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Errata and questions - I (version 2)

• Page 1: Typo: ”caracteristic” should be ”characteristic”.

• Pages 1 and 2: Typo: ”envelopping” should be ”enveloping” (this typo appears
several times).

• Page 2 and further: Typo: ”familly” should be ”family” (this typo appears
several times).

• Page 2: Maybe ”Given a familly of Lie idempotents” should be ”Given an arbi-
trary Lie idempotent”? I think the constructions of the higher Lie idempotents
depend only on one Lie idempotent ι and (in the case of higher Lie idempotents
of the third kind) on a family of coefficients aιµ.

• Page 3: Typo: ”reodering” should be ”reordering”.

• Page 4: Between Definition 2.2 and the Example, you write that ”the ι-descent
algebra decomposes as a direct sum

Dι =
∞⊕
n=0

Dιn.

”. It might be useful to notice here that this is a direct sum of vector spaces, not
of algebras (under the convolution ∗).

• Page 5: In the proof of Lemma 3.1, you write: ”More generally, for any l ≥ 2
and k ≥ 3, let ∆l2 be [...]”. I don’t see any reason to require l ≥ 2 and k ≥ 3
here; everything is just as correct for any l ≥ 0 and m ≥ 0.

• Page 6: In the proof of Lemma 3.1, the
∑

σ∈Sn should be
∑

σ∈Sk .

• Page 6: In the proof of Lemma 3.1, you write: ”If we apply Πk to the whole
sum” (in the fourth line of page 6). I think you are applying Π⊗kk here, not Πk.

• Page 6: In the proof of Lemma 3.1, you have a typo: ”Aplying” should be
”Applying”.

• Page 6: In the proof of Lemma 3.1, you write: ”Now,this sum is equal to∑
(ιµ1 ⊗ ...⊗ ιµk) ◦ σ (x1 ⊗ ...⊗ xk), where σ denotes here the natural action

of the symmetric group on A⊗n”. First, there should be a whitespace after
”Now,”. Second, the σ (x1 ⊗ ...⊗ xk) should be a σ−1 (x1 ⊗ ...⊗ xk), because
σ (x1 ⊗ ...⊗ xk) is xσ−1(1) ⊗ ... ⊗ xσ−1(k) rather than xσ(1) ⊗ ... ⊗ xσ(k). Third, I
think you mean A⊗k instead of A⊗n (unless you want to talk about general n).
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• Page 6: In the proof of Lemma 3.1, you write: ”Since the coproduct is cocom-
mutative, we deduce that

(ιµ1 ⊗ ...⊗ ιµk)◦
(
Π⊗kk

)
◦∆kk◦(ιλ1 ⊗ ...⊗ ιλk) =

∑
(ιµ1 ⊗ ...⊗ ιµk)◦σ◦∆k =

∑
(ιµ1 ⊗ ...⊗ ιµk)◦∆k,

which implies (ii).” The σ here should be a σ−1. (Also, what somewhat confused
me is that cocommutativity is used in the passage from

∑
(ιµ1 ⊗ ...⊗ ιµk)◦σ◦∆k

to
∑

(ιµ1 ⊗ ...⊗ ιµk)◦∆k, not in the passage from (ιµ1 ⊗ ...⊗ ιµk)◦
(
Π⊗kk

)
◦∆kk ◦

(ιλ1 ⊗ ...⊗ ιλk) to
∑

(ιµ1 ⊗ ...⊗ ιµk) ◦ σ ◦ ∆k. It thus would probably better to
mention cocommutativity after the long equation rather than before it.)

• Page 7: In the proof of Theorem 3.4, you write: ”Thus f is idempotent if and
only if [...]”. But in general, only the ”if” part of this is true (and fortunately,
only the ”if” part is needed), since nobody has told us that the ια are linearly
independent.

• Page 7: In the proof of Theorem 3.4, it would be clearer if you replace (n1 + ...+ nk)!/n1!...nk!
by (n1 + ...+ nk)!/ (n1!...nk!). (I consider the notation a/b1b2...bk for a/ (b1b2...bk)
outdated and ambiguous, although it seems to be still in use.)

• Page 7: In Definition 4.1, I feel it would be good to point out three things
explicitly:

– The ”1” in ”F ι
λ :=

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦ Eι

λ” means the identity map idAn ∈

End (An), not the unity of the algebra L (A).

– For n = 0, the element F ι
() is defined as Eι

() = idA0 = η ◦ ε (here we are using

the identification of End (A0) with the space of all graded endomorphisms of A
whose image is ⊆ A0). (While this can be seen as a consequence of the formula

F ι
λ :=

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦ Eι

λ applied to λ = (), it would be helpful to point this

out explicitly).

– The maps F ι
λ are called the ”higher Lie idempotents of the second kind”.

• Page 7: In Definition 4.1, it wouldn’t harm to say that the ”induction base”
F ι
(n) := Eι

(n) = ιn is, itself, a particular case of the ”induction step” F ι
λ :=(

1−
∑

l(µ)<l(λ)

F ι
µ

)
◦Eι

λ. In fact, if we substitute λ = (n) in F ι
λ :=

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦

Eι
λ, then we get F ι

(n) =

(
1−

∑
l(µ)<l((n))

F ι
µ

)
◦Eι

(n), but the sum
∑

l(µ)<l((n))

F ι
µ is empty

since l ((n)) = 1, and thus this becomes F ι
(n) = Eι

(n).

This fact allows us to use F ι
λ =

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦ Eι

λ not only for λ 6= (n) but

also for all λ. This is used in several proofs in your paper.

• Page 7: In the Remark 1) at the end of page 7, you made a typo: ”othogonal”
should be ”orthogonal”.
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• Page 9: On the first line of this page, you write: ”F ι
µ ◦ F ι

β = δµβ”. This should
be F ι

µ ◦F ι
β = δµβF

ι
µ. (The only thing you actually use, though, is that F ι

µ ◦F ι
β = 0

for µ 6= β when l (µ) and l (β) are both < k.)

• Page 9: In the proof of Theorem 4.3, you write: ”we have by Def.4.1 that
Eι
λ (x) = F ι

λ (x) plus a sum of Eι
λ1
◦ ...◦Eι

λk
”. First, either you should replace the

Eι
λ (x) and F ι

λ (x) here by Eι
λ and F ι

λ, or you should replace the Eι
λ1
◦ ... ◦Eι

λk
by

an
(
Eι
λ1
◦ ... ◦ Eι

λk

)
(x). Second, ”sum” is slightly imprecise; you mean a linear

combination rather than a sum (the coefficients in this combination can be both
+1 and −1).

• Page 9: In the proof of Theorem 4.3, you write: ”the elements (a1, ..., ak) =
(1/k!)

∑
k∈Sk aσ(1)...aσ(k)”. Replace

∑
k∈Sk by

∑
σ∈Sk here.

• Page 9: In the proof of Theorem 4.3, you write:
”Since A is a graded cocommutative connected bialgebra of characteristic zero, it
is by the Cartier-Milnor-Moore theorem isomorphic to the envelopping algebra of
Prim (A). Hence, by the Poincaré-Birkhoff-Witt theorem it is the direct sum of
its subspaces Aλ, where for any partition λ, the latter subspace is spanned by the
elements (a1, ..., ak) = (1/k!)

∑
k∈Sk aσ(1)...aσ(k), for any choice of homogeneous

primitive elements ai, with deg (ai) = λi and λ = (λ1, ..., λk).”
This is a correct argument (up to the typos I mentioned above), but somewhat
an overkill. In fact, you only need the easy part of the Cartier-Milnor-Moore
theorem1 and only the easy part of the Poincaré-Birkhoff-Witt theorem2 to show
that A is the sum of its subspaces Aλ (we don’t yet know that it is the direct
sum), and this is already enough for your proof of Theorem 4.3. (I can detail
this argument better if you wish, but I have a feeling that you already know
this). Maybe you need something stronger (like the direct sum assertion) to
prove Corollary 4.4 though (I don’t understand your proof at the moment), but I
would always try to do without - maybe this will net us an explicit constructive
proof of Poincaré-Birkhoff-Witt or Cartier-Milnor-Moore at the end...

• Page 9: In the proof of Theorem 4.3, you write: ”It is equal to
∑

µ Πk ◦ ιµ1 ⊗
...⊗ ιµk ◦∆k (a1...ak)”. I would put the ιµ1 ⊗ ...⊗ ιµk term in brackets here.

• Page 9: In the last absatz of page 9, you write: ”the cofree cocommutative
coalgebra on a vector space V ”. But I think it is more common to say ”over a
vector space V ” rather than ”on a vector space V ”. (You yourself say ”over” in
Corollary 4.4.)

• Page 10: In Corollary 4.4, replace ”
⊕
n∈N

ι⊗n◦∆n” by ”
⊕
n∈N

1

n!
ι⊗n◦∆n” (otherwise,

this map would not be a coalgebra homomorphism).

• Page 10: In Corollary 4.4, replace the 7→ arrow by a → arrow.

1By the ”easy part”, I mean the statement that a graded cocommutative connected bialgebra over
a field of characteristic 0 is always generated as an algebra by its primitive elements.

2Here, the ”easy part” is the statement that the symmetrization map S (g) → U (g) is surjective.
(This only makes sense in characteristic 0.)
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• Page 10: In Corollary 4.4, replace ”
1

l (λ)!

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦Πk” by ”

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
◦

Πk” (this change is needed to ”balance out” the
1

n!
factor I added to ”

⊕
n∈N

ι⊗n ◦

∆n”).

• Page 10: You write that ”The corollary follows, once it is noted that Symλ (Prim (A))
is canonically isomorphic to Aλ, through the map Πk”. I do understand why
Symλ (PrimA) is canonically isomorphic to Aλ through the map Πk

3. But I
don’t understand how Corollary 4.4 follows from this! In particular, I don’t see

how the
1

l (λ)!

(
1−

∑
l(µ)<l(λ)

F ι
µ

)
term appears.

• Page 11: In the proof of Theorem 5.1, you write: ”We multiply this by en on
the right in L (A)”. I think this is confusing: Multiplying something in L (A)

3In fact, let λ = (λ1, λ2, ..., λk). For every F -vector space V and every subset S of V , let 〈S〉 denote
the F -linear span of the set S.

By the definition of Symλ (PrimA), we know that Symλ (PrimA) is the F -linear span of the elements
1

k!

∑
σ∈Sk

xσ(1)⊗xσ(2)⊗ ...⊗xσ(k) where (x1, x2, ..., xk) ranges over all k-tuples of homogeneous elements

of PrimA satisfying (deg (xi) = λi for all i ∈ {1, 2, ..., k}). In other words,

Symλ (PrimA) =

〈{
1

k!

∑
σ∈Sk

xσ(1) ⊗ xσ(2) ⊗ ...⊗ xσ(k) | all xi are homogeneous

elements of PrimA and satisfy deg (xi) = λi for all i ∈ {1, 2, ..., k}

}〉

=

〈{
1

k!

∑
σ∈Sk

xσ(1) ⊗ xσ(2) ⊗ ...⊗ xσ(k) | all xi are primitive and homogeneous

elements of A and satisfy deg (xi) = λi for all i ∈ {1, 2, ..., k}

}〉

=

〈{
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k) | all ai are primitive and homogeneous

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

}〉

(here, we renamed xi as ai). In other words,〈{
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k) | all ai are primitive and homogeneous

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

}〉
= Symλ (PrimA) . (A1)

By the definition of Aλ, we know that Aλ is the F -linear span of the elements
1

k!

∑
σ∈Sk

aσ(1)aσ(2)...aσ(k) where (a1, a2, ..., ak) ranges over all k-tuples of primitive homogeneous el-
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means convolution, but you want composition. Maybe you could just say ”We
compose this with en on the right”?

• Page 11: In the proof of Theorem 5.1, you write:
”Thus we obtain en = αen, since eµ ◦en = 0 by Lemma 3.2. Thus, in case en 6= 0,
α = 1; and in case en = 0, we must have also ιn = 0, and we may take α = 1 in
(*).”
This argument is correct, but I think it can be simplified as follows:
”Thus we obtain en = αen, since eµ ◦en = 0 by Lemma 3.2. Thus, we can replace
αen by en in (*), and get ιn = en +

∑
µ ∗eµ.”

ements of A satisfying (deg (ai) = λi for all i ∈ {1, 2, ..., k}). In other words,

Aλ =

〈{
1

k!

∑
σ∈Sk

aσ(1)aσ(2)...aσ(k) | all ai are primitive and homogeneous

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

}〉

=

〈{
Πk

(
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k)

)
| all ai are primitive and homogeneous

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

}〉
 since

1

k!

∑
σ∈Sk

aσ(1)aσ(2)...aσ(k) = Πk

(
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k)

)
for any (a1, a2, ..., ak) ∈ Ak


=

〈
Πk

({
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k) | all ai are primitive and homogeneous

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

})〉

= Πk

(〈{
1

k!

∑
σ∈Sk

aσ(1) ⊗ aσ(2) ⊗ ...⊗ aσ(k) | all ai are primitive and homogeneous

)

elements of A and satisfy deg (ai) = λi for all i ∈ {1, 2, ..., k}

}〉)
(since Πk is F -linear)

= Πk

(
Symλ (PrimA)

)
(by (A1)) .

Hence, Πk restricts to a surjective homomorphism Symλ (PrimA)→ Aλ.

Moreover, let Π̃ be the homomorphism
⊕
n∈N

Πn |((PrimA)⊗n)
Sn :

⊕
n∈N

(
(PrimA)

⊗n
)Sn

→ A (com-

posed of the homomorphisms Πn |((PrimA)⊗n)
Sn :

(
(PrimA)

⊗n
)Sn

→ A for all n ∈ N). This ho-

momorphism Π̃ sends
1

n!

∑
σ∈Sn

aσ(1) ⊗ aσ(2) ⊗ ... ⊗ aσ(n) to
1

n!

∑
σ∈Sn

aσ(1)aσ(2)...aσ(n) for every n ∈ N

and (a1, a2, ..., an) ∈ (PrimA)
n
. According to the Poincaré-Birkhoff-Witt theorem, this homomor-

phism Π̃ is an isomorphism (since the Cartier-Milnor-Moore theorem yields A ∼= U (PrimA), and

under the identification of A with U (PrimA) the homomorphism Π̃ becomes the symmetrization map

S (PrimA)→ U (PrimA)). Hence, Π̃ is injective.
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This simplified argument has the additional advantage of being valid when k is
not necessarily a field.

• Page 11: In the proof of Theorem 5.1, you made a typo: ”matrix fom” should
be ”matrix form”.

• Page 11: In the proof of Theorem 5.1, you write: ”It is clear that (i) implies
(iv)”. But is this really clear on its own, or is it clear using the fact that D (A)
is closed under convolution (a consequence of Theorem 9.2 in [R2], but [R2] only
considers the case when A is the tensor algebra of an alphabet)?

• Page 12: In the proof of Lemma 5.3, replace ιµ2 by ιµ2 (you forgot to make the
2 an index).

• Pages 12 and 13: In the proof of Theorem 5.4, you write: ”Moreover:∑
µ<[n]

E ιµ

2

=
(
1− E ι[n]

)2
= 1− E ι[n] =

∑
µ<[n]

E ιµ,

and: ∑
µ<[n]

E ιµ

 ◦ E ι[n] =
(
1− E ι[n]

)
◦ E ι[n] = 0.

”
These formulas are not literally true, because

∑
µ<[n]

E ιµ is pn − E ι[n] rather than

Now, since Symλ (PrimA) ⊆
(

(PrimA)
⊗k
)Sk

, we have

Π̃ |Symλ(PrimA) =

(
Π̃ |

((PrimA)⊗k)
Sk

)
︸ ︷︷ ︸

=Πk|((PrimA)⊗k)Sk

(since Π̃=
⊕
n∈N

Πn|((PrimA)⊗n)Sn
)

|Symλ(PrimA)

=

(
Πk |((PrimA)⊗k)

Sk

)
|Symλ(PrimA)= Πk |Symλ(PrimA) .

Since Π̃ |Symλ(PrimA) is injective (because Π̃ is injective), this yields that Πk |Symλ(PrimA) is injective.

Now, consider the surjective homomorphism Symλ (PrimA) → Aλ to which Πk restricts. This
homomorphism is also injective (since Πk |Symλ(PrimA) is injective), and thus it is an isomorphism.

Thus, Πk restricts to an isomorphism Symλ (PrimA) → Aλ. Hence, Symλ (PrimA) is isomorphic to
Aλ through the map Πk, qed.
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1− E ι[n] (since∑
µ<[n]

E ιµ + E ι[n] =
∑
µ≤[n]

E ιµ =
∑

µ is a partition
of n

E ιµ =
∑

λ is a partition
of n

E ιλ︸︷︷︸
=

∑
µ is a composition of n;

p(µ)=λ

aιµ·ιµ

=
∑

λ is a partition
of n

∑
µ is a composition of n;

p(µ)=λ︸ ︷︷ ︸
=

∑
µ is a composition of n

aιµ · ιµ =
∑

µ is a composition of n

aιµ · ιµ = pn

). Only if you restrict all maps to the n-th graded component ofA, these equations
become true. Alternatively, you could replace these equations by∑
µ<[n]

E ιµ

2

=
(
pn − E ι[n]

)2
= p2n︸︷︷︸

=pn

−E ι[n] ◦ pn︸ ︷︷ ︸
=Eι

[n]

− pn ◦ E ι[n]︸ ︷︷ ︸
=Eι

[n]

+
(
E ι[n]
)2︸ ︷︷ ︸

=Eι
[n]

= pn−E ι[n] =
∑
µ<[n]

E ιµ,

and: ∑
µ<[n]

E ιµ

 ◦ E ι[n] =
(
pn − E ι[n]

)
◦ E ι[n] = pn ◦ E ι[n]︸ ︷︷ ︸

=Eι
[n]

−
(
E ι[n]
)2︸ ︷︷ ︸

=Eι
[n]

= 0.

A similar inaccuracy appears at the end of page 13: There you write

h ◦ 1 = h ◦ (h+ g + k) = bh+ h ◦ g.

This is not wrong, but not exactly clear: Probably you want to say

h = h ◦ pn = h ◦ (h+ g + k) = bh+ h ◦ g.

• Page 13: You write: ”In other words, E ι[n] and
∑
µ<[n]

E ιµ are two orthogonal idem-

potents.” But in order to show this, you must not only prove that
(
E ι[n]
)2

= E ι[n],( ∑
µ<[n]

E ιµ

)2

=
∑
µ<[n]

E ιµ and

( ∑
µ<[n]

E ιµ

)
◦ E ι[n] = 0 (this you have proven), but also

prove that E ι[n] ◦

( ∑
µ<[n]

E ιµ

)
= 0. This is easy, of course:

E ι[n] ◦

∑
µ<[n]

E ιµ

 = E ι[n] ◦
(
pn − E ι[n]

)
= E ι[n] ◦ pn︸ ︷︷ ︸

=Eι
[n]

−
(
E ι[n]
)2︸ ︷︷ ︸

=Eι
[n]

= 0.

But it should be mentioned, I think.
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• Page 14: You write: ”It follows that the coefficients aι
ε

µ of the higher Lie idem-
potents of the third kind depend polynomially of ε.”
First, I don’t understand how this follows from pn =

∑
|µ|=n

F ιε

µ . While all F ιε

µ are

(by definition) linear combinations (with constant coefficients) of compositions
of various ιεν , it is not clear (to me) why they are linear combinations (with co-
efficients polynomial in ε) of convolutions of various ιεν . I do know that Dιε is
closed under convolution (by Theorem 5.1, since ιε ∈ 〈ι, e〉 ⊆ D (A)), and this
yields that they are linear combinations of convolutions of various ιεν , but why
with coefficients polynomial in ε ?
Second, even if we can show that we can write pn as a linear combination of ιεµ
with coefficients polynomial in ε, then it is not clear to me why these coefficients,
when specializing at ε = 1, become our aιµ - in fact, the aιµ are not always uniquely
determined by pn =

∑
|µ|=n

aιµιµ (since the ιµ are not always linearly independent),

so the aιµ you have started with might not be the same as the aιµ you get by
writing pn as a linear combination of ιεµ and specializing at ε = 1 (although both
families of aιµ satisfy pn =

∑
|µ|=n

aιµιµ).

I am interested in how you actually show that the aι
ε

µ depend polynomially of
ε in such a way that specialization at ε = 1 yields our initial aιµ. I think I can
show this (with some handwaving) under the additional condition that aι[n] = 1

for every n. Here is how my proof (roughly) goes:
Start with the equations pn =

∑
|µ|=n

aιµιµ. By repeated convolution, these equa-

tions yield equations of the form pν =
∑
|µ|=|ν|;
µ≥ν

aιµ,νιµ (with aιµ,ν being scalars, and

aιµ,[n] = aιµ) for all partitions ν, where µ ≥ ν means that the composition µ can be

obtained by splitting some parts of ν into smaller parts (this defines a partial or-
der ≥ on compositions). Since aι[n] = 1 for every n, we find that aιν,ν = 1 for every

composition ν. Now, the equations pν =
∑
|µ|=|ν|;
µ≥ν

aιµ,νιµ show us that
(
aιµ,ν
)
|µ|=|ν|=n

is an upper triangular matrix, and the equations aιν,ν = 1 show that its diagonal

entries are = 1. Hence, it has an inverse matrix
(
bιµ,ν
)
|µ|=|ν|=n which satisfies

ιν =
∑
|µ|=|ν|;
µ≥ν

bιµ,νpµ for all compositions ν, and again is upper triangular and has

diagonal entries = 1. The same argument, done for e instead of ι, shows that
there exists a matrix

(
beµ,ν
)
|µ|=|ν|=n which satisfies eν =

∑
|µ|=|ν|;
µ≥ν

beµ,νpµ for all com-

positions ν, and again is upper triangular and has its diagonal entries = 1. Now,
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the matrix
(
ε · bιµ,ν + (1− ε) · beµ,ν

)
|µ|=|ν|=n satisfies

ιεν = ε · ιν + (1− ε) · eν = ε ·
∑
|µ|=|ν|;
µ≥ν

bιµ,νpµ + (1− ε) ·
∑
|µ|=|ν|;
µ≥ν

beµ,νpµ

=
∑
|µ|=|ν|;
µ≥ν

(
ε · bιµ,ν + (1− ε) · beµ,ν

)
pµ

for all compositions ν, and again is upper triangular and has its diagonal en-
tries = 1. Hence, its inverse matrix

(
aι
ε

µ,ν

)
|µ|=|ν|=n satisfies pn =

∑
|µ|=n

aι
ε

µ,[n]ι
ε
µ, but

its entries aι
ε

µ,ν are polynomials in the entries of
(
ε · bιµ,ν + (1− ε) · beµ,ν

)
|µ|=|ν|=n

(because if C is an upper triangular matrix with diagonal entries = 1, then the
entries of C−1 are polynomials in the entries of C), and thus polynomials in ε.
This gives us what we want.
But I cannot get rid of the condition that aι[n] = 1 for every n (not only for the
one we are working with, but also for the smaller n, because we need all aιν,ν to
be 1).
HOWEVER, I think that I can modify your proof of Theorem 5.4 in a different
way to make it valid:
First of all, let us generalize the results of Section 3 from one Lie idempotent to
two Lie idempotents:4

Lemma 5.6. Let ι and ρ be two Lie idempotents. Then, any two compositions
λ and µ such that |λ| 6= |µ| satisfy ιλ ◦ ρµ = 0.
This is a very obvious fact (it is obvious because the image of ρµ lies in the |µ|-th
graded component of H, whereas ιλ sends every graded component of H except
of the |λ|-th one to 0), and it generalizes the property ιλ ◦ ιµ = 0 for |λ| 6= |µ|.
Less trivially, we have:
Lemma 5.7. Let ι and ρ be two Lie idempotents. Let µ and λ be two composi-
tions of the same weight and the same length k.
(i) If p (λ) 6= p (µ), then ιµ ◦ ρλ = 0.
(ii) If p (λ) = p (µ), then ιµ ◦ ρλ = Nρµ, where N is the number of permutations
of {1, 2, ..., k} which act trivially on the sequence p (µ) = p (λ). (This number
N only depends on p (λ) = p (µ), and will often be denoted by N (p (λ)) or by
N (λ).)
For the proof of Lemma 5.7, proceed in the same way as in the proof of Lemma
3.1. You will need the identity ι ◦ ρ = ρ, which follows from ι |PrimA= idPrimA

(because both ι and ρ are Lie idempotents, i. e., projections on PrimA).
Similarly:
Lemma 5.8. Let ι and ρ be two Lie idempotents. Let µ and λ be two composi-
tions of the same weight such that l (µ) > l (λ). Then ιµ ◦ ρλ = 0.
This is proven in the same way as Lemma 3.2.
Next, we need a kind of generalization of Lemma 5.3:
Lemma 5.9. Let ι and ρ be two Lie idempotents. Let λ be a partition. For

4In the following Lemmas 5.6, 5.7, 5.8 and 5.9, we don’t assume that D (A) = Dι.
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every composition µ with p (µ) = λ, let bιµ and bρµ be two scalars. Then, ∑
p(µ)=λ

bιµιµ

 ◦
 ∑
p(µ)=λ

bρµρµ

 =

 ∑
p(µ)=λ

bιµ

N

 ∑
p(µ)=λ

bρµρµ

 ,

where N is the number of permutations of {1, 2, ..., k} which act trivially on the
sequence λ.

The proof of this lemma proceeds in the same way as the identity

( ∑
p(µ)=λ

bµιµ

)2

=( ∑
p(µ)=λ

bµ

)
N

( ∑
p(µ)=λ

bµιµ

)
was proven in the proof of Lemma 5.3. Here are the

details of the proof:

Proof of Lemma 5.9. For every composition µ satisfying p (µ) = λ, we know
that N is the number of permutations of {1, 2, ..., k} which act trivially on the
sequence p (µ) (because N is defined as the number of permutations of {1, 2, ..., k}
which act trivially on the sequence λ, but we have λ = p (µ)). Hence, for every
composition µ satisfying p (µ) = λ, we have iµ ◦ ρµ = Nρµ (by Lemma 5.7 (ii),
applied to µ instead of λ). Since composition of linear maps is bilinear, we have ∑

p(µ)=λ

bιµιµ

 ◦
 ∑
p(µ)=λ

bρµρµ


=
∑
p(µ)=λ

∑
p(µ)=λ

bιµb
ρ
µ ιµ ◦ ρµ︸ ︷︷ ︸

=Nρµ

= N
∑
p(µ)=λ

∑
p(µ)=λ

bιµb
ρ
µρµ

=

 ∑
p(µ)=λ

bιµ

N

 ∑
p(µ)=λ

bρµρµ

 (since composition of linear maps is bilinear) .

This proves Lemma 5.9.
Now to the proof of Theorem 5.4. We proceed in the same way as you do (with
one exception: we don’t have to assume h 6= 0) until your Claim 5.5 (which we
cannot make anymore, since we haven’t assumed that h 6= 0). Then, just as you,
we prove h ◦ g = (1− b)h and k ◦ g = (b− 1)h. Now I am going to show that
h2 = h.

First of all, we have pn =
∑
|µ|=n

1

n!
eµ

5. Let us define a scalar aeµ by aeµ =
1

n!
for

every partition µ. Then, pn =
∑
|µ|=n

1

n!︸︷︷︸
=aeµ

eµ =
∑
|µ|=n

aeµeµ. Hence, in the same way

as we defined an element E ιλ for every partition λ in Definition 5.2, we can define

5This is a known fact (I knew it in the form pn =
n∑̀
=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}`;

n=a1+a2+...+a`

(ea1 ∗ ea2 ∗ ... ∗ ea`)).

It can be easily derived from the fact that e = log∗ (id), so that id = exp∗ e = exp∗ (e1 + e2 + e3 + ...).
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an element Eeλ for every partition λ by the formula

Eeλ :=
∑
p(µ)=λ

aeµ︸︷︷︸
=

1

n!

·eµ =
∑
p(µ)=λ

1

n!
eµ.

From Lemmas 5.7 and 5.8 (applied to e and ι instead of ι and ρ), we conclude
that Eeλ ◦ E ιµ = 0 for every partition µ < λ. Hence,

Eeλ ◦ k︸︷︷︸
=

∑
µ<λ
Eιµ

= Eeλ ◦

(∑
µ<λ

E ιµ

)
=
∑
µ<λ

Eeλ ◦ E ιµ︸ ︷︷ ︸
=0

(since µ<λ)

= 0.

On the other hand, for every partition λ, let N (λ) denote the number of per-
mutations of {1, 2, ..., k} which act trivially on the sequence λ. We have Eeλ =∑
p(µ)=λ

1

n!
eµ and h = E ιλ =

∑
p(µ)=λ

aιµeµ, so that

Eeλ ◦ h =

 ∑
p(µ)=λ

1

n!
eµ

 ◦
 ∑
p(µ)=λ

aιµιµ

 =

 ∑
p(µ)=λ

1

n!

N (λ) ·

 ∑
p(µ)=λ

aιµιµ


︸ ︷︷ ︸

=h(
by Lemma 5.9, applied to N (λ) ,

1

n!
, aιµ, e and ι instead of N , bιµ, bρµ, ι and ρ

)

=

 ∑
p(µ)=λ

1

n!

N (λ)h.

Now, compare
Eeλ ◦ k︸ ︷︷ ︸

=0

◦g = 0 ◦ g = 0

with

Eeλ ◦ k ◦ g︸︷︷︸
=(b−1)h

= (b− 1) Eeλ ◦ h︸ ︷︷ ︸
=

 ∑
p(µ)=λ

1

n!

N(λ)h

= (b− 1)

 ∑
p(µ)=λ

1

n!

N (λ)h.

This yields

(b− 1)

 ∑
p(µ)=λ

1

n!

N (λ)h = 0.

Since

( ∑
p(µ)=λ

1

n!

)
N (λ) is invertible in k (in fact,

( ∑
p(µ)=λ

1

n!

)
N (λ) 6= 0 obvi-

ously; we can even prove that

( ∑
p(µ)=λ

1

n!

)
N (λ) = 1, but we don’t need this),
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this becomes (b− 1)h = 0, so that h = bh. Compared with h ◦ h = bh (which
follows from the proof of Lemma 5.3), this yields h ◦ h = h, so that h is an
idempotent.
Since g2 = g (because g =

∑
µ>λ

E ιµ, and by the induction assumption the E ιµ are or-

thogonal idempotents), h◦g = (1− b)h = − (b− 1)h︸ ︷︷ ︸
=0

= 0 and k◦g = (b− 1)h =

0, we can continue the proof as you do after you prove Claim 5.5. This proves
Theorem 5.4.

• Page 14: There is a typo: bi
ε

λ should be bι
ε

λ .

• Page 15: You write: ”and the proof of theorem 5.3 is complete”. The theorem
is Theorem 5.4, not 5.3.

• Page 16: In reference [R1], typo: ”represntations”.
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