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Errata and questions - I (version 2)

e Page 1: Typo: "caracteristic” should be ”characteristic”.

e Pages 1 and 2: Typo: "envelopping” should be ”enveloping” (this typo appears
several times).

e Page 2 and further: Typo: ”familly” should be ”family” (this typo appears
several times).

e Page 2: Maybe ”"Given a familly of Lie idempotents” should be ”Given an arbi-
trary Lie idempotent”? I think the constructions of the higher Lie idempotents
depend only on one Lie idempotent ¢ and (in the case of higher Lie idempotents
of the third kind) on a family of coefficients aj,.

e Page 3: Typo: "reodering” should be "reordering”.

e Page 4: Between Definition 2.2 and the Example, you write that "the (-descent
algebra decomposes as a direct sum

D, = é%l)m.

7. It might be useful to notice here that this is a direct sum of vector spaces, not
of algebras (under the convolution ).

e Page 5: In the proof of Lemma 3.1, you write: "More generally, for any [ > 2
and k > 3, let A be [...]”. I don’t see any reason to require [ > 2 and k > 3
here; everything is just as correct for any [ > 0 and m > 0.

e Page 6: In the proof of Lemma 3.1, the > __4 should be

oc€eSy”

e Page 6: In the proof of Lemma 3.1, you write: ”If we apply II; to the whole
sum” (in the fourth line of page 6). I think you are applying H?k here, not Il.

e Page 6: In the proof of Lemma 3.1, you have a typo: "Aplying” should be
” Applying”.

e Page 6: In the proof of Lemma 3.1, you write: ”Now,this sum is equal to
Doty @ ... ®1ty,) 00 (r1 ® ... ®x)), where o denotes here the natural action
of the symmetric group on A®"”. First, there should be a whitespace after
"Now,”. Second, the o (71 ® ... ® z) should be a ¢! (1 ® ... ® x1,), because
(11 ® ... Q@) IS To-1(1) @ ... ® To-1y Tather than z,(1) ® ... ® Ter). Third, I
think you mean A®* instead of A®" (unless you want to talk about general n).



e Page 6: In the proof of Lemma 3.1, you write: ”Since the coproduct is cocom-
mutative, we deduce that

(tpy ® v @ 1 )0 (IIEF) 0 Apgo(iy, ® ... ® 1y,) = Z (tyy @ .. @ 1y, )0T0A) = Z (tpy ® oo ® 1y, )0 A,

which implies (ii).” The ¢ here should be a o~!. (Also, what somewhat confused
me is that cocommutativity is used in the passage from > (¢, ® ... ® ¢, ) 000y
t0 Y (4 ® ... ® 1,,,) 0 Ay, not in the passage from (1, ® ... ® ¢, ) 0 (IIF¥) 0 Agy 0
(b ® ... ®@uy,) t0 X (byy ® ... @1y, ) 000 Ay, It thus would probably better to
mention cocommutativity after the long equation rather than before it.)

e Page 7: In the proof of Theorem 3.4, you write: ”Thus f is idempotent if and
only if [...]”. But in general, only the ”if” part of this is true (and fortunately,
only the ”if” part is needed), since nobody has told us that the ¢, are linearly
independent.

e Page 7: In the proof of Theorem 3.4, it would be clearer if you replace (ny + ... + ng)! /nq!...n!
by (n1 + ... + ng)!/ (nyl...ng!). (I consider the notation a/bybs...by for a/ (bybs...by)
outdated and ambiguous, although it seems to be still in use.)

e Page 7: In Definition 4.1, T feel it would be good to point out three things
explicitly:

)<I(A)
End (A,), not the unity of the algebra £ (A).
— For n =0, the element F is defined as Ejj = ida, =noe (here we are using

the identification of End (Ag) with the space of all graded endomorphisms of A
whose image is C Ap). (While this can be seen as a consequence of the formula

— The 717 in "F} := (1 - > Fﬁ) o E{” means the identity map ida, €
l(p

Fy={1- > F,|okE; applied to A = (), it would be helpful to point this
W) <I(A)
out explicitly).

— The maps FY are called the "higher Lie idempotents of the second kind”.

e Page 7: In Definition 4.1, it wouldn’t harm to say that the ”induction base”

F(Ln) = E(Ln) = 1, is, itself, a particular case of the "induction step” F} :=
1— > Fj)oEs. Infact,if wesubstitute A = (n)in F§ == | 1—- > F} o
Up)<t(N) ) <t(N)

Ef,thenweget I,y = (1— >, Fj |oEj  butthesum > [} isempty
W) <U((n)) Hp)<l((n))
since [ ((n)) =1, and thus this becomes Iy, = Ef,,.
This fact allows us to use F} = (1 — >, F.|oEj notonly for A # (n) but
) <U(N)
also for all X\. This is used in several proofs in your paper.

e Page 7: In the Remark 1) at the end of page 7, you made a typo: ”othogonal”
should be ”orthogonal”.



Page 9: On the first line of this page, you write: 7 F}; o F; = d,,5”. This should
be F,o Fy = 6,5F}:. (The only thing you actually use, though, is that F}:o Fy =0
for 1 # B when [ (u) and [ () are both < k.)

Page 9: In the proof of Theorem 4.3, you write: ”"we have by Def.4.1 that
EX (z) = F} (v) plus a sum of E} o...o E§ ”. First, either you should replace the
EX (z) and F¥ (x) here by Ef and Fy, or you should replace the Ef o...o Ej by
an (Ef\1 0..0 Ef\k) (x). Second, "sum” is slightly imprecise; you mean a linear
combination rather than a sum (the coefficients in this combination can be both
+1 and —1).

Page 9: In the proof of Theorem 4.3, you write: "the elements (ay,...,a;) =
(/KD > hes, @o)-Ao)” - Replace 3, o by > g here.

Page 9: In the proof of Theorem 4.3, you write:

”Since A is a graded cocommutative connected bialgebra of characteristic zero, it
is by the Cartier-Milnor-Moore theorem isomorphic to the envelopping algebra of
Prim (A). Hence, by the Poincaré-Birkhoff-Witt theorem it is the direct sum of
its subspaces A*, where for any partition A, the latter subspace is spanned by the
elements (ar,...,ax) = (1/k!) Y 4cq, @o(1)---Qo(r), for any choice of homogeneous
primitive elements a;, with deg (a;) = \; and A = (Aq, ..., \g).”

This is a correct argument (up to the typos I mentioned above), but somewhat
an overkill. In fact, you only need the easy part of the Cartier-Milnor-Moore
theorem! and only the easy part of the Poincaré-Birkhoff-Witt theorem? to show
that A is the sum of its subspaces A* (we don’t yet know that it is the direct
sum), and this is already enough for your proof of Theorem 4.3. (I can detail
this argument better if you wish, but I have a feeling that you already know
this). Maybe you need something stronger (like the direct sum assertion) to
prove Corollary 4.4 though (I don’t understand your proof at the moment), but I
would always try to do without - maybe this will net us an explicit constructive
proof of Poincaré-Birkhoff-Witt or Cartier-Milnor-Moore at the end...

e Page 9: In the proof of Theorem 4.3, you write: "It is equal to Zu o, ®
. @y, 0 A (ay...a;)”. I would put the ¢, ® ... ® ¢, term in brackets here.

e Page 9: In the last absatz of page 9, you write: "the cofree cocommutative
coalgebra on a vector space V. But I think it is more common to say ”over a
vector space V7 rather than "on a vector space V”. (You yourself say ”over” in
Corollary 4.4.)

1
e Page 10: In Corollary 4.4, replace ” @ (®"oA,)” by ” €D —'L®”0An” (otherwise,
neN neN T
this map would not be a coalgebra homomorphism).

e Page 10: In Corollary 4.4, replace the — arrow by a — arrow.

!By the ”easy part”, I mean the statement that a graded cocommutative connected bialgebra over
a field of characteristic 0 is always generated as an algebra by its primitive elements.

2Here, the "easy part” is the statement that the symmetrization map S (g) — U (g) is surjective.
(This only makes sense in characteristic 0.)



1
e Page 10: In Corollary 4.4, replace ” Tl 1- >, Fp)ollk"by”|1— > Fi|o
L(M)! \) () <I(N)

)<l
1
I1;” (this change is needed to "balance out” the — factor T added to ” @@ t*" o
n: neN
A7).
e Page 10: You write that ” The corollary follows, once it is noted that Sym?* (Prim (A))
is canonically isomorphic to A%, through the map II,”. I do understand why

Sym* (Prim A) is canonically isomorphic to A* through the map II, 3. But I
don’t understand how Corollary 4.4 follows from this! In particular, I don’t see

how the

1— > F!|] term appears.
L(M)! <y

e Page 11: In the proof of Theorem 5.1, you write: ”We multiply this by e, on
the right in £ (A)”. I think this is confusing: Multiplying something in £ (A)

3In fact, let A = (A1, A, ..., \g). For every F-vector space V and every subset S of V, let (S) denote

the F-linear span of the set S.
By the definition of Sym* (Prim A), we know that Sym™ (Prim A) is the F-linear span of the elements
1
i > To(1) @Te(2) D ... DT o (k) Where (21, T2, ..., 2 ) ranges over all k-tuples of homogeneous elements
*o€SE

of Prim A satisfying (deg (x;) = A; for all i € {1,2, ..., k}). In other words,

1
Sym” (Prim A) = <{k' Z To(1) ® To(2) @ ... ® Ty | all z; are homogeneous
o€Sy

elements of Prim A and satisfy deg (z;) = A; for all i € {1,2, ..., k}}>

1
= <{k' Z To(1) @ Toa) ® ... ® Ty | all 2; are primitive and homogeneous
" o€eSy
elements of A and satisfy deg(x;) = \; for all ¢ € {1,2, ..., k}}>
1 o
= o Z A1) ® p(2) @ ... @ agry | all a; are primitive and homogeneous
" o€Sy

elements of A and satisfy deg(a;) = \; for all i € {1,2, ..., k}}>
(here, we renamed z; as a;). In other words,

1
<{k' Z A1) ® g(2) @ ... @ ag(r) | all a; are primitive and homogeneous
" o€eSy

elements of A and satisfy deg(a;) = A; for all i € {1,2, ..., k}}>
= Sym™ (Prim A) . (A1)
By the definition of A* we know that A is the F-linear span of the elements

Pl Ug(1)0o(2)---Ao(k) Where (a1, az,...,ar) ranges over all k-tuples of primitive homogeneous el-
T oESK



means convolution, but you want composition. Maybe you could just say ”We
compose this with e, on the right”?

e Page 11: In the proof of Theorem 5.1, you write:
"Thus we obtain e,, = ae,, since e, 0e, = 0 by Lemma 3.2. Thus, in case e,, # 0,
a = 1; and in case e,, = 0, we must have also ¢,, = 0, and we may take a = 1 in
().
This argument is correct, but I think it can be simplified as follows:
"Thus we obtain e, = ae,, since e, 0e, = 0 by Lemma 3.2. Thus, we can replace
ae, by e, in (*), and get ¢, = e, + Zu xe,,.”

ements of A satisfying (deg (a;) = A; for all i € {1,2,...,k}). In other words,

k!

1
AN = <{ Z Ao (1) 0 (2) 0o (k) | all a; are primitive and homogeneous
oESk

elements of A and satisfy deg(a;) = A; for all ¢ € {1,2, ..., k}}>

1
= <{Hk (k' XS: Ug(1) ® Ag(2) @ ... @ aa(k)> | all a; are primitive and homogeneous
oESK

elements of A and satisfy deg(a;) = \; for all i € {1,2, ..., k}}>

. 1 1
since I Z Qg (1)A5(2)-+-0o(k) = 11 5l Z Ao (1) ® Qg (2) ®...Q Qo (k)
k! €3, k! 5,

for any (a1, as,...,ax) € A*

1
= <1'[;C ({k' Z Ug(1) ® Gp(2) @ ... @ agky | all a; are primitive and homogeneous
o€Sk

elements of A and satisfy deg(a;) = A; for all ¢ € {1,2, ..., k}}>>
=1I 1 11 imiti d h 5
=1II; i XS: Gg(1) D Ug(2) @ ... @ Ao (k) \ all a; are primitive and homogeneous
oESK
elements of A and satisfy deg(a;) = \; for all i € {1,2,..., k}}>>

(since IIj, is F-linear)

=11, (Sym’\ (Prim A)) (by (A1)).

Hence, T, restricts to a surjective homomorphism Sym™ (Prim A) — A*.

Shn
sn: @ ((PrimA)®") — A (com-
neN

Moreover, let II be the homomorphism & II,, |

neN ((Prim A)®”’)

Sn
posed of the homomorphisms II, ‘((PrimA)‘g")s": ((Prim A)®n) — A for all n € N). This ho-

- 1 1

momorphism II sends ot Y Go(1) ® Ge(2) @ ... @ Gg(p) tO = Y Go(1)85(2)--0o(n) for every n € N
" ses, n: ses,

and (ai,az,...,a,) € (Prim A)". According to the Poincaré-Birkhoff-Witt theorem, this homomor-

phism II is an isomorphism (since the Cartier-Milnor-Moore theorem yields A = U (Prim A), and

under the identification of A with U (Prim A) the homomorphism II becomes the symmetrization map
S (Prim A) — U (Prim A)). Hence, II is injective.



This simplified argument has the additional advantage of being valid when £ is
not necessarily a field.

e Page 11: In the proof of Theorem 5.1, you made a typo: "matrix fom” should
be "matrix form”.

e Page 11: In the proof of Theorem 5.1, you write: "It is clear that (i) implies
(iv)”. But is this really clear on its own, or is it clear using the fact that D (A)
is closed under convolution (a consequence of Theorem 9.2 in [R2], but [R2] only
considers the case when A is the tensor algebra of an alphabet)?

e Page 12: In the proof of Lemma 5.3, replace ¢,2 by ¢,, (you forgot to make the
2 an index).
e Pages 12 and 13: In the proof of Theorem 5.4, you write: ”Moreover:
2

Y& =& =1-€y=> &,

p<[n] p<[n]

and:

D | o= (1-Ey) oy =0,
u<[n]

b}

These formulas are not literally true, because > &, 18 pn — Efn} rather than
p<n]

A ok
Now, since Sym” (Prim A) C ((Prim A) ) , we have

1 |Sym)‘(Prim A) = (H |((Prim A)@k)sk> ‘Sym)‘(Prim A)

:Hkl((Prim A)®k) Sk

(since = D 11, |

neN ((Prim A)®n)8n)

= <Hk |((PrimA)®k)Sk> |Sym)‘(PrimA): 1, ‘Sym*(PrimA) .

Since II |sym? (Prim 4) 18 injective (because IT is injective), this yields that II, |Sym? (Prim 4) 18 injective.
Now, consider the surjective homomorphism Sym?* (Prim A) — A to which II restricts. This

homomorphism is also injective (since Il \Symx(prim 4y 1s injective), and thus it is an isomorphism.

Thus, IIj, restricts to an isomorphism Sym™ (Prim A) — A*. Hence, Sym* (Prim A) is isomorphic to
A through the map I, qed.



1—¢&, (since

SErE =Y = Y &= X £

u<ln] n<[n] p is a partition A is a partition _ >

..
of n of n Qi tp

. Y H
1 is a composition of n;

()=

= Z Z CL:L'L“: Z a;'b,u:pn

A is a partition y is a composition of n; 1 is a composition of n
of n p(k)=A
NS o
vV
= >

1 is a composition of n

). Only if you restrict all maps to the n-th graded component of A, these equations
become true. Alternatively, you could replace these equations by

2

E ) = (n— &) = P2 —Ehjorn—pao&ly+ (&) =pa—Ely =
KZMM ( ) NGNS i+ (€fa)) [n] g

=pn =£t =£t

[n] =&

[n]

and:

D& | 0 &y = (pu—Ehy) 0 €ty = puo &y — (E1)" =0
—— N

n<[n] s

[n] =£

(n]

A similar inaccuracy appears at the end of page 13: There you write
hol=ho(h+g+k)=0h+hog.
This is not wrong, but not exactly clear: Probably you want to say

h=hop,=ho(h+g+k)=0h+hog.

Page 13: You write: ”In other words, Efn} and ) & are two orthogonal idem-
p<[n]

oL

2
potents.” But in order to show this, you must not only prove that <5[Ln}> =¢

2
( > 5;) = > &, and < > 5;) o &,y = 0 (this you have proven), but also

p<[n] p<[n] p<[n]

prove that S[Ln] o > &, | = 0. This is easy, of course:
p<n]

o | S &) = Ehyo (bn—ELy) = Eyopn— (€)= 0.
] N N —

p<ln o

[n] =¢

(n]

But it should be mentioned, I think.

g,
]



e Page 14: You write: "It follows that the coefficients ai of the higher Lie idem-
potents of the third kind depend polynomially of €.”

First, I don’t understand how this follows from p, = > F.. While all F\" are
lul=n

(by definition) linear combinations (with constant coefficients) of compositions
of various (¢, it is not clear (to me) why they are linear combinations (with co-
efficients polynomial in €) of convolutions of various (. 1 do know that D, is
closed under convolution (by Theorem 5.1, since ¢ € (t,e) C D(A)), and this
yields that they are linear combinations of convolutions of various ¢, but why
with coefficients polynomial in € ?

Second, even if we can show that we can write p, as a linear combination of .,
with coefficients polynomial in €, then it is not clear to me why these coefficients,
when specializing at € = 1, become our a;, - in fact, the aj, are not always uniquely

determined by p, = »_ aj, (since the ¢, are not always linearly independent),
|ul=n
so the aj, you have started with might not be the same as the aj, you get by

writing p, as a linear combination of ¢}, and specializing at € = 1 (although both
families of aj, satisfy p, = ||z: Wlp)-
ul=n

I am interested in how you actually show that the ai depend polynomially of
€ in such a way that specialization at € = 1 yields our initial a;,. I think I can
show this (with some handwaving) under the additional condition that ap, =1
for every m. Here is how my proof (roughly) goes:

Start with the equations p, = > a,tu- By repeated convolution, these equa-
|ul=n
tions yield equations of the form p, = > aj, ¢, (With @}, , being scalars, and
lpl=Iv;
u2v

1] = a;,) for all partitions v, where p > v means that the composition x can be
obtained by splitting some parts of v into smaller parts (this defines a partial or-
der > on compositions). Since aj,; = 1 for every n, we find that a;,, = 1 for every

composition v. Now, the equations p, = > a;, ,tu show us that (aiw)

lul=Iv;
u>v

lu|=lv|=n

is an upper triangular matrix, and the equations a;,, = 1 show that its diagonal

entries are = 1. Hence, it has an inverse matrix (bL which satisfies

W’) lul=lv|=n
b= >, b.,,pu for all compositions v, and again is upper triangular and has

ll=lvl;
122%

diagonal entries = 1. The same argument, done for e instead of ¢, shows that

there exists a matrix (bzvv)|u|f|u\fn which satisfies e, = > 0 ,p, for all com-
B ul=ll;

n2>v
positions v, and again is upper triangular and has its diagonal entries = 1. Now,



the matrix (e- b, + (1 —€) - b )| —jv|_n Safisfies

L,V
t,=€ct,+(1—¢)- Zblwpu (1—¢) Zblwpu
lul=|vl; lul=Ivl;
u2>v n>v
= 3 (e b+ (1= 0,) b
lul=(vl;
p>v

for all compositions v, and again is upper triangular and has its diagonal en-

. o . . . LE ) . o
tries = 1. Hence, its inverse matrix (aW, ul=lv|=n satisfies p, ||Z: au ] Ly but
o

its entries a’; .. are polynomials in the entries of (e b, (1 =€) b ”)Iul vl=n
(because if C is an upper triangular matrix with diagonal entries = 1, then the
entries of C~! are polynomials in the entries of C), and thus polynomials in e.
This gives us what we want.

But I cannot get rid of the condition that af, =1 for every n (not only for the
one we are working with, but also for the smaller n, because we need all a;,, to
be 1).

HOWEVER, I think that I can modify your proof of Theorem 5.4 in a different
way to make it valid:

First of all, let us generalize the results of Section 3 from one Lie idempotent to
two Lie idempotents:*

Lemma 5.6. Let ¢ and p be two Lie idempotents. Then, any two compositions
A and g such that || # |p| satisfy ¢y 0 p, = 0.

This is a very obvious fact (it is obvious because the image of p,, lies in the |u|-th
graded component of H, whereas ¢, sends every graded component of H except
of the |A|-th one to 0), and it generalizes the property ¢y o ¢, = 0 for |A| # |p].
Less trivially, we have:

Lemma 5.7. Let ¢ and p be two Lie idempotents. Let 4 and A be two composi-
tions of the same weight and the same length k.

(i) fp(N) #p(p), then ¢, 0py = 0.

(ii) If p(X\) = p (), then ¢, 0 py = Np,, where N is the number of permutations
of {1,2,...,k} which act trivially on the sequence p () = p(A). (This number
N only depends on p(\) = p(u), and will often be denoted by N (p (X)) or by
N (N).)

For the proof of Lemma 5.7, proceed in the same way as in the proof of Lemma
3.1. You will need the identity ¢ o p = p, which follows from ¢ |pyim a= idprim a
(because both ¢ and p are Lie idempotents, i. e., projections on Prim A).
Similarly:

Lemma 5.8. Let ¢ and p be two Lie idempotents. Let 4 and A be two composi-
tions of the same weight such that [ () > [ (X). Then ¢, 0 py = 0.

This is proven in the same way as Lemma 3.2.

Next, we need a kind of generalization of Lemma 5.3:

Lemma 5.9. Let ¢ and p be two Lie idempotents. Let A be a partition. For

4In the following Lemmas 5.6, 5.7, 5.8 and 5.9, we don’t assume that D (A4) = D,.



every composition g with p (1) = A, let b}, and b/, be two scalars. Then,

an# ol Yo weu| = DN D we.

p(p)= ()= ()= ()=

where N is the number of permutations of {1, 2, ..., k} which act trivially on the
sequence .

2
The proof of this lemma proceeds in the same way as the identity ( > buL#) =
p(p)=X

( > bu) N ( > bu%) was proven in the proof of Lemma 5.3. Here are the
p(p)=A p(w)=X

details of the proof:

Proof of Lemma 5.9. For every composition p satisfying p(p) = A, we know
that N is the number of permutations of {1,2,...,k} which act trivially on the
sequence p (u) (because N is defined as the number of permutations of {1, 2, ..., k}
which act trivially on the sequence A, but we have A = p(u)). Hence, for every
composition p satisfying p (1) = A, we have i, o p, = Np,, (by Lemma 5.7 (ii),
applied to u instead of A). Since composition of linear maps is bilinear, we have

Z bilbﬂ © Z bupﬂ

p(p)=
S S - S X i
p(p)=Ap(r)=A =Np,, p(w)=A p(p)=X
= Z b, | N Z o (since composition of linear maps is bilinear) .
()= p(p)=X

This proves Lemma 5.9.

Now to the proof of Theorem 5.4. We proceed in the same way as you do (with
one exception: we don’t have to assume h # 0) until your Claim 5.5 (which we
cannot make anymore, since we haven’t assumed that h # 0). Then, just as you,
we prove hog = (1—0b)h and kog = (b—1)h. Now I am going to show that

h? = h. ]
First of all, we have p,, = HZ - °. Let us define a scalar a;, by a;, = o for
pl=n T !
1
every partition . Then, p, = > ] €y = > af G- Hence, in the same way
lul= n\/ |lul=n

—n€
=ay

as we defined an element &} for every partition A in Definition 5.2, we can define

no1
5This is a known fact (I knew it in the form p, = > — > (Eay * €qy * .. % €g,))-

|
i=o 1! (a1,a2,...,a0)€{1,2,...,n}"
n=ai+az+...+ayg

It can be easily derived from the fact that e = log, (id), so that id = exp, e = exp, (e1 + e2 + €3+ ...).

10



an element &5 for every partition A by the formula

From Lemmas 5.7 and 5.8 (applied to e and ¢ instead of ¢ and p), we conclude
that &5 o &, = 0 for every partition ;1 < A. Hence,

o _k =5§o(25;> Zskogb = 0.
=3 &, pn<A u<)\
H<A (smce <)

On the other hand, for every partition A, let N (A) denote the number of per-
mutations of {1,2,...,k} which act trivially on the sequence A\. We have £ =

1
(2): Ameu and h =& = (z): a,e,, so that
p(u p(u

e 1 1
Eoh= Z i e Z at, | = Z ] N (A) - Z gty
p(p)=A p(r)=A p(r)=A (k)=

=h

1
(by Lemma 5.9, applied to N (A\), —, a,,, € and ¢ instead of N, b

n‘? Y 7 o

Now, compare

with
1
Eyo kog =(b—1) Esoh (b—1) E = NA)h
~—— n!
(b—1)h 1 p(p)=X
- ( —) NOh
(=AM

This yields

Since < > i) N ()) is invertible in & (in fact, ( > %) N (X) # 0 obvi-
(

plio=r p(u)=x Tt

1
ously; we can even prove that | > — | N()\) = 1, but we don’t need this),

Pl T

11



this becomes (b — 1) h = 0, so that h = bh. Compared with h o h = bh (which
follows from the proof of Lemma 5.3), this yields h o h = h, so that h is an
idempotent.

Since g2 = g (because g = > &, and by the induction assumption the & are or-
B>
thogonal idempotents), hog = (1 —b)h=—(b—1)h=0and kog=(b—1)h =
——

0, we can continue the proof as you do after yoiu prove Claim 5.5. This proves
Theorem 5.4.

e Page 14: There is a typo: by should be b .

e Page 15: You write: ”and the proof of theorem 5.3 is complete”. The theorem
is Theorem 5.4, not 5.3.

e Page 16: In reference [R1], typo: "represntations”.
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