## Higher Lie idempotents

Frédéric Patras and Christophe Reutenauer http://lacim.uqam.ca/~christo/idempotents.pdf (version November 18, 1998)

## Errata and questions - I (version 2)

- Page 1: Typo: "caracteristic" should be "characteristic".
- Pages 1 and 2: Typo: "envelopping" should be "enveloping" (this typo appears several times).
- Page 2 and further: Typo: "family" should be "family" (this typo appears several times).
- Page 2: Maybe "Given a familly of Lie idempotents" should be "Given an arbitrary Lie idempotent"? I think the constructions of the higher Lie idempotents depend only on one Lie idempotent  $\iota$  and (in the case of higher Lie idempotents of the third kind) on a family of coefficients  $a_{\iota}^{\iota}$ .
- Page 3: Typo: "reodering" should be "reordering".
- Page 4: Between Definition 2.2 and the Example, you write that "the  $\iota$ -descent algebra decomposes as a direct sum

$$\mathcal{D}_{\iota} = \bigoplus_{n=0}^{\infty} \mathcal{D}_{\iota n}.$$

- ". It might be useful to notice here that this is a direct sum of vector spaces, not of algebras (under the convolution \*).
- Page 5: In the proof of Lemma 3.1, you write: "More generally, for any  $l \geq 2$  and  $k \geq 3$ , let  $\Delta_{l2}$  be [...]". I don't see any reason to require  $l \geq 2$  and  $k \geq 3$  here; everything is just as correct for any  $l \geq 0$  and  $m \geq 0$ .
- Page 6: In the proof of Lemma 3.1, the  $\sum_{\sigma \in S_n}$  should be  $\sum_{\sigma \in S_k}$ .
- Page 6: In the proof of Lemma 3.1, you write: "If we apply  $\Pi_k$  to the whole sum" (in the fourth line of page 6). I think you are applying  $\Pi_k^{\otimes k}$  here, not  $\Pi_k$ .
- Page 6: In the proof of Lemma 3.1, you have a typo: "Aplying" should be "Applying".
- Page 6: In the proof of Lemma 3.1, you write: "Now,this sum is equal to  $\sum (\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}) \circ \sigma(x_1 \otimes ... \otimes x_k)$ , where  $\sigma$  denotes here the natural action of the symmetric group on  $A^{\otimes n}$ ". First, there should be a whitespace after "Now,". Second, the  $\sigma(x_1 \otimes ... \otimes x_k)$  should be a  $\sigma^{-1}(x_1 \otimes ... \otimes x_k)$ , because  $\sigma(x_1 \otimes ... \otimes x_k)$  is  $x_{\sigma^{-1}(1)} \otimes ... \otimes x_{\sigma^{-1}(k)}$  rather than  $x_{\sigma(1)} \otimes ... \otimes x_{\sigma(k)}$ . Third, I think you mean  $A^{\otimes k}$  instead of  $A^{\otimes n}$  (unless you want to talk about general n).

1

• Page 6: In the proof of Lemma 3.1, you write: "Since the coproduct is cocommutative, we deduce that

$$(\iota_{\mu_1} \otimes \ldots \otimes \iota_{\mu_k}) \circ (\Pi_k^{\otimes k}) \circ \Delta_{kk} \circ (\iota_{\lambda_1} \otimes \ldots \otimes \iota_{\lambda_k}) = \sum (\iota_{\mu_1} \otimes \ldots \otimes \iota_{\mu_k}) \circ \sigma \circ \Delta_k = \sum (\iota_{\mu_1} \otimes \ldots \otimes \iota_{\mu_k}) \circ \Delta_k,$$

which implies (ii)." The  $\sigma$  here should be a  $\sigma^{-1}$ . (Also, what somewhat confused me is that cocommutativity is used in the passage from  $\sum (\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}) \circ \sigma \circ \Delta_k$  to  $\sum (\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}) \circ \Delta_k$ , not in the passage from  $(\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}) \circ (\Pi_k^{\otimes k}) \circ \Delta_{kk} \circ (\iota_{\lambda_1} \otimes ... \otimes \iota_{\lambda_k})$  to  $\sum (\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}) \circ \sigma \circ \Delta_k$ . It thus would probably better to mention cocommutativity after the long equation rather than before it.)

- Page 7: In the proof of Theorem 3.4, you write: "Thus f is idempotent if and only if [...]". But in general, only the "if" part of this is true (and fortunately, only the "if" part is needed), since nobody has told us that the  $\iota_{\alpha}$  are linearly independent.
- Page 7: In the proof of Theorem 3.4, it would be clearer if you replace  $(n_1 + ... + n_k)!/n_1!...n_k!$  by  $(n_1 + ... + n_k)!/(n_1!...n_k!)$ . (I consider the notation  $a/b_1b_2...b_k$  for  $a/(b_1b_2...b_k)$  outdated and ambiguous, although it seems to be still in use.)
- Page 7: In Definition 4.1, I feel it would be good to point out three things explicitly:
  - The "1" in " $F_{\lambda}^{\iota} := \left(1 \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$ " means the identity map  $\mathrm{id}_{A_n} \in \mathrm{End}(A_n)$ , not the unity of the algebra  $\mathcal{L}(A)$ .
  - For n=0, the element  $F_{()}^{\iota}$  is defined as  $E_{()}^{\iota}=\mathrm{id}_{A_0}=\eta\circ\epsilon$  (here we are using the identification of End  $(A_0)$  with the space of all graded endomorphisms of A whose image is  $\subseteq A_0$ ). (While this can be seen as a consequence of the formula

$$F_{\lambda}^{\iota} := \left(1 - \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$$
 applied to  $\lambda = ()$ , it would be helpful to point this out explicitly).

- The maps  $F^{\iota}_{\lambda}$  are called the "higher Lie idempotents of the second kind".
- Page 7: In Definition 4.1, it wouldn't harm to say that the "induction base"  $F_{(n)}^{\iota} := E_{(n)}^{\iota} = \iota_n$  is, itself, a particular case of the "induction step"  $F_{\lambda}^{\iota} := \left(1 \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$ . In fact, if we substitute  $\lambda = (n)$  in  $F_{\lambda}^{\iota} := \left(1 \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right) \circ \left(1 \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right)$

$$\begin{split} E^{\iota}_{\lambda}, \text{ then we get } F^{\iota}_{(n)} &= \left(1 - \sum_{l(\mu) < l((n))} F^{\iota}_{\mu}\right) \circ E^{\iota}_{(n)}, \text{ but the sum } \sum_{l(\mu) < l((n))} F^{\iota}_{\mu} \text{ is empty} \\ \text{since } l\left((n)\right) &= 1, \text{ and thus this becomes } F^{\iota}_{(n)} &= E^{\iota}_{(n)}. \end{split}$$

This fact allows us to use  $F_{\lambda}^{\iota} = \left(1 - \sum_{l(\mu) < l(\lambda)} F_{\mu}^{\iota}\right) \circ E_{\lambda}^{\iota}$  not only for  $\lambda \neq (n)$  but also for all  $\lambda$ . This is used in several proofs in your paper.

• Page 7: In the Remark 1) at the end of page 7, you made a typo: "othogonal" should be "orthogonal".

- Page 9: On the first line of this page, you write: " $F^{\iota}_{\mu} \circ F^{\iota}_{\beta} = \delta_{\mu\beta}$ ". This should be  $F^{\iota}_{\mu} \circ F^{\iota}_{\beta} = \delta_{\mu\beta}F^{\iota}_{\mu}$ . (The only thing you actually use, though, is that  $F^{\iota}_{\mu} \circ F^{\iota}_{\beta} = 0$  for  $\mu \neq \beta$  when  $l(\mu)$  and  $l(\beta)$  are both < k.)
- Page 9: In the proof of Theorem 4.3, you write: "we have by Def.4.1 that  $E_{\lambda}^{\iota}(x) = F_{\lambda}^{\iota}(x)$  plus a sum of  $E_{\lambda_{1}}^{\iota} \circ ... \circ E_{\lambda_{k}}^{\iota}$ ". First, either you should replace the  $E_{\lambda}^{\iota}(x)$  and  $F_{\lambda}^{\iota}(x)$  here by  $E_{\lambda}^{\iota}$  and  $F_{\lambda}^{\iota}$ , or you should replace the  $E_{\lambda_{1}}^{\iota} \circ ... \circ E_{\lambda_{k}}^{\iota}$  by an  $\left(E_{\lambda_{1}}^{\iota} \circ ... \circ E_{\lambda_{k}}^{\iota}\right)(x)$ . Second, "sum" is slightly imprecise; you mean a linear combination rather than a sum (the coefficients in this combination can be both +1 and -1).
- Page 9: In the proof of Theorem 4.3, you write: "the elements  $(a_1,...,a_k) = (1/k!) \sum_{k \in S_k} a_{\sigma(1)}...a_{\sigma(k)}$ ". Replace  $\sum_{k \in S_k}$  by  $\sum_{\sigma \in S_k}$  here.
- Page 9: In the proof of Theorem 4.3, you write:

"Since A is a graded cocommutative connected bialgebra of characteristic zero, it is by the Cartier-Milnor-Moore theorem isomorphic to the envelopping algebra of Prim(A). Hence, by the Poincaré-Birkhoff-Witt theorem it is the direct sum of its subspaces  $A^{\lambda}$ , where for any partition  $\lambda$ , the latter subspace is spanned by the elements  $(a_1, ..., a_k) = (1/k!) \sum_{k \in S_k} a_{\sigma(1)} ... a_{\sigma(k)}$ , for any choice of homogeneous primitive elements  $a_i$ , with deg  $(a_i) = \lambda_i$  and  $\lambda = (\lambda_1, ..., \lambda_k)$ ."

This is a correct argument (up to the typos I mentioned above), but somewhat an overkill. In fact, you only need the easy part of the Cartier-Milnor-Moore theorem<sup>1</sup> and only the easy part of the Poincaré-Birkhoff-Witt theorem<sup>2</sup> to show that A is the sum of its subspaces  $A^{\lambda}$  (we don't yet know that it is the direct sum), and this is already enough for your proof of Theorem 4.3. (I can detail this argument better if you wish, but I have a feeling that you already know this). Maybe you need something stronger (like the direct sum assertion) to prove Corollary 4.4 though (I don't understand your proof at the moment), but I would always try to do without - maybe this will net us an explicit constructive proof of Poincaré-Birkhoff-Witt or Cartier-Milnor-Moore at the end...

- Page 9: In the proof of Theorem 4.3, you write: "It is equal to  $\sum_{\mu} \Pi_k \circ \iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k} \circ \Delta_k (a_1...a_k)$ ". I would put the  $\iota_{\mu_1} \otimes ... \otimes \iota_{\mu_k}$  term in brackets here.
- Page 9: In the last absatz of page 9, you write: "the *cofree cocommutative coalgebra* on a vector space V". But I think it is more common to say "over a vector space V" rather than "on a vector space V". (You yourself say "over" in Corollary 4.4.)
- Page 10: In Corollary 4.4, replace "  $\bigoplus_{n \in \mathbb{N}} \iota^{\otimes n} \circ \Delta_n$ " by "  $\bigoplus_{n \in \mathbb{N}} \frac{1}{n!} \iota^{\otimes n} \circ \Delta_n$ " (otherwise, this map would not be a coalgebra homomorphism).
- Page 10: In Corollary 4.4, replace the  $\mapsto$  arrow by a  $\rightarrow$  arrow.

 $<sup>^{1}\</sup>mathrm{By}$  the "easy part", I mean the statement that a graded cocommutative connected bialgebra over a field of characteristic 0 is always generated as an algebra by its primitive elements.

<sup>&</sup>lt;sup>2</sup>Here, the "easy part" is the statement that the symmetrization map  $S(\mathfrak{g}) \to U(\mathfrak{g})$  is surjective. (This only makes sense in characteristic 0.)

- Page 10: In Corollary 4.4, replace " $\frac{1}{l(\lambda)!}\left(1-\sum_{l(\mu)< l(\lambda)}F_{\mu}^{\iota}\right)\circ\Pi_{k}$ " by " $\left(1-\sum_{l(\mu)< l(\lambda)}F_{\mu}^{\iota}\right)\circ\Pi_{k}$ " (this change is needed to "balance out" the  $\frac{1}{n!}$  factor I added to " $\bigoplus_{n\in\mathbb{N}}\iota^{\otimes n}\circ\Delta_{n}$ ").
- Page 10: You write that "The corollary follows, once it is noted that  $Sym^{\lambda}$  (Prim(A)) is canonically isomorphic to  $A^{\lambda}$ , through the map  $\Pi_{k}$ ". I do understand why  $Sym^{\lambda}$  (Prim(A)) is canonically isomorphic to  $A^{\lambda}$  through the map  $\Pi_{k}$  3. But I don't understand how Corollary 4.4 follows from this! In particular, I don't see how the  $\frac{1}{l(\lambda)!}\left(1-\sum_{l(\mu)< l(\lambda)}F^{\iota}_{\mu}\right)$  term appears.
- Page 11: In the proof of Theorem 5.1, you write: "We multiply this by  $e_n$  on the right in  $\mathcal{L}(A)$ ". I think this is confusing: Multiplying something in  $\mathcal{L}(A)$

By the definition of  $\operatorname{Sym}^{\lambda}$  (Prim A), we know that  $\operatorname{Sym}^{\lambda}$  (Prim A) is the F-linear span of the elements  $\frac{1}{k!} \sum_{\sigma \in S_k} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)}$  where  $(x_1, x_2, \ldots, x_k)$  ranges over all k-tuples of homogeneous elements of Prim A satisfying (deg  $(x_i) = \lambda_i$  for all  $i \in \{1, 2, \ldots, k\}$ ). In other words,

$$\begin{aligned} \operatorname{Sym}^{\lambda}\left(\operatorname{Prim}A\right) &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)} \; \mid \; \text{all } x_i \text{ are homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)} \; \mid \; \text{all } x_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} x_{\sigma(1)} \otimes x_{\sigma(2)} \otimes \ldots \otimes x_{\sigma(k)} \; \mid \; \text{all } x_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \ldots \otimes a_{\sigma(k)} \; \mid \; \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \right.$$

(here, we renamed  $x_i$  as  $a_i$ ). In other words,

$$\left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes ... \otimes a_{\sigma(k)} \mid \text{ all } a_i \text{ are primitive and homogeneous} \right.\right.$$

$$\left. \text{elements of } A \text{ and satisfy } \deg(a_i) = \lambda_i \text{ for all } i \in \{1, 2, ..., k\} \right\} \right\rangle$$

$$= \operatorname{Sym}^{\lambda} \left( \operatorname{Prim} A \right). \tag{A1}$$

By the definition of  $A^{\lambda}$ , we know that  $A^{\lambda}$  is the *F*-linear span of the elements  $\frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} a_{\sigma(2)} ... a_{\sigma(k)}$  where  $(a_1, a_2, ..., a_k)$  ranges over all *k*-tuples of primitive homogeneous elements

<sup>&</sup>lt;sup>3</sup>In fact, let  $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ . For every *F*-vector space *V* and every subset *S* of *V*, let  $\langle S \rangle$  denote the *F*-linear span of the set *S*.

means convolution, but you want composition. Maybe you could just say "We compose this with  $e_n$  on the right"?

• Page 11: In the proof of Theorem 5.1, you write:

"Thus we obtain  $e_n = \alpha e_n$ , since  $e_\mu \circ e_n = 0$  by Lemma 3.2. Thus, in case  $e_n \neq 0$ ,  $\alpha = 1$ ; and in case  $e_n = 0$ , we must have also  $\iota_n = 0$ , and we may take  $\alpha = 1$  in (\*)."

This argument is correct, but I think it can be simplified as follows:

"Thus we obtain  $e_n = \alpha e_n$ , since  $e_\mu \circ e_n = 0$  by Lemma 3.2. Thus, we can replace  $\alpha e_n$  by  $e_n$  in (\*), and get  $\iota_n = e_n + \sum_{\mu} *e_{\mu}$ ."

ements of A satisfying (deg  $(a_i) = \lambda_i$  for all  $i \in \{1, 2, ..., k\}$ ). In other words,

$$\begin{split} A^{\lambda} &= \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} a_{\sigma(2)} ... a_{\sigma(k)} \ | \ \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &\quad \text{elements of } A \text{ and satisfy } \deg\left(a_i\right) = \lambda_i \text{ for all } i \in \{1, 2, ..., k\} \right\} \right\rangle \\ &= \left\langle \left\{ \Pi_k \left( \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes ... \otimes a_{\sigma(k)} \right) \ | \ \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &\quad \text{elements of } A \text{ and satisfy } \deg\left(a_i\right) = \lambda_i \text{ for all } i \in \{1, 2, ..., k\} \right\} \right\rangle \\ &\left( \begin{array}{c} \text{since } \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} a_{\sigma(2)} ... a_{\sigma(k)} = \Pi_k \left( \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes ... \otimes a_{\sigma(k)} \right) \right. \\ &\left. \text{for any } \left(a_1, a_2, ..., a_k\right) \in A^k \right. \\ &= \left\langle \Pi_k \left( \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes ... \otimes a_{\sigma(k)} \ | \ \text{all } a_i \text{ are primitive and homogeneous} \right. \\ &\left. \text{elements of } A \text{ and satisfy } \deg\left(a_i\right) = \lambda_i \text{ for all } i \in \{1, 2, ..., k\} \right\} \right) \right\rangle \\ &= \Pi_k \left( \left\langle \left\{ \frac{1}{k!} \sum_{\sigma \in S_k} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes ... \otimes a_{\sigma(k)} \ | \ \text{all } a_i \text{ are primitive and homogeneous} \right. \right. \\ &\left. \text{elements of } A \text{ and satisfy } \deg\left(a_i\right) = \lambda_i \text{ for all } i \in \{1, 2, ..., k\} \right\} \right\rangle \right) \\ &\left. \text{(since } \Pi_k \text{ is } F\text{-linear)} \right. \\ &= \Pi_k \left( \text{Sym}^{\lambda} \left( \text{Prim } A \right) \right) \qquad \text{(by (A1))} \, . \end{aligned}$$

Hence,  $\Pi_k$  restricts to a surjective homomorphism  $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \to A^{\lambda}$ .

Moreover, let  $\widetilde{\Pi}$  be the homomorphism  $\bigoplus_{n\in\mathbb{N}}\Pi_n\mid_{\left((\operatorname{Prim} A)^{\otimes n})^{S_n}}:\bigoplus_{n\in\mathbb{N}}\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_n}:A$  (composed of the homomorphisms  $\Pi_n\mid_{\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_n}}:\left((\operatorname{Prim} A)^{\otimes n}\right)^{S_n}\to A$  for all  $n\in\mathbb{N}$ ). This homomorphism  $\widetilde{\Pi}$  sends  $\frac{1}{n!}\sum_{\sigma\in S_n}a_{\sigma(1)}\otimes a_{\sigma(2)}\otimes\ldots\otimes a_{\sigma(n)}$  to  $\frac{1}{n!}\sum_{\sigma\in S_n}a_{\sigma(1)}a_{\sigma(2)}\ldots a_{\sigma(n)}$  for every  $n\in\mathbb{N}$  and  $(a_1,a_2,\ldots,a_n)\in(\operatorname{Prim} A)^n$ . According to the Poincaré-Birkhoff-Witt theorem, this homomorphism  $\widetilde{\Pi}$  is an isomorphism (since the Cartier-Milnor-Moore theorem yields  $A\cong U$  (Prim A), and under the identification of A with U (Prim A) the homomorphism  $\widetilde{\Pi}$  becomes the symmetrization map S (Prim A)  $\to U$  (Prim A)). Hence,  $\widetilde{\Pi}$  is injective.

This simplified argument has the additional advantage of being valid when k is not necessarily a field.

- Page 11: In the proof of Theorem 5.1, you made a typo: "matrix fom" should be "matrix form".
- Page 11: In the proof of Theorem 5.1, you write: "It is clear that (i) implies (iv)". But is this really clear on its own, or is it clear using the fact that  $\mathcal{D}(A)$  is closed under convolution (a consequence of Theorem 9.2 in [R2], but [R2] only considers the case when A is the tensor algebra of an alphabet)?
- Page 12: In the proof of Lemma 5.3, replace  $\iota_{\mu 2}$  by  $\iota_{\mu_2}$  (you forgot to make the 2 an index).
- Pages 12 and 13: In the proof of Theorem 5.4, you write: "Moreover:

$$\left(\sum_{\mu < [n]} \mathcal{E}^{\iota}_{\mu}\right)^2 = \left(1 - \mathcal{E}^{\iota}_{[n]}\right)^2 = 1 - \mathcal{E}^{\iota}_{[n]} = \sum_{\mu < [n]} \mathcal{E}^{\iota}_{\mu},$$

and:

 $\left(\sum_{\mu<[n]}\mathcal{E}^{\iota}_{\mu}\right)\circ\mathcal{E}^{\iota}_{[n]}=\left(1-\mathcal{E}^{\iota}_{[n]}\right)\circ\mathcal{E}^{\iota}_{[n]}=0.$ 

,,

These formulas are not literally true, because  $\sum_{\mu < [n]} \mathcal{E}^{\iota}_{\mu}$  is  $p_n - \mathcal{E}^{\iota}_{[n]}$  rather than

Now, since  $\operatorname{Sym}^{\lambda}\left(\operatorname{Prim}A\right)\subseteq\left(\left(\operatorname{Prim}A\right)^{\otimes k}\right)^{S_{k}}$ , we have

$$\begin{split} \widetilde{\Pi} \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)} &= \underbrace{\left(\widetilde{\Pi} \mid_{\left((\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}}\right)}_{=\Pi_{k}\mid_{\left((\operatorname{Prim} A)\otimes k\right)^{S_{k}}}} \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)} \\ & (\operatorname{since} \ \widetilde{\Pi} = \bigoplus_{n \in \mathbb{N}} \Pi_{n}\mid_{\left((\operatorname{Prim} A)\otimes n\right)^{S_{n}}}) \\ &= \left(\Pi_{k} \mid_{\left((\operatorname{Prim} A)^{\otimes k}\right)^{S_{k}}}\right) \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)} = \Pi_{k} \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}. \end{split}$$

Since  $\Pi \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$  is injective (because  $\Pi$  is injective), this yields that  $\Pi_k \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$  is injective. Now, consider the surjective homomorphism  $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \to A^{\lambda}$  to which  $\Pi_k$  restricts. This homomorphism is also injective (since  $\Pi_k \mid_{\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)}$  is injective), and thus it is an isomorphism. Thus,  $\Pi_k$  restricts to an isomorphism  $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A) \to A^{\lambda}$ . Hence,  $\operatorname{Sym}^{\lambda}(\operatorname{Prim} A)$  is isomorphic to  $A^{\lambda}$  through the map  $\Pi_k$ , qed.  $1 - \mathcal{E}^{\iota}_{[n]}$  (since

$$\sum_{\mu < [n]} \mathcal{E}^{\iota}_{\mu} + \mathcal{E}^{\iota}_{[n]} = \sum_{\mu \le [n]} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a partition of } n} \mathcal{E}^{\iota}_{\mu} = \sum_{\lambda \text{ is a partition of } n} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a composition of } n;} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a composition of } n;} \mathcal{E}^{\iota}_{\lambda}$$

$$= \sum_{\lambda \text{ is a partition } \mu \text{ is a composition of } n;} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a composition of } n} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a composition of } n} \mathcal{E}^{\iota}_{\mu} = \mathcal{E}^{\iota}_{\mu}$$

$$= \sum_{\mu \text{ is a composition of } n} \mathcal{E}^{\iota}_{\mu} = \sum_{\mu \text{ is a composition of } n} \mathcal{E}^{\iota}_{\mu} = \mathcal{E}^{\iota}_{\mu}$$

). Only if you restrict all maps to the n-th graded component of A, these equations become true. Alternatively, you could replace these equations by

$$\left(\sum_{\mu<[n]} \mathcal{E}^{\iota}_{\mu}\right)^{2} = \left(p_{n} - \mathcal{E}^{\iota}_{[n]}\right)^{2} = \underbrace{p_{n}^{2}}_{=p_{n}} - \underbrace{\mathcal{E}^{\iota}_{[n]} \circ p_{n}}_{=\mathcal{E}^{\iota}_{[n]}} - \underbrace{p_{n} \circ \mathcal{E}^{\iota}_{[n]}}_{=\mathcal{E}^{\iota}_{[n]}} + \underbrace{\left(\mathcal{E}^{\iota}_{[n]}\right)^{2}}_{=\mathcal{E}^{\iota}_{[n]}} = p_{n} - \mathcal{E}^{\iota}_{[n]} = \sum_{\mu<[n]} \mathcal{E}^{\iota}_{\mu},$$

and:

$$\left(\sum_{\mu<[n]} \mathcal{E}^{\iota}_{\mu}\right) \circ \mathcal{E}^{\iota}_{[n]} = \left(p_{n} - \mathcal{E}^{\iota}_{[n]}\right) \circ \mathcal{E}^{\iota}_{[n]} = \underbrace{p_{n} \circ \mathcal{E}^{\iota}_{[n]}}_{=\mathcal{E}^{\iota}_{[n]}} - \underbrace{\left(\mathcal{E}^{\iota}_{[n]}\right)^{2}}_{=\mathcal{E}^{\iota}_{[n]}} = 0.$$

A similar inaccuracy appears at the end of page 13: There you write

$$h \circ 1 = h \circ (h + g + k) = bh + h \circ g.$$

This is not wrong, but not exactly clear: Probably you want to say

$$h = h \circ p_n = h \circ (h + g + k) = bh + h \circ g.$$

• Page 13: You write: "In other words,  $\mathcal{E}_{[n]}^{\iota}$  and  $\sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota}$  are two orthogonal idempotents." But in order to show this, you must not only prove that  $\left(\mathcal{E}_{[n]}^{\iota}\right)^{2} = \mathcal{E}_{[n]}^{\iota}$ ,  $\left(\sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota}\right)^{2} = \sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota}$  and  $\left(\sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota}\right) \circ \mathcal{E}_{[n]}^{\iota} = 0$  (this you have proven), but also prove that  $\mathcal{E}_{[n]}^{\iota} \circ \left(\sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota}\right) = 0$ . This is easy, of course:

$$\mathcal{E}_{[n]}^{\iota} \circ \left( \sum_{\mu < [n]} \mathcal{E}_{\mu}^{\iota} \right) = \mathcal{E}_{[n]}^{\iota} \circ \left( p_n - \mathcal{E}_{[n]}^{\iota} \right) = \underbrace{\mathcal{E}_{[n]}^{\iota} \circ p_n}_{=\mathcal{E}_{[n]}^{\iota}} - \underbrace{\left( \mathcal{E}_{[n]}^{\iota} \right)^2}_{=\mathcal{E}_{[n]}^{\iota}} = 0.$$

But it should be mentioned, I think.

- Page 14: You write: "It follows that the coefficients  $a_{\mu}^{\iota^{\epsilon}}$  of the higher Lie idempotents of the third kind depend polynomially of  $\epsilon$ ."
  - First, I don't understand how this follows from  $p_n = \sum_{|\mu|=n} F_{\mu}^{\ell}$ . While all  $F_{\mu}^{\ell}$  are

(by definition) linear combinations (with constant coefficients) of compositions of various  $\iota_{\nu}^{\epsilon}$ , it is not clear (to me) why they are linear combinations (with coefficients polynomial in  $\epsilon$ ) of convolutions of various  $\iota_{\nu}^{\epsilon}$ . I do know that  $\mathcal{D}_{\iota^{\epsilon}}$  is closed under convolution (by Theorem 5.1, since  $\iota^{\epsilon} \in \langle \iota, e \rangle \subseteq \mathcal{D}(A)$ ), and this yields that they are linear combinations of convolutions of various  $\iota_{\nu}^{\epsilon}$ , but why with coefficients polynomial in  $\epsilon$ ?

Second, even if we can show that we can write  $p_n$  as a linear combination of  $\iota_{\mu}^{\epsilon}$  with coefficients polynomial in  $\epsilon$ , then it is not clear to me why these coefficients, when specializing at  $\epsilon = 1$ , become our  $a_{\mu}^{\iota}$  - in fact, the  $a_{\mu}^{\iota}$  are not always uniquely determined by  $p_n = \sum_{|\mu|=n} a_{\mu}^{\iota} \iota_{\mu}$  (since the  $\iota_{\mu}$  are not always linearly independent),

so the  $a^{\iota}_{\mu}$  you have started with might not be the same as the  $a^{\iota}_{\mu}$  you get by writing  $p_n$  as a linear combination of  $\iota^{\epsilon}_{\mu}$  and specializing at  $\epsilon = 1$  (although both families of  $a^{\iota}_{\mu}$  satisfy  $p_n = \sum_{|\mu|=n} a^{\iota}_{\mu} \iota_{\mu}$ ).

I am interested in how you actually show that the  $a_{\mu}^{\epsilon}$  depend polynomially of  $\epsilon$  in such a way that specialization at  $\epsilon = 1$  yields our initial  $a_{\mu}^{\epsilon}$ . I think I can show this (with some handwaving) under the additional condition that  $a_{[n]}^{\epsilon} = 1$  for every n. Here is how my proof (roughly) goes:

Start with the equations  $p_n = \sum_{|\mu|=n} a^i_\mu \iota_\mu$ . By repeated convolution, these equa-

tions yield equations of the form  $p_{\nu} = \sum_{\substack{|\mu|=|\nu|;\\ \mu\geq\nu}} a_{\mu,\nu}^{\iota} \iota_{\mu}$  (with  $a_{\mu,\nu}^{\iota}$  being scalars, and

 $a_{\mu,[n]}^{\iota}=a_{\mu}^{\iota}$ ) for all partitions  $\nu$ , where  $\mu\geq\nu$  means that the composition  $\mu$  can be obtained by splitting some parts of  $\nu$  into smaller parts (this defines a partial order  $\geq$  on compositions). Since  $a_{[n]}^{\iota}=1$  for every n, we find that  $a_{\nu,\nu}^{\iota}=1$  for every composition  $\nu$ . Now, the equations  $p_{\nu}=\sum_{\substack{|\mu|=|\nu|;\\ \mu>\nu}}a_{\mu,\nu}^{\iota}\iota_{\mu}$  show us that  $\left(a_{\mu,\nu}^{\iota}\right)_{|\mu|=|\nu|=n}$ 

is an upper triangular matrix, and the equations  $a_{\nu,\nu}^{\iota} = 1$  show that its diagonal entries are = 1. Hence, it has an inverse matrix  $(b_{\mu,\nu}^{\iota})_{|\mu|=|\nu|=n}$  which satisfies  $\iota_{\nu} = \sum_{\substack{|\mu|=|\nu|;\\ \mu>\nu}} b_{\mu,\nu}^{\iota} p_{\mu}$  for all compositions  $\nu$ , and again is upper triangular and has

diagonal entries = 1. The same argument, done for e instead of  $\iota$ , shows that there exists a matrix  $(b_{\mu,\nu}^e)_{|\mu|=|\nu|=n}$  which satisfies  $e_{\nu} = \sum_{\substack{|\mu|=|\nu|;\\ \mu>\nu}} b_{\mu,\nu}^e p_{\mu}$  for all com-

positions  $\nu$ , and again is upper triangular and has its diagonal entries = 1. Now,

the matrix  $\left(\epsilon \cdot b^{\iota}_{\mu,\nu} + (1-\epsilon) \cdot b^{e}_{\mu,\nu}\right)_{|\mu|=|\nu|=n}$  satisfies

$$t_{\nu}^{\epsilon} = \epsilon \cdot t_{\nu} + (1 - \epsilon) \cdot e_{\nu} = \epsilon \cdot \sum_{\substack{|\mu| = |\nu|; \\ \mu \ge \nu}} b_{\mu,\nu}^{\iota} p_{\mu} + (1 - \epsilon) \cdot \sum_{\substack{|\mu| = |\nu|; \\ \mu \ge \nu}} b_{\mu,\nu}^{e} p_{\mu}$$

$$= \sum_{\substack{|\mu| = |\nu|; \\ \mu \ge \nu}} \left( \epsilon \cdot b_{\mu,\nu}^{\iota} + (1 - \epsilon) \cdot b_{\mu,\nu}^{e} \right) p_{\mu}$$

for all compositions  $\nu$ , and again is upper triangular and has its diagonal entries = 1. Hence, its inverse matrix  $\left(a_{\mu,\nu}^{\iota^{\epsilon}}\right)_{|\mu|=|\nu|=n}$  satisfies  $p_n = \sum_{|\mu|=n} a_{\mu,[n]}^{\iota^{\epsilon}} \iota_{\mu}^{\epsilon}$ , but

its entries  $a_{\mu,\nu}^{\iota^{\epsilon}}$  are polynomials in the entries of  $\left(\epsilon \cdot b_{\mu,\nu}^{\iota} + (1-\epsilon) \cdot b_{\mu,\nu}^{e}\right)_{|\mu|=|\nu|=n}$  (because if C is an upper triangular matrix with diagonal entries = 1, then the entries of  $C^{-1}$  are polynomials in the entries of C), and thus polynomials in  $\epsilon$ . This gives us what we want.

But I cannot get rid of the condition that  $a_{[n]}^{\iota} = 1$  for every n (not only for the one we are working with, but also for the smaller n, because we need all  $a_{\nu,\nu}^{\iota}$  to be 1).

**HOWEVER**, I think that I can modify your proof of Theorem 5.4 in a different way to make it valid:

First of all, let us generalize the results of Section 3 from one Lie idempotent to two Lie idempotents:<sup>4</sup>

**Lemma 5.6.** Let  $\iota$  and  $\rho$  be two Lie idempotents. Then, any two compositions  $\lambda$  and  $\mu$  such that  $|\lambda| \neq |\mu|$  satisfy  $\iota_{\lambda} \circ \rho_{\mu} = 0$ .

This is a very obvious fact (it is obvious because the image of  $\rho_{\mu}$  lies in the  $|\mu|$ -th graded component of H, whereas  $\iota_{\lambda}$  sends every graded component of H except of the  $|\lambda|$ -th one to 0), and it generalizes the property  $\iota_{\lambda} \circ \iota_{\mu} = 0$  for  $|\lambda| \neq |\mu|$ . Less trivially, we have:

**Lemma 5.7.** Let  $\iota$  and  $\rho$  be two Lie idempotents. Let  $\mu$  and  $\lambda$  be two compositions of the same weight and the same length k.

- (i) If  $p(\lambda) \neq p(\mu)$ , then  $\iota_{\mu} \circ \rho_{\lambda} = 0$ .
- (ii) If  $p(\lambda) = p(\mu)$ , then  $\iota_{\mu} \circ \rho_{\lambda} = N\rho_{\mu}$ , where N is the number of permutations of  $\{1, 2, ..., k\}$  which act trivially on the sequence  $p(\mu) = p(\lambda)$ . (This number N only depends on  $p(\lambda) = p(\mu)$ , and will often be denoted by  $N(p(\lambda))$  or by  $N(\lambda)$ .)

For the proof of Lemma 5.7, proceed in the same way as in the proof of Lemma 3.1. You will need the identity  $\iota \circ \rho = \rho$ , which follows from  $\iota \mid_{\operatorname{Prim} A} = \operatorname{id}_{\operatorname{Prim} A}$  (because both  $\iota$  and  $\rho$  are Lie idempotents, i. e., projections on  $\operatorname{Prim} A$ ). Similarly:

**Lemma 5.8.** Let  $\iota$  and  $\rho$  be two Lie idempotents. Let  $\mu$  and  $\lambda$  be two compositions of the same weight such that  $l(\mu) > l(\lambda)$ . Then  $\iota_{\mu} \circ \rho_{\lambda} = 0$ .

This is proven in the same way as Lemma 3.2.

Next, we need a kind of generalization of Lemma 5.3:

**Lemma 5.9.** Let  $\iota$  and  $\rho$  be two Lie idempotents. Let  $\lambda$  be a partition. For

<sup>&</sup>lt;sup>4</sup>In the following Lemmas 5.6, 5.7, 5.8 and 5.9, we don't assume that  $\mathcal{D}(A) = \mathcal{D}_{\iota}$ .

every composition  $\mu$  with  $p(\mu) = \lambda$ , let  $b^{\iota}_{\mu}$  and  $b^{\rho}_{\mu}$  be two scalars. Then,

$$\left(\sum_{p(\mu)=\lambda}b_{\mu}^{\iota}\iota_{\mu}\right)\circ\left(\sum_{p(\mu)=\lambda}b_{\mu}^{\rho}\rho_{\mu}\right)=\left(\sum_{p(\mu)=\lambda}b_{\mu}^{\iota}\right)N\left(\sum_{p(\mu)=\lambda}b_{\mu}^{\rho}\rho_{\mu}\right),$$

where N is the number of permutations of  $\{1, 2, ..., k\}$  which act trivially on the sequence  $\lambda$ .

The proof of this lemma proceeds in the same way as the identity  $\left(\sum_{p(\mu)=\lambda}b_{\mu}\iota_{\mu}\right)^{2}=$ 

 $\left(\sum_{p(\mu)=\lambda}b_{\mu}\right)N\left(\sum_{p(\mu)=\lambda}b_{\mu}\iota_{\mu}\right)$  was proven in the proof of Lemma 5.3. Here are the details of the proof:

Proof of Lemma 5.9. For every composition  $\mu$  satisfying  $p(\mu) = \lambda$ , we know that N is the number of permutations of  $\{1, 2, ..., k\}$  which act trivially on the sequence  $p(\mu)$  (because N is defined as the number of permutations of  $\{1, 2, ..., k\}$  which act trivially on the sequence  $\lambda$ , but we have  $\lambda = p(\mu)$ ). Hence, for every composition  $\mu$  satisfying  $p(\mu) = \lambda$ , we have  $i_{\mu} \circ \rho_{\mu} = N \rho_{\mu}$  (by Lemma 5.7 (ii), applied to  $\mu$  instead of  $\lambda$ ). Since composition of linear maps is bilinear, we have

$$\begin{split} &\left(\sum_{p(\mu)=\lambda}b^{\iota}_{\mu}\iota_{\mu}\right)\circ\left(\sum_{p(\mu)=\lambda}b^{\rho}_{\mu}\rho_{\mu}\right)\\ &=\sum_{p(\mu)=\lambda}\sum_{p(\mu)=\lambda}b^{\iota}_{\mu}b^{\rho}_{\mu}\underbrace{\iota_{\mu}\circ\rho_{\mu}}_{=N\rho_{\mu}}=N\sum_{p(\mu)=\lambda}\sum_{p(\mu)=\lambda}b^{\iota}_{\mu}b^{\rho}_{\mu}\rho_{\mu}\\ &=\left(\sum_{p(\mu)=\lambda}b^{\iota}_{\mu}\right)N\left(\sum_{p(\mu)=\lambda}b^{\rho}_{\mu}\rho_{\mu}\right) \qquad \qquad \text{(since composition of linear maps is bilinear)}\;. \end{split}$$

This proves Lemma 5.9.

Now to the *proof of Theorem 5.4*. We proceed in the same way as you do (with one exception: we don't have to assume  $h \neq 0$ ) until your Claim 5.5 (which we cannot make anymore, since we haven't assumed that  $h \neq 0$ ). Then, just as you, we prove  $h \circ g = (1 - b) h$  and  $k \circ g = (b - 1) h$ . Now I am going to show that  $h^2 = h$ .

First of all, we have  $p_n = \sum_{|\mu|=n} \frac{1}{n!} e_\mu$  5. Let us define a scalar  $a_\mu^e$  by  $a_\mu^e = \frac{1}{n!}$  for

every partition  $\mu$ . Then,  $p_n = \sum_{|\mu|=n} \frac{1}{n!} e_{\mu} = \sum_{|\mu|=n} a_{\mu}^e e_{\mu}$ . Hence, in the same way

as we defined an element  $\mathcal{E}^{\iota}_{\lambda}$  for every partition  $\lambda$  in Definition 5.2, we can define

It can be easily derived from the fact that  $e = \log_*(id)$ , so that  $id = \exp_* e = \exp_*(e_1 + e_2 + e_3 + ...)$ .

<sup>&</sup>lt;sup>5</sup>This is a known fact (I knew it in the form  $p_n = \sum_{\ell=0}^n \frac{1}{\ell!} \sum_{\substack{(a_1, a_2, \dots, a_\ell) \in \{1, 2, \dots, n\}^\ell; \\ n = a_1 + a_2 + \dots + a_\ell}} (e_{a_1} * e_{a_2} * \dots * e_{a_\ell})).$ 

an element  $\mathcal{E}_{\lambda}^{e}$  for every partition  $\lambda$  by the formula

$$\mathcal{E}_{\lambda}^{e} := \sum_{p(\mu)=\lambda} \underbrace{a_{\mu}^{e}}_{=\frac{1}{n!}} \cdot e_{\mu} = \sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu}.$$

From Lemmas 5.7 and 5.8 (applied to e and  $\iota$  instead of  $\iota$  and  $\rho$ ), we conclude that  $\mathcal{E}^{e}_{\lambda} \circ \mathcal{E}^{\iota}_{\mu} = 0$  for every partition  $\mu < \lambda$ . Hence,

$$\mathcal{E}_{\lambda}^{e} \circ \underbrace{k}_{\mu < \lambda} = \mathcal{E}_{\lambda}^{e} \circ \left(\sum_{\mu < \lambda} \mathcal{E}_{\mu}^{\iota}\right) = \sum_{\mu < \lambda} \underbrace{\mathcal{E}_{\lambda}^{e} \circ \mathcal{E}_{\mu}^{\iota}}_{\text{(since } \mu < \lambda)} = 0.$$

On the other hand, for every partition  $\lambda$ , let  $N(\lambda)$  denote the number of permutations of  $\{1, 2, ..., k\}$  which act trivially on the sequence  $\lambda$ . We have  $\mathcal{E}^e_{\lambda}$ 

$$\sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu} \text{ and } h = \mathcal{E}_{\lambda}^{\iota} = \sum_{p(\mu)=\lambda} a_{\mu}^{\iota} e_{\mu}, \text{ so that }$$

$$\mathcal{E}_{\lambda}^{e} \circ h = \left(\sum_{p(\mu)=\lambda} \frac{1}{n!} e_{\mu}\right) \circ \left(\sum_{p(\mu)=\lambda} a_{\mu}^{\iota} \iota_{\mu}\right) = \left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N\left(\lambda\right) \cdot \underbrace{\left(\sum_{p(\mu)=\lambda} a_{\mu}^{\iota} \iota_{\mu}\right)}_{=h}$$

(by Lemma 5.9, applied to  $N(\lambda)$ ,  $\frac{1}{n!}$ ,  $a^{\iota}_{\mu}$ , e and  $\iota$  instead of N,  $b^{\iota}_{\mu}$ ,  $b^{\rho}_{\mu}$ ,  $\iota$  and  $\rho$ )

$$= \left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) h.$$

Now, compare

$$\underbrace{\mathcal{E}_{\lambda}^{e} \circ k}_{=0} \circ g = 0 \circ g = 0$$

with

$$\mathcal{E}_{\lambda}^{e} \circ \underbrace{k \circ g}_{=(b-1)h} = (b-1) \underbrace{\mathcal{E}_{\lambda}^{e} \circ h}_{=\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda)h} = (b-1) \left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda)h$$

This yields

$$(b-1)\left(\sum_{p(\mu)=\lambda}\frac{1}{n!}\right)N(\lambda)h=0.$$

Since  $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda)$  is invertible in k (in fact,  $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) \neq 0$  obvi-

ously; we can even prove that  $\left(\sum_{p(\mu)=\lambda} \frac{1}{n!}\right) N(\lambda) = 1$ , but we don't need this),

this becomes (b-1)h=0, so that h=bh. Compared with  $h \circ h=bh$  (which follows from the proof of Lemma 5.3), this yields  $h \circ h=h$ , so that h is an idempotent.

Since  $g^2 = g$  (because  $g = \sum_{\mu > \lambda} \mathcal{E}^{\iota}_{\mu}$ , and by the induction assumption the  $\mathcal{E}^{\iota}_{\mu}$  are orthogonal idempotents),  $h \circ g = (1 - b) h = -\underbrace{(b - 1) h}_{=0} = 0$  and  $k \circ g = (b - 1) h = 0$ 

0, we can continue the proof as you do after you prove Claim 5.5. This proves Theorem 5.4.

- Page 14: There is a typo:  $b_{\lambda}^{i^{\epsilon}}$  should be  $b_{\lambda}^{i^{\epsilon}}$ .
- Page 15: You write: "and the proof of theorem 5.3 is complete". The theorem is Theorem 5.4, not 5.3.
- Page 16: In reference [R1], typo: "represntations".