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Abstract. We study integrality over rings (all commutative in this
paper) and over ideal semifiltrations (a generalization of integrality
over ideals). We begin by reproving classical results, such as a ver-
sion of the “faithful module” criterion for integrality over a ring, the
transitivity of integrality, and the theorem that sums and products
of integral elements are again integral. Then, we define the notion
of integrality over an ideal semifiltration (a sequence (I0, I1, I2, . . .) of
ideals satisfying I0 = A and Ia Ib ⊆ Ia+b for all a, b ∈ N), which gen-
eralizes both integrality over a ring and integrality over an ideal (as
considered, e.g., in Swanson/Huneke [5]). We prove a criterion that
reduces this general notion to integrality over a ring using a variant
of the Rees algebra. Using this criterion, we study this notion further
and obtain transitivity and closedness under sums and products for
it as well. Finally, we prove the curious fact that if u, x and y are three
elements of a (commutative) A-algebra (for A a ring) such that u is
both integral over A [x] and integral over A [y], then u is integral over
A [xy]. We generalize this to integrality over ideal semifiltrations, too.
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Introduction

The purpose of this paper is to state (and prove) some theorems and proofs re-
lated to integrality in commutative algebra in somewhat greater generality than
is common in the literature. I claim no novelty, at least not for the underlying
ideas, but I hope that this paper will be useful as a reference (at least for myself).

Section 1 (Integrality over rings) mainly consists of known facts (Theorem 1.1,
Theorem 1.5, Theorem 1.7) and a generalized exercise from [4] (Corollary 1.12)
with a few minor variations (Theorem 1.11 and Corollary 1.13).

Section 2 (Integrality over ideal semifiltrations) merges the concept of inte-
grality over rings (as considered in Section 1) and integrality over ideals (a less
popular but still highly useful notion; the book [5] is devoted to it) into one
general notion: that of integrality over ideal semifiltrations (Definition 2.3). This
notion is very general, yet it can be reduced to the basic notion of integrality
over rings by a suitable change of base ring (Theorem 2.11). This reduction al-
lows to extend some standard properties of integrality over rings to the general
case (Theorem 2.13, Theorem 2.14 and Theorem 2.16).

Section 3 (Generalizing to two ideal semifiltrations) continues Section 2, adding
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one more layer of generality. Its main results are a “relative” version of Theo-
rem 2.11 (Theorem 3.2) and a known fact generalized once more (Theorem 3.4).

Section 4 (Accelerating ideal semifiltrations) generalizes Theorem 3.2 (and
thus also Theorem 2.11) a bit further by considering accelerated ideal semifil-
trations (a generalization of powers of an ideal).

Section 5 (On a lemma by Lombardi) is about an auxiliary result Henri Lom-
bardi used in [6] to prove Kronecker’s Theorem1. Here we show a variant of this
result (generalized in one direction, less general in another).

This paper is supposed to be self-contained (only linear algebra and basic
knowledge about rings, modules, ideals and polynomials is assumed).

All proofs given in this paper are constructive.

Note on the level of detail

This is the long version of this paper, with all proofs maximally detailed. For all
practical purposes, the brief version [7] should be sufficient (and quite possibly
easier to read).

Note on an old preprint

This is an updated and somewhat generalized version of my preprint “A few
facts on integrality”, which is still available in its old form as well:

• brief version:
https://www.cip.ifi.lmu.de/~grinberg/IntegralityBRIEF.pdf

• long version:
https://www.cip.ifi.lmu.de/~grinberg/Integrality.pdf .

Be warned that said preprint has been written in 2009–2010 when I was an
undergraduate, and suffers from bad writing and formatting.

Acknowledgments

I thank Irena Swanson and Marco Fontana for enlightening conversations, and
Irena Swanson in particular for making her book [5] freely available (which
helped me discover the subject as an undergraduate).

1Kronecker’s Theorem. Let B be a ring (“ring” always means “commutative ring with unity”
in this paper). Let g and h be two elements of the polynomial ring B [X]. Let gα be any
coefficient of the polynomial g. Let hβ be any coefficient of the polynomial h. Let A be a
subring of B which contains all coefficients of the polynomial gh. Then, the element gαhβ of
B is integral over the subring A.
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0. Definitions and notations

We begin our study of integrality with some classical definitions and conventions
from commutative algebra:

Definition 0.1. In the following, “ring” will always mean “commutative ring
with unity”. Furthermore, if A is a ring, then “A-algebra” shall always mean
“commutative A-algebra with unity”. The unity of a ring A will be denoted
by 1A or by 1 if no confusion can arise.

We denote the set {0, 1, 2, . . .} by N, and the set {1, 2, 3, . . .} by N+.

Definition 0.2. Let A be a ring. Let M be an A-module.
If n ∈ N, and if m1, m2, . . . , mn are n elements of M, then we define an

A-submodule 〈m1, m2, . . . , mn〉A of M by

〈m1, m2, . . . , mn〉A =

{
n

∑
i=1

aimi | (a1, a2, . . . , an) ∈ An

}
.

This A-submodule 〈m1, m2, . . . , mn〉A is known as the A-submodule of M gen-
erated by m1, m2, . . . , mn (or as the A-linear span of m1, m2, . . . , mn). It con-
sists of all A-linear combinations of m1, m2, . . . , mn, and in particular con-
tains all n elements m1, m2, . . . , mn. Thus, it satisfies {m1, m2, . . . , mn} ⊆
〈m1, m2, . . . , mn〉A.

Also, if S is a finite set, and ms is an element of M for every s ∈ S, then we
define an A-submodule 〈ms | s ∈ S〉A of M by

〈ms | s ∈ S〉A =

{
∑
s∈S

asms | (as)s∈S ∈ AS

}
.

This A-submodule 〈ms | s ∈ S〉A is known as the A-submodule of M gen-
erated by the family (ms)s∈S (or as the A-linear span of (ms)s∈S). It consists
of all A-linear combinations of the elements ms with s ∈ S, and in particular
contains all these elements themselves.

Of course, if m1, m2, . . . , mn are n elements of M, then

〈m1, m2, . . . , mn〉A = 〈ms | s ∈ {1, 2, . . . , n}〉A .

Let us observe a trivial fact that we shall use (often tacitly):

Lemma 0.3. Let A be a ring. Let M be an A-module. Let N be an A-submodule
of M. Let S be a finite set; let ms be an element of N for every s ∈ S. Then,
〈ms | s ∈ S〉A ⊆ N.
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Proof of Lemma 0.3. We have ms ∈ N for every s ∈ S. Thus, ∑
s∈S

asms ∈ N for

every (as)s∈S ∈ AS (since N is an A-submodule of M, and thus is closed under
A-linear combination). But the definition of 〈ms | s ∈ S〉A yields

〈ms | s ∈ S〉A =

{
∑
s∈S

asms | (as)s∈S ∈ AS

}
⊆ N

(since ∑
s∈S

asms ∈ N for every (as)s∈S ∈ AS). This proves Lemma 0.3.

Definition 0.4. Let A be a ring, and let n ∈ N. Let M be an A-module. We
say that the A-module M is n-generated if there exist n elements m1, m2, . . . , mn
of M such that M = 〈m1, m2, . . . , mn〉A. In other words, the A-module M is
n-generated if and only if there exists a set S and an element ms of M for every
s ∈ S such that |S| = n and M = 〈ms | s ∈ S〉A.

We shall use the standard basic properties of submodules of algebras, such as
the following:

Proposition 0.5. Let A be a ring. Let B be an A-algebra.
(a) For any two A-submodules U and V of B, we let U · V denote the A-

submodule of B spanned by all products of the form uv with (u, v) ∈ U ×V.
This A-submodule U · V is also denoted by UV. Thus we have defined a
binary operation · on the set of all A-submodules of B. Equipped with this
operation, the set of all A-submodules of B becomes an abelian monoid, with
neutral element A · 1B.

This all applies, in particular, to the case when B = A; in this case, the
A-submodules of B are the same as the ideals of A. Thus, the set of all ideals
of A becomes an abelian monoid, with neutral element A · 1A = A.

Likewise, we can define U · V when U is an ideal of A while V is an A-
submodule of B. These “product” operations satisfy the rules one would
expect, such as

U (V + W) = UV +UW; (U + V)W = UW +VW; (UV)W = U (VW)

(whenever these expressions make sense).
(b) Let S be a finite set. Let ms be an element of B for each s ∈ S. Then, for

any b ∈ B, we have

b · 〈ms | s ∈ S〉A = 〈bms | s ∈ S〉A .

(c) Let S be a finite set. Let ms be an element of B for each s ∈ S. Let T be a
finite set. Let nt be an element of B for each t ∈ T. Then,

〈ms | s ∈ S〉A · 〈nt | t ∈ T〉A = 〈msnt | (s, t) ∈ S× T〉A .
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Definition 0.6. Let A be a ring. Let B be an A-algebra. (Let us recall that
both rings and algebras are always understood to be commutative and unital
in this paper.)

If u1, u2, . . . , un are n elements of B, then we define an A-subalgebra
A [u1, u2, . . . , un] of B by

A [u1, u2, . . . , un] = {P (u1, u2, . . . , un) | P ∈ A [X1, X2, . . . , Xn]}

(where A [X1, X2, . . . , Xn] denotes the polynomial ring in n indeterminates
X1, X2, . . . , Xn over A).

In particular, if u is an element of B, then the A-subalgebra A [u] of B is
defined by

A [u] = {P (u) | P ∈ A [X]}
(where A [X] denotes the polynomial ring in a single indeterminate X over
A). Since

A [X] =

{
m

∑
i=0

aiXi | m ∈N and (a0, a1, . . . , am) ∈ Am+1

}
,

this becomes

A [u] =

{(
m

∑
i=0

aiXi

)
(u) | m ∈N and (a0, a1, . . . , am) ∈ Am+1

}
 where

(
m
∑

i=0
aiXi

)
(u) means the

polynomial
m
∑

i=0
aiXi evaluated at X = u


=

{
m

∑
i=0

aiui | m ∈N and (a0, a1, . . . , am) ∈ Am+1

}
(

because

(
m

∑
i=0

aiXi

)
(u) =

m

∑
i=0

aiui

)
.

Obviously, uA [u] ⊆ A [u] (since A [u] is an A-algebra and u ∈ A [u]).

Definition 0.7. Let B be a ring, and let A be a subring of B. Then, B canonically
becomes an A-algebra. The A-module structure of this A-algebra B is given
by multiplication inside B.

Definition 0.7 shows that theorems about A-algebras (for a ring A) are always
more general than theorems about rings that contain A as a subring. Hence, we
shall study A-algebras in the following, even though most of the applications of
the results we shall see are found at the level of rings containing A.
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1. Integrality over rings

1.1. The fundamental equivalence

Most of the theory of integrality is based upon the following result:

Theorem 1.1. Let A be a ring. Let B be an A-algebra. Thus, B is canonically
an A-module. Let n ∈ N. Let u ∈ B. Then, the following four assertions A,
B, C and D are equivalent:

• Assertion A: There exists a monic polynomial P ∈ A [X] with deg P = n
and P (u) = 0.

• Assertion B: There exist a B-module C and an n-generated A-submodule
U of C such that uU ⊆ U and such that every v ∈ B satisfying vU = 0
satisfies v = 0. (Here, C is an A-module, since C is a B-module and B is
an A-algebra.)

• Assertion C: There exists an n-generated A-submodule U of B such that
1 ∈ U and uU ⊆ U. (Here and in the following, “1” means “1B”, that is,
the unity of the ring B.)

• Assertion D: We have A [u] =
〈
u0, u1, . . . , un−1〉

A.

We shall soon prove this theorem; first, let us explain what it is for:

Definition 1.2. Let A be a ring. Let B be an A-algebra. Let n ∈ N. Let
u ∈ B. We say that the element u of B is n-integral over A if it satisfies the four
equivalent assertions A, B, C and D of Theorem 1.1.

Hence, in particular, the element u of B is n-integral over A if and only if it
satisfies the assertion A of Theorem 1.1. In other words, u is n-integral over A
if and only if there exists a monic polynomial P ∈ A [X] with deg P = n and
P (u) = 0.

The notion of “n-integral” elements that we have just defined is a refinement
of the classical notion of integrality of elements over rings (see, e.g., [1, Definition
(10.21)] or [2, Chapter V, §1.1, Definition 1] or [3, Definition 8.1.1] for this classical
notion, and [5, Definition 2.1.1] for its particular case when A is a subring of B).
Indeed, the classical notion defines an element u of B to be integral over A if and
only if (using the language of our Definition 1.2) there exists some n ∈ N such
that u is n-integral over A. Since I believe the concrete value of n to be worth
more than its mere existence, I prefer the specificity of the “n-integral” concept
to the slickness of “integral”.

Theorem 1.1 is one of several similar results providing equivalent criteria for
the integrality of an element of an A-algebra. See [1, Proposition (10.23)], [2,
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Chapter V, Section 1.1, Theorem 1] or [3, Theorem 8.1.6] for other such results
(some very close to Theorem 1.1, and all proven in similar ways).

Before we prove Theorem 1.1, let us recall a classical property of matrices:

Lemma 1.3. Let B be a ring. Let n ∈ N. Let M be an n × n-matrix over B.
Then,

det M · In = adj M ·M.

(Here, In means the n × n identity matrix and adj M denotes the adjugate
of the matrix M. The expressions “det M · In” and “adj M · M” have to be
understood as “(det M) · In” and “(adj M) ·M”, respectively.)

Lemma 1.3 is well-known (for example, it follows from [8, Theorem 6.100],
applied to K = B and A = M).

Proof of Theorem 1.1. We will prove the implications A =⇒ C, C =⇒ B, B =⇒ A,
A =⇒ D and D =⇒ C.

Proof of the implication A =⇒ C. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Consider
this P. Since P ∈ A [X] is a monic polynomial with deg P = n, there exist

elements a0, a1, . . . , an−1 of A such that P (X) = Xn +
n−1
∑

k=0
akXk. Consider these

a0, a1, . . . , an−1. Substituting u for X in the equality P (X) = Xn +
n−1
∑

k=0
akXk, we

find P (u) = un +
n−1
∑

k=0
akuk. Hence, the equality P (u) = 0 (which holds by

definition of P) rewrites as un +
n−1
∑

k=0
akuk = 0. Hence, un = −

n−1
∑

k=0
akuk.

Let U be the A-submodule
〈
u0, u1, . . . , un−1〉

A of B. Then, U =
〈
u0, u1, . . . , un−1〉

A
and

un = −
n−1

∑
k=0

akuk ∈
〈

u0, u1, . . . , un−1
〉

A
= U.

Moreover, the n elements u0, u1, . . . , un−1 belong to U (since U =
〈
u0, u1, . . . , un−1〉

A).
In other words,

ui ∈ U for each i ∈ {0, 1, . . . , n− 1} . (1)

This relation also holds for i = n (since un ∈ U); thus, it holds for all i ∈
{0, 1, . . . , n}. In other words, we have

ui ∈ U for each i ∈ {0, 1, . . . , n} . (2)

Applying this to i = 0, we find u0 ∈ U (since 0 ∈ {0, 1, . . . , n}). This rewrites as
1 ∈ U (since u0 = 1).
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Recall that U =
〈
u0, u1, . . . , un−1〉

A. Hence, U is an n-generated A-module
(since u0, u1, . . . , un−1 are n elements of U).

Now, for each s ∈ {0, 1, . . . , n− 1}, we have s+ 1 ∈ {1, 2, . . . , n} ⊆ {0, 1, . . . , n}
and thus us+1 ∈ U (by (2), applied to i = s + 1). Hence, Lemma 0.3 (applied to
M = B, N = U, S = {0, 1, . . . , n− 1} and ms = us+1) yields〈

us+1 | s ∈ {0, 1, . . . , n− 1}
〉

A
⊆ U.

Now, from U =
〈
u0, u1, . . . , un−1〉

A, we obtain

uU = u
〈

u0, u1, . . . , un−1
〉

A
=
〈

u · u0, u · u1, . . . , u · un−1
〉

A

=

〈
u · us︸ ︷︷ ︸
=us+1

| s ∈ {0, 1, . . . , n− 1}
〉

A

=
〈

us+1 | s ∈ {0, 1, . . . , n− 1}
〉

A
⊆ U.

Thus, we have found an n-generated A-submodule U of B such that 1 ∈ U
and uU ⊆ U. Hence, Assertion C holds. Hence, we have proved that A =⇒ C.

Proof of the implication C =⇒ B. Assume that Assertion C holds. Then, there
exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊆ U. Con-
sider this U. Every v ∈ B satisfying vU = 0 satisfies v = 0 (since 1 ∈ U and
vU = 0 yield v · 1︸︷︷︸

∈U

∈ vU = 0 and thus v · 1 = 0, so that v = 0). Set C = B.

Then, C is a B-module, and U is an n-generated A-submodule of C (since U is
an n-generated A-submodule of B, and C = B) such that uU ⊆ U and such that
every v ∈ B satisfying vU = 0 satisfies v = 0. Thus, Assertion B holds. Hence,
we have proved that C =⇒ B.

Proof of the implication B =⇒ A. Assume that Assertion B holds. Then, there
exist a B-module C and an n-generated A-submodule2 U of C such that uU ⊆ U,
and such that every v ∈ B satisfying vU = 0 satisfies v = 0. Consider these C
and U.

The A-module U is n-generated. In other words, there exist n elements
m1, m2, . . . , mn of U such that U = 〈m1, m2, . . . , mn〉A. Consider these m1, m2, . . . , mn.
For any k ∈ {1, 2, . . . , n}, we have mk ∈ U (since U = 〈m1, m2, . . . , mn〉A) and thus

umk ∈ uU ⊆ U = 〈m1, m2, . . . , mn〉A ,

so that there exist n elements ak,1, ak,2, . . . , ak,n of A such that

umk =
n

∑
i=1

ak,imi. (3)

Consider these ak,1, ak,2, . . . , ak,n.

2where C is an A-module, since C is a B-module and B is an A-algebra
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The A-algebra B gives rise to a canonical ring homomorphism ι : A → B
(sending each a ∈ A to a · 1B ∈ B). This ring homomorphism, in turn, induces
a ring homomorphism ιn×n : An×n → Bn×n (which acts on an n× n-matrix by
applying ι to each entry of the matrix).

We introduce two notations:

• For any matrix T and any integers x and y, we denote by Tx,y the entry of
the matrix T in the x-th row and the y-th column.

• For any assertion U , we denote by [U ] the Boolean value of the assertion

U (that is, [U ] =
{

1, if U is true;
0, if U is false

). This value [U ] is an element of {0, 1}

and is also known as the truth value of U .

Clearly, the n× n identity matrix In satisfies

(In)k,i = [k = i] for every k ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , n} .

Note that for every k ∈ {1, 2, . . . , n}, we have

mk =
n

∑
i=1

(In)k,i mi, (4)

since

n

∑
i=1︸︷︷︸

= ∑
i∈{1,2,...,n}

(In)k,i︸ ︷︷ ︸
=[k=i]
=[i=k]

mi = ∑
i∈{1,2,...,n}

[i = k]mi

= ∑
i∈{1,2,...,n}

such that i=k

[i = k]︸ ︷︷ ︸
=1

(since i=k is true)

mi + ∑
i∈{1,2,...,n}

such that i 6=k

[i = k]︸ ︷︷ ︸
=0

(since i=k is false
(since i 6=k))

mi

= ∑
i∈{1,2,...,n}

such that i=k

1mi︸︷︷︸
=mi

+ ∑
i∈{1,2,...,n}

such that i 6=k

0mi

︸ ︷︷ ︸
=0

= ∑
i∈{1,2,...,n}

such that i=k

mi + 0

= ∑
i∈{1,2,...,n}

such that i=k

mi = ∑
i∈{k}

mi

(
since {i ∈ {1, 2, . . . , n} | i = k} = {k}

(because k ∈ {1, 2, . . . , n} )

)
= mk.
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Hence, for every k ∈ {1, 2, . . . , n}, we have

n

∑
i=1

(
u (In)k,i − ak,i

)
mi =

n

∑
i=1

(
u (In)k,i mi − ak,imi

)
= u

n

∑
i=1

(In)k,i mi︸ ︷︷ ︸
=mk

(by (4))

−
n

∑
i=1

ak,imi

= umk −
n

∑
i=1

ak,imi = 0 (by (3)) . (5)

Define a matrix S ∈ An×n by

(Sk,i = ak,i for all k ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , n}) .

Define a matrix T ∈ Bn×n by

T = adj (uIn − S) .

Here, the “S” in “uIn − S” means not the matrix S ∈ An×n itself, but rather its
image under the ring homomorphism ιn×n : An×n → Bn×n; thus, the matrix
uIn − S is a well-defined matrix in Bn×n.

Let P ∈ A [X] be the characteristic polynomial of the matrix S ∈ An×n.
Then, P is monic, and deg P = n. Besides, the definition of P yields P (X) =
det (XIn − S), so that P (u) = det (uIn − S). Therefore,

P (u) · In = det (uIn − S) · In = adj (uIn − S)︸ ︷︷ ︸
=T

· (uIn − S)

(by Lemma 1.3, applied to M = uIn − S)
= T · (uIn − S) .

11
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Now, for every τ ∈ {1, 2, . . . , n}, we have

P (u) ·mτ = P (u) ·
n

∑
i=1

(In)τ,i mi(
since (4) (applied to k = τ) yields mτ =

n

∑
i=1

(In)τ,i mi

)

=
n

∑
i=1

P (u) · (In)τ,i︸ ︷︷ ︸
=(P(u)·In)τ,i

mi =
n

∑
i=1

 P (u) · In︸ ︷︷ ︸
=T·(uIn−S)


τ,i

mi

=
n

∑
i=1

(T · (uIn − S))τ,i︸ ︷︷ ︸
=

n
∑

k=1
Tτ,k(uIn−S)k,i

(by the definition of
the product of two matrices)

mi =
n

∑
i=1

n

∑
k=1

Tτ,k (uIn − S)k,i mi

=
n

∑
k=1

Tτ,k

n

∑
i=1

(uIn − S)k,i︸ ︷︷ ︸
=u(In)k,i−Sk,i

mi =
n

∑
k=1

Tτ,k

n

∑
i=1

u (In)k,i − Sk,i︸︷︷︸
=ak,i

mi

=
n

∑
k=1

Tτ,k

n

∑
i=1

(
u (In)k,i − ak,i

)
mi︸ ︷︷ ︸

=0
(by (5))

= 0.

But from U = 〈m1, m2, . . . , mn〉A, we obtain

P (u) ·U = P (u) · 〈m1, m2, . . . , mn〉A = 〈P (u) ·m1, P (u) ·m2, . . . , P (u) ·mn〉A
= 〈0, 0, . . . , 0〉A (since P (u) ·mτ = 0 for any τ ∈ {1, 2, . . . , n})
= 0.

But recall that every v ∈ B satisfying vU = 0 satisfies v = 0. Applying this to
v = P (u), we find P (u) = 0 (since P (u) ·U = 0). Thus, we have found a monic
polynomial P ∈ A [X] with deg P = n and P (u) = 0. Therefore, Assertion A
holds. Hence, we have proved that B =⇒ A.

Proof of the implication A =⇒ D. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Consider
this P.

Let U be the A-submodule
〈
u0, u1, . . . , un−1〉

A of B. As in the Proof of the
implication A =⇒ C, we can show that U is an n-generated A-module, and that
1 ∈ U and uU ⊆ U.

Now, it is easy to show that

ui ∈ U for any i ∈N. (6)

12
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[Proof of (6). We will prove (6) by induction over i:
Induction base: The assertion (6) holds for i = 0 (since u0 = 1 ∈ U). This

completes the induction base.
Induction step: Let τ ∈N. If the assertion (6) holds for i = τ, then the assertion

(6) holds for i = τ + 1 (because if the assertion (6) holds for i = τ, then uτ ∈ U,
so that uτ+1 = u · uτ︸︷︷︸

∈U

∈ uU ⊆ U, so that uτ+1 ∈ U, and thus the assertion (6)

holds for i = τ + 1). This completes the induction step.
Hence, the induction is complete, and (6) is proven.]
But recall that U is an A-module, and therefore is closed under A-linear

combination. Thus, for any m ∈ N and any (a0, a1, . . . , am) ∈ Am+1, we have
m
∑

i=0
aiui ∈ U, because each i ∈ {0, 1, . . . , m} satisfies ai ∈ A and ui ∈ U (by (6)).

Now, the definition of A [u] yields

A [u] =

{
m

∑
i=0

aiui | m ∈N and (a0, a1, . . . , am) ∈ Am+1

}
⊆ U

(since
m
∑

i=0
aiui ∈ U for any m ∈N and any (a0, a1, . . . , am) ∈ Am+1). On the other

hand, U ⊆ A [u], since

U =
〈

u0, u1, . . . , un−1
〉

A
=

{
n−1

∑
i=0

aiui | (a0, a1, . . . , an−1) ∈ An

}

⊆
{

m

∑
i=0

aiui | m ∈N and (a0, a1, . . . , am) ∈ Am+1

}
= A [u] .

Combining this with A [u] ⊆ U, we obtain U = A [u]. Comparing this with
U =

〈
u0, u1, . . . , un−1〉

A, we obtain A [u] =
〈
u0, u1, . . . , un−1〉

A.
Thus, Assertion D holds. Hence, we have proved that A =⇒ D.
Proof of the implication D =⇒ C. Assume that Assertion D holds. Then, A [u] =〈

u0, u1, . . . , un−1〉
A.

Let U be the A-submodule
〈
u0, u1, . . . , un−1〉

A of B. Then, u0, u1, . . . , un−1 are n
elements of U. Hence, U is an n-generated A-module (since U =

〈
u0, u1, . . . , un−1〉

A).
Comparing U =

〈
u0, u1, . . . , un−1〉

A with A [u] =
〈
u0, u1, . . . , un−1〉

A, we obtain
U = A [u]. Now, 1 = u0 ∈ A [u] = U.

Also, from U = A [u], we obtain uU = u · A [u] ⊆ A [u] = U.
Thus, we have found an n-generated A-submodule U of B such that 1 ∈ U

and uU ⊆ U. Hence, Assertion C holds. Thus, we have proved that D =⇒ C.
Now, we have proved the implications A =⇒ D, D =⇒ C, C =⇒ B and
B =⇒ A above. Thus, all four assertions A, B, C and D are equivalent, and
Theorem 1.1 is proven.

13
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For the sake of completeness (and as a very easy exercise), let us state a basic
property of integrality that we will not ever use:

Proposition 1.4. Let A be a ring. Let B be an A-algebra. Let u ∈ B. Let q ∈N

and p ∈ N be such that p ≥ q. Assume that u is q-integral over A. Then, u is
p-integral over A.

Proof of Proposition 1.4. The element u is q-integral over A. Thus, it satisfies the
Assertion D of Theorem 1.1, stated for q in lieu of n. In other words, it satisfies
A [u] =

〈
u0, u1, ..., uq−1〉

A. Note that
〈
u0, u1, ..., up−1〉

A is an A-submodule of B.
But p ≥ q, thus q ≤ p and therefore q− 1 ≤ p− 1. Every s ∈ {0, 1, ..., q− 1}

satisfies s ∈ {0, 1, ..., q− 1} ⊆ {0, 1, ..., p− 1} (since q − 1 ≤ p − 1) and there-
fore us ∈

{
u0, u1, ..., up−1} ⊆ 〈

u0, u1, ..., up−1〉
A. Thus, us is an element of〈

u0, u1, ..., up−1〉
A for every s ∈ {0, 1, . . . , q− 1}. Hence, Lemma 0.3 (applied

to M = B, N =
〈
u0, u1, ..., up−1〉

A, S = {0, 1, . . . , q− 1} and ms = us) shows that

〈us | s ∈ {0, 1, . . . , q− 1}〉A ⊆
〈

u0, u1, ..., up−1
〉

A
.

Now,

A [u] =
〈

u0, u1, ..., uq−1
〉

A
= 〈us | s ∈ {0, 1, . . . , q− 1}〉A ⊆

〈
u0, u1, ..., up−1

〉
A

.

Combining this with
〈
u0, u1, ..., up−1〉

A ⊆ A [u] (which is obvious, since every
A-linear combination of u0, u1, ..., up−1 is a polynomial in u with coefficients in
A), we obtain A [u] =

〈
u0, u1, ..., up−1〉

A. In other words, u satisfies the Assertion
D of Theorem 1.1, stated for p in lieu of n. Hence, u is p-integral over A. This
proves Proposition 1.4.

1.2. Transitivity of integrality

Let us now prove the first and probably most important consequence of Theo-
rem 1.1:

Theorem 1.5. Let A be a ring. Let B be an A-algebra. Let v ∈ B and u ∈ B.
Let m ∈ N and n ∈ N. Assume that v is m-integral over A, and that u is
n-integral over A [v]. Then, u is nm-integral over A.

(Here, we are using the fact that if A is a ring, and if v is an element of an
A-algebra B, then A [v] is a subring of B, and therefore B is an A [v]-algebra.)

Proof of Theorem 1.5. Since v is m-integral over A, we have A [v] =
〈
v0, v1, . . . , vm−1〉

A
(this is the Assertion D of Theorem 1.1, stated for v and m in lieu of u and n).

Since u is n-integral over A [v], we have (A [v]) [u] =
〈
u0, u1, . . . , un−1〉

A[v] (this
is the Assertion D of Theorem 1.1, stated for A [v] in lieu of A).

14



Integrality over ideal semifiltrations July 14, 2019

Let S = {0, 1, . . . , n− 1} × {0, 1, . . . , m− 1}. Then, S is a finite set with size
|S| = nm.

[Proof: From S = {0, 1, . . . , n− 1} × {0, 1, . . . , m− 1}, we obtain

|S| = |{0, 1, . . . , n− 1} × {0, 1, . . . , m− 1}|
= |{0, 1, . . . , n− 1}|︸ ︷︷ ︸

=n

· |{0, 1, . . . , m− 1}|︸ ︷︷ ︸
=m

= nm.

Thus, S is finite.]
Let x ∈ (A [v]) [u]. Then, there exist n elements b0, b1, . . . , bn−1 of A [v] such

that x =
n−1
∑

i=0
biui (since x ∈ (A [v]) [u] =

〈
u0, u1, . . . , un−1〉

A[v]). Consider these

b0, b1, . . . , bn−1.
For each i ∈ {0, 1, . . . , n− 1}, there exist m elements ai,0, ai,1, . . . , ai,m−1 of A

such that bi =
m−1
∑

j=0
ai,jvj (because bi ∈ A [v] =

〈
v0, v1, . . . , vm−1〉

A). Consider

these ai,0, ai,1, . . . , ai,m−1. Thus,

x =
n−1

∑
i=0

bi︸︷︷︸
=

m−1
∑

j=0
ai,jvj

ui =
n−1

∑
i=0

m−1

∑
j=0

ai,jvjui = ∑
(i,j)∈{0,1,...,n−1}×{0,1,...,m−1}

ai,jvjui

= ∑
(i,j)∈S

ai,jvjui (since {0, 1, . . . , n− 1} × {0, 1, . . . , m− 1} = S)

∈
〈

vjui | (i, j) ∈ S
〉

A

(
since ai,j ∈ A for every (i, j) ∈ S

)
.

Now, forget that we fixed x. So we have proved that x ∈
〈
vjui | (i, j) ∈ S

〉
A

for every x ∈ (A [v]) [u]. In other words, (A [v]) [u] ⊆
〈
vjui | (i, j) ∈ S

〉
A. Con-

versely,
〈
vjui | (i, j) ∈ S

〉
A ⊆ (A [v]) [u] (since vj ∈ A [v] for every (i, j) ∈ S, and

thus vj︸︷︷︸
∈A[v]

ui ∈ (A [v]) [u] for every (i, j) ∈ S, and therefore

〈
vjui | (i, j) ∈ S

〉
A
=


∑

(i,j)∈S
ai,jvjui

︸ ︷︷ ︸
∈(A[v])[u]

(since vjui∈(A[v])[u] for every (i,j)∈S
and since (A[v])[u] is an A-module)

|
(
ai,j
)
(i,j)∈S ∈ AS


⊆ (A [v]) [u]
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). Combining these two relations, we find (A [v]) [u] =
〈
vjui | (i, j) ∈ S

〉
A.

Thus, the A-module (A [v]) [u] is nm-generated (since |S| = nm).
Let U = (A [v]) [u]. Thus, the A-module U is nm-generated (since the A-

module (A [v]) [u] is nm-generated). Besides, U is an A-submodule of B, and we
have 1 = u0 ∈ (A [v]) [u] = U and

uU = u (A [v]) [u] ⊆ (A [v]) [u]
(since (A [v]) [u] is an A [v] -algebra and u ∈ (A [v]) [u])

= U.

Altogether, we now know that the A-submodule U of B is nm-generated and
satisfies 1 ∈ U and uU ⊆ U.

Thus, the element u of B satisfies the Assertion C of Theorem 1.1 with n re-
placed by nm. Hence, u ∈ B satisfies the four equivalent assertions A, B, C and
D of Theorem 1.1, all with n replaced by nm. Thus, u is nm-integral over A. This
proves Theorem 1.5.

1.3. Integrality of sums and products

Before the next significant consequence of Theorem 1.1, let us show an essen-
tially trivial fact:

Theorem 1.6. Let A be a ring. Let B be an A-algebra. Let a ∈ A. Then,
a · 1B ∈ B is 1-integral over A.

Proof of Theorem 1.6. The polynomial X− a ∈ A [X] is monic and satisfies
deg (X− a) = 1; moreover, evaluating this polynomial at a · 1B ∈ B yields a · 1B−
a · 1B = 0. Hence, there exists a monic polynomial P ∈ A [X] with deg P = 1
and P (a · 1B) = 0 (namely, the polynomial P ∈ A [X] defined by P (X) = X− a).
Thus, a · 1B is 1-integral over A. This proves Theorem 1.6.

The following theorem is a standard result, generalizing (for example) the
classical fact that sums and products of algebraic integers are again algebraic
integers:

Theorem 1.7. Let A be a ring. Let B be an A-algebra. Let x ∈ B and y ∈ B.
Let m ∈ N and n ∈ N. Assume that x is m-integral over A, and that y is
n-integral over A.

(a) Then, x + y is nm-integral over A.
(b) Furthermore, xy is nm-integral over A.

Our proof of this theorem will rely on a simple lemma:

16



Integrality over ideal semifiltrations July 14, 2019

Lemma 1.8. Let A be a ring. Let C be an A-algebra. Let x ∈ C.
Let n ∈ N. Let P ∈ A [X] be a monic polynomial with deg P = n. Define a

polynomial Q ∈ C [X] by Q (X) = P (X− x). Then, Q is a monic polynomial
with deg Q = n.

Proof of Lemma 1.8. Recall that P is a monic polynomial with deg P = n; hence,
we can write P in the form

P = Xn +
n−1

∑
i=0

aiXi (7)

for some a0, a1, . . . , an−1 ∈ A. Consider these a0, a1, . . . , an−1.
Consider the C-submodule

〈
X0, X1, . . . , Xn−1〉

C of C [X]. We have X − x =
X + (−x) and thus

(X− x)n = (X + (−x))n =
n

∑
i=0

(
n
i

)
Xi (−x)n−i (by the binomial formula)

=
n−1

∑
i=0

(
n
i

)
Xi (−x)n−i︸ ︷︷ ︸
=(−x)n−iXi

+

(
n
n

)
︸︷︷︸
=1

Xn (−x)n−n︸ ︷︷ ︸
=(−x)0=1

(here, we have split off the addend for i = n from the sum)

=
n−1

∑
i=0

(
n
i

)
(−x)n−i Xi + Xn = Xn +

n−1

∑
i=0

(
n
i

)
(−x)n−i Xi

︸ ︷︷ ︸
∈〈X0,X1,...,Xn−1〉C

∈ Xn +
〈

X0, X1, . . . , Xn−1
〉

C
. (8)

Furthermore, for each i ∈ {0, 1, . . . , n− 1}, we have

(X− x)i = (X + (−x))i (since X− x = X + (−x))

=
i

∑
j=0

(
i
j

)
X j (−x)i−j︸ ︷︷ ︸
=(−x)i−jX j

(by the binomial formula)

=
i

∑
j=0

(
i
j

)
(−x)i−j X j ∈

〈
X0, X1, . . . , Xi

〉
C

⊆
〈

X0, X1, . . . , Xn−1
〉

C
(9)

17
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(since i ≤ n− 1). Now,

Q (X) = P (X− x) = (X− x)n︸ ︷︷ ︸
∈Xn+〈X0,X1,...,Xn−1〉C

(by (8))

+
n−1

∑
i=0

ai (X− x)i

︸ ︷︷ ︸
∈〈X0,X1,...,Xn−1〉C

(by (9))

(here, we have substituted X− x for X in (7))

∈ Xn +
〈

X0, X1, . . . , Xn−1
〉

C
+
〈

X0, X1, . . . , Xn−1
〉

C︸ ︷︷ ︸
⊆〈X0,X1,...,Xn−1〉C

(since 〈X0,X1,...,Xn−1〉C is a C-module)

⊆ Xn +
〈

X0, X1, . . . , Xn−1
〉

C
.

In other words, Q (X) = Xn + W for some W ∈
〈

X0, X1, . . . , Xn−1〉
C. Consider

this W. We have W ∈
〈

X0, X1, . . . , Xn−1〉
C; thus, we can write W in the form

W =
n−1
∑

i=0
wiXi for some w0, w1, . . . , wn−1 ∈ C. Consider these w0, w1, . . . , wn−1.

Now,

Q (X) = Xn + W︸︷︷︸
=

n−1
∑

i=0
wiXi

= Xn +
n−1

∑
i=0

wiXi.

Hence, Q is a monic polynomial with deg Q = n. This proves Lemma 1.8.

Proof of Theorem 1.7. Since y is n-integral over A, there exists a monic polynomial
P ∈ A [X] with deg P = n and P (y) = 0. Consider this P.

(a) Let C be the A-subalgebra A [x] of B. Then, C = A [x], so that x ∈ A [x] =
C.

Now, define a polynomial Q ∈ C [X] by Q (X) = P (X− x). Then, Lemma 1.8
shows that Q is a monic polynomial with deg Q = n. Also, substituting x + y for

X in the equality Q (X) = P (X− x), we obtain Q (x + y) = P

(x + y)− x︸ ︷︷ ︸
=y

 =

P (y) = 0.
Hence, there exists a monic polynomial Q ∈ C [X] with deg Q = n and

Q (x + y) = 0. Thus, x + y is n-integral over C. In other words, x + y is n-
integral over A [x] (since C = A [x]). Thus, Theorem 1.5 (applied to v = x and
u = x + y) yields that x + y is nm-integral over A. This proves Theorem 1.7 (a).

(b) Recall that P ∈ A [X] is a monic polynomial with deg P = n. Thus, there

exist elements a0, a1, . . . , an−1 of A such that P (X) = Xn +
n−1
∑

k=0
akXk. Consider

18
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these a0, a1, . . . , an−1. Substituting y for X in P (X) = Xn +
n−1
∑

k=0
akXk, we find

P (y) = yn +
n−1
∑

k=0
akyk. Thus,

yn +
n−1

∑
k=0

akyk = P (y) = 0. (10)

Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = Xn +
n−1
∑

k=0
xn−kakXk.

Then,

Q (xy) = (xy)n︸ ︷︷ ︸
=xnyn

+
n−1

∑
k=0

xn−k ak (xy)k︸ ︷︷ ︸
=akxkyk

=xkakyk

= xnyn +
n−1

∑
k=0

xn−kxk︸ ︷︷ ︸
=xn

akyk

= xnyn +
n−1

∑
k=0

xnakyk = xn

(
yn +

n−1

∑
k=0

akyk

)
︸ ︷︷ ︸

=0
(by (10))

= 0.

Also, recall that Q (X) = Xn +
n−1
∑

k=0
xn−kakXk; hence, the polynomial Q ∈ (A [x]) [X]

is monic and deg Q = n. Thus, there exists a monic polynomial Q ∈ (A [x]) [X]
with deg Q = n and Q (xy) = 0. Thus, xy is n-integral over A [x]. Hence, Theo-
rem 1.5 (applied to v = x and u = xy) yields that xy is nm-integral over A. This
proves Theorem 1.7 (b).

Corollary 1.9. Let A be a ring. Let B be an A-algebra. Let x ∈ B. Let m ∈ N.
Assume that x is m-integral over A. Then, −x is m-integral over A.

Proof of Corollary 1.9. This is easy to prove directly (using Assertion A of Theo-
rem 1.1), but the slickest proof is using Theorem 1.7 (b): The element (−1) · 1B ∈
B is 1-integral over A (by Theorem 1.6, applied to a = −1). Thus, x · ((−1) · 1B)
is 1m-integral over A (by Theorem 1.7 (b), applied to y = (−1) · 1B and n = 1).
In other words, −x is m-integral over A (since x · ((−1) · 1B)︸ ︷︷ ︸

=−1B

= x · (−1B) =

−x · 1B = −x and 1m = m). This proves Corollary 1.9.

Corollary 1.10. Let A be a ring. Let B be an A-algebra. Let x ∈ B and y ∈ B.
Let m ∈ N and n ∈ N. Assume that x is m-integral over A, and that y is
n-integral over A. Then, x− y is nm-integral over A.

Proof of Corollary 1.10. We know that y is n-integral over A. Hence, Corollary 1.9
(applied to y and n instead of x and m) shows that −y is n-integral over A. Thus,
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Theorem 1.7 (a) (applied to −y instead of y) shows that x + (−y) is nm-integral
over A. In other words, x − y is nm-integral over A (since x + (−y) = x − y).
This proves Corollary 1.10.

1.4. Some further consequences

Theorem 1.11. Let A be a ring. Let B be an A-algebra. Let n ∈ N+. Let

v ∈ B. Let a0, a1, . . . , an be n + 1 elements of A such that
n
∑

i=0
aivi = 0. Let

k ∈ {0, 1, . . . , n}. Then,
n−k
∑

i=0
ai+kvi is n-integral over A.

Proof of Theorem 1.11. Let u =
n−k
∑

i=0
ai+kvi. Then,

0 =
n

∑
i=0

aivi =
k−1

∑
i=0

aivi +
n

∑
i=k

aivi =
k−1

∑
i=0

aivi +
n−k

∑
i=0

ai+k vi+k︸︷︷︸
=vivk

(here, we substituted i + k for i in the second sum)

=
k−1

∑
i=0

aivi +
n−k

∑
i=0

ai+kvivk

︸ ︷︷ ︸
=vk

n−k
∑

i=0
ai+kvi

=
k−1

∑
i=0

aivi + vk
n−k

∑
i=0

ai+kvi

︸ ︷︷ ︸
=u

=
k−1

∑
i=0

aivi + vku,

so that

vku = −
k−1

∑
i=0

aivi.

Let U be the A-submodule
〈
v0, v1, . . . , vn−1〉

A of B. Then, v0, v1, . . . , vn−1 are n
elements of U. Hence, U is an n-generated A-module (since U =

〈
v0, v1, . . . , vn−1〉

A).
Besides, n ∈ N+ and thus 0 ∈ {0, 1, . . . , n− 1}. Therefore, v0 is one of the n ele-
ments v0, v1, . . . , vn−1; hence, v0 ∈

〈
v0, v1, . . . , vn−1〉

A = U. Thus, 1 = v0 ∈ U.
Note that U is an A-submodule of B, and thus is closed under A-linear com-

bination.
Now, we are going to show that

uvs ∈ U for any s ∈ {0, 1, . . . , n− 1} . (11)

[Proof of (11). Let s ∈ {0, 1, . . . , n− 1}. Thus, we are in one of the following
two cases:

Case 1: We have s < k.
Case 2: We have s ≥ k.
Let us first consider Case 1. In this case, we have s < k. Hence, s ≤ k− 1 (since

s and k are integers) and thus s ∈ {0, 1, . . . , k− 1} (since s ∈ {0, 1, . . . , n− 1}).
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For each i ∈ {0, 1, . . . , n− k}, we have i ≤ n − k and thus i︸︷︷︸
≤n−k

+ s︸︷︷︸
≤k−1

≤

(n− k)+ (k− 1) = n− 1 and therefore i+ s ∈ {0, 1, . . . , n− 1} (since i︸︷︷︸
≥0

+ s︸︷︷︸
≥0

≥

0) and therefore

vi+s ∈
{

v0, v1, . . . , vn−1
}
⊆
〈

v0, v1, . . . , vn−1
〉

A
= U.

Hence,
n−k
∑

i=0
ai+kvi+s is an A-linear combination of elements of the set U (since the

coefficients ai+k belong to A) and therefore belongs to U itself (since U is closed

under A-linear combination). In other words,
n−k
∑

i=0
ai+kvi+s ∈ U.

Now, from u =
n−k
∑

i=0
ai+kvi, we obtain

uvs =
n−k

∑
i=0

ai+k vi · vs︸ ︷︷ ︸
=vi+s

=
n−k

∑
i=0

ai+kvi+s ∈ U.

Hence, (11) is proven in Case 1.
Let us next consider Case 2. In this case, we have s ≥ k. Hence, s − k ≥ 0.

Also, s ≤ n− 1 (since s ∈ {0, 1, . . . , n− 1}).
For each i ∈ {0, 1, . . . , k− 1}, we have i ≥ 0 and i ≤ k− 1 and thus i︸︷︷︸

≤k−1

+ (s− k) ≤

(k− 1) + (s− k) = s− 1 ≤ s ≤ n− 1 and therefore i + (s− k) ∈ {0, 1, . . . , n− 1}
(since i︸︷︷︸

≥0

+ (s− k) ≥ s− k ≥ 0) and thus

vi+(s−k) ∈
{

v0, v1, . . . , vn−1
}
⊆
〈

v0, v1, . . . , vn−1
〉

A
= U.

Hence,
k−1
∑

i=0
aivi+(s−k) is an A-linear combination of elements of the set U (since

the coefficients ai belong to A) and therefore belongs to U itself (since U is closed

under A-linear combination). In other words,
k−1
∑

i=0
aivi+(s−k) ∈ U.

From s− k ≥ 0, we obtain s− k ∈N and thus vs = vk+(s−k) = vkvs−k. Hence,

uvs = uvkvs−k = vku · vs−k = −
k−1

∑
i=0

ai vi · vs−k︸ ︷︷ ︸
=vi+(s−k)

(
since vku = −

k−1

∑
i=0

aivi

)

= −
k−1

∑
i=0

aivi+(s−k)

︸ ︷︷ ︸
∈U

∈ −U ⊆ U (since U is an A-module) .
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Hence, (11) is proven in Case 2.
Hence, in both cases, we have proven (11). This completes the proof of (11).]
Thus we know that uvs ∈ U for every s ∈ {0, 1, . . . , n− 1}. Hence, Lemma 0.3

(applied to M = B, N = U, S = {0, 1, . . . , n− 1} and ms = uvs) yields

〈uvs | s ∈ {0, 1, . . . , n− 1}〉A ⊆ U.

Now, from U =
〈
v0, v1, . . . , vn−1〉

A, we obtain

uU = u
〈

v0, v1, . . . , vn−1
〉

A
=
〈

uv0, uv1, . . . , uvn−1
〉

A

= 〈uvs | s ∈ {0, 1, . . . , n− 1}〉A ⊆ U.

Altogether, U is an n-generated A-submodule of B such that 1 ∈ U and uU ⊆
U. Thus, u ∈ B satisfies Assertion C of Theorem 1.1. Hence, u ∈ B satisfies the
four equivalent assertions A, B, C and D of Theorem 1.1. Consequently, u is

n-integral over A. Since u =
n−k
∑

i=0
ai+kvi, this means that

n−k
∑

i=0
ai+kvi is n-integral

over A. This proves Theorem 1.11.

Corollary 1.12. Let A be a ring. Let B be an A-algebra. Let α ∈ N and β ∈ N

be such that α + β ∈ N+. Let u ∈ B and v ∈ B. Let s0, s1, . . . , sα be α + 1

elements of A such that
α

∑
i=0

sivi = u. Let t0, t1, . . . , tβ be β + 1 elements of A

such that
β

∑
i=0

tivβ−i = uvβ. Then, u is (α + β)-integral over A.

(This Corollary 1.12 generalizes [4, Exercise 2-5], which says that if v is an
invertible element of an A-algebra B, then every element u ∈ A [v] ∩ A

[
v−1] is

integral over A. To see how this follows from Corollary 1.12, just pick α ∈ N+

and β ∈N+ and s0, s1, . . . , sα ∈ A and t0, t1, . . . , tβ ∈ A such that
α

∑
i=0

sivi = u and

β

∑
i=0

ti
(
v−1)i

= u.)

First proof of Corollary 1.12. Let k = β and n = α + β. Then, k ∈ {0, 1, . . . , n}
(since α ∈ N and β ∈ N) and n = α + β ∈ N+ and n− β = α (since n = α + β).
Define n + 1 elements a0, a1, . . . , an of A by

ai =


tβ−i, if i < β;
t0 − s0, if i = β;
−si−β, if i > β

for every i ∈ {0, 1, . . . , n} .
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Then, from n = α + β, we obtain

n

∑
i=0

aivi =
α+β

∑
i=0

aivi =
β−1

∑
i=0

ai︸︷︷︸
=tβ−i

(by the
definition of ai,

since i<β)

vi +
β

∑
i=β

ai︸︷︷︸
=t0−s0
(by the

definition of ai,
since i=β)

vi +
α+β

∑
i=β+1

ai︸︷︷︸
=−si−β

(by the
definition of ai,

since i>β)

vi

=
β−1

∑
i=0

tβ−ivi +
β

∑
i=β

(t0 − s0) vi

︸ ︷︷ ︸
=(t0−s0)vβ

=t0vβ−s0vβ

+
α+β

∑
i=β+1

(
−si−β

)
vi

︸ ︷︷ ︸
=−

α+β

∑
i=β+1

si−βvi

=
β−1

∑
i=0

tβ−ivi + t0vβ − s0vβ −
α+β

∑
i=β+1

si−βvi

=
β−1

∑
i=0

tβ−ivi + t0vβ −
(

s0vβ +
α+β

∑
i=β+1

si−βvi

)

=
β−1

∑
i=0

tβ−ivi + t0vβ −

s0vβ +
α

∑
i=1

s(i+β)−β︸ ︷︷ ︸
=si

vi+β︸︷︷︸
=vivβ


(here, we substituted i + β for i in the second sum)

=
β−1

∑
i=0

tβ−ivi + t0vβ −
(

s0vβ +
α

∑
i=1

sivivβ

)

=
β

∑
i=1

tβ−(β−i)︸ ︷︷ ︸
=ti

vβ−i + t0 vβ︸︷︷︸
=vβ−0

−

s0 vβ︸︷︷︸
=v0vβ

+
α

∑
i=1

sivivβ


(here, we substituted β− i for i in the first sum)

=
β

∑
i=1

tivβ−i + t0vβ−0 −
(

s0v0vβ +
α

∑
i=1

sivivβ

)

=
β

∑
i=1

tivβ−i + t0vβ−0

︸ ︷︷ ︸
=

β

∑
i=0

tivβ−i=uvβ

−


s0v0 +

α

∑
i=1

sivi

︸ ︷︷ ︸
=

α
∑

i=0
sivi=u


vβ = uvβ − uvβ = 0.

Thus, Theorem 1.11 yields that
n−k
∑

i=0
ai+kvi is n-integral over A.
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But k = β and thus

n−k

∑
i=0

ai+kvi =
n−β

∑
i=0

ai+βvi =
n

∑
i=β

a(i−β)+β︸ ︷︷ ︸
=ai

vi−β

(here, we have substituted i− β for i in the sum)

=
n

∑
i=β

aivi−β =
β

∑
i=β

ai︸︷︷︸
=t0−s0
(by the

definition of ai,
since i=β)

vi−β +
n

∑
i=β+1

ai︸︷︷︸
=−si−β

(by the
definition of ai,

since i>β)

vi−β

=
β

∑
i=β

(t0 − s0) vi−β

︸ ︷︷ ︸
=(t0−s0)vβ−β

+
n

∑
i=β+1

(
−si−β

)
vi−β

︸ ︷︷ ︸
=

n−β

∑
i=1

(−si)vi

(here, we have substituted i
for i−β in the sum)

= (t0 − s0) vβ−β︸︷︷︸
=v0

+
n−β

∑
i=1

(−si) vi

︸ ︷︷ ︸
=−

n−β

∑
i=1

sivi=−
α
∑

i=1
sivi

(since n−β=α)

= (t0 − s0) v0︸ ︷︷ ︸
=t0v0−s0v0

+

(
−

α

∑
i=1

sivi

)

= t0v0 − s0v0 +

(
−

α

∑
i=1

sivi

)
= t0 v0︸︷︷︸

=1B

−
(

s0v0 +
α

∑
i=1

sivi

)
︸ ︷︷ ︸

=
α
∑

i=0
sivi=u

= t0 · 1B − u.

Thus, t0 · 1B − u is n-integral over A (since
n−k
∑

i=0
ai+kvi is n-integral over A).

Thus, Corollary 1.9 (applied to x = t0 · 1B−u and m = n) shows that− (t0 · 1B − u)
is n-integral over A. In other words, u − t0 · 1B is n-integral over A (since
− (t0 · 1B − u) = u− t0 · 1B).

On the other hand, t0 · 1B is 1-integral over A (by Theorem 1.6, applied to
a = t0). Thus, t0 · 1B + (u− t0 · 1B) is n · 1-integral over A (by Theorem 1.7 (a),
applied to x = t0 · 1B, y = u− t0 · 1B and m = 1). In other words, u is (α + β)-
integral over A (since t0 · 1B + (u− t0 · 1B) = u and n · 1 = n = α + β). This
proves Corollary 1.12.

We will provide a second proof of Corollary 1.12 in Section 5.
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Corollary 1.13. Let A be a ring. Let B be an A-algebra. Let n ∈ N+ and

m ∈ N. Let v ∈ B. Let b0, b1, . . . , bn−1 be n elements of A, and let u =
n−1
∑

i=0
bivi.

Assume that vu is m-integral over A. Then, u is nm-integral over A.

Corollary 1.13 generalizes a folklore fact about integrality, which states that
if B is an A-algebra, and if an invertible v ∈ B satisfies v−1 ∈ A [v], then v is
integral over A. (Indeed, this latter fact follows from Corollary 1.13 by setting
u = v−1.)

Proof of Corollary 1.13. Define n + 1 elements a0, a1, . . . , an of A [vu] by

ai =

{
−vu, if i = 0;
bi−1 · 1B, if i > 0

for every i ∈ {0, 1, . . . , n} .

(These are well-defined, since every positive i ∈ {0, 1, . . . , n} satisfies i ∈ {1, 2, . . . , n}
and thus i − 1 ∈ {0, 1, . . . , n− 1} and thus bi−1 ∈ A and therefore bi−1 · 1B ∈
A · 1B ⊆ A [vu].)

The definition of a0 yields a0 = −vu. Also,

n

∑
i=0

aivi = a0︸︷︷︸
=−vu

v0︸︷︷︸
=1

+
n

∑
i=1

ai︸︷︷︸
=bi−1·1B

(by the definition
of ai, since i>0)

vi = −vu +
n

∑
i=1

bi−1 · 1Bvi︸︷︷︸
=vi=vi−1v

= −vu +
n

∑
i=1

bi−1vi−1v = −vu +
n−1

∑
i=0

bivi

︸ ︷︷ ︸
=u

v

(here, we substituted i for i− 1 in the sum)

= −vu + uv = 0.

Let k = 1. Then, k = 1 ∈ {0, 1, . . . , n} (since n ∈N+).
Now, A [vu] is a subring of B; hence, B is an A [vu]-algebra. The n+ 1 elements

a0, a1, . . . , an of A [vu] satisfy
n
∑

i=0
aivi = 0.

Hence, Theorem 1.11 (applied to the ring A [vu] in lieu of A) yields that
n−k
∑

i=0
ai+kvi is n-integral over A [vu]. But from k = 1, we obtain

n−k

∑
i=0

ai+kvi =
n−1

∑
i=0

ai+1︸︷︷︸
=b(i+1)−1·1B

(by the definition
of ai+1, since i+1>0)

vi =
n−1

∑
i=0

b(i+1)−1︸ ︷︷ ︸
=bi

· 1Bvi︸︷︷︸
=vi

=
n−1

∑
i=0

bivi = u.
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Hence, u is n-integral over A [vu] (since
n−k
∑

i=0
ai+kvi is n-integral over A [vu]). But

vu is m-integral over A. Thus, Theorem 1.5 (applied to vu in lieu of v) yields
that u is nm-integral over A. This proves Corollary 1.13.

2. Integrality over ideal semifiltrations

2.1. Definitions of ideal semifiltrations and integrality over
them

We now set our sights at a more general notion of integrality.

Definition 2.1. Let A be a ring, and let
(

Iρ

)
ρ∈N

be a sequence of ideals of A.

Then,
(

Iρ

)
ρ∈N

is called an ideal semifiltration of A if and only if it satisfies the
two conditions

I0 = A;
Ia Ib ⊆ Ia+b for every a ∈N and b ∈N.

Two simple examples of ideal semifiltrations can easily be constructed from
any ideal:

Example 2.2. Let A be a ring. Let I be an ideal of A. Then:
(a) The sequence (Iρ)ρ∈N is an ideal semifiltration of A. (Here, Iρ denotes

the ρ-th power of I in the multiplicative monoid of ideals of A; in particular,
I0 = A.)

(b) The sequence (A, I, I, I, . . .) =

({
A, if ρ = 0;
I, if ρ > 0

)
ρ∈N

is an ideal semifil-

tration of A.

Proof of Example 2.2. This is a straightforward exercise in checking axioms.

Definition 2.3. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let n ∈N. Let u ∈ B.

We say that the element u of B is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
if there exists

some (a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, . . . , n} .
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This definition generalizes [5, Definition 1.1.1] in multiple ways. Indeed, if
I is an ideal of a ring A, and if u ∈ A and n ∈ N, then u is n-integral over(

A,
(

Iρ

)
ρ∈N

)
(here, (Iρ)ρ∈N is the ideal semifiltration from Example 2.2 (a)) if

and only if there is an equation of integral dependence of u over I (in the sense
of [5, Definition 1.1.1]).

We further notice that integrality over an ideal semifiltration of a ring A is a
stronger claim than integrality over A:

Proposition 2.4. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an
ideal semifiltration of A. Let n ∈ N. Let u ∈ B be such that u is n-integral
over

(
A,
(

Iρ

)
ρ∈N

)
. Then, u is n-integral over A.

Proof of Proposition 2.4. We know that u is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
. Thus,

by Definition 2.3, there exists some (a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).
For each k ∈ {0, 1, . . . , n}, we have ak ∈ In−k (since ai ∈ In−i for every i ∈
{0, 1, . . . , n}) and therefore ak ∈ In−k ⊆ A. Thus, we can define a polynomial

P ∈ A [X] by P (X) =
n
∑

k=0
akXk. Consider this P. This polynomial P satisfies

deg P ≤ n, and its coefficient before Xn is an = 1. Hence, this polynomial P is

monic and satisfies deg P = n. Also, by substituting u for X in P (X) =
n
∑

k=0
akXk,

we obtain P (u) =
n
∑

k=0
akuk = 0. Hence, we have found a monic polynomial

P ∈ A [X] with deg P = n and P (u) = 0.
In other words, u is n-integral over A. This proves Proposition 2.4.

We leave it to the reader to prove the following simple fact, which shows that
nilpotency is an instance of integrality over ideal semifiltrations:

Proposition 2.5. Let A be a ring. Let 0A be the zero ideal of A. Let n ∈ N.
Let u ∈ A. Then, the element u of A is n-integral over

(
A,
(
(0A)ρ)

ρ∈N

)
if and

only if un = 0.

2.2. Polynomial rings and Rees algebras

In order to study integrality over ideal semifiltrations, we shall now introduce
the concept of a Rees algebra – a subalgebra of a polynomial ring that conve-
niently encodes an ideal semifiltration of the base ring. This, again, generalizes
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a classical notion for ideals (namely, the Rees algebra of an ideal – see [5, Defi-
nition 5.1.1]). First, we recall a basic fact:

Definition 2.6. Let A be a ring. Let B be an A-algebra. Then, there is a
canonical ring homomorphism ι : A → B that sends each a ∈ A to a · 1B ∈ B.
This ring homomorphism ι induces a canonical ring homomorphism ι [Y] :
A [Y] → B [Y] between the polynomial rings A [Y] and B [Y] that sends each

polynomial
m
∑

i=0
aiYi ∈ A [Y] (with m ∈ N and (a0, a1, . . . , am) ∈ Am+1) to the

polynomial
m
∑

i=0
ι (ai)Yi ∈ B [Y]. Thus, the polynomial ring B [Y] becomes an

A [Y]-algebra.

Definition 2.7. Let A be a ring, and let
(

Iρ

)
ρ∈N

be an ideal semifiltration of
A. Thus, I0, I1, I2, . . . are ideals of A, and we have I0 = A.

Consider the polynomial ring A [Y]. For each i ∈N, the subset IiYi of A [Y]
is an A-submodule of the A-algebra A [Y] (since Ii is an ideal of A). Hence,
the sum ∑

i∈N

IiYi of these A-submodules must also be an A-submodule of the

A-algebra A [Y].
Let A

[(
Iρ

)
ρ∈N
∗Y
]

denote this A-submodule ∑
i∈N

IiYi of the A-algebra

A [Y]. Then,

A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi

=

{
∑

i∈N

aiYi | (ai ∈ Ii for all i ∈N) ,

and (only finitely many i ∈N satisfy ai 6= 0)

}
= {P ∈ A [Y] | the i-th coefficient of the polynomial P

lies in Ii for every i ∈N} .

Clearly, A ⊆ A
[(

Iρ

)
ρ∈N
∗Y
]
, since

A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi ⊇ I0︸︷︷︸
=A

Y0︸︷︷︸
=1

= A · 1 = A.

Hence, 1 ∈ A ⊆ A
[(

Iρ

)
ρ∈N
∗Y
]
. Also, the A-submodule A

[(
Iρ

)
ρ∈N
∗Y
]

of A [Y] is an A-subalgebra of the A-algebra A [Y] (by Lemma 2.8 below), and
thus is a subring of A [Y].

This A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

is called the Rees algebra of the ideal

semifiltration
(

Iρ

)
ρ∈N

.
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Lemma 2.8. Let A be a ring, and let
(

Iρ

)
ρ∈N

be an ideal semifiltration of A.

Then, the A-submodule A
[(

Iρ

)
ρ∈N
∗Y
]

of A [Y] is an A-subalgebra of the
A-algebra A [Y].

Proof of Lemma 2.8. Multiplying the equality A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi with it-

self, we find

A
[(

Iρ

)
ρ∈N
∗Y
]
· A
[(

Iρ

)
ρ∈N
∗Y
]

=

(
∑

i∈N

IiYi

)
·
(

∑
i∈N

IiYi

)
=

(
∑

i∈N

IiYi

)
·
(

∑
j∈N

IjY j

)
(here we renamed the index i as j in the second sum)

= ∑
i∈N

∑
j∈N

Ii Yi Ij︸︷︷︸
=IjYi

Y j = ∑
i∈N

∑
j∈N

Ii Ij︸︷︷︸
⊆Ii+j

(since (Iρ)ρ∈N

is an ideal
semifiltration)

YiY j︸︷︷︸
=Yi+j

⊆ ∑
i∈N

∑
j∈N

Ii+jYi+j︸ ︷︷ ︸
⊆ ∑

k∈N

IkYk

⊆ ∑
i∈N

∑
j∈N

∑
k∈N

IkYk

⊆ ∑
k∈N

IkYk

(
since ∑

k∈N

IkYk is an A-module

)
= ∑

i∈N

IiYi (here we renamed the index k as i in the sum)

= A
[(

Iρ

)
ρ∈N
∗Y
]

.

Hence, the A-submodule A
[(

Iρ

)
ρ∈N
∗Y
]

of A [Y] is closed under multiplication.

Thus, it is an A-subalgebra of the A-algebra A [Y] (since 1 ∈ A
[(

Iρ

)
ρ∈N
∗Y
]
).

This proves Lemma 2.8.

Remark 2.9. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A.

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

defined in Definition 2.7.
The polynomial ring B [Y] is an A [Y]-algebra (as explained in Defini-

tion 2.6), and thus is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra (since A

[(
Iρ

)
ρ∈N
∗Y
]

is a
subring of A [Y]). Hence, if p ∈ B [Y] is a polynomial and n ∈ N, then it
makes sense to ask whether p is n-integral over A

[(
Iρ

)
ρ∈N
∗Y
]
. Questions of

this form will often appear in what follows.
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We note in passing that the notion of a Rees algebra helps set up a bijection
between ideal semifiltrations of a ring A and graded A-subalgebras of the poly-
nomial ring A [Y]:

Proposition 2.10. Let A be a ring. Consider the polynomial ring A [Y] as a
graded A-algebra (with the usual degree of polynomials).

(a) If
(

Iρ

)
ρ∈N

is an ideal semifiltration of A, then its Rees algebra

A
[(

Iρ

)
ρ∈N
∗Y
]

is a graded A-subalgebra of A [Y].
(b) If B is any graded A-subalgebra of A [Y], and if ρ ∈ N, then we let IB,ρ

denote the subset {a ∈ A | aYρ ∈ B} of A. Then, IB,ρ is an ideal of A.
(c) The maps

{ideal semifiltrations of A} → {graded A-subalgebras of A [Y]} ,(
Iρ

)
ρ∈N
7→ A

[(
Iρ

)
ρ∈N
∗Y
]

and

{graded A-subalgebras of A [Y]} → {ideal semifiltrations of A} ,

B 7→
(

IB,ρ
)

ρ∈N

are mutually inverse bijections.

We shall not have any need for this proposition, so we omit its (straightfor-
ward and easy) proof.

2.3. Reduction to integrality over rings

We start with a theorem which reduces the question of n-integrality over
(

A,
(

Iρ

)
ρ∈N

)
to that of n-integrality over a ring3:

Theorem 2.11. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let n ∈N. Let u ∈ B.

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

defined in Definition 2.7.
Then, the element u of B is n-integral over

(
A,
(

Iρ

)
ρ∈N

)
if and only

if the element uY of the polynomial ring B [Y] is n-integral over the ring
A
[(

Iρ

)
ρ∈N
∗Y
]
. (Here, B [Y] is an A

[(
Iρ

)
ρ∈N
∗Y
]
-algebra, as explained in

Remark 2.9.)

Proof of Theorem 2.11. In order to verify Theorem 2.11, we have to prove the fol-
lowing two lemmata:

3Theorem 2.11 is inspired by [5, Proposition 5.2.1].
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Lemma E : If u is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
, then uY is n-integral

over A
[(

Iρ

)
ρ∈N
∗Y
]
.

Lemma F : If uY is n-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
, then u is n-integral

over
(

A,
(

Iρ

)
ρ∈N

)
.

[Proof of Lemma E : Assume that u is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
. Thus, by

Definition 2.3, there exists some (a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).
For each k ∈ {0, 1, . . . , n}, we have ak ∈ In−k (since ai ∈ In−i for every i ∈
{0, 1, . . . , n}) and therefore

ak︸︷︷︸
∈In−k

Yn−k ∈ In−kYn−k ⊆ ∑
i∈N

IiYi = A
[(

Iρ

)
ρ∈N
∗Y
]

(since Definition 2.7 yields A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi).

Thus, we can define a polynomial P ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[X] by P (X) =
n
∑

k=0
akYn−kXk. Consider this P. This polynomial P satisfies deg P ≤ n, and its

coefficient before Xn is an︸︷︷︸
=1

Yn−n︸ ︷︷ ︸
=Y0=1

= 1. Hence, this polynomial P is monic and

satisfies deg P = n. Also, by substituting uY for X in P (X) =
n
∑

k=0
akYn−kXk, we

obtain

P (uY) =
n

∑
k=0

akYn−k (uY)k︸ ︷︷ ︸
=ukYk

=
n

∑
k=0

akYn−kukYk =
n

∑
k=0

akuk Yn−kYk︸ ︷︷ ︸
=Yn

= Yn ·
n

∑
k=0

akuk

︸ ︷︷ ︸
=0

= 0.

Thus, there exists a monic polynomial P ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[X] with deg P =

n and P (uY) = 0. Hence, uY is n-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. This proves

Lemma E .]
[Proof of Lemma F : Assume that uY is n-integral over A

[(
Iρ

)
ρ∈N
∗Y
]
. Thus,

there exists a monic polynomial P ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[X] with deg P = n
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and P (uY) = 0. Consider this P. Since P ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[X] satis-

fies deg P = n, there exists (p0, p1, . . . , pn) ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])n+1

such that

P (X) =
n
∑

k=0
pkXk. Consider this (p0, p1, . . . , pn). Note that pn = 1 (since P is

monic and deg P = n).

Recall that (p0, p1, . . . , pn) ∈
(

A
[(

Iρ

)
ρ∈N
∗Y
])n+1

. Hence, for every k ∈

{0, 1, . . . , n}, we have pk ∈ A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi, and thus there exists a se-

quence (pk,i)i∈N
∈ AN such that pk = ∑

i∈N

pk,iYi, such that (pk,i ∈ Ii for every i ∈N),

and such that only finitely many i ∈ N satisfy pk,i 6= 0. Consider this sequence.
Thus,

P (X) =
n

∑
k=0

pk︸︷︷︸
= ∑

i∈N

pk,iYi

Xk =
n

∑
k=0

∑
i∈N

pk,iYiXk.

Substituting uY for X in this equality, we find

P (uY) =
n

∑
k=0

∑
i∈N

pk,iYi (uY)k︸ ︷︷ ︸
=ukYk

=Ykuk

=
n

∑
k=0

∑
i∈N

pk,i YiYk︸︷︷︸
=Yi+k

uk

=
n

∑
k=0

∑
i∈N

pk,iYi+kuk = ∑
k∈{0,1,...,n}

∑
i∈N

pk,iYi+kuk

= ∑
(k,i)∈{0,1,...,n}×N

pk,iYi+kuk = ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Yi+k︸︷︷︸
=Y`

(since i+k=`)

uk

= ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY`uk = ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iukY`.

Comparing this with P (uY) = 0, we find ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iukY` = 0.

In other words, the polynomial ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iuk

︸ ︷︷ ︸
∈B

Y` ∈ B [Y] equals 0.

Hence, its coefficient before Yn equals 0 as well. But its coefficient before Yn

is ∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk. Comparing the preceding two sentences, we see that
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∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk equals 0. Thus,

0 = ∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk = ∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iuk. (12)

For each k ∈ {0, 1, . . . , n}, we havei ∈N | i + k = n︸ ︷︷ ︸
⇐⇒ (i=n−k)

 = {i ∈N | i = n− k} = {n− k}

(because n− k ∈N (since k ∈ {0, 1, . . . , n})) and thus

∑
i∈N;

i+k=n

pk,iuk = ∑
i∈{n−k}

pk,iuk = pk,n−kuk.

Thus, (12) becomes

0 = ∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iuk

︸ ︷︷ ︸
=pk,n−kuk

= ∑
k∈{0,1,...,n}

pk,n−kuk. (13)

Recall that pk = ∑
i∈N

pk,iYi for every k ∈ {0, 1, . . . , n}. Applying this to k = n,

we find pn = ∑
i∈N

pn,iYi. Comparing this with pn = 1 = 1 ·Y0, we find

∑
i∈N

pn,iYi = 1 ·Y0 in A [Y] .

Hence, the coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is 1. But the

coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is pn,0 (since pn,i ∈ A

for all i ∈N). Comparing the preceding two sentences, we see that pn,0 = 1.
Define an (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 by setting

(ak = pk,n−k for every k ∈ {0, 1, . . . , n}) .

Then, an = pn,n−n = pn,0 = 1. Besides,

n

∑
k=0

ak︸︷︷︸
=pk,n−k

(by the definition
of ak)

uk =
n

∑
k=0

pk,n−kuk = ∑
k∈{0,1,...,n}

pk,n−kuk = 0
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(by (13)). Finally, for every k ∈ {0, 1, . . . , n}, we have n − k ∈ N and thus
ak = pk,n−k ∈ In−k (since pk,i ∈ Ii for every i ∈ N). Renaming the variable k as
i in this statement, we obtain the following: For every i ∈ {0, 1, . . . , n}, we have
ai ∈ In−i.

Altogether, we now know that the (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 satisfies

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, . . . , n} .

Thus, by Definition 2.3, the element u is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
. This

proves Lemma F .]
Combining Lemma E and Lemma F , we obtain that u is n-integral over(

A,
(

Iρ

)
ρ∈N

)
if and only if uY is n-integral over A

[(
Iρ

)
ρ∈N
∗Y
]
. This proves

Theorem 2.11.

2.4. Sums and products again

Let us next state an analogue of Theorem 1.6 for integrality over ideal semifiltra-
tions:

Theorem 2.12. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal

semifiltration of A. Let u ∈ A. Then, u · 1B is 1-integral over
(

A,
(

Iρ

)
ρ∈N

)
if

and only if u · 1B ∈ I1 · 1B.

Proof of Theorem 2.12. In order to verify Theorem 2.12, we have to prove the fol-
lowing two lemmata:

Lemma G: If u · 1B is 1-integral over
(

A,
(

Iρ

)
ρ∈N

)
, then u · 1B ∈ I1 · 1B.

LemmaH: If u · 1B ∈ I1 · 1B, then u · 1B is 1-integral over
(

A,
(

Iρ

)
ρ∈N

)
.

[Proof of Lemma G: Assume that u · 1B is 1-integral over
(

A,
(

Iρ

)
ρ∈N

)
. Thus,

by Definition 2.3 (applied to u · 1B and 1 instead of u and n), there exists some
(a0, a1) ∈ A2 such that

1

∑
k=0

ak (u · 1B)
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Consider this (a0, a1). Thus, a0 ∈ I1−0 (since ai ∈ I1−i for every i ∈ {0, 1}), so
that a0 ∈ I1−0 = I1 and thus −a0 ∈ −I1 ⊆ I1 (since I1 is an ideal of A). Also,

0 =
1

∑
k=0

ak (u · 1B)
k = a0 (u · 1B)

0︸ ︷︷ ︸
=1B

+ a1︸︷︷︸
=1

(u · 1B)
1︸ ︷︷ ︸

=u·1B

= a0 · 1B + u · 1B,
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so that u · 1B = −a0︸︷︷︸
∈I1

·1B ∈ I1 · 1B. This proves Lemma G.]

[Proof of Lemma H: Assume that u · 1B ∈ I1 · 1B. Thus, u · 1B = w · 1B for some
w ∈ I1. Consider this w. Then, w ∈ I1, so that −w ∈ −I1 ⊆ I1 (since I1 is an
ideal of A). Define a 2-tuple (a0, a1) ∈ A2 by setting a0 = −w and a1 = 1. Then,

1

∑
k=0

ak (u · 1B)
k = a0︸︷︷︸

=−w

(u · 1B)
0︸ ︷︷ ︸

=1B

+ a1︸︷︷︸
=1

(u · 1B)
1︸ ︷︷ ︸

=u·1B

= −w · 1B + u · 1B︸ ︷︷ ︸
=w·1B

= −w · 1B + w · 1B = 0.

Also, ai ∈ I1−i for every i ∈ {0, 1} (since a0 = −w ∈ I1 = I1−0 and a1 = 1 ∈ A =
I0 = I1−1). Altogether, we now know that (a0, a1) ∈ A2 and

1

∑
k=0

ak (u · 1B)
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Thus, by Definition 2.3 (applied to u · 1B and 1 instead of u and n), the element
u · 1B is 1-integral over

(
A,
(

Iρ

)
ρ∈N

)
. This proves Lemma H.]

Combining Lemma G and Lemma H, we obtain that u · 1B is 1-integral over(
A,
(

Iρ

)
ρ∈N

)
if and only if u · 1B ∈ I1 · 1B. This proves Theorem 2.12.

The next theorem is an analogue of Theorem 1.7 (a) for integrality over ideal
semifiltrations:

Theorem 2.13. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let x ∈ B and y ∈ B. Let m ∈N and n ∈N. Assume that
x is m-integral over

(
A,
(

Iρ

)
ρ∈N

)
, and that y is n-integral over

(
A,
(

Iρ

)
ρ∈N

)
.

Then, x + y is nm-integral over
(

A,
(

Iρ

)
ρ∈N

)
.

Proof of Theorem 2.13. Consider the polynomial ring A [Y] and its A-subalgebra
A
[(

Iρ

)
ρ∈N
∗Y
]
. The polynomial ring B [Y] is an A

[(
Iρ

)
ρ∈N
∗Y
]
-algebra (as

explained in Remark 2.9).
Theorem 2.11 (applied to x and m instead of u and n) yields that xY is m-

integral over A
[(

Iρ

)
ρ∈N
∗Y
]

(since x is m-integral over
(

A,
(

Iρ

)
ρ∈N

)
). Also,

Theorem 2.11 (applied to y instead of u) yields that yY is n-integral over
A
[(

Iρ

)
ρ∈N
∗Y
]

(since y is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
).

Hence, Theorem 1.7 (a) (applied to A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y], xY and yY in-

stead of A, B, x and y, respectively) yields that xY + yY is nm-integral over
A
[(

Iρ

)
ρ∈N
∗Y
]
. Since xY + yY = (x + y)Y, this means that (x + y)Y is nm-

integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. Hence, Theorem 2.11 (applied to x + y and nm
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instead of u and n) yields that x + y is nm-integral over
(

A,
(

Iρ

)
ρ∈N

)
. This

proves Theorem 2.13.

Our next theorem is a somewhat asymmetric analogue of Theorem 1.7 (b) for
integrality over ideal semifiltrations:

Theorem 2.14. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let x ∈ B and y ∈ B. Let m ∈N and n ∈N. Assume that
x is m-integral over

(
A,
(

Iρ

)
ρ∈N

)
, and that y is n-integral over A.

Then, xy is nm-integral over
(

A,
(

Iρ

)
ρ∈N

)
.

Before we prove this theorem, we require a trivial observation:

Lemma 2.15. Let A be a ring. Let A′ be an A-algebra. Let B′ be an A′-algebra.
Let v ∈ B′. Let n ∈ N. Assume that v is n-integral over A. (Here, of course,
we are using the fact that B′ is an A-algebra, since B′ is an A′-algebra while
A′ is an A-algebra.)

Then, v is n-integral over A′.

Proof of Lemma 2.15. We know that v is n-integral over A. In other words, there
exists a monic polynomial P ∈ A [X] with deg P = n and P (v) = 0. Consider
this P, and denote it by Q. Thus, Q is a monic polynomial in A [X] with deg Q =
n and Q (v) = 0.

Consider the canonical ring homomorphism A → A′ sending each a ∈ A
to a · 1A′ ∈ A′. This homomorphism is defined because A′ is an A-algebra,
and it in turn induces a canonical ring homomorphism A [X] → A′ [X]. Let
Q̃ ∈ A′ [X] be the image of the polynomial Q ∈ A [X] under this latter ho-
momorphism. Then, Q̃ is a monic polynomial with deg Q̃ = n (since Q is a
monic polynomial with deg Q = n). Furthermore, the definition of Q̃ yields
Q̃ (v) = Q (v) = 0. Thus, there exists a monic polynomial P ∈ A′ [X] with
deg P = n and P (v) = 0 (namely, P = Q̃). In other words, v is n-integral over
A′. This proves Lemma 2.15.

Proof of Theorem 2.14. Consider the polynomial ring A [Y] and its A-subalgebra
A
[(

Iρ

)
ρ∈N
∗Y
]
. The polynomial ring B [Y] is an A

[(
Iρ

)
ρ∈N
∗Y
]
-algebra (as

explained in Remark 2.9).
Theorem 2.11 (applied to x and m instead of u and n) yields that xY is m-

integral over A
[(

Iρ

)
ρ∈N
∗Y
]

(since x is m-integral over
(

A,
(

Iρ

)
ρ∈N

)
). Also,

we know that y is n-integral over A. Thus, Lemma 2.15 (applied to A′ =

A
[(

Iρ

)
ρ∈N
∗Y
]
, B′ = B [Y] and v = y) yields that y is n-integral over A

[(
Iρ

)
ρ∈N
∗Y
]

(since A
[(

Iρ

)
ρ∈N
∗Y
]

is an A-algebra, and B [Y] is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra).
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On the other hand, we know that xY is m-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. Hence,

Theorem 1.7 (b) (applied to A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y] and xY instead of A, B and

x, respectively) yields that xY · y is nm-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. Since

xY · y = xyY, this means that xyY is nm-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. Hence,

Theorem 2.11 (applied to xy and nm instead of u and n) yields that xy is nm-
integral over

(
A,
(

Iρ

)
ρ∈N

)
. This proves Theorem 2.14.

It is easy to state analogues of Corollary 1.9 and Corollary 1.10 for ideal semi-
filtrations. These analogues can be derived from Corollary 1.9 and Corollary 1.10
in the same way as how we derived Theorem 2.13 from Theorem 1.7 (a).

2.5. Transitivity again

The next theorem imitates Theorem 1.5 for integrality over ideal semifiltrations:

Theorem 2.16. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A.

Let v ∈ B and u ∈ B. Let m ∈N and n ∈N.
(a) Then,

(
Iρ A [v]

)
ρ∈N

is an ideal semifiltration of A [v]. (See Convention
2.17 below for the meaning of “Iρ A [v]”.)

(b) Assume that v is m-integral over A, and that u is n-integral over(
A [v] ,

(
Iρ A [v]

)
ρ∈N

)
. Then, u is nm-integral over

(
A,
(

Iρ

)
ρ∈N

)
.

Here and in the following, we are using the following convention:

Convention 2.17. Let A be a ring. Let B be an A-algebra. Let v ∈ B, and
let I be an ideal of A. Then, you should read the expression “IA [v]” as
I · (A [v]), not as (IA) [v]. For instance, you should read the term “Iρ A [v]” (in
Theorem 2.16 (a)) as Iρ · (A [v]), not as

(
Iρ A
)
[v].

Before we prove Theorem 2.16, let us state two lemmas. The first is a more
general (but still obvious) version of Theorem 2.16 (a):

Lemma 2.18. Let A be a ring. Let A′ be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal

semifiltration of A. Then,
(

Iρ A′
)

ρ∈N
is an ideal semifiltration of A′.

Proof of Lemma 2.18. We know that
(

Iρ

)
ρ∈N

is an ideal semifiltration of A. In

other words,
(

Iρ

)
ρ∈N

is a sequence of ideals of A and satisfies

I0 = A;
Ia Ib ⊆ Ia+b for every a ∈N and b ∈N
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(by Definition 2.1). The set Iρ is an ideal of A for every ρ ∈ N (since
(

Iρ

)
ρ∈N

is
a sequence of ideals of A).

Now, the set Iρ A′ is an ideal of A′ for every ρ ∈ N (since Iρ is an ideal of A).
Hence,

(
Iρ A′

)
ρ∈N

is a sequence of ideals of A′. It satisfies

I0︸︷︷︸
=A

A′ = AA′ = A′
(
since A′ is an A-algebra

)
;

Ia A′ · Ib A′ = Ia Ib︸︷︷︸
⊆Ia+b

A′ ⊆ Ia+b A′ for every a ∈N and b ∈N.

Thus, by Definition 2.1 (applied to A′ and
(

Iρ A′
)

ρ∈N
instead of A and

(
Iρ

)
ρ∈N

),

it follows that
(

Iρ A′
)

ρ∈N
is an ideal semifiltration of A′. This proves Lemma

2.18.

Lemma 2.19. Let A be a ring. Let A′ be an A-algebra. Let B′ be an A′-algebra.
Let v ∈ B′. Then, A′ · A [v] = A′ [v] (an equality between A-submodules of
B′). (Here, we are using the fact that B′ is an A-algebra, because B′ is an
A′-algebra while A′ is an A-algebra.)

Here, of course, the expression “A′ ·A [v]” means “A′ · (A [v])”, not “(A′ · A) [v]”.

Proof of Lemma 2.19. We have A [v] ⊆ A′ [v] (since the ring A acts on B′ through
the canonical ring homomorphism A → A′). Hence, A′ · A [v]︸︷︷︸

⊆A′[v]

⊆ A′ · A′ [v] ⊆

A′ [v] (since A′ [v] is an A′-algebra). On the other hand, let x be an element of
A′ [v]. Then, there exist some n ∈ N and some (a0, a1, . . . , an) ∈ (A′)n+1 such

that x =
n
∑

k=0
akvk. Consider this n and this (a0, a1, . . . , an). Thus,

x =
n

∑
k=0

ak︸︷︷︸
∈A′

vk︸︷︷︸
∈A[v]

∈
n

∑
k=0

A′ ·A [v] ⊆ A′ ·A [v]
(
since A′ · A [v] is an additive group

)
.

Now, forget that we fixed x. Thus, we have proved that x ∈ A′ · A [v] for every
x ∈ A′ [v]. Therefore, A′ [v] ⊆ A′ · A [v]. Combined with A′ · A [v] ⊆ A′ [v], this
yields A′ · A [v] = A′ [v]. Hence, we have established Lemma 2.19.

We are now ready to prove Theorem 2.16:

Proof of Theorem 2.16. (a) Lemma 2.18 (applied to A′ = A [v]) yields that
(

Iρ A [v]
)

ρ∈N

is an ideal semifiltration of A [v]. This proves Theorem 2.16 (a).
(b) Consider the polynomial ring A [Y] and its A-subalgebra A

[(
Iρ

)
ρ∈N
∗Y
]
.

Then, (A [v]) [Y] is an A [Y]-algebra (since A [v] is an A-algebra) and therefore
also an A

[(
Iρ

)
ρ∈N
∗Y
]
-algebra (since A

[(
Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y]).
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Hence,
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v] is an A-subalgebra of (A [v]) [Y] (since v ∈ A [v] ⊆

(A [v]) [Y]). On the other hand, (A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]

is an A-subalgebra of
(A [v]) [Y] (by its definition).

Note that B is an A [v]-algebra (since A [v] is a subring of B). Hence, (as
explained in Definition 2.6) the polynomial ring B [Y] is an (A [v]) [Y]-algebra.
Moreover, B [Y] is an A [Y]-algebra (as explained in Definition 2.6) and also an
A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra (as explained in Remark 2.9).

Now, we will show that (A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]
=
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v].
(This is an equality between two subrings of (A [v]) [Y].)

In fact, Definition 2.7 yields A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi. The same definition

(but applied to A [v] and
(

Iρ A [v]
)

ρ∈N
instead of A and

(
Iρ

)
ρ∈N

) yields

(A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]
= ∑

i∈N

Ii A [v] ·Yi︸ ︷︷ ︸
=Yi·A[v]

= ∑
i∈N

IiYi · A [v]

=

(
∑

i∈N

IiYi

)
︸ ︷︷ ︸

=A
[
(Iρ)ρ∈N

∗Y
]
·A [v] = A

[(
Iρ

)
ρ∈N
∗Y
]
· A [v]

=
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v] (14)

(by Lemma 2.19, applied to A′ = A
[(

Iρ

)
ρ∈N
∗Y
]

and B′ = (A [v]) [Y]).

Recall that B [Y] is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra. Hence, Lemma 2.15 (applied to

A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y] and m instead of A′, B′ and n) yields that v is m-integral

over A
[(

Iρ

)
ρ∈N
∗Y
]

(since v is m-integral over A).

Now, Theorem 2.11 (applied to A [v] and
(

Iρ A [v]
)

ρ∈N
instead of A and

(
Iρ

)
ρ∈N

)

yields that the element uY is n-integral over (A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]

(since u

is n-integral over
(

A [v] ,
(

Iρ A [v]
)

ρ∈N

)
). In view of (14), this rewrites as follows:

The element uY is n-integral over
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v]. Hence, Theorem 1.5

(applied to A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y] and uY instead of A, B and u) yields that uY

is nm-integral over A
[(

Iρ

)
ρ∈N
∗Y
]

(since v is m-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
).

Thus, Theorem 2.11 (applied to nm instead of n) yields that u is nm-integral over(
A,
(

Iρ

)
ρ∈N

)
. This proves Theorem 2.16 (b).
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3. Generalizing to two ideal semifiltrations

Theorem 2.14 can be generalized: Instead of requiring y to be integral over the
ring A, we can require y to be integral over a further ideal semifiltration

(
Jρ

)
ρ∈N

of A. In that case, xy will be integral over the ideal semifiltration
(

Iρ Jρ

)
ρ∈N

(see
Theorem 3.4 for the precise statement). To get a grip on this, let us study two
ideal semifiltrations.

3.1. The product of two ideal semifiltrations

Theorem 3.1. Let A be a ring.
(a) Then, (A)ρ∈N is an ideal semifiltration of A.
(b) Let

(
Iρ

)
ρ∈N

and
(

Jρ

)
ρ∈N

be two ideal semifiltrations of A. Then,(
Iρ Jρ

)
ρ∈N

is an ideal semifiltration of A.

Proof of Theorem 3.1. (a) Clearly, (A)ρ∈N is a sequence of ideals of A. Hence, in
order to prove that (A)ρ∈N is an ideal semifiltration of A, it is enough to verify
that it satisfies the two conditions

A = A;
AA ⊆ A for every a ∈N and b ∈N.

But these two conditions are obviously satisfied. Hence, (A)ρ∈N is an ideal
semifiltration of A (by Definition 2.1, applied to (A)ρ∈N instead of

(
Iρ

)
ρ∈N

).
This proves Theorem 3.1 (a).

(b) Since
(

Iρ

)
ρ∈N

is an ideal semifiltration of A, it is a sequence of ideals of A,
and it satisfies the two conditions

I0 = A;
Ia Ib ⊆ Ia+b for every a ∈N and b ∈N (15)

(by Definition 2.1). Since
(

Jρ

)
ρ∈N

is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

J0 = A;
Ja Jb ⊆ Ja+b for every a ∈N and b ∈N (16)

(by Definition 2.1, applied to
(

Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

).

Now, we know that both
(

Iρ

)
ρ∈N

and
(

Jρ

)
ρ∈N

are sequences of ideals of A.
Hence, if ρ ∈N, then both Iρ and Jρ are ideals of A, and therefore Iρ Jρ is an ideal
of A as well (since the product of any two ideals of A is an ideal of A). Thus,
Iρ Jρ is an ideal of A for each ρ ∈ N. In other words,

(
Iρ Jρ

)
ρ∈N

is a sequence of
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ideals of A. Thus, in order to prove that
(

Iρ Jρ

)
ρ∈N

is an ideal semifiltration of
A, it is enough to verify that it satisfies the two conditions

I0 J0 = A;
Ia Ja · Ib Jb ⊆ Ia+b Ja+b for every a ∈N and b ∈N.

But these two conditions are satisfied, since

I0︸︷︷︸
=A

J0︸︷︷︸
=A

= AA = A;

Ia Ja · Ib Jb = Ia Ib︸︷︷︸
⊆Ia+b

(by (15))

Ja Jb︸︷︷︸
⊆Ja+b

(by (16))

⊆ Ia+b Ja+b for every a ∈N and b ∈N.

Hence,
(

Iρ Jρ

)
ρ∈N

is an ideal semifiltration of A (by Definition 2.1, applied to(
Iρ Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

). This proves Theorem 3.1 (b).

3.2. Half-reduction

Now let us generalize Theorem 2.11:

Theorem 3.2. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

and
(

Jρ

)
ρ∈N

be two ideal semifiltrations of A. Let n ∈N. Let u ∈ B.
We know that

(
Iρ Jρ

)
ρ∈N

is an ideal semifiltration of A (according to Theo-
rem 3.1 (b)).

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]
.

We will abbreviate this A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

by A[I].

(a) The sequence
(

Jτ A[I]

)
τ∈N

is an ideal semifiltration of A[I].

(b) The element u of B is n-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
if and only if the el-

ement uY of the polynomial ring B [Y] is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
.

(Here, we are using the fact that B [Y] is an A[I]-algebra, because A[I] =

A
[(

Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y] and because B [Y] is an A [Y]-algebra
as explained in Definition 2.6.)

Proof of Theorem 3.2. The definition of A[I] yields

A[I] = A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi (by Definition 2.7)

= ∑
`∈N

I`Y` (here we renamed i as ` in the sum) .
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As a consequence of this chain of equalities, we have ∑
i∈N

IiYi = A[I] and ∑
`∈N

I`Y` =

A[I].
(a) We know that

(
Jρ

)
ρ∈N

is an ideal semifiltration of A. In other words,

(Jτ)τ∈N is an ideal semifiltration of A (since (Jτ)τ∈N =
(

Jρ

)
ρ∈N

). Thus, by

Lemma 2.18 (applied to A[I] and (Jτ)τ∈N instead of A′ and
(

Iρ

)
ρ∈N

), the se-

quence
(

Jτ A[I]

)
τ∈N

is an ideal semifiltration of A[I]. This proves Theorem 3.2
(a).

(b) In order to verify Theorem 3.2 (b), we have to prove the following two
lemmata:

Lemma E ′: If u is n-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
, then uY is n-integral

over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
.

Lemma F ′: If uY is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
, then u is n-

integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
.

[Proof of Lemma E ′: Assume that u is n-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
. Thus,

by Definition 2.3 (applied to
(

Iρ Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

), there exists some

(a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i Jn−i for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).
For every k ∈ {0, 1, . . . , n}, we have

ak ∈ In−k Jn−k︸︷︷︸
⊆A

(since ai ∈ In−i Jn−i for every i ∈ {0, 1, . . . , n})

⊆ In−k A ⊆ In−k (since In−k is an ideal of A)

and thus
ak︸︷︷︸
∈In−k

Yn−k ∈ In−kYn−k ⊆ ∑
i∈N

IiYi = A[I].

Thus, we can define an (n + 1)-tuple (b0, b1, . . . , bn) ∈
(

A[I]

)n+1
by setting(

bk = akYn−k for every k ∈ {0, 1, . . . , n}
)

.

42



Integrality over ideal semifiltrations July 14, 2019

Consider this (n + 1)-tuple. The definition of this (n + 1)-tuple yields

n

∑
k=0

bk︸︷︷︸
=akYn−k

· (uY)k︸ ︷︷ ︸
=ukYk

=
n

∑
k=0

akYn−kukYk =
n

∑
k=0

akuk Yn−kYk︸ ︷︷ ︸
=Yn

= Yn ·
n

∑
k=0

akuk

︸ ︷︷ ︸
=0

= 0;

bn = an︸︷︷︸
=1

Yn−n︸ ︷︷ ︸
=Y0=1

= 1,

and

bi = ai︸︷︷︸
∈In−i Jn−i
=Jn−i In−i

Yn−i ∈ Jn−i In−iYn−i︸ ︷︷ ︸
⊆ ∑

`∈N

I`Y`

=A[I]

⊆ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .

Altogether, we now know that (b0, b1, . . . , bn) ∈
(

A[I]

)n+1
and

n

∑
k=0

bk · (uY)k = 0, bn = 1, and bi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .

Hence, by Definition 2.3 (applied to A[I], B [Y],
(

Jτ A[I]

)
τ∈N

, uY and (b0, b1, . . . , bn)

instead of A, B,
(

Iρ

)
ρ∈N

, u and (a0, a1, . . . , an)), the element uY is n-integral over(
A[I],

(
Jτ A[I]

)
τ∈N

)
. This proves Lemma E ′.]

[Proof of Lemma F ′: Assume that uY is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
.

Thus, by Definition 2.3 (applied to A[I], B [Y],
(

Jτ A[I]

)
τ∈N

, uY and (p0, p1, . . . , pn)

instead of A, B,
(

Iρ

)
ρ∈N

, u and (a0, a1, . . . , an)), there exists some (p0, p1, . . . , pn) ∈(
A[I]

)n+1
such that

n

∑
k=0

pk · (uY)k = 0, pn = 1, and pi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .

Consider this (p0, p1, . . . , pn). For every k ∈ {0, 1, . . . , n}, we have

pk ∈ Jn−k A[I]

(
since pi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n}

)
= Jn−k ∑

i∈N

IiYi

(
since A[I] = ∑

i∈N

IiYi

)
= ∑

i∈N

Jn−k Ii︸ ︷︷ ︸
=Ii Jn−k

Yi = ∑
i∈N

Ii Jn−kYi,
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and thus there exists a sequence (pk,i)i∈N
∈ AN such that pk = ∑

i∈N

pk,iYi, such

that (pk,i ∈ Ii Jn−k for every i ∈N), and such that only finitely many i ∈ N sat-
isfy pk,i 6= 0. Consider this sequence. Thus,

n

∑
k=0

pk︸︷︷︸
= ∑

i∈N

pk,iYi

· (uY)k︸ ︷︷ ︸
=ukYk

=Ykuk

=
n

∑
k=0

(
∑

i∈N

pk,iYi

)
·Ykuk =

n

∑
k=0︸︷︷︸

= ∑
k∈{0,1,...,n}

∑
i∈N

pk,i Yi ·Yk︸ ︷︷ ︸
=Yi+k

uk = ∑
k∈{0,1,...,n}

∑
i∈N

pk,iYi+kuk

= ∑
(k,i)∈{0,1,...,n}×N

pk,iYi+kuk = ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Yi+k︸︷︷︸
=Y`

(since i+k=`)

uk

= ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY`uk = ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iukY`.

Comparing this with
n
∑

k=0
pk · (uY)k = 0, we obtain ∑

`∈N
∑

(k,i)∈{0,1,...,n}×N;
i+k=`

pk,iukY` =

0. In other words, the polynomial ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iuk

︸ ︷︷ ︸
∈B

Y` ∈ B [Y] equals 0.

Hence, its coefficient before Yn equals 0 as well. But its coefficient before Yn

is ∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk. Comparing the preceding two sentences, we see that

∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk equals 0. Thus,

0 = ∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iuk = ∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iuk. (17)

But for any given k ∈ {0, 1, . . . , n}, we havei ∈N | i + k = n︸ ︷︷ ︸
⇐⇒ (i=n−k)

 = {i ∈N | i = n− k} = {n− k}

(since n− k ∈N (because k ∈ {0, 1, . . . , n})) and therefore

∑
i∈N;

i+k=n

pk,iuk = ∑
i∈{n−k}

pk,iuk = pk,n−kuk.
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Hence, (17) becomes

0 = ∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iuk

︸ ︷︷ ︸
=pk,n−kuk

= ∑
k∈{0,1,...,n}

pk,n−kuk. (18)

Recall that pk = ∑
i∈N

pk,iYi for every k ∈ {0, 1, . . . , n}. Applying this to k = n,

we find pn = ∑
i∈N

pn,iYi. Comparing this with pn = 1 = 1 ·Y0, we find

∑
i∈N

pn,iYi = 1 ·Y0 in A [Y] .

Hence, the coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is 1. But the

coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is pn,0 (since pn,i ∈ A

for all i ∈N). Comparing the preceding two sentences, we see that pn,0 = 1.
Define an (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 by setting

(ak = pk,n−k for every k ∈ {0, 1, . . . , n}) .

Then, an = pn,n−n = pn,0 = 1. Besides,

n

∑
k=0

ak︸︷︷︸
=pk,n−k

(by the definition
of ak)

uk =
n

∑
k=0

pk,n−kuk = ∑
k∈{0,1,...,n}

pk,n−kuk = 0 (by (18)) .

Finally, for every k ∈ {0, 1, . . . , n}, we have n− k ∈ N and thus ak = pk,n−k ∈
In−k Jn−k (since pk,i ∈ Ii Jn−k for every i ∈ N). Renaming the variable k as i in
this statement, we obtain the following: For every i ∈ {0, 1, . . . , n}, we have
ai ∈ In−i Jn−i.

Altogether, we now know that the (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 satisfies

n

∑
k=0

akuk = 0, an = 1, and ai ∈ In−i Jn−i for every i ∈ {0, 1, . . . , n} .

Thus, by Definition 2.3 (applied to
(

Iρ Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

), the element u

is n-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
. This proves Lemma F ′.]

Combining Lemma E ′ and Lemma F ′, we obtain that u is n-integral over(
A,
(

Iρ Jρ

)
ρ∈N

)
if and only if uY is n-integral over

(
A[I],

(
Jτ A[I]

)
τ∈N

)
. This

proves Theorem 3.2 (b).
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The reason why Theorem 3.2 (b) generalizes Theorem 2.11 (more precisely,
Theorem 2.11 is the particular case of Theorem 3.2 (b) for Jρ = A) is the following
fact, which we mention here for the pure sake of completeness:

Theorem 3.3. Let A be a ring. Let B be an A-algebra. Let n ∈N. Let u ∈ B.
We know that (A)ρ∈N is an ideal semifiltration of A (according to Theo-

rem 3.1 (a)).
Then, the element u of B is n-integral over

(
A, (A)ρ∈N

)
if and only if u is

n-integral over A.

Proof of Theorem 3.3. In order to verify Theorem 3.3, we have to prove the follow-
ing two lemmata:

Lemma L: If u is n-integral over
(

A, (A)ρ∈N

)
, then u is n-integral

over A.

LemmaM: If u is n-integral over A, then u is n-integral over
(

A, (A)ρ∈N

)
.

[Proof of Lemma L: Assume that u is n-integral over
(

A, (A)ρ∈N

)
. Thus,

by Definition 2.3 (applied to (A)ρ∈N instead of
(

Iρ

)
ρ∈N

), there exists some

(a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).

Define a polynomial P ∈ A [X] by P (X) =
n
∑

k=0
akXk. Then, P (X) =

n
∑

k=0
akXk =

an︸︷︷︸
=1

Xn +
n−1
∑

k=0
akXk = Xn +

n−1
∑

k=0
akXk. Hence, the polynomial P is monic, and

deg P = n. Besides, P (u) = 0 (since P (X) =
n
∑

k=0
akXk yields P (u) =

n
∑

k=0
akuk =

0). Thus, there exists a monic polynomial P ∈ A [X] with deg P = n and P (u) =
0. Hence, u is n-integral over A. This proves Lemma L.]

[Proof of Lemma M: Assume that u is n-integral over A. Thus, there exists a
monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Consider this P.
Since deg P = n, there exists some (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 such that

P (X) =
n
∑

k=0
akXk. Consider this (a0, a1, . . . , an). Thus, an = 1 (since P is monic,

and deg P = n). Also, substituting u for X in the equality
n
∑

k=0
akXk = P (X) yields
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n
∑

k=0
akuk = P (u) = 0. Altogether, we now know that (a0, a1, . . . , an) ∈ An+1 and

n

∑
k=0

akuk = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, . . . , n} .

Hence, by Definition 2.3 (applied to (A)ρ∈N instead of
(

Iρ

)
ρ∈N

), the element u

is n-integral over
(

A, (A)ρ∈N

)
. This proves LemmaM.]

Combining Lemma L and Lemma M, we obtain that u is n-integral over(
A, (A)ρ∈N

)
if and only if u is n-integral over A. This proves Theorem 3.3.

3.3. Integrality of products over the product semifiltration

Finally, let us generalize Theorem 2.14:

Theorem 3.4. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

and
(

Jρ

)
ρ∈N

be two ideal semifiltrations of A.
Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-integral

over
(

A,
(

Iρ

)
ρ∈N

)
, and that y is n-integral over

(
A,
(

Jρ

)
ρ∈N

)
. Then, xy is

nm-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
.

The proof of this theorem will require a generalization of Lemma 2.15:

Lemma 3.5. Let A be a ring. Let A′ be an A-algebra. Let B′ be an A′-algebra.
Let

(
Iρ

)
ρ∈N

be an ideal semifiltration of A. Let v ∈ B′. Let n ∈ N. Assume

that v is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
. (Here, of course, we are using the fact

that B′ is an A-algebra, since B′ is an A′-algebra while A′ is an A-algebra.)
Then, v is n-integral over

(
A′,
(

Iρ A′
)

ρ∈N

)
. (Note that

(
Iρ A′

)
ρ∈N

is an ideal
semifiltration of A′, according to Lemma 2.18.)

Proof of Lemma 3.5. We know that v is n-integral over
(

A,
(

Iρ

)
ρ∈N

)
. Thus, by

Definition 2.3 (applied to B = B′ and u = v), there exists some (a0, a1, . . . , an) ∈
An+1 such that

n

∑
k=0

akvk = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).
Now, recall that A′ is an A-algebra. Define an (n + 1)-tuple (b0, b1, . . . , bn) ∈

(A′)n+1 by setting

(bi = ai · 1A′ for each i ∈ {0, 1, . . . , n}) .
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Then, we have bi = ai︸︷︷︸
∈In−i

· 1A′︸︷︷︸
∈A′

∈ In−i A′ for every i ∈ {0, 1, . . . , n}. Also,

n

∑
k=0

bk︸︷︷︸
=ak·1A′

(by the definition of bk)

vk =
n

∑
k=0

(ak · 1A′) vk︸ ︷︷ ︸
=akvk

=
n

∑
k=0

akvk = 0.

Furthermore, the definition of bn yields bn = an︸︷︷︸
=1

·1A′ = 1A′ = 1.

Thus, (b0, b1, . . . , bn) ∈ (A′)n+1 and
n

∑
k=0

bkvk = 0, bn = 1, and bi ∈ In−i A′ for every i ∈ {0, 1, . . . , n} .

Hence, by Definition 2.3 (applied to B′, A′,
(

Iρ A′
)

ρ∈N
, v and (b0, b1, . . . , bn) in-

stead of B, A,
(

Iρ

)
ρ∈N

, u and (a0, a1, . . . , an)), the element v is n-integral over(
A′,
(

Iρ A′
)

ρ∈N

)
. This proves Lemma 3.5.

Proof of Theorem 3.4. We have
(

Jρ

)
ρ∈N

= (Jτ)τ∈N. Hence, y is n-integral over(
A, (Jτ)τ∈N

)
(since y is n-integral over

(
A,
(

Jρ

)
ρ∈N

)
). Also, (Jτ)τ∈N is an ideal

semifiltration of A (since
(

Jρ

)
ρ∈N

is an ideal semifiltration of A, but we have(
Jρ

)
ρ∈N

= (Jτ)τ∈N). Thus,
(

Jτ A[I]

)
τ∈N

is an ideal semifiltration of A[I] (by

Lemma 2.18, applied to A[I] and (Jτ)τ∈N instead of A′ and
(

Iρ

)
ρ∈N

).

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]
.

We will abbreviate this A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

by A[I]. Thus, A[I] =

A
[(

Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y]. Hence, B [Y] is an A[I]-algebra (since B [Y]
is an A [Y]-algebra as explained in Definition 2.6).

Theorem 2.11 (applied to x and m instead of u and n) yields that xY is m-
integral over A

[(
Iρ

)
ρ∈N
∗Y
]

(since x is m-integral over
(

A,
(

Iρ

)
ρ∈N

)
). In other

words, xY is m-integral over A[I] (since A
[(

Iρ

)
ρ∈N
∗Y
]
= A[I]).

On the other hand, A[I] is an A-algebra, and B [Y] is an A[I]-algebra. Hence,
Lemma 3.5 (applied to A[I], B [Y], (Jτ)τ∈N and y instead of A′, B′,

(
Iρ

)
ρ∈N

and

v) yields that y is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
(since y is n-integral over(

A, (Jτ)τ∈N

)
).

Hence, Theorem 2.14 (applied to A[I], B [Y],
(

Jτ A[I]

)
τ∈N

, y, xY, n and m

instead of A, B,
(

Iρ

)
ρ∈N

, x, y, m and n, respectively) yields that y · xY is mn-

integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
(since xY is m-integral over A[I]).
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Since y · xY = xyY and mn = nm, this means that xyY is nm-integral over(
A[I],

(
Jτ A[I]

)
τ∈N

)
. Hence, Theorem 3.2 (b) (applied to xy and nm instead of

u and n) yields that xy is nm-integral over
(

A,
(

Iρ Jρ

)
ρ∈N

)
. This proves Theo-

rem 3.4.

4. Accelerating ideal semifiltrations

4.1. Definition of λ-acceleration

We start this section with an obvious observation:

Theorem 4.1. Let A be a ring. Let
(

Iρ

)
ρ∈N

be an ideal semifiltration of A. Let

λ ∈N. Then,
(

Iλρ

)
ρ∈N

is an ideal semifiltration of A.

Proof of Theorem 4.1. Since
(

Iρ

)
ρ∈N

is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

I0 = A;
Ia Ib ⊆ Ia+b for every a ∈N and b ∈N (19)

(by Definition 2.1).
Now, Iλρ is an ideal of A for every ρ ∈N (since

(
Iρ

)
ρ∈N

is a sequence of ideals

of A). Hence,
(

Iλρ

)
ρ∈N

is a sequence of ideals of A. Thus, in order to prove that(
Iλρ

)
ρ∈N

is an ideal semifiltration of A, it is enough to verify that it satisfies the
two conditions

Iλ·0 = A;
Iλa Iλb ⊆ Iλ(a+b) for every a ∈N and b ∈N.

But these two conditions are satisfied, since

Iλ·0 = I0 = A;
Iλa Iλb ⊆ Iλa+λb (by (19), applied to λa and λb instead of a and b)

= Iλ(a+b) (since λa + λb = λ (a + b)) for every a ∈N and b ∈N.

Hence,
(

Iλρ

)
ρ∈N

is an ideal semifiltration of A (by Definition 2.1, applied to(
Iλρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

). This proves Theorem 4.1.

I refer to the ideal semifiltration
(

Iλρ

)
ρ∈N

in Theorem 4.1 as the λ-acceleration

of the ideal semifiltration
(

Iρ

)
ρ∈N

.
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4.2. Half-reduction and reduction

Now, Theorem 3.2, itself a generalization of Theorem 2.11, can be generalized
once more:

Theorem 4.2. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

and
(

Jρ

)
ρ∈N

be two ideal semifiltrations of A. Let n ∈N. Let u ∈ B. Let λ ∈N.
We know that

(
Iλρ

)
ρ∈N

is an ideal semifiltration of A (according to Theo-
rem 4.1).

Hence,
(

Iλρ Jρ

)
ρ∈N

is an ideal semifiltration of A (according to Theorem 3.1

(b), applied to
(

Iλρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

).

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]
.

We will abbreviate this A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

by A[I].

(a) The sequence
(

Jτ A[I]

)
τ∈N

is an ideal semifiltration of A[I].

(b) The element u of B is n-integral over
(

A,
(

Iλρ Jρ

)
ρ∈N

)
if and

only if the element uYλ of the polynomial ring B [Y] is n-integral over(
A[I],

(
Jτ A[I]

)
τ∈N

)
. (Here, we are using the fact that B [Y] is an A[I]-algebra,

because A[I] = A
[(

Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y] and because B [Y] is an
A [Y]-algebra as explained in Definition 2.6.)

Proof of Theorem 4.2. (a) This is precisely the claim of Theorem 3.2 (a); thus, we
don’t need to prove it again.

(b) The definition of A[I] yields

A[I] = A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi (by Definition 2.7)

= ∑
`∈N

I`Y` (here we renamed i as ` in the sum) .

As a consequence of this chain of equalities, we have ∑
i∈N

IiYi = A[I] and ∑
`∈N

I`Y` =

A[I].
In order to verify Theorem 4.2 (b), we have to prove the following two lem-

mata:

Lemma E ′′: If u is n-integral over
(

A,
(

Iλρ Jρ

)
ρ∈N

)
, then uYλ is n-

integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
.

Lemma F ′′: If uYλ is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
, then u is

n-integral over
(

A,
(

Iλρ Jρ

)
ρ∈N

)
.
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[Proof of Lemma E ′′: Assume that u is n-integral over
(

A,
(

Iλρ Jρ

)
ρ∈N

)
. Thus,

by Definition 2.3 (applied to
(

Iλρ Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

), there exists some

(a0, a1, . . . , an) ∈ An+1 such that

n

∑
k=0

akuk = 0, an = 1, and ai ∈ Iλ(n−i) Jn−i for every i ∈ {0, 1, . . . , n} .

Consider this (a0, a1, . . . , an).
For each k ∈ {0, 1, . . . , n}, we have

ak ∈ Iλ(n−k) Jn−k︸︷︷︸
⊆A

(
since ai ∈ Iλ(n−i) Jn−i for every i ∈ {0, 1, . . . , n}

)
⊆ Iλ(n−k)A ⊆ Iλ(n−k)

(
since Iλ(n−k) is an ideal of A

)
and thus

ak︸︷︷︸
∈Iλ(n−k)

Yλ(n−k) ∈ Iλ(n−k)Y
λ(n−k) ⊆ ∑

i∈N

IiYi = A[I].

Thus, we can define an (n + 1)-tuple (b0, b1, . . . , bn) ∈
(

A[I]

)n+1
by(

bk = akYλ(n−k) for every k ∈ {0, 1, . . . , n}
)

.

Consider this (n + 1)-tuple. Then,

n

∑
k=0

bk︸︷︷︸
=akYλ(n−k)

(by the
definition of bk)

·
(

uYλ
)k

︸ ︷︷ ︸
=uk(Yλ)

k

=ukYλk

=
n

∑
k=0

ak Yλ(n−k)uk︸ ︷︷ ︸
=ukYλ(n−k)

Yλk =
n

∑
k=0

akuk Yλ(n−k)Yλk︸ ︷︷ ︸
=Yλ(n−k)+λk

=Yλn

=
n

∑
k=0

akukYλn = Yλn ·
n

∑
k=0

akuk

︸ ︷︷ ︸
=0

= 0,

Furthermore, the definition of bn yields

bn = an︸︷︷︸
=1

Yλ(n−n)︸ ︷︷ ︸
=Yλ·0=Y0=1

= 1.

Finally, the definition of bi yields

bi = ai︸︷︷︸
∈Iλ(n−i) Jn−i
=Jn−i Iλ(n−i)

Yλ(n−i) ∈ Jn−i Iλ(n−i)Y
λ(n−i)︸ ︷︷ ︸

⊆ ∑
`∈N

I`Y`

=A[I]

⊆ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .
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Altogether, we now know that (b0, b1, . . . , bn) ∈
(

A[I]

)n+1
and

n

∑
k=0

bk ·
(

uYλ
)k

= 0, bn = 1, and bi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .

Hence, by Definition 2.3 (applied to A[I], B [Y],
(

Jτ A[I]

)
τ∈N

, uYλ and (b0, b1, . . . , bn)

instead of A, B,
(

Iρ

)
ρ∈N

, u and (a0, a1, . . . , an)), the element uYλ is n-integral over(
A[I],

(
Jτ A[I]

)
τ∈N

)
. This proves Lemma E ′′.]

[Proof of Lemma F ′′: Assume that uYλ is n-integral over
(

A[I],
(

Jτ A[I]

)
τ∈N

)
.

Thus, by Definition 2.3 (applied to A[I], B [Y],
(

Jτ A[I]

)
τ∈N

, uYλ and (p0, p1, . . . , pn)

instead of A, B,
(

Iρ

)
ρ∈N

, u and (a0, a1, . . . , an)), there exists some (p0, p1, . . . , pn) ∈(
A[I]

)n+1
such that

n

∑
k=0

pk ·
(

uYλ
)k

= 0, pn = 1, and pi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n} .

Consider this (p0, p1, . . . , pn). For every k ∈ {0, 1, . . . , n}, we have

pk ∈ Jn−k A[I]

(
since pi ∈ Jn−i A[I] for every i ∈ {0, 1, . . . , n}

)
= Jn−k ∑

i∈N

IiYi

(
since A[I] = ∑

i∈N

IiYi

)
= ∑

i∈N

Jn−k Ii︸ ︷︷ ︸
=Ii Jn−k

Yi = ∑
i∈N

Ii Jn−kYi,

and thus there exists a sequence (pk,i)i∈N
∈ AN such that pk = ∑

i∈N

pk,iYi, such

that (pk,i ∈ Ii Jn−k for every i ∈N), and such that only finitely many i ∈ N sat-
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isfy pk,i 6= 0. Consider this sequence. Thus,

n

∑
k=0

pk︸︷︷︸
= ∑

i∈N

pk,iYi

·
(

uYλ
)k

︸ ︷︷ ︸
=uk(Yλ)

k

=ukYλk

=Yλkuk

=
n

∑
k=0

(
∑

i∈N

pk,iYi

)
·Yλkuk

(
since pk = ∑

i∈N

pk,iYi

)

=
n

∑
k=0

∑
i∈N

pk,i Yi ·Yλk︸ ︷︷ ︸
=Yi+λk

uk =
n

∑
k=0︸︷︷︸

= ∑
k∈{0,1,...,n}

∑
i∈N

pk,iYi+λkuk

= ∑
k∈{0,1,...,n}

∑
i∈N

pk,iYi+λkuk = ∑
(k,i)∈{0,1,...,n}×N

pk,iYi+λkuk

= ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,i Yi+λk︸ ︷︷ ︸
=Y`

(since i+λk=`)

uk

= ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,i Y`uk︸︷︷︸
=ukY`

= ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iukY`.

Comparing this with
n
∑

k=0
pk ·
(
uYλ

)k
= 0, we obtain ∑

`∈N
∑

(k,i)∈{0,1,...,n}×N;
i+λk=`

pk,iukY` =

0. In other words, the polynomial ∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iuk

︸ ︷︷ ︸
∈B

Y` ∈ B [Y] equals 0.

Hence, its coefficient before Yλn equals 0 as well. But its coefficient before Yλn

is ∑
(k,i)∈{0,1,...,n}×N;

i+λk=λn

pk,iuk. Comparing the preceding two sentences, we see that

∑
(k,i)∈{0,1,...,n}×N;

i+λk=λn

pk,iuk equals 0. Thus,

0 = ∑
(k,i)∈{0,1,...,n}×N;

i+λk=λn

pk,iuk = ∑
k∈{0,1,...,n}

∑
i∈N;

i+λk=λn

pk,iuk. (20)

But for each given k ∈ {0, 1, . . . , n}, we have n− k ∈N and thus λ (n− k) ∈N

(since λ ∈N) and thusi ∈N | i + λk = λn︸ ︷︷ ︸
⇐⇒ (i=λn−λk)

 =

i ∈N | i = λn− λk︸ ︷︷ ︸
=λ(n−k)


= {i ∈N | i = λ (n− k)} = {λ (n− k)}
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(since λ (n− k) ∈N) and therefore

∑
i∈N;

i+λk=λn

pk,iuk = ∑
i∈{λ(n−k)}

pk,iuk = pk,λ(n−k)u
k.

Hence, (20) becomes

0 = ∑
k∈{0,1,...,n}

∑
i∈N;

i+λk=λn

pk,iuk

︸ ︷︷ ︸
=pk,λ(n−k)uk

= ∑
k∈{0,1,...,n}

pk,λ(n−k)u
k. (21)

Recall that pk = ∑
i∈N

pk,iYi for every k ∈ {0, 1, . . . , n}. Applying this to k = n,

we find pn = ∑
i∈N

pn,iYi. Comparing this with pn = 1 = 1 ·Y0, we find

∑
i∈N

pn,iYi = 1 ·Y0 in A [Y] .

Hence, the coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is 1. But the

coefficient of the polynomial ∑
i∈N

pn,iYi ∈ A [Y] before Y0 is pn,0 (since pn,i ∈ A

for all i ∈N). Comparing the preceding two sentences, we see that pn,0 = 1.
Define an (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 by setting(

ak = pk,λ(n−k) for every k ∈ {0, 1, . . . , n}
)

.

Then, an = pn,λ(n−n) = pn,λ·0 = pn,0 = 1. Besides,

n

∑
k=0

ak︸︷︷︸
=pk,λ(n−k)

(by the definition
of ak)

uk =
n

∑
k=0

pk,λ(n−k)u
k = ∑

k∈{0,1,...,n}
pk,λ(n−k)u

k = 0 (by (21)) .

Finally, for every k ∈ {0, 1, . . . , n}, we have n− k ∈ N and therefore λ (n− k) ∈
N (since λ ∈ N) and thus ak = pk,λ(n−k) ∈ Iλ(n−k) Jn−k (since pk,i ∈ Ii Jn−k for
every i ∈ N). Renaming the variable k as i in this statement, we obtain the
following: For every i ∈ {0, 1, . . . , n}, we have ai ∈ Iλ(n−i) Jn−i.

Altogether, we now know that the (n + 1)-tuple (a0, a1, . . . , an) ∈ An+1 satisfies

n

∑
k=0

akuk = 0, an = 1, and ai ∈ Iλ(n−i) Jn−i for every i ∈ {0, 1, . . . , n} .

Thus, by Definition 2.3 (applied to
(

Iλρ Jρ

)
ρ∈N

instead of
(

Iρ

)
ρ∈N

), the element u

is n-integral over
(

A,
(

Iλρ Jρ

)
ρ∈N

)
. This proves Lemma F ′′.]
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Combining Lemma E ′′ and Lemma F ′′, we obtain that u is n-integral over(
A,
(

Iλρ Jρ

)
ρ∈N

)
if and only if uYλ is n-integral over

(
A[I],

(
Jτ A[I]

)
τ∈N

)
. This

proves Theorem 4.2 (b).

A particular case of Theorem 4.2 (b) is the following fact:

Theorem 4.3. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let n ∈N. Let u ∈ B. Let λ ∈N.

We know that
(

Iλρ

)
ρ∈N

is an ideal semifiltration of A (according to Theo-
rem 4.1).

Consider the polynomial ring A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

defined in Definition 2.7.
Then, the element u of B is n-integral over

(
A,
(

Iλρ

)
ρ∈N

)
if and only

if the element uYλ of the polynomial ring B [Y] is n-integral over the ring
A
[(

Iρ

)
ρ∈N
∗Y
]
. (Here, we are using the fact that B [Y] is an A

[(
Iρ

)
ρ∈N
∗Y
]
-

algebra, because A
[(

Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y] and because B [Y] is an
A [Y]-algebra as explained in Definition 2.6.)

Proof of Theorem 4.3. Theorem 3.1 (a) states that (A)ρ∈N is an ideal semifiltration
of A.

We have
(

Iλρ

)
ρ∈N

=
(

Iλρ A
)

ρ∈N
4.

We will abbreviate the A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]

of A [Y] by A[I]. Thus,

B [Y] is an A[I]-algebra (since B [Y] is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra).

It is easy to see that AA[I] = A[I]
5. Hence,

AA[I]︸ ︷︷ ︸
=A[I]


τ∈N

=
(

A[I]

)
τ∈N

=

(
A[I]

)
ρ∈N

.

We have the following five equivalences:

4Proof. We know that
(

Iλρ

)
ρ∈N

is an ideal semifiltration of A, thus a sequence of ideals of A.
In other words, for each ρ ∈N, the set Iλρ is an ideal of A.

Now, let ρ ∈N. Then, the set Iλρ is an ideal of A (as we have just seen). Hence, Iλρ A ⊆ Iλρ.
Combining this with Iλρ = Iλρ 1A︸︷︷︸

∈A

⊆ Iλρ A, we obtain Iλρ = Iλρ A.

Forget that we fixed ρ. We thus have shown that Iλρ = Iλρ A for each ρ ∈ N. In other
words,

(
Iλρ

)
ρ∈N

=
(

Iλρ A
)

ρ∈N
.

5Proof. We have AA[I] ⊆ A[I] (since A[I] is an A-algebra). Combining this with A[I] =
1A︸︷︷︸
∈A

·A[I] ⊆ AA[I], we obtain AA[I] = A[I], qed.
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• The element u of B is n-integral over
(

A,
(

Iλρ

)
ρ∈N

)
if and only if the ele-

ment u of B is n-integral over
(

A,
(

Iλρ A
)

ρ∈N

)
(since

(
Iλρ

)
ρ∈N

=
(

Iλρ A
)

ρ∈N
).

• The element u of B is n-integral over
(

A,
(

Iλρ A
)

ρ∈N

)
if and only if the ele-

ment uYλ of the polynomial ring B [Y] is n-integral over
(

A[I],
(

AA[I]

)
τ∈N

)
(according to Theorem 4.2 (b), applied to (A)ρ∈N instead of

(
Jρ

)
ρ∈N

).

• The element uYλ of the polynomial ring B [Y] is n-integral over
(

A[I],
(

AA[I]

)
τ∈N

)
if and only if the element uYλ of the polynomial ring B [Y] is n-integral over(

A[I],
(

A[I]

)
ρ∈N

)
(since

(
AA[I]

)
τ∈N

=
(

A[I]

)
ρ∈N

).

• The element uYλ of the polynomial ring B [Y] is n-integral over
(

A[I],
(

A[I]

)
ρ∈N

)
if and only if the element uYλ of the polynomial ring B [Y] is n-integral over
A[I] (by Theorem 3.3, applied to A[I], B [Y] and uYλ instead of A, B and u).

• The element uYλ of the polynomial ring B [Y] is n-integral over A[I] if and
only if the element uYλ of the polynomial ring B [Y] is n-integral over
A
[(

Iρ

)
ρ∈N
∗Y
]

(since A[I] = A
[(

Iρ

)
ρ∈N
∗Y
]
).

Combining these five equivalences, we obtain that the element u of B is n-
integral over

(
A,
(

Iλρ

)
ρ∈N

)
if and only if the element uYλ of the polynomial

ring B [Y] is n-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
. This proves Theorem 4.3.

Note that Theorem 2.11 is the particular case of Theorem 4.3 for λ = 1.
Finally we can generalize even Theorem 1.11:

Theorem 4.4. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an
ideal semifiltration of A. Let n ∈ N+. Let v ∈ B. Let a0, a1, . . . , an be n + 1

elements of A such that
n
∑

i=0
aivi = 0. Assume further that ai ∈ In−i for every

i ∈ {0, 1, . . . , n}.
Let k ∈ {0, 1, . . . , n}. We know that

(
I(n−k)ρ

)
ρ∈N

is an ideal semifiltration

of A (according to Theorem 4.1, applied to λ = n− k).

Then,
n−k
∑

i=0
ai+kvi is n-integral over

(
A,
(

I(n−k)ρ

)
ρ∈N

)
.

Proof of Theorem 4.4. Consider the polynomial ring A [Y] and its A-subalgebra
A
[(

Iρ

)
ρ∈N
∗Y
]

defined in Definition 2.7. Note that A
[(

Iρ

)
ρ∈N
∗Y
]

is a subring
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of A [Y]; hence, B [Y] is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra (because B [Y] is an A [Y]-

algebra as explained in Definition 2.6).
Definition 2.7 yields

A
[(

Iρ

)
ρ∈N
∗Y
]
= ∑

i∈N

IiYi = ∑
`∈N

I`Y` (here we renamed i as ` in the sum) .

Hence, ∑
`∈N

I`Y` = A
[(

Iρ

)
ρ∈N
∗Y
]
.

Define u ∈ B by

u =
n−k

∑
i=0

ai+kvi. (22)

In the ring B [Y], we have
n

∑
i=0

aiYn−i (vY)i︸ ︷︷ ︸
=viYi=Yivi

=
n

∑
i=0

ai Yn−iYi︸ ︷︷ ︸
=Yn

vi = Yn
n

∑
i=0

aivi

︸ ︷︷ ︸
=0

= 0.

Besides, every i ∈ {0, 1, . . . , n} satisfies

ai︸︷︷︸
∈In−i

(by assumption)

Yn−i ∈ In−iYn−i ⊆ ∑
`∈N

I`Y` = A
[(

Iρ

)
ρ∈N
∗Y
]

.

In other words, a0Yn−0, a1Yn−1, . . . , anYn−n are n+ 1 elements of A
[(

Iρ

)
ρ∈N
∗Y
]
.

Hence, Theorem 1.11 (applied to A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y], vY and aiYn−i instead of

A, B, v and ai) yields that
n−k
∑

i=0
ai+kYn−(i+k) (vY)i is n-integral over A

[(
Iρ

)
ρ∈N
∗Y
]
.

Since
n−k

∑
i=0

ai+kYn−(i+k) (vY)i︸ ︷︷ ︸
=viYi=Yivi

=
n−k

∑
i=0

ai+k Yn−(i+k)Yi︸ ︷︷ ︸
=Y(n−(i+k))+i=Yn−k

vi =
n−k

∑
i=0

ai+kvi

︸ ︷︷ ︸
=u

(by (22))

·Yn−k = uYn−k,

this means that uYn−k is n-integral over A
[(

Iρ

)
ρ∈N
∗Y
]
.

But Theorem 4.3 (applied to λ = n− k) yields that u is n-integral over(
A,
(

I(n−k)ρ

)
ρ∈N

)
if and only if uYn−k is n-integral over the ring A

[(
Iρ

)
ρ∈N
∗Y
]
.

Since we know that uYn−k is n-integral over the ring A
[(

Iρ

)
ρ∈N
∗Y
]
, this yields

that u is n-integral over
(

A,
(

I(n−k)ρ

)
ρ∈N

)
. In other words,

n−k
∑

i=0
ai+kvi is n-

integral over
(

A,
(

I(n−k)ρ

)
ρ∈N

)
(since u =

n−k
∑

i=0
ai+kvi). This proves Theorem 4.4.
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5. On a lemma by Lombardi

5.1. A lemma on products of powers

Now, we shall show a rather technical lemma:

Lemma 5.1. Let A be a ring. Let B be an A-algebra. Let x ∈ B. Let m ∈N and
n ∈ N. Let u ∈ B. Let µ ∈ N and ν ∈ N be such that µ + ν ∈ N+. Assume
that

un ∈
〈

u0, u1, . . . , un−1
〉

A
·
〈

x0, x1, . . . , xν
〉

A
(23)

and that

umxµ ∈
〈

u0, u1, . . . , um−1
〉

A
·
〈

x0, x1, . . . , xµ
〉

A

+
〈

u0, u1, . . . , um
〉

A
·
〈

x0, x1, . . . , xµ−1
〉

A
. (24)

Then, u is (nµ + mν)-integral over A.

This lemma can be seen as a variant of [6, Theorem 2]6. Indeed, the particular
case of [6, Theorem 2] when J = 0 can easily be obtained from Lemma 5.1
(applied to x and α instead of u and x).

Before we prove Lemma 5.1, we recall a basic mathematical principle:

Proposition 5.2. Let A (i) be an assertion for every i ∈N. If

every I ∈N satisfying (A (i) for every i ∈N such that i < I) satisfies A (I) ,

then
every i ∈N satisfies A (i) .

Proposition 5.2 is known as the principle of strong induction. By renaming i, I
and A as j, J and B, respectively, we can rewrite this principle as follows:

Proposition 5.3. Let B (j) be an assertion for every j ∈N. If

every J ∈N satisfying (B (j) for every j ∈N such that j < J) satisfies B (J) ,

then
every j ∈N satisfies B (j) .

Proof of Lemma 5.1. Define the set

S = ({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1})
∪ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1}) . (25)

6Caveat: The notion “integral over (A, J)” defined in [6] has nothing to do with our notion
“n-integral over

(
A, (In)n∈N

)
”.
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Then, |S| = nµ + mν 7. Also,

j < µ + ν for every (i, j) ∈ S (26)

8.

7Proof. We have (U ×V) ∩ (X×Y) = (U ∩ X) × (V ∩Y) for any four sets U, V, X and Y.
Applying this to U = {0, 1, . . . , n− 1}, V = {0, 1, . . . , µ− 1}, X = {0, 1, . . . , m− 1} and
Y = {µ, µ + 1, . . . , µ + ν− 1}, we find

({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}) ∩ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1})
= ({0, 1, . . . , n− 1} ∩ {0, 1, . . . , m− 1})× ({0, 1, . . . , µ− 1} ∩ {µ, µ + 1, . . . , µ + ν− 1})︸ ︷︷ ︸

=∅

= ({0, 1, . . . , n− 1} ∩ {0, 1, . . . , m− 1})×∅ = ∅.

Hence,

|({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}) ∪ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1})|
= |{0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}|︸ ︷︷ ︸

=|{0,1,...,n−1}|·|{0,1,...,µ−1}|

+ |{0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1}|︸ ︷︷ ︸
=|{0,1,...,m−1}|·|{µ,µ+1,...,µ+ν−1}|(

because any two finite sets U and V satisfying U ∩V = ∅
satisfy |U ∪V| = |U|+ |V|

)
= |{0, 1, . . . , n− 1}|︸ ︷︷ ︸

=n

· |{0, 1, . . . , µ− 1}|︸ ︷︷ ︸
=µ

+ |{0, 1, . . . , m− 1}|︸ ︷︷ ︸
=m

· |{µ, µ + 1, . . . , µ + ν− 1}|︸ ︷︷ ︸
=ν

= nµ + mν.

In view of

S = ({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}) ∪ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1}) ,

this rewrites as |S| = nµ + mν.
8In fact, ν ≥ 0 (since ν ∈N), so that µ + ν︸︷︷︸

≥0

−1 ≥ µ− 1. Hence, µ− 1 ≤ µ + ν− 1, so that

S =

{0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}︸ ︷︷ ︸
⊆{0,1,...,µ+ν−1}

(since µ−1≤µ+ν−1)



∪

{0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1}︸ ︷︷ ︸
⊆{0,1,...,µ+ν−1}

(since µ≥0)


⊆ ({0, 1, . . . , n− 1} × {0, 1, . . . , µ + ν− 1})

∪ ({0, 1, . . . , m− 1} × {0, 1, . . . , µ + ν− 1})
= ({0, 1, . . . , n− 1} ∪ {0, 1, . . . , m− 1})× {0, 1, . . . , µ + ν− 1}

(since (U × X) ∪ (V × X) = (U ∪V)× X for any three sets U, V and X). Hence, for every
(i, j) ∈ S, we have (i, j) ∈ S ⊆ ({0, 1, . . . , n− 1} ∪ {0, 1, . . . , m− 1}) × {0, 1, . . . , µ + ν− 1}
and thus j ∈ {0, 1, . . . , µ + ν− 1} and thus j < µ + ν. This proves (26).
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Let U be the A-submodule
〈
uixj | (i, j) ∈ S

〉
A of B. Then, U is an (nµ + mν)-

generated A-module (since |S| = nµ + mν). Besides, clearly,

uixj ∈ U for every (i, j) ∈ S (27)

(since U =
〈
uixj | (i, j) ∈ S

〉
A).

Now, we will show that

every i ∈N and j ∈N satisfying j < µ + ν satisfy uixj ∈ U. (28)

[Proof of (28). For every i ∈N, define an assertion A (i) by

A (i) =
(

every j ∈N satisfies
(

if j < µ + ν, then uixj ∈ U
))

.

Let us now show that

every I ∈N satisfying (A (i) for every i ∈N such that i < I) satisfies A (I) .
(29)

[Proof of (29). Let I ∈N be such that

(A (i) for every i ∈N such that i < I) . (30)

We must prove that A (I) holds.
The definition of the assertion A (I) yields

A (I) =
(

every j ∈N satisfies
(

if j < µ + ν, then uI xj ∈ U
))

.

For every j ∈N, define an assertion B (j) by

B (j) =
(

if j < µ + ν, then uI xj ∈ U
)

. (31)

Let us now show that

every J ∈N satisfying (B (j) for every j ∈N such that j < J) satisfies B (J) .
(32)

[Proof of (32). Let J ∈N be such that

(B (j) for every j ∈N such that j < J) . (33)

We must prove that B (J) holds.
The definition of the assertion B (J) yields

B (J) =
(

if J < µ + ν, then uI x J ∈ U
)

.

Assume that J < µ + ν. Then, for every j ∈ N such that j < J, the assertion
B (j) holds (due to (33)). In other words, for every j ∈ N such that j < J, we
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have
(
if j < µ + ν, then uI xj ∈ U

)
(because this is precisely what the assertion

B (j) says) and therefore uI xj ∈ U (since j < µ + ν automatically holds9). Thus
we have shown that

uI xj ∈ U for every j ∈N such that j < J. (34)

In other words,
uI xj ∈ U for every j ∈ {0, 1, . . . , J − 1} (35)

(since the numbers j ∈ {0, 1, . . . , J − 1} are precisely the numbers j ∈ N such
that j < J). Hence,

∑
j∈{0,1,...,J−1}

ajuI xj ∈ U (36)

for every
(
aj
)

j∈{0,1,...,J−1} ∈ A{0,1,...,J−1}

(since U is an A-module, and thus is closed under A-linear combination).
Also, if i ∈ N satisfies i < I, then the assertion A (i) holds (by (30)). In view

of the definition of A (i), we can restate this as follows: If i ∈ N satisfies i < I,
then every j ∈N satisfies

(
if j < µ + ν, then uixj ∈ U

)
. In other words,

uixj ∈ U for every i ∈N and j ∈N such that i < I and j < µ + ν. (37)

Hence,

uixj ∈ U for every (i, j) ∈ {0, 1, . . . , I − 1} × {0, 1, . . . , µ + ν− 1} (38)

(because for every (i, j) ∈ {0, 1, . . . , I − 1} × {0, 1, . . . , µ + ν− 1}, we have i < I
(since i ∈ {0, 1, . . . , I − 1}) and j < µ + ν (since j ∈ {0, 1, . . . , µ + ν− 1}) and
therefore uixj ∈ U (by (37))). Hence,

∑
(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1}

ai,juixj ∈ U (39)

for every
(
ai,j
)
(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1} ∈ A{0,1,...,I−1}×{0,1,...,µ+ν−1}

(since U is an A-module, and thus is closed under A-linear combination).
Now,〈

uI
〉

A
·
〈

x0, x1, . . . , x J−1
〉

A︸ ︷︷ ︸
=〈xj | j∈{0,1,...,J−1}〉A

=
〈

uI
〉

A
·
〈

xj | j ∈ {0, 1, . . . , J − 1}
〉

A
=
〈

uI xj | j ∈ {0, 1, . . . , J − 1}
〉

A

=

 ∑
j∈{0,1,...,J−1}

ajuI xj |
(
aj
)

j∈{0,1,...,J−1} ∈ A{0,1,...,J−1}

 ⊆ U (40)

9because j < J < µ + ν
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(by (36)).
Furthermore,〈

u0, u1, . . . , uI−1
〉

A︸ ︷︷ ︸
=〈ui | i∈{0,1,...,I−1}〉A

·
〈

x0, x1, . . . , xµ+ν−1
〉

A︸ ︷︷ ︸
=〈xj | j∈{0,1,...,µ+ν−1}〉A

=
〈

ui | i ∈ {0, 1, . . . , I − 1}
〉

A
·
〈

xj | j ∈ {0, 1, . . . , µ + ν− 1}
〉

A

=
〈

uixj | (i, j) ∈ {0, 1, . . . , I − 1} × {0, 1, . . . , µ + ν− 1}
〉

A

=

 ∑
(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1}

ai,juixj

|
(
ai,j
)
(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1} ∈ A{0,1,...,I−1}×{0,1,...,µ+ν−1}

}
⊆ U (41)

(by (39)).
From J < µ + ν, we obtain J ≤ µ + ν− 1 (since J and µ + ν are integers). We

are now going to show that uI x J ∈ U.
Trivially, we have10

(I ≥ m ∧ J ≥ µ) ∨ (I < m ∧ J ≥ µ) ∨ (I ≥ n ∧ J < µ) ∨ (I < n ∧ J < µ)

11. Hence, one of the following four cases must hold:
Case 1: We have I ≥ m ∧ J ≥ µ.
Case 2: We have I < m ∧ J ≥ µ.
Case 3: We have I ≥ n ∧ J < µ.
Case 4: We have I < n ∧ J < µ.
Let us first consider Case 1. In this case, we have I ≥ m and J ≥ µ. Hence,

10Here, an expression like “I ≥ m ∧ J ≥ µ” should be read as “(I ≥ m) ∧ (J ≥ µ)”.
11since

(I ≥ m ∧ J ≥ µ) ∨ (I < m ∧ J ≥ µ)︸ ︷︷ ︸
= (I≥m ∨ I<m) ∧ (J≥µ)

= (J≥µ)
(since (I≥m ∨ I<m) is true)

∨ (I ≥ n ∧ J < µ) ∨ (I < n ∧ J < µ)︸ ︷︷ ︸
= (I≥n ∨ I<n) ∧ (J<µ)

= (J<µ)
(since (I≥n ∨ I<n) is true)

= (J ≥ µ) ∨ (J < µ) = true
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I −m ≥ 0 (since I ≥ m) and J − µ ≥ 0 (since J ≥ µ). Thus,

uI︸︷︷︸
=uI−mum

(since I≥m)

x J︸︷︷︸
=xµx J−µ

(since J≥µ)

= uI−m umxµ︸ ︷︷ ︸
∈〈u0,u1,...,um−1〉A·〈x0,x1,...,xµ〉A+〈u0,u1,...,um〉A·〈x0,x1,...,xµ−1〉A

(by (24))

x J−µ

∈ uI−m
(〈

u0, u1, . . . , um−1
〉

A
·
〈

x0, x1, . . . , xµ
〉

A

+
〈

u0, u1, . . . , um
〉

A
·
〈

x0, x1, . . . , xµ−1
〉

A

)
x J−µ

= uI−m
〈

u0, u1, . . . , um−1
〉

A︸ ︷︷ ︸
=〈uI−mu0,uI−mu1,...,uI−mum−1〉A

=〈u(I−m)+0,u(I−m)+1,...,u(I−m)+(m−1)〉A
=〈uI−m,uI−m+1,...,uI−1〉A
⊆〈u0,u1,...,uI−1〉A

(since {I−m,I−m+1,...,I−1}⊆{0,1,...,I−1}
(since I−m≥0))

·
〈

x0, x1, . . . , xµ
〉

A
x J−µ︸ ︷︷ ︸

=〈x0x J−µ,x1x J−µ,...,xµx J−µ〉A
=〈x0+(J−µ),x1+(J−µ),...,xµ+(J−µ)〉A

=〈x J−µ,x J−µ+1,...,x J〉A
⊆〈x0,x1,...,xµ+ν−1〉A

(since {J−µ,J−µ+1,...,J}⊆{0,1,...,µ+ν−1}
(since J−µ≥0 and J≤µ+ν−1))

+ uI−m
〈

u0, u1, . . . , um
〉

A︸ ︷︷ ︸
=〈uI−mu0,uI−mu1,...,uI−mum〉A

=〈u(I−m)+0,u(I−m)+1,...,u(I−m)+m〉A
=〈uI−m,uI−m+1,...,uI〉A
⊆〈u0,u1,...,uI〉A

(since {I−m,I−m+1,...,I}⊆{0,1,...,I}
(since I−m≥0))

·
〈

x0, x1, . . . , xµ−1
〉

A
x J−µ︸ ︷︷ ︸

=〈x0x J−µ,x1x J−µ,...,xµ−1x J−µ〉A
=〈x0+(J−µ),x1+(J−µ),...,x(µ−1)+(J−µ)〉A

=〈x J−µ,x J−µ+1,...,x J−1〉A
⊆〈x0,x1,...,x J−1〉A

(since {J−µ,J−µ+1,...,J−1}⊆{0,1,...,J−1}
(since J−µ≥0))
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⊆
〈

u0, u1, . . . , uI−1
〉

A
·
〈

x0, x1, . . . , xµ+ν−1
〉

A︸ ︷︷ ︸
⊆U

(by (41))

+
〈

u0, u1, . . . , uI
〉

A︸ ︷︷ ︸
=〈u0,u1,...,uI−1〉A+〈uI〉A

·
〈

x0, x1, . . . , x J−1
〉

A

⊆ U +
(〈

u0, u1, . . . , uI−1
〉

A
+
〈

uI
〉

A

)
·
〈

x0, x1, . . . , x J−1
〉

A︸ ︷︷ ︸
=〈u0,u1,...,uI−1〉A·〈x0,x1,...,x J−1〉A+〈uI〉A·〈x0,x1,...,x J−1〉A

= U +
〈

u0, u1, . . . , uI−1
〉

A
·

〈
x0, x1, . . . , x J−1

〉
A︸ ︷︷ ︸

⊆〈x0,x1,...,xµ+ν−1〉A
(since {0,1,...,J−1}⊆{0,1,...,µ+ν−1}

(since J−1≤J≤µ+ν−1))

+
〈

uI
〉

A
·
〈

x0, x1, . . . , x J−1
〉

A

⊆ U +
〈

u0, u1, . . . , uI−1
〉

A
·
〈

x0, x1, . . . , xµ+ν−1
〉

A︸ ︷︷ ︸
⊆U

(by (41))

+
〈

uI
〉

A
·
〈

x0, x1, . . . , x J−1
〉

A︸ ︷︷ ︸
⊆U

(by (40))

⊆ U + U + U ⊆ U (since U is an A-module) .

Thus, we have proved that uI x J ∈ U holds in Case 1.
Let us next consider Case 2. In this case, we have I < m and J ≥ µ. Thus,

I ∈ {0, 1, . . . , m− 1} (since I < m and I ∈ N) and J ∈ {µ, µ + 1, . . . , µ + ν− 1}
(since J ≥ µ and J < µ + ν). Thus,

(I, J) ∈ {0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1}
⊆ ({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1})

∪ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1})
= S (by (25)) .

Hence, uI x J ∈ U (by (27), applied to I and J instead of i and j). Thus, we have
proved that uI x J ∈ U holds in Case 2.

Let us next consider Case 3. In this case, we have I ≥ n and J < µ. Hence,
I − n ≥ 0 (since I ≥ n) and J + ν ≤ µ + ν− 1 (since J︸︷︷︸

<µ

+ν < µ + ν, and since
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J + ν and µ + ν are integers). Thus,

uI︸︷︷︸
=uI−nun

(since I≥n)

x J = uI−n un︸︷︷︸
∈〈u0,u1,...,un−1〉A·〈x0,x1,...,xν〉A

(by (23))

x J

∈ uI−n
〈

u0, u1, . . . , un−1
〉

A︸ ︷︷ ︸
=〈uI−nu0,uI−nu1,...,uI−nun−1〉A

=〈u(I−n)+0,u(I−n)+1,...,u(I−n)+(n−1)〉A
=〈uI−n,uI−n+1,...,uI−1〉A
⊆〈u0,u1,...,uI−1〉A

(since {I−n,I−n+1,...,I−1}⊆{0,1,...,I−1}
(since I−n≥0))

·
〈

x0, x1, . . . , xν
〉

A
x J︸ ︷︷ ︸

=〈x0x J ,x1x J ,...,xνx J〉A
=〈x0+J ,x1+J ,...,xν+J〉A
=〈x J ,x J+1,...,x J+ν〉A
⊆〈x0,x1,...,xµ+ν−1〉A

(since {J,J+1,...,J+ν}⊆{0,1,...,µ+ν−1}
(since J≥0 and J+ν≤µ+ν−1))

⊆
〈

u0, u1, . . . , uI−1
〉

A
·
〈

x0, x1, . . . , xµ+ν−1
〉

A
⊆ U (by (41)) .

Thus, we have proved that uI x J ∈ U holds in Case 3.
Finally, let us consider Case 4. In this case, we have I < n and J < µ. Thus,

I ∈ {0, 1, . . . , n− 1} (since I < n and I ∈ N) and J ∈ {0, 1, . . . , µ− 1} (since
J < µ and J ∈N). Thus,

(I, J) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1}
⊆ ({0, 1, . . . , n− 1} × {0, 1, . . . , µ− 1})

∪ ({0, 1, . . . , m− 1} × {µ, µ + 1, . . . , µ + ν− 1})
= S (by (25)) ,

so that uI x J ∈ U (by (27), applied to I and J instead of i and j). Thus, we have
proved that uI x J ∈ U holds in Case 4.

Therefore, we have proved that uI x J ∈ U holds in each of the four Cases 1, 2,
3 and 4. Hence, uI x J ∈ U always holds.

Now, forget our assumption that J < µ + ν. Hence, we have proved that if
J < µ + ν, then uI x J ∈ U. In other words, we have proved the assertion B (J)
(because B (J) =

(
if J < µ + ν, then uI x J ∈ U

)
).

Thus, we have proved (32).]
Hence, Proposition 5.3 yields that

every j ∈N satisfies B (j) .

In other words,

every j ∈N satisfies
(

if j < µ + ν, then uI xj ∈ U
)

(because of (31)). In other words, the assertion A (I) holds (because
A (I) =

(
every j ∈N satisfies

(
if j < µ + ν, then uI xj ∈ U

))
).

Thus, we have proved (29).]
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Hence, Proposition 5.2 yields that

every i ∈N satisfies A (i) .

In other words,

every i ∈N satisfies
(

every j ∈N satisfies
(

if j < µ + ν, then uixj ∈ U
))

(since A (i) =
(
every j ∈N satisfies

(
if j < µ + ν, then uixj ∈ U

))
). This is equiv-

alent to (28). Thus, (28) is proven.]
We have 0 < µ + ν (since µ + ν ∈ N+). Thus, we can apply (28) to i = 0 and

j = 0. As a result, we obtain u0x0 ∈ U. In view of u0︸︷︷︸
=1

x0︸︷︷︸
=1

= 1, this rewrites as

1 ∈ U.
Furthermore, if i ∈N and j ∈N satisfy j < µ + ν, then

u · ui︸ ︷︷ ︸
=ui+1

xj = ui+1xj ∈ U

(by (28) (applied to i + 1 instead of i)). Hence,

u · uixj ∈ U for every (i, j) ∈ S, (42)

because every (i, j) ∈ S satisfies i ∈N and j ∈N and j < µ + ν (by (26)). Hence,
∑

(i,j)∈S
ai,j u · uixj︸ ︷︷ ︸

∈U
(by (42))

∈ U for every
(
ai,j
)
(i,j)∈S ∈ AS (since U is an A-module and thus

is closed under A-linear combination).
Now, from U =

〈
uixj | (i, j) ∈ S

〉
A, we obtain

uU = u
〈

uixj | (i, j) ∈ S
〉

A
=
〈

u · uixj | (i, j) ∈ S
〉

A

=

 ∑
(i,j)∈S

ai,ju · uixj |
(
ai,j
)
(i,j)∈S ∈ AS

 ⊆ U

(because ∑
(i,j)∈S

ai,ju · uixj ∈ U for every
(
ai,j
)
(i,j)∈S ∈ AS).

Altogether, U is an (nµ + mν)-generated A-submodule of B such that 1 ∈ U
and uU ⊆ U. Thus, u ∈ B satisfies Assertion C of Theorem 1.1 with n replaced by
nµ + mν. Hence, u ∈ B satisfies the four equivalent assertions A, B, C and D of
Theorem 1.1 with n replaced by nµ + mν. Consequently, u is (nµ + mν)-integral
over A. This proves Lemma 5.1.

We record a weaker variant of Lemma 5.1:
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Lemma 5.4. Let A be a ring. Let B be an A-algebra. Let x ∈ B and y ∈ B be
such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Let µ ∈ N and ν ∈ N be
such that µ + ν ∈N+. Assume that

un ∈
〈

u0, u1, . . . , un−1
〉

A
·
〈

x0, x1, . . . , xν
〉

A
(43)

and that

um ∈
〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A

+
〈

u0, u1, . . . , um
〉

A
·
〈

y1, y2, . . . , yµ
〉

A
. (44)

Then, u is (nµ + mν)-integral over A.

Proof of Lemma 5.4. Fix p ∈N.
Let i ∈ {p, p + 1, . . . , µ}. Thus, i ≥ p and i ≤ µ. From i ∈ {p, p + 1, . . . , µ}, we

obtain µ− i ∈ {0, 1, . . . , µ− p}, so that {µ− i} ⊆ {0, 1, . . . , µ− p}. Also, i ≤ µ,
thus µ− i ≥ 0, so that

yi xµ︸︷︷︸
=xµ−ixi

= yixµ−ixi = xiyi︸︷︷︸
=(xy)i∈A

(since xy∈A)

xµ−i ∈ Axµ−i =
〈

xµ−i
〉

A
(45)

⊆
〈

x0, x1, . . . , xµ−p
〉

A
(46)

(since {µ− i} ⊆ {0, 1, . . . , µ− p}).
Now, forget that we fixed i. We thus have proven (46) for each i ∈ {p, p + 1, . . . , µ}.

Hence, every (ai)i∈{p,p+1,...,µ} ∈ A{p,p+1,...,µ} satisfies

∑
i∈{p,p+1,...,µ}

ai yixµ︸︷︷︸
∈〈x0,x1,...,xµ−p〉A

(by (46))

∈ ∑
i∈{p,p+1,...,µ}

ai

〈
x0, x1, . . . , xµ−p

〉
A
⊆
〈

x0, x1, . . . , xµ−p
〉

A

(because
〈

x0, x1, . . . , xµ−p〉
A is an A-module). In other words, ∑

i∈{p,p+1,...,µ}
aiyixµ | (ai)i∈{p,p+1,...,µ} ∈ A{p,p+1,...,µ}

 ⊆ 〈x0, x1, . . . , xµ−p
〉

A
.

(47)
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Now,〈
yp, yp+1, . . . , yµ

〉
A︸ ︷︷ ︸

=〈yi | i∈{p,p+1,...,µ}〉A

xµ =
〈

yi | i ∈ {p, p + 1, . . . , µ}
〉

A
xµ

=
〈

yixµ | i ∈ {p, p + 1, . . . , µ}
〉

A

=

 ∑
i∈{p,p+1,...,µ}

aiyixµ | (ai)i∈{p,p+1,...,µ} ∈ A{p,p+1,...,µ}


⊆
〈

x0, x1, . . . , xµ−p
〉

A
(48)

(by (47)).
Forget that we fixed p. We thus have proven (48) for each p ∈ N. Applying

(48) to p = 0, we find〈
y0, y1, . . . , yµ

〉
A

xµ ⊆
〈

x0, x1, . . . , xµ−0
〉

A
=
〈

x0, x1, . . . , xµ
〉

A
(49)

(since µ− 0 = µ). Applying (48) to p = 1, we find〈
y1, y2, . . . , yµ

〉
A

xµ ⊆
〈

x0, x1, . . . , xµ−1
〉

A
. (50)

Now, (44) yields

umxµ

∈
(〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A
+
〈

u0, u1, . . . , um
〉

A
·
〈

y1, y2, . . . , yµ
〉

A

)
xµ

=
〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A
xµ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ〉A
(by (49))

+
〈

u0, u1, . . . , um
〉

A
·
〈

y1, y2, . . . , yµ
〉

A
xµ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ−1〉A
(by (50))

⊆
〈

u0, u1, . . . , um−1
〉

A
·
〈

x0, x1, . . . , xµ
〉

A
+
〈

u0, u1, . . . , um
〉

A
·
〈

x0, x1, . . . , xµ−1
〉

A
.

In other words, (24) holds. Also, (23) holds (because (43) holds, and because (23)
is the same as (43)). Thus, Lemma 5.1 yields that u is (nµ + mν)-integral over A.
This proves Lemma 5.4.

We now come to something trivial:

Lemma 5.5. Let A be a ring. Let B be an A-algebra. Let x ∈ B. Let n ∈N. Let
u ∈ B. Assume that u is n-integral over A [x]. Then, there exists some ν ∈N+

such that
un ∈

〈
u0, u1, . . . , un−1

〉
A
·
〈

x0, x1, . . . , xν
〉

A
.
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Proof of Lemma 5.5. There exists a monic polynomial P ∈ (A [x]) [X] with deg P =
n and P (u) = 0 (since u is n-integral over A [x]). Consider this P. Since
P ∈ (A [x]) [X] is a monic polynomial with deg P = n, there exist elements

α0, α1, . . . , αn−1 of A [x] such that P (X) = Xn +
n−1
∑

i=0
αiXi. Consider these α0, α1, . . . , αn−1.

Substituting u for X in the equality P (X) = Xn +
n−1
∑

i=0
αiXi, we find P (u) =

un +
n−1
∑

i=0
αiui. Comparing this with P (u) = 0, we obtain un +

n−1
∑

i=0
αiui = 0.

Hence, un = −
n−1
∑

i=0
αiui.

For every i ∈ {0, 1, . . . , n− 1}, we have αi ∈ A [x], and thus there exist some

νi ∈ N and some
(

βi,0, βi,1, . . . , βi,νi

)
∈ Aνi+1 such that αi =

νi
∑

k=0
βi,kxk. Consider

these νi and
(

βi,0, βi,1, . . . , βi,νi

)
. Hence, for every i ∈ {0, 1, . . . , n− 1}, we have

αi =
νi

∑
k=0

βi,kxk ∈
〈

x0, x1, . . . , xνi
〉

A
. (51)

Let ν = max {ν0, ν1, . . . , νn−1, 1}. Thus, ν is an integer satisfying ν ≥ 1
(since 1 ∈ {ν0, ν1, . . . , νn−1, 1}); hence, ν ∈ N+. Furthermore, for every i ∈
{0, 1, . . . , n− 1}, we have νi ∈ {ν0, ν1, . . . , νn−1} ⊆ {ν0, ν1, . . . , νn−1, 1} and thus
νi ≤ max {ν0, ν1, . . . , νn−1, 1} = ν, hence {0, 1, . . . , νi} ⊆ {0, 1, . . . , ν}, and thus

αi ∈
〈

x0, x1, . . . , xνi
〉

A
(by (51))

⊆
〈

x0, x1, . . . , xν
〉

A
(52)

(since {0, 1, . . . , νi} ⊆ {0, 1, . . . , ν}). Therefore,

un = −
n−1

∑
i=0

αiui = −
n−1

∑
i=0

ui︸︷︷︸
∈〈u0,u1,...,un−1〉A

(since i∈{0,1,...,n−1})

αi︸︷︷︸
∈〈x0,x1,...,xν〉A

(by (52))

∈ −
n−1

∑
i=0

〈
u0, u1, . . . , un−1

〉
A
·
〈

x0, x1, . . . , xν
〉

A

⊆
〈

u0, u1, . . . , un−1
〉

A
·
〈

x0, x1, . . . , xν
〉

A

(since
〈
u0, u1, . . . , un−1〉

A ·
〈

x0, x1, . . . , xν
〉

A is an A-module). This proves Lemma 5.5.

5.2. Integrality over A [x] and over A [y] implies integrality
over A [xy]

A consequence of Lemma 5.4 and Lemma 5.5 is the following theorem:
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Theorem 5.6. Let A be a ring. Let B be an A-algebra. Let x ∈ B and y ∈ B
be such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u
is n-integral over A [x], and that u is m-integral over A [y]. Then, there exists
some λ ∈N such that u is λ-integral over A.

Proof of Theorem 5.6. Since u is n-integral over A [x], Lemma 5.5 yields that there
exists some ν ∈N+ such that

un ∈
〈

u0, u1, . . . , un−1
〉

A
·
〈

x0, x1, . . . , xν
〉

A
.

In other words, there exists some ν ∈N+ such that (43) holds. Consider this ν.
Since u is m-integral over A [y], Lemma 5.5 (with x, n and ν replaced by y, m

and µ) yields that there exists some µ ∈N+ such that

um ∈
〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A
.

Consider this µ. Hence,

um ∈
〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A

⊆
〈

u0, u1, . . . , um−1
〉

A
·
〈

y0, y1, . . . , yµ
〉

A
+
〈

u0, u1, . . . , um
〉

A
·
〈

y1, y2, . . . , yµ
〉

A
.

In other words, (44) holds. From µ ∈N+ and ν ∈N+, we obtain µ + ν ∈N+.
Since both (43) and (44) hold, Lemma 5.4 yields that u is (nµ + mν)-integral

over A. Thus, there exists some λ ∈ N such that u is λ-integral over A (namely,
λ = nµ + mν). This proves Theorem 5.6.

We record a generalization of Theorem 5.6 (which will turn out to be easily
seen equivalent to Theorem 5.6):

Theorem 5.7. Let A be a ring. Let B be an A-algebra. Let x ∈ B and y ∈ B.
Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u is n-integral over A [x], and
that u is m-integral over A [y]. Then, there exists some λ ∈ N such that u is
λ-integral over A [xy].

Proof of Theorem 5.7. Let C denote the A-subalgebra A [xy] of A. Thus, C =
A [xy] is an A-subalgebra of B, hence a subring of B. Thus, C [x] is a C-subalgebra
of B, hence a subring of B. Note that C = A [xy] = A [yx] (since xy = yx).

Furthermore, A [x] is a subring of C [x] 12. Thus, C [x] is an A [x]-algebra.
Also, B is a C [x]-algebra (since C [x] is a subring of B). Since u is n-integral over
A [x], Lemma 2.15 (applied to B, C [x], A [x] and u instead of B′, A′, A and v)

12Proof. Both A [x] and C [x] are subrings of B.
Now, let γ ∈ A [x]. Thus, there exist some p ∈ N and some elements a0, a1, . . . , ap of A

such that γ =
p
∑

i=0
aixi. Consider this p and these a0, a1, . . . , ap. For each i ∈ {0, 1, . . . , p}, we
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yields that u is n-integral over C [x]. The same argument (but applied to y, x,
n and m instead of x, y, m and n) shows that u is m-integral over C [y] (since
C = A [yx]).

Now, B is a C-algebra (since C is a subring of B) and we have xy ∈ A [xy] = C.
Hence, Theorem 5.6 (applied to C instead of A) yields that there exists some
λ ∈ N such that u is λ-integral over C (because u is n-integral over C [x], and
because u is m-integral over C [y]). In other words, there exists some λ ∈N such
that u is λ-integral over A [xy] (since C = A [xy]). This proves Theorem 5.7.

5.3. Generalization to ideal semifiltrations

Theorem 5.7 has a “relative version”:

Theorem 5.8. Let A be a ring. Let B be an A-algebra. Let
(

Iρ

)
ρ∈N

be an ideal
semifiltration of A. Let x ∈ B and y ∈ B.

(a) Then,
(

Iρ A [x]
)

ρ∈N
is an ideal semifiltration of A [x]. Besides,(

Iρ A [y]
)

ρ∈N
is an ideal semifiltration of A [y]. Besides,

(
Iρ A [xy]

)
ρ∈N

is an
ideal semifiltration of A [xy].

(b) Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u
is n-integral over

(
A [x] ,

(
Iρ A [x]

)
ρ∈N

)
, and that u is m-integral over(

A [y] ,
(

Iρ A [y]
)

ρ∈N

)
. Then, there exists some λ ∈N such that u is λ-integral

over
(

A [xy] ,
(

Iρ A [xy]
)

ρ∈N

)
.

Our proof of this theorem will rely on a lemma:

Lemma 5.9. Let A be a ring. Let B be an A-algebra. Let v ∈ B. Let
(

Iρ

)
ρ∈N

be an ideal semifiltration of A. Lemma 2.18 (applied to A′ = A [v]) yields that(
Iρ A [v]

)
ρ∈N

is an ideal semifiltration of A [v]. Consider the polynomial ring

A [Y] and its A-subalgebra A
[(

Iρ

)
ρ∈N
∗Y
]
. We know that A

[(
Iρ

)
ρ∈N
∗Y
]

is
a subring of A [Y], and (as explained in Definition 2.6) the polynomial ring
(A [v]) [Y] is an A [Y]-algebra (since A [v] is an A-algebra). Hence, (A [v]) [Y]

have ai︸︷︷︸
∈A

·1B ∈ A · 1B ⊆ A [xy] = C (since C = A [xy]). Hence,
p
∑

i=0
(ai · 1B) xi ∈ C [x]. In view

of
p

∑
i=0

(ai · 1B) xi =
p

∑
i=0

ai · 1Bxi︸︷︷︸
=xi

=
p

∑
i=0

aixi = γ

(
since γ =

p

∑
i=0

aixi

)
,

this rewrites as γ ∈ C [x].
Forget that we fixed γ. We thus have shown that γ ∈ C [x] for each γ ∈ A [x]. In other

words, A [x] ⊆ C [x]. Hence, A [x] is a subring of C [x] (since both A [x] and C [x] are subrings
of B).
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is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra (since A

[(
Iρ

)
ρ∈N
∗Y
]

is a subring of A [Y]). On

the other hand, (A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]
⊆ (A [v]) [Y].

(a) We have

(A [v])
[(

Iρ A [v]
)

ρ∈N
∗Y
]
=
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v] . (53)

(b) Let u ∈ B. Let n ∈ N. Then, the element u of B is n-integral over(
A [v] ,

(
Iρ A [v]

)
ρ∈N

)
if and only if the element uY of the polynomial ring

B [Y] is n-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v].

Proof of Lemma 5.9. (a) We have proven Lemma 5.9 (a) during the proof of Theo-
rem 2.16 (b).

(b) The ring B is an A [v]-algebra (since A [v] is a subring of B). Hence,
Theorem 2.11 (applied to A [v] and

(
Iρ A [v]

)
ρ∈N

instead of A and
(

Iρ

)
ρ∈N

)

yields that the element u of B is n-integral over
(

A [v] ,
(

Iρ A [v]
)

ρ∈N

)
if and

only if the element uY of the polynomial ring B [Y] is n-integral over the ring
(A [v])

[(
Iρ A [v]

)
ρ∈N
∗Y
]
. In view of (53), this rewrites as follows: The element

u of B is n-integral over
(

A [v] ,
(

Iρ A [v]
)

ρ∈N

)
if and only if the element uY of

the polynomial ring B [Y] is n-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[v]. This
proves Lemma 5.9 (b).

Proof of Theorem 5.8. (a) Since
(

Iρ

)
ρ∈N

is an ideal semifiltration of A, Lemma 2.18

(applied to A′ = A [x]) yields that
(

Iρ A [x]
)

ρ∈N
is an ideal semifiltration of A [x].

Since
(

Iρ

)
ρ∈N

is an ideal semifiltration of A, Lemma 2.18 (applied to A′ =
A [y]) yields that

(
Iρ A [y]

)
ρ∈N

is an ideal semifiltration of A [y].
Since

(
Iρ

)
ρ∈N

is an ideal semifiltration of A, Lemma 2.18 (applied to A′ =
A [xy]) yields that

(
Iρ A [xy]

)
ρ∈N

is an ideal semifiltration of A [xy].
Thus, Theorem 5.8 (a) is proven.
(b) For every v ∈ B, the family

(
Iρ A [v]

)
ρ∈N

is an ideal semifiltration of A [v]
(by Lemma 2.18, applied to A′ = A [v]), and thus we can consider the poly-
nomial ring (A [v]) [Y] and its A [v]-subalgebra (A [v])

[(
Iρ A [v]

)
ρ∈N
∗Y
]
. For

every v ∈ B, the polynomial ring B [Y] is an (A [v]) [Y]-algebra (as explained
in Definition 2.6), since B is an A [v]-algebra13. Hence, this ring B [Y] is an
(A [v])

[(
Iρ A [v]

)
ρ∈N
∗Y
]
-algebra as well (because (A [v])

[(
Iρ A [v]

)
ρ∈N
∗Y
]

is

a subring of (A [v]) [Y]). Similarly, the ring B [Y] is an A
[(

Iρ

)
ρ∈N
∗Y
]
-algebra.

13because A [v] is a subring of B
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Lemma 5.9 (b) (applied to v = x) yields that the element u of B is n-integral
over

(
A [x] ,

(
Iρ A [x]

)
ρ∈N

)
if and only if the element uY of the polynomial ring

B [Y] is n-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[x]. But since the element u

of B is n-integral over
(

A [x] ,
(

Iρ A [x]
)

ρ∈N

)
, this yields that the element uY of

the polynomial ring B [Y] is n-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[x].
Lemma 5.9 (b) (applied to y and m instead of v and n) yields that the element

u of B is m-integral over
(

A [y] ,
(

Iρ A [y]
)

ρ∈N

)
if and only if the element uY

of the polynomial ring B [Y] is m-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[y].

But since the element u of B is m-integral over
(

A [y] ,
(

Iρ A [y]
)

ρ∈N

)
, this yields

that the element uY of the polynomial ring B [Y] is m-integral over the ring(
A
[(

Iρ

)
ρ∈N
∗Y
])

[y].

Thus we know that uY is n-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[x], and

that uY is m-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[y]. Hence, Theorem 5.7

(applied to A
[(

Iρ

)
ρ∈N
∗Y
]
, B [Y] and uY instead of A, B and u) yields that

there exists some λ ∈ N such that uY is λ-integral over
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[xy].
Consider this λ.

Lemma 5.9 (b) (applied to xy and λ instead of v and n) yields that the element
u of B is λ-integral over

(
A [xy] ,

(
Iρ A [xy]

)
ρ∈N

)
if and only if the element uY

of the polynomial ring B [Y] is λ-integral over the ring
(

A
[(

Iρ

)
ρ∈N
∗Y
])

[xy].
But since the element uY of the polynomial ring B [Y] is λ-integral over the
ring

(
A
[(

Iρ

)
ρ∈N
∗Y
])

[xy], this yields that the element u of B is λ-integral over(
A [xy] ,

(
Iρ A [xy]

)
ρ∈N

)
. Thus, Theorem 5.8 (b) is proven.

5.4. Second proof of Corollary 1.12

We notice that Corollary 1.12 can be derived from Lemma 5.1:

Second proof of Corollary 1.12. Let n = 1. Let m = 1. From n = 1, we obtain〈
u0, u1, . . . , un−1〉

A =
〈
u0, u1, . . . , u0〉

A =
〈
u0〉

A = 〈1B〉A (since u0 = 1B). Simi-
larly, from m = 1, we obtain

〈
u0, u1, . . . , um−1〉

A = 〈1B〉A.
Now, we have

un ∈
〈

u0, u1, . . . , un−1
〉

A
·
〈

v0, v1, . . . , vα
〉

A
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14 and

umvβ ∈
〈

u0, u1, . . . , um−1
〉

A
·
〈

v0, v1, . . . , vβ
〉

A

+
〈

u0, u1, . . . , um
〉

A
·
〈

v0, v1, . . . , vβ−1
〉

A

15. Thus, Lemma 5.1 (applied to v, β and α instead of x, µ and ν) yields that
u is (nβ + mα)-integral over A (since β + α = α + β ∈ N+). This means that u
is (α + β)-integral over A (because n︸︷︷︸

=1

β + m︸︷︷︸
=1

α = 1β + 1α = β + α = α + β).

This proves Corollary 1.12 once again.

14Proof. From n = 1, we obtain

un = u1 = u =
α

∑
i=0

si︸︷︷︸
∈A

vi ∈
〈

v0, v1, . . . , vα
〉

A
=
〈

u0, u1, . . . , un−1
〉

A
·
〈

v0, v1, . . . , vα
〉

A
,

since〈
u0, u1, . . . , un−1

〉
A︸ ︷︷ ︸

=〈1B〉A

·
〈

v0, v1, . . . , vα
〉

A
= 〈1B〉 ·

〈
v0, v1, . . . , vα

〉
A
=
〈

1Bv0, 1Bv1, . . . , 1Bvα
〉

A

=
〈

v0, v1, . . . , vα
〉

A
.

15Proof. We have〈
u0, u1, . . . , um−1

〉
A︸ ︷︷ ︸

=〈1B〉A

·
〈

v0, v1, . . . , vβ
〉

A
= 〈1B〉A ·

〈
v0, v1, . . . , vβ

〉
A
=
〈

1Bv0, 1Bv1, . . . , 1Bvβ
〉

A

=
〈

v0, v1, . . . , vβ
〉

A
. (54)

From m = 1, we obtain um = u1 = u and thus

um︸︷︷︸
=u

vβ = uvβ =
β

∑
i=0

tivβ−i =
β

∑
i=0

tβ−i vβ−(β−i)︸ ︷︷ ︸
=vi

(here we substituted β− i for i in the sum)

=
β

∑
i=0

tβ−i︸︷︷︸
∈A

vi ∈
〈

v0, v1, . . . , vβ
〉

A

=
〈

u0, u1, . . . , um−1
〉

A
·
〈

v0, v1, . . . , vβ
〉

A
(by (54))

⊆
〈

u0, u1, . . . , um−1
〉

A
·
〈

v0, v1, . . . , vβ
〉

A
+
〈

u0, u1, . . . , um
〉

A
·
〈

v0, v1, . . . , vβ−1
〉

A
.
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