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Abstract. We study integrality over rings (all commutative in this
paper) and over ideal semifiltrations (a generalization of integrality
over ideals). We begin by reproving classical results, such as a ver-
sion of the “faithful module” criterion for integrality over a ring, the
transitivity of integrality, and the theorem that sums and products
of integral elements are again integral. Then, we define the notion
of integrality over an ideal semifiltration (a sequence (Ip, I1, I, . ..) of
ideals satisfying Iy = A and I, C I, for all 4,b € IN), which gen-
eralizes both integrality over a ring and integrality over an ideal (as
considered, e.g., in Swanson/Huneke [5]). We prove a criterion that
reduces this general notion to integrality over a ring using a variant
of the Rees algebra. Using this criterion, we study this notion further
and obtain transitivity and closedness under sums and products for
it as well. Finally, we prove the curious fact that if u, x and y are three
elements of a (commutative) A-algebra (for A a ring) such that u is
both integral over A [x] and integral over A [y], then u is integral over
A [xy]. We generalize this to integrality over ideal semifiltrations, too.
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Introduction

The purpose of this paper is to state (and prove) some theorems and proofs re-
lated to integrality in commutative algebra in somewhat greater generality than
is common in the literature. I claim no novelty, at least not for the underlying
ideas, but I hope that this paper will be useful as a reference (at least for myself).

Section (1] (Integrality over rings) mainly consists of known facts (Theorem
Theorem Theorem and a generalized exercise from [4] (Corollary
with a few minor variations (Theorem and Corollary [T.13).

Section [2| (Integrality over ideal semifiltrations) merges the concept of inte-
grality over rings (as considered in Section [1) and integrality over ideals (a less
popular but still highly useful notion; the book [5] is devoted to it) into one
general notion: that of integrality over ideal semifiltrations (Definition 2.3). This
notion is very general, yet it can be reduced to the basic notion of integrality
over rings by a suitable change of base ring (Theorem [2.11). This reduction al-
lows to extend some standard properties of integrality over rings to the general
case (Theorem Theorem 2.14 and Theorem 2.16).

Section 3| (Generalizing to two ideal semifiltrations) continues Section 2} adding




Integrality over ideal semifiltrations July 14, 2019

one more layer of generality. Its main results are a “relative” version of Theo-
rem (Theorem and a known fact generalized once more (Theorem [3.4).

Section [ (Accelerating ideal semifiltrations) generalizes Theorem (and
thus also Theorem a bit further by considering accelerated ideal semifil-
trations (a generalization of powers of an ideal).

Section |5/ (On a lemma by Lombardi) is about an auxiliary result Henri Lom-
bardi used in [6] to prove Kronecker’s Theoremﬂ Here we show a variant of this
result (generalized in one direction, less general in another).

This paper is supposed to be self-contained (only linear algebra and basic
knowledge about rings, modules, ideals and polynomials is assumed).

All proofs given in this paper are constructive.

Note on the level of detail

This is the long version of this paper, with all proofs maximally detailed. For all
practical purposes, the brief version [7] should be sufficient (and quite possibly
easier to read).

Note on an old preprint

This is an updated and somewhat generalized version of my preprint “A few
facts on integrality”, which is still available in its old form as well:

e brief version:
https://www.cip.ifi.lmu.de/ grinberg/IntegralityBRIEF.pdf

e long version:
https://www.cip.ifi.lmu.de/ grinberg/Integrality.pdf .

Be warned that said preprint has been written in 2009-2010 when I was an
undergraduate, and suffers from bad writing and formatting.
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Irena Swanson in particular for making her book [5] freely available (which
helped me discover the subject as an undergraduate).

!Kronecker’s Theorem. Let B be a ring (“ring” always means “commutative ring with unity”
in this paper). Let ¢ and h be two elements of the polynomial ring B [X]. Let g, be any
coefficient of the polynomial g. Let hig be any coefficient of the polynomial h. Let A be a
subring of B which contains all coefficients of the polynomial gh. Then, the element g1z of
B is integral over the subring A.
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0. Definitions and notations

We begin our study of integrality with some classical definitions and conventions
from commutative algebra:

Definition 0.1. In the following, “ring” will always mean “commutative ring
with unity”. Furthermore, if A is a ring, then “A-algebra” shall always mean
“commutative A-algebra with unity”. The unity of a ring A will be denoted
by 14 or by 1 if no confusion can arise.

We denote the set {0,1,2,...} by N, and the set {1,2,3,...} by N™.

Definition 0.2. Let A be a ring. Let M be an A-module.
If n € N, and if mqy,my,...,m, are n elements of M, then we define an
A-submodule (mq,my, ..., my,) , of M by

n
(mq,my, ..., My) 4 = {Zaimi | (a1,a2,...,4,) € A”}.
i=1

This A-submodule (my,my, ..., my) 4 is known as the A-submodule of M gen-
erated by mq,my,..., my, (or as the A-linear span of my,my, ..., my). It con-
sists of all A-linear combinations of my,my,...,m,, and in particular con-
tains all n elements mq,my,...,my,. Thus, it satisfies {mq,my,...,my} C
(my,my, ..., My) 4.

Also, if S is a finite set, and m; is an element of M for every s € S, then we
define an A-submodule (ms | s € S) 4, of M by

(mg | s€S>A:{Zasms ] (ﬂs)sg_qEAS}-

seS

This A-submodule (m; | s € S), is known as the A-submodule of M gen-
erated by the family (ms), ¢ (or as the A-linear span of (ms), g). It consists
of all A-linear combinations of the elements ms with s € S, and in particular
contains all these elements themselves.

Of course, if mq1,my, ..., m, are n elements of M, then

(my,my,...,my) = (ms | s€{1,2,...,n}),.

Let us observe a trivial fact that we shall use (often tacitly):

Lemma 0.3. Let A be aring. Let M be an A-module. Let N be an A-submodule
of M. Let S be a finite set; let m; be an element of N for every s € S. Then,
(ms | seS), CN.
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Proof of Lemma [0.3, We have ms; € N for every s € S. Thus, ¥ asms; € N for

sES
every (as),.s € A° (since N is an A-submodule of M, and thus is closed under
A-linear combination). But the definition of (m; | s € S) , yields

(ms | seS)A:{Zasms | (as)seseAs}gN

seS

(since Y asms € N for every (as),.q € A®). This proves Lemma O
s€S
Definition 0.4. Let A be a ring, and let n € IN. Let M be an A-module. We
say that the A-module M is n-generated if there exist n elements mq, my, ..., my,
of M such that M = (my,my,...,my,) 4. In other words, the A-module M is
n-generated if and only if there exists a set S and an element m; of M for every
s € Ssuchthat|S|=nand M = (ms | s €S),.

We shall use the standard basic properties of submodules of algebras, such as
the following:

Proposition 0.5. Let A be a ring. Let B be an A-algebra.

(a) For any two A-submodules U and V of B, we let U - V denote the A-
submodule of B spanned by all products of the form uv with (1,v) € U x V.
This A-submodule U -V is also denoted by UV. Thus we have defined a
binary operation - on the set of all A-submodules of B. Equipped with this
operation, the set of all A-submodules of B becomes an abelian monoid, with
neutral element A - 15.

This all applies, in particular, to the case when B = A; in this case, the
A-submodules of B are the same as the ideals of A. Thus, the set of all ideals
of A becomes an abelian monoid, with neutral element A -14 = A.

Likewise, we can define U - V when U is an ideal of A while V is an A-
submodule of B. These “product” operations satisfy the rules one would
expect, such as

UV +W)=UV+UW; (U+V)W=UW+VW;  (UV)W=U(VW)

(whenever these expressions make sense).
(b) Let S be a finite set. Let mg be an element of B for each s € S. Then, for
any b € B, we have

b-(ms | s€S),=(bms | s€S§),.

(c) Let S be a finite set. Let m be an element of B for each s € S. Let T be a
finite set. Let n; be an element of B for each t € T. Then,

(mg | s€8S)y,-(nt | teT), = (msny | (s5,£) €SxT),.
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Definition 0.6. Let A be a ring. Let B be an A-algebra. (Let us recall that
both rings and algebras are always understood to be commutative and unital
in this paper.)

If wuy,up,...,uy are n elements of B, then we define an A-subalgebra
Aluy,uy,..., uy,] of Bby

A[ul,uz,...,un] = {P(ul,up_,...,un) | P e A[Xl,Xz,...,Xn]}

(where A[Xjy,Xp,...,X,| denotes the polynomial ring in n indeterminates
Xy, X,..., X, over A).
In particular, if u is an element of B, then the A-subalgebra A [u] of B is
defined by
Al = {P(u) | PeA[X]}

(where A [X] denotes the polynomial ring in a single indeterminate X over
A). Since

m .
AlX] = {Zain | me N and (ag,a1,...,am) € Am“},
i=0

this becomes

{(Zaxl> ) | m €N and (ao,al,...,am)eAm“}

m .
where (2 ain) (1) means the
i=0

m .
polynomial ) a4;X' evaluated at X = u
i=0

m
{ u' | meNand (ag,ar,...,an) EA’”+1}

L
(because (ga x) ~$o )
Jca

Obviously, uA [u [u] (since A [u] is an A-algebra and u € A [u]).
Definition 0.7. Let B be a ring, and let A be a subring of B. Then, B canonically
becomes an A-algebra. The A-module structure of this A-algebra B is given
by multiplication inside B.

Definition 0.7| shows that theorems about A-algebras (for a ring A) are always
more general than theorems about rings that contain A as a subring. Hence, we
shall study A-algebras in the following, even though most of the applications of
the results we shall see are found at the level of rings containing A.
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1. Integrality over rings

1.1. The fundamental equivalence

Most of the theory of integrality is based upon the following result:

Theorem 1.1. Let A be a ring. Let B be an A-algebra. Thus, B is canonically
an A-module. Let n € IN. Let u € B. Then, the following four assertions .4,
B, C and D are equivalent:

e Assertion A: There exists a monic polynomial P € A [X] with degP = n
and P (u) = 0.

o Assertion B: There exist a B-module C and an n-generated A-submodule
U of C such that ull C U and such that every v € B satisfying vU = 0
satisfies v = 0. (Here, C is an A-module, since C is a B-module and B is
an A-algebra.)

o Assertion C: There exists an n-generated A-submodule U of B such that
1€ U and ull C U. (Here and in the following, “1” means “1g5”, that is,
the unity of the ring B.)

o Assertion D: We have A [u] = (u®,u?, .., u"1) .

We shall soon prove this theorem; first, let us explain what it is for:

Definition 1.2. Let A be a ring. Let B be an A-algebra. Let n € IN. Let
u € B. We say that the element u of B is n-integral over A if it satisfies the four
equivalent assertions A, 3, C and D of Theorem

Hence, in particular, the element u of B is n-integral over A if and only if it
satisfies the assertion A of Theorem In other words, u is n-integral over A
if and only if there exists a monic polynomial P € A [X] with deg P = n and
P(u) =0.

The notion of “n-integral” elements that we have just defined is a refinement
of the classical notion of integrality of elements over rings (see, e.g., [1, Definition
(10.21)] or [2, Chapter V, §1.1, Definition 1] or [3] Definition 8.1.1] for this classical
notion, and [5) Definition 2.1.1] for its particular case when A is a subring of B).
Indeed, the classical notion defines an element u of B to be integral over A if and
only if (using the language of our Definition there exists some n € IN such
that u is n-integral over A. Since I believe the concrete value of n to be worth
more than its mere existence, I prefer the specificity of the “n-integral” concept
to the slickness of “integral”.

Theorem [1.1|is one of several similar results providing equivalent criteria for
the integrality of an element of an A-algebra. See [1, Proposition (10.23)], [2,
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Chapter V, Section 1.1, Theorem 1] or [3, Theorem 8.1.6] for other such results
(some very close to Theorem and all proven in similar ways).
Before we prove Theorem let us recall a classical property of matrices:

Lemma 1.3. Let B be a ring. Let n € IN. Let M be an n X n-matrix over B.
Then,
detM - I, = adjM - M.

(Here, I, means the n x n identity matrix and adj M denotes the adjugate
of the matrix M. The expressions “detM - I,” and “adjM - M” have to be
understood as “(det M) - I,” and “(adj M) - M”, respectively.)

Lemma is well-known (for example, it follows from [8, Theorem 6.100],
applied to K = B and A = M).

Proof of Theorem We will prove the implications A = C,C = B, B= A,
A= Dand D = C.

Proof of the implication A = C. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A [X] with degP = n and P (#) = 0. Consider
this P. Since P € A[X] is a monic polynomial with degP = n, there exist

n—1
elements ag,a4,...,a,_1 of A such that P(X) = X"+ ¥ 1 XF. Consider these
k=0

n—1
ap, ai, . ..,ay—1. Substituting u for X in the equality P (X) = X" + ) 1. XK, we
k=0

n—1
find P(u) = u" + ¥ au*. Hence, the equality P(u) = 0 (which holds by
k=0

n—1 n—1
definition of P) rewrites as u” + Y. azu* = 0. Hence, u" = — Y. ajuk.
k=0 k=0

Let U be the A-submodule (1%, u,...,u"~1) , of B. Then, U — (o, ul, .. ,umt),

and
n—1

2 akuk € <u0,u1,...,u”*1> = U.
k=0 4

u" =

Moreover, the 1 elements 1Y, 1!

In other words,

,...,u" Ibelong to U (since U = (u%ul,..., un—1>A).

uelu foreachi € {0,1,...,n—1}. (1)

This relation also holds for i = n (since u”" € U); thus, it holds for all i €
{0,1,...,n}. In other words, we have

u' el foreachi € {0,1,...,n}. (2)

Applying this to i = 0, we find u% € U (since 0 € {0,1,...,n}). This rewrites as
1 € U (since u° = 1).
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Recall that U = (u%ut,...,u"" 1) .
(since u%, ul,...,u" ! are n elements of U).

Now, for each s € {0,1,...,n—1},wehaves+1 € {1,2,...,n} C {0,1,...,n}
and thus u**1 € U (by , applied to i = s +1). Hence, Lemma [0.3| (applied to

M=B,N=U,S={0,1,...,n—1} and ms = u*"!) yields

Hence, U is an n-generated A-module

<us+1 | s € {O,l,...,n—1}>A Cc u.
Now, from U = (1%, ul, .. .,u”’1>A, we obtain

ul = u<u0,u1,...,u”_1>A = <u-u0,u~u1,...,u‘u”_1>A

_ _ /[ s+l
_<uj | sE{O,l,...,n—1}> —<u5 | 56{0,1,...,n—1}>A§U.
A

—ys+l

Thus, we have found an n-generated A-submodule U of B such that 1 € U
and ull C U. Hence, Assertion C holds. Hence, we have proved that A = C.

Proof of the implication C = BB. Assume that Assertion C holds. Then, there
exists an n-generated A-submodule U of B such that 1 € U and ull C U. Con-
sider this U. Every v € B satistying vl = 0 satisfies v = 0 (since 1 € U and
vl = Oyieldv~\1,/ € oU =0 and thusv-1 = 0, so that v = 0). Set C = B.

eu
Then, C is a B-module, and U is an n-generated A-submodule of C (since U is
an n-generated A-submodule of B, and C = B) such that ul C U and such that
every v € B satisfying vl = 0 satisfies v = 0. Thus, Assertion B holds. Hence,
we have proved that C = B.

Proof of the implication B = A. Assume that Assertion B holds. Then, there
exist a B-module C and an n-generated A—submoduleﬂ U of C such that ull C U,
and such that every v € B satisfying vU = 0 satisfies v = 0. Consider these C
and U.

The A-module U is n-generated. In other words, there exist n elements
my,my, ..., my of Usuchthat U = (my,my, ..., my,) ,. Consider these my, my, ..., my.
Forany k € {1,2,...,n}, we have my € U (since U = (my,my, ..., my) 4)and thus

ump € ull C U = (my,my, ..., mMy) 4,

so that there exist n elements a1, ay o, ..., ar, of A such that

n
umy = Zﬂk,imi- 3)
i=1

Consider these ay 1, axo, . .., k-

Zwhere C is an A-module, since C is a B-module and B is an A-algebra
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The A-algebra B gives rise to a canonical ring homomorphism ¢ : A — B
(sending each 2 € A to a-1p € B). This ring homomorphism, in turn, induces
a ring homomorphism /<" : A™*" — B"*" (which acts on an n X n-matrix by
applying : to each entry of the matrix).

We introduce two notations:

e For any matrix T and any integers x and y, we denote by Ty, the entry of
the matrix T in the x-th row and the y-th column.

e For any assertion U, we denote by [U/] the Boolean value of the assertion
1, ifU is true;
U (thatis, [U] = iU 1 true

0, ifidis false). This value [/] is an element of {0,1}
and is also known as the truth value of U.

Clearly, the n x n identity matrix I, satisfies

(In)y; = [k =1]

forevery k € {1,2,...,n} andi € {1,2,...,n}
Note that for every k € {1,2,...,n}, we have

n

my = Z (In)k,i mj,

y [i = k] m;
i=1 S~ i€{1,2,...n}

~— ==

X =[i=k]

ie{1,2,..,n}

- Y =K

i€{12..n} i€{12..n} T
such that i=k (Since i=k is true) such that l#k (since i=k is false
(since i#k))
= Y  1m+ ) Oom= )  m+0
i€{12,.n} _,. i€{1,2,...,n} ie{1,2,...n}
such that i=k ! such that ik such that i=k
—_———
=0
ie{1,2,..n} ie{k}
such that i=k
since {i € {1,2,...,n} | i =k} = {k}
(because k € {1,2,...,n})
= M.

10
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Hence, for every k € {1,2,...,n}, we have

n

n n n
) <u (In)g; — ﬂk,i) mp =y (u (In)y;mi — ﬂk,imi> =u ) (In)g;mi— Y agim;
i=1 =1

i=1 i=1 i
——
=My
(by @)
n
= umy — . ak,imi =0 (by ) . (5)

i=1

Define a matrix S € A"*" by
(Ski=ag;forallk € {1,2,...,n} andi € {1,2,...,n}).
Define a matrix T € B"*" by
T = adj (ul, — S).

Here, the “S” in “ul,, — S” means not the matrix S € A™*" itself, but rather its
image under the ring homomorphism /**" : A"™*" — B"*"; thus, the matrix
ul, — S is a well-defined matrix in B"*",

Let P € A[X] be the characteristic polynomial of the matrix S € A™*".
Then, P is monic, and deg P = n. Besides, the definition of P yields P (X) =
det (XI, — S), so that P (u) = det (ul, — S). Therefore,

=T

(by Lemma applied to M = ul,, — S)
=T (ul, —S).

11
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Now, for every T € {1,2,...,n}, we have

n

) (I

i=1

)
n
(smce (@) (applied to k = 7) yields m = Y (In),; mi>

i=1

P(u)-m (u

—y P U)gm=Y [ Pw)-1, | m,

=1 N———~— i=1
=(P(u)-In); =T-(ulu=S)/ ¢
n n on
=Y, (T-(uli=8); mi=73 Y Tep(uly—S);m
i=1 ~~ d i=1k=1
= Z Trk(uln S)
(by the definition of

the product of two matrices)

n n n n
=Y Tep ) (uln—S)emi=3Y Tex ) | u(ln)g;— Ski | m
k=1 =1 ~—~—" k=1 i=1 _
=u(In)y =Sk, ki
n n
= Z Tr k Z (” (In)gi — ”k,i) m; = 0.
k=1 =1 B

by @)

But from U = (my,my, ..., my) 4, we obtain

P(u)-U=P(u)-(my,my,....,my),=(P(u) -my,P(u) -my...Pu) m),
=(0,0,...,0) 4 (since P (1) -my =0forany v € {1,2,...,n})
=0.

But recall that every v € B satisfying vU = 0 satisfies v = 0. Applying this to
v =P (u), we find P (1) = 0 (since P (1) - U = 0). Thus, we have found a monic
polynomial P € A[X] with degP = n and P (u) = 0. Therefore, Assertion A
holds. Hence, we have proved that B —= A.

Proof of the implication A = D. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A [X] with degP = n and P (u) = 0. Consider
this P.

Let U be the A-submodule (1, u!,.. .,u”_1>A of B. As in the Proof of the
implication A = C, we can show that U is an n-generated A-module, and that
1eUandul C U.

Now, it is easy to show that

uel for any i € IN. (6)

12
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[Proof of (). We will prove (6) by induction over i:

Induction base: The assertion (6) holds for i = 0 (since u’ = 1 € U). This
completes the induction base.

Induction step: Let T € IN. If the assertion @ holds for i = 7, then the assertion
@ holds for i = T + 1 (because if the assertion @ holds for i = 7, then u® € U,
so that u™! = i - \u; € ull C U, so that u™"! € U, and thus the assertion (6)

el
holds for i = T 4 1). This completes the induction step.

Hence, the induction is complete, and (6)) is proven.]

But recall that U is an A-module, and therefore is closed under A-linear
combination. Thus, for any m € IN and any (ag,a1,...,am) € A1 we have
m . .

Y. a;u’ € U, because each i € {0,1,...,m} satisfies a; € A and u' € U (by (6)).
i=0

Now, the definition of A [u] yields

m .
Alu] = {Zaiul | me N and (ag,a1,...,am) EAm+1} cu
i=0

(since Z au' € U for any m € N and any (ag, ay,...,a,) € A™1). On the other
=0
hand, U C A[u], since

n—1 )
u= <u0,u1,...,u”*1>A = {Zaiul | (ap,a1,...,a,-1) € A”}
i=0
m .
C {Zaiul | m e N and (ag,ay,...,a;m) € AmH} = Alu].
i=0

Combining this with A [u] C U, we obtain U = A [u]. Comparing this with
u=u',...,u" 1), weobtain A [u] = (u°ul,...,u""1) .
Thus, Assertlon D holds. Hence, we have proved that A :> D.

Proof of the implication D = C. Assume that Assertion D holds. Then, A [u] =

(O, ul,..ut) .

Let U be the A-submodule (1, u!,...,u""1) , of B. Then, u®,u!,..., u" 1 aren
elements of U. Hence, U is an n-generated A-module (since U = <u0, ul, ..., u”_1> 2
Comparing U = (u%,u!,...,u" 1)  with A[u] = (uul,... u""1)
U:A[u].Now,lzuOEA[ ] =U.

Also, from U = A [u], we obtain ull =u-Afu] C Alu] =

Thus, we have found an n-generated A-submodule U of B such that 1 € U
and uU C U. Hence, Assertion C holds. Thus, we have proved that D = C.

Now, we have proved the implications A = D, D = C, C = B and
B = A above. Thus, all four assertions A, B, C and D are equivalent, and
Theorem [1.1]is proven. O

4 We obtain

13
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For the sake of completeness (and as a very easy exercise), let us state a basic
property of integrality that we will not ever use:

Proposition 1.4. Let A be a ring. Let B be an A-algebra. Let u € B. Letg € N
and p € IN be such that p > g. Assume that u is g-integral over A. Then, u is
p-integral over A.

Proof of Proposition The element u is g-integral over A. Thus, it satisfies the
Assertion D of Theorem stated for g in lieu of n. In other words, it satisfies
Alu] = (u%ul, ..., uq_1>A. Note that (1% 1, ..., up_1>A is an A-submodule of B.
But p > g, thus g < p and therefore g —1 < p — 1. Every s € {0,1,..,q — 1}
satisfies s € {0,1,..,4—1} C {0,1,...,p—1} (since g —1 < p — 1) and there-
fore u* € {u®u', .., w71} C (u%u',.,uP"1),. Thus, u° is an element of
<u0,u1,...,ui’_1>A for every s € {0,1,...,4—1}. Hence, Lemma (applied
toM=B,N= <u0,u1,...,up_1>A, $=1{0,1,...,9 —1} and ms; = u®) shows that

s - C (uul, . uP7ty .
' | s€{0,1,...,q 1}>A_<u,u, Ju >A

Now,

Alu] = <uo,u1,...,uq*1>A =W | se{0,1,...,q—1}), C <u0,u1,...,u”*1>A.

Combining this with <u0,u1,...,up’1> 4 € Alu] (which is obvious, since every
A-linear combination of u°,u!, ..., uP~1is a polynomial in u with coefficients in
A), we obtain A [u] = (1% ul, ..., uP~1) - In other words, u satisfies the Assertion
D of Theorem stated for p in lieu of n. Hence, u is p-integral over A. This

proves Proposition [I.4, O

1.2. Transitivity of integrality

Let us now prove the first and probably most important consequence of Theo-

rem [L.T}

Theorem 1.5. Let A be a ring. Let B be an A-algebra. Let v € B and u € B.
Let m € IN and n € IN. Assume that v is m-integral over A, and that u is
n-integral over A [v]. Then, u is nm-integral over A.

(Here, we are using the fact that if A is a ring, and if v is an element of an
A-algebra B, then A [v] is a subring of B, and therefore B is an A [v]-algebra.)

Proof of Theorem Since v is m-integral over A, we have A [v] = (%,0',..., 0" 1) |

(this is the Assertion D of Theorem stated for v and m in lieu of u and n).
Since u is n-integral over A [v], we have (A [v]) [u] = (u®u!,..., u”_1>A[U] (this

is the Assertion D of Theorem [1.1} stated for A [v] in lieu of A).

14
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Let S = {0,1,...,n—1} x{0,1,...,m —1}. Then, S is a finite set with size
|S| = nm.
[Proof: From S = {0,1,...,n—1} x {0,1,...,m — 1}, we obtain

|S| = |{O,1,...,]’l—1} X {0,1,...,m—1}|
=1{0,1,...,n—1}-|{0,1,...,m — 1}| = nm.

~~
=n =m

Thus, S is finite.]
Let x € (A[v]) [u]. Then, there exist n elements by, by, ...,b,—1 of A[v] such
n—1 .
that x = Y bu' (since x € (A[v]) [u] = (u®,ul,.. .,u”*1>A[v]). Consider these
i=0
bO/ bl/ RV bnfl-
For each i € {0,1,...,n — 1}, there exist m elements a;0,4;1,...,8;,—1 of A

m—1 .

such that b; = 'Zo a; v/ (because b; € Afv] = (°,0',..., 0" 1) ). Consider
]:

these a;9,a;1,...,a;y,—1. Thus,

nil 7 7 . . . .
X = b; Z Z a;,jv'u’ = Y. a; o'’
i=0 n:” i=0 j= (i,/)€{0,1,...1—1} x{0,1,...m—1}
=Y ai/]-z)]'
=0
=) ai,jvjui (since {0,1,...,n—1} x{0,1,...,m—1} =)
(ij)€s
€ <vfu | (i,)) € S>A (since a;; € A for every (i,) € §).

Now, forget that we fixed x. So we have proved that x € (v/u’ | (i,j) € S) A
for every x € (A[v]) [u]. In other words, (A [0]) [u] C (v/u’ | (i,j) € S),. Con-
versely, (v/u' | (i,j) € S), C (A[0]) [u] (since v/ € A[v] for every (i,) € S, and
thus \vi/ui € (A[v]) [u] for every (i,j) € S, and therefore

cAlv]

<v]” | (i.]) € S>A - (Z): a;,jou’ | (”i,]')(i,j)es €A°
i,j)€S
o c(APD[]
(since v/u' € (A[v])[u] for every (i,j)€S
\ and since (A[v])[u] is an A-module) )

C (Afo]) [u]

15
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). Combining these two relations, we find (A [v]) [u] = (o/u’ | (i,j) €S),.
Thus, the A-module (A [v]) [u] is nm-generated (since |S| = nm).

Let U = (A[v]) [u]. Thus, the A-module U is nm-generated (since the A-
module (A [v]) [u] is nm-generated). Besides, U is an A-submodule of B, and we
have 1 = u® € (A[v]) [u] = U and

ull = u (A [o]) [u] € (A[0]) [u]
(since (A [v])[u] is an A [v]-algebra and u € (A [v]) [u])
= U.

Altogether, we now know that the A-submodule U of B is nm-generated and
satisfies 1 € U and ulU C U.

Thus, the element u of B satisfies the Assertion C of Theorem with n re-
placed by nm. Hence, u € B satisfies the four equivalent assertions .4, B, C and
D of Theorem all with n replaced by nm. Thus, u is nm-integral over A. This
proves Theorem O

1.3. Integrality of sums and products

Before the next significant consequence of Theorem let us show an essen-
tially trivial fact:

Theorem 1.6. Let A be a ring. Let B be an A-algebra. Let a € A. Then,
a-1p € Bis l-integral over A.

Proof of Theorem The polynomial X —a € A [X] is monic and satisfies

deg (X — a) = 1, moreover, evaluating this polynomial ata-1p € Byieldsa-1p —
a-1p = 0. Hence, there exists a monic polynomial P € A [X] with degP =1
and P (a - 1) = 0 (namely, the polynomial P € A [X] defined by P (X) = X — a).
Thus, a - 1p is 1-integral over A. This proves Theorem O

The following theorem is a standard result, generalizing (for example) the
classical fact that sums and products of algebraic integers are again algebraic
integers:

Theorem 1.7. Let A be a ring. Let B be an A-algebra. Let x € B and y € B.
Let m € IN and n € IN. Assume that x is m-integral over A, and that y is
n-integral over A.

(@) Then, x + y is nm-integral over A.

(b) Furthermore, xy is nm-integral over A.

Our proof of this theorem will rely on a simple lemma:

16
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Lemma 1.8. Let A be a ring. Let C be an A-algebra. Let x € C.

Let n € N. Let P € A [X] be a monic polynomial with deg P = n. Define a
polynomial Q € C[X] by Q(X) = P (X — x). Then, Q is a monic polynomial
with deg Q = n.

Proof of Lemma Recall that P is a monic polynomial with deg P = n; hence,
we can write P in the form

n—1 )
P=X"+) X (7)
i=0

for some ay,a1,...,a,-1 € A. Consider these ag,ay,...,a,_1.
Consider the C-submodule (X?, X1,.. .,X”’1>C of C[X]. We have X —x =
X + (—x) and thus

(X—x)"=(X+(-x)"=)] (:l) X (—x)" (by the binomial formula)
i=0
n—1 .
=% () 2t (1) xr
i—0 1 — n N—_——
=(—x)"xi T =(-x)’=1

(here, we have split off the addend for i = n from the sum)

n—1

- ;) (:‘) (=) X4 X" = X" +§ (':) (—x)" X!

J/

-~

e(x0,X1,..xn-1)

€ X"+ <X0, Xl,...,x"*1>c. )

Furthermore, for each i € {0,1,...,n — 1}, we have

(X —x) = (X—i—(—x))i (since X —x = X + (—x))
— Zl: Z) &—x)l_] (by the binomial formula)

17
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(since i < n —1). Now,

n—1 )
QX)=P(X-x)= (X-%" + Y} aX-x)
eX(X0.X1,...,x" 1) N
(by @) e(x0x1,..x"1)
(by @)

(here, we have substituted X — x for X in (7))
e X"+ (X0, X1, X"+ (X0, X"

N

c

-~

C (XO,Xl,...,X"-1>C
(since <X0,X1,...,X"*1>C is a C-module)

C X"+ <X0,X1,. . .,X"*1> .
C

In other words, Q (X) = X" + W for some W € (X°, Xl,...,X”_1>C. Consider

this W. We have W € (X°, Xl,...,X”_1>C; thus, we can write W in the form

n—1 .
W = Y w;X' for some wy, wq,...,w,—1 € C. Consider these wg, w1, ..., W,;_1.

=0
Now,
n—1 )
QX)=X"+ W =X"+) wX.
1 i=0
= 21 w,-Xf

i=0
Hence, Q is a monic polynomial with deg Q = n. This proves Lemma O

Proof of Theorem Since y is n-integral over A, there exists a monic polynomial
P € A[X] with deg P =n and P (y) = 0. Consider this P.

(a) Let C be the A-subalgebra A [x] of B. Then, C = A [x], so thatx € A[x] =
C.

Now, define a polynomial Q € C[X] by Q (X) = P (X — x). Then, Lemma
shows that Q is a monic polynomial with deg Q = n. Also, substituting x 4 y for

X in the equality Q (X) = P(X —x), weobtain Q(x+y) =P | (x+y) —x | =
—

=Y
P(y)=0.

Hence, there exists a monic polynomial Q € C[X]| with degQ = n and
Q(x+y) = 0. Thus, x + y is n-integral over C. In other words, x + y is n-
integral over A [x] (since C = A [x]). Thus, Theorem [1.5 (applied to v = x and
u = x + y) yields that x + y is nm-integral over A. This proves Theorem (a).

(b) Recall that P € A [X] is a monic polynomial with deg P = n. Thus, there

n—1
exist elements ag, a1, ...,a,-1 of A such that P (X) = X"+ ) 1 X*. Consider
k=0

18
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n—1
these ag,a1,...,a,-1. Substituting y for X in P (X) = X"+ ¥ 7. Xk, we find

k=0
-1
P(y)=y"+ nz ary*. Thus,
k=0
n—1 '
y'+ ) ay =P(y) =0 (10)
k=0

~1
Now, define a polynomial Q € (A[x])[X] by Q(X) = X" + nz x" kg XK,
k=0
Then,

Q xy)'+ ) x” (xy)" = x"y" + =k gyt
(xy _Z n Z y Yy Z()‘_xn aky

=Xy —akx y
_X ﬂky

n—1 n—1

=x"y"+ ) ayt =" [y 4 ) ay* | =
k=0 R k=0 g
=0
(by (10))

n—1
Also, recall that Q (X) = X"+ ¥ x" ¥, X*; hence, the polynomial Q € (A [x]) [X]
k=0

is monic and deg Q = n. Thus, there exists a monic polynomial Q € (A [x]) [X]
with deg Q = n and Q (xy) = 0. Thus, xy is n-integral over A [x]. Hence, Theo-
rem [L.5] (applied to v = x and u = xy) yields that xy is nm-integral over A. This
proves Theorem [1.7] (b). O

Corollary 1.9. Let A be a ring. Let B be an A-algebra. Let x € B. Let m € IN.
Assume that x is m-integral over A. Then, —x is m-integral over A.

Proof of Corollary[1.9} This is easy to prove directly (using Assertion .4 of Theo-

rem[L.1), but the slickest proof is using Theorem[L.7] (b): The element (—1)-1p €

B is 1-integral over A (by Theorem [1.6, applied to a = —1). Thus, x - ((—1) - 1p)

is 1m-integral over A (by Theorem - (b), applied toy = (—1) -1p and n = 1).

In other words, —x is m-integral over A (since x - ((—1)-1p) = x-(—1p) =
—_——

=—1g

—x-1p = —x and 1m = m). This proves Corollary O

Corollary 1.10. Let A be a ring. Let B be an A-algebra. Let x € B and y € B.
Let m € IN and n € IN. Assume that x is m-integral over A, and that y is
n-integral over A. Then, x — y is nm-integral over A.

Proof of Corollary We know that y is n-integral over A. Hence, Corollary
(applied to y and n instead of x and m) shows that —y is n-integral over A. Thus,
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Theorem [1.7] (a) (applied to —y instead of y) shows that x + (—v) is nm-integral
over A. In other words, x — y is nm-integral over A (since x + (—y) = x —y).

This proves Corollary O

1.4. Some further consequences

Theorem 1.11. Let A be a ring. Let B be an A-algebra. Let n € IN*. Let

n .
v € B. Let ay,aq,...,a, be n+ 1 elements of A such that }_ a4, = 0. Let
i=0
n—k . l
ke {0,1,...,n}. Then, Y a;4v" is n-integral over A.

i=0

n—k )
Proof of Theorem Letu = ) a; 0" Then,
i=0

n k-1 ) n k-1 - n—k ok
0=Y av' =Y ar av' =Y av ai o't
Lot = Lo e = Lot ) i L

—pipk
(here, we substituted i + k for i in the second sum)

k—1 - n—k - k—1 ) kn—k ) k—1 ) v
= Z a; 0" + Z a; 0N = Z a;0' +v 2 a0 = Z a; 0" +v'u,
i=0 i=0 i=0 i=0 i=0

———
knfk . =u
=0* Y a; 40
i=0

so that

k-1
ofu = — Z a;v'.
i=0

Let U be the A-submodule (2°,v!,...,v""1) , of B. Then, o%,0%,...,v" ! are n
elements of U. Hence, U is an n-generated A-module (since U = <vo, ol v”_1>
Besides, n € Nt and thus 0 € {0,1,...,n — 1}. Therefore, Y is one of the 1 ele-
ments 0,01, ..., 0", hence, o0 € (o°,0!,...,0"" 1), = U. Thus, 1 =" € U.

Note that U is an A-submodule of B, and thus is closed under A-linear com-
bination.

Now, we are going to show that

uv® € U foranys e {0,1,...,n —1}. (11)

[Proof of (II). Lets € {0,1,...,n—1}. Thus, we are in one of the following
two cases:

Case 1: We have s < k.

Case 2: We have s > k.

Let us first consider Case 1. In this case, we have s < k. Hence, s < k — 1 (since
s and k are integers) and thus s € {0,1,...,k— 1} (sinces € {0,1,...,n —1}).

20
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) B e .
For each i € {0,1,...,n—k}, we have i < n —k and thus _ i k+ kS
<n— <k-—1

(n—k)+ (k—1) = n—1and thereforei+s € {0,1,...,n — 1} (since >10 + >so >

<

0) and therefore
ot € {vo ol v”_l} C <v° ol vn—1> —u
LU, ., C LU, ., B .

n—k )
Hence, Y} a;,,0'"° is an A-linear combination of elements of the set U (since the

1=
coefficients a;,x belong to A) and therefore belongs to U itself (since U is closed

n—k .
under A-linear combination). In other words, ¥ a; 0" " € U.

=0
n—k ) )
Now, from u = Y a;,4v', we obtain

i=0

n—k ) n—k )
S __ . 1,5 __ . 1+s
uv® = Za,+kv v = Z:a,+kv c u.

i=0 —pits i=0

Hence, is proven in Case 1.

Let us next consider Case 2. In this case, we have s > k. Hence, s — k > 0.
Also, s <n—1(sinces € {0,1,...,n—1}).

Foreachi € {0,1,...,k—1},wehavei > 0andi < k—1andthus\i/+ (s—k) <

<k—1
(k—1)+(s—k) =s—1<s<n-—1and thereforei + (s — k) € {0,1,...,n — 1}
(since i + (s—k)>s—k>0)and thus
>

ot 5=k ¢ {vo,vl,...,v”_l} C <vo,vl,...,v”_1>A = U.

k—1 .

Hence, Y a;0'7~K) is an A-linear combination of elements of the set U (since
i=0

the coefficients a; belong to A) and therefore belongs to U itself (since U is closed

k—1 .
under A-linear combination). In other words, ¥ a;0't¢—% e U.
i=0

From s — k > 0, we obtain s — k € N and thus v° = ¥k = pkys—k Hence,

k-1 k-1
uv® = uo" v’ * = oku v F = - Y a0 0K <since tu=-Y" aivl>
i=0 i+ (s—k) i=0
k-1
=-Y a0t M e-ucu (since U is an A-module) .
i=0
\_\/_/
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Hence, is proven in Case 2.
Hence, in both cases, we have proven (11)). This completes the proof of (11).]
Thus we know that uv® € U for every s € {0,1,...,n —1}. Hence, Lemma
(appliedto M =B, N=U,S ={0,1,...,n — 1} and m; = uv°) yields

(uo® | s€{0,1,...,n—1}), CU.

Now, from U = (2°,0!,...,0"71) , we obtain

AI

ull = u <vo, vl,...,v”_1>A = <uvo, uvl,...,uv”_1>

= (uv® | s€{0,1,...,n—1}), CU.

A

Altogether, U is an n-generated A-submodule of B such that1 € U and ull C
U. Thus, u € B satisfies Assertion C of Theorem Hence, u € B satisfies the
four equivalent assertions A, B, C and D of Theorem Consequently, u is

n—k . n—k .
n-integral over A. Since u = ). a;v', this means that }_ a;,4v' is n-integral

i=0 i=0
over A. This proves Theorem O

Corollary 1.12. Let A be a ring. Let B be an A-algebra. Let &« € N and p € N
be such that « + € IN*. Let u € Band v € B. Let sg,51,...,5, be a +1

x .
elements of A such that ) s;v' = u. Let fo,ty,...,t5 be p+ 1 elements of A
i=0

p ,
such that Y~ t;0P~" = uoP. Then, u is (« + B)-integral over A.
i=0

(This Corollary generalizes [4, Exercise 2-5], which says that if v is an
invertible element of an A-algebra B, then every element u € A[v] N A [v71] is
integral over A. To see how this follows from Corollary just pick « € N+t

0

and B € N" and sg, s1,...,5, € A and to, t1,...,tg €A such that Y s;v' = u and
i=0

>t (071) = w)
i=0

First proof of Corollary[1.12] Let k = p and n = a + B. Then, k € {0,1,...,n}
(sincea € Nand e N)and n =a+ B € Nt and n — B = a (since n = a + p).
Define n + 1 elements ag, ay, . ..,a, of A by

t,B—i/ ifi < ‘3,'
aj =< ty—so, ifi=p; foreveryi € {0,1,...,n}.
—Si—p, ifi >p
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Then, from n = a 4 B, we obtain

atB B—1 B . atp .
Zav—Zav—Z a; v+ ) a; v+ ) a v'
iz i i=pt1
—ig—i =1o—5S0 =—Si-B
(by the (by the (by the
definition of a;, definition of a;, definition of a;,
since i< ) since i=p) since i>p)
a+pB
—Ztﬁzv+2fo—sov+2( ks
z B+1
:<tofs:o>vﬁ wh
:tovﬂ'—sovﬁ :_l §+1sl /30
p-1 atp
= Z tp— 0 +t00ﬁ —S()ZJ[3 — Z Si_ :BU
i=0 i=p+1
p—1 ' a+p '
= Z tﬁ_ivl + tovﬁ — S()Z)'B + Z si_ﬁvl
i=0 i=p+1
B—1
=) tg 0 '+ tgof — SQUﬁ—f—ZSH_‘B 50 +h
i=0 =5 =0 U‘B

(here, we substituted i + B for i in the second sum)

p-1 , LI
= 2 tg_jv' + tovP — (sozﬂ3 + Zsivlvﬁ>

i=0 i=1

B , w .
= to o noP ity 0P —[sg 0P + Y si0ioP
2, B—(B—i) 0 0 E i

A vt IR

(here, we substituted g — i for i in the first sum)

B
:Z:tvl3 P4 tooP 0 — (s()v vﬁ+stvﬁ>
i=1

i=1

P , « :
Zt 0P+ tgoP 0 — [ 500 + Y 50" | o = uvf —uof =0.
B o . _g Vii
=y tivﬁ*’:uvﬁ —): 5i{v"=u
i=0 i=0
n—k .
Thus, Theorem [1.11|yields that ) a;,40' is n-integral over A.
i=0
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But k = § and thus

n—k
Z(:) a0 = Z a; g0 = Za [;v -
i=

_ul

(here, we have substituted i —  for i in the sum)

n . B ) n .
=Y a0 P = Y. a; e Y. a; v P
i—p i-p i=p+1
=to—sp ==Si-p
(b the (by the
definition of a;, definition of a;,
since i=p3) since i>f3)
p . n
Y (s o P 3 (sip) o
i=p i=p+1
—(tn— B—p n—p .
(to—so)v _ (—s)o!
i=1
(here, we have substituted i
for i—p in the sum)
(to—so)vﬁ Py Z (to—sov—i—( st)
—vo i=1 0 0
N——— =tg0’ —5p0v
n—p . .
=— ) siol=— ) 50
i=1 i=1

(since n—pB=un)

14 . 14 .
= tg0® — sgv® + (— ngﬂ) =ty ¥ — (sovo + Zsivl>
i=1 ; j

i=1

=1g py
o e .
=) sv'=u
i=0
=ty -1 —u.
n—k
Thus, to-1p — u is n-integral over A (since ). a1+kv is n-integral over A).
i=0

Thus, Corollary[1.9)(applied to x = to-1p — u and m = n) shows that — (o - 1p — u)
is n-integral over A. In other words, u — ty - 1 is n-integral over A (since
—(to-lB—u) :u—t0~13).

On the other hand, ¢y - 1p is l-integral over A (by Theorem applied to
a = tg). Thus, ty- 1+ (u — to - 1p) is n - 1-integral over A (by Theorem (a),
applied to x = ty- 15, y = u —tp- 1 and m = 1). In other words, u is (« + B)-
integral over A (since to-1p+ (u —tp-1p) = uand n-1 = n = a + B). This
proves Corollary O

We will provide a second proof of Corollary in Section
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Corollary 1.13. Let A be a ring. Let B be an A-algebra. Let n € Nt and

n—1 .
m € IN. Let v € B. Let by, by,...,b,_1 be n elements of A, and let u = Y_ b;0".

i=0
Assume that vu is m-integral over A. Then, u is nm-integral over A.

Corollary generalizes a folklore fact about integrality, which states that
if B is an A-algebra, and if an invertible v € B satisfies v~! € A [v], then v is
integral over A. (Indeed, this latter fact follows from Corollary by setting
u=rov"1)

Proof of Corollary Define n + 1 elements ag, a1, ..., a, of A [vu] by

B i 0
a; = ot 1 l 0; for every i € {0,1,...,n}.
b;_1-1g, ifi>0

(These are well-defined, since every positivei € {0,1,...,n} satisfiesi € {1,2,...,

and thus i —1 € {0,1,...,n —1} and thus b;_; € A and therefore b; ;- 1p €
A-15 C Aloul.)

The definition of ag yields ap = —vu. Also,
n . 0 n . n i
1 1 1
av' = ay v + a; v'=—vu+) bj_1- 1pv
N T Lo L
=—pu =1 =b;_1-1p —pi=pi—1p
(by the definition
of a;, since i>0)
n ) n—1 )
= —ou+ Z b, 10 o= —ovu+ Z bv'v
i=1 i=0
——

=u
(here, we substituted i for i — 1 in the sum)
= —ovu+uv = 0.

Letk=1. Then, k=1 € {0,1,...,n} (since n € NT).
Now, A [vu] is a subring of B hence, B is an A [vu]-algebra. The n + 1 elements

agp,ay, ..., an of A [vu] sat1sfy 2 a0’ = 0.

Hence, Theorem (apphed to the ring A[vu| in lieu of A) yields that
n—k .
Y. a;x0" is n-integral over A [vu]. But from k = 1, we obtain
i=0

n—k - n—1 n—1 — )
i_ —
Z ai4x0 = Z Ai+1 bit1)-1 Z vt = .
i=0 i=0 —~ i=0~—~— T =0
=b(i11)-1-1B =b; =v
(by the definition

of a;,1, since i+1>0)
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n—k )
Hence, u is n-integral over A [vu] (since Y. a;,4v' is n-integral over A [vu]). But

i=0
vu is m-integral over A. Thus, Theorem [1.5) (applied to vu in lieu of v) yields
that u is nm-integral over A. This proves Corollary O

2. Integrality over ideal semifiltrations

2.1. Definitions of ideal semifiltrations and integrality over
them

We now set our sights at a more general notion of integrality.

Definition 2.1. Let A be a ring, and let (Ip)

Then, (Ip) peN
two conditions

bEN be a sequence of ideals of A.

is called an ideal semifiltration of A if and only if it satisfies the

Ip = A;
LI, Cly for every a € N and b € IN.

Two simple examples of ideal semifiltrations can easily be constructed from
any ideal:

Example 2.2. Let A be a ring. Let I be an ideal of A. Then:
(@) The sequence (I°) peN 18 an ideal semifiltration of A. (Here, I° denotes

the p-th power of I in the multiplicative monoid of ideals of A; in particular,
°=A)

(b) The sequence (A,I,L1,...) = <{A, if p=0;

I, ifp>0

) is an ideal semifil-
peN
tration of A.

Proof of Example This is a straightforward exercise in checking axioms. [

Definition 2.3. Let A be a ring. Let B be an A-algebra. Let (I,) _, be an ideal

pE
semifiltration of A. Let n € IN. Let u € B.

We say that the element u of B is n-integral over (A, (1) > if there exists

peN
some (ag, a1, . ..,a,) € A"! such that

Z akuk =0, a, =1, and aj€ I, ;foreveryic {0,1,...,n}.
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This definition generalizes [5, Definition 1.1.1] in multiple ways. Indeed, if
I is an ideal of a ring A, and if u € A and n € NN, then u is n-intel over

(A, (IP)p e]N) (here, (I) ¢ is the ideal semifiltration from Example 2.2/ (a)) if

and only if there is an equation of integral dependence of u over I (in the sense
of [B], Definition 1.1.1]).

We further notice that integrality over an ideal semifiltration of a ring A is a
stronger claim than integrality over A:

Proposition 2.4. Let A be a ring. Let B be an A-algebra. Let (Ip)p cN De an
ideal semifiltration of A. Let n € IN. Let u € B be such that u is n-integral

over (A, (Ip) Then, u is n-integral over A.

peN)'

Proof of Proposition 2.4, We know that u is n-integral over (A, (Ip)p e]N)' Thus,
by Definition there exists some (ag,a1,...,a,) € A"t guch that

Z akuk =0, a, =1, and a; € I,_;jforeveryi e {0,1,...,n}.

Consider this (ag, ay,...,a,).
For each k € {0,1,...,n}, we have ay € I, y (since a; € I,,_; for every i €
{0,1,...,n}) and therefore ay € I,_x € A. Thus, we can define a polynomial

P e A[X] by P(X) = Z a;X*. Consider this P. This polynomial P satisfies
deg P < n, and its coeff1c1ent before X" is a, = 1. Hence, this polynomlal P is

monic and satisfies deg P = n. Also, by substituting u for X in P (X) = Z a Xk,
k=0

n
we obtain P (u) = Y. apu* = 0. Hence, we have found a monic polynomial
k=0
P e A[X]withdegP =nand P (u) =0.
In other words, u is n-integral over A. This proves Proposition O

We leave it to the reader to prove the following simple fact, which shows that
nilpotency is an instance of integrality over ideal semifiltrations:

Proposition 2.5. Let A be a ring. Let 0A be the zero ideal of A. Let n € IN.
Let u € A. Then, the element u of A is n-integral over (A, ((0A)” )p eN) if and
only if u" = 0.

2.2. Polynomial rings and Rees algebras

In order to study integrality over ideal semifiltrations, we shall now introduce
the concept of a Rees algebra — a subalgebra of a polynomial ring that conve-
niently encodes an ideal semifiltration of the base ring. This, again, generalizes
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a classical notion for ideals (namely, the Rees algebra of an ideal — see [5, Defi-
nition 5.1.1]). First, we recall a basic fact:

Definition 2.6. Let A be a ring. Let B be an A-algebra. Then, there is a
canonical ring homomorphism ¢ : A — B that sends eacha € Atoa-1p € B.
This ring homomorphism ¢ induces a canonical ring homomorphism ¢ [Y] :
A[Y] — B[Y] between the polynomial rings A [Y] and B [Y] that sends each

m .

polynomial ¥ a;Y' € A[Y] (with m € N and (ag,ay,...,am) € A" to the
i=0

polynomial f‘ t(a;)Y" € B[Y]. Thus, the polynomial ring B [Y] becomes an
i=0

A [Y]-algebra.

Definition 2.7. Let A be a ring, and let (IP)p o be an ideal semifiltration of
A. Thus, Iy, I1, I, . .. are ideals of A, and we have [ = A.

Consider the polynomial ring A [Y]. For each i € IN, the subset I;Y’ of A[Y]
is an A-submodule of the A-algebra A [Y] (since [; is an ideal of A). Hence,

the sum Y ;Y of these A-submodules must also be an A-submodule of the
ieIN
A-algebra A [Y].
Let A [(Ip)p eN ¥ Y} denote this A-submodule Y LY! of the A-algebra

i€EN
A[Y]. Then,

A () pen ¥ Y| = EZN LY
1

:{ZaiYi | (a; € I; foralli € N),
icIN

and (only finitely many i € IN satisfy a; # 0) }

={P € A[Y] | the i-th coefficient of the polynomial P
lies in I; for every i € IN}.

Clearly, AC A [(Ip)pEN * Y} , since

Al(I «Y =Y LY'D I, YO =A-1=A.
[( P)pe]N } ig\l i \:2’:’1/
Hence,1 € A C A [(Ip)p N * Y]. Also, the A-submodule zﬂ(lp)

of A[Y]is an A-subalgebra of the A-algebra A [Y] (by Lemma
thus is a subring of A [Y].

This A-subalgebra A [(Ip)

semifiltration (I,)

peN * Y]
.8 below), and

pen * Y| is called the Rees algebra of the ideal

peN”
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Lemma 2.8. Let A be a ring, and let (Ip)p o Pe an ideal semifiltration of A.

Then, the A-submodule A [(Ip)p N F Y} of A[Y] is an A-subalgebra of the
A-algebra A[Y].
Proof of Lemma Multiplying the equality A [(Ip)p N F Y} = Y LY with it-
/€N
self, we find l

AL per Y] A [(1) pene Y]

(5)(57) - (5) (5)

(here we renamed the index i as j in the second sum)

=Y, VLYY =%y L, YY

iENjeEN >~~~ iENjEN N~

. —Yitj
Iy Chy =
(since (IP)pEIN
is an ideal
semifiltration)
CY Y YTy Y Y
iENjeN ™~ icNjeNkcN
C Yy LYk
keN
C Z LYk (since Z L,Y* is an A-module)
keN keN
=) LY (here we renamed the index k as 7 in the sum)
ieIN

=4 [(IP)pE]N ¥ Y} '
Hence, the A-submodule A [(Ip)p N F Y} of A [Y] is closed under multiplication.

Thus, it is an A-subalgebra of the A-algebra A [Y] (since 1 € A [(Ip)p N Y] )-
This proves Lemma O

Remark 2.9. Let A be a ring. Let B be an A-algebra. Let (Ip)p oy be an ideal

semifiltration of A.
Consider the polynomial ring A [Y] and its A-subalgebra A [(Ip)

defined in Definition

The polynomial ring B[Y] is an A[Y]-algebra (as explained in Defini-
tion , and thus is an A [(Ip)peﬂ\l * Y] -algebra (since A [(Ip)pE]N * Y} is a
subring of A[Y]). Hence, if p € B[Y] is a polynomial and n € N, then it

peN * Y]

makes sense to ask whether p is n-integral over A [(Ip)p N F Y] . Questions of

this form will often appear in what follows.
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We note in passing that the notion of a Rees algebra helps set up a bijection
between ideal semifiltrations of a ring A and graded A-subalgebras of the poly-
nomial ring A [Y]:

Proposition 2.10. Let A be a ring. Consider the polynomial ring A [Y] as a
graded A-algebra (with the usual degree of polynomials).

(a) If (Ip)p cn i an ideal semifiltration of A, then its Rees algebra
A [(Ip)peN * Y] is a graded A-subalgebra of A [Y].

(b) If B is any graded A-subalgebra of A [Y], and if p € IN, then we let I,
denote the subset {a € A | aY? € B} of A. Then, I, is an ideal of A.
(c) The maps

{ideal semifiltrations of A} — {graded A-subalgebras of A[Y]},
(o) pent = A [ (1) pen * Y|

and

{graded A-subalgebras of A[Y]} — {ideal semifiltrations of A},

B — (IB/P)pelN

are mutually inverse bijections.

We shall not have any need for this proposition, so we omit its (straightfor-
ward and easy) proof.

2.3. Reduction to integrality over rings

We start with a theorem which reduces the question of n-integrality over (A, (Ip)p eIN)

to that of n-integrality over a ringﬂ

Theorem 2.11. Let A be a ring. Let B be an A-algebra. Let (Ip)p o e anideal
semifiltration of A. Let n € IN. Let u € B.
Consider the polynomial ring A [Y] and its A-subalgebra A [(Ip)p N ¥ Y]

defined in Definition

Then, the element u of B is n-integral over (A, (Ip) if and only

pe]N)
if the element uY of the polynomial ring B[Y] is n-integral over the ring
A [(Ip)peN * Y]. (Here, B[Y] is an A [(Ip)
Remark 2.9])

Proof of Theorem In order to verify Theorem we have to prove the fol-
lowing two lemmata:

peN * Y] -algebra, as explained in

3Theorem is inspired by [5 Proposition 5.2.1].
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Lemma E: If u is n-integral over (A, (Ip)p e]N)’ then uY is n-integral

over A |:(Ip)p€IN * Y} .

Lemma F: If uY is n-integral over A [(Ip)p N F Y} , then u is n-integral
over (A, (IP)pE]N>'

[Proof of Lemma £: Assume that u is n-integral over (A, (Ip)p eIN)‘ Thus, by
Definition there exists some (agp, a1, ...,a,) € A" guch that

Z akuk =0, a, =1, and aj € I,_jforeveryie {0,1,...,n}.

Consider this (ag, a1, ...,a,).
For each k € {0,1,...,n}, we have a; € I, i (since a; € I, ; for every i €
{0,1,...,n}) and therefore

o Y Re, ke Y Ly = A [(Ip)peN « Y}

GIvn—k ielN
(since Definition 2.7 yields A [(Ip)p N * Y} = iGZN LY.

Thus, we can define a polynomial P € <A [(Ip)peN * Y]) [X] by P(X) =

n

Y aY" kXK. Consider this P. This polynomial P satisfies deg P < #, and its
k=0
coefficient before X" is a, Y"™" = 1. Hence, this polynomial P is monic and

=1 =Y0=1

n

satisfies deg P = n. Also, by substituting uY for X in P (X) = ¥ a,Y"*X*, we
k=0

obtain

P(u a Y (uy)* a YY" Fuky* = V7 gk YRy R =y ¥ gk =0,

Z YY) kZ%) Z oy Z K
—ykyk =Y H/—/

=0

Thus, there exists a monic polynomial P € <A [(Ip)p N F Y]) [X] with deg P =

n and P (1Y) = 0. Hence, uY is n-integral over A [(Ip)peﬂ\r * Y] This proves
Lemma £.]
[Proof of Lemma F: Assume that uY is n-integral over A [(Ip)p on Y} . Thus,

there exists a monic polynomial P € (A [(Ip)p N * Y]) [X] with degP =
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and P(uY) = 0. Consider this P. Since P € (A [(Ip)pGN *Y]) [X] satis-
H
fies deg P = n, there exists (po, p1,.--,pPn) € (A [(IP)pE]N * YDH such that
P(X) = i piXk. Consider this (po, p1,...,pn). Note that p, = 1 (since P is
k=0

monic and_deg P = n).
+1
Recall that (po, p1,.-.,pPn) € (A [(IP)P@N *Y])n . Hence, for every k €

{0,1,...,n}, we have p, € A [(Ip) * Y} = Z I;Y!, and thus there exists a se-
EN
quence (pki);en € ANsuchthat py = ¥ ple such that (py; € I; for every i € IN),
ieN

and such that only finitely many i € IN satisfy py; # 0. Consider this sequence.
Thus,

peN

n

= Xk = peiYIXK,
Lo ¥R

=Y priY’
ieN
Substituting 1Y for X in this equality, we find

n

PuY)=Y Y piY (uy) = Z Y i XYt

k=0ieN :;@k’ k=0iEN  _ ik
_Yk k
k k _ i+k, k
= Z Y priY Y ) Y
=0icN ke{01,..n} ieEN
k,k __ i+k k
= Z pleZ+ Z Z Pk,i YZJr u
(ki)e{0,1,...n} xN (EN (k,i)€{0,1,...n} xN; vt
i+k=( (since i+k=/)
0k k¢
=) > priY'u =) )3 Pritt Y
LeN (k,i)e{0,1,...,.n} xIN; LeN (k,i)e{0,1,...n} xIN;
i+k=0 i+k=(
Comparing this with P (uY) = 0, we find ) Yy pk,,-ukYg = 0.
CEN (k,i)e{0,1,...n} xN;
i+k=¢
In other words, the polynomial ) Y. pritt* YO € BY] equals 0.
CeEN (k,i)e{01,...,n} xN;
i+k={
€B
Hence, its coefficient before Y" equals 0 as well. But its coefficient before Y”
is ) Pk.ilt uk, Comparing the preceding two sentences, we see that
(ki)€{01,...n} xN;
i+k=n
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)y pk,,-uk equals 0. Thus,
(ki)e{01,...,n}xN;
i+k=n

0= Z pk,,'uk = Z Z pk,iuk. (12)
(ki)e{0,1,...,n}xN; ke{0,1,...n} i€N;
i+k=n i+k=n

For each k € {0,1,...,n}, we have

ieN | i+k=n ={ieN | i=n—k}={n—-k}

< (i=n—k)

(because n — k € N (since k € {0,1,...,n})) and thus

Z pk/iuk - Z pk,iuk = Pk,nfkuk-

i€N; ic{n—k}
i+k=n
Thus, (12)) becomes
k k
0=} Y. it = ), Pkl (13)
ke{01,...n} i€N; ke{01,...n}
i+k=n
-
:pk,nfkuk

Recall that py = Y py;Y' for every k € {0,1,...,n}. Applying this to k = n,
icIN
we find p, = ¥ p,;Y'. Comparing this with p, =1 = 1YY, we find
ieN

Y piY=1-Y° in A[Y].
ielN
Hence, the coefficient of the polynomial Y p,;Y’ € A[Y] before YV is 1. But the
i€EN
coefficient of the polynomial Y p,;Y' € A[Y] before Y is p, ¢ (since p,; € A
i€EN
for all i € IN). Comparing the preceding two sentences, we see that p, o = 1.
Define an (n + 1)-tuple (ag, a1, ...,a,) € A" by setting

(ax = prp—x forevery k € {0,1,...,n}).

Then, a, = pun—n = pno = 1. Besides,

n n

k_ k_ k_
Y. Ak =Y peai =Y, praiu =0
= k=0 ke{01,...n}

(by the definition
of ay)
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(by (13)). Finally, for every k € {0,1,...,n}, we have n —k € N and thus
ax = Pkn—k € Iy_k (since py; € I; for every i € IN). Renaming the variable k as
i in this statement, we obtain the following: For every i € {0,1,...,n}, we have
a; € I,,_;.

Altogether, we now know that the (1 + 1)-tuple (ag, a1, . . .,a,) € A""! satisfies

Z auk =0, a, =1, and a; € I, ; foreveryi € {0,1,...,n}.

Thus, by Definition the element u is n-integral over <A, (Ip)

proves Lemma F.]
Combining Lemma £ and Lemma F, we obtain that u is n-integral over

(A, (Ip)pe]N : if and only if uY is n-integral over A [(Ip)peN * Y}. This proves
Theorem

pe]N)' This

2.4. Sums and products again

Let us next state an analogue of Theorem [1.6/for integrality over ideal semifiltra-
tions:

Theorem 2.12. Let A be aring. Let B be an A-algebra. Let (Ip)p o Pe anideal

semifiltration of A. Let u € A. Then, u - 15 is 1-integral over (A, (IP)p €N> if
and only if u - 1p € I - 13.

Proof of Theorem In order to verify Theorem we have to prove the fol-
lowing two lemmata:

Lemma G: If u - 1p is 1-integral over (A, (IP)pe]N>' thenu-1g € I - 1p.
Lemma H: Ifu-1p € Iy - 1p, then u - 1 is 1-integral over (A, <Ip)p€]N)'

[Proof of Lemma G: Assume that u - 15 is 1-integral over <A, (Ip)p E]N). Thus,

by Definition 2.3 (applied to u - 1z and 1 instead of u and n), there exists some
(ag,a1) € A? such that

1
Y (u- 15)f =0, ap =1, and aj € I_; for every i € {0,1}.
k=0

Consider this (ag,a1). Thus, ag € I;_¢ (since a; € I;_; for every i € {0,1}), so
that ag € [1_g = I; and thus —ay € —I; C [ (since I; is an ideal of A). Also,

1
k 0 1
O—E a (u-1 =ag(u-1g) + a1 (u-1 =ay-1g+u-1g,
k( B) 0( B) 1( B) 0" 1B B

N
k=0 =1p =1 =u-lp
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so that u-1p = —ap -1p € I; - 1p. This proves Lemma G.]
I
€l
[Proof of Lemma H: Assume that u - 1p € I; - 1. Thus, u - 13 = w - 1 for some
w € I. Consider this w. Then, w € I;, so that —w € —I; C I; (since I; is an
ideal of A). Define a 2-tuple (ap,a1) € A? by setting ag = —w and a; = 1. Then,

1
Zak(u-lB)kz ap (u-lB)O-I— a1 (u-lB)lz—w-lg-l—u-lB
=—w =1 =1 =u-lg =w-1p

=—w-lp+w-15=0.

Also, a; € I; _; forevery i € {0,1} (sinceap=—w el =L panday =1€ A=
Iy = I;_1). Altogether, we now know that (ag,a;) € A% and

1
Z ay (u - 1B)k =0, a =1, and a;j € I _; for every i € {0,1}.
k=0

Thus, by Definition 2.3| (applied to u - 13 and 1 instead of u and n), the element
u - 1p is 1-integral over <A, (IP)pe]N>' This proves Lemma #.]

Combining Lemma G and Lemma #H, we obtain that u - 15 is 1-integral over
(A, (IP)pe]N> if and only if u - 15 € I; - 1. This proves Theorem [2.12 O

The next theorem is an analogue of Theorem (1.7 (a) for integrality over ideal
semifiltrations:

Theorem 2.13. Let A be a ring. Let B be an A-algebra. Let (Ip)p cn Pe anideal
semifiltration of A. Let x € Band y € B. Let m € N and n € IN. Assume that

x is m-integral over <A, <Ip)p6]N>’ and that y is n-integral over (A, <IP>peN>'

Then, x + y is nm-integral over (A, (IP)p elN)'

Proof of Theorem Consider the polynomial ring A [Y] and its A-subalgebra
A [(Ip)peN * Y]. The polynomial ring B[Y] is an A [(Ip)

explained in Remark [2.9).

Theorem (applied to x and m instead of u and n) yields that xY is m-
integral over A [(Ip)p eN * Y] (since x is m-integral over (A, (IP)p e]N>)‘ Also,
Theorem (applied to y instead of u) yields that yY is n-integral over
A [(IP)pE]N * Y] (since y is n-integral over (A, (IP)pelN ).

Hence, Theorem (@) (applied to A [(Ip)p en Y}, B[Y], xY and yY in-
stead of A, B, x and y, respectively) yields that xY + yY is nm-integral over

A [(Ip)peN * Y]. Since xY +yY = (x+y)Y, this means that (x +y)Y is nm-

peN * Y} -algebra (as

integral over A [(Ip)p eN ¥ Y}. Hence, Theorem 2.11| (applied to x +y and nm
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instead of u and n) yields that x + y is nm-integral over (A, (Ip)p eIN)‘ This
proves Theorem [2.13]

Our next theorem is a somewhat asymmetric analogue of Theorem [1.7] (b) for
integrality over ideal semifiltrations:

Theorem 2.14. Let A be a ring. Let B be an A-algebra. Let (Ip)p <y be an ideal
semifiltration of A. Let x € Band y € B. Let m € N and n € IN. Assume that

x is m-integral over (A, (Ip)p elN) , and that y is n-integral over A.

Then, xy is nm-integral over (A, (IP)p elN)'

Before we prove this theorem, we require a trivial observation:

Lemma 2.15. Let A be a ring. Let A’ be an A-algebra. Let B’ be an A’-algebra.
Let v € B'. Let n € IN. Assume that v is n-integral over A. (Here, of course,
we are using the fact that B’ is an A-algebra, since B’ is an A’-algebra while
A’ is an A-algebra.)

Then, v is n-integral over A’.

Proof of Lemma We know that v is n-integral over A. In other words, there
exists a monic polynomial P € A [X] with degP = n and P (v) = 0. Consider
this P, and denote it by Q. Thus, Q is a monic polynomial in A [X] with deg Q =
nand Q (v) = 0.

Consider the canonical ring homomorphism A — A’ sending each 4 € A
to a-14 € A’. This homomorphism is defined because A’ is an A-algebra,
and it in turn induces a canonical ring homomorphism A [X] — A’[X]. Let
Q € A’[X] be the image of the polynomial Q € A[X] under this latter ho-
momorphism. Then, Q is a monic polynomial with degQ = n (since Q is a
monic polynomial with degQ = n). Furthermore, the definition of Q yields
Q(v) = Q(v) = 0. Thus, there exists a monic polynomial P € A’ [X] with
deg P = n and P (v) = 0 (namely, P = Q). In other words, v is n-integral over
A’. This proves Lemma O

Proof of Theorem Consider the polynomial ring A [Y] and its A-subalgebra
A [(Ip)pEIN * Y]. The polynomial ring B[Y] is an A [(Ip)

explained in Remark 2.9).

Theorem (applied to x and m instead of u and n) yields that xY is m-
integral over A [(Ip)peN * Y] (since x is m-integral over <A, <IP)peN))‘ Also,
we know that y is n-integral over A. Thus, Lemma (applied to A’ =

A [(IP)pEIN * Y] , B' = B[Y] and v = y) yields that y is n-integral over A [(Ip)pEIN *
(since A [(Ip)peN * Y} is an A-algebra, and B[Y] is an A [(Ip)peN * Y} -algebra).

peN * Y} -algebra (as
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On the other hand, we know that xY is m-integral over A [(Ip)p oN * Y] . Hence,
Theorem [1.7] (b) (applied to A [(Ip)p NE Y} , B[Y] and xY instead of A, B and

x, respectively) yields that xY -y is nm-integral over A [(Ip) * Y}. Since

pEN
xY -y = xyY, this means that xyY is nm-integral over A [(Ip)p N F Y}. Hence,
Theorem (applied to xy and nm instead of u and n) yields that xy is nm-
integral over (A, (IP)p e]N)' This proves Theorem [2.14 O

It is easy to state analogues of Corollary [1.9/and Corollary for ideal semi-
tiltrations. These analogues can be derived from Corollary [1.9/and Corollary
in the same way as how we derived Theorem from Theorem [1.7] (a).

2.5. Transitivity again

The next theorem imitates Theorem [1.5| for integrality over ideal semifiltrations:

Theorem 2.16. Let A be a ring. Let B be an A-algebra. Let (Ip)p <y be an ideal
semifiltration of A.

Letve Band u € B. Letm € N and n € IN.

(a) Then, (I,A [v])p < 18 an ideal semifiltration of A [0]. (See Convention
2.17]below for the meaning of “I,A [0]".)

(b) Assume that v is m-integral over A, and that u is n-integral over

(A [0], (I,A [v])pEN>' Then, u is nm-integral over <A, (I,)

pGN)'
Here and in the following, we are using the following convention:

Convention 2.17. Let A be a ring. Let B be an A-algebra. Let v € B, and
let I be an ideal of A. Then, you should read the expression “IA [v]” as
I-(A[v]), notas (IA) [v]. For instance, you should read the term “I, A [v]” (in

Theorem 2.16|(a)) as I, - (A [v]), not as (I, A) [0].

Before we prove Theorem let us state two lemmas. The first is a more
general (but still obvious) version of Theorem (a):

Lemma 2.18. Let A be a ring. Let A’ be an A-algebra. Let (IP)p o Pe an ideal

semifiltration of A. Then, (I, A’ )p c is an ideal semifiltration of Al

Proof of Lemma We know that (Ip)p 18 an ideal semifiltration of A. In

other words, (IP)p < 18 a sequence of ideals of A and satisfies

Iy =A;
LI, C I for everya € N and b € N
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(by Definition . The set I, is an ideal of A for every p € IN (since (Ip)p o 18
a sequence of ideals of A).

Now, the set I, A’ is an ideal of A’ for every p € IN (since I, is an ideal of A).
Hence, (I,A’ )p n is a sequence of ideals of A’. It satisfies

[p Al=AA"=A (since A" is an A-algebra) ;
—A
LA LA = LI, A’ C I, ,A for every a € N and b € N.
cl
=lg+b

Thus, by Definition 2.1| (applied to A’ and (I, A’ )p <y instead of A and (IP)p N
it follows that (IPA’ 0eN is an ideal semifiltration of A’. This proves Lemma

18 O

Lemma 2.19. Let A be a ring. Let A’ be an A-algebra. Let B’ be an A’-algebra.
Let v € B'. Then, A’- A[v] = A’ [v] (an equality between A-submodules of
B’). (Here, we are using the fact that B’ is an A-algebra, because B’ is an
A’-algebra while A’ is an A-algebra.)

Here, of course, the expression “A’ - A [v]” means “A’ - (A [v])”, not “(A’ - A) [v]”.
Proof of Lemma We have A [v] C A’ [v] (since the ring A acts on B’ through
the canonical ring homomorphism A — A’). Hence, A’- A[v] C A’- A’ [v] C

~——

CA[]
A’ [v] (since A’ [v] is an A’-algebra). On the other hand, let x be an element of
A'[v]. Then, there exist some n € IN and some (ag, a1, ...,a,) € (A")"" such

n
that x = )} akvk. Consider this n and this (ag, a1, ...,a,). Thus,
k=0

n n
x=Y a o eY A APp] CA Al (since A"+ A [v] is an additive group) .
=0 car eal]  F=0
Now, forget that we fixed x. Thus, we have proved that x € A’ - A [v] for every
x € A’ [v]. Therefore, A’ [v] C A’ - A [v]. Combined with A" - A [v] C A’ [v], this
yields A’ - A [v] = A’ [v]. Hence, we have established Lemma O

We are now ready to prove Theorem

Proof of Theorem (a) Lemma .18/ (applied to A’ = A [v]) yields that (I, A [0] )p N
is an ideal semifiltration of A [v]. This proves Theorem (a).

(b) Consider the polynomial ring A [Y] and its A-subalgebra A [(Ip)p N Y} .
Then, (A [v])[Y] is an A [Y]-algebra (since A [v] is an A-algebra) and therefore
* Y} is a subring of A[Y]).

also an A [(IP)pEN * Y} -algebra (since A [(Ip)peN
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Hence, (A [(Ip)p oN * Y]) [v] is an A-subalgebra of (A [v]) [Y] (since v € A [v] C

(A [0]) [Y]). On the other hand, (A [0]) [(IPA [0])
(A [v]) [Y] (by its definition).

Note that B is an A [v]-algebra (since A [v] is a subring of B). Hence, (as
explained in Definition the polynomial ring B [Y] is an (A [v]) [Y]-algebra.
Moreover, B [Y] is an A [Y]-algebra (as explained in Definition and also an
A [(Ip)p N F Y] -algebra (as explained in Remark .

Now, we will show that (A [v]) [(IPA [v])peN * Y} = (A [(IP)pEIN * Y]) [v].
(This is an equality between two subrings of (A [v]) [Y].)

In fact, Definition [2.7) yields A [(Ip)p N F Y] = Y LY'. The same definition
icIN

peN * Y} is an A-subalgebra of

(but applied to A [v] and (I,A [U])pGN instead of A and <IP)peN) yields

(A0]) [(IPA [0]) e * Y} - ZN FA[p)-Y = ZN LY - A[0]
ie ZY?':‘E} ic

= (Z mﬂ') Alv] = A [(Ip)pGIN *Y] - A o]

ieEN
:A[(Ip)peN*Y]

— <A [<Ip>p61N * Y]) 0] (14)

% Y} and B = (A[0]) [Y)).

(by Lemma [2.19, applied to A’ = A [(IP)
Recall that B [Y] is an A [(Ip)
A [(Ip)pEIN * Y] , B[Y] and m instead of A’, B’ and n) yields that v is m-integral

pEN

peN * Y} -algebra. Hence, Lemma 2.15|(applied to

over A [(Ip)p N YW (since v is m-integral over A).
Now, Theorem 2.11|(applied to A [v] and (I, A [U])pE]N instead of A and (Ip)pe]N)

(I,A [v])pEIN * Y} (since u

yields that the element uY is n-integral over (A [v])

14), this rewrites as follows:

[v]. Hence, Theorem

(applied to A [(Ip)peN * Y], B[Y] and uY instead of A, B and u) yields that uY

is n-integral over (A [0], (I,A [U])pE]N>)' In view of

The element uY is n-integral over (A [(IP) *Y

is nm-integral over A [(IP)pGN * Y} (since v is m-integral over A [<Ip>pEIN * Y] ).
Thus, Theorem (applied to nm instead of n) yields that u is nm-integral over

(A, (IP)peN)' This proves Theorem [2.16| (b). O
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3. Generalizing to two ideal semifiltrations

Theorem can be generalized: Instead of requiring y to be integral over the
ring A, we can require y to be integral over a further ideal semifiltration ( ]P)P N

of A. In that case, xy will be integral over the ideal semifiltration (Ip ]p)p N (see

Theorem [3.4] for the precise statement). To get a grip on this, let us study two
ideal semifiltrations.

3.1. The product of two ideal semifiltrations

Theorem 3.1. Let A be a ring.
(@) Then, (A) pen 1s an ideal semifiltration of A.

(b) Let (Ip)p oy and (]P)p o Pe two ideal semifiltrations of A. Then,
(Ip]p)p  1s an ideal semifiltration of A.

Proof of Theorem [3.1} (a) Clearly, (A) pen is a sequence of ideals of A. Hence, in
order to prove that (A) ¢ is an ideal semifiltration of 4, it is enough to verify
that it satisfies the two conditions

A=A
AACA for every a € N and b € IN.

But these two conditions are obviously satisfied. Hence, (A) pen is an ideal
semifiltration of A (by Definition applied to (A)

This proves Theorem [3.7] (a).
(b) Since (Ip)p N is an ideal semifiltration of A, it is a sequence of ideals of A,

pen instead of (Ip)peN).

and it satisfies the two conditions

Iy = A;
LI, € Iy for everya € Nand b € N (15)

(by Definition . Since (]p)p <y is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

Jo=4;
Jalo € Jatb for everya € Nand b € N (16)

(by Definition 2.1}, applied to ( ]P)p oy instead of (IP)p N
Now, we know that both (Ip)p oy and ( ]p)P oy are sequences of ideals of A.

Hence, if p € IN, then both I, and ], are ideals of A, and therefore I, ], is an ideal
of A as well (since the product of any two ideals of A is an ideal of A). Thus,
I,], is an ideal of A for each p € IN. In other words, (I, ]P)p o 1S a sequence of
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ideals of A. Thus, in order to prove that (I, ]P)p o 1 an ideal semifiltration of
A, it is enough to verify that it satisfies the two conditions

IoJo=A;
LiJo - L]y € LispJass for everya € N and b € IN.

But these two conditions are satisfied, since

Iy Jo =AA=A;

(AN

=A =A

Lo -]y = Ly  JaJo < LitpJats for every a ¢ IN and b € IN.
—~ N~

gIaH} g]a+b
(by (15)) (by (16))
Hence, (I, ]P)p cn 18 an ideal semifiltration of A (by Definition applied to
(IP]P)peJN instead of (IP)pelN)‘ This proves Theorem (b).

3.2. Half-reduction
Now let us generalize Theorem 2.11}

Theorem 3.2. Let A be a ring. Let B be an A-algebra. Let (Ip)pelN and (J,)

be two ideal semifiltrations of A. Let n € IN. Let u € B.
We know that (Ip ]P)p o 18 an ideal semifiltration of A (according to Theo-

rem [3.1] (b)).
Consider the polynomial ring A [Y] and its A-subalgebra A [(Ip)

We will abbreviate this A-subalgebra A [(Ip)p eN ¥ Y} by Ay

pEN

peIN*Y]'

(a) The sequence ( ]rA[1]> N is an ideal semifiltration of Ajy.

(b) The element u of B is n-integral over (A, (L]o) ) if and only if the el-

peN

ement uY of the polynomial ring B [Y] is n-integral over (A[I]’ < ]TA[U) ]1\1)'
TE

(Here, we are using the fact that B[Y] is an Ajjj-algebra, because A =

A [(Ip)p N Y] is a subring of A[Y] and because B[Y] is an A [Y]-algebra
as explained in Definition [2.6])

Proof of Theorem The definition of Ay yields

A=A [(Ip)peN * Y} = g\} LY (by Definition [2.7))
1
=Y I Yt (here we renamed i as ¢ in the sum).
leN
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As a consequence of this chain of equalities, we have ) LY = Ap and ¥ I,Y! =
ieN leN
A [I] .

(@) We know that (]p)p N
(Jt)ren 1s an ideal semifiltration of A (since (Jr),en = (]p)p cn)- Thus, by

is an ideal semifiltration of A. In other words,

Lemma [2.18| (applied to Afy and (Jr),cp instead of A’ and (Ip)peN)/ the se-

quence (]TAU]>reN is an ideal semifiltration of A(p. This proves Theorem

().
(b) In order to verify Theorem (b), we have to prove the following two
lemmata:

Lemma &': 1f u is n-integral over (A, (L]o)
over (Am, (]TA[I]>TEN> .

Lemma F': If uY is n-integral over (A[I], (]rA[1]> N), then u is n-
T€

p e]N)’ then uY is n-integral

integral over (A, (IP]P)pe]N) :

[Proof of Lemma E£': Assume that u is n-integral over (A, (I, ]P)p EN). Thus,
by Definition [2.3| (applied to (I, ]P)p oy instead of (Ip)p o) there exists some

(ag,ay,...,a,) € A" such that
Z akuk =0, a, =1, and a; € I,_iJ,_i foreveryi e {0,1,...,n}.

Consider this (ag, a1, ...,a,).
For every k € {0,1,...,n}, we have

ar € Lk Ju—x (since a; € I,,_;J,_; for every i € {0,1,...,n})

—

CA
CL_yACI,_ (since I, i is an ideal of A)

and thus
—k —k i __
a, Y'F e In,kYn - ieZ]N LY' = Am
€l

+1
Thus, we can define an (1 + 1)-tuple (bo, by, ...,by) € (Am>n by setting

<bk = a,Y" * for every k € {0,1,.. .,n}> .
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Consider this (1 + 1)-tuple. The definition of this (n + 1)-tuple yields

n

n
k k k k _ n—kv/k n
by -wY) =) aY" "u"Y auY Y=Y au—O
—ayn—k  _, kvk =Yyn
=0
by = a, Y " =1,
=1 =Y0=1
and
b= a Y e Ju_i In_iYn_i - ]n—iA[I} for every i € {O, 1,... ,1’1} .
N ——
€l iJn—i cy IZY[
:]n—iln—i (eN
=4

+1
Altogether, we now know that (bg, by, ...,by) € <Am>n and
- k
Z br- (uY)" =0, b, =1, and bi € Ju—iA forevery i € {0,1,...,n}.
k=0

Hence, by Deflmtlon(apphed to Ay, BIY], ( ) N uY and (bg, by, ...,by)
TE
instead of A, B, (IP)pe]N’ u and (ag,ay,...,an)), the element uY is n-integral over
(AU]’ (]TAU]> re]N>' This proves Lemma £’ ]
/. . _:
[Proof of Lemma F': Assume that uY is n-integral over <Am, < ]TAM>TEN>'

Thus, by Def1n1t10n (applied to Ay, B[Y], (]T )TE]N, uY and (po, p1,---, Pn)

instead of A, B, (IP)pelN' uand (ag,aq,...,a,)), there exists some (po, p1,-..,Pn) €

(Am)wrl such that

n
Y pr (uY)* =0, pn =1, and pi € Ju—iAyy forevery i € {0,1,...,n}.

Consider this (po, p1,...,pn). For every k € {0,1,...,n}, we have

Pk € Jn—kAq (since pi € Ju—iAqy for every i € {0,1,...,11})
= ]n—k Z I,'Yi (since Am = Z IiYi)
ieN ieN
=Y Juki Y =) LY,
ieN:]/"k ieN
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and thus there exists a sequence (py);cpn € AN such that py = ¥ pi;Y?, such
i€EN

that (px; € I;J,—x for every i € N), and such that only finitely many i € IN sat-

isfy pxi # 0. Consider this sequence. Thus,

ieN :quk
- 1 k, k - vk k i+k k
=) | LY | Yt = YopiYouw= ) ) priY U
k=0 \ielN k=0 ieN — itk ke{0,1,...n} i€N
N~ =
ke {0}
i+k, k i+k k
= )3 pedY Ut =) )y i X w
(k,i)€{0,1,...n} xIN (eN (k,i)€{0,1,...n} xN; _t
i+k=( (since i+k="{)
0, k kL
=) Y. peiYut =) Y. Priu Y.
(EN (k,i)€{0,1,...1} xN; (EN (ki)e{0,1,...n} xN;
i+k={ i+k=0
n
Comparing this with ) p - (uY)* = 0, we obtain ¥ Y Pyt =
k=0 LeN (k,i)e{0,1,...n} xIN;
i+k=(
0. In other words, the polynomial ), Y. Pt YO € BY] equals 0.
CEN (k,i)e{0,...,n} xN;
i+k=¢ y
€B
Hence, its coefficient before Y”" equals 0 as well. But its coefficient before Y"
is ) pk,iuk. Comparing the preceding two sentences, we see that
(ki)€{0,1,...n} xN;
i+k=n
Y, priuk equals 0. Thus,
(ki)e{01,...n}xN;
i+k=n

0= E pk,l-uk = E E pk,iuk. (17)
(ki)e{01,...n}xIN; ke{01,...n} i€N;
i+k=n i+k=n

But for any given k € {0,1,...,n}, we have

ieN | i+k=n p={icN | i=n—k}={n—k}

<~ (i=n—k)

(since n —k € N (because k € {0,1,...,n})) and therefore

Z Pkﬂ'”k - Z Pk,i”k = Pk,nfkuk-

icN; ie{n—k}
i+k=n
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Hence, becomes

0= Y Y ma= Y peast (18)

ke{01,..n} ieN; ke{01,...n}
i+k=n
-

:Pk,nfkuk

Recall that py = Y pi;Y’ for every k € {0,1,...,n}. Applying this to k = 7,

icN
we find p, = ), pn,iYi. Comparing this with p, =1=1"- Y0, we find
ieIN
Y piY=1-Y° in A[Y].
icIN

Hence, the coefficient of the polynomial ¥ p,;Y' € A[Y] before YV is 1. But the
ieN

coefficient of the polynomial ¥ p,;Y' € A[Y] before Y is p, ¢ (since p,; € A
ieIN
for all i € IN). Comparing the preceding two sentences, we see that p, o = 1.
Define an (n + 1)-tuple (ag, a1, ...,a,) € A""! by setting

(ax = pry—i forevery k € {0,1,...,n}).

Then, a, = pun—n = pno = 1. Besides,

n

n
Y. ax =Y peat = Y prasut=0 (by (18)).

— S~~~
=0 k=0 ke{0,1,...,n}

(by the definition
of ay)

Finally, for every k € {0,1,...,n}, we have n —k € N and thus ay = py,x €
Ly_xJu—k (since pyx; € I;],_ for every i € IN). Renaming the variable k as i in
this statement, we obtain the following: For every i € {0,1,...,n}, we have
a; € In_iJn—i.

Altogether, we now know that the (1 + 1)-tuple (ag, a1, ...,a,) € A""! satisfies

Z akuk =0, a, =1, and aj €I, iJ,_iforeveryiec {0,1,...,n}.

Thus, by Definition 2.3 (applied to (I, ]P)p oy instead of (Ip)p o) the element

is n-integral over (A, (Ip]p)p €N>. This proves Lemma F']
Combining Lemma &£’ and Lemma F’/, we obtain that u is n-integral over
(A, (IP]f’)pe]N) if and only if uY is n-integral over <Am, (]TA[IO . This

)
proves Theorem [3.2] (b). ‘
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The reason why Theorem (b) generalizes Theorem (more precisely,
Theorem is the particular case of Theorem 3.2/ (b) for ], = A) is the following
fact, which we mention here for the pure sake of completeness:

Theorem 3.3. Let A be a ring. Let B be an A-algebra. Let n € IN. Let u € B.
We know that (A) .p is an ideal semifiltration of A (according to Theo-

rem [3.1] ().

Then, the element u of B is n-integral over (A, (A) pe]N> if and only if u is

pe

n-integral over A.

Proof of Theorem In order to verify Theorem [3.3] we have to prove the follow-
ing two lemmata:

Lemma L: If u is n-integral over <A, (A) ), then u is n-integral

peEN
over A.

Lemma M: If u is n-integral over A, then u is n-integral over (A, (A) pGN) .

[Proof of Lemma L: Assume that u is n-integral over (A, (A) peN). Thus,
by Definition (applied to (A),cy instead of (Ip)p ). there exists some
(ag,a1,...,a,) € A" such that

Z akuk =0, a, =1, and aj € Aforeveryie{0,1,...,n}.

Consider this (ag, ay,...,a,).

n
Define a polynomial P € A [X] by P (X) = Y a;X*. Then, P (X) = ¥ a,X* =
k=0

n
=0

k
n—1 n—1

a, X"+ ¥ XK = X"+ ¥ a,XF. Hence, the polynomial P is monic, and
\:/1" k=0 k=0

n n
deg P = n. Besides, P (1) = 0 (since P (X) = ¥ a;XF yields P (u) = ¥ apu* =
k=0 k=0
0). Thus, there exists a monic polynomial P € A [X] with degP =nand P (u) =
0. Hence, u is n-integral over A. This proves Lemma L.]
[Proof of Lemma M: Assume that u is n-integral over A. Thus, there exists a

monic polynomial P € A[X] with degP = n and P (u#) = 0. Consider this P.
Since deg P = n, there exists some (n + 1)-tuple (aq, a1, ...,a,) € A""! such that

n
P(X) = kgo 1, X*. Consider this (ag,a1,...,an). Thus, a, = 1 (since P is monic,

n
and deg P = n). Also, substituting u for X in the equality }_ 2, X* = P (X) yields
k=0
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Y. apu* = P (u) = 0. Altogether, we now know that (ag,ay,...,a,) € A"*! and

Zakukzo, a, =1, and a; € Aforeveryic {0,1,...,n}.

Hence, by Definition 2.3 (applied to (A),c instead of (IP)p ) the element u

is n-integral over <A, (A) pe]N>' This proves Lemma M.]
Combining Lemma £ and Lemma M, we obtain that u is n-integral over
(A, (A) pelN) if and only if u is n-integral over A. This proves Theorem O

3.3. Integrality of products over the product semifiltration

Finally, let us generalize Theorem [2.14}

Theorem 3.4. Let A be a ring. Let B be an A-algebra. Let (Ip)peN and (J,)

be two ideal semifiltrations of A.
Letx € Bandy € B. Let m € IN and n € IN. Assume that x is m-integral

over (A, UP)pelN)’ and that y is n-integral over (A, (]p)

peN

p€N>. Then, xy is

nm-integral over (A, (IP]P)pGIN>’

The proof of this theorem will require a generalization of Lemma

Lemma 3.5. Let A be a ring. Let A’ be an A-algebra. Let B’ be an A’-algebra.

Let (IP)p o be an ideal semifiltration of A. Let v € B'. Let n € IN. Assume

that v is n-integral over <A, (Ip) ) (Here, of course, we are using the fact

peN
that B’ is an A-algebra, since B’ is an A’-algebra while A’ is an A-algebra.)

Then, v is n-integral over (A’, (IPA/)pEIN . (Note that (IPAl)pe]N is an ideal
semifiltration of A’, according to Lemma [2.18])

Proof of Lemma[3.5] We know that v is n-integral over <A, (Ip)p €N>. Thus, by

Definition 2.3] (applied to B = B’ and u = v), there exists some (ag,a1,...,4,) €
A"t guch that

) a0k =0, a, =1, and a; € I,_; forevery i € {0,1,...,n}.

Consider this (ag, ay,...,a,).
Now, recall that A’ is an A-algebra. Define an (n + 1)-tuple (bg,by,...,b,) €
(A")"! by setting

(bi=a; 1 foreachi € {0,1,...,n}).
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Then, we have b; = a; - 14 €1, ;A foreveryi € {0,1,...,n}. Also,
— =~

el, ; €A
n n n
) by =Y (- 14) 0" = Y af =0.
k=0 Y k=0 Vv k=0
—{Zk-lA/ :akvk
(by the definition of by)

Furthermore, the definition of b, yields b, = a, ‘14 =14 =1.

-1
Thus, (bo, by, ..., by) € (A’)"Jrl and

Z bkvk =0, b, =1, and b; € I, ;A foreveryie {0,1,...,n}.
k=0

Hence, by Definition [2.3| (applied to B’, A/, (IPA/)pelN’ v and (bg,by,...,by) in-
stead of B, A, (IP)pEN’
(A/, (IPA’)pE]N). This proves Lemma O

Proof of Theorem We have (J,)

u and (ag,ay,...,a,)), the element v is n-integral over

peN = (Jt)ren- Hence, y is n-integral over

(A, (Jr)ren) (since y is n-integral over (A, UP)pelN))' Also, (Jt) e is an ideal

semifiltration of A (since ( ]p) is an ideal semifiltration of A, but we have

peEN
(]p)peN = (Jt)zen)- Thus, <]TAM>T€]N is an ideal semifiltration of Aj; (by

Lemma 2.18, applied to Ajjj and (J7) ¢py instead of A" and (Ip)p

en)
Consider the polynomial ring A[Y] and its A-subalgebra A [(Ip)

oeN * Y} .
We will abbreviate this A-subalgebra A [(Ip)p N *Y} by Ay. Thus, Ay =
A [(Ip)p N * Y] is a subring of A [Y]. Hence, B [Y] is an Apj-algebra (since B [Y]

is an A [Y]-algebra as explained in Definition [2.6).
Theorem [2.11] (applied to x and m instead of u and n) yields that xY is m-

) ). In other

integral over A (IP)p N F Y} (since x is m-integral over <A, (IP)p N

words, xY is m-integral over Ay (since A [(IP)pelN * Y] = Ap)-
On the other hand, AU] is an A-algebra, and B [Y] is an A[I]-algebra. Hence,

Lemma 3.5( (applied to Ajp, B[Y], (Jt).cn and y instead of A, B/, <Ip)p€N and
v) yields that y is n-integral over (A[ 1 (]TA[ I]> N) (since y is n-integral over
TE

(A' (]T)TEJN))‘
Hence, Theorem [2.14| (applied to Aq, B Y], ( ]TA[U) N Yy, xY, n and m
T€

instead of A, B, (Ip pens X Y, m and n, respectively) yields that y - xY is mn-

integral over (AU]’ ( ]TA[I]>T€]N> (since xY is m-integral over A[p).
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Since y - xY = xyY and mn = nm, this means that xyY is nm-integral over
(AU]’ ( ]TAU]> N). Hence, Theorem (b) (applied to xy and nm instead of
TE

u and n) yields that xy is nm-integral over (A, (I ]P)p e]N)' This proves Theo-
rem 3.4 O

4. Accelerating ideal semifiltrations

4.1. Definition of A-acceleration

We start this section with an obvious observation:

Theorem 4.1. Let A be a ring. Let (IP)p o Pe an ideal semifiltration of A. Let

A € IN. Then, (I /\P)pelN is an ideal semifiltration of A.

Proof of Theorem Since (IP)p N is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

Ip=4;
LI, C Iy foreverya € N and b € N (19)
(by Definition [2.1).
Now, I, is an ideal of A for every p € IN (since (Ip)p o 1S a sequence of ideals
of A). Hence, (I AP)P < is a sequence of ideals of A. Thus, in order to prove that

(I AP)p 18 an ideal semifiltration of A, it is enough to verify that it satisfies the

two conditions

Ino=4;
Dvalap € Ii(aso) for every a € N and b € IN.

But these two conditions are satisfied, since

I/\-O = IO = A;
Lualyp € Duasap (by (19), applied to Aa and Ab instead of a and b)
= I\(a10) (since Aa+Ab=A(a+Db)) for every a € N and b € IN.

Hence, (I/\P)pe]N is an ideal semifiltration of A (by Definition applied to
(IAP)pelN instead of <IP>peN)' This proves Theorem

I refer to the ideal semifiltration (I AP)pEIN in Theorem {4.1| as the A-acceleration
of the ideal semifiltration (IP)p N
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4.2. Half-reduction and reduction

Now, Theorem itself a generalization of Theorem can be generalized
once more:

Theorem 4.2. Let A be a ring. Let B be an A-algebra. Let (IP)pelN and (J,)

be two ideal semifiltrations of A. Let n € IN. Let u € B. Let A € IN.
We know that (I )‘P)p cN 18 an ideal semifiltration of A (according to Theo-

rem [4.7).
Hence, (I /\P]p)pGIN is an ideal semifiltration of A (according to Theorem

(b), applied to (IAP)pelN instead of (I,)

peN

pGIN)'
Consider the polynomial ring A [Y] and its A-subalgebra A [(Ip)p en * Y] :

We will abbreviate this A-subalgebra A [(Ip)p N * Y} by Aqp.
(a) The sequence ( ]TA[I]) N is an ideal semifiltration of Ajy.
TE

(b) The element u of B is n-integral over <A, (IAp]p)p e]N) if and
only if the element uY? of the polynomial ring B[Y] is n-integral over

(A[ 1 (]TA[ I]> re]N>' (Here, we are using the fact that B[Y] is an Afj-algebra,

because A = A [(Ip)p en Y} is a subring of A [Y] and because B [Y] is an
A [Y]-algebra as explained in Definition [2.6])

Proof of Theorem (a) This is precisely the claim of Theorem (a); thus, we
don’t need to prove it again.
(b) The definition of Ay yields

A= A|(I) yon ¥ Y| = GEN LY (by Definition [2.7)
1
=) I Yt (here we renamed i as ¢ in the sum).
teN

As a consequence of this chain of equalities, we have ) LY = Aq and ¥ L,Y! =
ieN leN
A

I .
In order to verify Theorem #4.2| (b), we have to prove the following two lem-
mata:

Lemma E": If u is n-integral over (A, UAP]P)pe]N)' then uY” is n-
integral over (A[I], (]TA[I]>T6N>.

Lemma F": 1f uY" is n-integral over (AU]' (]TA[I]> N), then u is
1€

n-integral over (A, (IAP]‘D)pGJN)'
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[Proof of Lemma E": Assume that u is n-integral over (A, (I AP]P)p eIN)‘ Thus,
by Definition 2.3 (applied to (I, ]p)p o instead of (Ip)p o) there exists some

(ag,a1,...,a,) € A" such that

Z aut =0, a, =1, and a; € \(y—iJn—i forevery i € {0,1,...,n

Consider this (ag, a1, ...,a,).
For each k € {0,1,...,n}, we have

Ak € Dn—k) Jn—k (since a; € Iy(y—i)Jn—i for every i € {0, 1,...,n}>
CA
C Diin-nA € Lin-x (since Iy(n—k) is an ideal of A)
and thus '
ay YA(nik) S I/\(n_k)Y)\(nik) - Z IiYZ = Am
EIA(n—k) ieEN

+1
Thus, we can define an (n + 1)-tuple (bo, by, ..., b,) € (AUO" by

(bk = a, Y ") for every k € {0,1,.. .,n}) )

Consider this (n + 1)-tuple. Then,

n

Z \bic_/ . <MYA>k Za Y/\ n— k)u Y/\k Za u Y)\(n k)Y/\k

k=0 :aky)\("fk) — k=0 —ykyA(n—k) —yMu—k)+Ak
(by the =uk (YA) —yAn
definition of by)  =uky*k

n n
= Z auf YA = YA, Z auk =0,
k=0 k=0

Furthermore, the definition of b, yields

b, = a, Y11 1
\ / h\/_/
1 —yA0—yo_q

Finally, the definition of b; yields

b, = a;,  YMrheyg, IA(n—i)Y/\(n_ii C Jn-iAp for every i € {0,1,...
€lyin—iyJn—i cY LY
=Jn—ilx(n—i) éeﬂi
=4
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+1
Altogether, we now know that (bg, by, ...,by) € (A[I]> ! and

Z by - (uY)‘> =0, b, =1, and b; € J,_iA for every i € {0,1,.

Hence, by Def1n1t10n(app11ed to Aj, B[Y], ( ) N uY?* and (bg, by, ..., by)
TE

instead of A, B, (IP)pEIN’ uand (ag,ay,...,a,)), the element uY? is n-integral over
(Am, (]TAU]>T6N>. This proves Lemma £”.]
[Proof of Lemma F": Assume that uY"? is n-integral over (Am, < ]TA[I]) )
TeN

Thus, by Deflmtlon (applied to Ay, B[Y], (]T ) N uY”? and (po,P1,---,Pn)

instead of A, B, (I,)
n+1
(A[ 11) such that

n k
Y pe (uYA) =0, pn =1, and pi € Ju—iAyy forevery i € {0,1,.

Consider this (po, p1,...,pn). For every k € {0,1,...,n}, we have

Px € ]n—kA[l] <since pi € ]n—iA[I] for every i € {0, 1,...,n}>
= ]nfk Z Il'Yi (since Am = Z IiYi)
ieN ieIlN
=Y kL Y =) LJugY,
ie]N:”"; icN

and thus there exists a sequence (py;);cpn € AN such that Pk = Y pk,iYi, such
ieN
that (px; € I;J,— for every i € N), and such that only finitely many i € IN sat-
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isfy pxi # 0. Consider this sequence. Thus,

n .
Z Pk <uYA> = Z (Z Pk, YZ> LYy Mgk (since Pr = Z pk,in>
k=0 N7 ~——— k=0 \ieN ielN

=X priY! K (vark
ieIN =u"(Y
— by Ak
— YAk k
- i Ak k - i+Ak k
=) LYl YBut =} ) peY M
k=0ieIN —yitAk k=0 ieIN
= ~—~—
= L
ke{0,1,...n}
i+Ak, k Ak, k
= Y YopY"E= 3 p
ke{0,1,...n} icN (k,i)e{0,1,...n} xIN
i+Ak k
=), )3 pei X u
LeN (k,i)e{0,1,...n} xIN; —y!
i+Ak={ (since i+Ak={)
_ ,Yf k _ ) kyé
=) )3 Pri Yo =) )3 Pt
LeN (k,i)e{0,1,...n} xIN; —ykyt  LeEN (ki)e{01,..,n} xIN;
i+Ak={ i+Ak={
. . . n k .
Comparing this with Y- pi- (uY?)" = 0, we obtain y prukY! =
k=0 LeN (k,i)e{0,1,...n} xIN;
i+Ak=/
0. In other words, the polynomial ) Y. prit* YO € B[Y] equals 0.
LeN (k,i)e{01,...,n} xN;
i+Ak=/ P
€B
Hence, its coefficient before YA equals 0 as well. But its coefficient before Y
is Y pru*. Comparing the preceding two sentences, we see that
(ki)e{01,...,n} xIN;
i+Ak=An
Y, pruk equals 0. Thus,
(ki)€{0,1,...n} xN;
i+Ak=An

0= ). pi* = Y Y i (20)
(k,i)e{0,1,...n} xIN; ke{01,..n} i€N;
i+Ak=An i+Ak=An

But for each given k € {0,1,...,n}, wehaven —k € N and thus A (n — k) € N
(since A € IN) and thus

iEN | i+Ak=An»=qi€N [ i=An—Ak
—_— —
< (i=An—Ak) =A(n—k)

={ieN |i=An—-k}={A(n—k)}
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(since A (n — k) € IN) and therefore

2 pk,i”k: Z pk,i”k:pk,/\(n—k)”k-

iEN; il n—k

i+Ak=An An=k)}

Hence, (20) becomes
k k
0= ) Y. it =Y. Prap—ni- (21)
ke{01,...n} i€N; ke{0,1,...n}
i+Ak=An
:pk,)u(nfk)uk

Recall that py = ¥ py;Y' for every k € {0,1,...,n}. Applying this to k = n,

icIN
we find p, = ), pn,iYi. Comparing this with p, =1=1"- Y9, we find
ieN
Y puiY=1-Y° in A[Y].
icIN

Hence, the coefficient of the polynomial Y p,;Y’ € A[Y] before YV is 1. But the
i€EN

coefficient of the polynomial Y p,;Y' € A[Y] before Y' is p, o (since p,; € A
icIN
for all i € IN). Comparing the preceding two sentences, we see that p, o = 1.
Define an (n + 1)-tuple (ag, a1, ...,a,) € A" by setting

<ak = PrA(n—k) for every k € {0,1,.. .,n}) .

Then, an = pyr(n—n) = Pn,r-0 = Pno = 1. Besides,

Z ay ut = Z pk,/\(nfk)uk = Z pk,/\(nfk)uk =0 (by 1))
k=0 k=0

~—~
=PrA(n—k) ke{01,...n}

(by the definition
of ay)

Finally, for every k € {0,1,...,n}, we have n — k € IN and therefore A (n —k) €
N (since A € N) and thus ax = prapn—r) € Dn—k)Jn—k (since px; € Lif, for
every i € IN). Renaming the variable k as i in this statement, we obtain the
following: For every i € {0,1,...,n}, we have a; € I(,_j)Ju—i.

Altogether, we now know that the (1 + 1)-tuple (ag, a1, . ..,a,) € A"*! satisfies

Z akuk =0, a, =1, and a; € Dyn—iyJn—i foreveryi e {0,1,...,n}.
k=0
Thus, by Deﬁnition (applied to (I, ]p)pE]N instead of (Ip)p o) the element u

. This proves Lemma F".]

is n-integral over (A, (IAP]P)‘DGIN>
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Combining Lemma £” and Lemma F”, we obtain that u is n-integral over
(A, (I/\P]P)peJN> if and only if uY” is n-integral over (A[I], (]TAM>T ) This
proves Theorem [4.2] (b).

A particular case of Theorem 4.2 (b) is the following fact:

€N

Theorem 4.3. Let A be a ring. Let B be an A-algebra. Let ()

semifiltration of A. Let n € IN. Let u € B. Let A € IN.
We know that (I )‘P)p cn s an ideal semifiltration of A (according to Theo-

rem [4.7).
Consider the polynomial ring A[Y] and its A-subalgebra A [(Ip)p eN ¥ Y]

defined in Definition
Then, the element u of B is n-integral over <A, (I AP)peN) if and only

peN be an ideal

if the element uY”" of the polynomial ring B [Y] is n-integral over the ring

A [(Ip)peN * Y] . (Here, we are using the fact that B [Y] is an A [(Ip)peN * Y} -

algebra, because A [(Ip)p N Y] is a subring of A [Y] and because B [Y] is an
A [Y]-algebra as explained in Definition [2.6])

Proof of Theorem Theorem 3.1 (a) states that (A) . is an ideal semifiltration
of A.

We have (IAP)peN = (IAPA)pelN ﬂ
We will abbreviate the A-subalgebra A [(Ip)p en Y} of A[Y] by Ajj. Thus,

B Y] is an Ajj-algebra (since B [Y] is an A [(Ip)p N * Y] -algebra).
It is easy to see that AA; = Ay °l Hence, AA[ = (A[I]> N
N~ TE
=4/ ren

(A) ene

We have the following five equivalences:

Proof. We know that (I ,\p)peN is an ideal semifiltration of A, thus a sequence of ideals of A.

In other words, for each p € IN, the set | )p 18 an ideal of A.
Now, let p € IN. Then, the set I, is an ideal of A (as we have just seen). Hence, [}, A C I,.
Combining this with I, = I, 14 C I}, A, we obtain I), = I),A.
—~—

€A
Forget that we fixed p. We thus have shown that I, = I,,A for each p € N. In other
words, (I’\P)pelN = (I/\PA)pEIN'
5Proof. We have AAy © Ay (since Appj is an A-algebra). Combining this with A =
1A Am Q AA[I], we obtain AA[I] = Am, qed
—~—

cA
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e The element u of B is n-integral over (A, (I /\P)p eIN) if and only if the ele-

ment u of B is n-integral over (A, (IAPA)p€N> (since (I/\P)pEIN = (I)‘PA)pE]N)'

e The element u of B is n-integral over (A, (I APA)p eIN) if and only if the ele-
ment uY* of the polynomial ring B [Y] is n-integral over (A[ 1 <AA[ 1]>

TEN)
(according to Theorem 4.2/ (b), applied to (A), instead of (Jp)

pE]N)‘

e The element uY" of the polynomial ring B [Y] is n-integral over <A[ 1 (AA[ I]> ]N>
TE

if and only if the element uY* of the polynomial ring B [Y] is n-integral over
(Aw (A[IOpeN) since (Ad) = (Au) )

e The element uY” of the polynomial ring B [Y] is n-integral over (A[ 1 (A[ 1]> N>
p€

if and only if the element uY* of the polynomial ring B [Y] is n-integral over
Ay (by Theorem applied to Aj, B[Y] and uY”" instead of A, B and u).

e The element uY” of the polynomial ring B [Y] is n-integral over Ay if and
only if the element uY” of the polynomial ring B[Y] is n-integral over

A (Ip) peny * Y| (since Ay = A | (L) o % Y])-

Combining these five equivalences, we obtain that the element u of B is n-

integral over (A, (I AP)p eIN) if and only if the element uY" of the polynomial
ring B [Y] is n-integral over A [(Ip)p N * Y} . This proves Theorem O

Note that Theorem is the particular case of Theorem [4.3|for A = 1.
Finally we can generalize even Theorem [1.11}

Theorem 4.4. Let A be a ring. Let B be an A-algebra. Let (Ip)p o Pe an

ideal semifiltration of A. Let n € N*. Let v € B. Let ag,aq,...,a, be n +1

n .
elements of A such that ) a;0' = 0. Assume further that a; € I,_; for every

=0

ie{0,1,...,n}.

Let k € {0,1,...,n}. We know that (I(n—k)p> N is an ideal semifiltration

pe
of A (according to Theorem 4.1} applied to A = n — k).
n—k .
i
Then, Eo a; k0" is n-integral over (A, <I(”_k)p>pe]N)'

Proof of Theorem 4.4, Consider the polynomial ring A [Y] and its A-subalgebra
A [(Ip)p N * Y] defined in Definition Note that A [(Ip)p Nt Y} is a subring
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of A[Y]; hence, B[Y] is an A [(Ip)p oN * Y] -algebra (because B[Y] is an A [Y]-
algebra as explained in Definition [2.6).
Definition 2.7 yields

Y . .
A [(IP pe]N ] lg\l LY' = gg\l LY (here we renamed i as ¢ in the sum).

{ _
Hence, & IY" =4 [ (1) ey * Y]
Define u € B by

n—k )
u= Z a0 (22)
i=0

In the ring B [Y], we have

Yn i ‘Y ‘Yn lYl l_Yn _O
Za i/- Za, g)av

-
i=0 zyn
_lel szl N’
=0

Besides, every i € {0,1,...,n} satisfies

\a/i_/ Y e I, ;Y C Z IEYE =A |:(IP)pE]N * Y} :

el leN

(by assumption)
In other words, agY"* 9,4, Y"1, ..., 4,Y" " are n + 1 elements of A |:(Ip)p€]N * Y} .

Hence, Theorem|[1.11| (applied to A [(Ip)pEN * Y] , B[Y], vY and a;Y"~ instead of

n—k . .
A, B,vand a;) yields that Y a;,;Y"~ ("5 (vY)' is n-integral over A |:(Ip)p€]N * Y} :
i=0

Since

n—k n—k
) i YR (oY) Z aiye YRy i = Y a0t YR = uyn Tk,

. —— .
=0 =0l Yi=Yiv! =Y (n=(i+h)+Hizyn—k i\,—/
=y
(by 22)

. —k : .
this means that uY" " is n-integral over A [(Ip)p eN * Y} .
But Theorem [4.3| (applied to A = n — k) yields that u is n-integral over

(A' (fw—kw)pem

Since we know that uY"~* is n-integral over the ring A [(Ip)

if and only if uY" ¥ is n-integral over the ring A [(Ip)p N * Y} .

* Y} , this yields

n—k .
that u is n-integral over (A, (I(n—k)p> IN)' In other words, ) a;. ;0" is n-
pe i=0

pEN

—k
integral over (A, <I(n,k)p> N> (since u = Z a; +kvl) This proves Theorem
pE i—0
L]

57



Integrality over ideal semifiltrations July 14, 2019

5. On a lemma by Lombardi

5.1. A lemma on products of powers
Now, we shall show a rather technical lemma:

Lemma 5.1. Let A be a ring. Let B be an A-algebra. Let x € B. Let m € IN and
n € N. Letu € B. Let y € N and v € N be such that p +v € NT. Assume

that
u e <u0, ul, .. .,u”*1> . <x0,x1,...,xv> (23)
A A

and that

+u®ut, a0, ) (24)
A

Then, u is (np + mv)-integral over A.

This lemma can be seen as a variant of [6, Theorem ZE Indeed, the particular
case of [6, Theorem 2] when | = 0 can easily be obtained from Lemma
(applied to x and « instead of u and x).

Before we prove Lemma we recall a basic mathematical principle:

Proposition 5.2. Let (i) be an assertion for every i € IN. If
every I € N satisfying (2 (i) for every i € IN such that i < I) satisfies A (I),

then
every i € IN satisfies 2 (7).

Proposition [5.2] is known as the principle of strong induction. By renaming i, I
and 2 as j, | and ‘B, respectively, we can rewrite this principle as follows:

Proposition 5.3. Let ‘B (j) be an assertion for every j € IN. If
every | € N satisfying (B (j) for every j € IN such that j < J) satisfies B (]),

then
every j € IN satisfies B (j) .

Proof of Lemma 5.1} Define the set
S=({0,1,...,n—=1} x{0,1,...,u —1})
U({0,1,....m =1} x{u,u+1,...,u+v—1}). (25)

®Caveat: The notion “integral over (A,])” defined in [6] has nothing to do with our notion
“n-integral over (A, (In),en)”
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Then, |S| = nu+mv [} Also,
j<u+vforevery (i,j) €S (26)
Bl

"Proof. We have (U x V)N (X xY) = (UNX) x (VNY) for any four sets U, V, X and Y.
Applying this to U = {0,1,...,n =1}, V = {0,1,...,p =1}, X = {0,1,...,m —1} and
Y:{ﬂzﬂ+1//#+v—1},weflnd

{0,1,...,.n—1}x{0,1,...,u—1})Nn({0,1,...,m =1} x {p,u+1,..., u+v—1})
=({0,1,...,n=1}n{0,1,...,m—1}) x ({0,1,..., u =1} {pu+1,..., u+v—1})

=z

={0,1,...,n—=1}n{0,1,..., m—1}) x @ =@.
Hence,

|({0,1,...,n =1} x{0,1,..., u =1} U({0,1,... m =1} x{u,u+1,..., u+v—1})]
={0,1,...,.n—1} x{0,1,..., u =1} +|{0,1,.... m =1} x{p,u+1,...,p+v—1}|
=H{0Ln=1}[-[{0,1,... p—1}| =H{OLem=1}|-{ptpt 1, v =1}
because any two finite sets U and V satisfying U NV = &
satisfy [UU V| = |U|+ |V]|
={0,1,...,.n—1}-[{0,1,...,p—1}|+[{0,1,... m—=1}| - {p,u+1,...,u+v—1} = npu+ mv.

=n =u =m =V

In view of
s={0,1,...,.n—-1} x{0,1,...,pu—1})U({0,1,... m—1} x {p,u+1,...,u+v—1}),

this rewrites as |S| = ny + mv.
8In fact, v > 0 (since v € N), sothat u + v —1>pu—1. Hence, u — 1 < i+ v — 1, so that

>0
s=|{01,...,n-1}x{01,...,u—1}
—_——

c{o01,...u+v—-1}
(since p—1<p+v—1)

ul{o1,...m—1}yx{ppu+1,...,u+v—1}

c{o1,...u+v—-1}
(since p>0)

c({o0,1,...,n—=1} x{0,1,...,p+v—1})
u{{o,1,...,m—1} x{0,1,...,u+v—1})
={0,1,...,n—=1}u{0,1,..., m—1}) x{0,1,..., u+v—1}

(since (U x X)U(V xX) = (UUV) x X for any three sets U, V and X). Hence, for every
(i,j) € S, we have (i,j) € S € ({0,1,...,n—1}U{0,1,...,m—1}) x {0,1,..., u+v—1}
and thus j € {0,1,..., 4 +v —1} and thus j < p + v. This proves .

59



Integrality over ideal semifiltrations July 14, 2019

Let U be the A-submodule (u'x/ | (i,j) € S) , of B. Then, U is an (np + mv)-
generated A-module (since |S| = nu + mv). Besides, clearly,

u'xl € U for every (i,j) € S (27)

(since U = (u'x) | (i,j) € S) ).
Now, we will show that

every i € N and j € N satisfying j < p 4 v satisfy u'x/ € U. (28)
[Proof of (28). For every i € IN, define an assertion 21 (i) by
2A (i) = (everyj € N satisfies (ifj < p+v, then u'x/ € LI)) :
Let us now show that
every I € N satisfying (2 (i) for every i € N such thati < I) satisfies 2 (I).
[Proof of (29). Let I € IN be such that )
(2 (i) for every i € N such thati < I). (30)

We must prove that 2 (I) holds.
The definition of the assertion 2( (I) yields

A(I) = (everyj € N satisfies (ifj < p+v, then ulx/ € U)) .
For every j € IN, define an assertion B (j) by
B (j) = (if j < p+v, then u'sl € U) . (31)
Let us now show that
every | € N satisfying (B (j) for every j € IN such that j < J) satisfies B (]).
[Proof of (32). Let ] € IN be such that >
(B (j) for every j € N such thatj < ]). (33)

We must prove that B () holds.
The definition of the assertion B (]) yields

B (]) = <if]<y+v,thenu1x] e u)

Assume that ] < y + v. Then, for every j € IN such that j < ], the assertion
% (j) holds (due to (33)). In other words, for every j € N such that j < ], we
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have (if j < y+v, then ulx/ € U) (because this is precisely what the assertion

B (j) says) and therefore u!x/ € U (since j < u + v automatically holdsﬂ). Thus
we have shown that

ulx) € U for every j € N such that j < J. (34)
In other words, .
ulx/ € U for every j € {0,1,...,] — 1} (35)

(since the numbers j € {0,1,...,] — 1} are precisely the numbers j € IN such
that j < J). Hence,

Y. audeu (36)
j€{0,1,...J—1}

01,.,J—1
for every (af)je{o,l,...,]fl} e At0L-J=1}

(since U is an A-module, and thus is closed under A-linear combination).

Also, if i € IN satisfies i < I, then the assertion 2 (i) holds (by (30)). In view
of the definition of 2( (i), we can restate this as follows: If i € IN satisfies i < I,
then every j € N satisfies (if j < p + v, then u’x/ € U). In other words,

u'x) € U for everyi € Nandj € Nsuchthati <ITandj<pu-+v. (37)
Hence,
u'x) € U for every (i,j) € {0,1,...,1 -1} x{0,1,...,u+v—1}  (38)

(because for every (i,j) € {0,1,...,I =1} x{0,1,...,u+v—1}, we have i < I
(since i € {0,1,...,I—1}) and j < p+v (since j € {0,1,...,p+v—1}) and
therefore u’x/ € U (by (37))). Hence,
ai/juixj el (39)
(i,/)e{01,...I-1}x{0,1,.. . u+v—1}

. {01,..,1-1} < {0,1,... u+v—1}
for every (”w)(i,j)e{o,l,...,1—1}><{0,1,...,;4+u—1} €A

(since U is an A-module, and thus is closed under A-linear combination).
Now,

<u1> -<x0,x1,...,x1_1>
A NS 14/

=(dJ | je{01,.]-1})

=(u') (¥ jefo1,...,J-1}) =(ud | je{o1,...,J-1})

= { Y, au'd | (af)je{o,l,...,]—l} = A{O'l""'jl}} cu (40)

je{01,..J—-1}

‘because j < | < u+v
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(by (36)).

Furthermore,

<u0, ul, .. .,u171> . <x0,x1, . ,x””*1>
A N A/

J/

=(ul | ie@,...,l_lm =(x | je{O,I,.r..,y—H/—l}>A
=<ui | ie{0,1,...,1—1}>A-<xf | jE{O,l,...,y+v—1}>A
:<uixf | (i,j)e{0,1,...,1—1}><{0,1,...,y+1/—1}>A

= Z ai,]-uixj
(i,j)e{0,1,...1-1}x{0,1,..., u+v—1}

y {01,...,1-1}x{0,1,... u+v—1}
| (al,])(z’,j)e{O,l,...,Ifl}><{0,1,...,y+v71} €A

cu (41)
(by @)

From | < y+ v, we obtain | < y +v —1 (since | and y + v are integers). We
are now going to show that u'x/ € U.
Trivially, we havem

(I>m ANJ>u) vV (I<mANJ>u)V (I>nAN]J<pu) VvV (I<nA]J<np)

E Hence, one of the following four cases must hold:
Case 1: Wehave [ >m N | > .
Case 2: Wehave I <m A | > p.
Case 3: Wehave I >n N | < pu.
Case 4: Wehave I <n A | < pu.
Let us first consider Case 1. In this case, we have I > m and | > u. Hence,

19Here, an expression like “I > m A ] > u” should be read as “(I > m) A (] > u)”.
g
since

(I>mANJ>u) Vv (I<mANJ>u)V I>nANJ<p)V (I<nA]J<p)

= (I>m VvV I<m) A (J>p) = (Izn Vv I<n) A (J<p)
= (Jzp) = (J<p)
(since (I>m V I<m) is true) (since (I>n V I<n) is true)

= (U2 Vv (<p = true
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[ —m >0 (since ] >m)and ] —u > 0 (since | > u). Thus,

I/lI x]
~— ~
I—mym xtx]—n
(smce I>m) (smce J>u)
N
€<u0,u1, ,um71>A_<x0 xl/ ,x;¢>A+<M0,u1P ,um>A <x0,x1, ,x;¢71>
(by @49)

+ <u U
= oyl <u0,u1,...,um*1> : <x0,x1,...,x”> xH
N 4 A
= (ul=my0 1= ’”:t?,...,ulf’”umfl s =(x0x) 71 21 xTF‘ RN
(0 1m0y (000 ) ek -a0)
:<xI Hox)—ntl xI>A

:< Ifm Ifm+1 "’u171>A
C< 0 1 x]/l+V 1>

C<u ul. ,u1*1>
(since {I—m,I—m+1,...,I-1}Z{0,1,... -1} (since {J—p,J— ;4+1, JJyc{o1,..,.u+v—1}
(since [—u>0 and J<u+v—1))

<x0,x1,...,x”*1> x/H
A J

(since I—m>0))
+ u17m<u0,ul,...,um>A .

xl‘*lx]*]i>

= uI*muO,uI*;;, .,uI*’”u’”>A =(x0x) =1t n,
(O Lm0 ) )
:(uI*m ulfm+1,...,u1> :<x]*” xHtL x]*1>A

Ll (0,207 1)

(since {I— ;1[ m—l—l, LA3c{01,...,I} (since {J—u,J— ;H—l, LJ-1}3{0,1,...,] -1}
(since I—m>0)) (since [—u>0))
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<x0,x1,...,x]_1> +<u1> -<x0,x1,...,x]_1>
. A A A

c <x01x1,:’rxy+v—1>

(since {0,1,...,]—-1}<{0,1,... u+v—1}
(since [-1<]<u+v—1))

§U+<u0,u1,...,u1_1> -<x0,x1,...,xy+’/_1> +<ul> -<x0,x1,...,x]_1>
A A A A

J/ (.

cu cu
(by @1)) (by E0))
cu+u+ucu (since U is an A-module).

Thus, we have proved that u’x/ € U holds in Case 1.

Let us next consider Case 2. In this case, we have I < m and | > u. Thus,
Ie€{0,1,...,m—1} (since] <mand I € N)and | € {p,u+1,...,u+v—1}
(since ] > pand | < p +v). Thus,

(LL]))e{0,1,.... m—1} x{pu+1,..., u+v—1}
Cc ({0,1,...,n—=1} x{0,1,...,u —1})
U({0,1,....m—=1}y x{p,u+1,...,u+v—1})
=S (by @5))-

Hence, u'x/ € U (by , applied to I and | instead of i and j). Thus, we have
proved that u/x/ € U holds in Case 2.

Let us next consider Case 3. In this case, we have I > n and | < u. Hence,
[—n>0(incel >n)and [+v < pu+v-—-1 (since\]/—i—v < u +v, and since

<H
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J +v and p + v are integers). Thus,

ul X =yl u'" x!
~~ ~—~
I 0,1 -1 0,1
(sTr?ce ;g’;) €<u b, >A~<x X ,...,xV>A
- (by @3))
€ ul=n <u0,u1,...,u”_1> . <x0,x1,...,x”> x!
:<uI*”uO,uI*”ul,...,uI*”u”A>A :<x0x],x1x],...,xvx]>
:<u(I—n)+0/u(I—n)+1/.__,u(l—n)+(n—1)>A :<x0+],x1+],m,xv+]>
_ [, 1- I—n+1 I-1 — +1 +
_<u noyl=ntl u >A —<x],x’ o) V>A
§<uo,u1,...,u1*1>A Q(xo,xl,...,xV+”*1>A
(since {I-n,I—-n+1,..1-1}C{0,1,...,1-1} (since {J,J+1,...J+v}C{01,...u+v—1}
(since I—n>0)) (since [>0 and J+v<pu+v—1))
C <u0, ul,...,u1_1>A . <x0,x1,...,xy+”_1>A cu (by (@T)).

Thus, we have proved that u’x/ € U holds in Case 3.

Finally, let us consider Case 4. In this case, we have I < n and | < u. Thus,
I €{01,....,.n—1} (since ] <nand I € N)and | € {0,1,...,u — 1} (since
J <wuand | € N). Thus,

(L)) €{0,1,...,n—=1}yx {0,1,...,u—1}
C ({0,1,...,n =1} x{0,1,...,u—1})
UH{o,1,....m =1}y x{pu+1,...,u+v—-1})
=S (by @5)),

so that ulx/ € U (by , applied to I and | instead of i and j). Thus, we have
proved that u'x/ € U holds in Case 4.

Therefore, we have proved that ulx] € U holds in each of the four Cases 1, 2,
3 and 4. Hence, ulx/ € U always holds.

Now, forget our assumption that | < u 4+ v. Hence, we have proved that if
] < p+v, then ulx) € U. In other words, we have proved the assertion 5 ()
(because B (]) = (if ] < p + v, then ulx) € U)).

Thus, we have proved (32).]

Hence, Proposition [5.3] yields that

every j € IN satisfies B (j).
In other words,
every j € IN satisfies (if j<p+v, thenuly/ € U)
(because of ). In other words, the assertion 2 (I) holds (because

A (I) = (every j € N satisfies (if j < u+ v, then ulx/ € U))).
Thus, we have proved (29).]
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Hence, Proposition [5.2] yields that
every i € IN satisfies 2 (7).
In other words,

every i € N satisfies <every j € IN satisfies (if j < p+v, then u'y/ € U>>

(since 2 (i) = (every j € N satisfies (if j < p + v, then u’x/ € U))). This is equiv-
alent to (28). Thus, is proven.]
We have 0 < u + v (since y +v € INT). Thus, we can aopply toi =0 and
j = 0. As a result, we obtain u%x% € U. In view of u° x” =1, this rewrites as
T
1eU.
Furthermore, if i € IN and j € IN satisfy j < p + v, then

u-uly =utly e u
—~—

i+l
(by (applied to i 4 1 instead of i)). Hence,
u-u'xl € U for every (i,f) €S, (42)

because every (i,j) € S satisfiesi € N and j € N and j < u + v (by (26)). Hence,
1 S . .
(z’j?es ajj i - L;lx] € U for every (a;;) .. o € A (since U is an A-module and thus
! S
(by (#2)

is closed under A-linear combination).
Now, from U = (u'x) | (i,j) € S) ,, we obtain

(ij)e

uld =u <uixj | (i,)) € S>A = <u ulxl | (i) € S>A

= {( Z aju - ulx/ | (aiff>(i,j)es € AS} cu

ij)€es

(because Y. a;ju-u'x) € U for every (al-,j)(ij)e
(i)es '
Altogether, U is an (nyu + mv)-generated A-submodule of B such that 1 € U
and ul C U. Thus, u € B satisfies Assertion C of Theorem [1.1|with 1 replaced by
nyu + mv. Hence, u € B satisfies the four equivalent assertions A, B, C and D of
Theorem |1.1| with n replaced by ny + mv. Consequently, u is (nu + mv)-integral
over A. This proves Lemma O

S
S € A9).

We record a weaker variant of Lemma
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Lemma 5.4. Let A be a ring. Let B be an A-algebra. Let x € B and y € B be
such that xy € A. Letm € Nand n € IN. Let u € B. Let y € N and v € IN be
such that y +v € NT. Assume that

u" € <u0,u1,. . .,u”*1>A : <x0,x1,...,xV>A (43)
and that
we (w0l ) ()
+ <u0,u1,...,um>A : <y1,y2,...,y">A. (44)

Then, u is (np + mv)-integral over A.

Proof of Lemma 5.4, Fix p € N.

Letie {p,p+1,...,u}. Thus,i > pandi < u. Fromi € {p,p+1,...,u}, we
obtain y —i € {0,1,...,u —p}, sothat {u—i} C {0,1,...,u—p}. Also,i < p,
thus y —i > 0, so that

ot =yt i = Xy e Axtl = <x”_i>A (45)
~ ~—
=xi :(xy)iEA
(since xyc A)
C <x0,x1, .. .,x”*p>A (46)

(since {u —i} € {0,1,...,u—p}).
Now, forget that we fixed i. We thus have proven {@6) foreachi € {p,p+1,...,u}.

Hence, every (a;) € AlPPHL} satisfies

ie{p,p+1,...
Z aj yixV € Z a; xo,xl,...,x”_p>A C <x0,x1,...,x”_P>A
ie{p,p+1,...u} (0 x?/:;t—p> ie{p,p+1,...u}
(by (@6))

(because <x0, L xHP 4 is an A-module). In other words,

Z aiylxﬂ | (ai)ie{p,p—i-l,...,y} c Alpp+l.u} C <x0’ xl, N .’xy_p>

. A
i{pp+L,...u}

(47)
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Now,

<y",yr’“,---,y“>Ax” =(y' | ie {P,P+1,---,u}>Ax"

(.

=y | ie{pp+1-m}),

= <yixV | i€ {p,p+1,...,y}>A

{ Z ai}/ixﬂ | (ai)iG{p,p+l,...,y} c A{p,pﬂ,...,y}}

ie{pp+1,...1}
C <x0,xl,. ) .,x”*p>

) (48)

(by @7)).
Forget that we fixed p. We thus have proven for each p € IN. Applying
to p = 0, we find

<y0,y1,...,y”>AxV C <x0,x1,...,xV*0>A = <x0,x1,...,x”>A (49)
(since u — 0 = p). Applying to p =1, we find
<y1,y2,. ) .,yV>A xt C <x0,x1,...,x”*1> . (50)

A
Now, yields

€ <<u0,u1,...,um_1>A . <y0,y1,...,y7‘>A + <u0,u1,...,um>A . <y1,y2,...,y7‘>A> xt
= <u0,u1,,,,,um_1>A - <y0,y1,...,y">Ax" + <u0,u1,. . .,um>A : <y1,y2,...,y“>Ax"

-~ ~"

- <x0,x1,...,x”>A - <x0,x1,...,xﬂ_1
(by @9)) (by G0))

§<u0,u1,...,um*1> -<x0,x1,...,xV> —|—<u0,u1,...,um> -<x0,x1,...,xV*1> )
A A A A

In other words, holds. Also, holds (because holds, and because
is the same as (43)). Thus, Lemma [.1]yields that u is (ny + mv)-integral over A.
This proves Lemma O

We now come to something trivial:

Lemma 5.5. Let A be a ring. Let B be an A-algebra. Let x € B. Let n € IN. Let
u € B. Assume that u is n-integral over A [x]. Then, there exists some v € N

such that
u" e <u0,u1,...,u”_1> . <x0,x1,...,x‘/> )
A A
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Proof of Lemma There exists a monic polynomial P € (A [x]) [X] with deg P =

n and P(u) = 0 (since u is n-integral over A [x]|). Consider this P. Since

P € (A[x])[X] is a monic polynomial with degP = n, there exist elements
n—1 .

®o, 01, ...,0,—10f Ax]suchthat P(X) = X"+ Y a;X'. Consider these ag, a1, ..., &,;_1.
i=0

n—1 .
Substituting u for X in the equality P(X) = X"+ Y. a;X', we find P (u) =
=0
n—1 ) l n—1 )
u" + Y. aju'. Comparing this with P(u) = 0, we obtain u" + ) au’ = 0.
=0 =0
1 1 . 1
Hence, u" = — Y waju’.
i=0
For every i € {0,1,...,n—1}, we have a; € A[x], and thus there exist some
Vi
v; € N and some (B;o, Bi1,---,Biv.) € A%+l such that a; = Y. B;xx*. Consider
k=0

these v; and (Bio, Bi1, - - -, Biy;). Hence, for every i € {0,1,...,n — 1}, we have

Vi
a;=Y Bipx* e <x0, xl,...,x’/f> . (51)
k=0 4
Let v = max{vy,vy,...,Vys—1,1}. Thus, v is an integer satisfying v > 1

(since 1 € {vp,v1,...,v,_1,1}); hence, v € IN*. Furthermore, for every i €
{0,1,...,n—1}, we have v; € {vp,v1,...,Vy—1} C {vo,v1,...,V4—1,1} and thus
v; < max{vg,vy,...,V,-1,1} = v, hence {0,1,...,v;} €{0,1,...,v}, and thus

;€ <x0,x1,...,xvi>A (by (51))

C 0 1 . v
_<x,x, , X >A (52)
(since {0,1,...,v;} €{0,1,...,v}). Therefore,
u"=—y wau = — u' K
i=0 i=0 e

§<u0fu1,...,u"’1>A e{x0x1, . xv A
(since i€{01,...n—1})  (by (52))
n—1

€ — Z <u0,u1,...,u”*1>A . <x0,x1,...,x">A

i=0
- <u0,u1,...,u”_1> ~<x0,x1,...,x”>
A A

(since (u,ul, ..., u”_1>A (20,2, xV) , is an A-module). This proves Lemma
L]

5.2. Integrality over A [x] and over A [y] implies integrality
over A [xy]

A consequence of Lemma [5.4/and Lemma [5.5is the following theorem:
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Theorem 5.6. Let A be a ring. Let B be an A-algebra. Let x € Band y € B
be such that xy € A. Let m € N and n € IN. Let u € B. Assume that u
is n-integral over A [x], and that u is m-integral over A [y]. Then, there exists
some A € IN such that u is A-integral over A.

Proof of Theorem Since u is n-integral over A [x], Lemma .5] yields that there
exists some v € INT such that

n 0,1 n—1 0 .1 v
u €<u,u,...,u >A-<x,x,...,x >A.

In other words, there exists some v € N such that holds. Consider this v.
Since u is m-integral over A [y], Lemma 5.5| (with x, n and v replaced by y, m
and ) yields that there exists some u € N such that

um6<u0,u1,...,um_1> < 0yt .. ”> )
A \VY ¥).

Consider this u. Hence,

u™ e <u0,u1,...,um*1>A . <y0,y1,...,y”>A
C <u0,u1,...,um*1>A : <y0,y1,...,yV>A + <u0,u1,...,um>A : <y1,y2,...,yV>A.

In other words, holds. From y € N and v € N, we obtain y +v € N ™.
Since both and hold, Lemma [5.4] yields that u is (np + mv)-integral

over A. Thus, there exists some A € IN such that u is A-integral over A (namely,

A = nu + mv). This proves Theorem O

We record a generalization of Theorem (which will turn out to be easily
seen equivalent to Theorem [5.6):

Theorem 5.7. Let A be a ring. Let B be an A-algebra. Let x € B and y € B.
Let m € N and n € IN. Let u € B. Assume that u is n-integral over A [x], and
that u is m-integral over A [y]. Then, there exists some A € IN such that u is
A-integral over A [xy].

Proof of Theorem 5.7} Let C denote the A-subalgebra A [xy] of A. Thus, C =
A [xy] is an A-subalgebra of B, hence a subring of B. Thus, C [x] is a C-subalgebra
of B, hence a subring of B. Note that C = A [xy| = A [yx] (since xy = yx).
Furthermore, A [x] is a subring of C [x] EVI Thus, C [x] is an A [x]-algebra.
Also, B is a C [x]-algebra (since C [x] is a subring of B). Since u is n-integral over
A[x], Lemma (applied to B, C[x], A[x] and u instead of B/, A’, A and v)

12Proof. Both A [x] and C [x] are subrings of B.
Now, let v € A|[x]. Thus, there exist some p € IN and some elements ag, a1, . . .,ap of A

P .
such that v = )- a;x'. Consider this p and these ag,ay,...,ap. For each i € {0,1,...,p}, we
i=0

70



Integrality over ideal semifiltrations July 14, 2019

yields that u is n-integral over C [x]. The same argument (but applied to y, x,
n and m instead of x, y, m and n) shows that u is m-integral over C [y| (since
C = Alyx]).

Now, B is a C-algebra (since C is a subring of B) and we have xy € A [xy] = C.
Hence, Theorem (applied to C instead of A) yields that there exists some
A € N such that u is A-integral over C (because u is n-integral over C [x], and
because u is m-integral over C [y]). In other words, there exists some A € IN such
that u is A-integral over A [xy] (since C = A [xy]). This proves Theorem O

5.3. Generalization to ideal semifiltrations

Theorem 5.7 has a “relative version”:

Theorem 5.8. Let A be a ring. Let B be an A-algebra. Let (Ip)p o Pe an ideal

semifiltration of A. Let x € Band y € B.
(@) Then, (I,A [x])p on 18 an ideal semifiltration of A[x].  Besides,

(I,A [y])p cny is an ideal semifiltration of A [y]. Besides, (I, [xy])p oy 1S an

ideal semifiltration of A [xy].
(b) Let m € N and n € IN. Let u € B. Assume that u
is n-integral over (A x], (I, A [x])p€N>, and that u is m-integral over

(A ], (LA [y])p e]N)' Then, there exists some A € IN such that u is A-integral
over (A [xy], (L,A [xy])p€N>.

Our proof of this theorem will rely on a lemma:

Lemma 5.9. Let A be a ring. Let B be an A-algebra. Let v € B. Let (IP)pe]N
be an ideal semifiltration of A. Lemma (applied to A’ = A [v]) yields that
(I,A [v])p cn 18 an ideal semifiltration of A [v]. Consider the polynomial ring
A[Y] and its A-subalgebra A [(Ip)peN * Y]. We know that A [(Ip)peN * Y} is

a subring of A[Y], and (as explained in Definition the polynomial ring
(A[v]) [Y] is an A [Y]-algebra (since A [v] is an A-algebra). Hence, (A [v]) [Y]

p .
have a; ‘1p € A-1p C A[xy] = C (since C = A [xy]). Hence, Y (a;-1p) x' € C[x]. In view
~—~— i=0

€A
of

P P

Y (ai-1p)x' =Y a;- 1px' =

i=0 i
=xi

QME
2
=
I
2

. P .
X! (since v = Zagc‘) ,

i=0

this rewrites as y € C [x].

Forget that we fixed . We thus have shown that v € C[x] for each v € A[x]. In other
words, A [x] C C [x]. Hence, A [x] is a subring of C [x] (since both A [x] and C [x] are subrings
of B).
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isan A [(If’)peN * Y} -algebra (since A [<IP)pe]N * Y} is a subring of A[Y]). On

the other hand, (A [v]) [(IPA [v])peN * Y] C (Alo]) [Y].
(a) We have

(Afo]) [(IA[]) ey * Y] = (4] (Tp) pery * Y] ) [0 (53)

(b) Let u € B. Let n € IN. Then, the element u of B is n-integral over

(A [0], (I,A [U])p elN) if and only if the element uY of the polynomial ring
B[Y] is n-integral over the ring <A [(Ip)peN * YD [v].

Proof of Lemma (a) We have proven Lemma [5.9| (a) during the proof of Theo-
rem 2.16] (b).

(b) The ring B is an A [v]-algebra (since A [v] is a subring of B). Hence,
Theorem 2.11] (applied to A [v] and (I,A [v]) instead of A and (I,)

peN peIN)

yields that the element u of B is n-integral over <A [0], (I,A [U])p elN) if and
only if the element uY of the polynomial ring B[Y] is n-integral over the ring
(A[v]) [(IPA [U])p N Y} . In view of , this rewrites as follows: The element

u of B is n-integral over <A [0], (I,A [0]) if and only if the element uY of

peN
the polynomial ring B [Y] is n-integral over the ring (A [(Ip)p N Y} ) [v]. This
proves Lemma [5.9] (b).

Proof of Theorem (a) Since (Ip)p < is an ideal semifiltration of A, Lemma2.18
(applied to A" = A [x]) yields that (I,A [x])p .
Since (IP)pelN
A ly]) yields that (I,A [y])p 18 an ideal semifiltration of A [y].
Since (IP)pelN
A [xy]) yields that (I,A [xy])p < 18 an ideal semifiltration of A [xy].

Thus, Theorem [5.8| (a) is proven.
(b) For every v € B, the family (I,A [v])p o 18 an ideal semifiltration of A [v]

(by Lemma applied to A’ = A[v]), and thus we can consider the poly-
nomial ring (A [v]) [Y] and its A [v]-subalgebra (A [v]) [(IPA [v])peN * Y}. For
every v € B, the polynomial ring B[Y] is an (A [¢v]) [Y]-algebra (as explained
in Definition [2.6), since B is an A [v]-algebr Hence, this ring B[Y] is an
(A0]) [(IPA [U])pE]N * Y} -algebra as well (because (A [v]) [(IPA [v])pE

a subring of (A [v]) [Y]). Similarly, the ring B[Y] is an A [(Ip)p on * Y] -algebra.

n 18 an ideal semifiltration of A [x].

is an ideal semifiltration of A, Lemma [2.18 (applied to A" =

is an ideal semifiltration of A, Lemma [2.18 (applied to A" =

N+ Y] s

Bbecause A [0] is a subring of B

72



Integrality over ideal semifiltrations July 14, 2019

Lemma [5.9 (b) (applied to v = x) yields that the element u of B is n-integral
over (A x], (I, A [x])p elN> if and only if the element uY of the polynomial ring

B[Y] is n-integral over the ring <A [(Ip)p NE Y]) [x]. But since the element u

of B is n-integral over (A x], (I A [x]) > this yields that the element uY of

pEN /7

the polynomial ring B [Y] is n-integral over the ring <A [(Ip)p oN * Y] ) [x].
Lemma [5.9| (b) (applied to y and m instead of v and n) yields that the element

u of B is m-integral over (A lv], (IPA [y])p elN> if and only if the element uY

of the polynomial ring B [Y] is m-integral over the ring (A [(Ip)p en * Y]) [y].

But since the element u of B is m-integral over <A W, (LA [y]) this yields

peN )’/
that the element uY of the polynomial ring B[Y] is m-integral over the ring

(A (1p) pen Y] ) W)

Thus we know that uY is n-integral over the ring (A [(Ip)p eN ¥ YD [x], and
that uY is m-integral over the ring (A [(Ip)p N * YD [y]. Hence, Theorem
(applied to A [(Ip)p N * Y}, B[Y] and uY instead of A, B and u) yields that

there exists some A € N such that uY is A-integral over (A [(Ip)p N F Y} ) [xy].

Consider this A.
Lemma (b) (applied to xy and A instead of v and 1) yields that the element

u of B is A-integral over <A [xy], (I,A [xy])p GN) if and only if the element uY
of the polynomial ring B [Y] is A-integral over the ring (A [(Ip)p N ¥ YD [xy].
But since the element uY of the polynomial ring B[Y] is A-integral over the
ring (A [(Ip)p eN ¥ Y] ) [xy], this yields that the element u of B is A-integral over

(A [xy], (I,A [xy])P €N>. Thus, Theorem [5.8| (b) is proven. O

5.4. Second proof of Corollary [1.12]
We notice that Corollary can be derived from Lemma

Second proof of Corollary Letn = 1. Let m = 1 From n = 1, we obtain
(uO,ut, ..., un 1) = (ulu 0> = <u YA = 4 (since u® = 1p). Simi-
larly, from m = 1, we obtain <u ul D= <1B>A'

Now, we have

0

0,1 —1 0.1
u”€<u,u,...,u” >A-<v,v,...,v“>A
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M and
uobP e <u0,u1,...,um_1> -<vo,vl,...,v/3>
A A

0,1 0.1 -1
—|—<u,u,...,um>A-<v,v,...,vﬁ >A

E Thus, Lemma (applied to v, B and « instead of x, y and v) yields that
u is (np + ma)-integral over A (since f+a = a + f € INT). This means that u
is (a4 B)-integral over A (because nl B+ m1 a=1+1a = B+a = a+ p).
This proves Corollary once agaiI;. - O

4Proof. From n = 1, we obtain

= ea
since
<u ,ul,...,u”*1>A <vo,vl, ,v”‘>A = (1p) - <vo,01, ,v”‘> = <1Bvo,1gvl,...,lgv“>

15Proof. We have

R I T T LR CAL I B C PR PEUNI Py
<u U, U >A <v , 0, ;0 A <B>A 0,0, ;0 A Bvl Bvl 7 Bv A

=(1p) 4

= <vo,vl,...,vﬂ>A. (54)

1

From m = 1, we obtain u™ = u* = u and thus

B . B .
um U.B = uv.B — Ztivﬁ_l = Ztﬁ*ii_(ﬁ_l)
~ i=0 i=0 ~
(here we substituted g — i for i in the sum)

B

=) tg v e <vo,vl,...,v/5>
=0~~~ A
€A

= <u0,ul,...,um*1>A~<vo,vl,...,vﬂ>A (by (54))

1 -1 1 1 1 -1
- <u0,u s um >A~<vo,v ,...,05>A—|—<u0,u ,...,um>A‘<vo,v ..., 0P >A'
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