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The dual stable Grothendieck polynomials are a deformation of the
Schur functions, originating in the study of the K-theory of the Grass-
mannian. We generalize these polynomials by introducing a count-
able family of additional parameters, and we prove that this gener-
alization still defines symmetric functions. For this fact, we give two
self-contained proofs, one of which constructs a family of involutions
on the set of reverse plane partitions generalizing the Bender-Knuth
involutions on semistandard tableaux, whereas the other classifies the
structure of reverse plane partitions with entries 1 and 2.

1. Introduction

Thomas Lam and Pavlo Pylyavskyy, in [LamPyl07, §9.1], (and earlier Mark Shi-
mozono and Mike Zabrocki in unpublished work of 2003) studied dual stable
Grothendieck polynomials, a deformation (in a sense) of the Schur functions. Let
us briefly recount their definition.

Let λ/µ be a skew partition. The Schur function sλ/µ is a multivariate gen-
erating function for the semistandard tableaux of shape λ/µ. In the same vein,
the dual stable Grothendieck polynomial gλ/µ is a generating function for the
reverse plane partitions of shape λ/µ; these, unlike semistandard tableaux, are
only required to have their entries increase weakly down columns (and along
rows). More precisely, gλ/µ is a formal power series in countably many com-
muting indeterminates x1, x2, x3, . . . defined by

gλ/µ = ∑
T is a reverse plane

partition of shape λ/µ

xircont(T),

1



Refined dual stable Grothendieck polynomials June 15, 2016

where xircont(T) is the monomial xa1
1 xa2

2 xa3
3 · · · whose i-th exponent ai is the num-

ber of columns (rather than cells) of T containing the entry i. As proven in
[LamPyl07, §9.1], this power series gλ/µ is a symmetric function (albeit, unlike
sλ/µ, an inhomogeneous one in general). Lam and Pylyavskyy connect the gλ/µ

to the (more familiar) stable Grothendieck polynomials Gλ/µ (via a duality between
the symmetric functions and their completion, which explains the name of the
gλ/µ; see [LamPyl07, §9.4]) and to the K-theory of Grassmannians ([LamPyl07,
§9.5]).

We devise a common generalization of the dual stable Grothendieck polyno-
mial gλ/µ and the classical skew Schur function sλ/µ. Namely, if t1, t2, t3, . . . are
countably many indeterminates, then we set

g̃λ/µ = ∑
T is a reverse plane

partition of shape λ/µ

tceq(T)xircont(T),

where tceq(T) is the product tb1
1 tb2

2 tb3
3 · · · whose i-th exponent bi is the number

of cells in the i-th row of T whose entry equals the entry of their neighbor cell
directly below them. This g̃λ/µ becomes gλ/µ when all the ti are set to 1, and
becomes sλ/µ when all the ti are set to 0.

Our main result, Theorem 3.3, states that g̃λ/µ is a symmetric function (in the
x1, x2, x3, . . .).

We prove this result (thus obtaining a new proof of [LamPyl07, Theorem 9.1])
first using an elaborate generalization of the classical Bender-Knuth involutions
to reverse plane partitions, and then for a second time by analyzing the structure
of reverse plane partitions whose entries lie in {1, 2}. The second proof reflects
back on the first, in particular providing an alternative definition of the general-
ized Bender-Knuth involutions constructed in the first proof, and showing that
these involutions are (in a sense) “the only reasonable choice”. We notice that
both our proofs are explicitly bijective, unlike the proof of [LamPyl07, Theorem
9.1] which relies on computations in an algebra of operators.

The present paper is organized as follows: In Section 2, we recall classical
definitions and introduce notations pertaining to combinatorics and symmetric
functions. In Section 3, we define the refined dual stable Grothendieck polyno-
mials g̃λ/µ, state our main result (that they are symmetric functions), and do the
first steps of its proof (by reducing it to a purely combinatorial statement about
the existence of an involution with certain properties). In Section 4, we describe
the idea of constructing this involution in an elementary way without proofs. In
Section 5, we prove various properties of this involution advertised in Section
4, thus finishing the proof of our main result. In Section 6, we recapitulate the
definition of the classical Bender-Knuth involution, and show that our involu-
tion is a generalization of the latter. Finally, in Section 7 we study the structure
of reverse plane partitions with entries belonging to {1, 2}, which (in particular)
gives us an explicit formula for the t-coefficients of g̃λ/µ(x1, x2, 0, 0, . . . ; t), and
shines a new light on the involution constructed in Sections 4 and 5 (also show-
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ing that it is the unique involution that shares certain natural properties with the
classical Bender-Knuth involutions).

An extended abstract of this paper, omitting the proofs, is to appear as [GaGrLi16].

1.1. Acknowledgments

We owe our familiarity with dual stable Grothendieck polynomials to Richard
Stanley. We thank Alexander Postnikov for providing context and motivation,
and Thomas Lam and Pavlo Pylyavskyy for interesting conversations.

2. Notations and definitions

Let us begin by defining our notations (including some standard conventions
from algebraic combinatorics).

2.1. Partitions and tableaux

We set N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}.
A sequence α = (α1, α2, α3, . . .) of nonnegative integers is called a weak compo-

sition if the sum of its entries (denoted |α|) is finite. We shall always write αi for
the i-th entry of a weak composition α.

A partition is a weak composition (α1, α2, α3, . . .) satisfying α1 ≥ α2 ≥ α3 ≥
· · · . As usual, we often omit trailing zeroes when writing a partition (e.g., the
partition (5, 2, 1, 0, 0, 0, . . .) can thus be written as (5, 2, 1)).

We identify each partition λ with the subset
{
(i, j) ∈N2

+ | j ≤ λi
}

of N2
+

(called the Young diagram of λ). We draw this subset as a Young diagram (which is
a left-aligned table of empty boxes, where the box (1, 1) is in the top-left corner
while the box (2, 1) is directly below it; this is the English notation, also known
as the matrix notation); see [Fulton97] for the detailed definition.

A skew partition λ/µ is a pair (λ, µ) of partitions satisfying µ ⊆ λ (as subsets
of the plane). In this case, we shall also often use the notation λ/µ for the
set-theoretic difference of λ and µ.

If λ/µ is a skew partition, then a filling of λ/µ means a map T : λ/µ → N+.
It is visually represented by drawing λ/µ and filling each box c with the entry
T(c). Three examples of a filling can be found on Figure 1.

A filling T : λ/µ → N+ of λ/µ is called a reverse plane partition of shape
λ/µ if its values increase weakly in each row of λ/µ from left to right and
in each column of λ/µ from top to bottom. If, in addition, the values of T
increase strictly down each column, then T is called a semistandard tableau of shape
λ/µ. (See Fulton’s [Fulton97] for an exposition of properties and applications
of semistandard tableaux1.) We denote the set of all reverse plane partitions of

1Fulton calls semistandard tableaux just “tableaux”, but otherwise is consistent with most of
our notation.
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Figure 1: Fillings of (3, 2, 2)/(1): (a) is not an rpp as it has a 4 below a 6, (b) is
an rpp but not a semistandard tableau as it has a 3 below a 3, (c) is a
semistandard tableau (and hence also an rpp).

shape λ/µ by RPP (λ/µ). We abbreviate reverse plane partitions as rpps.
Examples of an rpp, of a non-rpp and of a semistandard tableau can be found

on Figure 1.

2.2. Symmetric functions

A symmetric function is defined to be a bounded-degree2 power series in count-
ably many indeterminates x1, x2, x3, . . . over Z that is invariant under (finite)
permutations3 of x1, x2, x3, . . . .

The symmetric functions form a ring, which is called the ring of symmetric func-
tions and denoted by Λ. (In [LamPyl07] this ring is denoted by Sym, while the
notation Λ is reserved for the set of all partitions.) Much research has been done
on symmetric functions and their relations to Young diagrams and tableaux; see
[Stan99, Chapter 7], [Macdon95] and [GriRei15, Chapter 2] for expositions.

Given a filling T of a skew partition λ/µ, its content is a weak composition
cont (T) = (r1, r2, r3, . . . ), where ri =

∣∣T−1(i)
∣∣ is the number of entries of T equal

to i. For a skew partition λ/µ, we define the Schur function sλ/µ to be the formal
power series

sλ/µ(x1, x2, . . . ) = ∑
T is a semistandard

tableau of shape λ/µ

xcont(T) ∈ Z [[x1, x2, x3, . . .]] .

Here, for every weak composition α = (α1, α2, α3, . . .), we define a monomial xα

to be xα1
1 xα2

2 xα3
3 · · · . These Schur functions are symmetric:

Proposition 2.1. We have sλ/µ ∈ Λ for every skew partition λ/µ.

This result appears, e.g., in [Stan99, Theorem 7.10.2] and [GriRei15, Propo-
sition 2.11]; it is commonly proven bijectively using the so-called Bender-Knuth
involutions. We shall recall the definitions of these involutions in Section 6.

2A power series is said to be bounded-degree if there is an N ∈ N such that only monomials of
degree ≤ N appear in the series.

3A permutation is finite if it fixes all but finitely many elements.
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Replacing “semistandard tableau” by “rpp” in the definition of a Schur func-
tion in general gives a non-symmetric function. Nevertheless, Lam and Pylyavskyy
[LamPyl07, §9] have been able to define symmetric functions from rpps, albeit
using a subtler construction instead of the content cont (T).

Namely, for a filling T of a skew partition λ/µ, we define its irredundant
content (or, by way of abbreviation, its ircont statistic) as the weak composition
ircont (T) = (r1, r2, r3, . . . ) where ri is the number of columns (rather than cells)
of T that contain an entry equal to i. For instance, if Ta, Tb, and Tc are the fillings
from Figure 1, then their irredundant contents are

ircont(Ta) = (0, 1, 2, 1, 0, 1), ircont(Tb) = (0, 1, 3, 1), ircont(Tc) = (0, 1, 3, 1, 0, 0, 1)

(where we omit trailing zeroes), because, for example, Ta has one column with
a 4 in it (so (ircont(Ta))4 = 1) and Tb contains three columns with a 3 (so
(ircont(Tb))3 = 3).

Notice that if T is a semistandard tableau, then cont(T) and ircont(T) coincide.
For the rest of this section, we fix a skew partition λ/µ. Now, the dual stable

Grothendieck polynomial gλ/µ is defined to be the formal power series

∑
T is an rpp

of shape λ/µ

xircont(T).

Unlike the Schur function sλ/µ, it is (in general) not homogeneous, because
whenever a column of an rpp T contains an entry several times, the corre-
sponding monomial xircont(T) “counts” this entry only once. It is fairly clear
that the highest-degree homogeneous component of gλ/µ is sλ/µ (the compo-
nent of degree |λ| − |µ|). Therefore, gλ/µ can be regarded as an inhomogeneous
deformation of the Schur function sλ/µ.

Lam and Pylyavskyy, in [LamPyl07, §9.1], have shown the following fact:

Proposition 2.2. We have gλ/µ ∈ Λ for every skew partition λ/µ.

They prove this proposition using generalized plactic algebras [FomGre06,
Lemma 3.1] (and also give a second, combinatorial proof for the case µ = ∅ by
explicitly expanding gλ/∅ as a sum of Schur functions).

In the next section, we shall introduce a refinement of these gλ/µ, and later we
will reprove Proposition 2.2 in a bijective and elementary way.

3. Refined dual stable Grothendieck polynomials

3.1. Definition

Let t = (t1, t2, t3, . . .) be a sequence of further indeterminates. For any weak
composition α, we define tα to be the monomial tα1

1 tα2
2 tα3

3 · · · .
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If T is a filling of a skew partition λ/µ, then a redundant cell of T is a cell of
λ/µ whose entry is equal to the entry directly below it. That is, a cell (i, j) of
λ/µ is redundant if (i + 1, j) is also a cell of λ/µ and T (i, j) = T (i + 1, j). Notice
that a semistandard tableau is the same thing as an rpp which has no redundant
cells.

If T is a filling of λ/µ, then we define the column equalities vector (or, by way
of abbreviation, the ceq statistic) of T to be the weak composition ceq (T) =
(c1, c2, c3, . . . ) where ci is the number of j ∈ N+ such that (i, j) is a redundant
cell of T. Visually speaking, (ceq (T))i is the number of columns of T whose
entry in the i-th row equals their entry in the (i + 1)-th row. For instance, for
fillings Ta, Tb, Tc from Figure 1 we have ceq(Ta) = (0, 1), ceq(Tb) = (1), and
ceq(Tc) = (), where we again drop trailing zeroes.

Notice that |ceq(T)| is the number of redundant cells in T, so we have

|ceq(T)|+ |ircont(T)| = |λ/µ| (1)

for all rpps T of shape λ/µ.
Let now λ/µ be a skew partition. We set

g̃λ/µ(x; t) = ∑
T is an rpp

of shape λ/µ

tceq(T)xircont(T) ∈ Z [t1, t2, t3, . . .] [[x1, x2, x3, . . .]] .

Let us give some examples of g̃λ/µ.

Example 3.1. (a) If λ/µ is a single row with n cells, then for each rpp T of
shape λ/µ we have ceq(T) = (0, 0, . . . ) and ircont(T) = cont(T) (in fact,
any rpp of shape λ/µ is a semistandard tableau in this case). Therefore
we get

g̃λ/µ(x; t) = hn(x) = ∑
a1≤a2≤···≤an

xa1 xa2 · · · xan .

Here hn(x) is the n-th complete homogeneous symmetric function.

(b) If λ/µ is a single column with n cells, then, by (1), for all rpps T of shape
λ/µ we have |ceq(T)|+ |ircont(T)| = n, so in this case

g̃λ/µ(x; t) =
n

∑
k=0

ek (t1, t2, . . . , tn−1) en−k (x1, x2, . . .) = en(t1, t2, . . . , tn−1, x1, x2, . . . ),

where ei (ξ1, ξ2, ξ3, . . .) denotes the i-th elementary symmetric function
in the indeterminates ξ1, ξ2, ξ3, . . ..

The power series g̃λ/µ generalize the power series gλ/µ and sλ/µ studied be-
fore. The following proposition is clear:
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Proposition 3.2. Let λ/µ be a skew partition.

(a) Specifying t = (1, 1, 1, . . .) yields g̃λ/µ(x; t) = gλ/µ(x).

(b) Specifying t = (0, 0, 0, . . .) yields g̃λ/µ(x; t) = sλ/µ(x).

3.2. The symmetry statement

Our main result is now the following:

Theorem 3.3. Let λ/µ be a skew partition. Then g̃λ/µ(x; t) is symmetric in x.

Here, “symmetric in x” means “invariant under all finite permutations of the
indeterminates x1, x2, x3, . . .” (while t1, t2, t3, . . . remain unchanged).

Clearly, Theorem 3.3 implies the symmetry of gλ/µ and sλ/µ due to Proposi-
tion 3.2.

We shall prove Theorem 3.3 bijectively. The core of our proof will be the
following restatement of Theorem 3.3:

Theorem 3.4. Let λ/µ be a skew partition and let i ∈ N+. Then, there exists
an involution Bi : RPP (λ/µ) → RPP (λ/µ) which preserves the ceq statistics
and acts on the ircont statistic by the transposition of its i-th and i + 1-th
entries.

This involution Bi is a generalization of the i-th Bender-Knuth involution de-
fined for semistandard tableaux (see, e.g., [GriRei15, proof of Proposition 2.11]),
but its definition is more complicated than that of the latter.4 Defining it and
proving its properties will take a significant part of this paper.

Proof of Theorem 3.3 using Theorem 3.4. We need to prove that g̃λ/µ(x; t) is invari-
ant under all finite permutations of the indeterminates x1, x2, x3, . . .. The group
of such permutations is generated by s1, s2, s3, . . ., where for each i ∈ N+, we
define si as the permutation of N+ which transposes i with i + 1 and leaves all
other positive integers unchanged. Hence, it suffices to show that g̃λ/µ(x; t) is
invariant under each of the permutations s1, s2, s3, . . .. In other words, it suffices
to show that si · g̃λ/µ(x; t) = g̃λ/µ(x; t) for each i ∈N+.

So fix i ∈ N+. In order to prove si · g̃λ/µ(x; t) = g̃λ/µ(x; t), it suffices to
find a bijection Bi : RPP (λ/µ) → RPP (λ/µ) with the property that every T ∈
RPP (λ/µ) satisfies ceq (Bi (T)) = ceq (T) and ircont (Bi (T)) = si · ircont (T).
Theorem 3.4 yields precisely such a bijection (even an involution).

4We will compare our involution Bi with the i-th Bender-Knuth involution in Section 6.
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3.3. Reduction to 12-rpps

Fix a skew partition λ/µ. We shall make one further simplification before we
step to the actual proof of Theorem 3.4. We define a 12-rpp to be an rpp whose
entries all belong to the set {1, 2}. We let RPP12 (λ/µ) be the set of all 12-rpps
of shape λ/µ.

Lemma 3.5. There exists an involution B : RPP12 (λ/µ)→ RPP12 (λ/µ) which
preserves the ceq statistic and switches the number of columns containing a
1 with the number of columns containing a 2 (that is, switches the first two
entries of the ircont statistic).

This Lemma implies Theorem 3.4: for any i ∈ N+ and for T an rpp of shape
λ/µ, we construct Bi(T) as follows:

• Ignore all entries of T not equal to i or i + 1.

• Replace all occurrences of i by 1 and all occurrences of i + 1 by 2. We get a
12-rpp T′ of some smaller shape (which is still a skew partition5).

• Replace T′ by B(T′).

• In B(T′), replace back all occurrences of 1 by i and all occurrences of 2 by
i + 1.

• Finally, restore the remaining entries of T that were ignored on the first
step.

It is clear that this operation acts on ircont(T) by a transposition of the i-th
and i + 1-th entries. The fact that it does not change ceq(T) is also not hard to
show: the set of redundant cells remains the same.

4. Construction of B

In this section we are going to sketch the definition of B and state some of its
properties. We postpone the proofs until the next section.

For the whole Sections 4 and 5, we shall be working in the situation of Lemma
3.5. In particular, we fix a skew partition λ/µ.

A 12-table means a filling T : λ/µ → {1, 2} of λ/µ such that the entries of
T are weakly increasing down columns. (We do not require them to be weakly
increasing along rows.) Every column of a 12-table is a sequence of the form
(1, 1, . . . , 1, 2, 2, . . . , 2). We say that such a sequence is

5Fine print: It has the form λ/µ for some skew partition λ/µ, but this skew partition λ/µ is not
always uniquely determined (e.g., (3, 1, 1) / (2, 1) and (3, 2, 1) / (2, 2) have the same Young
diagram). But the involution B constructed in the proof of Lemma 3.5 depends only on the
Young diagram of λ/µ, and thus the choice of λ/µ does not matter.
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• 1-pure if it is nonempty and consists purely of 1’s,

• 2-pure if it is nonempty and consists purely of 2’s,

• mixed if it contains both 1’s and 2’s.

Definition 4.1. For a 12-table T, we define flip(T) to be the 12-table obtained
from T by changing each column of T as follows:

• If this column is 1-pure, we replace all its entries by 2’s (so that it be-
comes 2-pure).

Otherwise, if this column is 2-pure, we replace all its entries by 1’s (so
that it becomes 1-pure).

Otherwise (i.e., if this column is mixed or empty), we do not change it.

If T is a 12-rpp then flip(T) need not be a 12-rpp, because it can contain a 2
to the left of a 1 in some row. We say that a positive integer k is a descent of a
12-table P if there is a 2 in the column k and there is a 1 to the right of it in the
column k + 1. We will encounter three possible kinds of descents depending on
the types of columns k and k + 1:

(M1) The k-th column of P is mixed and the (k + 1)-th column of P is 1-pure.

(2M) The k-th column of P is 2-pure and the (k + 1)-th column of P is mixed.

(21) The k-th column of P is 2-pure and the (k + 1)-th column of P is 1-pure.

For an arbitrary 12-table it can happen also that two mixed columns form a
descent, but such a descent will never arise in our process.

For each of the three types of descents, we will define what it means to resolve
this descent. This is an operation which transforms the 12-table P by changing
the entries in its k-th and (k + 1)-th columns. These changes can be informally
explained by Figure 2:

1 1

2

→

1

1
2

1

2
2

→ 1 2

2

1
2 → 2

1

(M1) (2M) (21)

Figure 2: The three descent-resolution steps
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For example, if k is a descent of type (M1) in a 12-table P, then we define
the 12-table reskP as follows: the k-th column of reskP is 1-pure; the (k + 1)-
th column of reskP is mixed and the highest 2 in it is in the same row as the
highest 2 in the k-th column of P; all other columns of reskP are copied over
from P unchanged. The definitions of reskP for the other two types of descents
are similar (and will be elaborated upon in Subsection 5.3). We say that reskP
is obtained from P by resolving the descent k, and we say that passing from P
to reskP constitutes a descent-resolution step. (Of course, a 12-table P can have
several descents and thus offer several ways to proceed by descent-resolution
steps.)

Now the map B is defined as follows: take any 12-rpp T and apply flip to it to
get a 12-table flip(T). Next, apply descent-resolution steps to flip(T) in arbitrary
order until we get a 12-table with no descents left. Put B(T) := P. (A rigorous
statement of this is Definition 5.11.)

In the next section we will see that B(T) is well-defined (that is, the process
terminates after a finite number of descent-resolution steps, and the result does
not depend on the order of steps). We will also see that B is an involution
RPP12 (λ/µ) → RPP12 (λ/µ) that satisfies the claims of Lemma 3.5. An alterna-
tive proof of all these facts can be found in Section 7.

5. Proof of Lemma 3.5

We shall now prove Lemma 3.5 in detail.
Recall that every column of a 12-table is a sequence of the form (1, 1, . . . , 1, 2, 2, . . . , 2).

If s is a sequence of the form (1, 1, . . . , 1, 2, 2, . . . , 2), then we define the signature
sig (s) of s to be

sig (s) =


0, if s is 2-pure or empty;
1, if s is mixed;
2, if s is 1-pure

.

Definition 5.1. For any 12-table T, we define a nonnegative integer ` (T) by

` (T) = ∑
h∈N+

h · sig (the h-th column of T) .

For instance, if T is the 12-table

1 2 1 2

1 1 2

2 1 1 2

2 2

(2)

then ` (T) = 1 · 0 + 2 · 1 + 3 · 2 + 4 · 0 + 5 · 2 + 6 · 0 + 7 · 0 + 8 · 0 + · · · = 18.
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5.1. Descents, separators, and benign 12-tables

In Subsection 4, we have defined a “descent” of a 12-table. Let us reword this
definition in more formal terms: If T is a 12-table, then we define a descent of T
to be a positive integer i such that there exists an r ∈N+ satisfying (r, i) ∈ λ/µ,
(r, i + 1) ∈ λ/µ, T (r, i) = 2 and T (r, i + 1) = 1. For instance, the descents of the
12-table shown in (2) are 1 and 4. Clearly, a 12-rpp of shape λ/µ is the same as
a 12-table which has no descents.

If T is a 12-table, and if k ∈ N+ is such that the k-th column of T is mixed,
then we define sepk T to be the smallest r ∈ N+ such that (r, k) ∈ λ/µ and
T (r, k) = 2. Thus, every 12-table T, every r ∈ N+ and every k ∈ N+ such that
the k-th column of T is mixed and such that (r, k) ∈ λ/µ satisfy

T (r, k) =
{

1, if r < sepk T;
2, if r ≥ sepk T. (3)

If T is a 12-table, then we let seplist T denote the list of all values sepk T (in
the order of increasing k), where k ranges over all positive integers for which the
k-th column of T is mixed. For instance, if T is

1 1 1

2 1 1 2

1 2 1

2 2 2

then sep1 T = 4, sep3 T = 4, and sep5 T = 2 (and there are no other k for which
sepk T is defined), so that seplist T = (4, 4, 2).

We say that a 12-table T is benign if the list seplist T is weakly decreasing.6

Notice that 12-rpps are benign 12-tables, but the converse is not true. If T is a
benign 12-table, then

there exists no descent k of T such that both the k-th column of T
and the (k + 1) -th column of T are mixed. (4)

Let BT12 (λ/µ) denote the set of all benign 12-tables; we have RPP12 (λ/µ) ⊆
BT12 (λ/µ).

Recall the map flip defined for 12-tables in Definition 4.1. If T ∈ BT12 (λ/µ)
then flip(T) ∈ BT12 (λ/µ) as well because T and flip(T) have the same mixed
columns. Thus, the map flip restricts to a map BT12 (λ/µ) → BT12 (λ/µ) which
we will also denote flip.

6For example, the 12-table in (2) is benign, but replacing its third column by (1, 2, 2) and its
fourth column by (1, 1, 2) would yield a 12-table which is not benign.
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Remark 5.2. It is clear that flip is an involution on BT12 (λ/µ) that preserves
ceq and seplist but switches the first two entries of ircont (that is, if some
T ∈ BT12 (λ/µ) has ircont (T) = (a, b, 0, 0, 0, . . .), then ircont (flip (T)) =
(b, a, 0, 0, 0, . . .)).

5.2. Plan of the proof

Let us now briefly sketch the ideas behind the rest of the proof before we go
into them in detail. The map flip : BT12 (λ/µ) → BT12 (λ/µ) does not gener-
ally send 12-rpps to 12-rpps (i.e., it does not restrict to a map RPP12 (λ/µ) →
RPP12 (λ/µ)). However, we shall amend this by defining a way to transform any
benign 12-table into a 12-rpp by what we call “resolving descents”. The process
of “resolving descents” will be a stepwise process, and will be formalized in
terms of a binary relation V on the set BT12 (λ/µ) which we will soon intro-
duce. The intuition behind saying “P V Q” is that the benign 12-table P has a
descent, resolving which yields the benign 12-table Q. Starting with a benign 12-
table P, we can repeatedly resolve descents until this is no longer possible. We
have some freedom in performing this process, because at any step there can be
a choice of several descents to resolve; but we will see that the final result does
not depend on the process. Hence, the final result can be regarded as a function
of P. We will denote it by norm P, and we will see that it is a 12-rpp. We will
then define a map B : RPP12 (λ/µ) → RPP12 (λ/µ) by B (T) = norm (flip T),
and show that it is an involution satisfying the properties that we want it to
satisfy.

5.3. Resolving descents

Now we come to the details.
Let k ∈ N+. Let P ∈ BT12 (λ/µ). Assume (for the whole Subsection 5.3) that

k is a descent of P. Thus, the k-th column of P must contain at least one 2.
Hence, the k-th column of P is either mixed or 2-pure. Similarly, the (k + 1)-th
column of P is either mixed or 1-pure. But the k-th and the (k + 1)-th columns
of P cannot both be mixed (by (4), because P is benign). Thus, exactly one of the
following three statements holds:

(M1) The k-th column of P is mixed and the (k + 1)-th column of P is 1-pure.

(2M) The k-th column of P is 2-pure and the (k + 1)-th column of P is mixed.

(21) The k-th column of P is 2-pure and the (k + 1)-th column of P is 1-pure.

Now, we define a new 12-table resk P as follows (see Figure 2 for illustration):

12
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• If we have (M1), then resk P is the 12-table defined as follows: The k-th
column of resk P is 1-pure; the (k + 1)-th column of resk P is mixed and
satisfies sepk+1 (resk P) = sepk P; all other columns of resk P are copied
over from P unchanged.7

• If we have (2M), then resk P is the 12-table defined as follows: The k-th
column of resk P is mixed and satisfies sepk (resk P) = sepk+1 P; the (k + 1)-
th column of resk P is 2-pure; all other columns of resk P are copied over
from P unchanged.

• If we have (21), then resk P is the 12-table defined as follows: The k-th
column of resk P is 1-pure; the (k + 1)-th column of resk P is 2-pure; all
other columns of resk P are copied over from P unchanged.

In either case, resk P is a well-defined 12-table. It is furthermore clear that
seplist (resk P) = seplist P. Thus, resk P is benign (since P is benign); that is,
resk P ∈ BT12 (λ/µ). We say that resk P is the 12-table obtained by resolving the
descent k in P.

Example 5.3. Let P be the 12-table on the left:

1 2 1

1 1 2

2 1 1

2 2 1

2

1 2 1

2 1 2

1 2 1

2 2 1

2

1 2 1

1 1 2

2 1 1

2 1 2

2

1 1 2

1 1 1

2 1 1

2 2 1

2
P res1 P res2 P res4 P

Then P is a benign 12-table, and its descents are 1, 2 and 4. We have sep2 P = 4.
If we set k = 1 then we have (2M), if we set k = 2 then we have (M1), and if

we set k = 4 then we have (21). We can resolve each of these three descents;
the results are the three 12-tables on the right.

We notice that each of the three 12-tables res1 P, res2 P and res4 P still has
descents. In order to get a 12-rpp from P, we will have to keep resolving these
descents until none remain.

We now observe some further properties of resk P:

Proposition 5.4. Let P ∈ BT12 (λ/µ) and k ∈ N+ be such that k is a descent
of P.

(a) The 12-table resk P differs from P only in columns k and k + 1.

7The reader should check that this 12-table is well-defined.

13
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(b) The k-th and the (k + 1)-th columns of resk P depend only on the k-th
and the (k + 1)-th columns of P.

(c) We have
ceq (resk P) = ceq (P) .

(d) We have
ircont (resk P) = ircont (P) .

(e) The integer k is a descent of flip (resk P), and we have

resk (flip (resk P)) = flip (P) .

(f) Recall that we defined a nonnegative integer ` (T) for every 12-table T
in Definition 5.1. We have

` (P) > ` (resk P) .

Proof of Proposition 5.4. All parts of Proposition 5.4 follow from straightforward
arguments using the definitions of resk and flip and (3).

5.4. The descent-resolution relation V

Definition 5.5. Let us now define a binary relation V on the set BT12 (λ/µ)
as follows: Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ). If k ∈N+, then we write
P V

k
Q if k is a descent of P and we have Q = resk P. We write P V Q if there

exists a k ∈N+ such that P V
k

Q.

Proposition 5.4 translates into the following properties of this relation V:

Lemma 5.6. Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ) be such that P V Q.
Then:

(a) We have ceq (Q) = ceq (P).

(b) We have ircont (Q) = ircont (P).

(c) The benign 12-tables flip (P) and flip (Q) have the property that
flip (Q) V flip (P).

(d) We have ` (P) > ` (Q).

14
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We now define
∗
V to be the reflexive-and-transitive closure of the relation V.

8 This relation
∗
V is reflexive and transitive, and extends the relation V. Lemma

5.6 thus yields:

Lemma 5.7. Let P ∈ BT12 (λ/µ) and Q ∈ BT12 (λ/µ) be such that P
∗
V Q.

Then:

(a) We have ceq (Q) = ceq (P).

(b) We have ircont (Q) = ircont (P).

(c) The benign 12-tables flip (P) and flip (Q) have the property that

flip (Q)
∗
V flip (P).

(d) We have ` (P) ≥ ` (Q).

We now state the following crucial lemma:

Lemma 5.8. Let A, B and C be three elements of BT12 (λ/µ) satisfying A V B

and A V C. Then, there exists a D ∈ BT12 (λ/µ) such that B
∗
V D and C

∗
V D.

Proof of Lemma 5.8. If B = C, then we can simply choose D = B = C; thus, we
assume that B 6= C.

Let u, v ∈ N+ be such that A V
u

B and A V
v

C. Thus, B = resu A and

C = resv A. Since B 6= C, we have u 6= v. Without loss of generality, assume that
u < v. We are in one of the following two cases:

Case 1: We have u = v− 1.
Case 2: We have u < v− 1.
Let us deal with Case 2 first. In this case, {u, u + 1} ∩ {v, v + 1} = ∅. It

follows that resv (resu A) and resu (resv A) are well-defined and resu (resv A) =
resv (resu A). Setting D = resu (resv A) = resv (resu A) completes the proof in
this case.

Now, let us consider Case 1. The v-th column of A must contain a 1 (since
v− 1 = u is a descent of A) and a 2 (since v is a descent of A). Hence, the v-th
column of A is mixed. Since A is benign but has v− 1 and v as descents, it thus
follows that the (v− 1)-th column of A is 2-pure and the (v + 1)-th column of A
is 1-pure. We can represent the relevant portion (that is, the (v− 1)-th, v-th and

8Explicitly, this means that
∗
V is defined as follows: For two elements P ∈ BT12 (λ/µ) and

Q ∈ BT12 (λ/µ), we have P
∗
V Q if and only if there exists a sequence (a0, a1, . . . , an) of

elements of BT12 (λ/µ) such that a0 = P and an = Q and such that every i ∈ {0, 1, . . . , n− 1}
satisfies ai V ai+1. (Note that n is allowed to be 0.)
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(v + 1)-th columns) of the 12-table A as follows:

A =

1 1

2
2

. (5)

Notice that the separating line which separates the 1’s from the 2’s in column v
is lower than the upper border of the (v− 1)-th column (since v− 1 is a descent
of A), and higher than the lower border of the (v + 1)-th column (since v is a
descent of A).

Let s = sepv A. Then, the cells (s, v− 1), (s, v), (s, v + 1), (s + 1, v− 1), (s + 1, v),
(s + 1, v + 1) all belong to λ/µ (due to what we just said about separating lines).
We shall refer to this observation as the “six-cells property”.

Now, B = resu A = resv−1 A, so B is represented as follows:

B =

1
1 2

2

,

where sepv−1 B = s (that is, the separating line in the (v− 1)-th column of
B is between the cells (s, v− 1) and (s + 1, v− 1)). Now, v is a descent of B.
Resolving this descent yields a 12-table resv B which is represented as follows:

resv B =

2
1 1

2

.

This, in turn, shows that v− 1 is a descent of resv B (by the six-cells property).
Resolving this descent yields a 12-table resv−1 (resv B) which is represented as
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follows:

resv−1 (resv B) =

1 2

1
2

, (6)

where sepv (resv−1 (resv B)) = s.
On the other hand, C = resv A. We can apply a similar argument as above to

show that the 12-table resv (resv−1 C) is well-defined, and is exactly equal to the
12-table in (6). Hence, resv−1 (resv B) = resv (resv−1 C), and setting D equal to
this 12-table completes the proof in Case 1.

5.5. The normalization map

The following proposition is the most important piece in our puzzle:

Proposition 5.9. For every T ∈ BT12 (λ/µ), there exists a unique N ∈
RPP12 (λ/µ) such that T

∗
V N.

Proof of Proposition 5.9. For every T ∈ BT12 (λ/µ), let Norm (T) denote the set{
N ∈ RPP12 (λ/µ) | T

∗
V N

}
.

Thus, in order to prove Proposition 5.9, we need to show that for every T ∈
BT12 (λ/µ) this set Norm (T) is a one-element set.

We shall prove this by strong induction on ` (T). Fix some T ∈ BT12 (λ/µ),
and assume that

Norm (S) is a one-element set for every S ∈ BT12 (λ/µ) satisfying ` (S) < ` (T) .
(7)

We then need to prove that Norm (T) is a one-element set.
Let Z =

{
S ∈ BT12 (λ/µ) | T V S

}
. In other words, Z is the set of all benign

12-tables S which can be obtained from T by resolving one descent. If Z is empty,
then T ∈ RPP12 (λ/µ), so that Norm (T) = {T} and we are done. Hence, we
can assume that Z is nonempty. Therefore T /∈ RPP12 (λ/µ).

Thus, every N ∈ RPP12 (λ/µ) satisfying T
∗
V N must satisfy Z

∗
V N for some

Z ∈ Z. In other words, every N ∈ Norm (T) must belong to Norm (Z) for some
Z ∈ Z. The converse of this clearly holds as well. Hence,

Norm (T) =
⋃

Z∈Z
Norm (Z) . (8)
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Let us now notice that:

• By Lemma 5.6 (d) and (7), for every Z ∈ Z, the set Norm (Z) is a one-
element set.

• By Lemma 5.8, for every B ∈ Z and C ∈ Z, we have Norm (B)∩Norm (C) 6=
∅. 9

Hence, (8) shows that Norm (T) is a union of one-element sets, any two of
which have a nonempty intersection (and thus are identical). Moreover, this
union is nonempty (since Z is nonempty). Hence, Norm (T) itself is a one-
element set. This completes our induction.

Definition 5.10. Let T ∈ BT12 (λ/µ). Proposition 5.9 shows that there exists a

unique N ∈ RPP12 (λ/µ) such that T
∗
V N. We define norm (T) to be this N.

5.6. Definition of B

Definition 5.11. Let us define a map B : RPP12 (λ/µ) → RPP12 (λ/µ) as fol-
lows: For every T ∈ RPP12 (λ/µ), set B (T) = norm (flip (T)).

In order to complete the proof of Lemma 3.5, we need to show that B is an
involution, preserves the ceq statistic, and switches the number of columns con-
taining a 1 with the number of columns containing a 2. At this point, all of this
is easy:

B is an involution. Let T ∈ RPP12 (λ/µ). We have flip (T)
∗
V norm (flip (T)) =

B (T). Lemma 5.7 (c) thus yields flip (B (T))
∗
V flip (flip T) = T.

But B(B(T)) = norm (flip (B (T))) is the unique N ∈ RPP12 (λ/µ) such that

flip (B (T))
∗
V N. Since T ∈ RPP12 (λ/µ), we have B(B(T)) = T, as desired.

B preserves ceq. Let T ∈ RPP12 (λ/µ). As above, flip (T)
∗
V B (T). Lemma 5.7 (a)

and Remark 5.2 thus yield ceq (B (T)) = ceq (flip (T)) = ceq (T).

B switches the numbers of columns containing 1 and 2. Let T ∈ RPP12 (λ/µ). As

above, flip (T)
∗
V B (T). Lemma 5.7 (b) thus yields ircont (B (T)) = ircont (flip (T)).

Due to Remark 5.2, this is the result of switching the first two entries of ircont (T).

Lemma 3.5 is now proven.
9In more detail: Let B ∈ Z and C ∈ Z. By Lemma 5.8 (applied to A = T) there exists a D ∈

BT12 (λ/µ) such that B
∗
V D and C

∗
V D. This D has ` (T) > ` (B) ≥ ` (D) (by Lemma 5.6

(d) and Lemma 5.7 (d), respectively). Hence, by (7), the set Norm (D) is a one-element set. Its
unique element clearly lies in both Norm (B) and Norm (C), so Norm (B) ∩Norm (C) 6= ∅.

18



Refined dual stable Grothendieck polynomials June 15, 2016

6. The classical Bender-Knuth involutions

Fix a skew partition λ/µ and a positive integer i. We claim that the involution
Bi : RPP (λ/µ) → RPP (λ/µ) we have constructed in the proof of Theorem 3.4
is a generalization of the i-th Bender-Knuth involution defined for semistan-
dard tableaux. First, we shall define the i-th Bender-Knuth involution (following
[GriRei15, proof of Proposition 2.11] and [Stan99, proof of Theorem 7.10.2]).

Let SST (λ/µ) denote the set of all semistandard tableaux of shape λ/µ. We
define a map BKi : SST (λ/µ)→ SST (λ/µ) as follows:

Let T ∈ SST (λ/µ). Then every column of T contains at most one i and at
most one i + 1. If a column contains both an i and an i + 1, we will mark its
entries as “ignored”. Now, let k ∈ N+. The k-th row of T is a weakly increasing
sequence of positive integers; thus, it contains a (possibly empty) string of i’s
followed by a (possibly empty) string of (i + 1)’s. These two strings together
form a substring of the k-th row which looks as follows:

(i, i, . . . , i, i + 1, i + 1, . . . , i + 1) .

Some of the entries of this substring are “ignored”; it is easy to see that the
“ignored” i’s are gathered at the left end of the substring whereas the “ignored”
(i + 1)’s are gathered at the right end of the substring. So the substring looks as
follows: i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
r many i’s which
are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
s many (i+1)’s which

are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”


for some a, r, s, b ∈N. Now, we change this substring into i, i, . . . , i︸ ︷︷ ︸

a many i’s which
are “ignored”

, i, i, . . . , i︸ ︷︷ ︸
s many i’s which
are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
r many (i+1)’s which

are not “ignored”

, i + 1, i + 1, . . . , i + 1︸ ︷︷ ︸
b many (i+1)’s which

are “ignored”

 .

We do this for every k ∈N+. At the end, we have obtained a new semistandard
tableau of shape λ/µ. We define BKi (T) to be this new tableau.

Proposition 6.1. The map BKi : SST (λ/µ) → SST (λ/µ) thus defined is an
involution. It is known as the i-th Bender-Knuth involution.

Now, every semistandard tableau of shape λ/µ is also an rpp of shape λ/µ.
Hence, Bi (T) is defined for every T ∈ SST (λ/µ). Our claim is the following:
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Proposition 6.2. For every T ∈ SST (λ/µ), we have BKi (T) = Bi (T).

Proof of Proposition 6.2. Recall that the map Bi comes from the map B we defined
on 12-rpps in Section 5. We could have constructed the map BKi from the map
BK1 in an analogous way. We define a 12-sst to be a semistandard tableau whose
entries all belong to the set {1, 2}. Clearly, to prove Proposition 6.2, it suffices to
prove that BK1(T) = B(T) for all 12-ssts T.

Let T be a 12-sst, and let k ∈N+. The k-th row of T has the form 1, 1, . . . , 1︸ ︷︷ ︸
a 1’s which are in

mixed columns

, 1, 1, . . . , 1︸ ︷︷ ︸
r 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
s 2-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in

mixed columns


where we use the observation that each 1-pure and each 2-pure column contains
only one entry. Thus, the k-th row of flip (T) is 1, 1, . . . , 1︸ ︷︷ ︸

a 1’s which are in
mixed columns

, 2, 2, . . . , 2︸ ︷︷ ︸
r 2-pure
columns

, 1, 1, . . . , 1︸ ︷︷ ︸
s 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in

mixed columns

 .

We can now repeatedly apply descent-resolution steps to obtain a tableau whose
k-th row is  1, 1, . . . , 1︸ ︷︷ ︸

a 1’s which are in
mixed columns

, 1, 1, . . . , 1︸ ︷︷ ︸
s 1-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
r 2-pure
columns

, 2, 2, . . . , 2︸ ︷︷ ︸
b 2’s which are in

mixed columns

 .

Repeating this process for every row of flip (T) (we can do this because each
pure column contains only one entry, and thus each descent-resolution described
above affects only one row), we obtain a 12-rpp. By the definition of B, this rpp
must equal B(T). By the above description, it is also equal to BK1(T) (because
the ignored entries in the construction of BK1(T) are precisely the entries lying
in mixed columns), which completes the proof.

7. The structure of 12-rpps

In this section, we restrict ourselves to the two-variable dual stable Grothendieck
polynomial g̃λ/µ(x1, x2, 0, 0, . . . ; t) defined as the result of substituting 0, 0, 0, . . .
for x3, x4, x5, . . . in g̃λ/µ. We can represent it as a polynomial in t with coefficients
in Z[x1, x2]:

g̃λ/µ(x1, x2, 0, 0, . . . ; t) = ∑
α∈NN+

tαQα(x1, x2),
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1 2

1 1 1 2

1 1 1 2 2

1 2 2 2

2 2 2 2

1 1

1 1 1 1
1 1 1 1 2

1 1 2 2

2 2 2 2

NR(T1) = {(4, 1), (3, 3), (3, 4), (2, 6)} NR(T2) = {(4, 2), (3, 3), (3, 4), (2, 7)}
seplist(T1) = (4, 3, 3, 2) seplist(T2) = (4, 3, 3, 2)

Figure 3: Two 12-rpps of the same shape and with the same seplist-partition.

where the sum ranges over all weak compositions α, and all but finitely many
Qα(x1, x2) are 0.

We shall show that each Qα(x1, x2) is either zero or has the form

Qα(x1, x2) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · · Pnr(x1, x2), (9)

where M, r and n0, n1, . . . , nr are nonnegative integers naturally associated to α
and λ/µ and

Pn(x1, x2) =
xn+1

1 − xn+1
2

x1 − x2
= xn

1 + xn−1
1 x2 + · · ·+ x1xn−1

2 + xn
2 .

We fix the skew partition λ/µ throughout the whole section. We will have a
running example with λ = (7, 7, 7, 4, 4) and µ = (5, 3, 2).

7.1. Irreducible components

We recall that a 12-rpp means an rpp whose entries all belong to the set {1, 2}.
Given a 12-rpp T, consider the set NR(T) of all cells (i, j) ∈ λ/µ such that

T(i, j) = 1 but (i + 1, j) ∈ λ/µ and T(i + 1, j) = 2. (In other words, NR(T) is
the set of all non-redundant cells in T which are filled with a 1 and which are
not the lowest cells in their columns.) Clearly, NR(T) contains at most one cell
from each column; thus, let us write NR(T) = {(i1, j1), (i2, j2), . . . , (is, js)} with
j1 < j2 < · · · < js. Because T is a 12-rpp, it follows that the numbers i1, i2, . . . , is
decrease weakly, therefore they form a partition which we denoted

seplist(T) := (i1, i2, . . . , is)

in Section 5.1. This partition will be called the seplist-partition of T. An example
of calculation of seplist(T) and NR(T) is illustrated on Figure 3.

We would like to answer the following question: for which partitions ν = (i1 ≥
· · · ≥ is > 0) does there exist a 12-rpp T of shape λ/µ such that seplist(T) = ν?
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A trivial necessary condition for this to happen is that there should exist some
numbers j1 < j2 < · · · < js such that

(i1, j1), (i1 + 1, j1), (i2, j2), (i2 + 1, j2), . . . , (is, js), (is + 1, js) ∈ λ/µ. (10)

Until the end of Section 7, we make an assumption: namely, that the skew
partition λ/µ is connected as a subgraph of Z2 (where two nodes are connected
if and only if their cells have an edge in common), and that it has no empty
columns. This is a harmless assumption, since every skew partition λ/µ can
be written as a disjoint union of such connected skew partitions and the corre-
sponding seplist-partition splits into several independent parts, the polynomials
g̃λ/µ get multiplied and the right hand side of (9) changes accordingly.

For each integer i, the set of all integers j such that (i, j), (i + 1, j) ∈ λ/µ is
just an interval [µi + 1, λi+1], which we call the support of i and denote supp(i) :=
[µi + 1, λi+1].

We say that a partition ν is admissible if every k satisfies supp(ik) 6= ∅. (This
is clearly satisfied when there exist j1 < j2 < · · · < js satisfying (10), but also in
other cases.) Assume that ν = (i1 ≥ · · · ≥ is > 0) is an admissible partition. For
two integers a < b, we let ν

∣∣
⊆[a,b) denote the subpartition (ir, ir+1, . . . , ir+q) of ν,

where [r, r + q] is the (possibly empty) set of all k for which supp(ik) ⊆ [a, b).
In this case, we put10 #ν

∣∣
⊆[a,b) := q + 1, which is just the number of entries in

ν
∣∣
⊆[a,b). Similarly, we set ν

∣∣
∩[a,b) to be the subpartition (ir, ir+1, . . . , ir+q) of ν,

where [r, r + q] is the set of all k for which supp(ik) ∩ [a, b) 6= ∅. For example,
for ν = (4, 3, 3, 2) and λ/µ as on Figure 3, we have

supp(3) = [3, 4], supp(2) = [4, 7], supp(4) = [1, 4],

ν
∣∣
⊆[2,7) = (3, 3), ν

∣∣
⊆[2,8) = (3, 3, 2), ν

∣∣
⊆[4,8) = (2), ν

∣∣
∩[4,5) = (4, 3, 3, 2), #ν

∣∣
⊆[2,7) = 2.

Remark 7.1. If ν is not admissible, that is, if supp(ik) = ∅ for some k, then
ik belongs to ν

∣∣
⊆[a,b) for any a, b, so ν

∣∣
⊆[a,b) might no longer be a contiguous

subpartition of ν. On the other hand, if ν is an admissible partition, then the
partitions ν

∣∣
⊆[a,b) and ν

∣∣
∩[a,b) are clearly admissible as well. For the rest of this

section, we will only work with admissible partitions.

We introduce several definitions: An admissible partition ν = (i1 ≥ · · · ≥ is >
0) is called
• non-representable if for some a < b we have #ν

∣∣
⊆[a,b) > b− a;

• representable if for all a < b we have #ν
∣∣
⊆[a,b) ≤ b− a;

a representable partition ν is called
• irreducible if for all a < b we have #ν

∣∣
⊆[a,b) < b− a;

• reducible if for some a < b we have #ν
∣∣
⊆[a,b) = b− a.

10Here and in the following, #κ denotes the length of a partition κ.
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For example, ν = (4, 3, 3, 2) is representable but reducible because we have
ν
∣∣
⊆[3,5) = (3, 3) so #ν

∣∣
⊆[3,5) = 2 = 5− 3.

Note that these notions depend on the skew partition; thus, when we want
to use a skew partition λ̃/µ rather than λ/µ, we will write that ν is non-
representable/irreducible/etc. with respect to λ̃/µ, and we denote the corre-

sponding partitions by ν
∣∣λ̃/µ

⊆[a,b).
These definitions can be motivated as follows. Suppose that a partition ν

is non-representable, so there exist integers a < b such that #ν
∣∣
⊆[a,b) > b − a.

Recall that ν
∣∣
⊆[a,b) =: (ir, ir+1, . . . , ir+q) contains all entries of ν whose support

is a subset of [a, b). Thus in order for condition (10) to be true there must exist
some integers jr < jr+1 < · · · < jr+q such that

(ir, jr), (ir + 1, jr), . . . , (ir+q, jr+q), (ir+q + 1, jr+q) ∈ λ/µ.

On the other hand, by the definition of the support, we must have jk ∈ supp(ik) ⊆
[a, b) for all r ≤ k ≤ r + q. Therefore we get q+ 1 distinct elements of [a, b) which
is impossible if q + 1 = #ν

∣∣
⊆[a,b) > b− a. It means that a non-representable par-

tition ν is never a seplist-partition of a 12-rpp T.
Suppose now that a partition ν is reducible, so for some a < b we get an

equality #ν
∣∣
⊆[a,b) = b − a. Then these integers jr < · · · < jr+q should still all

belong to [a, b) and there are exactly b− a of them, hence

jr = a, jr+1 = a + 1, · · · , jr+q = a + q = b− 1. (11)

Because supp(ir) ⊆ [a, b) but supp(ir) 6= ∅ (since ν is admissible), we have
(ir, a− 1) /∈ λ/µ. Thus, placing a 1 into (ir, a) and 2’s into (ir + 1, a), (ir + 2, a), . . .
does not put any restrictions on entries in columns 1, . . . , a− 1. And the same
is true for columns b, b + 1, . . . when we place a 2 into (ir+q + 1, b− 1) and 1’s
into all cells above. Thus, if a partition ν is reducible, then the filling of columns
a, a + 1, . . . , b− 1 is uniquely determined (by (11)), and the filling of the rest can
be arbitrary – the problem of existence of a 12-rpp T such that seplist(T) = ν
reduces to two smaller independent problems of the same kind (one for the
columns 1, 2, . . . , a − 1, the other for the columns11 b, b + 1, . . . , λ1). One can
continue this reduction process and end up with several independent irreducible
components separated from each other by mixed columns. An illustration of this
phenomenon can be seen on Figure 3: the columns 3 and 4 must be mixed for
any 12-rpps T with seplist(T) = (4, 3, 3, 2).

More explicitly, we have thus shown that every nonempty interval [a, b) ⊆
[1, λ1 + 1) satisfying #ν

∣∣
⊆[a,b) = b− a splits our problem into two independent

subproblems. But if two such intervals [a, b) and [c, d) satisfy a ≤ c ≤ b ≤ d
then their union [a, d) is another such interval (because in this case, inclusion-
exclusion gives #ν

∣∣
⊆[a,d) ≥ #ν

∣∣
⊆[a,b) + #ν

∣∣
⊆[c,d) − #ν

∣∣
⊆[c,b), but #ν

∣∣
⊆[c,b) ≤ b− c by

11Recall that a 12-rpp of shape λ/µ cannot have any nonempty column beyond the λ1’th one.
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representability of ν). Hence, the maximal (with respect to inclusion) among all
such intervals are pairwise disjoint and separated from each other by at least a
distance of 1. This yields part (a) of the following lemma:

Lemma 7.2. Let ν be a representable partition.

(a) There exist unique integers (1 = b0 ≤ a1 < b1 < a2 < b2 < · · · < ar <
br ≤ ar+1 = λ1 + 1) satisfying the following two conditions:

a) For all 1 ≤ k ≤ r, we have #ν
∣∣
⊆[ak,bk)

= bk − ak.

b) The set
⋃r

k=0[bk, ak+1) is minimal (with respect to inclusion) among
all sequences (1 = b0 ≤ a1 < b1 < a2 < b2 < · · · < ar < br ≤ ar+1 =
λ1 + 1) satisfying property 1.

Furthermore, for these integers, we have:

(b) The partition ν is the concatenation(
ν
∣∣
∩[b0,a1)

) (
ν
∣∣
⊆[a1,b1)

) (
ν
∣∣
∩[b1,a2)

) (
ν
∣∣
⊆[a2,b2)

)
· · ·
(

ν
∣∣
∩[br,ar+1)

)
(where we regard a partition as a sequence of positive integers, with no
trailing zeroes).

(c) The partitions ν
∣∣
∩[bk,ak+1)

are irreducible with respect to λ/µ
∣∣
[bk,ak+1)

,
which is the skew partition λ/µ with columns 1, 2, . . . , bk −
1, ak+1, ak+1 + 1, . . . removed.

Proof. Part (a) has already been proven.
(b) Let ν = (i1 ≥ · · · ≥ is > 0). If supp(ir) ⊆ [ak, bk) for some k, then ir appears

in exactly one of the concatenated partitions, namely, ν
∣∣
⊆[ak,bk)

. Otherwise there
is an integer k such that supp(ir) ∩ [bk, ak+1) 6= ∅. It remains to show that
such k is unique, that is, that supp(ir) ∩ [bk+1, ak+2) = ∅. Assume the contrary.
The interval [ak+1, bk+1) is nonempty, therefore there is an entry i of ν with
supp(i) ⊆ [ak+1, bk+1). It remains to note that we get a contradiction: we get two
numbers i, ir with supp(ir) being both to the left and to the right of supp(i).

(c) Fix k. Let J denote the restricted skew partition λ/µ
∣∣
[bk,ak+1)

, and let ν′ =

ν
∣∣
∩[bk,ak+1)

. We need to show that if [c, d) is a nonempty interval contained in

[bk, ak+1), then #ν′
∣∣J
⊆[c,d) < d− c. We are in one of the following four cases:

• Case 1: We have c > bk (or k = 0) and d < ak+1 (or k = r). In this case,
every ip with suppJ(ip) ⊆ [c, d) must satisfy supp(ip) ⊆ [c, d). Hence,

ν′
∣∣J
⊆[c,d) = ν

∣∣
⊆[c,d), so that #ν′

∣∣J
⊆[c,d) = #ν

∣∣
⊆[c,d) < d− c, and we are done.
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• Case 2: We have c = bk and k > 0 (but not d = ak+1 and k < r). Assume
(for the sake of contradiction) that #ν′

∣∣J
⊆[c,d) ≥ d− c. Then, the ip satisfying

suppJ(ip) ⊆ [c, d) must satisfy supp(ip) ⊆ [ak, d) (since otherwise, supp(ip)
would intersect both [bk−1, ak) and [bk, ak+1), something we have ruled out
in the proof of (b)). Thus, #ν

∣∣
⊆[ak,d) ≥ (d− c) + (bk − ak) = d− ak, which

contradicts the minimality of
⋃r

k=0[bk, ak+1) (we could increase bk to d).

• Case 3: We have d = ak+1 and k < r (but not c = bk and k > 0). The argument
here is analogous to Case 2.

• Case 4: Neither of the above. Exercise.

Definition 7.3. In the context of Lemma 7.2, for 0 ≤ k ≤ r the subpartitions
ν
∣∣
∩[bk,ak+1)

are called the irreducible components of ν and the nonnegative integers

nk := ak+1 − bk − #ν
∣∣
∩[bk,ak+1)

are called their degrees. (For T with seplist(T) =
ν, the k-th degree nk is equal to the number of pure columns of T inside the
corresponding k-th irreducible component. All nk are positive, except for n0 if
a1 = 1 and nr if br = λ1 + 1.)

Example 7.4. For ν = (4, 3, 3, 2) we have r = 1, b0 = 1, a1 = 3, b1 = 5, a2 =
8. The irreducible components of ν are (4) and (2) and their degrees are
3− 1− 1 = 1 and 8− 5− 1 = 2 respectively. We have ν

∣∣
∩[1,3) = (4), ν

∣∣
⊆[3,5) =

(3, 3), ν
∣∣
∩[5,8) = (2).

7.2. The structural theorem and its applications

It is easy to see that for a 12-rpp T, the number #seplist(T) is equal to the number
of mixed columns in T.

Recall that RPP12 (λ/µ) denotes the set of all 12-rpps T of shape λ/µ, and let
RPP12 (λ/µ; ν) denote its subset consisting of all 12-rpps T with seplist(T) = ν.
Now we are ready to state a theorem that completely describes the structure of
irreducible components (which will be proven later):

Theorem 7.5. Let ν be an irreducible partition. Then for all 0 ≤ m ≤ λ1 − #ν

there is exactly one 12-rpp T ∈ RPP12 (λ/µ; ν) with #ν mixed columns, m
1-pure columns and (λ1 − #ν− m) 2-pure columns. Moreover, these are the
only elements of RPP12 (λ/µ; ν). In other words, for an irreducible partition ν
we have

∑
T∈RPP12(λ/µ;ν)

xircont(T) = (x1x2)
#νPλ1−#ν(x1, x2). (12)
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Example 7.6. Each of the two 12-rpps on Figure 3 has two irreducible compo-
nents. One of them is supported on the first two columns and the other one
is supported on the last three columns. Here are all possible 12-rpps for each
component:

1 1
1 2

1 2

2 2

1 1

1 1 1
1 1 2

1 2

1 1 2

1 2 2

2 2

1 2 2

2 2 2
λ = (2, 2); µ = (); ν = (4) λ = (3, 3, 3); µ = (1); ν = (2).

After decomposing into irreducible components, we can obtain a formula for
general representable partitions:

Corollary 7.7. Let ν be a representable partition. Then

∑
T∈RPP12(λ/µ;ν)

xircont(T) = (x1x2)
MPn0(x1, x2)Pn1(x1, x2) · · · Pnr(x1, x2), (13)

where the numbers M, r, n0, . . . , nr are defined above: M = #ν, r + 1 is the
number of irreducible components of ν and n0, n1, . . . , nr are their degrees.

Proof of Corollary 7.7. The restriction map

RPP12 (λ/µ; ν)→
r

∏
k=0

RPP12
(

λ/µ
∣∣
[bk,ak+1)

; ν
∣∣
∩[bk,ak+1)

)
is injective (since, as we know, the entries of a T ∈ RPP12 (λ/µ; ν) in any column
outside of the irreducible components are uniquely determined) and surjective
(as one can “glue” rpps together). Now use Theorem 7.5.

For a 12-rpp T, the vectors seplist(T) and ceq(T) uniquely determine each
other: if (ceq(T))i = h then seplist(T) contains exactly λi+1 − µi − h entries
equal to i, and this correspondence is one-to-one. Therefore, the polynomials
on both sides of (13) are equal to Qα(x1, x2) where the vector α is the one that
corresponds to ν.

Note that the polynomials Pn(x1, x2) are symmetric for all n. Since the question
about the symmetry of g̃λ/µ can be reduced to the two-variable case, Corollary
7.7 gives an alternative proof of the symmetry of g̃λ/µ:

Corollary 7.8. The polynomials g̃λ/µ ∈ Z[t1, t2, . . . ] [[x1, x2, x3, . . .]] are sym-
metric.

Of course, our standing assumption that λ/µ is connected can be lifted here,
because in general, g̃λ/µ is the product of the analogous power series corre-
sponding to the connected components of λ/µ. So we have obtained a new
proof of Theorem 3.3.
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Another application of Theorem 7.5 is a complete description of Bender-Knuth
involutions on rpps.

Corollary 7.9. Let ν be an irreducible partition. Then there is a unique map
b : RPP12 (λ/µ; ν) → RPP12 (λ/µ; ν) such that for all T ∈ RPP12 (λ/µ; ν),
the sequence ircont(b(T)) is obtained from ircont(T) by switching the first
two entries. This unique map b is an involution on RPP12 (λ/µ; ν). So, for
irreducible partition ν the corresponding Bender-Knuth involution exists and
is unique.

Take any 12-rpp T ∈ RPP12 (λ/µ; ν) and recall that a 12-table flip(T) is ob-
tained from T by simultaneously replacing all entries in 1-pure columns by 2
and all entries in 2-pure columns by 1.

Corollary 7.10. If ν is an irreducible partition, then, no matter in which order
one resolves descents in flip(T), the resulting 12-rpp T′ will be the same. The
map T 7→ T′ is the unique Bender-Knuth involution on RPP12 (λ/µ; ν).

Proof of Corollary 7.10. Descent-resolution steps applied to flip(T) in any order
eventually give an element of RPP12 (λ/µ; ν) with the desired ircont. There is
only one such element. So we get a map RPP12 (λ/µ; ν) → RPP12 (λ/µ; ν) that
satisfies the assumptions of Corollary 7.9.

Finally, notice that, for a general representable partition ν, descents in a 12-
table T with seplist(T) = ν may only occur inside each irreducible component
independently. Thus, we conclude the chain of corollaries by stating that our
constructed involutions are canonical in the following sense:

Corollary 7.11. For a representable partition ν, the map B : RPP12 (λ/µ; ν)→
RPP12 (λ/µ; ν) is the unique involution that interchanges the number of 1-
pure columns with the number of 2-pure columns inside each irreducible
component.

7.3. The proof

Let ν = (i1, . . . , is) be an irreducible partition. We start with the following simple
observation:

Lemma 7.12. Let T ∈ RPP12 (λ/µ; ν) for an irreducible partition ν. Then any
1-pure column of T is to the left of any 2-pure column of T.

Proof of Lemma 7.12. Suppose it is false and we have a 1-pure column to the right
of a 2-pure column. Among all pairs (a, b) such that column a is 2-pure and
column b is 1-pure, and b > a, consider the one with smallest b− a. Then, the
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columns a + 1, . . . , b − 1 must all be mixed. Therefore the set NR(T) contains
{(ip+1, a + 1), (ip+2, a + 2), . . . , (ip+b−1−a, b− 1)} for some p ∈ N. And because
a is 2-pure and b is 1-pure, each ip+k (for k = 1, . . . , b− 1− a) must be ≤ to the
y-coordinate of the highest cell in column a and > than the y-coordinate of the
lowest cell in column b. Thus, the support of any ip+k for k = 1, . . . , b− 1− a is
a subset of [a + 1, b), which contradicts the irreducibility of ν.

Proof of Theorem 7.5. We proceed by strong induction on the number of columns
in λ/µ. If the number of columns is 1, then the statement of Theorem 7.5 is
obvious. Suppose that we have proven that for all skew partitions λ̃/µ with less
than λ1 columns and for all partitions ν̃ irreducible with respect to λ̃/µ and for
all 0 ≤ m̃ ≤ λ̃1 − #ν̃, there is exactly one 12-rpp T̃ of shape λ̃/µ with exactly
m̃ 1-pure columns, exactly #ν̃ mixed columns and exactly (λ̃1 − #ν̃− m̃) 2-pure
columns. Now we want to prove the same for λ/µ.

Take any 12-rpp T ∈ RPP12 (λ/µ; ν) with seplist(T) = ν and with m 1-pure
columns for 0 ≤ m ≤ λ1 − #ν. Suppose first that m > 0. Then there is at least
one 1-pure column in T. Let q ≥ 0 be such that the leftmost 1-pure column is
column q + 1. Then by Lemma 7.12 the columns 1, 2, . . . , q are mixed. If q > 0
then the supports of i1, i2, . . . , iq are all contained inside [1, q + 1) and we get
a contradiction with the irreducibility of ν. The only remaining case is that
q = 0 and the first column of T is 1-pure. Let λ̃/µ denote λ/µ with the first
column removed. Then ν is obviously admissible but may not be irreducible

with respect to λ̃/µ, because it may happen that #ν
∣∣λ̃/µ

⊆[2,b+1) = b − 1 for some

b > 1. In this case we can remove these b− 1 nonempty columns from λ̃/µ and
remove the first b − 1 entries from ν to get an irreducible partition again12, to
which we can apply the induction hypothesis. We are done with the case m > 0.
If m < λ1 − #ν then we can apply a mirrored argument to the last column, and
it remains to note that the cases m > 0 and m < λ1 − #ν cover everything (since
the irreducibility of ν shows that λ1 − #ν > 0).

This inductive proof shows the uniqueness of the 12-rpp with desired prop-
erties. Its existence follows from a parallel argument, using the observation that
the first b− 1 columns of λ̃/µ can actually be filled in. This amounts to showing
that for a representable ν, the set RPP12 (λ/µ; ν) is non-empty in the case when
λ1 = #ν (so all columns of T ∈ RPP12 (λ/µ; ν) must be mixed). This is clear
when there is just one column, and the general case easily follows by induction
on the number of columns13.

12This follows from Lemma 7.2 (c) (applied to the skew shape λ̃/µ and k = 1). Here we are
using the fact that if we apply Lemma 7.2 (a) to λ̃/µ instead of λ/µ, then we get r = 1

(because if r ≥ 2, then #ν
∣∣
⊆[a2,b2)

= #ν
∣∣λ̃/µ

⊆[a2,b2)
= b2 − a2 in contradiction to the irreducibility

of λ/µ).
13In more detail:

If we had 1 /∈ supp(ν1), then we would have supp(ν1) ⊆ [2, λ1 + 1), and thus supp(νj) ⊆
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would lead to ν

∣∣
⊆[2,λ1+1) = ν and thus #ν

∣∣
⊆[2,λ1+1) = #ν = λ1 > λ1 + 1− 2, contradicting the

representability of ν. Hence, we have 1 ∈ supp(ν1), so that we can fill the first column of λ/µ
with 1’s and 2’s in such a way that it becomes mixed and the 1’s are displaced by 2’s at level
ν1. Now, let λ̃/µ be the skew partition λ/µ without its first column, and ν̃ be the partition
(ν2, ν3, . . .). Then, the partition ν̃ is representable with respect to λ̃/µ. (Otherwise we would

have #ν
∣∣λ̃/µ

⊆[2,b+1) > b− 1 for some b ≥ 1, but then we would have supp(ν1) ⊆ [1, b + 1) as well

and therefore #ν
∣∣
⊆[1,b+1) > (b− 1) + 1 = b, contradicting the representability of λ/µ.) Thus

we can fill in the entries in the cells of λ̃/µ by induction.
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