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The dual stable Grothendieck polynomials are a deformation of the
Schur functions, originating in the study of the K-theory of the Grass-
mannian. We generalize these polynomials by introducing a count-
able family of additional parameters, and we prove that this gener-
alization still defines symmetric functions. For this fact, we give two
self-contained proofs, one of which constructs a family of involutions
on the set of reverse plane partitions generalizing the Bender-Knuth
involutions on semistandard tableaux, whereas the other classifies the
structure of reverse plane partitions with entries 1 and 2.

1. Introduction

Thomas Lam and Pavlo Pylyavskyy, in [LamPyl07, §9.1], (and earlier Mark Shi-
mozono and Mike Zabrocki in unpublished work of 2003) studied dual stable
Grothendieck polynomials, a deformation (in a sense) of the Schur functions. Let
us briefly recount their definition.1

Let λ/µ be a skew partition. The Schur function sλ/µ is a multivariate gen-
erating function for the semistandard tableaux of shape λ/µ. In the same vein,

∗This version of the paper is the closest to its original (written back in January 2015). It has the
most details and contains an explicit statement and proof of the diamond lemma, as well as
an application thereof which was omitted from the later versions of the paper.

1All definitions that will be made in this introduction are provisional. Every notion that will be
used in the paper is going to be defined in more detail and precision in one of the sections
below; thus, a reader not already familiar with Schur functions and partitions should start
reading from Section 2 on.
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the dual stable Grothendieck polynomial2 gλ/µ is a generating function for the
reverse plane partitions of shape λ/µ; these, unlike semistandard tableaux, are
only required to have their entries increase weakly down columns (and along
rows). More precisely, gλ/µ is a formal power series in countably many commut-
ing indeterminates x1, x2, x3, . . . (over an arbitrary commutative ring k) defined
by

gλ/µ = ∑
T is a reverse plane

partition of shape λ/µ

xircont(T),

where xircont(T) is the monomial xa1
1 xa2

2 xa3
3 · · · whose i-th exponent ai is the num-

ber of columns of T containing the entry i. As proven in [LamPyl07, §9.1], this
power series gλ/µ is a symmetric function (albeit, unlike sλ/µ, an inhomogeneous
one in general). Lam and Pylyavskyy connect the gλ/µ to the (more familiar) sta-
ble Grothendieck polynomials Gλ/µ (via a duality between the symmetric functions
and their completion, which explains the name of the gλ/µ; see [LamPyl07, §9.4])
and to the K-theory of Grassmannians ([LamPyl07, §9.5]).

We devise a common generalization of the dual stable Grothendieck polyno-
mial gλ/µ and the classical skew Schur function sλ/µ. Namely, if t1, t2, t3, . . . are
countably many fixed elements of the base ring k (e.g., polynomial indetermi-
nates, or integers), then we set

g̃λ/µ = ∑
T is a reverse plane

partition of shape λ/µ

tceq(T)xircont(T),

where tceq(T) is the product tb1
1 tb2

2 tb3
3 · · · whose i-th exponent bi is the number

of cells in the i-th row of T whose entry equals the entry of their neighbor cell
directly below them. This g̃λ/µ becomes gλ/µ when all the ti are set to 1, and
becomes sλ/µ when all the ti are set to 0; but keeping the ti arbitrary offers
infinitely many degrees of freedom which are so far unexplored. Our main
result, Theorem 3.3, states that g̃λ/µ is a symmetric function (in the x1, x2, x3, . . .).

We prove this result (thus obtaining a new proof of [LamPyl07, Theorem 9.1])
first using an elaborate generalization of the classical Bender-Knuth involutions
to reverse plane partitions; these generalized involutions are constructed using
a form of the diamond lemma (Lemma 4.1). Then, we prove it for a second time
by analyzing the structure of reverse plane partitions whose entries lie in {1, 2}.
The second proof reflects back on the first, in particular providing an alterna-
tive definition of the generalized Bender-Knuth involutions constructed in the
first proof, and showing that these involutions are (in a sense) “the only reason-
able choice”. We notice that both our proofs are explicitly bijective, unlike the
proof of [LamPyl07, Theorem 9.1] which relies on computations in an algebra of
operators.

2The word “polynomial” is a stretch: gλ/µ is a bounded-degree power series in infinitely many
indeterminates (like sλ/µ).
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The present paper is organized as follows: In Section 2, we recall classical
definitions and introduce notations pertaining to combinatorics and symmetric
functions. In Section 3, we define the refined dual stable Grothendieck polyno-
mials g̃λ/µ, state our main result (that they are symmetric functions), and do the
first steps of its proof (by reducing it to a purely combinatorial statement about
the existence of an involution with certain properties). In Section 4, we state and
(for the sake of completeness) prove the version of the diamond lemma we need,
and we digress to give an elementary application of it that serves to demonstrate
its use. In Section 5, we prove our main result by constructing the required invo-
lution using the diamond lemma. In Section 6, we recapitulate the definition of
the classical Bender-Knuth involution, and sketch the proof that our involution
is a generalization of the latter. Finally, in Section 7 we study the structure of
reverse plane partitions with entries belonging to {1, 2}, which (in particular)
gives us an explicit formula for the t-coefficients of g̃λ/µ(x1, x2, 0, 0, . . . ; t), and
shines a new light on the involution constructed in Section 5 (also showing that
it is the unique involution that shares certain natural properties with the classical
Bender-Knuth involutions).

1.1. Acknowledgments

We owe our familiarity with dual stable Grothendieck polynomials to Richard
Stanley. We thank Alexander Postnikov for providing context and motivation,
and Thomas Lam and Pavlo Pylyavskyy for interesting conversations.

2. Notations and definitions

Let us begin by defining our notations (including some standard conventions
from algebraic combinatorics).

2.1. Partitions and tableaux

We set N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}. A weak composition will mean a
sequence (α1, α2, α3, . . .) ∈NN+ of nonnegative integers such that all but finitely
many i ∈ N+ satisfy αi = 0. Given a weak composition α = (α1, α2, α3, . . .), we
denote the sum α1 + α2 + α3 + · · · (which is finite and an element of N) by |α|
and call it the size of α. Given a weak composition α and a positive integer i, we
let αi denote the i-th entry of α (so that every weak composition α automatically
satisfies α = (α1, α2, α3, . . .)).

A partition means a weak composition (α1, α2, α3, . . .) satisfying α1 ≥ α2 ≥ α3 ≥
· · · . We identify every partition (α1, α2, α3, . . .) with the (truncated) sequence
(α1, α2, . . . , αm) whenever m is a nonnegative integer such that αm+1 = αm+2 =
αm+3 = · · · = 0. In particular, the partition (0, 0, 0, . . .) is thus identified with the
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empty sequence () (but also, for example, with (0, 0, 0)). We denote the latter
partition by ∅, and call it the empty partition.

We let Par denote the set of all partitions.
The Young diagram3 of a partition λ is defined to be the subset

{
(i, j) ∈N2

+ | j ≤ λi
}

of N2
+. It is denoted by Y (λ), and has size |Y (λ)| = λ1 + λ2 + λ3 + · · · = |λ|.

We draw every subset of N2
+ (for example, the Young diagram of a partition)

as a set of boxes in the plane, according to the following convention (known as
the English notation, or also as the matrix notation): We imagine an infinite table,
whose rows are labelled 1, 2, 3, . . . (from left to right) and whose columns are
labelled 1, 2, 3, . . . as well (from top to bottom). We represent every element (i, j)
of N2

+ as a box in this table – namely, as the box at the intersection of row i with
column j. In order to draw a subset Z of N2

+, we simply chart (the borders of)
the boxes corresponding to all the (i, j) ∈ Z. For instance, the Young diagram of
the partition (4, 2, 1) is the subset {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (2, 1) , (2, 2) , (3, 1)}

of N2
+, and we draw it as . We refer to elements of N2

+ as cells

(since we draw them as boxes in the plane). (Our convention for drawing Young
diagrams is identical with that in [Fulton97] and in [GriRei15].)

If µ and λ are two partitions, then we say that µ ⊆ λ if and only if every
i ∈ N+ satisfies µi ≤ λi. Equivalently, µ ⊆ λ if and only if Y (µ) ⊆ Y (λ).
This defines a partial order ⊆ on the set Par of all partitions. A skew partition
shall denote a pair (µ, λ) of two partitions µ and λ satisfying µ ⊆ λ; this pair
will also be denoted by λ/µ. Given a skew partition λ/µ, we define the (skew)
Young diagram Y (λ/µ) of this skew partition to be the subset Y (λ) \Y (µ) of N2

+.
Again, this Young diagram is drawn as above; for instance, the Young diagram

of (4, 3, 1) / (2, 1) is .

A subset Z of N2
+ is said to be convex if it has the following property: If

(i, j) ∈ Z, (i′, j′) ∈ N2
+ and (i′′, j′′) ∈ Z are such that i ≤ i′ ≤ i′′ and j ≤ j′ ≤ j′′,

then (
i′, j′

)
∈ Z. (1)

It is clear that the Young diagram Y (λ/µ) is convex whenever λ/µ is a skew
partition. It is easy to show that, conversely, every finite convex subset of N2

+
has the form Y (λ/µ) for some skew partition λ/µ.

If Z is a subset of N2
+ (for instance, a Young diagram), then a filling of Z means

a map T : Z → N+. Such a filling can be visually represented by drawing the
elements of Z as boxes (following the convention above) and, for every c ∈ Z,

3also known as the Ferrers diagram
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inserting the value T (c) into the box corresponding to c. For instance,
3 2

4

2

is

one possible filling of Y ((2, 1, 1)); formally speaking, it is the map Y ((2, 1, 1))→
N+ which sends (1, 1), (1, 2), (2, 1) and (3, 1) to 3, 2, 4 and 2, respectively. When
T is a filling of Z and when c is a cell in Z, we refer to the integer T (c) ∈N+ as
the entry of T in the cell c. For varying c, these integers are called the entries of
T.

Given a finite convex subset Z of N2
+, we define a reverse plane partition of shape

Z to be a filling T : Z →N2
+ of Z satisfying the following two requirements:

• The entries of T are weakly increasing along rows (speaking in terms of the
picture). In more precise terms: If (i, j) and (i, j′) are two elements of Z
such that j < j′, then T (i, j) ≤ T (i, j′).

• The entries of T are weakly increasing down columns. In more precise terms:
If (i, j) and (i′, j) are two elements of Z such that i < i′, then T (i, j) ≤
T (i′, j).

Generally, a reverse plane partition is defined to be a map which is a reverse
plane partition of shape Z for some finite convex subset Z of N2

+. Notice that Z
is uniquely determined by the map (in fact, it is the domain of the map).

We shall abbreviate the term “reverse plane partition” as “rpp”. For instance,
3 3

2 3

3 4

is an rpp of shape Y ((3, 2, 2) / (1)).

A well-known class of rpps are the semistandard tableaux (also known as column-
strict tableaux). To define this class, it is enough to change “weakly increasing
down columns” into “strictly increasing down columns” (and, correspondingly,
change “T (i, j) ≤ T (i′, j)” into “T (i, j) < T (i′, j)”) in the above definition of an

rpp. For instance,
3 3

2 3

3 4

is not a semistandard tableau due to having two 3’s

in its second column, but
3 3

2 4

3 7

is a semistandard tableau. Semistandard

tableaux have been studied for decades; an exposition of their properties and
applications can be found in Fulton’s [Fulton97].

Remark 2.1. Let λ/µ be a skew partition. What we call a semistandard tableau
of shape Y (λ/µ) is usually called a semistandard tableau of shape λ/µ. (How-
ever, unlike the “semistandard tableaux” defined by some other authors, our
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semistandard tableaux of shape Y (λ/µ) do not “store” the skew partition
λ/µ as part of their data.)

2.2. Symmetric functions

We now come to the algebraic part of our definitions.
We let k be an arbitrary commutative ring with unity.4 We consider the

ring k [[x1, x2, x3, . . .]] of formal power series in countably many indeterminates
x1, x2, x3, . . .. Given a weak composition α, we let xα be the monomial xα1

1 xα2
2 xα3

3 · · · .
A formal power series f ∈ k [[x1, x2, x3, . . .]] is said to be bounded-degree if

there exists an N ∈N such that every monomial xα which occurs (with nonzero
coefficient) in f satisfies |α| ≤ N. (Notice that |α| is the degree of xα.) The
set of all bounded-degree power series in k [[x1, x2, x3, . . .]] is a k-subalgebra of
k [[x1, x2, x3, . . .]], and will be denoted by k [[x1, x2, x3, . . .]]bdd.

We let S(∞) denote the group of all permutations π of the set N+ such that
all but finitely many i ∈ N+ satisfy π (i) = i. This is a subgroup of the group
S∞ of all permutations of N+. The group S(∞) is generated by the subset
{s1, s2, s3, . . .}, where each si is the transposition (i, i + 1). 5 The group S∞
(and thus, also its subgroup S(∞)) acts on the set of all weak compositions by
the rule

π · (α1, α2, α3, . . .) =
(

απ−1(1), απ−1(2), απ−1(3), . . .
)

for every π ∈ S∞ and
every weak composition (α1, α2, α3, . . .) .

A formal power series f ∈ k [[x1, x2, x3, . . .]] is said to be symmetric if it has the
following property: Whenever α and β are two weak compositions in the same
S(∞)-orbit, the coefficients of f before xα and before xβ are equal.6

The symmetric functions over k are defined to be the symmetric bounded-
degree power series f ∈ k [[x1, x2, x3, . . .]]. They form a k-subalgebra of k [[x1, x2, x3, . . .]].
This k-subalgebra is called the ring of symmetric functions over k; it will be de-
noted by Λ or (when k is not clear from the context) by Λk. (The reader shall be
warned that [LamPyl07] denotes this k-algebra by Sym, while using the nota-
tion Λ for the set which we call Par.) Symmetric functions are a classical field of
research, and are closely related to Young diagrams and tableaux; see [Stan99,
Chapter 7], [Macdon95] and [GriRei15, Chapter 2] for expositions.

Another equivalent way to define the notion of symmetric functions is the
following: The group S∞ acts k-linearly and continuously on the k-module

4Many authors, such as those of [LamPyl07], set k = Z.
5To prove this result, it is enough to notice that the finite symmetric groups Sn for all n ∈ N

can be canonically embedded into S(∞), and S(∞) becomes their direct limit.
6Notice that this definition does not change if S(∞) is replaced by S∞. But it is customary (and

useful to our purposes) to define it using S(∞).
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k [[x1, x2, x3, . . .]] by the rule

πxα = xπ·α for every π ∈ S∞ and every weak composition α.

The subgroup S(∞) of S∞ thus also acts on k [[x1, x2, x3, . . .]] by restriction. Both
S∞ and S(∞) preserve the k-submodule k [[x1, x2, x3, . . .]]bdd, and thus act on
k [[x1, x2, x3, . . .]]bdd as well. Now,

Λ = (k [[x1, x2, x3, . . .]]bdd)
S∞ = (k [[x1, x2, x3, . . .]]bdd)

S(∞) .

2.3. Schur functions

Given a subset Z of N2
+ and a filling T of Z, we define a weak composition

cont (T) by setting

(cont (T))i =
∣∣∣T−1 (i)

∣∣∣ = (the number of entries of T equal to i)

for every i ∈N+.

We call cont (T) the content of T. Notice that xcont(T) = ∏
c∈Z

xT(c).

Given a skew partition λ/µ, we define the Schur function sλ/µ to be the formal
power series ∑

T is a semistandard
tableau of shape Y(λ/µ)

xcont(T). A nontrivial property of these Schur

functions is that they are symmetric:

Proposition 2.2. We have sλ/µ ∈ Λ for every skew partition λ/µ.

This result appears, e.g., in [Stan99, Theorem 7.10.2] and [GriRei15, Propo-
sition 2.11]; it is commonly proven bijectively using the so-called Bender-Knuth
involutions. We shall recall the definitions of these involutions in Section 6.

One might attempt to replace “semistandard tableau” by “rpp” in the defini-
tion of a Schur function. However, the resulting power series are (in general) no
longer symmetric (for instance, ∑

T is an rpp
of shape Y((2,1))

xcont(T) /∈ Λ). Nevertheless, Lam

and Pylyavskyy [LamPyl07, §9] have noticed that it is possible to define sym-
metric functions from rpps, albeit it requires replacing the content cont (T) by a
subtler construction. Let us now discuss their definition.

2.4. Dual stable Grothendieck polynomials

If Z is a convex subset of N2
+, if T is a filling of Z, and if k ∈N+, then:

• The k-th column of T will mean the sequence of all entries of T in cells of
the form (i, k) with i ∈N+ (in the order of increasing i).

7
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• The k-th row of T will mean the sequence of all entries of T in cells of the
form (k, i) with i ∈N+ (in the order of increasing i).

Notice that (due to Z being convex) there are no “gaps” in these rows and
columns: If Z is a convex subset of N2

+, and if k ∈N+, then the positive integers
i satisfying (i, k) ∈ Z form a (possibly empty) interval, and so do the positive
integers i satisfying (k, i) ∈ Z.

If Z is a convex subset of N2
+, and if T is a filling of Z, then we define a weak

composition ircont (T) by setting

(ircont (T))i = (the number of k ∈N+ such that the k-th column of T contains i)
for every i ∈N+.

(In more colloquial terms, (ircont (T))i is the number of columns of T which
contain i.) We refer to ircont (T) as the irredundant content of T. For instance, if

T =

3 3

2 3

3 4

, then ircont (T) = (0, 1, 3, 1, 0, 0, 0, . . .) (since 1 is contained in 0

columns of T, while 2 is contained in 1 column, 3 in 3 columns, etc.).
Notice that

ircont (T) = cont (T) if T is a semistandard tableau. (2)

Indeed, (2) follows by noticing that in every given column of a semistandard
tableau, every positive integer occurs at most once.

For the rest of this section, we fix a skew partition λ/µ. Now, the dual stable
Grothendieck polynomial gλ/µ is defined to be the formal power series

∑
T is an rpp

of shape Y(λ/µ)

xircont(T).

It is easy to see that gλ/µ is a well-defined formal power series (i.e., the in-
finite sum ∑

T is an rpp
of shape Y(λ/µ)

xircont(T) converges in the usual topology on the ring

k [[x1, x2, x3, . . .]]). 7 Unlike the Schur function sλ/µ, it is (in general) not ho-
mogeneous, because whenever a column of an rpp T contains an entry several
times, the corresponding monomial xircont(T) “counts” this entry only once. It is
fairly clear that the highest-degree homogeneous component of gλ/µ is sλ/µ (the
component of degree |λ| − |µ|). Therefore, gλ/µ can be regarded as an inhomo-
geneous deformation of the Schur function sλ/µ.

Lam and Pylyavskyy, in [LamPyl07, §9.1], have shown the following fact:

7Be warned that gλ/µ is (despite its name) not a polynomial (barring trivial cases).
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Proposition 2.3. We have gλ/µ ∈ Λ for every skew partition λ/µ.

They prove this proposition using generalized plactic algebras [FomGre06,
Lemma 3.1] (and also give a second, combinatorial proof for the case µ = ∅ by
explicitly expanding gλ/∅ as a sum of Schur functions).

In the next section, we shall introduce a refinement of these gλ/µ, and later we
will reprove Proposition 2.3 in a self-contained and elementary way.

3. Refined dual stable Grothendieck polynomials

3.1. Definition

We fix arbitrary elements t1, t2, t3, . . . of k. (For instance, k can be a polynomial
ring in infinitely many variables over another ring m, and t1, t2, t3, . . . can then
be these variables.) For every weak composition α, we set tα = tα1

1 tα2
2 tα3

3 · · · ∈ k.
If Z is a subset of N2

+, and if T is a filling of Z, then a redundant cell of T
will mean a cell (i, j) of Z such that (i + 1, j) is also a cell of Z and satisfies
T (i, j) = T (i + 1, j). Notice that a semistandard tableau is the same thing as an
rpp which has no redundant cells8.

If Z is a subset of N2
+, and if T is a filling of Z, then we define a weak

composition ceq (T) by

(ceq (T))i = (the number of j ∈N+ such that (i, j) is a redundant cell of T)
(3)

for every i ∈N+.

(Visually speaking, (ceq (T))i is the number of columns of T whose entry in the
i-th row equals their entry in the (i + 1)-th row.) We call ceq (T) the column-
equalities counter of T. Notice that

|ceq (T)| = (the number of all redundant cells of T) (4)

for every rpp T. For instance, if T =

3 3

2 3

3 4

, then ceq (T) = (1, 0, 0, 0, . . .)

(since the 1-st and 2-nd rows of T have equal entries in one column, while for
every i > 1, the i-th and (i + 1)-th rows of T do not have equal entries in any
column).

8Proof. Recall that the difference between a semistandard tableau and an rpp is that the entries
of a semistandard tableau have to be strictly increasing down columns, whereas the entries of
an rpp have to be merely weakly increasing down columns. Thus, a semistandard tableau is
the same thing as an rpp whose every column has no adjacent equal entries. In other words,
a semistandard tableau is the same thing as an rpp which has no redundant cells (because
having two adjacent equal entries in a column is tantamount to having a redundant cell).
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Let now λ/µ be a skew partition. We set

g̃λ/µ = ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T).

This g̃λ/µ is a well-defined formal power series in k [[x1, x2, x3, . . .]] 9, and
moreover belongs to k [[x1, x2, x3, . . .]]bdd (since |ircont (T)| ≤ |Y (λ/µ)| = |λ| −
|µ| for every rpp T of shape Y (λ/µ)).

Let us give some examples of g̃λ/µ.

Example 3.1. (a) Let n ∈ N, let λ = (n) and let µ = ∅. Then, the rpps
T of shape Y (λ/µ) have the form a1 a2 · · · an with a1 ≤ a2 ≤ · · · ≤ an.

Each such rpp T satisfies ceq (T) = ∅ and xircont(T) = xa1 xa2 · · · xan . Thus, the
definition of g̃λ/µ yields

g̃λ/µ = ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) = ∑
a1≤a2≤···≤an

t∅︸︷︷︸
=1

xa1 xa2 · · · xan

= ∑
a1≤a2≤···≤an

xa1 xa2 · · · xan .

This is the so-called n-th complete homogeneous symmetric function hn.
(b) Let now n ∈ N, let λ = (1, 1, . . . , 1)︸ ︷︷ ︸

n times

and let µ = ∅. Then, the rpps

T of shape Y (λ/µ) have the form

a1

a2
...

an

with a1 ≤ a2 ≤ · · · ≤ an. Each such

rpp T satisfies tceq(T) = ∏
i∈{1,2,...,n};

ai=ai+1

ti and xircont(T) = ∏
i∈{1,2,...,n};

ai<ai+1

xi, where we

set an+1 = ∞ in order to simplify our notations. Thus, the definition of g̃λ/µ

9Proof. We need to show that the infinite sum ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) converges with re-

spect to the standard topology on k [[x1, x2, x3, . . .]]. In other words, we need to show that
every monomial xα occurs only finitely often in this sum. But this is fairly clear: Given a
monomial xα, there exist only finitely many i ∈ N+ satisfying αi > 0. These finitely many i
are the only entries that can occur in an rpp T of shape Y (λ/µ) which satisfies ircont (T) = α.
Hence, there are only finitely many such rpps. This means that there are only finitely many
terms in the sum ∑

T is an rpp
of shape Y(λ/µ)

tceq(T)xircont(T) in which the monomial xα occurs, qed.

10
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yields

g̃λ/µ = ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) = ∑
a1≤a2≤···≤an

 ∏
i∈{1,2,...,n};

ai=ai+1

ti


 ∏

i∈{1,2,...,n};
ai<ai+1

xi


=

n

∑
k=0

ek (t1, t2, . . . , tn−1) en−k (x1, x2, x3, . . .) ,

where ei (ξ1, ξ2, ξ3, . . .) denotes the i-th elementary symmetric function in the
indeterminates ξ1, ξ2, ξ3, . . .. It is possible to rewrite this as

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .) .

(c) Let now n = 3, let λ = (2, 1) and let µ = ∅. Then, the rpps T of shape

Y (λ/µ) have the form
a b
c

with a ≤ b and a ≤ c. Each such rpp T satisfies

tceq(T) =

{
1, if a < c;
t1, if a = c and xircont(T) =

{
xaxbxc, if a < c;

xaxb, if a = c . Thus,

g̃λ/µ = ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) = ∑
a≤b; a≤c

{
1, if a < c;
t1, if a = c

{
xaxbxc, if a < c;

xaxb, if a = c

= ∑
a≤b; a<c

xaxbxc + t1 ∑
a≤b

xaxb.

The power series g̃λ/µ generalize the power series gλ/µ and sλ/µ studied be-
fore:

Proposition 3.2. Let λ/µ be a skew partition.
(a) If (t1, t2, t3, . . .) = (1, 1, 1, . . .), then g̃λ/µ = gλ/µ.
(b) If (t1, t2, t3, . . .) = (0, 0, 0, . . .), then g̃λ/µ = sλ/µ.

Proof of Proposition 3.2. (a) Let (t1, t2, t3, . . .) = (1, 1, 1, . . .). Then, tα = 1 for every
weak composition α. Thus, tceq(T) = 1 for every rpp T. Now, the definition of
g̃λ/µ yields g̃λ/µ = ∑

T is an rpp
of shape Y(λ/µ)

tceq(T)︸ ︷︷ ︸
=1

xircont(T) = ∑
T is an rpp

of shape Y(λ/µ)

xircont(T) = gλ/µ.

This proves Proposition 3.2 (a).
(b) Let (t1, t2, t3, . . .) = (0, 0, 0, . . .). Then, if T is an rpp which has at least one

redundant cell, then tceq(T) = 0 (because ceq (T) has at least one nonzero entry
in this case). Therefore, the sum ∑

T is an rpp
of shape Y(λ/µ)

tceq(T)xircont(T) does not change if

11
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we discard all addends for which T has at least one redundant cell. Thus,

∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) = ∑
T is an rpp

of shape Y(λ/µ);
T has no redundant cells

tceq(T)xircont(T)

= ∑
T is a semistandard

tableau of shape Y(λ/µ)

tceq(T)xircont(T)

(since a semistandard tableau of shape Y (λ/µ) is the same thing as an rpp of
shape Y (λ/µ) which has no redundant cells). Now, the definition of g̃λ/µ yields

g̃λ/µ = ∑
T is an rpp

of shape Y(λ/µ)

tceq(T)xircont(T) = ∑
T is a semistandard

tableau of shape Y(λ/µ)

tceq(T)︸ ︷︷ ︸
=1

(since ceq(T)=∅)

xircont(T)︸ ︷︷ ︸
=xcont(T)
(by (2))

= ∑
T is a semistandard

tableau of shape Y(λ/µ)

xcont(T) = sλ/µ.

3.2. The symmetry statement

Our main result is now the following:

Theorem 3.3. Let λ/µ be a skew partition. Then, g̃λ/µ ∈ Λ.

It is clear that Proposition 2.2 and Proposition 2.3 are particular cases of The-
orem 3.3 (due to Proposition 3.2).

We shall prove Theorem 3.3 bijectively. The core of our proof will be the
following fact:

Theorem 3.4. Let λ/µ be a skew partition. Let i ∈N+. Let RPP (λ/µ) denote
the set of all rpps of shape Y (λ/µ). Then, there exists an involution Bi :
RPP (λ/µ) → RPP (λ/µ) which has the following property: For every T ∈
RPP (λ/µ), we have

ceq (Bi (T)) = ceq (T) (5)

and
ircont (Bi (T)) = si · ircont (T) . (6)

10 (Here, si · ircont (T) means the result of the transposition si = (i, i + 1) ∈
S(∞) acting on the weak composition ircont (T).)

This involution Bi is a generalization of the i-th Bender-Knuth involution de-
fined for semistandard tableaux (see, e.g., [GriRei15, proof of Proposition 2.11]),

10We notice that the equality (6) says the following:

12
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but its definition is more complicated than that of the latter.11 Defining it and
proving its properties will take a significant part of this paper.

Let us first see how Theorem 3.4 implies Theorem 3.3:

Proof of Theorem 3.3 using Theorem 3.4. We know that g̃λ/µ ∈ k [[x1, x2, x3, . . .]]bdd.
Hence, in order to prove that g̃λ/µ ∈ Λ, it is enough to prove that g̃λ/µ is invari-
ant under the action of S(∞) (since Λ = (k [[x1, x2, x3, . . .]]bdd)

S(∞)). To show
this, it is enough to prove that g̃λ/µ is invariant under the action of si ∈ S(∞) for
every i ∈N+ (because the group S(∞) is generated by the subset {s1, s2, s3, . . .}).
In other words, it is enough to prove that si · g̃λ/µ = g̃λ/µ for every i ∈ N+. So
let us prove this.

Fix i ∈ N+. Theorem 3.4 gives us an involution Bi : RPP (λ/µ) → RPP (λ/µ)
satisfying the property described in Theorem 3.4. Now, the definition of g̃λ/µ

yields g̃λ/µ = ∑
T∈RPP(λ/µ)

tceq(T)xircont(T), so that

si · g̃λ/µ = ∑
T∈RPP(λ/µ)

tceq(T)
(

si · xircont(T)
)

︸ ︷︷ ︸
=xsi ·ircont(T)

= ∑
T∈RPP(λ/µ)

tceq(T)xsi·ircont(T).

Compared with

g̃λ/µ = ∑
T∈RPP(λ/µ)

tceq(T)xircont(T) = ∑
T∈RPP(λ/µ)

tceq(Bi(T))︸ ︷︷ ︸
=tceq(T)

(by (5))

xircont(Bi(T))︸ ︷︷ ︸
=xsi ·ircont(T)

(by (6))(
here, we have substituted Bi (T) for T in the sum
(since Bi : RPP (λ/µ)→ RPP (λ/µ) is a bijection)

)
= ∑

T∈RPP(λ/µ)

tceq(T)xsi·ircont(T),

this yields si · g̃λ/µ = g̃λ/µ, and this completes our proof.

3.3. Reduction to 12-rpps

We shall make one further simplification before we step to the actual proof of
Theorem 3.4.

• The number of columns of Bi (T) containing the entry i equals the number of columns of
T containing the entry i + 1.

• The number of columns of Bi (T) containing the entry i + 1 equals the number of columns
of T containing the entry i.

• For every h ∈ N+ \ {i, i + 1}, the number of columns of Bi (T) containing the entry h
equals the number of columns of T containing the entry h.

11We will compare our involution Bi with the i-th Bender-Knuth involution in Section 6.
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We define a 12-rpp to be an rpp whose entries all belong to the set {1, 2}. For

instance,

1 1 2

1 2 2

1 2 2

1 1 2

is a 12-rpp of shape (5, 5, 4, 3) / (2, 2, 1).

Clearly, every column of a 12-rpp is a sequence of 1’s followed by a sequence
of 2’s (where each of these sequences can be empty). The same holds for every
row of a 12-rpp.

We now claim:

Lemma 3.5. Let Z be a finite convex subset of N2
+. Let R denote the set of

all 12-rpps of shape Z. Then, there exists an involution B : R → R (defined
canonically in terms of Z) which has the following property: For every S ∈ R,
the equalities

ceq (B (S)) = ceq (S) (7)

and
ircont (B (S)) = s1 · ircont (S) (8)

hold.

Before we prove this lemma, we will show how Theorem 3.4 can be derived
from this lemma. But first of all, let us rewrite the lemma as follows:

Lemma 3.6. Let Z be a finite convex subset of N2
+. Let i ∈N+. Let RZ denote

the set of all rpps of shape Z whose entries all belong to the set {i, i + 1}.
Then, there exists an involution BZ : RZ → RZ (defined canonically in terms
of Z) which has the following property: For every P ∈ RZ, the equalities

ceq (BZ (P)) = ceq (P) (9)

and
ircont (BZ (P)) = si · ircont (P) (10)

hold.

Proof of Lemma 3.6 using Lemma 3.5. The only difference between Lemma 3.5 and
Lemma 3.6 is that the entries 1 and 2 in Lemma 3.5 have been relabelled as i
and i + 1 in Lemma 3.6. Thus, the two lemmas are equivalent, so that the latter
follows from the former.

(More formally: Define R as in Lemma 3.5. Then, we can define a bijection
Φ : R → RZ as follows: For every T ∈ R, let Φ (T) be the filling of Z which
is obtained from T by replacing all 1’s and 2’s by i’s and (i + 1)’s, respectively.
Now, an involution BZ satisfying the claim of Lemma 3.6 can be constructed
from an involution B satisfying the claim of Lemma 3.5 by the formula BZ =
Φ ◦ B ◦Φ−1.)

14
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Proof of Theorem 3.4 using Lemma 3.6. Let us define a map Bi : RPP (λ/µ) →
RPP (λ/µ).

Indeed, let T ∈ RPP (λ/µ). Then, T−1 ({i, i + 1}) is a finite convex subset of
Y (λ/µ). We denote this subset by Z. Let RZ denote the set of all rpps of shape
Z whose entries all belong to the set {i, i + 1}. Lemma 3.6 yields that there exists
an involution BZ : RZ → RZ (defined canonically in terms of Z) which has the
following property: For every P ∈ RZ, the equalities (9) and (10) hold. Consider
this involution BZ. Clearly, T |Z∈ RZ. Hence, the involution BZ : RZ → RZ
gives rise to a BZ (T |Z) ∈ RZ. Now, we define a new filling T′ of Y (λ/µ) as
follows:

T′ (c) =
{

(BZ (T |Z)) (c) , if c ∈ Z;
T (c) , if c /∈ Z for every cell c of Y (λ/µ) .

In other words, T′ is obtained from T by:

• replacing all entries of the restriction T |Z (that is, all entries in cells c ∈ Z)
by the respective entries of BZ (T |Z), and

• leaving all other entries as they are.

Notice that T′ |Z= BZ (T |Z) and T′ |Y(λ/µ)\Z= T |Y(λ/µ)\Z. These two equal-
ities determine T′. It is easy to see that T′ is an rpp of shape Y (λ/µ). That is,
T′ ∈ RPP (λ/µ). We now define Bi (T) = T′. Thus, a map Bi : RPP (λ/µ) →
RPP (λ/µ) is defined.

The reader can easily verify that this map Bi is an involution, and that every
T ∈ RPP (λ/µ) satisfies (5) and (6). (Essentially, these properties follow from the
analogous properties of the map BZ, once one realizes that every T ∈ RPP (λ/µ)
satisfies

(Bi (T))
−1 ({i, i + 1}) = T−1 ({i, i + 1}) ,

ceq (T) = ceq (T |Z) + ceq
(

T |Y(λ/µ)\Z

)
and

ircont (T) = ircont (T |Z) + ircont
(

T |Y(λ/µ)\Z

)
︸ ︷︷ ︸

This composition is invariant under si
(because its i-th and (i+1)-th entries are zero).

.

)
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Example 3.7. Let us give an example of how Bi acts on an rpp. Assume for
this example that λ = (9, 8, 8, 7) and µ = (4, 3, 2, 1), and let T be the filling

1 3 3 4 5

1 1 3 4 6

1 2 3 4 5 6

1 1 2 3 4 8

(there is an invisible empty 1-st column here). Set i = 3. Then, Z =
T−1 ({i, i + 1}) is the set

{(1, 6) , (1, 7) , (1, 8) , (2, 6) , (2, 7) , (3, 5) , (3, 6) , (4, 5) , (4, 6)} .

The rpp T |Z is
3 3 4

3 4

3 4

3 4

(with the first four columns being empty and invisible). We have not defined
BZ yet, but let us assume that BZ maps this rpp T |Z to

BZ (T |Z) =

3 3 3

3 4

4 4

4 4

.

(This is, in fact, what the map BZ defined below does to T |Z.) Then, Bi (T)
is obtained from T by replacing the entries of T |Z by the respective entries of
BZ (T |Z), while leaving all other entries as they are. Thus,

Bi (T) =

1 3 3 3 5

1 1 3 4 6

1 2 4 4 5 6

1 1 2 4 4 8

.
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4. A diamond lemma

4.1. The lemma

By now we have derived Theorem 3.4 from Lemma 3.6, and Lemma 3.6 from
Lemma 3.5. In order to complete the puzzle, we need to prove Lemma 3.5. To
do so, let us first state a simple lemma.

Lemma 4.1. Let S be a finite set. Let ` : S → N be a map. Let V be a binary
relation on the set S. (We shall write this relation in infix form; i.e., we will
write “a V b” to mean “(a, b) belongs to the relation V”.)

Define a new binary relation
∗
V on S (also written in infix form) as follows:

For two elements a ∈ S and b ∈ S, we set a
∗
V b if and only if there exists

a sequence (a0, a1, . . . , an) of elements of S such that a0 = a and an = b and
such that every i ∈ {0, 1, . . . , n− 1} satisfies ai V ai+1. 12 (In other words,

we define
∗
V as the reflexive-and-transitive closure of the relation V.)

Assume that the following two hypotheses are true:

• The local confluence hypothesis: If a, b and c are three elements of S satis-

fying a V b and a V c, then there exists a d ∈ S such that b
∗
V d and

c
∗
V d.

• The length-decrease hypothesis: If a ∈ S and b ∈ S are two elements satis-
fying a V b, then ` (a) > ` (b).

We say that an element a ∈ S is final if there exists no b ∈ S satisfying a V b.
Then, for every a ∈ S, there exists a unique final element b ∈ S such that

a
∗
V b.

Lemma 4.1 is an easy particular case of what is called Newman’s lemma (see,
e.g., [BezCoq03], or [BaaNip98, Lemma 2.7.2 + Fact 2.1.7]).13 (Some authors refer
to Newman’s lemma as the diamond lemma, but the latter name is shared with at
least one different fact.)

For the sake of completeness, we shall give the simple proof of Lemma 4.1.

Proof of Lemma 4.1. The relation
∗
V is the reflexive-and-transitive closure of the

relation V. This yields the following properties (all of which are easy to check):

12Notice that n is allowed to be 0 here.
13In the general version, the finiteness of S and the length-decrease hypothesis are replaced by a

requirement that there exist no infinite sequences (a0, a1, a2, . . .) ∈ S∞ such that every i ∈ N

satisfies ai V ai+1. The proof of this generalization is harder than that of Lemma 4.1, and not
constructive. While there is a constructive reformulation of this generalization (presented in
[BezCoq03, Lemma 3.3]), we do not have a use for it in this paper.
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• The relation
∗
V is reflexive and transitive and extends the relation V.

• If a ∈ S and b ∈ S are elements satisfying a
∗
V b and a 6= b, then

there exists a c ∈ S such that a V c and c
∗
V b. (11)

• We have

` (a) ≥ ` (b) for any a ∈ S and b ∈ S satisfying a
∗
V b (12)

(because of the length-decrease hypothesis).

Now, we need to show that, for every a ∈ S,

there exists a unique final element b ∈ S such that a
∗
V b. (13)

Proof of (13): We shall prove (13) by strong induction over ` (a).
Induction step: Let N ∈ N. Assume (as the induction hypothesis) that (13) is

proven for every a ∈ S satisfying ` (a) < N. We need to prove that (13) holds for
every a ∈ S satisfying ` (a) = N.

Let a ∈ S be such that ` (a) = N. We need to show that (13) holds for this a.
If there exists no c ∈ S satisfying a V c, then (13) holds14. Hence, for the rest of

this proof, we WLOG assume that there exists some c ∈ S satisfying a V c. Let
us denote this c by c1. Thus, c1 ∈ S and a V c1. Applying the length-decrease
hypothesis to b = c1, we thus obtain ` (a) > ` (c1), so that ` (c1) < ` (a) = N.
Thus, we can apply (13) to c1 instead of a (according to the induction hypothesis).
As a result, we conclude that there exists a unique final element b ∈ S such that

c1
∗
V b. Let us denote this b by b1. Thus, b1 is a final element of S such that

c1
∗
V b1.

Since a V c1, we have a
∗
V c1 (since the relation

∗
V extends the relation V).

Combining this with c1
∗
V b1, we obtain a

∗
V b1 (since the relation

∗
V is transi-

tive). Thus, there exists a final element b ∈ S such that a
∗
V b (namely, b = b1).

We shall now prove that such a b is unique.

Indeed, let b2 be any final element b ∈ S such that a
∗
V b. Thus, b2 is a final

element of S such that a
∗
V b2. We will prove that b2 = b1.

It is easy to see that a 6= b2 (because a V c1 shows that a is not final, but b2 is
final). Hence, (11) (applied to b = b2) yields that there exists a c ∈ S such that

14Proof. Assume that there exists no c ∈ S satisfying a V c. Then, a itself is final. Hence, there

exists a final element b ∈ S such that a
∗
V b (namely, b = a). This b is unique, because (11)

shows that every b ∈ S satisfying a
∗
V b and a 6= b would have to satisfy a V c for some

c ∈ S (which would contradict the fact that a is final). This proves (13).

18



Refined dual stable Grothendieck polynomials June 15, 2016

a V c and c
∗
V b2. Let us denote this c by c2. Then, c2 is an element of S such

that a V c2 and c2
∗
V b2.

The local confluence hypothesis (applied to c1 and c2 instead of b and c) shows

that there exists a d ∈ S such that c1
∗
V d and c2

∗
V d. Consider such a d.

Applying (12) to c1 and d instead of a and b, we obtain ` (c1) ≥ ` (d), so that
` (d) ≤ ` (c1) < N. Hence, we can apply (13) to d instead of a (according to the
induction hypothesis). As a result, we conclude that there exists a unique final

element b ∈ S such that d
∗
V b. Let us denote this b by e. Thus, e is a final

element of S such that d
∗
V e.

We have c1
∗
V d and d

∗
V e. Hence, c1

∗
V e (since the relation

∗
V is transitive).

Thus, e is a final element of S such that c1
∗
V e. In other words, e is a final

element b ∈ S such that c1
∗
V b. Since we already know that b1 is the unique

such element b (in fact, this is how we defined b1), this shows that e = b1.

We have c2
∗
V d and d

∗
V e. Hence, c2

∗
V e (since the relation

∗
V is transitive).

In other words, c2
∗
V b1 (since e = b1). Hence, b1 is a final element of S such that

c2
∗
V b1. In other words, b1 is a final element b ∈ S such that c2

∗
V b. Also, b2 is

a final element b ∈ S such that c2
∗
V b (since b2 is final and since c2

∗
V b2).

But applying the length-decrease hypothesis to b = c2, we obtain ` (a) > ` (c2)
(since a V c2), so that ` (c2) < ` (a) = N. Thus, we can apply (13) to c2 instead
of a (according to the induction hypothesis). As a result, we conclude that there

exists a unique final element b ∈ S such that c2
∗
V b. The “uniqueness” part of

this result gives us b2 = b1 (since both b2 and b1 are final elements b ∈ S such

that c2
∗
V b).

Now let us forget that we fixed b2. We thus have shown that if b2 is any final

element b ∈ S such that a
∗
V b, then b2 = b1. Hence, there exists at most one final

element b ∈ S such that a
∗
V b. As a consequence, there exists a unique final

element b ∈ S such that a
∗
V b (because we already know that there exists such a

b). In other words, (13) holds. This completes the induction step. The induction
proof of (13) is thus complete. In other words, Lemma 4.1 is proven.

4.2. Example: Sorting n-tuples by local transpositions

Let us give a simple example of an application of Lemma 4.1. This example
(which will take up the whole Subsection 4.2) will not be used in the rest of the
paper, but it serves as a kind of prototype that our proof of Lemma 3.5 imitates,
and so might help clarifying the latter proof.

All of the definitions and conventions that will be made in this Subsection 4.2
are supposed to stand only for this Subsection. (In particular, the meanings of
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the letter S and the symbol V will later be used for completely different things.)
For the rest of Subsection 4.2, we fix n ∈N, and we fix a poset P.
For any n-tuple z ∈ Pn and every i ∈ {1, 2, . . . , n}, we use the notation zi to

denote the i-th entry of z. (Thus, z = (z1, z2, . . . , zn) for every z ∈ Pn.)
Before we go into further details, let us informally explain what we will prove

in the following. Imagine that we start with some n-tuple z = (z1, z2, . . . , zn) of
elements of P, and we want to “sort it in nondecreasing order”. We do this by re-
peatedly picking an index k ∈ {1, 2, . . . , n− 1} satisfying zk > zk+1, and switch-
ing the entries zk and zk+1 in the tuple, and continuing in the same way until we
can no longer find such a k. 15 It is easy to see that this process will eventually
terminate, leaving behind an n-tuple z such that no k ∈ {1, 2, . . . , n− 1} satisfies
zk > zk+1 (although, in general, it will not satisfy z1 ≤ z2 ≤ · · · ≤ zn, as P is
only partially ordered). But a priori, it is not clear whether this resulting n-tuple
could depend on the choices we made in the “sorting” process16. It turns out
that it does not, but this is not completely trivial. We shall now formalize this
fact. We prefer not to talk about processes, nor to regard z as mutable; instead,
we will introduce a binary relation on the set of all permutations of a given
n-tuple, which will model the idea of a “step” of our “sorting” process.

For every k ∈ {1, 2, . . . , n− 1}, let sk be the transposition (k, k + 1) ∈ Sn. The
group Sn acts on Pn by permuting the coordinates:

σ · z =
(

zσ−1(1), zσ−1(2), . . . , zσ−1(n)

)
for all σ ∈ Sn and z ∈ Pn.

In particular, for each k ∈ {1, 2, . . . , n− 1} and z ∈ Pn, the n-tuple sk · z is ob-
tained from z by switching the k-th and the (k + 1)-th entries.

15Here is an example: If P is the four-element poset {a, b, c, d} with relations a < b < d and
a < c < d, if n = 6, and if z = (d, b, d, c, a, b), then our sorting process can look as follows:(

d, b, d, c, a, b
)
→
(
b, d, d, c, a, b

)
→
(
b, d, c, d, a, b

)
→
(
b, c, d, d, a, b

)
→
(
b, c, d, a, d, b

)
→
(
b, c, a, d, d, b

)
→
(
b, a, c, d, d, b

)
→
(
a, b, c, d, d, b

)
→
(
a, b, c, d, b, d

)
→ (a, b, c, b, d, d)

(where an underline under two adjacent entries of a tuple means that these entries are going
to be switched in the next step). The final result (a, b, c, b, d, d) is “sorted” in the sense that
we can no longer find a k ∈ {1, 2, . . . , n− 1} such that zk > zk+1.

We notice that we had some freedom in performing our sorting process: e.g., we could
have started out by switching the d with the c in the (d, b, d, c, a, b) rather than by switching
the d with the b.

This is similar to the bubble sort algorithm, but there are two differences: Firstly, P is
now a poset, not a totally ordered set (so we cannot hope to get our n-tuple z to satisfy
z1 ≤ z2 ≤ · · · ≤ zn in the end). Secondly, we are allowed to pick an index k ∈ {1, 2, . . . , n− 1}
satisfying zk > zk+1 arbitrarily (so our process is nondeterministic), rather than having to scan
the n-tuple from left to right (in multiple passes) as in the classical bubble sort algorithm.

16Namely, at every step of our process, we had to choose an index k ∈ {1, 2, . . . , n− 1} satisfying
zk > zk+1. Whenever this index k was not unique, we had freedom in choosing one of them
to start with. These choices have an effect on the “sorting” process, and so it would not be
surprising if the final result would depend on them too.
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Definition 4.2. Fix w ∈ Pn. Let S be the set of all permutations of w. Clearly,
S is a finite set (having at most n! elements). Moreover, S is an Sn-subset of
the Sn-set Pn.

Let us define a binary relation V on this set S as follows: Let a ∈ S and
b ∈ S. If k ∈ {1, 2, . . . , n− 1}, then we write a V

k
b if and only if ak > ak+1 and

b = sk · a. We write a V b if and only if there exists an k ∈ {1, 2, . . . , n− 1}
such that a V

k
b. (In other words, we write a V b if and only if the n-tuple

b can be obtained from a by switching two adjacent entries which are out of
order in a. Here, we say that two entries of a are out of order if the left one is
greater than the right one.) Thus, the relation V is defined.

For example, if n = 5, P = Z and w = (3, 1, 6, 3, 5), then (1, 6, 3, 5, 3) V
2

(1, 3, 6, 5, 3) (and thus (1, 6, 3, 5, 3) V (1, 3, 6, 5, 3)) but not (1, 6, 3, 5, 3) V
3
(1, 6, 5, 3, 3)

(since we required ak > ak+1 when defining a V
k

b).

We define a binary relation
∗
V on S as in Lemma 4.1. This relation

∗
V is

the reflexive-and-transitive closure of the relation V. Thus, the relation
∗
V is

reflexive and transitive and extends the relation V.
We also define the notion of a “final” element of S as in Lemma 4.1. Now, it

is easy to see that an element u ∈ S is final if and only if no k ∈ {1, 2, . . . , n− 1}
satisfies uk > uk+1.

Now, we claim:

Proposition 4.3. For every a ∈ S, there exists a unique final element b ∈ S

such that a
∗
V b.

In words, Proposition 4.3 says that if we start with some n-tuple a ∈ S and
repeatedly switch adjacent entries of a which are out of order, then the procedure
eventually terminates (i.e., eventually we will arrive at an n-tuple which has no
two adjacent entries that are out of order) and the resulting n-tuple does not
depend on the choices we made in the process (i.e., even if there were several
choices of adjacent entries to switch, they all lead to the same final result).17 The
only reason why we are working in S instead of the whole set Pn is that S is
always finite, which will make it easier for us to apply Lemma 4.1.

Remark 4.4. It is important that we are switching adjacent entries of a. If we
start with some n-tuple a ∈ S and repeatedly switch entries of a which are
out of order but not necessarily adjacent, then the result of this procedure
(once it has terminated) might well depend on our choices. (For instance, if
P is the poset {1, 2, 2′} with relations 1 < 2 and 1 < 2′, and if n = 3 and

17Strictly speaking, Proposition 4.3 does not really say that the procedure eventually terminates;
but this will follow from the length-decrease hypothesis in its proof below.
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a = (2, 2′, 1), then switching the first and the third entries leads to (1, 2′, 2),
whereas switching the second and the third entries and then switching the
first and the second entries yields (1, 2, 2′); and these two results are both
final and nevertheless distinct.)

Proposition 4.3 is rather obvious in the case when P is totally ordered (indeed,

in this case, the unique final element b ∈ S such that a
∗
V b will simply be

the n-tuple obtained by rearranging a in nondecreasing order). But let us prove
Proposition 4.3 in the general case using Lemma 4.1.

Proof of Proposition 4.3. If z ∈ Pn, then an inversion of z means a pair (i, j) ∈
{1, 2, . . . , n}2 with i < j and zi > zj. For instance, if n = 5 and P = Z (as posets,
where Z is equipped with the usual order), then the inversions of (3, 1, 6, 3, 5)
are (1, 2), (3, 4) and (3, 5).

Define a map ` : Pn →N as follows: For every z ∈ Pn, let ` (z) be the number

of inversions of z. Clearly, ` (z) ∈N and ` (z) ≤
(

n
2

)
.

We need to show that for every a ∈ S, there exists a unique final element b ∈ S

such that a
∗
V b. According to Lemma 4.1, it is enough to check that the local

confluence hypothesis and the length-decrease hypothesis are satisfied18.
Proof that the length-decrease hypothesis is satisfied: Let a ∈ S and b ∈ S be such

that a V b. Then, there exists a k ∈ {1, 2, . . . , n− 1} such that a V
k

b (since

a V b). Consider this k. We have a V
k

b; in other words, ak > ak+1 and b = sk · a.

In other words, the n-tuple b is obtained from a by switching the k-th and the
(k + 1)-th entry, which were out of order in a. Thus, the pair (k, k + 1) is an
inversion of a, but not an inversion of b. Furthermore, bsk(u) = au for every
u ∈ {1, 2, . . . , n} (since b = sk · a). Furthermore, for any (i, j) ∈ {1, 2, . . . , n}2

satisfying i < j, we have sk (i) < sk (j) if (i, j) 6= (k, k + 1) (this is easy to prove
by checking all possible cases). From the last two observations, we can easily
conclude that the inversions of b are precisely the pairs of the form (sk (i) , sk (j))
with (i, j) being an inversion of a satisfying (i, j) 6= (k, k + 1). Thus, the number
of inversions of b is one less than the number of inversions of a (because (k, k + 1)
is an inversion of a, and thus its exclusion lowers the count by 1). In other words,
` (b) = ` (a)− 1 (because ` (z) means the number of inversions of z whenever
z ∈ Pn). Thus, ` (a) > ` (b). Hence, the length-decrease hypothesis is proven.

Proof that the local confluence hypothesis is satisfied: Let a, b and c be three ele-
ments of S satisfying a V b and a V c. We need to show that there exists a d ∈ S

such that b
∗
V d and c

∗
V d.

We have a V b. In other words, the n-tuple b can be obtained from a by
switching two adjacent entries which are out of order in a. In other words, we

18Both of these hypotheses were stated in Lemma 4.1.
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can write a and b in the forms

a = (. . . , p, q, . . .) and b = (. . . , q, p, . . .) (14)

for some p ∈ P and q ∈ P satisfying p > q, where the “. . .” stand for strings19

of entries of a that appear unchanged in b. Similarly, we can write a and c in the
forms

a = (. . . , r, t, . . .) and c = (. . . , t, r, . . .) (15)

for some r ∈ P and t ∈ P satisfying r > t, where the “. . .” stand for strings of
entries of a that appear unchanged in c. Consider the p and q from (14), and the
r and t from (15). Also, let u and u + 1 be the positions of p and q in a in (14).
Furthermore, let v and v + 1 be the positions of r and t in a in (15).

We WLOG assume that u ≤ v, because otherwise we can simply switch b with
c (thus forcing u to switch with v). Moreover, we can WLOG assume that u 6= v

(because if u = v, then finding a d ∈ S such that b
∗
V d and c

∗
V d is trivial20).

Thus, u < v (since u ≤ v).
Let us now try to combine the representations (14) for a and b with the rep-

resentations (15) for a and c into a set of representations for a, b and c in which
both the changes from a to b and the changes from a to c are visible at the same
time. We must be in one of the following two cases:

Case 1: We have u < v− 1.
Case 2: We have u = v− 1.
Let us first consider Case 1. In this case, we can merge the representations (14)

and (15) as follows:

a = (. . . , p, q, . . . , r, t, . . .) , b = (. . . , q, p, . . . , r, t, . . .) , c = (. . . , p, q, . . . , t, r, . . .) ,

where the “. . .” stand for strings of entries of a that appear unchanged in both b

and c. Thus, we can find a d ∈ S such that b
∗
V d and c

∗
V d: namely, set

d = (. . . , q, p, . . . , t, r, . . .)

(where the “. . .” have the same meaning as before). Thus, the local confluence
hypothesis is proven in Case 1.

Let us now consider Case 2. In this case, u = v− 1. Hence, u + 1 = v. Now, q
is the (u + 1)-th entry of a, that is, the v-th entry of a (since u + 1 = v); but r is
also the v-th entry of a. Hence, q = r, so that p > q = r > t. Now, we can merge
the representations (14) and (15) as follows:

a = (. . . , p, q, t, . . .) , b = (. . . , q, p, t, . . .) , c = (. . . , p, t, q, . . .) ,

19These strings are allowed to be empty.
20Proof. Assume that u = v. Thus, the p and q in (14) appear in the same positions as the r

and t in (15). Hence, both b and c are obtained from a in one and the same way (namely, by
switching the entries in these positions). Hence, b = c. Thus, we can find a d ∈ S such that

b
∗
V d and c

∗
V d just by setting d = b = c, qed.
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where the “. . .” stand for strings of entries of a that appear unchanged in both b
and c. Let us now set

e = (. . . , q, t, p, . . .) , f = (. . . , t, p, q, . . .) , d = (. . . , t, q, p, . . .)

(where the “. . .” have the same meaning as before). Then, b V e and e V d; thus,

b
∗
V d (since

∗
V is the reflexive-and-transitive closure of V). Also, c V f and

f V d; thus, c
∗
V d (since

∗
V is the reflexive-and-transitive closure of V). Hence,

we have found a d ∈ S such that b
∗
V d and c

∗
V d. Thus, the local confluence

hypothesis is proven in Case 2 as well.
The local confluence hypothesis thus holds (because it is proven in both Cases

1 and 2).
We now know that both the local confluence hypothesis and the length-decrease

hypothesis are satisfied. This completes the proof of Proposition 4.3.

5. Proof of Lemma 3.5

We now come to the actual proof of Lemma 3.5. For the whole Section 5, we
shall be working in the situation of Lemma 3.5.

5.1. 12-tables and the four types of their columns

Let Z be a finite convex subset of N2
+. We shall keep Z fixed for the rest of

Section 5. Let R denote the set of all 12-rpps of shape Z.
A 12-table will mean a map T : Z → {1, 2} such that the entries of T are

weakly increasing down columns. (We do not require them to be weakly in-
creasing along rows.) Every column of a 12-table is a sequence of the form1, 1, . . . , 1︸ ︷︷ ︸

u times 1

, 2, 2, . . . , 2︸ ︷︷ ︸
v times 2

 with u ∈N and v ∈N. We say that such a sequence is

• 1-pure if it is nonempty and consists purely of 1’s (that is, u > 0 and v = 0);

• 2-pure if it is nonempty and consists purely of 2’s (that is, u = 0 and v > 0);

• mixed if it contains both 1’s and 2’s (that is, u > 0 and v > 0).

Consequently, every column of a 12-table is either empty or 1-pure or 2-pure
or mixed (and these four cases do not overlap).

Also, if s is a sequence of the form

1, 1, . . . , 1︸ ︷︷ ︸
u times 1

, 2, 2, . . . , 2︸ ︷︷ ︸
v times 2

 with u ∈ N

and v ∈ N, then we define the signature of s to be the nonnegative integer
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
0, if s is 2-pure or empty;

1, if s is mixed;
2, if s is 1-pure

. We denote this signature by sig (s). For any 12-

table T, we define a nonnegative integer ` (T) by

` (T) = ∑
h∈N+

h · sig (the h-th column of T) .

21 For instance, if T =

1 2 1 2

1 1 2

2 1 1 2

2 2

, then ` (T) = 1 · 0 + 2 · 1 + 3 · 2 + 4 ·

0 + 5 · 2 + 6 · 0 + 7 · 0 + 8 · 0 + · · · = 18.

5.2. Conflicts of 12-tables

If T is a 12-table, then we define a conflict of T to be a pair (i, j) of positive
integers satisfying i < j such that there exists an r ∈ N+ satisfying (r, i) ∈ Z,
(r, j) ∈ Z, T (r, i) = 2 and T (r, j) = 1. (Speaking visually, a conflict of T is a pair
(i, j) of positive integers such that the filling T has an entry 2 in column i lying
due west of an entry 1 in column j.) For instance, the conflicts of the 12-table

1 2 1 2

1 1 2

2 1 1 2

2 2

are (1, 2), (1, 3) and (4, 5).

(The notion of a conflict of T is in some sense analogous to that of an inversion
of z in Subsection 4.2.)

Clearly, a 12-rpp of shape Z is the same as a 12-table which has no conflicts.22

Proposition 5.1. Let T be a 12-table. Let a, b and c be positive integers such
that (a, b) and (b, c) are conflicts of T. Then, (a, c) also is a conflict of T.

Example 5.2. If T =

1

2 1 1

2 2 1

, then (1, 2) and (2, 3) are conflicts of T, and so

is (1, 3). One can notice that every row which “witnesses” the conflict (1, 2)
will also “witness” the conflict (1, 3) (where we say that the r-th row witnesses
a conflict (i, j) if and only if (r, i) ∈ Z, (r, j) ∈ Z, T (r, i) = 2 and T (r, j) = 1).

21This is well-defined, because all but finitely many h ∈N+ satisfy sig (the h-th column of T) =
0 (since for all but finitely many h ∈N+, the h-th column of T is empty).

22Indeed, the conflicts of a 12-table stem from the failures of its entries to be weakly increasing
along rows.
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Since we shall not use Proposition 5.1, we leave its proof (which is an instructive
exercise on the definition of conflicts and on the use of the convexity of Z) to the
reader.

Remark 5.3. Proposition 5.1 has an analogue for “non-conflicts”: Let T be a
12-table. Let a, b and c be positive integers such that (a, c) is a conflict of T
and such that a < b < c. Then, at least one of the pairs (a, b) and (b, c) is a
conflict of T. We shall not use this fact, however.

5.3. Benign 12-tables and separators

We say that a 12-table T is benign if there exists no conflict (i, j) of T such that
the i-th column of T and the j-th column of T both are mixed. (Remember that

columns are sequences.) For instance, the 12-table

1 1 2 1

1 1 1

1 2 1

1 2

2

is benign

(despite having (2, 3) and (4, 5) as conflicts), while the 12-table

1 1 2 1

1 1 1

1 2 1

1 2 2

2
is not (its conflict (2, 3) has the property that the 2-nd column and the 3-rd
column both are mixed). Notice that 12-rpps of shape Z are benign 12-tables,
but the converse is not true.

Let us give an alternative description of benign 12-tables. Namely, if T is a
12-table, and if k ∈ N+ is such that the k-th column of T is mixed, then we
define sepk T to be the smallest r ∈ N+ such that (r, k) ∈ Z and T (r, k) = 2.
23 (Speaking visually, the integer sepk T tells us at what row the 1’s end24 and
the 2’s begin in the k-th column of T. Or, more sloppily said, it separates the 1’s
from the 2’s in the k-th column of T; this is why we call it sepk T.) Thus, every
12-table T, every r ∈ N+ and every k ∈ N+ such that the k-th column of T is
mixed and such that (r, k) ∈ Z satisfy

T (r, k) =
{

1, if r < sepk T;
2, if r ≥ sepk T (16)

(because the k-th column of T is weakly increasing).

23Such an r exists since the k-th column of T contains at least one 2 (in fact, it is mixed).
24Our use of the words “end” and “begin” always assumes that we are reading the columns of

our 12-tables from top to bottom.
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If T is a 12-table, then we let seplist T denote the list of all values sepk T (in the
order of increasing k), where k ranges over all positive integers for which the k-th

column of T is mixed. For instance, if T =

1 1 1

2 1 1 2

1 2 1

2 2 2

, then sep1 T = 4

(since T (1, 4) = 2 and T (1, 3) = 1), and sep3 T = 4, and sep5 T = 2 (and there
are no other k ∈N+ for which sepk T is defined), so that seplist T = (4, 4, 2).

What do the numbers sepk T have to do with being benign?
It is easy to see that if T is a 12-table, and i and j are two positive integers such

that the i-th column of T and the j-th column of T both are mixed, then (i, j) is
a conflict of T if and only if we have i < j and sepi T < sepj T.

Hence, the definition of a “benign” 12-table rewrites as follows: A 12-table T
is benign if and only if there exists no pair (i, j) of positive integers such that the
i-th column of T and the j-th column of T both are mixed and such that i < j
and sepi T < sepj T. In other words, a 12-table T is benign if and only if the
list seplist T is weakly decreasing. We will refer to this fact as the “separational
definition of benignity”.

Let S denote the set of all benign 12-tables.25 Then, S is a finite set, and we
have R ⊆ S (since every 12-rpp of shape Z is a benign 12-table).

5.4. The flip map on benign 12-tables

We define a map flip : S → S as follows: Let T ∈ S; that is, let T be a benign
12-table. For every k ∈ N+ for which the k-th column of T is nonempty, we
transform the k-th column of T as follows:

• If this column is 1-pure, we replace all its entries by 2’s (so that it becomes
2-pure).

Otherwise, if this column is 2-pure, we replace all its entries by 1’s (so that
it becomes 1-pure).

Otherwise (i.e., if this column is mixed), we do not change it.

Once these transformations are made for all k, the resulting filling of Z is a
12-table which is still benign (because its mixed columns are precisely the mixed
columns of the original T). We define flip (T) to be this resulting benign 12-table.
Thus, the map flip : S→ S is defined.

25We recall that Z is fixed, and all 12-tables have to have Z as their domain.
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For example, if T =

1 1 2 1

1 1 1

1 2 1

1 2

2

, then flip (T) =

1 2 1 2

1 1 2

1 2 2

1 2

2

.

The following proposition gathers some easy properties of flip:

Proposition 5.4. (a) We have flip ◦flip = id (that is, the map flip is an involu-
tion).

(b) Let T be a benign 12-table. When T is transformed into flip (T), the 1-
pure columns of T become 2-pure columns of flip (T), and the 2-pure columns
of T become 1-pure columns of flip (T), while the mixed columns and the
empty columns do not change.

(c) For every benign 12-table T, we have

ceq (flip (T)) = ceq (T) (17)

and
ircont (flip (T)) = s1 · ircont (T) . (18)

Proof of Proposition 5.4. All of Proposition 5.4 is straightforward to prove. (The
equality (18) follows from observing that the k ∈ N+ for which the k-th column
of flip (T) contains 1 are precisely the k ∈ N+ for which the k-th column of T
contains 2, and vice versa.)

We notice that, when the map flip acts on a benign 12-table T, it transforms
every column of T independently. Thus, we have the following:

Remark 5.5. If P and Q are two benign 12-tables, and if i ∈N+ is such that

(the i-th column of P) = (the i-th column of Q) ,

then

(the i-th column of flip (P)) = (the i-th column of flip (Q)) .

5.5. Plan of the proof

Let us now briefly sketch the ideas behind the rest of the proof before we go
into them in detail. The map flip : S → S does not generally send 12-rpps to
12-rpps (i.e., it does not restrict to a map R→ R). However, we shall amend this
by defining a way to transform any benign 12-table into a 12-rpp by what we
call “resolving conflicts”. The process of “resolving conflicts” will be a stepwise
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process, and will be formalized in terms of a binary relation V on the set S
which we will soon introduce. The intuition behind saying “P V Q” is that the
benign 12-table P has a “resolvable” conflict, resolving which yields the benign
12-table Q. By “resolvable conflict”, we mean a conflict (i, j) with j = i + 1.
(The relation V is similar to the relation V from Subsection 4.2. “Resolving”
a resolvable conflict in a benign 12-table P is an analogue of switching two
adjacent entries of an n-tuple z which are out of order.) Starting with a benign
12-table P, we can repeatedly resolve “resolvable” conflicts until this is no longer
possible26. We have some freedom in performing this process, because at any
step there can be a choice of several resolvable conflicts to resolve; but we will see
(using Lemma 4.1) that the final result does not depend on the process. Hence,
the final result can be regarded as a function of P. We will denote it by norm P,
and we will see that it is a 12-rpp. We will then define a map B : R → R by
B (T) = norm (flip T), and show that it is an involution satisfying the properties
that we want it to satisfy.

5.6. Resolving conflicts

Now we come to the details.
Let k ∈ N+. Let P ∈ S. Thus, P is a benign 12-table. Assume (for the whole

Subsection 5.6) that (k, k + 1) is a conflict of P. In this case, we say that (k, k + 1)
is a resolvable conflict of P (and, in a moment, we will explain what it means to
“resolve” it). Since (k, k + 1) is a conflict of P, it is clear that the k-th column of
P must contain at least one 2. Hence, the k-th column of P is either mixed or
2-pure. Similarly, the (k + 1)-th column of P is either mixed or 1-pure. But the
k-th and the (k + 1)-th columns of P cannot both be mixed at the same time27.
Hence, if the k-th column of P is mixed, then the (k + 1)-th column of P cannot
be mixed, and thus this (k + 1)-th column must be 1-pure28. Thus we introduce
the following notations:

• We say that the 12-table P has k-type M1 if the k-th column of P is mixed
and the (k + 1)-th column of P is 1-pure.

• We say that the 12-table P has k-type 2M if the k-th column of P is 2-pure
and the (k + 1)-th column of P is mixed.

26This will eventually happen; i.e., we will eventually reach a state where resolving conflicts
will no longer be possible because there will be no resolvable conflicts left. In fact, we will
show that if “resolving” a conflict in P yields a new 12-table Q, then ` (P) > ` (Q) using the
notations of Subsection 5.1; thus, we cannot go on resolving conflicts indefinitely (because
the value of ` (T) cannot go on decreasing indefinitely). The function ` thus plays the same
role as the function ` in Subsection 4.2.

27This is because there exists no conflict (i, j) of P such that the i-th column of P and the j-th
column of P both are mixed (since P is benign), but (k, k + 1) would be such a conflict if the
k-th and the (k + 1)-th columns of P both were mixed.

28since the (k + 1)-th column of P is either mixed or 1-pure
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• We say that the 12-table P has k-type 21 if the k-th column of P is 2-pure
and the (k + 1)-th column of P is 1-pure.

Then, the 12-table P always either has k-type M1, or has k-type 2M, or has
k-type 21 29.

(Of course, the names “M1”, “2M”, “21” have been chosen to match the types
of the columns: e.g., “2M” stands for “2-pure and Mixed”.)

Now, we define a new 12-table resk P as follows:

• If P has k-type M1, then we let resk P be the 12-table defined as follows30:
The k-th column of resk P is 1-pure (i.e., it is filled with 1’s); the (k + 1)-th
column of resk P is mixed and satisfies sepk+1 (resk P) = sepk P; all other
columns of resk P are copied over from P unchanged.31

29Proof. As we know, the k-th column of P is either mixed or 2-pure. If it is 2-pure, then P must
either have k-type 2M or have k-type 21 (since the (k + 1)-th column of P is either mixed
or 1-pure). If it is mixed, then the (k + 1)-th column of P must be 1-pure (as we have seen
above), and thus P must have type M1. In either case, the 12-table P either has k-type M1, or
has k-type 2M, or has k-type 21. Qed.

30Here is an example for this definition: If P =

1 1

1 2

1 1 2

1 1

2 1

1 2 1

2 2

and k = 2, then (k, k + 1) is a

conflict of P, and we have sepk P = 5 (since P (4, k) = P (4, 2) = 1 and P (5, k) = P (5, 2) = 2)

and resk P =

1 1

1 2

1 1 2

1 1

1 2

1 1 2

2 1

. The 2’s in the (k + 1)-th column of resk P start in row 5 because

the 2’s in the k-th column of P start in row 5; this illustrates the equality sepk+1 (resk P) =
sepk P.

See Example 5.6 below for another example.
31The reader should check that this definition is well-defined: It is clear that the requirements

that we are imposing on resk P determine the 12-table resk P uniquely, but it is not immedi-
ately obvious why there exists a 12-table resk P which meets these requirements. What could
(in theory) go wrong is the requirement that the (k + 1)-th column of resk P be mixed and
satisfy sepk+1 (resk P) = sepk P. We can try to achieve this by setting

(resk P) (r, k + 1) =
{

1, if r < sepk P;
2, if r ≥ sepk P

for all r ∈N+ for which (r, k + 1) ∈ Z.
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• If P has k-type 2M, then we let resk P be the 12-table defined as follows:
The k-th column of resk P is mixed and satisfies sepk (resk P) = sepk+1 P;
the (k + 1)-th column of resk P is 2-pure (i.e., it is filled with 2’s); all other
columns of resk P are copied over from P unchanged.32

• If P has k-type 21, then we let resk P be the 12-table defined as follows: The
k-th column of resk P is 1-pure; the (k + 1)-th column of resk P is 2-pure; all
other columns of resk P are copied over from P unchanged.

In either case, resk P is a well-defined 12-table. It is furthermore clear that
seplist (resk P) = seplist P. Thus, using the “separational definition of benig-
nity”, we see that resk P is benign (since P is benign); that is, resk P ∈ S. We say
that resk P is the 12-table obtained by resolving the conflict (k, k + 1) in P. Let us
give some examples:

Example 5.6. Let P =

1 2 1

1 1 2

2 1 1

2 2 1

2

. Then, P is a benign 12-table (with

only one mixed column), and its conflicts are (1, 2), (1, 3), (2, 3) and (4, 5).
Out of these conflicts, (1, 2), (2, 3) and (4, 5) are resolvable (as they have the
form (k, k + 1) for various k). We have sep2 P = 4.

If we set k = 1, then P has k-type 2M, and resolving the conflict (k, k + 1) =

(1, 2) gives us the 12-table res1 P =

1 2 1

2 1 2

1 2 1

2 2 1

2

.

If we instead set k = 2, then P has k-type M1, and resolving the conflict

(k, k + 1) = (2, 3) gives us the 12-table res2 P =

1 2 1

1 1 2

2 1 1

2 1 2

2

.

This (together with the requirements on the other columns) defines a 12-table resk P, but
we still need to check that the (k + 1)-th column of the 12-table resk P constructed in this
way is actually mixed. To check this, the reader should verify that both cells (sepk P, k + 1)
and (sepk P + 1, k + 1) belong to Z (here it is necessary to invoke the convexity of Z and the
existence of the conflict (k, k + 1) in P), and that these cells have entries 1 and 2 in resk P,
respectively.

32Again, it is easy to see that this is well-defined.
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If we instead set k = 4, then P has k-type 21, and resolving the conflict

(k, k + 1) = (4, 5) gives us the 12-table res4 P =

1 1 2

1 1 1

2 1 1

2 2 1

2

.

We notice that each of the three 12-tables res1 P, res2 P and res4 P still has
conflicts33, and again some of these conflicts are resolvable. In order to get
a 12-rpp from P, we will have to keep resolving these conflicts until none
remain.

We now observe some further properties of resk P:

Proposition 5.7. Let P ∈ S and k ∈ N+ be such that (k, k + 1) is a conflict of
P.

(a) The 12-table resk P differs from P only in columns k and k + 1. In other
words,

(the h-th column of resk P) = (the h-th column of P) (19)

for every h ∈N+ \ {k, k + 1}.
(b) The k-th and the (k + 1)-th columns of resk P depend only on the k-th

and the (k + 1)-th columns of P. In other words, if Q is a further benign
12-table satisfying

(the h-th column of Q) = (the h-th column of P)
for each h ∈ {k, k + 1} ,

then (k, k + 1) is a conflict of Q and we have

(the h-th column of resk Q) = (the h-th column of resk P) (20)
for each h ∈ {k, k + 1} .

(c) We have
ceq (resk P) = ceq (P) . (21)

(d) We have

(the number of h ∈N+ such that the h-th column of resk P is mixed)
= (the number of h ∈N+ such that the h-th column of P is mixed) , (22)

33Actually, each of these three 12-tables has fewer conflicts than P (in particular, the conflict that

was resolved is now gone). But this does not generalize. For instance, if P =
1 1

2 1
and

k = 1, then resolving the conflict (k, k + 1) = (1, 2) (which is the only conflict of P) leads to

the 12-table res1 P =
2 1

1 2
, which has as many conflicts as P did.

32



Refined dual stable Grothendieck polynomials June 15, 2016

(the number of h ∈N+ such that the h-th column of resk P is 1-pure)
= (the number of h ∈N+ such that the h-th column of P is 1-pure) , (23)

(the number of h ∈N+ such that the h-th column of resk P is 2-pure)
= (the number of h ∈N+ such that the h-th column of P is 2-pure) , (24)

and
ircont (resk P) = ircont (P) . (25)

(e) For every r ∈N+ and i ∈N+ satisfying (r, i) ∈ Z and (r, sk (i)) ∈ Z, we
have

P (r, i) = (resk P) (r, sk (i)) . (26)

(f) If (i, j) is a conflict of P such that (i, j) 6= (k, k + 1), then

(sk (i) , sk (j)) is a conflict of resk P. (27)

(g) The benign 12-tables flip (P) and flip (resk P) have the property that(
(k, k + 1) is a conflict of flip (resk P) ,

and we have flip (P) = resk (flip (resk P))

)
. (28)

(h) Recall that we defined a nonnegative integer ` (T) for every 12-table T
in Subsection 5.1. We have

` (P) > ` (resk P) . (29)

Notice that the converse of Proposition 5.7 (f) does not generally hold.

Proof of Proposition 5.7. Most of Proposition 5.7 succumbs to straightforward ar-
guments using the definitions of resk and flip coupled with a thorough case
analysis, with an occasional use of the convexity of Z and of the formula (16).
Merely the parts (c) and (f) require a bit more thinking. We shall only give the
proof for part (c), since part (f) will not be used in the following.

(c) A cell (i, j) in Z will be called good if the cell (i + 1, j) also belongs to Z.
Notice that every redundant cell of P or of resk P must be good.

In order to prove (21), we need to show that, for every r ∈ N+, the number
of redundant cells of P in row r equals the number of redundant cells of resk P
in row r. Instead of comparing the numbers of redundant cells, we can just
as well compare the numbers of good cells that are not redundant (because all
redundant cells are good, and because the total number of good cells clearly
depends only on Z and not on the 12-table). So we need to show that, for every
r ∈ N+, the number of good cells in row r that are not redundant cells of P
equals the number of good cells in row r that are not redundant cells of resk P.
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Fix r ∈ N+. The number of good cells in row r that are not redundant cells
of P is precisely the number of appearances of r + 1 in the list seplist P (because
the good cells that are not redundant cells of P are precisely the cells of the form
(sepk P, k), where k is a positive integer such that the k-th column of P is mixed).
Similarly, the number of good cells in row r that are not redundant cells of resk P
is precisely the number of appearances of r + 1 in the list seplist (resk P). These
two numbers are equal, because seplist (resk P) = seplist P. As explained above,
this completes the proof of (21).

5.7. The conflict-resolution relation V

Definition 5.8. Let us now define a binary relation V on the set S as follows:
Let P ∈ S and Q ∈ S. If k ∈N+, then we write P V

k
Q if and only if (k, k + 1)

is a conflict of P and we have Q = resk P. (In other words, if k ∈ N+, then
we write P V

k
Q if and only if (k, k + 1) is a conflict of P and the 12-table Q

is obtained from P by resolving this conflict.) We write P V Q if and only
if there exists a k ∈ N+ such that P V

k
Q. (In other words, we write P V Q

if and only if the 12-table Q is obtained from P by resolving a conflict of the
form (k, k + 1) with k ∈N+.) Thus, the relation V is defined.

Some of what was shown above translates into properties of this relation V:

Lemma 5.9. Let P ∈ S and Q ∈ S be such that P V Q. Then:
(a) We have ceq (Q) = ceq (P).
(b) We have ircont (Q) = ircont (P).
(c) The benign 12-tables flip (P) and flip (Q) have the property that

flip (Q) V flip (P).
(d) We have ` (P) > ` (Q).

Proof of Lemma 5.9. We have P V Q. In other words, there exists a k ∈ N+ such
that P V

k
Q. Consider this k. We have P V

k
Q. In other words, (k, k + 1) is a

conflict of P and we have Q = resk P.

(a) We have ceq

 Q︸︷︷︸
=resk P

 = ceq (resk P) = ceq (P) (by (21)). This proves

Lemma 5.9 (a).
(b) This follows similarly from (25).
(c) From (28), we know that (k, k + 1) is a conflict of flip (resk P), and we have

flip (P) = resk (flip (resk P)). In other words, flip (resk P) V
k

flip (P). Thus,

flip (resk P) V flip (P). In other words, flip (Q) V flip (P) (since Q = resk P).
This proves Lemma 5.9 (c).
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(d) From (29), we have ` (P) > `

resk P︸ ︷︷ ︸
=Q

 = ` (Q). This proves Lemma 5.9

(d).

We furthermore define a relation
∗
V as in Lemma 4.1. In other words,

∗
V is the

reflexive-and-transitive closure of the relation V. In particular, the relation
∗
V is

reflexive and transitive, and extends the relation V.

If P ∈ S and Q ∈ S, then the relation “P
∗
V Q” can be interpreted as “Q can

be obtained from P by repeatedly resolving conflicts” (because P V Q holds if
and only if Q is obtained from P by resolving a resolvable conflict).

It is easy to derive from Lemma 5.9 the following fact:

Lemma 5.10. Let P ∈ S and Q ∈ S be such that P
∗
V Q. Then:

(a) We have ceq (Q) = ceq (P).
(b) We have ircont (Q) = ircont (P).
(c) The benign 12-tables flip (P) and flip (Q) have the property that

flip (Q)
∗
V flip (P).

Proof of Lemma 5.10. Recalling that
∗
V is the reflexive-and-transitive closure of the

relation V, we see that Lemma 5.10 follows by induction using Lemma 5.9.

In Subsection 5.1, we defined a nonnegative integer ` (T) for every 12-table T.
In particular, ` (T) is defined for every T ∈ S. We thus have a map ` : S → N

which sends every T ∈ S to ` (T).
Our goal is now to apply Lemma 4.1 to our set S, our map ` and our relation

V. In order to do so, we need to check the following fact:

Proposition 5.11. The local confluence hypothesis and the length-decrease hy-
pothesis are satisfied for our set S, our map ` and our relation V. (See Lemma
4.1 for the statements of these two hypotheses.)

Proof of Proposition 5.11. The length-decrease hypothesis is clearly satisfied (in-
deed, it is just Lemma 5.9 (d), with P and Q renamed as a and b). It thus
remains only to prove that the local confluence hypothesis is satisfied. In other
words, it remains to prove that if a, b and c are three elements of S satisfying

a V b and a V c, then there exists a d ∈ S such that b
∗
V d and c

∗
V d. Let us

rename the bound variables a, b, c and d as A, B, C and D in this sentence. Thus,
it remains to prove that if A, B and C are three elements of S satisfying A V B

and A V C, then there exists a D ∈ S such that B
∗
V D and C

∗
V D.

So let A, B and C be three elements of S satisfying A V B and A V C. We

need to prove that there exists a D ∈ S such that B
∗
V D and C

∗
V D. If B = C,
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then we can simply choose D = B = C and be done with it; thus, we WLOG
assume that B 6= C.

We have A V B. In other words, there exists a k ∈ N+ such that A V
k

B. Let

us denote this k by u. Thus, A V
u

B. In other words, (u, u + 1) is a conflict of A

and we have B = resu A (due to the definition of “A V
u

B”). Similarly, we can

find a v ∈ N+ such that (v, v + 1) is a conflict of A and we have C = resv A.
Consider this v as well.

We have resu A = B 6= C = resv A and thus u 6= v. Hence, either u < v or
u > v. We WLOG assume that u < v (since otherwise, we can simply switch u
with v). Hence, we are in one of the following two Cases:

Case 1: We have u = v− 1.
Case 2: We have u < v− 1.
Let us deal with Case 2 first (since it is the simpler of the two). In this case,

u < v− 1, so that {u, u + 1} ∩ {v, v + 1} = ∅.
Now, the operation of resolving the conflict (u, u + 1) in A (that is, the passage

from A to resu A) only affects the columns u and u + 1, and thus it preserves the
conflict (v, v + 1) (since {u, u + 1}∩ {v, v + 1} = ∅). Hence, resv (resu A) is well-
defined. Similarly, resu (resv A) is well-defined.

Recall again that {u, u + 1} ∩ {v, v + 1} = ∅. Thus, the operation of resolv-
ing the conflict (u, u + 1) and the operation of resolving the conflict (v, v + 1)
“do not interact” (in the sense that the former only changes the columns u and
u + 1, and changes them in a way that does not depend on any of the other
columns; and similarly for the latter). Therefore, the two operations can be ap-
plied one after the other in any order; the results will be the same. In other
words, resu (resv A) = resv (resu A). Now, set D = resu (resv A) = resv (resu A).
Then, D = resu (resv A)︸ ︷︷ ︸

=C

= resu C and thus C V
u

D, so that C V D, therefore

C
∗
V D. Similarly, B

∗
V D. Hence, we have found a D ∈ S such that B

∗
V D and

C
∗
V D. This completes the proof of the local confluence hypothesis in Case 2.
Now, let us consider Case 1. In this case, u = v − 1. Hence, (v− 1, v) is a

conflict of A (since (u, u + 1) is a conflict of A), and we have B = resu A =
resv−1 A (since u = v− 1).

The v-th column of A must contain a 1 (since (v− 1, v) is a conflict of A) and
a 2 (since (v, v + 1) is a conflict of A). Hence, the v-th column of A is mixed. The
(v− 1)-th column of A is 2-pure34, and the (v + 1)-th column of A is 1-pure35.

34Proof. Assume the contrary. Then, the (v− 1)-th column of A contains a 2 (because (v− 1, v)
is a conflict of A) but is not 2-pure. Hence, this column is mixed. But A is benign. In other
words, there exists no conflict (i, j) of A such that the i-th column of A and the j-th column
of A both are mixed. This flies in the face of the fact that (v− 1, v) is exactly such a conflict
(since both the (v− 1)-th and the v-th columns of A are mixed). This contradiction proves
that our assumption was wrong, qed.

35This follows similarly.
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We can thus semiotically represent the 12-table A as follows:

A =

1 1

2
2

. (30)

In this representation, we only draw the (v− 1)-th, the v-th and the (v + 1)-th
columns (since the remaining columns are neither used nor changed by resv−1
and resv, and thus are irrelevant to our argument); we use a rectangle with a “1”
inside to signify a string of 1’s in a column36, and we use a rectangle with a “2”
inside to signify a string of 2’s in a column.

Let s = sepv A. Then, (s, v) and (s + 1, v) belong to Z and satisfy A (s, v) = 1
and A (s + 1, v) = 2 (by the definition of sepv A). Also, (s, v− 1) must belong to
Z 37. Hence, (s + 1, v− 1) must belong to Z as well38. Similarly, (s + 1, v + 1)
and (s, v + 1) belong to Z. Altogether, we thus know that all six squares (s, v),
(s + 1, v), (s, v− 1), (s + 1, v− 1), (s + 1, v + 1) and (s, v + 1) belong to Z. We
shall denote these six squares as the “core squares”. The restriction of A to the

core squares is
2 1 1

2 2 1
39.

Now, A has (v− 1)-type 2M, and resolving the conflict (v− 1, v) of A yields
resv−1 A = B. Hence, B is represented semiotically as follows:

B =

1
1 2

2

,

36The length of the rectangle is immaterial; it does not say anything about the number of 1’s.
37Proof. We know that (v− 1, v) is a conflict of A. Hence, there exists an r ∈ N+ such that

(r, v− 1) ∈ Z, (r, v) ∈ Z, A (r, v− 1) = 2 and A (r, v) = 1. Consider this r. If we had s+ 1 ≤ r,
then we would have A (s + 1, v) ≤ A (r, v) (since the entries of A are weakly decreasing down
columns), which would contradict A (r, v) = 1 < 2 = A (s + 1, v). Therefore, we cannot have
s + 1 ≤ r. Hence, r < s + 1, so that r ≤ s. Hence, (1) (applied to r, s, s, v− 1, v− 1 and v
instead of i, i′, i′′, j, j′ and j′′) yields (s, v− 1) ∈ Z, qed.

38by (1) (applied to s, s + 1, s + 1, v− 1, v− 1 and v instead of i, i′, i′′, j, j′ and j′′)
39Indeed, the two core squares in the v-th column have entries A (s, v) = 1 and A (s + 1, v) = 2;

the two core squares in the (v− 1)-th column have entries 2 (since the (v− 1)-th column
of A is 2-pure); and the two core squares in the (v + 1)-th column have entries 1 (since the
(v + 1)-th column of A is 1-pure).
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and the restriction of B to the core squares is
1 2 1

2 2 1
. This shows that

(v, v + 1) is a conflict of B, and that B has v-type 21. Hence, resolving this
conflict in B yields a 12-table resv B which is represented semiotically as follows:

resv B =

2
1 1

2

,

and the restriction of resv B to the core squares is
1 1 2

2 1 2
. This, in turn,

shows that (v− 1, v) is a conflict of resv B, and that resv B has (v− 1)-type M1.
Thus, resolving this conflict in resv B yields a 12-table resv−1 (resv B) which is
represented semiotically as follows:

resv−1 (resv B) =

1 2

1
2

, (31)

and the restriction of resv−1 (resv B) to the core squares is
1 1 2

1 2 2
.

On the other hand, A has v-type M1. Resolving the conflict (v, v + 1) of A
yields resv A = C. Thus, we can represent C semiotically and find its restric-
tion to the core squares. This shows us that C has (v− 1, v) as a conflict and
has (v− 1)-type 21. Resolving this conflict yields a 12-table resv−1 C which we
can again represent semiotically and find its restriction to the core squares. Do-
ing this, we observe that resv−1 C has (v, v + 1) as a conflict and has v-type
2M. Resolving this conflict yields a 12-table resv (resv−1 C) whose semiotic rep-
resentation and restriction to the core squares can again be found. We leave
the details of this argument to the reader, but we state its result: The 12-table
resv (resv−1 C) is well-defined and has the same semiotic representation and the
same restriction to the core squares as the 12-table resv−1 (resv B). Consequently,
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the 12-tables resv (resv−1 C) and resv−1 (resv B) are equal40.
Hence, we can set D = resv (resv−1 C) = resv−1 (resv B). Consider this D.

We have C V resv−1 C (since C V
v−1

resv−1 C) and resv−1 C V resv (resv−1 C)

(since resv−1 C V
v

resv (resv−1 C)). Combining these two relations, we obtain

C
∗
V resv (resv−1 C) (since

∗
V is the reflexive-and-transitive closure of the relation

V). In other words, C
∗
V D (since D = resv (resv−1 C)). Similarly, B

∗
V D. Thus,

we have found a D ∈ S such that B
∗
V D and C

∗
V D. This completes the proof

of the local confluence hypothesis in Case 1.
Now, the local confluence hypothesis is proven (since we have shown it in

both Cases 1 and 2), and with it, Proposition 5.11.

Now, let us define the notion of a “final” element of S as in Lemma 4.1. Then,
the following is almost obvious:

Proposition 5.12. Let P ∈ S. Then, the element P of S is final if and only if P
is a 12-rpp.

Proof of Proposition 5.12. Let us first assume that P is final. We shall show that P
is a 12-rpp.

Indeed, assume the contrary. Then, P is not a 12-rpp. But P is an element of
S, thus a benign 12-table. The entries of P are weakly increasing down columns
(since P is a 12-table). Thus, the entries of P are not weakly increasing along
rows (because otherwise, P would be a 12-rpp). In other words, there exists an
r ∈N+ such that the r-th row of P is not weakly increasing. Consider this r. The
r-th row of P is not weakly increasing; hence, there exist two adjacent entries of

40Proof. To see this, we need to show that for every h ∈ N+, the h-th column of resv (resv−1 C)
equals the h-th column of resv−1 (resv B).

For h /∈ {v− 1, v, v + 1}, this is obvious (because for h /∈ {v− 1, v, v + 1}, the h-th column
of a 12-table never changes under resv or resv−1).

For h = v− 1, this is again obvious (because the semiotic representation of resv−1 (resv B)
given in (31) shows that the (v− 1)-th column of resv−1 (resv B) is 1-pure, and the same can
be said of the (v− 1)-th column of resv (resv−1 C)).

For h = v + 1, this is also obvious (because the semiotic representation of resv−1 (resv B)
given in (31) shows that the (v + 1)-th column of resv−1 (resv B) is 2-pure, and the same can
be said of the (v + 1)-th column of resv (resv−1 C)).

It thus only remains to deal with the case of h = v. In other words, we need to prove that
the v-th column of resv (resv−1 C) equals the v-th column of resv−1 (resv B).

We know from (31) that the v-th column of resv−1 (resv B) is mixed. Moreover, the restric-

tion of resv−1 (resv B) to the core squares is
1 1 2

1 2 2
; therefore, the last 1 and the first 2

in the v-th column of resv−1 (resv B) are in the cells (s, v) and (s + 1, v), respectively. But
the same can be said about the v-th column of resv (resv−1 C). Hence, the v-th column of
resv (resv−1 C) and the v-th column of resv−1 (resv B) both are mixed, and the cell containing
the last 1 is the same for both of these columns. This yields that these columns must be equal.
As we know, this finishes our proof.
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this row such that the left one is larger than the right one. In other words, there
exists a k ∈ N+ such that (r, k) ∈ Z, (r, k + 1) ∈ Z and P (r, k) > P (r, k + 1).
Consider this k. Both P (r, k) and P (r, k + 1) belong to {1, 2}. Hence, from
P (r, k) > P (r, k + 1), we obtain P (r, k) = 2 and P (r, k + 1) = 1. Therefore,
(k, k + 1) is a conflict of P (due to the definition of a “conflict”). Consequently,
resk P is well-defined, and we have P V

k
resk P (due to the definition of “P V

k
resk P”), so that P V resk P (due to the definition of the relation V).

But recall that P is final. In other words, there exists no b ∈ S satisfying P V b
(according to the definition of “final”). This contradicts the fact that resk P is
such a b (since P V resk P and resk P ∈ S). This contradiction proves that our
assumption was wrong. So we have shown that P is a 12-rpp.

Now, let us forget that we assumed that P is final. Thus, we have proven that
if P is final, then P is a 12-rpp. It remains to prove the converse. In other words,
it remains to prove that if P is a 12-rpp, then P is final.

So let us assume that P is a 12-rpp. Let b ∈ S be such that P V b. Then, there
exists a k ∈ N+ such that P V

k
b (by the definition of the relation V). Consider

this k. We have P V
k

b. In other words, (k, k + 1) is a conflict of P and we have

b = resk P. But P is a 12-rpp of shape Z, and thus has no conflicts (since a 12-rpp
of shape Z is the same as a 12-table which has no conflicts). So (k, k + 1) is a
conflict of P, but P has no conflicts. This is a contradiction.

Now, let us forget that we fixed b. We thus have found a contradiction for
every b ∈ S satisfying P V b. Hence, there exists no b ∈ S satisfying P V b.
In other words, P is final (according to the definition of “final”). This completes
our proof of Proposition 5.12.

5.8. The normalization map

Definition 5.13. We now define a map norm : S→ R as follows:
Let T ∈ S. Proposition 5.11 shows that the local confluence hypothesis and

the length-decrease hypothesis are satisfied for our set S, our map ` and our
relation V. Thus, Lemma 4.1 shows that for every a ∈ S, there exists a unique

final element b ∈ S such that a
∗
V b. Applying this to a = T, we conclude that

there exists a unique final element b ∈ S such that T
∗
V b. Denote this b by

P. Then, P is a final element of S and satisfies T
∗
V P. But Proposition 5.12

shows that P is final if and only if P is a 12-rpp. Hence, P is a 12-rpp (since P
is final). In other words, P ∈ R (since R is the set of all 12-rpps). We define
norm (T) to be P.

Thus, for every T ∈ S, we have defined norm (T) to be the unique final

element b ∈ S such that T
∗
V b. As a consequence, for every T ∈ S, we have

T
∗
V norm (T) . (32)
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Thus, the map norm : S→ R is defined.

Example 5.14. Let us give an example of a computation of norm (T). For this
example, let us take

T =

1 2 1

1 1 2

2 1 1

2 2 1

2

.

Then, norm (T) is the unique final element b ∈ S such that T
∗
V b. Thus, we

can obtain norm (T) from T by repeatedly resolving conflicts until no more

conflicts are left (because “T
∗
V b” means “b can be obtained from T by repeat-

edly resolving conflicts”). The word “unique” here implies that, in whatever
order we resolve conflicts, the result will always be the same. And the pro-
cedure will eventually come to an end because the nonnegative integer ` (T)
decreases every time we resolve a conflict in T (by Lemma 5.9 (d)).

Let us first resolve the conflict (2, 3) in T. This gives us the 12-table

res2 T =

1 2 1

1 1 2

2 1 1

2 1 2

2

.

(In fact, we have seen this in Example 5.6 already, but we denoted the 12-table
by P there.) Next, resolving the conflict (4, 5) in res2 T, we obtain the 12-table

res4 (res2 T) =

1 1 2

1 1 1

2 1 1

2 1 2

2

.

We go on by resolving the conflict (1, 2) in res4 (res2 T), and thus obtain

res1 (res4 (res2 T)) =

1 1 2

2 1 1

1 2 1

1 2 2

1

.
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Next, we resolve the conflict (2, 3) in res1 (res4 (res2 T)), and obtain

res2 (res1 (res4 (res2 T))) =

2 1 2

1 2 1

1 1 2

1 2 2

1

.

Next, we resolve the conflict (3, 4) in res2 (res1 (res4 (res2 T))), and this leads
us to

res3 (res2 (res1 (res4 (res2 T)))) =

1 2 2

1 1 2

1 1 1

1 2 1

1

.

Finally, we resolve the conflict (2, 3) in res3 (res2 (res1 (res4 (res2 T)))), and
thus obtain

res2 (res3 (res2 (res1 (res4 (res2 T))))) =

1 2 2

1 1 2

1 1 1

1 1 2

1

.

This 12-table res2 (res3 (res2 (res1 (res4 (res2 T))))) has no more conflicts, and
thus is final. So norm (T) = res2 (res3 (res2 (res1 (res4 (res2 T))))).

Notice that we have needed six steps to compute norm (T), although T only
had 4 conflicts. So the number of conflicts does not always decrease when we
resolve a conflict. (It is easy to construct an example where it can actually
increase.) This is why we could not have used a function ` : S → N that
counts the number of conflicts to satisfy the length-decrease condition.

5.9. Definition of B

We can now finally prove Lemma 3.5.

Definition 5.15. Let us define a map B : R→ R as follows:
Let T ∈ R. Then, T ∈ R ⊆ S. Hence, flip (T) ∈ S is well-defined, and thus

norm (flip (T)) ∈ R is well-defined. We define B (T) to be norm (flip (T)).

Thus, the map B is defined. In order to complete the proof of Lemma 3.5, we
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need to show that this map B is an involution and that, for every S ∈ R, the
equalities (7) and (8) hold. At this point, all of this is easy:

Proof that B is an involution: Let T ∈ R. The definition of B yields B (T) =

norm (flip (T)). From (32) (applied to flip (T) instead of T), we have flip (T)
∗
V

norm (flip (T)). This rewrites as flip (T)
∗
V B (T) (since B (T) = norm (flip (T))).

Lemma 5.10 (c) (applied to P = flip (T) and Q = B (T)) thus yields flip (B (T))
∗
V

flip (flip (T)). Since flip (flip (T)) = (flip ◦flip)︸ ︷︷ ︸
=id

(by Proposition 5.4 (a))

(T) = id (T) = T, this

rewrites as flip (B (T))
∗
V T.

But T ∈ R. In other words, T is a 12-rpp (since R is the set of all 12-rpps of
shape Z). Thus, T is final (because Proposition 5.12 (applied to P = T) yields
that T is final if and only if T is a 12-rpp).

Now, recall that norm (T) is the unique final element b ∈ S such that T
∗
V b (by

the definition of norm (T)). Applying this to flip (B (T)) instead of T, we see that

norm (flip (B (T))) is the unique final element b ∈ S such that flip (B (T))
∗
V b.

Hence, every final element b ∈ S such that flip (B (T))
∗
V b must satisfy b =

norm (flip (B (T))). Applying this to b = T, we obtain T = norm (flip (B (T)))

(since T is a final element of S satisfying flip (B (T))
∗
V T).

But (B ◦ B) (T) = B (B (T)) = norm (flip (B (T))) (by the definition of B (B (T))).
Comparing this with T = norm (flip (B (T))), we obtain (B ◦ B) (T) = T.

Let us now forget that we fixed T. We thus have shown that (B ◦ B) (T) = T
for every T ∈ R. In other words, B ◦ B = id. In other words, B is an involution.

Proof of the equality (7) for every S ∈ R: Let S ∈ R. The definition of B yields

B (S) = norm (flip (S)). But (32) (applied to T = flip (S)) yields flip (S)
∗
V

norm (flip (S)). This rewrites as flip (S)
∗
V B (S) (since B (S) = norm (flip (S))).

Lemma 5.10 (a) (applied to P = flip (S) and Q = B (S)) thus yields

ceq (B (S)) = ceq (flip (S)) = ceq (S)

(by (17), applied to T = S). This proves (7).
Proof of the equality (8) for every S ∈ R: Let S ∈ R. The definition of B yields

B (S) = norm (flip (S)). But (32) (applied to T = flip (S)) yields flip (S)
∗
V

norm (flip (S)). This rewrites as flip (S)
∗
V B (S) (since B (S) = norm (flip (S))).

Lemma 5.10 (b) (applied to P = flip (S) and Q = B (S)) thus yields

ircont (B (S)) = ircont (flip (S)) = s1 · ircont (S)

(by (18), applied to T = S). This proves (8).
We have thus shown that B is an involution, and that, for every S ∈ R, the

equalities (7) and (8) hold. This completes the proof of Lemma 3.5. Thus, Lemma
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3.6 is proven (since we have proven it using Lemma 3.5), and consequently The-
orem 3.4 is proven (since we have derived it from Lemma 3.6). This, in turn,
finishes the proof of Theorem 3.3 (since we have proven Theorem 3.3 using The-
orem 3.4).

6. The classical Bender-Knuth involutions

6.1. Recalling the definition of Bi

We fix a skew partition λ/µ and a positive integer i for the whole Section 6.
Theorem 3.4 merely claims the existence of an involution Bi : RPP (λ/µ) →

RPP (λ/µ) satisfying certain properties. Such an involution, per se, need not be
unique. However, if we trace back the proof of Theorem 3.4 (and the proofs of
the lemmas that were used in this proof), we notice that this proof constructs a
specific involution Bi. This construction is spread across various proofs; we can
summarize it as follows:

• The main step of the construction was the construction of the involution
B : R → R in the proof of Lemma 3.5 (for a given finite convex subset Z
of N2

+). This is an involution which sends 12-rpps of shape Z to 12-rpps
of the same shape Z, and it was constructed as follows: Given a 12-rpp T
of shape Z, we set B (T) = norm (flip (T)). (Recall that flip (T) fills all the
1-pure columns of T with 2’s while simultaneously filling all the 2-pure
columns of T with 1’s. Recall furthermore that norm (flip (T)) is obtained
from flip (T) by repeatedly resolving conflicts until no conflicts remain.)

• Having constructed this map B : R → R, we can construct the involution
BZ : RZ → RZ in Lemma 3.6 (for a given finite convex subset Z of N2

+) as
follows: Given an rpp S of shape Z whose entries are i’s and (i + 1)’s, we
first replace these entries by 1’s and 2’s (respectively), so that we obtain a
12-rpp; then, we apply the involution B : R → R to this 12-rpp; and then,
in the resulting 12-rpp, we change the 1’s and 2’s back into i’s and (i + 1)’s.
The resulting rpp is BZ (S).

• Finally, we can construct the involution Bi : RPP (λ/µ) → RPP (λ/µ).
To wit, if we are given an rpp S ∈ RPP (λ/µ), then we can restrict our
attention to the cells of S which contain the entries i and i + 1. These cells
form an rpp of some shape Z. We then apply the involution BZ to this new
rpp, while leaving all the remaining entries of S unchanged. The result is
an rpp of shape Y (λ/µ) again; this rpp is Bi (S).

In the following, whenever we will be talking about the involution Bi, we will
always mean this particular involution Bi, rather than an arbitrary involution Bi
that satisfies the claims of Theorem 3.4.
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6.2. The Bender-Knuth involutions

We claimed that our involution Bi : RPP (λ/µ)→ RPP (λ/µ) is a generalization
of the i-th Bender-Knuth involution defined for semistandard tableaux. Let us
now elaborate on this claim. First, we shall define the i-th Bender-Knuth in-
volution (following [GriRei15, proof of Proposition 2.11] and [Stan99, proof of
Theorem 7.10.2]).

Let SST (λ/µ) denote the set of all semistandard tableaux of shape Y (λ/µ).
We define a map Bi : SST (λ/µ)→ SST (λ/µ) as follows:41

Let T ∈ SST (λ/µ). Then, T is a semistandard tableau, so that every column
of T contains at most one i and at most one i + 1. We shall ignore all columns
of T which contain both an i and an i + 1; that is, we mark all the entries of all
such columns as “ignored”. Now, let k ∈ N+. The k-th row of T is a weakly
increasing sequence of positive integers; thus, it contains a (possibly empty)
string of i’s followed by a (possibly empty) string of (i + 1)’s. These two strings
together form a substring of the k-th row which looks as follows:

(i, i, . . . , i, i + 1, i + 1, . . . , i + 1)

42. Some of the entries of this substring are “ignored”; it is easy to see that the
“ignored” i’s are gathered at the left end of the substring whereas the “ignored”
(i + 1)’s are gathered at the right end of the substring. So the substring looks as
follows: i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
r many i’s which
are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
s many (i+1)’s which

are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”


for some a, r, s, b ∈N. Now, we change this substring into i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
s many i’s which
are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
r many (i+1)’s which

are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”

 .

And we do this for every k ∈ N+ (simultaneously or consecutively – it does
not matter). At the end, we have obtained a new semistandard tableau of shape
Y (λ/µ). We define Bi (T) to be this new tableau.

41We refer to Example 6.1 below for illustration.
42Of course, this substring might contain no i’s or no (i + 1)’s.
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Example 6.1. Let us give an example of this construction of Bi. Namely, let
i = 2, let λ = (7, 6, 4, 1), and let µ = (3). Let T be the semistandard tableau

1 1 2 2

1 2 2 2 3 3

3 3 5 6

4

of shape Y (λ/µ). We want to find Bi (T).
The columns that contain both an i and an i + 1 (that is, both a 2 and a 3)

are the second and the sixth columns. So we mark all entries of these two
columns as “ignored”. Now, the substring of the 2-nd row of T formed by the
i’s and the (i + 1)’s looks as follows: 2︸︷︷︸

1 many 2’s which
are “ignored”

, 2, 2︸︷︷︸
2 many 2’s which
are not “ignored”

, 3︸︷︷︸
1 many 3’s which
are not “ignored”

, 3︸︷︷︸
2 many 3’s which

are “ignored”

 .

So we change it into 2︸︷︷︸
1 many 2’s which

are “ignored”

, 2︸︷︷︸
1 many 2’s which
are not “ignored”

, 3, 3︸︷︷︸
2 many 3’s which
are not “ignored”

, 3︸︷︷︸
2 many 3’s which

are “ignored”

 .

Similarly, we change the substring (2, 2) of the 1-st row of T into (2, 3) (because
its first 2 is “ignored” but its second 2 is not), and we change the substring
(3, 3) of the 3-rd row of T into (2, 3) (because its first 3 is not “ignored” but its
second 3 is). The substring of the 4-th row, of the 5-th row, of the 6-th row, etc.,
formed by the i’s and (i + 1)’s are empty (because these rows contain neither
i’s nor (i + 1)’s), and thus we do not make any changes on them. Now, Bi (T)
is defined to be the tableau that results from all of these changes; thus,

Bi (T) =

1 1 2 3

1 2 2 3 3 3

2 3 5 6

4

.
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Proposition 6.2. The map Bi : SST (λ/µ) → SST (λ/µ) thus defined is an
involution. It is known as the i-th Bender-Knuth involution.

Proposition 6.2 is easy to prove (and is usually proven in less or more detail
everywhere the map Bi is defined).

Now, every semistandard tableau of shape Y (λ/µ) is also an rpp of shape
Y (λ/µ). In other words, SST (λ/µ) ⊆ RPP (λ/µ). Hence, Bi (T) is defined for
every T ∈ SST (λ/µ). Now, the claim that we want to make (that our involution
Bi is a generalization of the i-th Bender-Knuth involution Bi) can be stated as
follows:

Proposition 6.3. For every T ∈ SST (λ/µ), we have Bi (T) = Bi (T).

Proof of Proposition 6.3 (sketched). We shall abbreviate “semistandard tableau” as
“sst”. We define a 12-sst to be an sst whose entries all belong to the set {1, 2}.

Let Z be a finite convex subset of N2
+. Let R denote the set of all 12-ssts

of shape Z. We define a map B : R → R in the same way as we defined the
map Bi : SST (λ/µ) → SST (λ/µ), with the only differences that we replace
every appearance of “SST (λ/µ)”, of “i” and of “i + 1” by “R”, “1” and “2”,
respectively. Then, this map B : R→ R is an involution.

Now let us forget that we fixed Z. We thus have constructed a map B :
R → R for every finite convex subset Z of N2

+. Now, recall how the map Bi :
RPP (λ/µ) → RPP (λ/µ) was constructed from the maps B : R → R for every
finite convex subset Z of N2

+ (essentially by forgetting all entries of an rpp except
for the entries i and i + 1 and relabelling these entries i and i + 1 as 1 and 2).
Similarly, the map Bi : SST (λ/µ) → SST (λ/µ) can be constructed from the
maps B : R→ R for every finite convex subset Z of N2

+ (essentially by forgetting
all entries of an sst except for the entries i and i + 1 and relabelling these entries
i and i + 1 as 1 and 2). Thus, in order to prove that Bi (T) = Bi (T) for every
T ∈ SST (λ/µ), it suffices to show that B (T) = B (T) for every finite convex
subset Z of N2

+ and any 12-sst T of shape Z.
So let Z be any finite convex subset of N2

+, and let T be a 12-sst of shape Z.
We need to prove that B (T) = B (T).

Example 6.4. Here is an example of a 12-sst:

T =

1

1 1 2

1 2 2 2

1 2

2

. (33)
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It satisfies

B (T) =

2

1 1 1

1 2 2 2

1 1

2

(34)

and

flip (T) =

2

1 1 1

2 1 2 2

1 1

2

(35)

(where flip (T) is defined as in the construction of B (T)).

We make a few basic observations: The columns which are ignored in the
construction of B (T) are the columns which contain both a 1 and a 2. 43 These
columns contain exactly two entries each (because a column of a 12-sst can only
contain at most one 1, at most one 2 and no other entries), while every other
column is either empty or contains only one entry. As a consequence, every
entry of T which is not “ignored” in the construction of B (T) is alone in its
column.

Let us compare the basic ideas of the constructions of B (T) and B (T):

• To construct B (T), we ignore all columns of T which contain both a 1 and
a 2; that is, we mark all entries in these columns as “ignored”. Then, in
every row, we let r be the number of 1’s which are not “ignored”, and let s
be the number of 2’s which are not “ignored”. We replace these r many 1’s
and s many 2’s by s many 1’s and r many 2’s. This we do for every row;
the resulting 12-sst is B (T).

• To construct B (T), we consider T as a 12-rpp, and we identify which of
its columns are 1-pure, which are 2-pure and which are mixed. Then,
we replace all entries of all 1-pure columns by 2’s, while simultaneously
replacing all entries of all 2-pure columns by 1’s. The resulting 12-table is
denoted flip (T). Then, we repeatedly resolve conflicts in flip (T) until no
more conflicts remain. The resulting 12-table norm (flip (T)) is a 12-rpp,
and is denoted B (T).

If we compare the two constructions just described, we first notice that the
columns ignored in the construction of B (T) are precisely the mixed columns of

43For instance, in the 12-sst (33), the ignored columns are the 1-st, the 6-th and the 7-th columns.

48



Refined dual stable Grothendieck polynomials June 15, 2016

T. Thus, the 12-table flip (T) can be obtained from T by replacing all 1’s which
are not “ignored” by 2’s while simultaneously replacing all 2’s which are not
“ignored” by 1’s. Thus, for any given k ∈ N+, if the k-th row of T contains r
many 1’s which are not “ignored” and s many 2’s which are not “ignored”, then
the k-th row of flip (T) contains r many 2’s which are not “ignored” and s many
1’s which are not “ignored” (while the “ignored” entries in T appear in flip (T)
unchanged). So we can restate the construction of flip (T) as follows:

• To construct flip (T) from T, do the following: In every row of T, let r be
the number of 1’s which are not “ignored”, and let s be the number of 2’s
which are not “ignored”. We replace these r many 1’s and s many 2’s by
r many 2’s and s many 1’s (in this order). This we do for every row; the
resulting 12-table is flip (T).

Compare this to our construction of B (T):

• To construct B (T) from T, do the following: In every row of T, let r be
the number of 1’s which are not “ignored”, and let s be the number of 2’s
which are not “ignored”. We replace these r many 1’s and s many 2’s by
s many 1’s and r many 2’s (in this order). This we do for every row; the
resulting 12-sst is B (T).

Comparing these two constructions makes it clear that each row of B (T) dif-
fers from the corresponding row of flip (T) merely in the order in which the
non-“ignored” entries appear: In B (T), the non-“ignored” 1’s appear before the
non-“ignored” 2’s (as they must, B (T) being an sst), whereas in flip (T) they ap-
pear in the opposite order. Hence, B (T) can be obtained from flip (T) by sorting
all non-“ignored” entries into increasing order in each row.

Now, let us notice that every pair of a non-“ignored” 2 and a non-“ignored”
1 lying in the same row of flip (T) cause a conflict44. Conversely, all conflicts
of flip (T) are caused by a non-“ignored” 2 and a non-“ignored” 1 lying in the
same row (because all “ignored” entries are carried over from T without change
and thus cannot take part in conflicts). We can resolve these conflicts one after
the other (starting with the 2 and the 1 that are adjacent to each other), until
none are left. The result is a 12-rpp. What is this 12-rpp?

• On the one hand, this 12-rpp is norm (flip (T)), because norm (flip (T)) is
defined as what results when all conflicts of flip (T) are resolved.

• On the other hand, this 12-rpp is B (T). In fact, resolving a conflict caused
by a non-“ignored” 2 and a non-“ignored” 1 lying in the same row results
in this 2 getting switched with the 1 (while no other entries get moved45).

44More precisely: If r ∈ N+, i ∈ N+ and j ∈ N+ are such that (flip T) (r, i) is a non-“ignored”
2 and that (flip T) (r, j) is a non-“ignored” 1, then (i, j) is a conflict of flip T.

45This is because every non-“ignored” entry is alone in its column.
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Hence, when we resolve the conflicts, we just sort all non-“ignored” entries
into increasing order in each row. But as we know, the 12-table obtained
from flip (T) by sorting all non-“ignored” entries into increasing order in
each row is B (T).

So we have found a 12-rpp which equals both norm (flip (T)) and B (T). Thus,
B (T) = norm (flip (T)) = B (T). This completes our proof of Proposition 6.3.

7. The structure of 12-rpps

In this section, we let k be the polynomial ring Z [t1, t2, t3, . . .] in countably
many indeterminates, and we let t1, t2, t3, . . . be these indeterminates. Further-
more, we restrict ourselves to the two-variable dual stable Grothendieck poly-
nomial g̃λ/µ(x1, x2, 0, 0, . . . ; t) defined as the result of substituting 0, 0, 0, . . . for
x3, x4, x5, . . . in g̃λ/µ. We can represent it as a polynomial in t with coefficients in
Z[x1, x2]:

g̃λ/µ(x1, x2, 0, 0, . . . ; t) = ∑
α∈NN+

tαQα(x1, x2),

where the sum ranges over all weak compositions α, and all but finitely many
Qα(x1, x2) are 0. (The Qα(x1, x2) here belong to Z[x1, x2].)

We shall show that each Qα(x1, x2) is either zero or has the form

Qα(x1, x2) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · · Pnr(x1, x2), (36)

where M, r and n0, n1, . . . , nr are nonnegative integers naturally associated to α
and λ/µ and where

Pn(x1, x2) =
xn+1

1 − xn+1
2

x1 − x2
= xn

1 + xn−1
1 x2 + · · ·+ x1xn−1

2 + xn
2 .

We fix the skew partition λ/µ throughout the whole section. Abusing notation,
we shall abbreviate Y (λ/µ) as λ/µ. We will have a running example with
λ = (7, 7, 7, 4, 4) and µ = (5, 3, 2).

7.1. Irreducible components

We recall that a 12-rpp means an rpp whose entries all belong to the set {1, 2}.
Given a 12-rpp T, consider the set NR(T) of all cells (i, j) ∈ λ/µ such that

T(i, j) = 1 but (i + 1, j) ∈ λ/µ and T(i + 1, j) = 2. (In other words, NR(T) is
the set of all non-redundant cells in T which are filled with a 1 and which are
not the lowest cells in their columns.) Clearly, NR(T) contains at most one cell
from each column; thus, let us write NR(T) = {(i1, j1), (i2, j2), . . . , (is, js)} with
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1 2

1 1 1 2

1 1 1 2 2

1 2 2 2

2 2 2 2

1 1

1 1 1 1
1 1 1 1 2

1 1 2 2

2 2 2 2

NR(T1) = {(4, 1), (3, 3), (3, 4), (2, 6)} NR(T2) = {(4, 2), (3, 3), (3, 4), (2, 7)}
seplist(T1) = (4, 3, 3, 2) seplist(T2) = (4, 3, 3, 2)

Figure 1: Two 12-rpps of the same shape and with the same seplist-partition.

j1 < j2 < · · · < js. Because T is a 12-rpp, it follows that the numbers i1, i2, . . . , is
decrease weakly, therefore they form a partition which we denoted

seplist(T) := (i1, i2, . . . , is)

in Section 5.3. This partition will be called the seplist-partition of T. An example
of calculation of seplist(T) and NR(T) is illustrated on Figure 1.

We would like to answer the following question: for which partitions ν = (i1 ≥
· · · ≥ is > 0) does there exist a 12-rpp T of shape λ/µ such that seplist(T) = ν?

A trivial necessary condition for this to happen is that there should exist some
numbers j1 < j2 < · · · < js such that

(i1, j1), (i1 + 1, j1), (i2, j2), (i2 + 1, j2), . . . , (is, js), (is + 1, js) ∈ λ/µ. (37)

Until the end of Section 7, we make an assumption: namely, that the skew
partition λ/µ is connected as a subgraph of Z2 (where two nodes are connected
if and only if their cells have an edge in common), and that it has no empty
columns. This is a harmless assumption, since every skew partition λ/µ can
be written as a disjoint union of such connected skew partitions, and the corre-
sponding seplist-partition splits into several independent parts, the polynomials
g̃λ/µ get multiplied and the right hand side of (36) changes accordingly.

For each integer i, the set of all integers j such that (i, j), (i + 1, j) ∈ λ/µ is
just an interval [µi + 1, λi+1], which we call the support of i and denote supp(i) :=
[µi + 1, λi+1].

We say that a partition ν is admissible if every k satisfies supp(ik) 6= ∅. (This
is clearly satisfied when there exist j1 < j2 < · · · < js satisfying (37), but also in
other cases.) Assume that ν = (i1 ≥ · · · ≥ is > 0) is an admissible partition. For
two integers a < b, we let ν

∣∣
⊆[a,b) denote the subpartition (ir, ir+1, . . . , ir+q) of ν,

where [r, r + q] is the (possibly empty) set of all k for which supp(ik) ⊆ [a, b).
In this case, we put46 #ν

∣∣
⊆[a,b) := q + 1, which is just the number of entries in

46Here and in the following, #κ denotes the length of a partition κ.
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ν
∣∣
⊆[a,b). Similarly, we set ν

∣∣
∩[a,b) to be the subpartition (ir, ir+1, . . . , ir+q) of ν,

where [r, r + q] is the set of all k for which supp(ik) ∩ [a, b) 6= ∅. For example,
for ν = (4, 3, 3, 2) and λ/µ as on Figure 1, we have

supp(3) = [3, 4], supp(2) = [4, 7], supp(4) = [1, 4],

ν
∣∣
⊆[2,7) = (3, 3), ν

∣∣
⊆[2,8) = (3, 3, 2), ν

∣∣
⊆[4,8) = (2), ν

∣∣
∩[4,5) = (4, 3, 3, 2), #ν

∣∣
⊆[2,7) = 2.

Remark 7.1. If ν is not admissible, that is, if supp(ik) = ∅ for some k, then
ik belongs to ν

∣∣
⊆[a,b) for any a, b, so ν

∣∣
⊆[a,b) might no longer be a contiguous

subpartition of ν. On the other hand, if ν is an admissible partition, then the
partitions ν

∣∣
⊆[a,b) and ν

∣∣
∩[a,b) are clearly admissible as well. For the rest of this

section, we will only work with admissible partitions.

We introduce several definitions: An admissible partition ν = (i1 ≥ · · · ≥ is >
0) is called
• non-representable if for some a < b we have #ν

∣∣
⊆[a,b) > b− a;

• representable if for all a < b we have #ν
∣∣
⊆[a,b) ≤ b− a;

a representable partition ν is called
• irreducible if for all a < b we have #ν

∣∣
⊆[a,b) < b− a;

• reducible if for some a < b we have #ν
∣∣
⊆[a,b) = b− a.

For example, ν = (4, 3, 3, 2) is representable but reducible because we have
ν
∣∣
⊆[3,5) = (3, 3) so #ν

∣∣
⊆[3,5) = 2 = 5− 3.

Note that these notions depend on the skew partition; thus, when we want
to use a skew partition λ̃/µ rather than λ/µ, we will write that ν is non-
representable/irreducible/etc. with respect to λ̃/µ, and we denote the corre-

sponding partitions by ν
∣∣λ̃/µ

⊆[a,b).
These definitions can be motivated as follows. Suppose that a partition ν

is non-representable, so there exist integers a < b such that #ν
∣∣
⊆[a,b) > b − a.

Recall that ν
∣∣
⊆[a,b) =: (ir, ir+1, . . . , ir+q) contains all entries of ν whose support

is a subset of [a, b). Thus in order for condition (37) to be true there must exist
some integers jr < jr+1 < · · · < jr+q such that

(ir, jr), (ir + 1, jr), . . . , (ir+q, jr+q), (ir+q + 1, jr+q) ∈ λ/µ.

On the other hand, by the definition of the support, we must have jk ∈ supp(ik) ⊆
[a, b) for all r ≤ k ≤ r + q. Therefore we get q+ 1 distinct elements of [a, b) which
is impossible if q + 1 = #ν

∣∣
⊆[a,b) > b− a. It means that a non-representable par-

tition ν is never a seplist-partition of a 12-rpp T.
Suppose now that a partition ν is reducible, so for some a < b we get an

equality #ν
∣∣
⊆[a,b) = b − a. Then these integers jr < · · · < jr+q should still all

belong to [a, b) and there are exactly b− a of them, hence

jr = a, jr+1 = a + 1, · · · , jr+q = a + q = b− 1. (38)
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Because supp(ir) ⊆ [a, b) but supp(ir) 6= ∅ (since ν is admissible), we have
(ir, a− 1) /∈ λ/µ. Thus, placing a 1 into (ir, a) and 2’s into (ir + 1, a), (ir + 2, a), . . .
does not put any restrictions on entries in columns 1, . . . , a− 1. And the same
is true for columns b, b + 1, . . . when we place a 2 into (ir+q + 1, b− 1) and 1’s
into all cells above. Thus, if a partition ν is reducible, then the filling of columns
a, a + 1, . . . , b− 1 is uniquely determined (by (38)), and the filling of the rest can
be arbitrary – the problem of existence of a 12-rpp T such that seplist(T) = ν
reduces to two smaller independent problems of the same kind (one for the
columns 1, 2, . . . , a − 1, the other for the columns47 b, b + 1, . . . , λ1). One can
continue this reduction process and end up with several independent irreducible
components separated from each other by mixed columns. An illustration of this
phenomenon can be seen on Figure 1: the columns 3 and 4 must be mixed for
any 12-rpps T with seplist(T) = (4, 3, 3, 2).

More explicitly, we have thus shown that every nonempty interval [a, b) ⊆
[1, λ1 + 1) satisfying #ν

∣∣
⊆[a,b) = b− a splits our problem into two independent

subproblems. But if two such intervals [a, b) and [c, d) satisfy a ≤ c ≤ b ≤ d then
their union [a, d) is another such interval 48. Hence, the maximal (with respect
to inclusion) among all such intervals are pairwise disjoint and separated from
each other by at least a distance of 1. This yields part (a) of the following lemma:

Lemma 7.2. Let ν be a representable partition.
(a) There exist unique integers (1 = b0 ≤ a1 < b1 < a2 < b2 < · · · < ar <

br ≤ ar+1 = λ1 + 1) satisfying the following two conditions:

1. For all 1 ≤ k ≤ r, we have #ν
∣∣
⊆[ak,bk)

= bk − ak.

2. The set
⋃r

k=0[bk, ak+1) is minimal (with respect to inclusion) among all
sequences (1 = b0 ≤ a1 < b1 < a2 < b2 < · · · < ar < br ≤ ar+1 = λ1 + 1)
satisfying property 1.

47Recall that a 12-rpp of shape λ/µ cannot have any nonempty column beyond the λ1’th one.
48Proof. Assume that two intervals [a, b) and [c, d) satisfying #ν

∣∣
⊆[a,b) = b − a and #ν

∣∣
⊆[c,d) =

d− c intersect. We need to show that their union is another such interval.
We WLOG assume that a ≤ c. Then, c ≤ b (since the intervals intersect). If b > d, then

the union of the two intervals is simply [a, b), which makes our claim obvious. Hence, we
WLOG assume that b ≤ d. Thus, a ≤ c ≤ b ≤ d. The union of the two intervals is therefore
[a, d), and we must show that #ν

∣∣
⊆[a,d) = d− a. A set of positive integers is a subset of both

[a, b) and [c, d) if and only if it is a subset of [c, b). On the other hand, a set of positive
integers that is a subset of either [a, b) or [c, d) must be a subset of [a, d) (but not conversely).
Combining these two observations, we obtain #ν

∣∣
⊆[a,d) ≥ #ν

∣∣
⊆[a,b)+ #ν

∣∣
⊆[c,d)− #ν

∣∣
⊆[c,b). Since

ν is representable (or, when b = c, for obvious reasons), we have #ν
∣∣
⊆[c,b) ≤ b− c. Thus,

#ν
∣∣
⊆[a,d) ≥ #ν

∣∣
⊆[a,b)︸ ︷︷ ︸

=b−a

+ #ν
∣∣
⊆[c,d)︸ ︷︷ ︸

=d−c

− #ν
∣∣
⊆[c,b)︸ ︷︷ ︸
≤b−c

≥ (b− a) + (d− c)− (b− c) = d− a.

Combined with #ν
∣∣
⊆[a,d) ≤ d− a (since ν is representable), this yields #ν

∣∣
⊆[a,d) = d− a, qed.
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Furthermore, for these integers, we have:
(b) The partition ν is the concatenation(

ν
∣∣
∩[b0,a1)

) (
ν
∣∣
⊆[a1,b1)

) (
ν
∣∣
∩[b1,a2)

) (
ν
∣∣
⊆[a2,b2)

)
· · ·
(

ν
∣∣
∩[br,ar+1)

)
(where we regard a partition as a sequence of positive integers, with no trail-
ing zeroes).

(c) The partitions ν
∣∣
∩[bk,ak+1)

are irreducible with respect to λ/µ
∣∣
[bk,ak+1)

,
which is the skew partition λ/µ with columns 1, 2, . . . , bk− 1, ak+1, ak+1 + 1, . . .
removed.

Proof. Part (a) has already been proven.
(b) Let ν = (i1 ≥ · · · ≥ is > 0). If supp(ir) ⊆ [ak, bk) for some k, then ir appears

in exactly one of the concatenated partitions, namely, ν
∣∣
⊆[ak,bk)

. Otherwise there
is an integer k such that supp(ir) ∩ [bk, ak+1) 6= ∅. It remains to show that
such k is unique, that is, that supp(ir) ∩ [bk+1, ak+2) = ∅. Assume the contrary.
The interval [ak+1, bk+1) is nonempty, therefore there is an entry i of ν with
supp(i) ⊆ [ak+1, bk+1). It remains to note that we get a contradiction: we get two
numbers i, ir with supp(ir) being both to the left and to the right of supp(i).

(c) Fix k. Let J denote the restricted skew partition λ/µ
∣∣
[bk,ak+1)

, and let ν′ =

ν
∣∣
∩[bk,ak+1)

. We need to show that if [c, d) is a nonempty interval contained in

[bk, ak+1), then #ν′
∣∣J
⊆[c,d) < d− c. We are in one of the following four cases:

• Case 1: We have c > bk (or k = 0) and d < ak+1 (or k = r). In this case,
every ip with suppJ(ip) ⊆ [c, d) must satisfy supp(ip) ⊆ [c, d). Hence,

ν′
∣∣J
⊆[c,d) = ν

∣∣
⊆[c,d), so that #ν′

∣∣J
⊆[c,d) = #ν

∣∣
⊆[c,d) < d− c, and we are done.

• Case 2: We have c = bk and k > 0 (but not d = ak+1 and k < r). Assume
(for the sake of contradiction) that #ν′

∣∣J
⊆[c,d) ≥ d− c. Then, the ip satisfying

suppJ(ip) ⊆ [c, d) must satisfy supp(ip) ⊆ [ak, d) (since otherwise, supp(ip)
would intersect both [bk−1, ak) and [bk, ak+1), something we have ruled out
in the proof of (b)). Thus, #ν

∣∣
⊆[ak,d) ≥ (d− c) + (bk − ak) = d− ak, which

contradicts the minimality of
⋃r

k=0[bk, ak+1) (we could increase bk to d).

• Case 3: We have d = ak+1 and k < r (but not c = bk and k > 0). The argument
here is analogous to Case 2.

• Case 4: Neither of the above. Exercise.

54



Refined dual stable Grothendieck polynomials June 15, 2016

Definition 7.3. In the context of Lemma 7.2, for 0 ≤ k ≤ r the subpartitions
ν
∣∣
∩[bk,ak+1)

are called the irreducible components of ν and the nonnegative integers

nk := ak+1 − bk − #ν
∣∣
∩[bk,ak+1)

are called their degrees. (For T with seplist(T) =
ν, the k-th degree nk is equal to the number of pure columns of T inside the
corresponding k-th irreducible component. All nk are positive, except for n0 if
a1 = 1 and nr if br = λ1 + 1.)

Example 7.4. For ν = (4, 3, 3, 2) we have r = 1, b0 = 1, a1 = 3, b1 = 5, a2 =
8. The irreducible components of ν are (4) and (2) and their degrees are
3− 1− 1 = 1 and 8− 5− 1 = 2 respectively. We have ν

∣∣
∩[1,3) = (4), ν

∣∣
⊆[3,5) =

(3, 3), ν
∣∣
∩[5,8) = (2).

7.2. The structural theorem and its applications

It is easy to see that for a 12-rpp T, the number #seplist(T) is equal to the number
of mixed columns in T.

Let RPP12 (λ/µ) denote the set of all 12-rpps T of shape λ/µ, and let RPP12 (λ/µ; ν)
denote its subset consisting of all 12-rpps T with seplist(T) = ν. (Notice that
RPP12 (λ/µ) was formerly called R in Lemma 3.5, if Z = Y (λ/µ).) Now we are
ready to state a theorem that completely describes the structure of irreducible
components (which will be proven later):

Theorem 7.5. Let ν be an irreducible partition. Then for all 0 ≤ m ≤ λ1 − #ν

there is exactly one 12-rpp T ∈ RPP12 (λ/µ; ν) with #ν mixed columns, m
1-pure columns and (λ1 − #ν− m) 2-pure columns. Moreover, these are the
only elements of RPP12 (λ/µ; ν). In other words, for an irreducible partition ν
we have

∑
T∈RPP12(λ/µ;ν)

xircont(T) = (x1x2)
#νPλ1−#ν(x1, x2). (39)

Example 7.6. Each of the two 12-rpps on Figure 1 has two irreducible compo-
nents. One of them is supported on the first two columns and the other one
is supported on the last three columns. Here are all possible 12-rpps for each
component:

1 1
1 2

1 2

2 2

1 1

1 1 1
1 1 2

1 2

1 1 2

1 2 2

2 2

1 2 2

2 2 2
λ = (2, 2); µ = (); ν = (4) λ = (3, 3, 3); µ = (1); ν = (2).

After decomposing into irreducible components, we can obtain a formula for
general representable partitions:
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Corollary 7.7. Let ν be a representable partition. Then

∑
T∈RPP12(λ/µ;ν)

xircont(T) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · · Pnr(x1, x2), (40)

where the numbers M, r, n0, . . . , nr are defined above: M = #ν, r + 1 is the
number of irreducible components of ν and n0, n1, . . . , nr are their degrees.

Proof of Corollary 7.7. The restriction map

RPP12 (λ/µ; ν)→
r

∏
k=0

RPP12
(

λ/µ
∣∣
[bk,ak+1)

; ν
∣∣
∩[bk,ak+1)

)
is injective (since, as we know, the entries of a T ∈ RPP12 (λ/µ; ν) in any column
outside of the irreducible components are uniquely determined) and surjective
(as one can “glue” rpps together). Now use Theorem 7.5.

For a 12-rpp T, the vectors seplist(T) and ceq(T) uniquely determine each
other: if (ceq(T))i = h then seplist(T) contains exactly λi+1 − µi − h entries
equal to i, and this correspondence is one-to-one. Therefore, the polynomials
on both sides of (40) are equal to Qα(x1, x2) where the vector α is the one that
corresponds to ν.

Note that the polynomials Pn(x1, x2) are symmetric for all n. Since the question
about the symmetry of g̃λ/µ can be reduced to the two-variable case, Corollary
7.7 gives an alternative proof of the symmetry of g̃λ/µ:

Corollary 7.8. The polynomials g̃λ/µ ∈ Z [t1, t2, t3, . . . ] [[x1, x2, x3, . . .]] are
symmetric.

Of course, our standing assumption that λ/µ is connected can be lifted here,
because in general, g̃λ/µ is the product of the analogous power series corre-
sponding to the connected components of λ/µ. So we have obtained a new
proof of Theorem 3.3 in the case when k = Z [t1, t2, t3, . . . ] and when t1, t2, t3, . . .
are these indeterminates.

This also holds for any commutative ring k and any t1, t2, t3, . . . ∈ k, since the
case we have considered (where t1, t2, t3, . . . are polynomial indeterminates over
Z) is universal. Thus, we have reproven Theorem 3.3 in full generality.

Another application of Theorem 7.5 is a complete description of Bender-Knuth
involutions on rpps.

Corollary 7.9. Let ν be an irreducible partition. Then there is a unique map
b : RPP12 (λ/µ; ν) → RPP12 (λ/µ; ν) such that for all T ∈ RPP12 (λ/µ; ν) we
have ircont(b(T)) = s1 · ircont(T). This unique map b is an involution on
RPP12 (λ/µ; ν). So, for an irreducible partition ν the corresponding Bender-
Knuth involution exists and is unique.
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Take any 12-rpp T ∈ RPP12 (λ/µ; ν) and recall that a 12-table flip(T) is ob-
tained from T by simultaneously replacing all entries in 1-pure columns by 2
and all entries in 2-pure columns by 1.

Corollary 7.10. If ν is an irreducible partition, then, no matter in which order
one resolves conflicts in flip(T), the resulting 12-rpp T′ will be the same. The
map T 7→ T′ is the unique Bender-Knuth involution on RPP12 (λ/µ; ν).

Proof of Corollary 7.10. Conflict-resolution steps applied to flip(T) in any order
eventually give an element of RPP12 (λ/µ; ν) with the desired ircont. There is
only one such element. So we get a map RPP12 (λ/µ; ν) → RPP12 (λ/µ; ν) that
satisfies the assumptions of Corollary 7.9.

Finally, notice that, for a general representable partition ν, conflicts in a 12-
table T with seplist(T) = ν may only occur inside each irreducible component
independently. Thus, we conclude the chain of corollaries by stating that our
constructed involutions are canonical in the following sense:

Corollary 7.11. For a representable partition ν, the map B : RPP12 (λ/µ; ν)→
RPP12 (λ/µ; ν) is the unique involution that interchanges the number of 1-
pure columns with the number of 2-pure columns inside each irreducible
component.

7.3. The proof

Let ν = (i1, . . . , is) be an irreducible partition. We start with the following simple
observation:

Lemma 7.12. Let T ∈ RPP12 (λ/µ; ν) for an irreducible partition ν. Then any
1-pure column of T is to the left of any 2-pure column of T.

Proof of Lemma 7.12. Suppose it is false and we have a 1-pure column to the right
of a 2-pure column. Among all pairs (a, b) such that column a is 2-pure and
column b is 1-pure, and b > a, consider the one with smallest b− a. Then, the
columns a + 1, . . . , b − 1 must all be mixed. Therefore the set NR(T) contains
{(ip+1, a + 1), (ip+2, a + 2), . . . , (ip+b−1−a, b− 1)} for some p ∈ N. And because
a is 2-pure and b is 1-pure, each ip+k (for k = 1, . . . , b− 1− a) must be ≤ to the
y-coordinate of the highest cell in column a and > than the y-coordinate of the
lowest cell in column b. Thus, the support of any ip+k for k = 1, . . . , b− 1− a is
a subset of [a + 1, b), which contradicts the irreducibility of ν.

Proof of Theorem 7.5. We proceed by strong induction on the number of columns
in λ/µ. If the number of columns is 1, then the statement of Theorem 7.5 is
obvious. Suppose that we have proven that for all skew partitions λ̃/µ with less
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than λ1 columns and for all partitions ν̃ irreducible with respect to λ̃/µ and for
all 0 ≤ m̃ ≤ λ̃1 − #ν̃, there is exactly one 12-rpp T̃ of shape λ̃/µ with exactly
m̃ 1-pure columns, exactly #ν̃ mixed columns and exactly (λ̃1 − #ν̃− m̃) 2-pure
columns. Now we want to prove the same for λ/µ.

Take any 12-rpp T ∈ RPP12 (λ/µ; ν) with seplist(T) = ν and with m 1-pure
columns for 0 ≤ m ≤ λ1 − #ν. Suppose first that m > 0. Then there is at least
one 1-pure column in T. Let q ≥ 0 be such that the leftmost 1-pure column is
column q + 1. Then by Lemma 7.12 the columns 1, 2, . . . , q are mixed. If q > 0
then the supports of i1, i2, . . . , iq are all contained inside [1, q + 1) and we get
a contradiction with the irreducibility of ν. The only remaining case is that
q = 0 and the first column of T is 1-pure. Let λ̃/µ denote λ/µ with the first
column removed. Then ν is obviously admissible but may not be irreducible

with respect to λ̃/µ, because it may happen that #ν
∣∣λ̃/µ

⊆[2,b+1) = b − 1 for some

b > 1. In this case we can remove these b− 1 nonempty columns from λ̃/µ and
remove the first b − 1 entries from ν to get an irreducible partition again49, to
which we can apply the induction hypothesis. We are done with the case m > 0.
If m < λ1 − #ν then we can apply a mirrored argument to the last column, and
it remains to note that the cases m > 0 and m < λ1 − #ν cover everything (since
the irreducibility of ν shows that λ1 − #ν > 0).

This inductive proof shows the uniqueness of the 12-rpp with desired prop-
erties. Its existence follows from a parallel argument, using the observation that
the first b− 1 columns of λ̃/µ can actually be filled in. This amounts to showing
that for a representable ν, the set RPP12 (λ/µ; ν) is non-empty in the case when
λ1 = #ν (so all columns of T ∈ RPP12 (λ/µ; ν) must be mixed). This is clear
when there is just one column, and the general case easily follows by induction
on the number of columns50.

49This follows from Lemma 7.2 (c) (applied to the skew shape λ̃/µ and k = 1). Here we are
using the fact that if we apply Lemma 7.2 (a) to λ̃/µ instead of λ/µ, then we get r = 1

(because if r ≥ 2, then #ν
∣∣
⊆[a2,b2)

= #ν
∣∣λ̃/µ

⊆[a2,b2)
= b2 − a2 in contradiction to the irreducibility

of λ/µ).
50In more detail:

If we had 1 /∈ supp(ν1), then we would have supp(ν1) ⊆ [2, λ1 + 1), and thus supp(νj) ⊆
[2, λ1 + 1) for every j (since ν is weakly decreasing and since supp(ν1) is nonempty), which
would lead to ν

∣∣
⊆[2,λ1+1) = ν and thus #ν

∣∣
⊆[2,λ1+1) = #ν = λ1 > λ1 + 1− 2, contradicting the

representability of ν. Hence, we have 1 ∈ supp(ν1), so that we can fill the first column of λ/µ
with 1’s and 2’s in such a way that it becomes mixed and the 1’s are displaced by 2’s at level
ν1. Now, let λ̃/µ be the skew partition λ/µ without its first column, and ν̃ be the partition
(ν2, ν3, . . .). Then, the partition ν̃ is representable with respect to λ̃/µ. (Otherwise we would

have #ν
∣∣λ̃/µ

⊆[2,b+1) > b− 1 for some b ≥ 1, but then we would have supp(ν1) ⊆ [1, b + 1) as well

and therefore #ν
∣∣
⊆[1,b+1) > (b− 1) + 1 = b, contradicting the representability of λ/µ.) Thus

we can fill in the entries in the cells of λ̃/µ by induction.
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