X (o) < U < Band b € B). Hence, we have shown that 7! {¢c} C BoB
(since h was assumed to be any element of G satisfying v (h) = 0)”.

e Proof of Proposition 6.1: Replace “we see that 0E = ¢’cE” by “and gob =
h=g'ob/,weseethatgo E = gob E=¢'c V'E = ¢/0E".
— X~ —~—
=bE =¢'ob’ =E
e Proof of Corollary 6.2: The claim “B = T x U” is wrong, or at least seri-

ously misleading (the group B is not a direct product of T and U). I would
replace the whole sentence containing it by “Applying to po~! instead

_ -1)7! _ _
of o, we obtain ‘BP‘T ' ﬂB‘ = |T| -pl((pa ) p). Since B® ' NB = BNB '

and (P‘T_l)_l p = o, this rewrites as ‘B NB | = |T| - pH@).

e Proof of Corollary 6.2: After the displayed equation “|BsB| = p'(?) |B| =
|U||T| p"@)”, add “(since the short exact sequence 1 —» U — B
T — 1lyields |B| = |U||T])".

e Proof of Corollary 6.3: Before “We have a bijection”, add “Proposition 6.1
(applied to ¢! instead of ¢) shows that”.

e Proof of Corollary 6.3: Replace “given by ¢ (g,b) = gob” by “given by
P (8b) = go~ .

e Proof of Proposition 6.4: The statement in the first sentence of your proof
is worth stating as a separate lemma:

Lemma 2.6a. Let 0,7 € ;. Then, the following two conditions are equiv-
alent:

Condition C1: We have I (07) =1 (0) +1 (7).

Condition Cp: Forany T C {1,2,...,n} with |T| = 2, at most one of the two
maps T — 7 (T) — ot (T) is order-reversing.

[Proof of Lemma 2.6a. Let us prove the implications C; = Cp and C, = C;
separately.

Proof of the implication Cy == Cy: Assume that Condition C; holds. In other
words, we have [ (07) =1 (o) +1 (7).
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Lemma 2.6 shows that L (07)

:f( )Ar_lL( ). Also, I(c) = |L(0)| =
|L (0)| and similarly I (t) = |L (7)| an

d(oct) = |L(o7)|. Now,
IO+ 2L =@+ @]=10+1@) =1+
e S o)

(since T is a bijection)

=I(ct)=| L(or) |= ’f(r) AL (0’)‘ :
N —
=L(7)A7, 'L(0)

But a simple and fundamental fact states that if A and B are two finite
sets satisfying |A| + |B| = |AAB|, then AN B = @. Applying this to A =
L(t) and B = 7, 'L (0), we find that L (1) N7, 'L (¢) = @ (since |L ()| +
|7 'L (0)| = |L (7) AT, 'L (0))).

Now, let T C {1,2, ..., n} with |T| = 2. We shall show that at most one of
the two maps T — 7 (T) — o7 (T) is order-reversing.

Indeed, assume the contrary. Thus, both maps T —— 7 (T) — o7 (T) are
order-reversing.

One of the characterizations of L (0) shows that the two-element subset
T(T) of {1,2,...,n} belongs to L (¢) if and only if the map ¢ : T (T) —
ot (T) is order-reversing. Hence, the two-element subset 7 (T) of {1,2,...,n}
belongs to L () (since the map ¢ : T(T) — o7 (T) is order-reversing).
Thus, 7 (T) € L(0). But 7. (T) = 7(T) € L(¢), so that T € 7, 'L (0).

One of the characterizations of L (T) shows that the two-element subset T
of {1,2,...,n} belongs to L (7) if and only if the map 7 : T — 7(T) is
order-reversing. Hence, the two-element subset T of {1,2,...,n} belongs
to L (7) (since the map 7 : T — 7 (T) is order-reversing). In other words,
T € L(t). Combining this with T € 7, 'L (c), we obtain T € L(t) N
7, 'L (¢) = @. In other words, T belongs to the empty set. This is clearly
absurd.

Thus, we have obtained a contradiction. Hence, our assumption was wrong.
We thus have proven that at most one of the two maps T —— 7 (T) ——
ot (T) is order-reversing.

Now, forget that we fixed T. We thus have shown that for any T C

{1,2,...,n} with |T| = 2, at most one of the two maps T — 7 (T) —

ot (T) is order-reversing. In other words, Condition C, holds.

Thus, we have derived Condition C, from Condition C;. In other words,
we have proven the implication C; = C».

We omit the proof of the implication C; = C; (since you don’t actually
use this implication in your arguments, and since this proof is rather easy
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to obtained by “walking backwards” our above proof of the implication
Ci — Cz).

Combining the implications C; = C; and C; = C;, we obtain the equiv-
alence C; <= C;. Thus, Lemma 2.6a is proven.]

e §6: Let me suggest an alternative way of proving Proposition 6.4 and
Proposition 6.5. This alternative way has the advantage that it does not
use the finiteness of the field IFy, and so can be directly generalized to an
arbitrary field

First, let me show a few useful lemmas:

Lemma 6.4a. Let 0 € ¥, and ¢ = <gi/]')Zj:1 € G.
(@) If g € X (0), then
(gii=1forallie {1,2,...,n}) (13)
and
(gi,j =0foranyi,je€ {1,2,...,n} satisfying i # jand (i,j) ¢ L <U*1>>

(14)

(b) If and hold, then ¢ € X (o).

[Proof of Lemma 6.4a. From the first sentence of Lemma 5.1, we see that
g € X (o) holds if and only if we have

1, ifi =j;
gij = { arbitrary, if (i,j) € L(c71);.
0, otherwise

In other words, ¢ € X (¢) holds if and only if and hold. This
proves both parts (a) and (b) of Lemma 6.4a. [J]

Lemma 6.4b. Let ¢ = (81’4)?]:1 € G.
(@) If g € U, then
(gii=1foralli e {1,2,...,n}) (15)

and
(gij=0foranyije {1,2,...,n} satisfying i > j). (16)

(b) If (T5) and (T6) hold, then g € U.

13A few comments on your proofs:
— In the proof of Proposition 6.4, before “We now show that ¢ (g,/1) € X (¢7)”, I would
suggest adding “Let g € X (¢) and h € X (7).”.
— In the proof of Proposition 6.4, “apply Corollary 6.1” should be replaced by “apply
Proposition 6.1”.
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[Proof of Lemma 6.4b. Recall that U is the set of all upper-unitriangular
n x n-matrices. Hence, ¢ € U holds if and only if g is upper-unitriangular.
By the definition of upper-triangular, this rewrites as follows: ¢ € U holds
if and only if and hold. This proves both parts (a) and (b) of
Lemma 6.4b. [J]

Lemma 6.4c. Let o € ;.. Then, the map X (¢) x B— BoB, (g,b) — gob is
well-defined and is a bijection.

[Proof of Lemma 6.4c. Lemma 6.4c is the first claim of Proposition 6.1, and
thus we already have proven it. (]

Lemma 6.4d. Let 0 € ¥, and T € %, be such that [ (¢7) = [ (0) + (7).
Then:

(@) We have L (1) N7, 'L (¢0) = 2.
(b) We have X (¢) N (X (1)) ]
(c) We have X (o) C U -

(d) We have (X (1))”  C U.

(e) We have X (¢) - (X (1))°  C X (7).
(f) We have BcBtB = BoTB.

(g) The map

pra

X (o) x X (1) = X (07), (g,h) — gh”

is well-defined and bijective.

[Proof of Lemma 6.4d. (a) This was shown in the proof of Claim 1 during the
proof of Lemma 2.6a given above.

(b) Let g € X (¢0)NUY . Thus, g € X (0) and g € U° . Write the matrix
. n n -1
¢ in the form ¢ = (gi/]')i,jzl‘ Then, g7 = <g0(i)’a(j)>i,j—1. But ¢ € U7 , so
that o )
Q' € (u"‘) —url =ul =

Hence, Lemma 6.4a (a) (applied to ¢7 and gy(;) »(j) instead of ¢ and g; )
yields that

(g(,() o) = 1forallie {1,2,. n}) (17)

and

(gg() o(j) =0foranyij€ {1,2,...,n} satisfying i > ]> . (18)
On the other hand, ¢ € X (¢). Hence, Lemma 6.4a (a) yields that

(gu:lfor a].li 6 {1/21""”}) (19)
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and

<g,',]- =O0foranyi,j€ {1,2,...,n} satisfying i # jand (i,j) ¢ L <0'_1>

Now, leti,j € {1,2,...,n}. We shall show that Sij = 6ij-

Indeed, assume the contrary. Thus, g;; # J;;. Hence, i # j E so that
(51',]' = 0 and thus 8ij # (Si,j =0.

If we had (i,j) ¢ L(0c'), then we would have g;; = 0 (by ), which
would contradict g;; # 0. Thus, we cannot have (i,j) ¢ L (¢~'). Hence,
we have (i,j) € L(c™!). In other words, i < jand o' (i) > o1 (j) (by
the definition of L (¢~!)). Thus, (applied to (¢! (i),071(j)) instead
of (i,7)) yields

ga(rl(z’)),o-(rl(j)) = 0. This contradicts go(rl(i)),a(rl(j)) = Qij # 0. This
contradiction shows that our assumption was false. Hence, g;; = J;; is
proven.

Now, forget that we fixed i,j. We thus have shown that g;; = ¢;; for all
i,j € {1,112,. ..,n}. In other words, (g;) = (di)) Zj:l = 1. Hence,
§= (81‘,]’)1',]-:1 =1

Now, forget that we fixed g. Thus we have proven that ¢ = 1 for each
g € X (0)NU" . In other words, X (¢) N U’ " = 1.

But the definition of X () yields X (1) = UNU™) " C U. Thus, (X (1))°
U, so that X (o) N (X (1))” € X(@)NU” ' = 1. Hence, X (¢) N

N——

n
ij=1

-1

cue!
(X (T))(fl = 1. This proves Lemma 6.4d (b).
(c) Let g € X (). We shall prove that g € UPT 7 ',
Write the matrix g in the form ¢ = ( giJ)Zj:l'

We have ¢ € X (0). Hence, Lemma 6.4a (a) yields that

(gii=1foralli€ {1,2,...,n}) (21)

and
(81‘,]' =0foranyije€ {1,2,...,n} satisfying i # jand (i,j) ¢ L <U—1>> .
(22)

4Pproof. Assume the contrary. Thus, i = j. Hence, j = i, so that gij = &i=1(by ). But
from i = j, we also obtain J;; = 1. Comparing this with g;; = 1, we obtain g;; = J; ;. This
contradicts g; ; =+ d; j- This contradiction shows that our assumption was wrong. Qed.
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Let 7 = otp. Thus, 1 € L, so that 17 is an injective map. From 1 = o1p,

=p
Leti,j € {1,2,...,n} be such that i > j. We shall show that g, ,j) = 0.

Indeed, assume the contrary. Thus, g,7 ;é 0. From i > j, we obtain i #
j and therefore 7 (i) # 7 (j) (since 17 is 1n1ect1ve) If we had (7 (i),1 (j)) ¢
L (c71), then we would have g, ;) »(jy = 0 (by ., applied to 77 (i) and 7 (j)
instead of i and j), which would contradlct (i) 7é 0. Hence, we cannot
have (1 (i),17 (j)) € L (c™!). Thus, wemusthave( (i),7(j)) € L(c7Y).
In other words 7 (i) <n(j)and o=t (1 (i)) > o1 (1 (j)) (by the definition
of L (¢71)). From 7 (i) < 1 (j), we obtain 7 (;j ) 1 ().
z

Now, the definition of p yields p (i) = n+1— <n+1-—j=p()
(since p (j) = n+1—j (by the definition of p)).>]But n = otp, so that
o1y = p. Now, o1 (5 (i) = (¢7'0) (i) = (7p) (i) = 7 (p (i)) and sim-
non

ilarly o (17 (j)) = 7 (p (j)). Thus, T(p(i)) = ¢~ (1 (i)) > o7 (1 (j)) =
(e (7))-

Combining p (i) < p (j) with T (p (i)) > 7 (o (j)), we obtain (p (i), p (j)) €
L (7) (by the definition of L (7)). Thus, {p (i),p (j)} € L (t) (by the defini-
tion of L (1)).

On the other hand, T(p(j)) < T(p(i)) (since T(p(i)) > T(p(j))) and
o(tle()) = Lome) () = n() > 1 @) = (emp) (i) = o (T(p (@)

&3 =
Combining these two inequalities, we obtain (
(by the definition of L (¢)). Hence, {7 (o (j)),
definition of L (¢)).

Now,

@ ({p(i),p (1) =t({o(i),p()})  (by the definition of 7,)
={t(®), (e} ={t () (@)} €L(0),
so that {p (i),p(j)} € T*_l_f (7). Combining this with {p (i), (j)} € L (1),
we obtain {0 (i),0(j)} € L(t) N7, 'L(c) = @. Thus, {p (i),p (j)} belongs
to the empty set. This is clearly absurd. Thus, we have obtained a contra-

diction. This shows that our assumption was false. Hence, (i) = 0is
proven.

Now, forget that we fixed i, j. We thus have shown that

(gn() (jy =0foranyije {1,2,...,n} satisfyingi > ]) . (23)
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Moreover, if i € {1,2,...,n}, then g, = 1 (by 1), applied to 7 (i)
instead of 7). Thus, we have shown that

<g,7() ) = 1foralli € {1,2,. n}) . (24)

n
Now, ¢ = (gﬁ() (i )> o (since ¢ = (gij)?]. ). Hence, Lemma 6.4b (b)
(apphed to g7 and g, (i) (j ) instead of ¢ and g; ;) shows that g’7 € U (since

and 1.i hold). Hence, (g7)" e ur’. Since (gNT = g =
1 __ hi . }7—1 . -1 _ -1.-1 . .

g" = g, this rewrites as g € U7 . Since 7~ = pt~ ¢, this rewrites as

g€ et et

Now, forget that we fixed g. We thus have shown that ¢ € ueT ot for

each ¢ € X (0). In other words, X (¢) C UPT o' This proves Lemma 6.4d
(c).
(d) Let g € X (7). We shall prove that g € U”.

Write the matrix g in the form ¢ = (g; ])1 =1

We have ¢ € X (7). Hence, Lemma 6.4a (a) (applied to T instead of 0)

yields that
(gm:lfor a].li 6 {]_,2,,..,7’1}) (25)

and

(gi,j =0foranyi,j € {1,2,...,n} satisfying i # jand (i,j) ¢ L (Tﬁl
(26)
Let 7 = ¢~ . Thus, 7 € £,. Hence, 7 is an injective map.
Leti,j € {1,2,...,n} be such that i > j. We shall show that g, ;) ,(j) = 0.

Indeed, assume the contrary. Thus, g, () ,(j) 7 0- From i > j, we obtain i #
j and therefore 7 (i) # 7 (j) (since 7 is injective). If we had (1 (i),7 (j)) ¢
L (t71), then we would have g, ;) ;) = 0 (by , applied to 77 (i) and 7 (j)
instead of i and j), which would contradict g, ;) ;) 7 0. Hence, we cannot
have (1 (i),17(j)) ¢ L (t™'). Thus, we must have (17 (i), (j)) € L (t7}).
In other words, 7 (i) < 17 (j) and 771 (17 (i)) > T~ (17 (j)) (by the definition
of L (t71)). From 7 (i) < 7 (j), we obtain 7 (j) > 7 ().

Setx =71 !(y(j))andy = ! (5 (i)). Then, x,y are elements of {1,2,...,n}.
Furthermore, y = 7! (7 (i)) > T ! ((j)) = x, so that x < y. Besides,
from x = 7! (1 (j)), we obtain T (x) = 7 (j). From y = 7! (7 (i)), we ob-
tain 7 (y) = 1 (i). Thus, T(y) =7 (i) <75 (j) = T (x), so that T (x) > 7 (y).

From x < y and 7 (x) > 7 (y), we obtain (x,y) € L (1) (by the definition of
L (7)). Thus, {x,y} € L (7) (by the definition of L (1)).
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On the other hand, the elements 7 (i),7 (j) € {1,2,...,n} satisfy 5 (i) <

1(j) and (5 (7)) > o (n(j) (since o | 7 (i) | = o (@) =i>

o1

=n
the definition of L (¢)). Hence, {1 (i),7 (j)} € L(c) (by the definition of
L(0)).
But

j=¢ ({j (f)) = 0 (7(j)))- In other words, (1 (i),1(j)) € L(c) (by

T ({x,y}) =1t ({xy}) (by the definition of )

v/

=TT = G Oy = {n().1()} € L),
S0 =0

1(j)
so that {x,y} € 7, 'L (c). Combining this with {x,y} € L(), we obtain
{x,y} € L(t)N1, 'L (o) = . Thus, {x,y} belongs to the empty set. This

is clearly absurd. Thus, we have obtained a contradiction. This shows that
our assumption was false. Hence, g, ;) ,(j) = 0 is proven.

Now, forget that we fixed i, j. We thus have shown that
<g,7(l-),,7(j) =0foranyi,je€ {1,2,...,n} satisfying i > ]) . (27)

Moreover, if i € {1,2,...,n}, then g, i) = 1 (by (25), applied to 7 (i)
instead of 7). Thus, we have shown that

(&9 = 1 forall i € {1,2,...,m}). (28)

n
Now, ¢ = (g”(i)'”(j))i,jzl (since g = (8131')2;:1)' Hence, Lemma 6.4b (b)

(applied to g7 and g, ;) ,(j) instead of g and g; ;) shows that ¢" € U (since
and hold). Hence, (¢")” € UY. Since

(gr])(f = 8’70 - gl since n o= (7*1(7 =1
—o-1
—_= g,

this rewrites as g € U".
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Now, forget that we fixed g. We thus have shown that ¢ € UY for each
g€ X( ). In other words, X (t) C U’. Hence, (X (1’))‘7_1 c (un)”
uee ' = Ul = U. This proves Lemma 6.4d (d).
(e) The definition of X (¢7) yields X (c7) = UN U™ Hence, X (07) is
the intersection of two subgroups of G (namely, of the subgroup U and of
the subgroup U™ ) Thus, X (07) is itself a subgroup of G. Therefore,
X(o1)-X(07) C X(07T).
Now, (o7p) ' = p~ 7101 = pr=lo~, so that U™ = (et '@

—~—

=p

The definition of X (¢) yields X () = U N U@) " C U. But Lemma 6.4d (c)
yields X (o) C UPT 0" = U, Combining X (¢) C U with X (0) C
U(”Tp)fl, we obtain X (¢) C U N U™ ' = x (07).
On the other hand, the definition of X (1) yields X () = UN ue) " ¢

-1

(™™, Hence, (X (1))7 " € (Ul 1)" _ utw e

-1

1,-1
— ylome) (since

(tp) ot = (o1p)"!). Combining (X (T))(fl C U (which follows from

Lemma 6.4d (d)) with (X (“L'))Uﬁ1 C U™, we obtain (X (’L’))‘Tﬁ1 cun
U™ ™ = X (7).

Now,

CX(o71) CX(o7)
This proves Lemma 6.4d (e).

(f) Let r € BoBtB. Then, r € BcBtB = Bo (BtB). In other words, there
exist ¢ € B and p € BtB such that r = cop. Consider these c and p.

Lemma 6.4c (applied to 7 instead of o) yields that the map X (7) x B —
BtB, (g,b) — gtb is well-defined and is a bijection. Hence, the element
p € BTB is an image under this map. In other words, there exists some
(g,b) € X () x B such that p = gtb. Consider this (g,b).

From (g,b) € X (1) x B, we obtain g € X (7) and b € B. From g € X (1),
we obtain g7 € (X (T))(fl C U (by Lemma 6.4c (d)), so that g7 ' € U C
B. Since ¢ ' = ((7_1)_ go~! = ogo~!, this rewrites as cgo~! € B.

———
=0

Now, 0o o th =0 ¢gtb = op,sothatop = cgo Lot _b € BotB. Now,
— ~~ =

=1 =p cB €B
r=_c¢c, 6 op € BB octB C BoTB.
~—~— ~
€B €BoTB CB

(since B is a group)
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Now, forget that we fixed r. We thus have proven that r € BotB for each
r € BoBTtB. In other words, BcBtB C BotB. Combining this with the
inclusion
B o0 tB=Bo_.1 B C BoBTB,
~—~—~ ~~
=0l €B

we obtain BcBTB = BoTB. This proves Lemma 6.4d (f).
(g) For every (g,h) € X (0) x X (1), we have

1

h eEX(o) (X(1))” CX(ot
g - (0) - (X (1)) (07)
€X(0) €(X(1))”
(since (g,h)€X(0)xX(T)) (since heX(T)

(since (g,h)eX(0)x X (1))

(by Lemma 6.4d (e)). Thus, the map
X (o) x X (1) = X (07), (g,h) > gh”

is well-defined. It remains to prove that this map is bijective. In order to

do so, we denote this map by ®. Thus, ® (g,h) = gh’ ' for each (g,h) €
X (0) x X (7). Our goal is to prove that ® is bijective.

Let us first prove that ® is surjective. Indeed, let k € X (¢7). Then,
k€ X(et) = UnN o) (by the definition of X (07)), so that k €
UNU@® " CUC B. Hence, ko = _k_o _1_ & BoB.

T~

€B B

Lemma 6.4c yields that the map X (¢) x B — BoB, (g,b) — gob is well-
defined and is a bijection. Hence, the element ko € BoB is an image
under this map. In other words, there exists some (1,d) € X (¢) x B such
that ko = uod. Consider this (u,d). From (u,d) € X (o) x B, we obtain
ueX(o)andd € B.

We havedt = d v _1 € BTB.
~— =~
€B €B

Lemma 6.4c (applied to T instead of ¢) yields that the map X () x B —
BtB, (g,b) — gtb is well-defined and is a bijection. Hence, the element
dt € BTB is an image under this map. In other words, there exists some
(h,c) € X (1) x B such that dt = htc. Consider this (h,¢). From (h,c) €
X (t) x B, we obtain h € X (7) and ¢ € B.

We have (u,h) € X(0) x X(7) (since u € X(0) and h € X (7)). Thus,

- -1
the definition of @ yields ® (u,h) = u  h° ' = u ((7*1> ho ! =
:(0*1)_1110*1 -

ucho=1, so that
® (u,h) o = uch. (29)
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We have
ko 11 =wuoc dt, = wuoch 7tc=®(u,h)orc.
~—— ~~
=ucd =T =htc  =®(uh)o
(by @D

Notice that (k,1) € X (¢7) x B (sincek € X (07)and 1 € B)and (® (u,h),c) €
X (07) x B (since @ (u,h) € X (07) and ¢ € B).

But Lemma 6.4c (applied to o7 instead of o) yields that the map X (oT) x
B — BotB, (g,b) — gotb is well-defined and is a bijection. In partic-
ular, this map is bijective, thus injective. In other words, if (g1,b1) and
(g2,b7) are two elements of X (0T) x B satisfying g10thy = g207b,, then
we have (g1,b1) = (g2,b2). Applying this to (g1,b1) = (k,1) and (g2, b2) =
(@ (u,h),c), we obtain (k,1) = (P (u,h),c) (since (k,1) € X(o1) X B
and (® (u,h),c) € X(071) x B and kotl = ® (u,h) otc). In other words,
k=® (u,h)and 1 = c. Hence, k = ® (u,h) € ® (X (0) x X (1)).

Now, forget that we fixed k. We thus have shown that every k € X (07) sat-
isfies k € @ (X (0) x X (7)). In other words, X (¢7) C ® (X (0) x X (71)).
In other words, the map & is surjective. (This proof was a more detailed

paraphrase of an argument that you included in your proof of Proposition
6.4.)

Let us now show that the map & is injective. Indeed, let (g1, 1) and (g2, h2)
be two elements of X () x X (7) satisfying ® (g1,h1) = P (g2, h2). We shall
show that (g1, h1) = (g2, h2).

We have (g1,h1) € X (0) x X (7). In other words, g1 € X (0) and Iy €
X (7).
We have (g2,h2) € X (o) x X (7). In other words, ¢ € X (0) and hy €
X (7).

The definition of ® yields ® (g1, h1) = §1 (hl)‘fl. The definition of ® yields
-1
q)(gg,hQ) =2 (hz)a . NOW,

g1 ()" =®(g1,) = P (g2,) = g ()" .

Jiy -1
Multiplying both sides of this equality by g, ! from the left and by <(h1 )7 1)
from the right, we obtain

_ -1 -1\ —1 ot
grlgi =) ((m)"") = (i)
(since the map G — G, x — 7 is a group automorphism).

But the definition of X (¢) yields X (¢) = UN utoe) . Hence, X (o) is
the intersection of two subgroups of G (namely, of the subgroup U and of
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the subgroup U(‘TP)_l). Thus, X (o) is itself a subgroup of G. The same
argument (applied to T instead of o) shows that X (7) is a subgroup of G.
From ¢, € X (¢) and g1 € X (¢), we obtain g, 'g1 € X (¢) (since X (¢) is a
subgroup of G).

From hy € X (7) and h; € X (), we obtain hph ! € X () (since X (7) is a
-1

subgroup of G), so that (hzhf)(r € (X (T))(fl

-1
Combining g;'g1 € X (o) with g;'g1 = (hahy!) € (X (1)), we

obtain g, '¢; € X (o) N (X (T))Uﬁ1 = 1 (by Lemma 6.4d (b)). In other
words, g5 le1 = 1. Thus, g1 = &.
—1 -1

Comparing gz_lgl = 1 with gz_lgl = <h2hl_1)U ,weobtain1 = (hzhl_l)a

=

-1
((7*1) hoh{'o~1 = ghyhy 'o~1. Multiplying both sides of this equality by
——

=0
o from the right, we obtain ¢ = ohyh;!. Cancelling o from this equality,
we find 1 = hphy'. Thus, by = hy.

Now, , h = ,ho).
ow, | &1, Ml (82, h2)
=g =h

Let us now forget that we fixed (g1,%1) and (g2, hy). We thus have shown
that if (g1,h1) and (go,hp) are two elements of X (0) x X (7) satisfying
D (g1,h1) = P (g2, h2), then (g1,h1) = (g2,h2). In other words, the map &
is injective. Since we also know that ® is surjective, we therefore conclude
that the map ® is bijective. In other words, the map

X (0) x X (1) = X (07), (g, h) — gh‘f1

is bijective (since this map is ®). This proves Lemma 6.4d (g). U]

Now, your Proposition 6.4 is precisely Lemma 6.4d (g), whereas your
Proposition 6.5 is exactly Lemma 6.4d (f). Hence, both Proposition 6.4
and Proposition 6.5 are proven.

e Definition 7.1: Remove the comma in “preserves the sets,”.

e Definition 7.1: After “it is the largest subgroup of X, that preserves these
sets”, I would add “(actually, it is the set of all permutations ¢ € X, that
preserve these sets)”. (This is a more concrete description of X;, and you
use it in the proof of Proposition 7.3 below.)

I would also suggest replacing the word “sets” by “intervals” whenever
you are talking about these sets.
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e Definition 7.2: At the beginning of this definition, I would add the follow-
ing sentences: “Let I be a subset of {1,2,...,n—1}. Set I° ={0,1,...,n}\
I. Again, write this set I° as {ig,i1,...,i,} with0 =iy < iy < --- < i, = n.”.

o Definition 7.2: Replace “write P; for Pi} and P;; for Pyi, j}” by “write P;
for P{i} and Pi]' for P{i,j}”'

e Definition 7.2: Replace “This gives a functor from n-dimensional vector
spaces to sets” by “This gives a functor from the category
(n-dimensional vector spaces, isomorphisms) to the category (sets, bijections)”.
(If you try to apply a linear map that is not an isomorphism to a flag, then
the resulting flag might have different dimensions.)

e Definition 7.2: After “We let P; denote the stabilizer of this flag”, add “in
G”.

e Proof of Proposition 7.3: For the sake of clarity, I would replace the two
sentences

“Let ¢ be the permutation such that ¢ € BoB. Recall from Section 6 that
this is characterised by characterised by Q; ,(; # 0, where

Qij = (WiNEj) / (Ui-1 NEj) + (UiNEjq)).

4

by

“Letoc =0 (gE, E). Then, o € ;. If we define the map 7 : G — %, as in the
proof of Proposition 6.1, then 77 (g) = § (§E,E) = 0, so that g € w1 {¢} =
BoB (as was proven in the proof of Proposition 6.1). Hence, it suffices to
show that ¢ € Xj (because then, it will follow that g € B I B C BX;B, so

S
that P; C BXB and therefore P; = BX;B). We have ¢ = ¢ (¢E, E); in other
words, each i € {1,2,...,n} satisfies Qi i) # 0, where

Qi = (WiNEj) / (Ui-1 NEj) + (UiNEjq)).

4

e Proof of Proposition 7.3: After “U, < U;_1”, add “(since a < i —1)".

e Proof of Lemma 7.4: Replace “the element ¢ = ogo—1”

b=ocgo 1.

by “the element

e Proof of Lemma 7.4: Replace “b (eg(k)> = ey(k+1) by “b (eg(k)> = b o(eg) =
=ogo—1
0gg lg(e) =0 g (&) = o (ex+enr) = eo(e) +Co(irn)”-

- =extekr1
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e Proof of Proposition 7.5: After “Put I = {i | s; € P}”, add “. Hence,
Yy < Pandthus P =BXB<P,"”.

e Proof of Proposition 7.5: Replace the sentence “Suppose that ¢ € P, and
put o = 7 (g).” by the following: “Thus, it remains to show that P < P;.
Let ¢ € P; our goal is to prove that ¢ € P;. Define the map 7 : G — %,
as in the proof of Proposition 6.1. Set ¢ = 7 (g). We showed in the proof
of Proposition 6.1 that 7! {c} = BoB. Now, from ¢ = 7 (g), we obtain
g € m ' {o} = BoB, so that BgB = BoB.”.

e Proof of Proposition 7.5: Before “If  (¢) = 0”, add the following sentences:
“Thus, it suffices to prove that ¢ € P;. Now, let us forget how ¢ was
defined. Our goal is to show that ¢ € Py for every ¢ € X, satisfying o € P.
We shall do this by induction over [ (¢):”.

e Proof of Proposition 7.5: Replace “Now suppose that / (o) > 1” by “Now
suppose that [ (o) > 0”. Also, remove the preceding sentence (“If / (¢) =1
then o = s; for some i and ¢ € Psoi € I so ¢ € P;”) completely (it is
unnecessary and complicates the structure of the proof).

e Proof of Proposition 7.5: Replace “so sy € P;” by “so s € X1 C BX|B =
P”.

e Proof of Proposition 7.5: Replace “so we can assume by induction that”
by “so the induction hypothesis yields”.

e Proof of Proposition 7.5: Remove “and thus that g € P;”.
e Proof of Proposition 7.5: I would notice that your proof of Proposition 7.5

proves a slightly slonger claim:

Proposition 7.5a. Let P be a subgroup of G such that P > B. Let I =
{i | s; € P}. Then, P = P.

Furthermore, let me state another fact (that will be used later):
Lemma 7.5b. Let I C {1,2,...,n—1}. Then, I = {i | s; € P}.

[Proof of Lemma 7.5b. Define a subset J of {1,2,...,n —1}by ] ={i | s; € P1}.
Then, | = {i | s; € Pi} D I (since every i € [ satisfies s; € ¥; C BXB =
P)).

Now, let j € J. We are going to prove that j € I.
Indeed, assume the contrary. Hence, j ¢ I, so that j € I°. Hence, E;

is one of the entries of the obvious flag E € Flag; (IF’;) Therefore, the
group Pj fixes the subspace E; (since the group P; fixes the obvious flag

E € Flag; (PZ)) In other words, pE; C E; for each p € P.
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Butj e J = {i | s; € Pi}. In other words, s;j € Pr. But we have pE; C E;
for each p € P;. Applying this to p = s;, we conclude that s;E; C E;
(since Sj € Pr). Now, Sjej = €j+1, SO that eir1 =5 ¢ € s]-E]- C E]-. This
~——
€E;
contradicts the (obvious) fact that ¢j ;1 ¢ E;. This contradiction proves that

our assumption was false. Hence, we have j € I.

Now, forget that we fixed j. We thus have shown that j € I for each j € |.
In other words, | C I. Combining this with | O I, we obtain | = I. Hence,
I=]=1{i| s; € P}. This proves Lemma 7.5b. (J]

e Proposition 7.7: Add “Let V = [F,.” at the beginning of the theorem.
(Otherwise, Flag, (V) and Flag; (V') wouldn’t canonically be G-sets.)

e Proof of Proposition 7.7: Again, I'd prefer some more details:

1. You claim that “the orbits of B in V are precisely the sets E; \ Ex_1”. In
order for this claim to be fully correct, you should set E_; = &, and allow k
to range over {0,1,...,n} (rather than {1,2,...,n} only). (Otherwise, you
are missing the orbit {0} = Eo \ E_1.)

Let me also prove this claim:

[Proof of the fact that the orbits of B in V are precisely the sets Ey \ Ex_1: For
every k € {1,2,...,n}, we have

Ex \ Ex_1 = Bey (30)
L

15Proof of : Letk € {1,2,...,n}. Hence, the vector ¢ is well-defined.
Let b € B. Then, bEy = E; and bE;_1 = E;_4 (by the definition of B). But the element b
of G is invertible (since G is a group), thus a bijection. Hence, b (Ei \ Ex_1) = bE; \bEx_ =
AN

=E; =Ex_1

Ex \ Ex—1.
Now, e € Ex \ Ex_1 (since ¢y € Ep and ex ¢ Ex_q1), and thus b ¢ € b(Ex\Ex_1) =
~—~—

€EL\Ex_1
Ex \ Eg_1.

Now, forget that we fixed b. We thus have shown that bey € Ej \ Ex_1 for each b € B. In
other words, Bey, C Ej \ Ex_1-

On the other hand, fix { € Ex \ Ex_1. Thus, { € Ex and { ¢ Ey_;. The last n — k coordinates
of { are zero (since { € Ey), but the last n — k 4+ 1 coordinates of { are not all zero (since
{ ¢ E;_1). Hence, the k-th coordinate of { must be nonzero.

Let ¢ € F?*" be the n x n-matrix whose k-th column is  whereas all its other columns are
the corresponding columns of the identity matrix (i.e., for each i # k, the i-th column of ¢
shall be ¢;). Then, the k-th column of ¢ is the vector {, whose last n — k coordinates are zero.
Thus, the last n — k entries of the k-th column of ¢ are zero. Moreover, the k-th column of ¢
is the vector {, whose k-th coordinate is nonzero. Hence, the k-th entry of the k-th column
of ¢ is nonzero. Now, the matrix c is upper-triangular (since the last n — k entries of the k-th
column of ¢ are zero, while all other columns are the corresponding columns of the identity
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Every set of the form E; \ Ex_q (with k € {0,1,...,n}) is an orbit of B in

1% The union of these orbits E; \ E;_; is the whole space lF’; (because

this union is U;_, (Ex \ Ex-1) = \Eﬁ/\i_)/ =Fy \o = IF}). Hence, these
=Fj =g

orbits E; \ E_1 are all the orbits of B in V. This is exactly what we wanted

to prove. [J]

2. You claim that “the spaces Ej are the only B-invariant subspace of V”.
This claim has a little typo in it (“subspace” should be “subspaces”), and
again needs a proof.

[Proof of the fact that the subspaces Ey (for k € {0,1,...,n}) are the only B-
invariant subspaces of V: For each k € {0,1,...,n}, the subspace Ej is
a B-invariant subspace of V (because every b € B satisfies bE;y = Ey).

Conversely, every B-invariant subspace of V has the form E; for some
ke{0,1,...,n} E Hence, the subspaces Ej (for k € {0,1,...,n}) are the

matrix) and its diagonal entries are nonzero (since the k-th entry of the k-th column of ¢
is nonzero, while all other columns are the corresponding columns of the identity matrix).
Thus, the matrix c is an invertible upper-triangular matrix. In other words, ¢ € B. Now,
cex = (the k-th column of ¢) = Z, so that { = \C’BJEk € Bey.
€

Now, forget that we fixed {. We thus have proven that { € Bey for each { € Ej \ Ex_1. In
other words, Ei \ Ex_1 C Bey. Combining this with Bey C Ej \ Ex_1, we obtain E; \ Ex_1 =
Bey. This proves (30).

16Proof. Let k € {0,1,...,n}. We must show that the set E; \ Ex_; is an orbit of B in V.
If k = 0, then this is fairly clear (indeed, if k = 0, then E; \ Ex; = {0}\@ =
—~ =~

=Ey={0} =E_=0
{0} = B0, which is clearly an orbit of B in V). Thus, we WLOG assume that k # 0. Hence,
ke {1,2,...,n} (since k € {1,2,...,n}). Hence, shows that E; \ Ex_; = Ber. Thus,
Ej \ Ex_1 is an orbit of B in V (since Bey is an orbit of B in V). Qed.
7Proof. Let Q be a B-invariant subspace of V. We must show that Q has the form Ej for some
ke {0,1,...,n}.

We have Q C V = ]F’;, = E,. Hence, there exists some k € {—1,0,...,n} such that Q C E;
(namely, k = n). Let £ be the largest such k. Thus, Q C E,.

We have 0 € Q (since Q is a subspace of V) but 0 ¢ @. If we had E;, = &, then we would
have 0 € Q C E; = @, which would contradict 0 ¢ @. Hence, we cannot have E;, = &. Thus,
we have E; # @ = E_;. Consequently, ¢/ # —1. Hence, ¢ > 0, so that ¢ € {0,1,...,n} and
therefore { —1 € {-1,0,...,n}.

But / is the largest k € {—1,0,...,n} such that Q C E; (by the definition of /). Thus, every
k € {-1,0,...,n} satisfying k < ¢ satisfies Q Z Ei. Applying this to k = ¢ — 1, we obtain
Q & Ey 1 (since £ —1 < ¢). Thus, there exists some g € Q such that g ¢ E;, ;. Consider
this 4. Combining 4 € Q C E; with g ¢ E;_;, we obtain g € E;\ E;_; = Be, (by (30)).
In other words, there exists some b € B such that 4 = bey. Consider this b. Since B is a

group, we have Bb = B (since b € B). Now, B q = Bb e) = Bey = E;\ E;_1. Thus,
B
:bL’g =

E/\E,.1=B g C BQ C Q (since the subspace Q is B-invariant).
~—

€Q
Now, let r € E;,. We will show that » € Q. In fact, if r € E; \ E;_1, then this is obvious
(because if r € E;_q, thenr € E;\ E;_1 C Q). Thus, we WLOG assume that we don’t have
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only B-invariant subspaces of V. This completes the proof. [J]

e Proof of Proposition 7.7: Replace “the point E; € Flag, (V)” by “the point
E € Flag, (V)".

e Proof of Proposition 7.7: Replace “any map” by “any G-equivariant map”.

e Proof of Proposition 7.7: You write that “It is also clear that P; < Py iff
I C J”. Maybe it is worth giving a proof of this:

[Proof of the fact that P < Pj iff I C J: We want to show that P; < Py iff
I C J. One direction of this equivalence is clear (namely: if I C ], then
P; < Pj). It remains to prove the other. In other words, it remains to prove
that if Py < Pj, then I C . So let us assume that P; < P;. We must show
that I C J.

Lemma 7.5b yields I = {i | s; € P;} C {i | s; € Pj} (since P; < P)).

But Lemma 7.5b (applied to ] instead of I) yields ] = {i | s; € P;}. Hence,
I1C{i | sie P} =]. Thus, I C ] is proven. This completes our proof. (]

e §7: I think it is worthwhile stating three additional facts as consequences
of the proof of Proposition 7.7:

Proposition 7.7a. Let V = ]F;. Let I C {1,2,...,n—1}. Then, Flag, (V) =
G/ P; as G-sets.

[Proof of Proposition 7.7a. In the proof of Proposition 7.7, we have shown
that G acts transitivitely on Flag, (V). Thus, for any X € Flag, (V), we
have Flag; (V) = G/Gx as G-sets, where Gx denotes the stabilizer of X.
Applying this to X = E (where E is the “obvious flag” defined in Definition
7.2), we conclude that Flag; (V) = G/Gg as G-sets. But the stabilizer of E
is Pr (by the definition of Py). In other words, Gg = P;. Hence, Flag, (V) =

G/ Gg = G/Pj as G-sets. This proves Proposition 7.7a. [J]

~—~—
=P;

r € Ep\ E;_1. In other words, we have r ¢ E; \ E;_1. Combining r € E; withr ¢ E;\ E;_4,
we obtainr € Ey\ (Eg\ Ey_1) C Ey_;.
Ifwehadr—q € E;_1, thenwewould haveq= _r —(r—¢q) € E;_ 1—Ey 1 C E;_q (since
N ——

€E; 4 €E;_4
E;_1 is a vector space), which would contradict g ¢ E;_;. Hence, we donothaver —g € E;_.
In other words, we have r —gq ¢ Ey_q. But r — q €E,—E;, CE/(since Episa

€ENE,1CEr  ¢E,
vector space). Combining this with r —q ¢ E;_1, we obtain ¥ —gq € E;\ E;_1 C Q. Now,
r= q +(r—¢q) € Q+Q C Q (since Q is a vector space). Hence, we have proven that
~ ——
€Q €Q

re Q.

Now, forget that we fixed ». We thus have shown that r € Q for each r € E;. In other
words, E; € Q. Combining this with Q C E;, we obtain Q = E;. Thus, Q = E; for some
ke {0,1,...,n} (namely, k = ¢). In other words, Q has the form E; for some k € {0,1,...,n}.

Qed.
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Proposition 7.7b. Let V = F. Let I C {1,2,...,n —1}. For any g € G, we
shall use the notation g for the coset ¢P; of g in G/P;.

(a) There is precisely one B-fixed point in G/P;. This B-fixed point is 1,
and will be called the basepoint of G/P;. We have

(G/P)B = {1}. (31)

(1), ifiel

(b) Leti € {1,2,...,n —1}. Then, (G/P;)" { o
&, otherwise

[Proof of Proposition 7.7b. Proposition 7.7a yields Flag, (V) = G/P as G-
sets.

We have the following general fact about group actions: If 2 is a subgroup
of a group &, and if X is a &-set, then

X% & Mapg, (6/2, %) (32)
as setspﬂ

(a) In the proof of Proposition 7.7, we have seen that the point E € Flag
)

(V)
is the unique B-fixed point in Flag, (V). In other words, (Flag, (V )B =
{E}. But Flag, (V) = G/P; as G-sets. Hence, (Flag, (V)P = (G/PI)
sets. Thus, (G/P;)? = (FlagI(V))B = {E} as sets. Hence, (G/P)P is a
1-element set (since {E} is a 1-element set).

For every b € B, we have bl = bl =b= T in G/P; (since b € B < Py).
Therefore, 1 € (G/PI)B. Therefore, (G/PI = {1} (since (G/PI) is a 1-
element set). In other words, the set of all B-fixed points in G/P; is {1}. In
other words, there is precisely one B-fixed point in G/ Py, and this B-fixed
point is 1. This completes the proof of Proposition 7.7b (a).

(b) Applying to® = G, A = P, and X = G/P;, we conclude that
(G/P)l = Map (G/P;, G/ Pp) as sets. But recall that Flag; (V) = G/P; as
G-sets. Also, Proposition 7.7a (applied to {i} instead of I) yields Flag;, (V) =

18This is easy to prove. (In fact, for each g € &, let g denote the coset g2 of g in & /2. Then, the
map Map (6/2,X) — X sending each f € Mapg (/2 X) to f (1) € X is a bijection.
Indeed, its inverse map sends each u € X% to the G-map &/ — X, g+ gu.)

36



Errata to “The Steinberg module and the Hecke algebra” January 9, 2017

G/Pyjy = G/P; as G-sets. Hence,

Pl'r\/ o~
(G/P)" =Mapg | G/P; , G/P, | =Mapg (Flag, (V), Flag, (V))

=Flagy;, (V) =Flag;(V)
~Flag, (V)

B {(a singleton), if {i} C [;

z, otherwise

instead of I and J)

_ ] (asingleton), ificI;
g, otherwise -

< by Proposition 7.7 (applied to {i} and I )

Therefore, if i ¢ I, then (G/PI)P" =~ @ and thus (G/PI)Pi = ©. Hence,
Proposition 7.7b (b) is proven in the case when i ¢ I. We thus WLOG
assume that we don’t have i ¢ I. Hence, we have i € I. We must show that

(G/Pp)" = {1}.

a singleton), ifi . = (asingleton) (since i € I).
@, otherwise

Now, (G/P;)"i = {(
Hence, (G/P;)" is a 1-element set.

But i € I, so that {i} C I and thus P;; C P;. Therefore, every p € P;
satisfies pl = pl = p = 1in G/P; (since p € P = P € Pj). In other
words, 1 € (G/P;)". Since (G/P;)" is a 1-element set, we can therefore
conclude that (G/ PI)PZ' = {1}. This completes the proof of Proposition
7.7b (b).]

Proposition 7.7c. Let V = IFj;. Let X be a parabolic G-set. For each y € X8,

set I, = {i € {1,2,...,n—1} | y € Xi}. For each y € X, let G, denote
the stabilizer of y in G.

@ If y € XP, then Py, = G,.

(b) Let y; € XB, y, € X8, g1 € G and g2 € G be such that q1y; = goy».
Then, y; = y2 and 411Gy, = 92Gy;,.

[Proof of Proposition 7.7c. (a) Let y € XB. Then, B C G, (since y € XP), so
that G, > B. Thus, G, is a subgroup of G such that G, > B.

Let I = {i | s; € G,}. Hence, Proposition 7.5a (applied to P = G,) shows
Now, letj € I,. Then, j € I, = {i € {1,2,...,n =1} | y € X"}, In other
words, j is an element of {1,2,...,n — 1} and satisfies y € X%, But P =
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Py = BX (B (by Proposition 7.3, applied to {j} instead of I). Now, s; =
Sj 1 € BZ{j}B = P]

N~~~ N~
€B Y €B

€14
From y € X'/, we conclude that py = v for each p € P;. Applying this to
p = sj, we obtain s;y = y (since s; € P)). In other words, s; € Gy. In other
words, j € {i | s; € Gy}. This rewrites as j € I (since I = {i | s; € Gy}).
Now, forget that we fixed j. We thus have proven that j € I for each j € I,.
In other words, I, C I.
On the other hand, let k € I. Thus, k € I = {i | s; € Gy}. In other words,
k is an element of {1,2,...,n — 1} and satisfies s € G,. In other words,
SkY = Y-
But P, = Py, = BE B (by Proposition 7.3, applied to {k} instead of I).
The definition of Xy, yields X, = (s) = {1,s¢}. Hence, gy = y for each
g € Xy (since 1y =y and sy = y). In other words, y € X*1H,

Now, let p € Py. Then, p € P, = By B. In other words, there exist by € B,
gek 0! and by € B such that p = b1 gb,. Consider these by, ¢ and by. Now,

p y=bg by =b gy =hy=y
~— ~~~
(since ye XPB) (since yGXZ{k})

(since y € XB).

Now, forget that we fixed p. We thus have proven that py = y for each
p € Pi. In other words, y € XP. Hence, k is an element of {1,2,...,n—1}
and satisfies y € X'. In other words, k € {i € {1,2,...,n—1} | y € XI}.
In other words, k € I, (since I, = {i € {1,2,...,n—1} | y € XEh.

Now, forget that we fixed k. We thus have proven that k € Iy for each k € I.

In other words, I C L. Combining this with L, € I, we obtain L, =1
Hence, PIy = P; = Gy. This proves Proposition 7.7c (a).

(b) Let Y = Gy be the G-orbit of y;. Then, Y is a G-subset of X?. Moreover,
Y = G/Gy, as G-sets (by the orbit-stabilizer theorem). Proposition 7.7c (a)
(applied to y = y1) yields P, = Gy,. But Proposition 7.7b (a) (applied to

(Grpy,) | = 1T} =1

B
We have Y = G/ Gy1 = G/ Ply as G-sets, and thus Y? =~ (G / PIy ) as
~—— 1 1

B _
I'=1,) yields (G/Py, )~ = {T}. Hence,

=Py,

sets. Hence, |Y?| = (G/Plyl)B‘ =1.
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Both y; and y, are B-fixed points (since y; € X? and y, € XB). We have
q1¥1 = q2y2. Multiplying both sides of this equality by g,, we obtain
92 Y1 = g3 ‘22 = y2, 50 thatyo = g5 'q1y1 € Gyr = Y.

~—— ~—

=1 €G

We have y; € Y (since Y is the G-orbit of y;). Thus, y; € Y (since y; is a
B-fixed point). We also have y, € Y. Thus, y» € Y? (since v, is a B-fixed
point).
But Y? is a 1-element set (since ‘YB] = 1). Thus, any two elements of Y8 are
identical. Applying this to the two elements y; and y, of Y5, we conclude
that y; and vy, are identical (since y; € Y? and y, € YB). In other words,
Y1 =Yz
Now, 4, 'q1y1 = y2 = y1. In other words, g, g, € Gy,. In other words,
711Gy, = 92Gy,. This completes the proof of Proposition 7.7¢c (b). (]

e Definition 7.8: Replace “the category of finite sets Y equipped with a list
(Y1,...,Y,_1) of subsets.” by “the category whose objects are finite sets Y
equipped with a list (Yj,...,Y,_1) of subsets. Such an object will be de-
noted (Y;Y1,...,Y,—1). Morphisms (Y;Y1,...,Yy—1) = (Z,Z4,...,Zy—1)
in P’ shall be maps Y — Z mapping each Y; into Z;.”

e Proof of Proposition 7.9: Replace “Consider an object Y € P’.” by “Con-
sider an object (Y;Y1,...,Y,_1) € P’ (abbreviated as Y).”.

e Proof of Proposition 7.9: Replace “Now consider a morphism f : Y — Zin
P’” by “Now consider a morphism f : (Y;Yy,..., Y1) = (Z;Z1,...,Zy1)
in P'”.

e Proof of Proposition 7.9: You write: “so there is a unique G-map G/Pj, —
G/ Pr, " The uniqueness of this G-map might need a prooﬁ

19Proof. We have I, C If(y)' Thus, Ply - Plf(v) (because if two subsets I and | of {1,2,...,n—1}
satisfy I C ], then they also satisfy P; C Pj). Hence, there clearly exists a G-map G/Pj, —
G/ Pr, (namely, the map that sends any coset gP;, of P, to the coset 8Pr, of Plf(y))' It
remains to prove that there exists at most one G-map G/P;, — G/P; )
Let V = Fj. If I is any subset of {1,2,...,n— 1}, then we have Flag; (V) = G/P; as
G-sets (because G acts transitively on the G-set Flag; (V'), and the stabilizer of the element
E € Flag; (V) is Py). In other words, if I is a subset of {1,2,...,n — 1}, then G/P; = Flag; (V)
as G-sets. Thus, if I and | are two subsets of {1,2,...,n — 1}, then

\ ingleton, if I C
Mapg | G/P , G/ | =Map (Flag; (V), Flag; (V)) :{asmgeon fIC]

=Flag;(V) =Flag; (V)

@, otherwise

(by Proposition 7.7). Hence, if I and | are two subsets of {1,2,...,n —1}, then the set
Map, (G /P, G/ P]) has at most one element. In other words, if I and | are two subsets
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e Proof of Proposition 7.9: Replace “this gives us a functor P’ — P” by
“this gives us a functor F' : P’ — P”.

e Proof of Proposition 7.9: You write: “Note that

1 ifiel

G/P Pi:M Flag. (V /F1 V)) =
(G/Pr) ap (Flag; (V), Flag, (V)) {@ otherwise.

Using this we see that FF' = 1p..”.
I would suggest replacing this by the following (more detailed) argument:
“Let Y € P’ be an object. Then, F'Y = [1yey G/ Py, so that

B
B _
(FY)* = (u G/sz) ~11 (e/m)  =1I{1}.
yeyY yeyY N————’ yeY
={1
(by (B1), apghed to I=1I,)

Hence, there exists a bijection Y — (F’ Y)B that sends each y € Y to the
element 1 of G/Pj,. Denote this bijection by 7y

We have FF'Y = (F'Y)" as sets (by the definition of the functor F). Thus,
the bijection 77y : Y — (F'Y)? is a bijection Y — FF'Y.
This bijection 7y is an isomorphism in the category P’ Fﬂ

Now, forget that we fixed Y. Thus, for each object Y € P’, we have con-
structed an isomorphism 7y : Y — FF'Y in the category P’. It is straight-
forward to see that this isomorphism 7y is functorial in Y. Thus, we have

of {1,2,...,n — 1}, then there exists at most one G-map G/P; — G/P;. Applying this to
I'=1I,and J =1 F(y) We conclude that there exists at most one G-map G/ Ply — G/ Plf(y)'
This concludes our proof.
Proof. Fix j € {1,2,...,n —1}.
For eachy € Y, we have I, = {i € {1,2,...,n—1} | y € Y;} (by the definition of I,).
Hence, for eachy € Yand i € {1,2,...,n — 1}, we have the following logical equivalence:

(iel) < (yeY).

Applying this to i = j, we conclude that for each y € Y, we have the following logical
equivalence:

(jely) <= eY). (33)
For every y € Y, we have
P- q . . .
(G/ PIy) h = {{@1,} ’ i)ftil eGrvf/yi,se (by Proposition 7.7b (b), applied to j instead of 1)
_ {{1}, 1nyY.'; (34)
a, otherwise

(because of the equivalence (33)).
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defined a natural isomorphism # : 1pr — FF’. Therefore, FF' = 1p/ as
functors.”.

e Proof of Proposition 7.9: After “The only B-fixed point in G/P; is the
basepoint”, I would add “(by Proposition 7.7b (a))”.

e Proof of Proposition 7.9: After “and the basepoint is fixed by P; iff i € 1”,
I would add “(by Proposition 7.7b (b))”.

¢ Proof of Proposition 7.9: Replace “X = F'FX” by “X = F'FX by a functo-
rial isomorphism (i.e., we have 1p = F'F)”.
More importantly, I believe that this claim should be proven. Here is my
proof:
[Proof of the functorial isomorphism 1p = F'F: Let X € P be an object. Then,
FX = (XB; XN, ..., XP-1) (by the definition of the functor F). Hence, the
definition of the functor F’ shows that F'FX = [yexs G/Pp, where we
set I, = {i€{1,2,...,n—1} | y € XV} for each y € XB. We shall now
define a map ex : F'FX — X as follows:
Let p € F'FX. Then, p € F'FX = [],cxs G/P,. In other words, p € G/P,

for some y € XB. Consider this y. Write p in the form p = 7 for some
q € G (where 7 denotes the coset qPj, of g in G/Py). Then, the element gy

From F'Y = [yey G/Ply, we obtain

1), ifyey;
a, otherwise

- (o) s @) -1

yeY yeY —_——— yeY
(1), ifyev;
a, otherwise

(by B4
= LI {1} =nr (v))
YeY;
(because the definition of 77y yields 7y (Y;) = ey, {1}).
Now, forget that we fixed j. We thus have proven that

(FY)" =y (¥))

for each j € {1,2,...,n — 1}. Hence, we have 7y (Y;) C (F'Y)" and (7y) ! ((P’Y)Pf> cy;
foreachje {1,2,...,n —1}.

Recall that Y = (Y;Yi,...,Y,_1) and FF'Y = ((F/Y)B;(F’Y)Pl,...,(F'Y)PH) (by the
definition of F). Hence, the bijection 77y : Y — FF'Y is a morphism in P’ (since 77y (Y;) C
(F'Y)" for each j € {1,2,...,n —1}), and its inverse (5y) ! : FF'Y — Y is also a morphism
in P’ (since (17y) " ((F’Y)p/) C Y foreachj€ {1,2,...,n —1}). Thus, 77y is an isomorphism

in the category P’. Qed.
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of X does not depend on the choice of g @ Hence, we can define ex (p)
to be the element gy of X. Thus, a map ex : F'FX — X is defined.

This map ex : FFFX — X is G-equivarian@ Moreover, this map ex is
injectivg™| and surjective@ Hence, the map ex is bijective, and thus is a

21Proof. Let g1 and g; be two elements g € G satisfying p = §. We must prove that g1y = goy.
We know that g; is an element g € G satisfying p = 3. In other words, ¢q; is an element of G
and satisfies p = 7. Similarly, g, is an element of G and satisfies p = . From g7 = p = 72,
we conclude that qlPIy = ’72P1y- In other words, g1 = goh for some h € Ply.
Let Gy denote the stabilizer of y in G. Then, Proposition 7.7c (a) yields P;, = Gy. Therefore,
h € P, = Gy. In other words, hy = y.
Now, g1 v =4g2 hy = qoy. This completes our proof.
—~— —~—
=q2h =y
22Proof. Let p € FF'X and ¢ € G. We must show that ex (gp) = gex (p)-
Indeed, we have p € F'FX = ]_Iyexg G/Ply. In other words, p € G/Ply for some y € XB.
Consider this y. Write p in the form p = 7 for some g € G (where 7 denotes the coset qP,
of gin G/Py). Then, ex (p) = qy (by the definition of ex). On the other hand, gp € G/P,
(since p € G/Pj,) and g \p/ = g7 = gq with gg € G. Hence, the definition of ex yields

=q
ex(gp) =8 qy =gex (p)
~—~—
=ex(p)
Now, forgot that we fixed p and g. We thus have shown that ex (gp) = gex (p) for each
p € FF'X and g € G. In other words, the map ¢x : FFFX — X is G-equivariant. Qed.
ZProof. Let p; € F'FX and p, € F'FX be such that ex (p1) = ex (p2). We shall show that
pP1 = p2.
For each y € X, let G, denote the stabilizer of y in G.
We have p; € F'FX = HyeXB G/PIy. In other words, p; € G/Ply for some y € XB. Denote

this y by y1. Thus, y; € XB and p; € G/PIyl- Write p; in the form p; = ﬂ/lyl for some

q1 € G (where qﬁ/ I denotes the coset q1Pr,, of g1 in G/ Py, ). Then, ex (r1) = q1y1 (by the
definition of ex).

We have p, € FFFX = Lyexs G/Py,. In other words, p; € G/Pj, for some y € XB. Denote
this y by y». Thus, y2 € X® and p, € G/ Py, . Write p; in the form p, = 72/ for some
g2 € G (where LTZ/ Iy» denotes the coset 921, of g in G/ Pr,.). Then, ex (p2) = qay2 (by the
definition of ex).

Now, q1y1 = ex (p1) = €x (p2) = q212. Hence, Proposition 7.7¢c (b) shows that y; = vy, and
711Gy, = 92Gy,-

On the other hand, Proposition 7.7c (a) (applied to y = y1) shows that P, = Gy,. Thus,
the equality q1Gy; = q2Gy, rewrites as q; PIyl = quIyl.

The definition of qT/ I yields qT/ by = 7Py, = q2P, = q2Pp, (since y1 = y2). Hence,

p=T'" = 0P,
The definition of g5 2 yields qi/ Lyy — qu%' Hence, p, = q—z/ I, _ 0 Plyz' Comparing this
Wlth pl = quIy2/ we Obtain pl = pz'

/1,

Now, let us forget that we fixed p; and pp. We thus have proven that if p; € F'FX and
p2 € F'FX are such that ex (p1) = ex (p2), then p; = pp. In other words, the map ex is
injective. Qed.

24Proof. Let x € X.
Let Y = Gx be the G-orbit of x. Then, Y = G/ Gy (by the orbit-stabilizer theorem). However,
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G-set isomorphism (since it is G-equivariant).

Now, forget that we fixed X. Thus, for each object X € P, we have con-
structed a G-set isomorphism ex : F'FX — X. Moreover, this isomorphism

X is a parabolic G-set; thus, the stabilizer of every element of X is parabolic. In other words,
for every ¢ € X, the subgroup Gg of G is parabolic. Applying this to { = x, we conclude
that the subgroup Gy of G is parabolic. In other words, Gy contains a conjugate of B (by the
definition of “parabolic”). In other words, there exists some g € G such that Gy D gBg L.
Consider this g.
Setz =g 'x. Clearly, z= g ' x € Gx =Y.
~—

e€G
Recall that G,y = rGyr~! for each r € G. Applying this to r = g~!, we obtain Gy-1x =

-1
g ! Gy (qil) D g 'gBg 'q = B. Since z = g~ 'x, we obtain G, = G,-1; 2 B. Hence,
Vo N~ =
DgBg~1 = =1 =1

B C G,. In other words, z € Y5 (since z € Y). Thus, G/Py, is a component of the disjoint
union Hyexg G/Ply.

Let 7 denote the coset gP;, of qin G/Pp,. Wehaveq € G/ Py, € [1,exs G/ Py, (since G/ Py, is
a component of the disjoint union [[,cxs G/ Py, ). Thus, § € [ exs G/ P, = FF'X. Therefore,

ex (7) is well-defined. Moreover, the definition of ex shows that ex (§) = gz (since § € G/ Py,

and since § = 7). Thus, ex (§) =q _z  =4qq 'x=x,sotahtx=ex | 7 € ex (F'FX).
~  ~~ —~—

=q"1x =1 €F'EX
Now, forget that we fixed x. We thus have shown that x € ex (F'FX) for each x € X. In
other words, X C ¢x (F'FX). In other words, the map ex is surjective. Qed.
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ex is functorial in X @ Hence, we have defined a natural isomorphism
¢: F'F — 1p. Therefore, 1p = F'F as functors.]

e §8: I would begin this section with the following introduction:

“We consider the localization Z ) of the ring Z at its prime ideal (p) = pZ.
Explicitly, Z,) is the subring

{% | (a,b) € Z x Z and gcd (b, p) :1}

of Q.

Lemma 8.0a. Let V be an n-dimensional IF,-vector space. Then:

(a) We have [Flag (V)| = ¥ p'.
gEY,

ZProof. Let Y and Z be two objects of P, and let f : Y — Z be a G-equivariant map. We must
prove that the diagram

FFY X,y (35)

F’Ffl lf

F'FZ —— 7
€z

is commutative.

Let p € F'FY. Then, FY = (YB; YD, .., YP1) (by the definition of the functor F).
Hence, the definition of the functor F’ shows that F/FY = HerB G/ PIy, where we set
L={ie{L2...,n—1} | yeYP} foreachy € Y5.

We have p € F'FY = Iyeys G/Py,. In other words, p € G/Pj, for some y € YB. Consider
this y. Write p in the form p = 7 for some g € G (where 7 denotes the coset 4P, of g in
G/Py,). Then, ey (p) = qy (by the definition of ¢y).

The definition of the action of the functor F on the morphism f : Y — Z shows that Ff :
YB — ZB is the restriction of the map f : Y — Z to the B-fixed points. Thus, (Ff) (y) = f (y).

On the other hand, the definition of the action of the functor F/ on the morphism Ff :
FY — FZ yields (F'Ff)(q) =q € G/Piy,, = G/Piy, (since (Ff) (y) = f (y)). Hence, the
definition of ey yields ez ((F'Ff) (7)) = qf (y). Hence,

(ezo (FEf)) | p_ | = (ezo (FE) @) = ez ((FEf) @) = 4f ()

Comparing this with

(foey)(p)=flev(p) | =f(qy) =4qf (y) (since the map f is G-equivariant),
=qy

we obtain (¢z o (F'Ff)) (p) = (f o ex) (p)-

Now, let us forget that we fixed p. We thus have proven that (¢z o (F'Ff)) (p) = (foey) (p)
for each p € F'FY. In other words, ¢z o (F'Ff) = f o¢ey. In other words, the diagram is
commutative. This completes the proof.
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(b) We have |Flag (V)| = 1mod p and |Flag (V)| ' € Z ).
(Such a W clearly ex-

[Proof of Lemma 8.0a. Fix some W € Flag (V).
ists.) For each ¢ € %,, there is a subset Y (0, W) C Flag (V) defined by
(

Y (oc,W) = {U € Flag (V) | 6 (U W) =0c}. (Here, 5§ (U W) is the Jordan
permutation, defined as in §4.)

Clearly, Flag (V) is the union of its disjoint subsets {U € Flag (V) | 6 (U, W) =0}

for all o € X, (because for each U € Flag (V), there is exactly one o € ¥,
satisfying ¢ (U, W) = ¢). Hence,

[Flag (V)| = ) |{U€Flag(V) | §(UW)=0}| =} Y (o, W)
= ~- = —
=Y(o,W) =p!@

(by Corollary 5.2a, applied
to V and W instead of W and V)

— Y PO,

TELy
This proves Lemma 8.0a (a).
(b) Lemma 8.0a (a) yields

‘F]ag (V)| = Z pl(a) — pl(id) + Z pl((r)

o€Xy VO 0EXy; _\V
=p’=1  g+£id =0modp

(since I(0)>1
(since o#id))

=1+ Z 0 =1modp.
oEXy,;
o#id
N——
=0
Hence, |Flag (V)] is coprime to p. Thus, |Flag (V)| ! € Z,). This proves
Lemma 8.0a (b). (0 ]”

You use Lemma 8.0a (b) implicitly in Definition 8.5.
Definition 8.1: Replace “ring” by “Z ,-algebra”.
Definition 8.1: Replace “Z [Flag|” by “Z, [Flag]".

§8, between Definition 8.1 and Definition 8.2: You write: “this construc-
tion gives an equivalence [V, {sets}] = {G — sets}".

This argument is non—constructivﬁ and (in my opinion) overkill. It ap-

26Namely, it seems to use

— either the fact that every category is equivalent to its skeleton,

- or the fact that any functor that is essentially surjective, full and faithful must be an equiv-

alence of categories.

As far as I know, none of these two facts has a constructive proof.
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pears to me that you are not actually using the full power of this equiv-
alence either; instead, you seem to only use the natural Z,-algebra iso-
morphism

H = Endyy (Z(p) [Flag]> = Endz  (g] (Z(p) [Flag (11:;)])
~ Endz, ¢] (Z() [G/B]),

which has an elementary and constructive proof. Namely, this isomor-
phism follows from Proposition 8.1b further below.

Before I state this proposition, let me state a simple fact from category
theory:

Proposition 8.1a. Let C and D be two categories. Let C € C be an object.
Let F: C — D is a functor. Let £¢ (C) denote the subset
{f € Endp (F(C)) | foF(k)=F(k)o f for each k € End¢ C}

of Endp (F (C)).

(@) The subset £ (C) is a submonoid of Endp (F (C)). Moreover, there is a
canonical monoid homomorphism ¢ : End(¢ p) F — £ (C) that sends each
natural transformation a : F == F to its component ac : F (C) — F (C).

(b) Consider this e. Assume that each two objects of C are isomorphic.
Then, € is a monoid isomorphism.

[Proof of Proposition 8.1a. (a) This is a simple exercise in category theory.
(b) The map ¢ is injectiv We shall now show that ¢ is surjective.

2’ Proof. Let & and B be two elements of End¢ p) F such that e («) = ¢(B). We shall show that
x = p.

Let A € C be any object. Then, the objects A and C of C are isomorphic (since each two
objects of C are isomorphic). In other words, there exists an isomorphism j : A — C in C.
Consider this j. Thus, the morphism j~! exists (since j is an isomorphism).

Recall that « € Endj¢ pj F. In other words, « is a natural transformation from F to F. Thus,
the diagram

LY

F(A)—— F(A)

F(j)J IF(]')

F(C) ——F (C)
is commutative. In other words, we have a4 o F (j) = F (j) oac. But F is a functor; thus,
F(j=') = (F(j))"". The definition of ¢ yields ¢ («) = ac. Thus,

F()og@)oF (i) =E()oace (F() " =wacF () o (F() = an

N—

— ~— . I
=u&c :(P(j))fl =w40F(j) =id

Hence, ay = F (j) oe(a) o F (j!). The same argument (applied to f instead of a) shows that
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Indeed, fix any p € £ (C). Let A € C be any object. We are going to
construct a morphism a4 : F (C) — F(C) in D.

We have
p€&(C)={f€Endp(F(C)) | foF(k)=F(k)o f for each k € End¢ C}

(by the definition of £¢ (C)). In other words, p is an element of Endp (F (C))
and satisfies

(oo F (k) =F (k)op for each k € End¢C). (36)

The objects A and C of C are isomorphic (since each two objects of C are
isomorphic). In other words, there exists an isomorphism j : C — A in C.
Consider this j. Thus, the morphism j~! exists (since j is an isomorphism).

Now, define a morphism a4 : F(C) — F(C) in D by ay = F(j)opo
F (j~1). This morphism a4 is independent on the choice of j

Now, forget that we fixed A. Thus, for each A € C, we have defined a
morphism a4 : F (C) — F (C) in D. This morphism « 4 satisfies

ap =F(j)opoF (j_1> for every isomorphism j: C — Ain C (37)

(by the definition of a4).

If A and B are two objects in C, and if f : A — B is a morphism in C, then
the diagram

F(A)-225F(A) (38)

Ba=F(j)oe(B)oF (i)

Now,
aa=F(oe@)oF (j) =F()oeB)oF (') = pa

=¢(p)

Now, forget that we fixed A. We thus have proven that a4 = B4 for each object A € C. In
other words, « = .

Now, forget that we fixed « and . We thus have shown that if « and f are two elements
of End|¢ p) F such that e () = ¢ (B), then « = B. In other words, the map ¢ is injective. Qed.

28Proof. Let j; and j, be two isomorphisms j : C — A in C. We will prove that F(j;)opo

F(jit) =F()opoF (j?).

We recall that j; and j, are two isomorphisms C — A in C. Thus, j; lojp:C = C
is an isomorphism in C as well. In particular, j;- Yoj, € EndeC. Thus, (applied to

k= ]’1*1 o jp) yields po F (]1’1 oj2> =F (]1’1 sz) o p. But F is a functor; thus, F (]1’1 oj2> =
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is commutativeiﬂ Therefore, the morphisms a4 (defined for all objects
A € C) can be assembled to a natural transformation « : F = F. Consider
this «. We have & € End ¢ p) F (since « is a natural transformation F —- F).

Moreover, the definition of € shows that € («) = ac.

But id : C — C is an isomorphism in C. Hence, (applied to A = C and

(F(j1)) ' o F (j,). But

F(iyepe  F(ji")
H,—/
=(FG) !
(since F is a functor)
=F(j1)opo (F(jr) ™
=F(jp)opo(F(i1) " oF(2)e  (F(2)
——

-
=F(jr 'op2) =F(i)
(since F is a functor)

(SlnceF j1)opo(F(j1)) " oF(j2)o(F(j2)) ' =F(j1)opo(F(jr)) "
—id
h)opoF o]z)oF(]2 )
—F( 0]2)
=F(ji)oF (jitoj2) opoF (")

=F(ji0j7 toj2)
(since F is a functor)

=F | jiojitop [ opoF (j3') =Fli)epoF (i7").
——
=id

Now, forget that we fixed j; and j,. We thus have shown that if j; and j, are two isomor-
phisms j : C - Ain C, then F(j;)opoF (}fl) = F(j»)opoF (]51) In other words, the
morphism F (j) o po F (j1) is independent on the choice on j. In other words, the morphism
a4 is independent on the choice of j (since a4 = F (j) opo F (j71)). Qed.

2 Proof. Let A and B be two objects in C. Let f : A — B be a morphism in C.

The objects A and C of C are isomorphic (since each two objects of C are isomorphic). In
other words, there exists an isomorphism j : C — A in C. Consider this j. Thus, (37) yields
ag =F(j)opoF ().

The objects B and C of C are isomorphic (since each two objects of C are isomorphic) In
other words, there exists an isomorphism i : C — B in C. Consider this i. Thus, (37) (applied
to B and i instead of A and j) yields ag = F (i) opo F (i~ )

Since i : C — B is an isomorphism, its inverse i -1 . B — C is well-defined and an
isomorphism as well. The composition i "' o foj: C — C is thus an endomorphism of C
in C. In other words, i~' o foj € Endc C. Hence, (applied to k = i~! o f o) yields
poF(ilofoj) = F(ilofoj)op. ButFis a functor; thus, F (i 'ofoj) = (F(i)) ‘o
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j = id) yields

. . =1 . .
ac =F(id)opoF (1d /) = F (id) op o F (1d_)/ = p.
=id =id =id
(since F is a functor) (since F is a functor)

Comparing this with € (¢) = ac, we obtainp = ¢ o €e (End[C,D] F > .
EEI’ld[C,D] F

Now, forget that we fixed p. We thus have shown that p € ¢ <End[C"D] F >
for each p € & (C). In other words, £¢ (C) C ¢ <End[c,p] F). In other
words, the map ¢ is surjective.

So we know that the map ¢ is both injective and surjective. Thus, ¢ is
bijective. Furthermore, ¢ is a monoid homomorphism. Thus, ¢ is a bijective
monoid homomorphism. Therefore, ¢ is a monoid isomorphism. This
proves Proposition 8.1a (b). O ]

Proposition 8.1b. We have
H = Endy4 (Z(p) [Flag]) ~ Endz, (6] (Z(p) [Flag (11?2)])
~ Endz, (¢ (z(p) [G/B])

as Z,-algebras. More precisely, the following holds:

F(f)oF (j). Now,

& OF(f)oP(j):P(i)omp(rl)oF(f)oF(j):P(i)OPOF(rlofoj>

=F(i)opoF (i) =F(i~1ofoj) =F(i~lofoj)op
=F(i)o F(i"ofoj) op=F(i)o(F(i))" oF(f)oF(j)op
— I T
=(F())"oF(f)oF ()
=F(f)oF(j)op,

so that
woF (f)oF(j)oF (j) =F(f)oF(j)opeF (') =F(f)omn.
—_— ——m———
=F(f)eF(j)op =ap

Comparing this with

wgoF(f)oF(jjo  F(i')  =agoF(f)oF()o(F() " =agoF(f),
=(F(i) "

(since F is a functor)

we obtain F (f) oay = ap o F (f). In other words, the diagram is commutative. Qed.
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(a) Recall the definition of & (C) in Proposition 8.1a (where C and D are
two categories, C € C is an object, and F : C — D is a functor). Ap-
plying this to C =V, D = A, C = Fj and F = Z, [Flag], we ob-

tain a set &5 () [Flag] (]FZ) Proposition 8.1a (a) (applied to C = V, D =
A, C = Fj and F = Z,) [Flag]) shows that this set £z, [Flag] (]FZ) is
a submonoid of End 4 ((Z(p) [Flag]> (IF’;,)), and that there is a monoid
homomorphism ¢ : Endpy 4 (Z(p) [Flag]> — gZ(p)[Flag] (]F’;) Consider

this . Then, ¢ is a Z,-algebra isomorphism Endy4 (Z(p) [Flag]) —
EndZ(p) G] (Z(p) [Flag <1Fg)]> Thus,

Endy4 (Z(p) [Flag]> = Endz (g (Z(P) [Flag (]FZ)D
as Z(p)-algebras.

(b) Consider the complete flag E = (Eo <E < - <E; = IFZ) € Flag (IF;)
defined in §4.

There is a natural isomorphism G/B — Flag (]FZ) of G-sets, which sends

each coset hB € G/B of B to the complete flag hE € Flag (]F’;) The inverse

of this isomorphism is an isomorphism Flag (IF’;) — G/B of G-sets. This
isomorphism gives rise to a Z,-module isomorphism Z [Flag (IF’;) ] —

Z,) |G/ B] and thus to a Z ,,)-algebra isomorphism EndZ(p) ] (Z(p) [Flag (PZ)} ) —
Endz (g (Z(p) G /B]). Thus,

Endz,, c) (Z(y) [Flag (F})|) = Endz,, 0 (Z(p) (6/3])

as Z,)-algebras.

[Proof of Proposition 8.1b. (a) Recall that V is the category whose objects are
n-dimensional vector spaces over [Fy, and whose morphisms are the iso-
morphisms between these vector spaces. In particular, the endomorphisms
of IF} in V are the vector space isomorphisms [F;, — F;. In other words,

Endy (]F’;,) = (the set of the vector space isomorphisms Fj — 1F’;,>

= <the set of the vector space automorphisms of IF’;)

= GL, (F,) = G.
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Let F be the functor Z,y [Flag] : V — A. Hence, F (IFZ) = (Z(p) [Flag]) <IFZ) =
Z ) [Flag <1FZ>] This Z (,-module Z [Flag (IF’;H isaZ,) [G]-module,
because the set Flag (]F’;) is a G-set. The action of G on Z ;) [Flag <]Fg>]
has the property that

F (k) = <the action of k on Z [Flag (IF’;)D (39)

foreach k € G @

Now, it is easy to see that

& (F)) = Bndz (q) (2, Flag (F})]) (40)

El

Each two objects of V are isomorphic (since the objects of V are n-dimensional
IF,-vector spaces, and since any two such vector spaces are isomorphic).
Hence, Proposition 8.1a (b) (applied to ¢ = V, D = A, C = F} and
F = Z ;) [Flag]) shows that ¢ is a monoid isomorphism. Therefore, the map

30Proof of : Let k € G. Then, k € G = Endy (IF’;,) Hence, F (k) is a well-defined endomor-
phism of F (]Fz) =2y [Flag (]FZ)} Moreover,

E ()= (2, [Flag]) (k) = Z;) [Flag (k)]

:Z(p) [Flag]

Now, fix X € Flag (]F’;) Then, (Flag (k)) (X) = kX (where the kX on the right hand side

means the image of X under the action of k € G on Flag (]F’;)). Now,

(F(K) (%) = (Z [Flag (k)]) (X) = (Flag (k)) (X) = kX.
;\H

Now, forget that we fixed X. We thus have shown that (F (k)) (X) = kX for each X €
Flag (]FZ) In other words,
F (k) = (the endomorphism of Z ;) [Flag (]FZ)} that sends each X € Flag (]FZ) to kX)

= (the action of k on Zp) {Flag (IFZ)D

(since the action of k on Z, [Flag (]Fg)} is defined as the endomorphism of

Z ) {Flag IFZ)} that sends each X € Flag (IFZ) to kX). This proves .
31Proof of : Recall that F (]FZ) = Zy) {Flag (]Fg)} Also, Endy (F (]Fg)) =

Endz(p) (F (]F;)) (because the morphisms in the category A are just the Z,-linear maps).
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¢ is bijective. Moreover, ¢ is a Z ,)-algebra homomorphism (this follows di-

Hence,

End 4 (P (IF’;)) = Endz,, F (IF’;) = Endg,, (Z(p) {Flag (]Pg)]) .

=Zy)[Flag(Fp)]

For each f € Endz, (Z(p) [Flag (IFZ)} ), we have the following chain of equivalences:

foF (k) =F(k)o f for each k € Endy (]FZ)

———
=G

<= (foF(k)=F(k)of foreachk € G)

<= | f commutes with F (k) foreachk € G

:(the action of k on Z ) [Flag(]F?,)])
(by BN

— < f commutes with the action of k on Z,, {Flag (]FZ)} for each k € G)

<= (f is G-equivariant)

= ( fisaZ [G]-linear map) (since fis a Z,-linear map)

— (f €Endz (q (2 |Flag (F})]))- (41)

Now, the definition of & (]F’;,) yields

Er (11:;) —{fe Endy (F (IF';)) | foF (k) =F(k)o f for each k € Endy, (11:;;)
=Endz, (2 [Flag(F})])

= f€kndz,, (Z(p) [Flag (IF’;)D | foF(k)=F(k)o f for each k € Endy (]F’;)

= (fGEndZ<p) 6] (Z(p) [Flag(]F;)] ))
(by @)

- {f € Endz (Z<p) {Flag (]F@D | f €Endz (g (ZW {Flag (IFZ)D}
= Endz, ) (Z(y) [Flag (F} ) ])

(since Endz(m[G] (Z(p) {Flag (]FZ)D € Endz, (Z(p) {Flag (]Fz)} )). This proves .
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rectly from the definition of the Z ,-algebra structure on Endy, 4 <Z(p) [Flag]> ).
Hence, the map ¢ is a Z,-algebra isomorphism Endy, 4 (Z(p) [Flag]) —

E7 () [Flag] <IFZ> (since ¢ is a Z,)-algebra homomorphism and is bijective).
Since [V, A] = VA and

5.2(,,) [Flag] (IFZ) =¢&r (]FZ) (since Zy) [Flag| = P)
~ Endz, ic (Z(,) |Flag (F} )] ) (by (@0)),

this rewrites as follows: The map ¢ is a Z,,)-algebra isomorphism

Endy 4 (Z(p) [Flag]) — Endz (] (Z(p) [Flag (F’;)} ) This proves Propo-
sition 8.1b (a).

(b) The orbit GE of E € Flag (IF’;) is the whole G-set Flag (]F’;) (since

the G-set Flag <]FZ> is transitive). Thus, Flag (IFZ) = GE. But the orbit-

stabilizer theorem shows that GE = G/Gg as G-sets, where Gg denotes

the stabilizer of E in G. However, the stabilizer of E in G is B (this is

essentially the definition of B). In other words, Gg = B. Altogether, we

thus have Flag (IF’;) = GE =2 G/ Gg = G/B as G-sets. This isomorphism
—

=B
is natural. Hence, there is a natural isomorphism G/B — Flag <IFZ) of
G-sets. This isomorphism sends each coset 1B € G/B of B to the complete
flag hE € Flag (]F’;) (because of how it is constructed). The remaining
statements of Proposition 8.1b (b) follow from this immediately.]

e §8: Replace “Note that Z, [X] has an obvious inner product” by “Note
that Z,) [X] (for any set X) has an obvious inner product”. (This is to
disambiguate the meaning of X; you have previously used X for functors
as well.)

o §8: Replace “Given f : Z ) [X] = Z,) [Y] we let f': Z ) [Y] = Z ) [X]”
by “Given a Z,y-linear map f : Z, [X] = Z,) [Y] we let fhe Zy) Y] —

Zp) [X]".

e §8: When you write “if f comes from a map f : X — Y”, you are slightly
abusing notation (you are using the same notation for the map f : X — Y
and the Z,-linear map Z, [X] — Z,) [Y] induced by it); it might be
good to explicitly point this out. Better yet, I suggest replacing the whole
sentence (“In particular, if f comes from a map f : X — Y then f![y] =

Y. [x].”) by the following paragraphs:
flx)=y
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“Notice that if f : Z,) [X] = Z,) [Y] and g : Z () [Y] = Z ;) [Z] are two
Z (p)-linear maps, then

(g0 f) =flog'. (42)

To each map f : X — Y between two sets X and Y corresponds a Z ;-
linear map Z,) [f] : Z(p) [X] = Z ;) [Y] defined by

<<Z(p) [f]) [x] = [f (x)] for every x € X> .

t
The adjoint <Z(p) Lf]) of this map Z,) [f] is given by

(Zp ) W= ¥ for each y € Y. (43)

xeX;

flx)=y

We shall often (by abuse of notation) denote the Z,)-linear map Z,) [f]
by f again. (This is a natural thing to do, because if we regard X and Y as
subsets of Z ;) [X] and Z, [Y] in the obvious way, then the original map
f: X — Y becomes a restriction of the map Z,,) [f] : Z(p) [X] = Z, [Y].)
Thus, the equality rewrites as

fflvl= Y. [1 for each y € Y. (44)
xeX;

f(x)=y

Next, let us state two basic facts about adjoints:

Lemma 8.1d. Let X and Y be two sets. Let f : X — Y be a bijection.
Then, (Z(p) [f ])t =Z ) | f71]. (Relying on our abuse of notation, we can
rewrite this as f' = f~1)

[Proof of Lemma 8.1d. Let y € Y. Recall that f is a bijection. Hence, there
exists exactly one x € X satisfying f (x) = y (namely, x = f~1 (y)). Thus,

Yy = Y (an equality of summation signs). Now, (43)) yields
v reff )

fx)=y
(Zp) W= ¥ M= ¥ WK=[r'o)
F=y el
——
= L
xe{f~1w}

Comparing this with <Z(p) [f_1]> vl = [f ' (y)], we obtain (Z(p) [f]) [v]
(Z FY) )
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t
Now, forget that we fixed y. We thus have proven that (Z(p) [ f]) ]

~~

(Z(p) [f_l}) [y] for each y € Y. In other words, the two maps (Z(p) [f])

and Z ) [f~1] are equal to each other on each of the elements of the ba-
sis ([y]),cy of the Z,-module Z, [Y]. Since these two maps are Z,)-
linear, we can therefore conclude that they are equal. In other words,

(Z(p) [f])t = Z [f7!]. This proves Lemma 8.1d. [ ]

Lemma 8.1e. Let P and Q be two functors from V to F. Leta : P = Q be
a natural transformation.

(@) Define a family B = (Bv)ycy of morphisms By : Z, [P (V)] —
Z,) 1Q (V)] by

(,Bv =Z ) [ay] for each V € V) .

Then, B is a natural transformation Z,,) [P] = Z, [Q].

(b) Define a family v = (7yv)ycy of morphisms vy : Z,)[Q (V)] —
Z,) [P (V)] by

(’YV = (By)f for each V € V) )

Then, 7 is a natural transformation Z,) [Q] = Z, [P].
[Proof of Lemma 8.1e. (a) This is straightforward to prove.

(b) We need to prove that if V and W are two objects of V, andifg: V — W
is a morphism of V, then the diagram

Z,) [Q(V)] =2, [P (V)] (45)
Zy) [Q<8)1l lz(m [P(3)]
Zp) QW) 5 Z

1s commutative.

So let V and W be two objects of V, and let ¢ : V — W be a morphism of
V. We must prove that the diagram is commutative.

The morphisms of V are isomorphisms of IF, -vector spaces (by the defini-
tion of V). Thus, each morphism of V is an isomorphism. In particular, g
is an isomorphism (since g is a morphism of V). Since P is a functor, this

shows that P (g) is an isomorphism and that (P (g)) ™' = P (g71).

The map P () is an isomorphism in F. In other words, P (g) is a bijection.
Hence, Lemma 8.1d (applied to X = P (V), Y = P(W) and f = g) shows
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that
(Zin (P&) =2 | 2D =24 [P(s7)]-
=P(s7)
Hence,

2 [P (s)] | = (2o P)") =24 P

N /

=(2)[P(2)])'

(since the adjoint of the adjoint of a linear map is the original map). The
t
same argument (applied to Q instead of P) shows that (Z(p) [Q( g—l)] > =

Z, Q9]
But the definition of 7y shows that

YV = = <Z(P) [av]>t .

Bv
——
=Z ) lav]

t
The same argument (applied to W instead of V) shows that yyy = (Z(p) [txw]) :

But « is a natural transformation. Hence, the diagram

P(W) -5 QW)
(s et

is commutative. In other words, we have Q (¢7!) cayw = ay o P (g71).
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But

t

-z, [ocv oP <g—1>}

N /
-~

=Zp)[av]oZ ) [P(s7")]

= (2 lwvloZg) [P (s7)]) = (Zin [P (s7)]) o (2 [av)

[ J/ N
-~

=2, [P(9)] =7y

by (applied to P (W), P(V), Q(V), Z, [P (§7")]
and Z, [ay] instead of X, Y, Z, f and g)

=Zy) [P (g)]orv.

Hence,

Zp) [P(8)] oy
= (Zi [Q(s7)] o Z lawl) = (Zp low])  (Zo [Q(s7')])

(7 @ om0 ), 000, 0(1), Zy o]
and Z ) [Q(g7!)] instead of X, Y, Z, f and g)

=rwoZyy Q)]

In other words, the diagram is commutative. This is precisely what we
wanted to prove. Hence, Lemma 8.1e (b) is proven. U ]

The natural transformations B and <y defined in Lemma 8.1e will be de-
t
noted by Z ;) [«] and (Z(p) [a]) , respectively. By abuse of notation, we

shall often denote these natural transformations  and 7 by a and &, re-
spectively. Notice that this abuse of notation is compatible with composi-
tion of functors, because of the following remark:

Remark 8.1f. (a) For every functor P : V — F, we have Z, [idp] =
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(b) Let P, Q and R be three functors from )V to F. Let a1 : P = Q and
ay 1 Q = R be two natural transformations. Then, Z,) [az] 0 Z, [a1] =
Z(P) [0(2 @) 0(1].

[Proof of Remark 8.1f. These are straightforward computations. (I ]”

4

The purpose of Lemma 8.1e is to explain the meaning of “7r177;” in Defini-

tion 8.2.

e Definition 8.2: I suggest adding the sentence “Let o € X,.” at the begin-
ning of this definition.

e Definition 8.2: For the sake of completeness, I suggest actually defining
the projection maps 79 and 711: Namely, the natural transformation 1 :
Z (o) — Flag (or, rather, its component (719), : (Z(0)) (V) — Flag (V)
for a given V € V) sends each (U, W) € (Z(c)) (V) to U, whereas the
natural transformation 71y : Z (o) — Flag (or, rather, its component (777), :
(Z(0)) (V) — Flag (V) fora given V € V) sends each (U, W) € (Z (0)) (V)
to W.

e Definition 8.2: After “that T, = T,—1”, add “(since 6 (U, W) = 6 (W, u)!
for all U, W € Flag (V)).

e Proof of Proposition 8.3: After “Consider an element f : Z, [Flag] —
Z,) [Flag]”, add “of H".

e Proof of Proposition 8.3: I would replace “well-defined numbers n,” by
“well-defined numbers n, € Z,)” (in order to avoid creating the false
impression that they must necessarily be integers).

e Proposition 8.4: Replace “Let U be a flag, let F be the set of flags W such
that W; = U, for all j # i, and puta = ) [W].” by: “Let V € V. Let
WeF

U € Flag (V). Let F be the set of all W € Flag (V) satisfying W; = U; for
allj #i. Seta= Y, [W]€ Z [Flag(V)].”
WeF

e Proof of Proposition 8.4: I would suggest replacing the “} " sign by an
W

1

Y. ” sign (seeing that you otherwise always use “ ¥ ” signs).
WeF WeF

e Proof of Proposition 8.4: Replace “so T; (a) = pa” by “so T; (a) = | |F| —1
—~

=p+1
pa, thus (T; — p)a =0".
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e Proof of Proposition 8.4: Replace “It follows that (T; — p) (T; + 1) [W] =
(T; — p) (a) = 0 as claimed” by “From (T; +1) [U] = T;[U] + [U] = a, it
~——
=a—[U]
follows that (T; — p) (T; + 1) [U] = (T; — p) (a) = 0 as claimed”. (The claim
of Proposition 8.4 does not involve W !)

Definition 8.5: Replace “We define” by “For each V € V, we define a
Z (p)-linear map”.

Definition 8.5: Replace “We also define a map” by “We also define a Z -
linear map”.

Definition 8.5: Replace “Y pl(a) " by “). ﬂaPl(U) whenever ny € Z,,)".
o o

Proof of Proposition 8.6: Replace “so e [U] = x for all W” by “so e [U] = x
for all U”.

71[/

Proof of Proposition 8.6: Replace “|Flag| '” by “|Flag (V)|

Proof of Proposition 8.6: I'd suggest more detail once again: Replace
“Next, we have

e uj = Y, ew) = |{wismu) =0t} x =y )y = pOrW).
S(UW)=c

(using Proposition 5.2 and the fact that I (¢!) = 1(0))” by “Next, observe
that each o € ¥, satisfies

and therefore

Wlsuw) =a}| =y (¢7tu)|=p'")

=Y(o-LU)

by Corollary 5.2a, applied to ¢!, V and U
instead of o, W and V.

4 (et (o) = 10)
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and thus
eTy U] = e[W] since T, [U (W]
S(UW)= o‘j;’ U=
S(UW)=0 ( ) =e[U]

”. (Notice that I replaced the “e [W].” at the end of the long equation by an
“e[U]”, as I think this is what you meant.)

e Proof of Proposition 8.6: After “we deduce that Cisa ring map”, I sug-
gest adding “(in fact, we compare eab = e(ab) = ¢ (ab)e with ean b =
={(a)e

~

E(a) eb = &(a)&(b)& and thus we find & (ab)é = ¢ (a) & (b) &, which
=¢(v)e A

leads to ¢ (ab) = ¢ (a)¢ (b) because e is a nonzero vector in a free Z,)-

module)”.

e Proof of Proposition 8.6: Replace “a¢ = ¢ (a*) ¢” by “aé = & (a') 2",

e Proof of Lemma 8.7: I would replace the last sentence of this proof by the
following (more detailed) argument:

“Since every U € Flag (]FZ) satisfies the chain of equivalences

(EW=c") = [$EW =0| < (OWE)=0)
=6(WE)
<~ |U€Y (0 E) (by the definition of Y (¢, E))
(o)

— (UeY(0)),

this rewrites as T, 1 [E] = Y. [U]. But Proposition 5.2 shows that the
uey(o)
map ¢ — g0E gives a bijection X (¢) — Y (¢). Hence, Y [U] =
UeY(o)

Y. [goE]. Hence,
geX()

T,«[El= ), [U= ), [g0E]= ) [xcE], (46)

uey(o) geX(0) xeX(o)

as required.”.
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e §8: Between Lemma 8.7 and Corollary 8.8, you write: “note that Base (V)
is canonically the same as Iso (]P’;, V) ”. I suggest adding “(in fact, there is
a canonical bijection Iso <]F”, V) — Base (V) sending each ¢ € Iso (IF’;, V>
to (¢e1, pea, ..., ¢pe,) € Base (V))” after this.

e §8: Between Lemma 8.7 and Corollary 8.8, replace “gives a map g* :
Base — Base” by “gives a natural transformation ¢g* : Base — Base (whose
V-component for any given V € V is the map

1so (Fy, V) — Iso (Fp, V), ¢ dog,

interpreted as a map Base (V) — Base (V) via the canonical bijection
Iso (IF’;, V) — Base (V))”.

o §8: Just before Corollary 8.8, I would add the following two lemmas:
Lemma 8.7a. Let e € Base <IFZ) be the basis (eq, ey, ..., e,) of IFZ. Letg € G.
(a) We have g*e = (ge1,8€2,...,8¢€n).

(b) We have 77 (g*e) = gE.

[Proof of Lemma 8.7a. (a) Set V' = IFy. Recall that the V-component of the
natural transformation ¢* : Base — Base is the map

1so (Fy, V) — Iso (Fp, V), ¢ dog,

interpreted as a map Base (V) — Base (V) via the canonical bijection

Iso (IFZ, V) — Base (V) (because this is how ¢* was defined). In other
words, every b € Base (V) satisfies ¢*b = a (a7! (b) 0 g), where « is the
canonical bijection Iso (lFZ, V) — Base (V). Consider this «. Notice that

idp}; € Iso ]F’;, IFZ = Iso <]Fg, V). The definition of &« shows that
~~

=V
x (idﬁ:g) = (idey,idey,...,ide,) = (e1,e2,...,64) = e.

Hence, a ! (e) = idpy. Now, recall that every b € Base (V) satisfies g"b =
a (e~ (b) o g). Applying this to b = e, we obtain

ge=u al (e)og | =a(g) = (ge1,8€2,...,86€n).
——
=idpy
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This proves Lemma 8.7a (a).
(b) We have g*e = (ge1,ge2,...,8¢en) (by Lemma 8.7a (a)). Applying the
natural transformation 7t to both sides of this equality, we obtain

m(g*e) = m(ge1, €2, ...,8en) =g (er,e2,...,6n) = gE.

i

=E

This proves Lemma 8.7a (b). [J ]

Lemma 8.7b. Let Y € VA be a functor. Let X be the functor Z, [Base] €
VA. Leta : X = Y and f : X = Y be two natural transformations. Let

e € Base <1F’;> be the basis (e, e2,...,e,) of Fj. Assume that « [e] = B [e]
inY (IF;) Then, a = B.

[Proof of Lemma 8.7b. Fix V € V. Let u € X (V). We are going to show
that « () = B (u). Notice that ([u]),cpase(y 18 @ basis of the Z,)-module

Z,y [Base (V)] = (z(p) [Base]) (V) = X (V).
—_——

=X
The V-components of « and  are morphisms in the category .A. In other
words, the V-components of a and f are Z,)-linear maps. Hence, both
a (u) and B (u) depend Z,-linearly on u. Hence, the equation a (u) =
B (u) (which we want to prove) is linear in u. Thus, for the proof of this
equation, we can WLOG assume that u belongs to the basis ([u]),cpase(v)

of the Z,-module X (V). Assume this.

We have assumed that u belongs to the basis ([u]),cpase(v) Of the Z(,)-
module X (V). In other words, u = [u] for some u € Base (V). Consider
this u.

We have u € Base (V). Thus, u is a basis of the n-dimensional IF,-vector
space V. Write u in the form (uq, up, ..., uy).

Let ¢ be the IF-linear map IF’; — V that sends the basis vectors eq, e, ..., e,
of ]F’; to uq,uy, ..., uy, respectively. Then, the [Fy-linear map ¢ sends the
basis (e1,€,...,en) of IFZ to the basis (uy,up,...,u,) of V. Hence, ¢ is an
isomorphism of vector spaces. In other words, ¢ is a morphism in the
category V.

Now, the morphism Base ¢ : Base <]FZ> — Base (V) (induced by the mor-
phism ¢ : F;, — V) satisties

(Base ¢) (e) = (Base¢) (e1,e2,...,6€n) (since e = (e1,€2,...,6n))
( since ¢ sends the basis vectors )

= (U, Up,..., U
( 1,42, ’ n) e1,€,...,eptoug, uy, ..., uy

= u.
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But the morphism X (¢) : X (1137;) — X (V) satisfies

X el=1((Z, |Base e| = | (Base e)| = [ul =u.
:(Zm;ase])w) o] = ((2(,) [Base]) (¢)) [e] [( f)()] [u]

(47)

But « : X = Y is a natural transformation. Hence, the diagram

Xpn

X (mg) "y (IF;)

X(‘P)l lmp)

X(V) ==Y (V)

is commutative (since ¢ : F) — V is a morphism in the category V). In
other words, we have Y (¢) o ay = ay o X (¢). Hence,

%/_/
:‘XVOX(‘P)

(Y () 0 ary) [e] = (wv 0 X (9)) [e] = av ((x (9)) [e;) = ay (u) = a(u).

=u

Hence,

w () = (Y () oury) [e] = (Y(9)) | aryle] | = (Y () (x[e]).
=

The same argument (applied to B instead of a) shows that B (1) = (Y (¢)) (B [e])-

Comparing this with a (u) = (Y (¢)) [ «[e] | = (Y (¢)) (B [e]), we obtain
~~
=ple]
a (u) = B (u). Thus, a (u) = B (u) is proven.
Now, forget that we fixed u. We thus have shown that « (1) = (1) for each
u € X (V). In other words, the V-component of « equals the V-component
of B.
Now, forget that we fixed V. We thus have proven that the V-component

of a equals the V-component of § for each V € V. In other words, o« = .
This proves Lemma 8.7b. [ ]

e Corollary 8.8: The map 7t should be defined! I guess you want to define it
as follows: “Let 7t : Base — Flag be the natural transformation whose V-
component (for any given V € V) is the map Base (V) — Flag (V) sending
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each basis (v1,v,...,v,) € Base (V) to the flag

(0 =span{} < span{v;} < span{vy,v2} < --- <span{vy,v2,...,v,} = V)
€ Flag (V).

” (At least, this is the definition you give later, in Definition 9.1.)

e Proof of Corollary 8.8: I would replace the proof by the following (clearer)
argument:

[Proof of Corollary 8.8. First of all, the diagram makes sense, since all its
arrows are well-defined natural transformations. It thus remains to prove
that it commutes. In other words, it remains to prove that T. o 1 = 7o

( Y (xa)*> .
xeX(o)

Let e € Base (IFZ) be the basis (e, ez, ..., e) of IFj. Then, 7t (e) = E.

Now, the natural transformation 7t : Z, [Base] — Z, [Flag] satisfies

nt|e] = | (e)| = [E]. Hence,

(by (@6)). Comparing this with

(no ( Y. (xa)*)) [e] =7 (( ) (xcr)*) [e]) = n( Y. (xa)*[e])
xeX(o) . xeX(0) . xeX(o)

= ¥ (w)le
xeX(o)
ﬂ( ). (x(f)*[e]) = ), 7((xo)"[e])
x€X(0) xeX(o)

xeX(o) _Qr xeX(o)
(by Lemma 8.7a (b)
i (applied to g=x0)) )
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(Tt om)[e] = (no ( ) (xa)*)) e].
xeX(o)

Hence, Lemma 8.7b (applied to Y = Z,,) [Flag], X = Z,, [Base],« = T, o7

we obtain

and p=mo | ¥ (x0)"|)yieldsthat Tiom=mo| Y (xo)*]. This
xeX(0) xeX(o)
completes the proof of Corollary 8.8. [ ]

e Proof of Corollary 8.9: After “The right hand sideis ), [gzo7TB]”, add
zeX(oT)
“(by Lemma 8.7, applied to o7 instead of )”.

e Corollary 8.10: The notion of a “reduced word for ¢” should be explained.
(It means a reduced word w € W such that 77 (w) = o, where 7 is the map
W — X introduced in §2.)

e Proof of Proposition 8.11: Replace “Now consider T?” by “Now fix i €
{1,2,...,n — 1} and consider T?".

e Proof of Proposition 8.11: After “so |A| = p+1”, add “(because the el-
ements of A are in bijection with the nonzero proper subspaces of the
2-dimensional IF,-vector space U;,1/U;_1, and because the number of the
latter subspaces is p +1)”.

e Proof of Proposition 8.11: Replace “Put
pW)=0=Uy<---<Up 1 <W<Up < ---<U,=V)
” by “For each W € A, put
pW)=0=Uy<---<U_1 <W< U4 <---<U,=V) eFlag (V).

7

e Proof of Proposition 8.11: Replace “One checks that the flags with 6 (W, U) =
s; are” by “Proposition 4.7 shows that the flags W with 6 (U, W) = s;
are”. (I have made three changes here. The replacement of “6 (W, U)”
by “6 (U, W)” is due to the fact that the explicit formula for T; shows

T;[U = Y [W]ratherthan T;[U] = Y,  [W], even though both
S(UW)=s S(WU)=s;i
formulas are equivalent upon a closer look.

e Proof of Proposition 8.11: I would replace “It follows that T; [U] = Y. [¢p (W)]”

WL,
by “It follows that ), [W]= Y. [¢(W)]. Hence, T; [U] = T;, [U] =
S(UW)=s; W#LU;
Y W= ¥ lpW)]"
S(UW)=s; W#U;
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Proof of Proposition 8.11: Replace “as claimed.” by “and thus the first
relation T> = p + (p — 1) T; holds. (Alternatively, this also follows from
Proposition 8.4.)".

Proof of Proposition 8.11: Replace “Now let 1’ be generated” by “Now
let H’ be the Z ,-algebra generated”.

Proof of Proposition 8.11: After “subject only to the relations in the state-
ment of the proposition”, add “(with the T replaced by T})”.

Proof of Proposition 8.11: Replace “and the T; generate” by “and the T;
generate H”.

Proof of Proposition 8.11: Replace “ring map 6" by “Z,-algebra map 6”.

Proof of Proposition 8.11: You write: “any reduced word u = s; ---s;,
such that 77 (u) = ¢”. Here,  denotes the map 7w : W — X from §2, not
the natural transformation 77 : Base — Flag from Corollary 8.8. I think this
should be explained.

Proof of Proposition 8.11: After “This is well-defined”, add “(i.e., inde-
pendent of the choice of u)”.

Proof of Proposition 8.11: Replace “Define a map ¢” by “Define a Z -
linear map ¢”.

Proof of Proposition 8.11: Replace “To see this, consider an element T, €
A” by “To see this, it suffices to check that T, T/ € A for each ¢ € X, (since
the Z,-module A is spanned by the ¢ (T;;) = T;, for o € E). Choose any
= Zn”.

Proof of Proposition 8.11: Replace “If o (i) > o (i+1)” by “If ¢ (i) <
oc(i+1)".

Proof of Proposition 8.11: Replace “We choose any reduced word” by “In
this case, we choose any reduced word”.

Proof of Proposition 8.11: Before the long equation that begins with “T, T/ =
T, (T )2”, I would add “T, = T;T/ and thus”.

Proof of Proposition 8.11: T would replace “pT; + (p — 1) Tys, € A” by
Phi+(p—1) T =pTi+(p—1)T; € A”.
~—~—

Proof of Proposition 8.11: I would replace “1 € A” by “1 =T/, € A”.

Proof of Proposition 8.11: Replace “injectve” by “injective”.
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e §9: I suggest using the LaTeX syntax \operatorname{St} instead of \text{St}
in order to achieve the “St” subscripts. Otherwise, these subscripts are ital-
icized whenever they appear inside propositions (because text in proposi-
tions is italicized).

e §9: At the very beginning of §9, I would add the following lemma (which
is tacitly used in the definition of w):

Lemma 9.0a. We have |G/U| = (—1)"mod p and thus |G/U| ' € Z ).

[Proof of Lemma 9.0a. Lemma 8.0a (b) (applied to V = FY) yields ‘Flag (IF’;)

1mod p and ‘Flag <1FZ> 1 € Z ).

Proposition 8.1b (b) shows that there is a natural isomorphism G/B —
Flag (]FZ) of G-sets. Hence, |G/B| = ‘Flag (]FZ)

But from |G/U| = |G| / |U| and |G/B| = |G| / |B|, we obtain
G/ul _|Gl/|u] _ [B| _ (p—1)"p"n D2

= 1mod p.

G/Bl T IGI/[Bl Tl T g0
(since Bl =(p—1)" p”(ﬂfl)ﬂ and |U| = pn(nfl)/z)
=(p-1". (48)
Thus,
G/uj=| p-1 - |G/B| = (—=1)" mod p.
N~ N——
=—1modp =lmodp

Thus, |G/ U| is coprime to p (since (—1)" is coprime to p). Hence, |G/U| " €
Zp)- This proves Lemma 9.0a. [J ]

e §9: I believe some more work is needed in order to justify the claim that
“End (Z(p) [Base]) = Z(y) [G]®” (again, an isomorphism, not a literal
equality). Here is how I would prove this claim:

Lemma 9.0b. Let 7 : G — Base (IFZ) be the map sending each ¢ € G to
the basis (ge1, ge2, ..., gen) € Base (]F’;,) This map 7 is well-defined and
bijective.

[Proof of Lemma 9.0b. 1f ¢ € G, then (ge1,gep,...,gen) € Base (F;)
Hence, the map 7 is well-defined. It remains to prove that this map 7 is

bijective.
32Proof. Let ¢ € G. Hence, g is an automorphism of the IF,-vector space ]F’;, But (eq,e2,...,¢6n)
is a basis of the IFy-vector space IF}). Thus, the image of this basis (eq,ep,...,e,) under g

must also be a basis of the IFp-vector space IFj; (since g is an automorphism of the IF,-vector
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The map 7 is injectiveﬁ and surjectiqu_—‘rl Hence, the map 7 is bijective.
This completes the proof of Lemma 9.0b. [J ]

Lemma 9.0c. Recall that for every ¢ € G, we have defined a natural trans-
formation ¢* : Base = Base, and thus we also obtain a natural trans-
formation Z,) [¢*] : Z, [Base] = Z, [Base]. The latter natural trans-

formation is an element of the ring End (Z(p) [Base]). (By abuse of nota-

tion, we can denote this natural transformation Z,) [¢*] : Z,) [Base] =
Zy,) [Base| by g* again; but we shall not do so in this lemma, because
this would risk confusing it with the natural transformation ¢* : Base —>
Base.)

Let v : Z(, [G] — End <Z(p) [Base]) be the Z,-linear map that sends

each each [g] € G to Z,) [¢"] € End (Z(p) [Base]). (This is well-defined,
since the family ([g]),c¢ is a basis of the Z,)-module Z,) [G].)

space F}). In other words, (ge1, ges,...,gen) must be a basis of the Fy-vector space Fj
(since the image of the basis (eq,€,...,e,) under g is (ge1, gez, ..., gex)). In other words,
(ge1,g€2,...,86n) € Base (]F;) Qed.

3Proof. Let g € G and h € G be such that T (g) = T (k). We shall show that ¢ = .

The definition of 7 yields T(g) = (ge1,g¢€2,...,8¢en) and 7 (h) = (heq, hey, ..., he,). Thus,
(ge1,8€2,...,86n) = T(g) = T(h) = (hey, hey, ..., hey). In other words, ge; = he; for each
i€{1,2,...,n}. Butgand h are elements of G = GL, (F,). Thus, g and & are [F-linear maps.
These two [Fp-linear maps are equal to each other on each entry of the basis (e1,e2,...,en)
of the IF,-vector space ]Fg (since ge; = he; for each i € {1,2,...,n}). Hence, these two maps
must be identical. In other words, g = h.

Now, forget that we fixed g and /. We thus have shown that if g € G and h € G are such
that 7 (g) = 7 (h), then ¢ = h. In other words, the map 7 is injective. Qed.

34Proof. Let b € Base (]Fg) Thus, b is a basis of the IF,-vector space IF,. Hence, b is a list of

dim (]FZ) = n elements of ]F’;, Write b in the form (b1, by,...,b,). (This is possible, since b
is a list of n elements of ]Fg). Thus, (by,by,...,b,) is a basis of the IF,-vector space ]Fg (since
(b1,by, ..., by) = b € Base (JFg)).

Let ¢ : F; — Iy be the unique Fy-linear map that sends each ¢; (with i € {1,2,...,n})
to b;. (This is well-defined, since (eq,¢p,...,€,) is a basis of the IF,-vector space ]F’;.) Then,
ge; = b; foreachi € {1,2,...,n}. Hence, the map g sends the basis (e, ey, ..., e,) of ]FZ to the
list (b1, b2, ..., by). Therefore, the map g sends a basis of IFj; to a basis of I}, (since both lists
(e1,€2,...,en) and (by,by,...,by) are bases of ]FZ). Thus, g is an isomorphism of IF,-vector
spaces between IF}; and 7. In other words, g is an automorphism of the IF,-vector space IF}.

P p p P
Thus, g € Aut (]F;) = GL, (IFp) = G. The definition of T yields 7 () = (ge1,8¢2,...,8en) =
(b1,by,...,by) (since ge; = b; for each i € {1,2,...,n}). Thus, T(g) = (b1, by, ..., by) = b.

Hence,b=7| g | € 7(G).
N~
€G

Now, forget that we fixed b. We thus have proven that b € 7 (G) for each b € Base (]F’;,)

In other words, Base (F? | C 7 (G). In other words, the map T is surjective. Qed.
p P ]
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This map 7 is a Z,)-algebra isomorphism Z,) [G]°* — End <Z(p) [Base]).
Thus, End (Z(p) [Base]> = Z(p) [G]? as Z,)-algebras.

[Proof of Lemma 9.0c. Consider the map 7 : G — Base <]F’;> defined in

Lemma 9.0b. Lemma 9.0b shows that this map 7 is well-defined and bijec-

tive. Hence, T is an isomorphism of sets. Thus, it induces an isomorphism
Zpy |t : Zp) [G] = Zp [Base (113’;,)} of Z ,-modules.

Let e € Base <1Fg> be the basis (e, e,...,e,) of IF;. Then,

gfe=1(g) for every g € G (49)
Bl
For every u € Z ) [G], the element v (1) € End (Z(p) [Base]) can be ap-
plied to the element le] € Z, [Base < )] (Z(p) Base]) (IF”), and the

result is a new element 7y (u) - [e] of (Z [Base| > <]F =Z [Base (P’;)}
We have

v (u)-e] = (Z(p) [T]) (u) for every u € Z,) [G] (50)

35 Proof of @): Let g € G. Then, 7(g) = (ge1,8¢€2,--.,8en) (by the definition of 7). Comparing
this with g*e = (ge1,gez,...,gen) (by Lemma 8.7a (a)), we obtain g*e = 7(g). This proves

(49).
36 Proof of : Let u € Z(, [G]. We must prove the equality @)

Both vy (u) and <Z(p) [T]) (u) depend Z,-linearly on u. Hence, the equality is Z -

linear in u. Thus, for the proof of this equality, we can WLOG assume that u belongs to the
basis ([g]).cq of the Z(,-module Z,) [G]. Assume this. Hence, u = [g] for some g € G.

Consider this g.

-

Now, 7 ( u ) = 7(8]) = Z() [g"] (by the definition of 7). Hence, «(u) -[e] =
v N—~—
(8] =Z,[8"]

(Zs) el = | g'e | =[7(s)
o
On the other hand, (z(p) ) ) = (z(p) [T]) (Ig]) = [t (g)] (by the definition of
=[g]

Z ) [t]). Comparing this with v (u) - [e] = [T (g)], we obtain 7y (u) - [e] = (Z(p) [T]) (u).
This proves (50).
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The map 7 is injectivqﬂ and surjectivﬂ Hence, the map 7 is bijective.
Also, 7 is a Z ,)-linear map Z,) [G] — End (Z(p) [Base]). In other words,
7 is a Z,)-linear map Z, [G]** — End (Z(p) [Base]) (since Z ) [G]F =
Z,) |G] as a Z(,)-module).

p
We have 7 (1) = idz, , [Base] m Also, recall that any ¢ € Gand h € G
satisfy
(gh)" = h*g*. (51)

3Proof. Let u € Kervy. Thus, u € Z,) (G| and v (u) = 0. But yields y (u) - [e] =

(Z(p) [T]) (u). Hence, (Z(p) [T]) (u) = (u)-[e] =0, so that u € Ker (Z(p) [T])
=0
But the map Z ) [7] is an isomorphism. Thus, Z,) [7] is injective, so that Ker (Z(p) [T]) =

0. Hence, u € Ker (Z(p) [T]) =0, so that u = 0.

Now, forget that we fixed u. We thus have shown that # = 0 for each u € Ker . In other
words, Ker y = 0. Hence, the map y is injective (since 1y is Z,)-linear). Qed.

38Proof. Let X be the functor Z ) [Base] € VA. Thus, X (IF;) = (Z(p) [Base]) (IF;) =
Z ) {Base (]F”)] Hence, [e] € Z {Base (]F”)} =X (]F”)

Let o € End( ). Then, « can be applied to the element [e] of X (]F’;) The result is an
element « | (IF ) {Base (]FZ)} .
The map Z,) [1] : Z, [ } = Zp) {Base (]FZ)} is an isomorphism, and thus is surjec-

tive. Hence, Z [Base( )] = (Z(p) [T}) (Z(p) [G]) Thus, ae] € Z ;) [Base (]Fg)} =
(Z(p) [T]) (Z(p)[ }) In other words, there exists an u € Z,) [G] such that afe] =
(Z(p) [T]) (u). Consider this u.

We have « € End X and 7 () € End | Z(, [Base] | = End X. Thus, both « and 7y (u) are
=X
elements of End X. In other words, both « and -y (u) are natural transformations X = X.

Also, a [e] = (Z(p) [T]) (u) =y (u)-[e] (by ). Hence, Lemma 8.7b (applied to Y = X and

B = (u)) yields « = v d [ € (Z(p) [G])
EZ(p)[G]

Now, forget that we fixed a. We thus have proven that « € (Z(p) [G]) for each « €
End (X). In other words, End (X) C v (Z(p) [G]) Since X = Z,) [Base], this rewrites as
End (Z(p) [Base]) Cy (Z(p) [G]) In other words, the map 1 is surjective. Qed.

3 Proof. The definition of 7y yields 7y (1) = Z

0 | X | =Zp) [idpase] = idz () [Base] (by Remark

=idpase

8.1f (a), applied to P = Base). Qed.
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Now, any v € Z,, [G] and u € Z,,) [G] satisfy

v (uv) = (v) 0 (u) (52)

In other words, 7 is multiplicative when viewed as a map Z, [G]P —
End (Z(p) [Base]) (because uv is the product of v and u in the Z,)-algebra
Z
(

p) [G]°P). Combining this with (1) = idy () [Base], We conclude that v

is a Z,)-algebra homomorphism Z,) [G]** — End <Z(p) [Base]) (because
v is a Zp)-linear map Z, [G] — End (Z(p) [Base])). Since vy is bijec-
tive, we thus conclude that +y is a Z,-algebra isomorphism Z [G]P —
End (Z(p) [Base]). Thus, End (Z(p) [Base]) = Zp) [G]? as Z,)-algebras.
This proves Lemma 9.0c. [J ]

e Proposition 9.2: Replace “The map” by “The Z,)-linear map”.

e Proof of Proposition 9.2: After “in the i'th space”, add “(whenever v €
Base (V))".

40Proof of (52): Let v € Z ) [G] and u € Z ;) [G]. We must prove the equality 1} This equality
is Zp)-linear in each of u and v (since 1y is a Z,)-linear map). Hence, for the proof of this
equality, we can WLOG assume that both u and v belong to the basis ([g]) gec Oof the Z -
module Z ;) [G]. Assume this. Thus, u = [g] and v = [h] for some elements ¢ € Gand h € G.
Consider these g and /. We have

T = | B = (gh)
=[g] =[] =[gh]
=Z) | (8h) (by the definition of )

~——
—h*o*
oy E)

Comparing this with

el s W e s) =2 ez ]

(by the definition of )  (by the definition of 7)
=Zy [h" g7

by Remark 8.1f (b), applied to P = Base, Q = Base, R = Base,
oy =g and ap = h*

=Zgy) g,

we obtain 7 (4v) = 1y (v) oy (u). This proves (52).
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e Proof of Proposition 9.2: Replace “a reduced word s;, - --s; for X" by “a
reduced word s;, - - -s; for ¢”.

e Proof of Proposition 9.2: Replace every appearance of “&” in this proof by
IICII'

e Proof of Proposition 9.2: After “(—1)" u = ¢ (T,) u”, add “(since (—1)" =
sgn (o) = ¢ (Ty))".

e Proof of Proposition 9.2: After “It follows that §( byu = ¢(a)g(b)pu”,
add “(since aby = ¢ (ab)u and thus ¢ (ab) u a by = alb)u =
(b)
=¢(b)u

¢(b) ap =¢b)&(a)p=_E(a)g(b)p)”.

e Proof of Proposition 9.2: You write: “(This could also have been deduced
from Proposition 8.11.)”. A few details about this deduction would be
useful. Namely, here is how it works:

[Proof of the fact that ¢ is a ring map: Clearly, we have

(-1)?=p+(p-1)(-1),
(D (1) (-1) = (-1)(-1)(-1),
(D) (1) =(-1)(-1).

Thus, the relations in Proposition 8.11 remain valid if each Tj in them is
replaced by —1. Hence, Proposition 8.11 shows that there exists a unique
Z () -algebra homomorphism 7 : H — Z ;) that sends each Ty to —1. Con-
sider this 77. Now, if o € X, then we can fix any reduced word s s;, - - - 5;
for 0, and then we find

r

Ui \Tg_/ :U(TilTiz"'Tir) :U(Til)ﬂ(Tiz)“‘ﬂ(nr)
=T;, Tiy-+Ti,
(by Corollary 8.10)

(since 11 is a Zp)-algebra homomorphism)

= (D=1 (1)

r t;r,nes
<since 1 <T~ ) = —1 for each p (by the definition of 17)>
= (=1)" = sgn(0)
(smce 0 =s; s, - -s;, and thus sgn (o) = (—1)")

=¢(To)-
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Thus, we have found that 1 (T,) = ¢ (Ty) for each o € X,,. In other words,
the maps 77 and ¢ are equal to each other on the basis (Ty),.y, of the Z,)-
module H. Hence, these two maps 77 and ¢ must be identical (since they are
both Z ,)-linear). In other words, ¢ = . Thus, ¢ is a ring homomorphism
(since 7 is a ring homomorphism). [J ]

e Proof of Proposition 9.3: This proof has several flaws. In particular, the
expression “(c*7t! (U], [W])” makes no sense, and the formula 7to* ! =
|B/U| pl(‘flp ) Ty is false. Let me show a correct (and more detailed) proof:
[Proof of Proposition 9.3. Fix o € £,. Let V € V, and let W € Flag (V). For
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each U € Flag (V), we have

(mo*nt (W), [U])

_ <m* )y [wuu]> since 7' W] = Y [w]
(V)

weEBase weBase(V);
T(w)=W m(w)=W
- ¥ {w [wugl>= Y (rewL) = L drewu
wEBase(V);<_H/*_/ weBase(V); —s e weEBase(V); A
n(w)=w W) nw)=W ~ “orewiu 7(w)=W

= (the number of all w € Base (V) such that 7 (w) = W and 7 (c*w) = U)
= (the number of all (v1,vy,...,v,) € Base (V) such

that 77 (v1,0p,...,04) =Wand 7t | 0" (v1,02,...,04) | =U

7

= (00(1) Vo) Vo)
here, we have substituted (v1,vy,...,v,) for the index w,
since each element of Base (V) is an n-tuple

= (the number of all (vq,vy,...,v,) € Base (V) such

that 7T (v1,02,...,0n) = wj and 7 (vg(l),vg(z),...,vg(no =Uu

<= (W;=span{vy,0vy,...,0;} for all i) — (Ui:span{00(1;;0(2),...,00(1-)} for all 1,)
= (the number of all (vq,vy,...,v,) € Base (V) such

that (W; = span{v1,v,...,0v;} foralli))
and <Ui = span {va(l),v[,@), e ,va(i)} for all z>>

= (the number of all bases (v1,vy,...,v,) of V such that for all i

J/

we have U; = span {va(l),va(z), . .,vg(i)} and W; = span {vy, v, ... ,vi}>
— {(P —1)" ), s (), (W) = o;

0, otherwise
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(by Corollary 5.5). Hence,

_n) o) = o
et W)= Y {ép DR o (Ul ) = e gy
ucriag(v) (0 otherwise
= Y -
UeFlag(V)
s(lul,[Wl)=c
_ —_ 1) l(U’lp) u
=(p—1)"p B ]
UeFlag(V);
S((ul,wl)=c
= L
- UeFlag(V);
S(W][U)) =0
(because for each U€cFlag(V),
the condition (6([U],[W])=0) is
equivalent to ((5 ( [HHQ]):U”)
(since 8([W],[U])=5([U],[W]) ™)
-1
=(p-up Y
UeFlag(V);
S(W[U) =0~
Comparing this with
n o1 n o1
-1 T =y,
— U€Flag(V);
= B [j o1
U€eFlag(V); s(Wl,[U])=c
s(wllul)=c"

we obtain ro* 7t [W] = (p —1)" pl(‘flp)Taq (W]
Now, forget that we fixed W. We thus have shown that wo*n! [W] =
(p—1)" pl(‘T_lp)T 1 [W] for each W € Flag (V). In other words, the two

g
maps 7to*7tt and (p —1)" pl(‘r_lp ) T,-1 are equal to each other on the basis
(IW])wepiag(v) of the Z,-module Z ;) [Flag (V)]. Since these two maps
are Z(,)-linear, we can thus conclude that they are identical. In other

n 1

words, tortt = (p — 1)" p' (00T,

Now, forget that we fixed . We thus have shown that

no*rnt = (p—1)" pl(g_lp)T = for each 0 € L. (53)

ag

On the other hand, every ¢ € %, satisties

L(op) =1 (c7p) (54)
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£l
Now,
e = nwr'
=r|G/u|™! Y sgn(o) ot <since w=|G/u|™ Y sgn (o) a*)
ey, TELy
=|G/u™" Y sgn(o) s
ver, T~ e
=sgn(e 1) (-1 ()1,
(by G3))
=|G/ul™ ) sgn ((7_1> (r—1)" pl(‘f_lp)Tg,l
cEL,
=|G/ul" (p—1)" ) sgn ((7’1) plletor
— oeEL,
_|G/U] ~ 4
~|G/B| =X sgn(o)p!°) T,

(by ) (here, we have substituted o for o~}
in the sum, since the map >, —X;,, c—0~
is a bijection)

1

_1|G/U] I
=|G/U 1|— sen (o (p) T,
:\G7B|*1 /(')
(since I(Up):l(o_lp)
(by G9)
= |G/B|! Y sgn (o) pl(‘flp)Tg.
oeEL,

This proves Proposition 9.3. [J ]

e Proof of Proposition 9.4: Replace “First, we have” by “Proposition 9.3
yields”.
e Proof of Proposition 9.4: The first chain of equalities in the proof needs

some justification (e.g., why do we have ) pl (e7lo) — 11, X (¢ 'p)|, and
g

why is |G/B| ' |11 X ()| = 1 ?). I would actually suggest the following
alternative argument:

Proposition 8.1b (b) shows that there is a natural isomorphism G/B —

Flag (]FZ) of G-sets. Hence, |G/B| = )Flag <IFZ)

fies |Flag (V)| = ¥ p'@ (by Lemma 8.0a (b)). Applying this to V = FF7,
oeL,

. But every V € V satis-

“Proof of (54): Let o € %,. Then, Corollary 2.19 (a) yields I (07 1p) = n(n—1) /2 —1(c). But
Corollary 2.19 (b) yields I (cp) = n(n—1) /2—1(0). Thus, [ (¢c71p) =n(n—1) /2—1(0) =
I (op). This proves .
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we obtain ‘Flag (IF’;) = ) pl(g). The map X, — X, 0 — (7_1p is a
oeYX,
bijection (since ¥, is a group). Hence, we can substitute o !p for ¢ in the
sum Y., p'(%). We thus obtain ¥ p'?) = ¥ pl(‘flp). Hence,
cery, oeyr, oeyr,

=L /=y . (55)

oeX, oeX,

IG/B| = ’Flag ()

Now, Proposition 9.3 yields
e = \G/B\f1 Z sgn (0) pl(”_lp)TU,
TEY,

Applying the map ¢ to both sides of this equality, we find

Ele)=2¢ (\G/Brl Y sgn(0) pl<"”f’>n)

TEY,

= -1 son Z(U_l )
GBI Y sen(o) ) g(my)

oeYX, -

=sgn(c)
(by the definition of &)
(since the map ¢ is Z(p)—linear>
— -1 _ -1
=|G/B|™" Y sgn (o) p'l" ) sgn (o) =|G/B| N L (sgn () p'(7 P
TELy, rex, "

=1

=G/B|™" Y (sgn(0))2p!(7 )

oEL),

—1G/B ' ¥ p) = |6/BI Y |G/B| = 1.
oEY,
e e
=|G/B]
(by E5))

e Proof of Proposition 9.4: Replace “Z (¢) u” by “Z () u”.

e Proof of Proposition 9.4: 1 would replace “As es; = 7'y we see that
! (Mgt) = image (7t'u) = M{,” by the more detailed argument “As Mg; =

! 7

image (1), we see that 7! (Mg;) = image | 7'y | = image (e;) = M§,”.
SN~~~
=est

e Proof of Proposition 9.4: I would replace “Thus, if we let B be the re-
striction of 7' to Ms;, we see that B gives an epimorphism Mg, — M,”
by “Thus, 7' restricts to an epimorphism 8 : Mg — M{,”. (This is both

shorter and also explains unambiguously what the codomain of g is.)
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e Proof of Proposition 9.4: After “As the map ! = e restricts to 1 on Mg;”,
I would add “(because e is idempotent, and Msg; is its image)”.

e Proof of Proposition 9.5: I don’t understand the first sentence of this proof:
Why does the Yoneda isomorphism exist? (I only know Yoneda isomor-
phisms for functors to Set, not for functors to .A; but even if I were to
write down the obvious generalization, there remains the question why
Zy) [Base| is a Hom-functor.) And supposing that the Yoneda isomor-
phism exists, why does it yield that Z,) [Base] is projective?

What I do see is that the functor Z,) [Base] is “pointwise projective”, in
the sense that the image of each object of V under this functor is a pro-
jective Z,-module. (This is obvious, because the image of an object V €

V under the functor Z,) [Base] is the Z,-module <Z(p) [Base]) (V) =
Z,) [Base (V)], which is free and therefore projective.) Therefore, the func-
tor Msg; is “pointwise projective” as well (since, as youpoint out, Mg; (V) is

a direct summand in (Z(p) [Base]) (V).

e Proof of Proposition 9.5: After “the image of es;, which is a summand in
Z ;) [Base|”, I suggest adding “(since es; is idempotent)”.

e Proof of Proposition 9.5: After “Meg; is also the image of a self-adjoint
idempotent on Z,) [Flag]”, I suggest adding “(namely, of ¢)”.

e Proof of Proposition 9.5: After “the rank of Mg; is the trace of e”, I suggest
adding “(since Msg; is the image of the idempotent endomorphism e)”.

e Proof of Proposition 9.5: After “the map T, is the identity”, I would add
“(by Corollary 4.6)".

e Proof of Proposition 9.5: I would suggest replacing “with trace |Flag| =
|G/B|” by “with trace

(since V =, as Fy-vector spaces)

since Proposition 8.1b (b) shows that there is a
natural isomorphism G/B — Flag (lF’;) of G-sets

|Flag (V)| = ‘Flag (]FZ)
= |G/B|

e Proof of Proposition 9.5: I suggest replacing “Next, note that Z, [Flag| =
Ms; & N” by “But e is idempotent; thus, Z ) [Flag] = image (e) & image (1 —¢) =

:MSt :N
Ms; ® N”.
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