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1. Bhargava’s generalized factorials: an introduction

1.
Bhargava’s generalized factorials: an

introduction
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It begins with a Vandermonde

Theorem (classical exercise):
Let a0, a1, . . . , an ∈ Z. Then,

0! · 1! · 2! · · · · · n! |
∏
i>j

(ai − aj) .
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It begins with a Vandermonde

Theorem (classical exercise, slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(i − j) |
∏
i>j

(ai − aj) .

Hint to proof 1: Show that

RHS

LHS
= det

((
ai
j

))
i ,j∈{0,1,...,n}

.
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Theorem (classical exercise, slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(i − j) |
∏
i>j

(ai − aj) .

Hint to proof 2: WLOG assume that
0 ≤ a0 < a1 < · · · < an. (Otherwise, move ai preserving
ai mod LHS.)
Then, the partition λ := (an − n, an−1 − (n − 1) , . . . , a0 − 0)
satisfies

RHS

LHS
= sλ

1, 1, . . . , 1︸ ︷︷ ︸
n+1 times

 (Schur function)

= (# of semistandard tableaux of shape λ

with entries ∈ {1, 2, . . . , n + 1}) .
(Weyl’s character formula in type A.)
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It begins with a Vandermonde

Theorem (classical exercise, slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(i − j) |
∏
i>j

(ai − aj) .

Hint to proof 3: To show that u | v , it suffices to prove that
every prime p divides v at least as often as it does u.
Now get your hands dirty.
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What about squares?

Theorem:
Let a0, a1, . . . , an ∈ Z. Then,

0! · 2! · · · · · (2n)!

2n
|
∏
i>j

(
a2i − a2j

)
.

(Typo in Bhargava corrected.)
Theorem (slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(
i2 − j2

)
|
∏
i>j

(
a2i − a2j

)
.

4 / 38



What about squares?

Theorem (slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(
i2 − j2

)
|
∏
i>j

(
a2i − a2j

)
.

4 / 38



What about squares?

Theorem (slightly restated):
Let a0, a1, . . . , an ∈ Z. Then,∏

i>j

(
i2 − j2

)
|
∏
i>j

(
a2i − a2j

)
.

Analogues of the 3 above proofs work (I believe). In

particular,
RHS

LHS
is the dimension of an Sp (n)-irrep.
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What about cubes?

Question: Do we also have∏
i>j

(
i3 − j3

)
|
∏
i>j

(
a3i − a3j

)
?

Answer: No. For example, n = 2 and (a0, a1, a2) = (0, 1, 3).

So what is

gcd

∏
i>j

(
a3i − a3j

)
| a0, a1, . . . , an ∈ Z

 ?
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More generally...

General question (Bhargava, 1997): Let S be a set of
integers. What is

gcd

∏
i>j

(ai − aj) | a0, a1, . . . , an ∈ S

 ?

And when is it attained?

Enough to work out each prime p separately, because:
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p-valuation

Let p be a prime.
For each nonzero n ∈ Z, let vp (n) (the p-valuation of n) be
the highest k ∈ N such that pk | n. (We use
N := {0, 1, 2, . . .}.)
Set vp (0) = +∞.
Rules for p-valuations:

vp (1) = 0; vp (ab) = vp (a) + vp (b) ;
vp
(
pk
)

= k ; vp (a + b) ≥ min {vp (a) , vp (b)} .
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vp (1) = 0; vp (ab) = vp (a) + vp (b) ;
vp
(
pk
)

= k ; vp (a + b) ≥ min {vp (a) , vp (b)} .

Define the p-distance dp (a, b) between two integers a and b
by

dp (a, b) = −vp (a− b) .

Then, the last rule rewrites as

dp (a, c) ≤ max {dp (a, b) , dp (b, c)} .
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For each nonzero n ∈ Z, let vp (n) (the p-valuation of n) be
the highest k ∈ N such that pk | n. (We use
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Rules for p-valuations:

vp (1) = 0; vp (ab) = vp (a) + vp (b) ;
vp
(
pk
)

= k ; vp (a + b) ≥ min {vp (a) , vp (b)} .

Two integers u and v satisfy u | v if and only if

vp (u) ≤ vp (v) for each prime p.

Thus, checking divisibility is reduced to a “local” problem.
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Equivalent restatement of the problem

Equivalent problem: Let S be a set of integers. Let p be a
prime. What is

min

vp

∏
i>j

(ai − aj)

 | a0, a1, . . . , an ∈ S

 ?

And when is it attained?

We can WLOG assume that a0, a1, . . . , an are distinct.
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Bhargava’s greedy algorithm

Bhargava solved this problem using the following greedy
algorithm:

Pick a0 ∈ S arbitrarily.

Pick a1 ∈ S to maximize dp (a0, a1).
Pick a2 ∈ S to maximize dp (a0, a2) + dp (a1, a2).
Pick a3 ∈ S to maximize
dp (a0, a3) + dp (a1, a3) + dp (a2, a3).
. . . (Ad infinitum, or until S is exhausted.)

Thus, the choice of an tactically maximizes
∑

n≥i>j dp (ai , aj)
for fixed a0, a1, . . . , an−1. (Thus “greedy”.) But is it
strategically optimal?

Theorem (Bhargava): Yes. Any such sequence
(a0, a1, a2, . . .) will always maximize

∑
n≥i>j dp (ai , aj) for

each n.

Note: There is such a sequence for each prime p, but there
might not be such a sequence that works for all p
simultaneously.
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A cryptic hint

Bhargava, 1997:

“We note that the above results (i.e. Theorem 1,
Lemmas 1 and 2) do not rely on any special properties of
P or R; they depend only on the fact that R becomes an
ultrametric space when given the P-adic metric. Hence
these results could be viewed more generally as
statements about certain special sequences in ultrametric
spaces. For convenience, however, we have chosen to
present these statements only in the relevant context. In
particular, we note that our proof of Theorem 1 shall be
a purely algebraic one, involving no inequalities.”

(Theorem 1 is a slight generalization of the above Theorem.)

In other news, the properties of dp are all that is needed.
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2. Ultra triples

2.
Ultra triples
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Ultra triples

If E is any set, then

E × E := {(e, f ) ∈ E × E | e 6= f } .
Definition: An ultra triple is a triple (E ,w , d) consisting of:

a set E , called the ground set (its elements are called
points);

a map w : E → R that assigns to each point e some
number w (e) ∈ R that we call its weight;
a map d : E × E → R that assigns to any two distinct
points e and f a number d (e, f ) ∈ R that we call their
distance,

satisfying the following axioms:
Symmetry: d (a, b) = d (b, a) for any distinct a, b ∈ E ;
Ultrametric triangle inequality:
d (a, b) ≤ max {d (a, c) , d (b, c)} for any distinct
a, b, c ∈ E .

We will only consider ultra triples with finite ground set E .
(Bhargava’s E is infinite, but results adapt easily.)
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Ultra triples, examples: 1 (congruence)

Example: Let E ⊆ Z and n ∈ Z. Define a map w : E → R
arbitrarily. Define a map d : E × E → R by

d (a, b) =

{
0, if a ≡ b mod n;

1, if a 6≡ b mod n
for all (a, b) ∈ E×E .

Then, (E ,w , d) is an ultra triple.
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Example: Let E ⊆ Z and n ∈ Z. Define a map w : E → R
arbitrarily. Define a map d : E × E → R by

d (a, b) =

{
ε, if a ≡ b mod n;

α, if a 6≡ b mod n
for all (a, b) ∈ E×E ,

where ε and α are fixed reals with ε ≤ α. Then, (E ,w , d) is
an ultra triple.
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Ultra triples, examples: 2 (p-adic distance)

Let p be a prime. Let E ⊆ Z. Define the weights w (e) ∈ R
arbitrarily. Then, (E ,w , dp) is an ultra triple.
Here, dp is as before:

dp (a, b) = −vp (a− b) .

This is the case of relevance to Bhargava’s problem!
Thus, we call such a triple (E ,w , dp) a Bhargava-type ultra
triple.

Lots of other distance functions also give ultra triples:
Compose dp with any weakly increasing function R→ R. For
example,

d ′p (a, b) = p−vp(a−b).

More generally, we can replace p0, p1, p2, . . . with any
unbounded sequence r0 | r1 | r2 | · · · of integers.
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Ultra triples, examples: 3 (Linnaeus)

Let E be the set of all living organisms. Let

d (e, f ) =



0, if e = f ;

1, if e and f belong to the same species;

2, if e and f belong to the same genus;

3, if e and f belong to the same family;

. . .

Then, (E ,w , d) is an ultra triple (for any w : E → R).

More generally, any “nested” family of equivalence relations
on E gives a distance function for an ultra triple.
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Ultra triples, examples: 4 (Darwin)

Let T be a (finite, undirected) tree. For each edge e of T , let
λ (e) ≥ 0 be a real. We shall call this real the weight of e.
For any vertices u and v of T , let λ (u, v) denote the sum of
the weights of all edges on the (unique) path from u to v .

Fix any vertex r of T . Let E be any subset of the vertex set
of T . Set

d (x , y) = λ (x , y)−λ (x , r)−λ (y , r) for each (x , y) ∈ E×E .
Then, (E ,w , d) is an ultra triple for any w : E → R.
This is particularly useful when T is a phylogenetic tree and E
is a set of its leaves.
Actually, this is the general case: Any (finite) ultra triple can
be translated back into a phylogenetic tree. It is “essentially”
an inverse operation.
(The idea is not new; see, e.g., Lemin 2003.)
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Perimeters in ultra triples

Let (E ,w , d) be an ultra triple, and S ⊆ E be any subset.
Then, the perimeter of S is defined to be

PER (S) :=
∑
x∈S

w (x)︸ ︷︷ ︸
|S | addends

+
∑

{x ,y}⊆S;
x 6=y

d (x , y)

︸ ︷︷ ︸(
|S |
2

)
addends

.

Bhargava’s problem (generalized): Given an ultra triple
(E ,w , d) and an n ∈ N, find the maximum perimeter of an
n-element subset of E , and find the subsets that attain it.
(The n here corresponds to the n + 1 before.)
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Bhargava’s problem (generalized): Given an ultra triple
(E ,w , d) and an n ∈ N, find the maximum perimeter of an
n-element subset of E , and find the subsets that attain it.
(The n here corresponds to the n + 1 before.)
For E ⊆ Z and w (e) = 0 and dp (a, b) = −vp (a− b), this is
Bhargava’s problem.
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Bhargava’s problem (generalized): Given an ultra triple
(E ,w , d) and an n ∈ N, find the maximum perimeter of an
n-element subset of E , and find the subsets that attain it.
(The n here corresponds to the n + 1 before.)
For Linnaeus or Darwin ultra triples, this is a “Noah’s Ark”
problem: What choices of n organisms maximize biodiversity?
A similar problem has been studied in: Vincent Moulton,
Charles Semple, Mike Steel, Optimizing phylogenetic diversity
under constraints, J. Theor. Biol. 246 (2007), pp. 186–194.
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3. Solving the problem

3.
Solving the problem

References:

Darij Grinberg, Fedor Petrov, A greedoid and a matroid
inspired by Bhargava’s p-orderings, arXiv:1909.01965.

Darij Grinberg, The Bhargava greedoid as a Gaussian
elimination greedoid, arXiv:2001.05535.
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Greedy permutations: definition

Fix an ultra triple (E ,w , d).

Let m ∈ N. A greedy m-permutation of E is a list
(c1, c2, . . . , cm) of m distinct elements of E such that for each
i ∈ {1, 2, . . . ,m} and each x ∈ E \ {c1, c2, . . . , ci−1}, we have

PER {c1, c2, . . . , ci} ≥ PER {c1, c2, . . . , ci−1, x} .

In other words, a greedy m-permutation of E is what you
obtain if you try to greedily construct a maximum-perimeter
m-element subset of E , by starting with ∅ and adding new
points one at a time.
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Greedy permutations: examples

Recall our four examples of ultra triples.

In Example 1 (congruence modulo n), a greedy
m-permutation is one in which all congruence classes (that
appear in S) are “represented as equitably as possible”.

In Example 2 (p-adic valuation), the greedy m-permutations
for (E ,w , dp) are exactly the sequences (a0, a1, a2, . . .)
constructed by Bhargava (or, rather, their initial segments).
Note: The greedy m-permutations for

(
E ,w , d ′p

)
are different.

The values of d (e, f ) matter, not just their relative order!
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Greedy permutations: theorems

Proposition: For any m ∈ N with m ≤ |E |, there is a greedy
m-permutation of E .

Theorem (Petrov, G.): Let (c1, c2, . . . , cm) be any greedy
m-permutation of E . Let k ∈ {0, 1, . . . ,m}.
Then, the set {c1, c2, . . . , ck} has maximum perimeter among
all k-element subsets of E .

In Example 2, this yields that Bhargava’s greedy algorithm
correctly finds max

∑
n≥i>j dp (ai , aj).

Theorem (Petrov, G.): Let m, k ∈ N with |E | ≥ m ≥ k. Let
A be a k-element subset of E that has maximum perimeter
among all such.
Then, there exists a greedy m-permutation (c1, c2, . . . , cm) of
E such that A = {c1, c2, . . . , ck}.
Exercise: Use this to prove∏
i>j

(i − j) |
∏
i>j

(ai − aj) and
∏
i>j

(
i2 − j2

)
|
∏
i>j

(
a2i − a2j

)
.
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4. Greedoids

4.
Greedoids
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Greedoids: introduction

So the maximum-perimeter k-element subsets in an ultra
triple are not just a random bunch of sets: They are accessible
by a greedy algorithm.

This is characteristic of a greedoid – a “noncommutative
analogue” of a matroid.

Matroids have several “cryptomorphic” definitions.
(“Cryptomorphism” = isomorphism of species, to my
understanding.)

For greedoids, we will give two cryptomorphic definitions: one
as languages, one as set systems. See Korte/Lovász/Schrader
for details.
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Greedoids as languages

A language on a set E means a set L of finite tuples of
elements of E .

A tuple α = (α1, α2, . . . , αk) ∈ E k is simple if α1, α2, . . . , αk

are distinct.

A language L on E is simple if it consists of simple tuples.

A greedoid language on a set E means a simple language L
on E such that

1. The empty tuple () ∈ L.
2. If αβ ∈ L, then α ∈ L.

3. If α, β ∈ L with |α| > |β|, then there exists an entry x of
α such that βx ∈ L.

Here,

any x ∈ E is identified with the 1-tuple (x).
|α| denotes the length of a tuple α.

This is analogous to the definition of a matroid (as a system
of independent sets), but using “ordered sets” (i.e., simple
tuples) instead of sets.
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Greedoids as set systems

A set system on a set E means a set of subsets of E .

A greedoid on a set E means a set system F on E such that

1. We have ∅ ∈ F .
2. If B ∈ F satisfies |B| > 0, then there exists b ∈ B such

that B \ {b} ∈ F .
3. If A,B ∈ F satisfy |B| = |A|+ 1, then there exists

b ∈ B \ A such that A ∪ {b} ∈ F .

There is a canonical bijection

{greedoid languages} → {greedoids} ,
L 7→ {setα | α ∈ L} ,

where set (α1, α2, . . . , αk) := {α1, α2, . . . , αk}.
In the reverse direction, send a greedoid F to the set of all
simple tuples α = (α1, α2, . . . , αk) such that all
{α1, α2, . . . , αm} with m ≤ k belong to F .
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Greedoids, examples: 1 (matroids)

Let M be a matroid on a ground set E . Then,

{independent sets of M}

is a greedoid on E .
We shall call this a matroid greedoid.
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Greedoids, examples: 2 (Gaussian elimination)

Let A be an m × n-matrix over a field K. Let
E = {1, 2, . . . , n}. Then,{
F ⊆ E | we have |F | ≤ n and det

(
subF
{1,2,...,|F |} A

)
6= 0
}

is a greedoid on E , where subG
F A means the submatrix of A

with rows indexed by F and columns indexed by G .
This is called a Gaussian elimination greedoid over K.

For example, if K = Q and m = 5 and n = 5 and

A =


0 1 1 0 1
1 1 0 0 0
0 2 1 0 1
1 0 1 0 0
0 0 0 0 0

, then this Gaussian elimination

greedoid is{
∅, {2} , {3} , {5} , {1, 2} , {1, 3} , {1, 5} , {2, 3} , {2, 5} ,

{1, 2, 3} , {1, 2, 5} , {1, 2, 3, 5}
}
.
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Greedoids, examples: 3 (order ideals)

Let P be a finite poset. Let J be the set of all order ideals of
P (that is, of all subsets I of P such that
(b ∈ I ) ∧ (a ≤ b) =⇒ (a ∈ I )).

Then, J is a greedoid on P.
We shall call this an order ideal greedoid.

The corresponding greedoid language consists of all linear
extensions of all order ideals of P.
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The Bhargava greedoid

Back to our setting: For any ultra triple (E ,w , d), define

B (E ,w , d) = {A ⊆ E | A has maximum perimeter among

all |A| -element subsets of E}
= {A ⊆ E | PER (A) ≥ PER (B) for

all B ⊆ E satisfying |B| = |A|} .

We call this the Bhargava greedoid of (E ,w , d).

Theorem (G., Petrov): This Bhargava greedoid B (E ,w , d)
is a greedoid indeed.
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Strong greedoids: definition

Recall: A greedoid on a set E means a set system F on E
such that

1. We have ∅ ∈ F .
2. If B ∈ F satisfies |B| > 0, then there exists b ∈ B such

that B \ {b} ∈ F .
3. If A,B ∈ F satisfy |B| = |A|+ 1, then there exists

b ∈ B \ A such that A ∪ {b} ∈ F .
A strong greedoid on E means a greedoid F on E that also
satisfies

4. If A,B ∈ F satisfy |B| = |A|+ 1, then there exists
b ∈ B \ A such that A ∪ {b} ∈ F and B \ {b} ∈ F .
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Remark: Axiom 4. implies axiom 3.
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Remark: In axiom 3., we can replace the condition
“|B| = |A|+ 1” by the weaker “|B| > |A|”; the axiom stays
equivalent.
But we cannot do the same in axiom 4. (it would become
much stronger, forcing F to be a matroid greedoid).
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Strong greedoids: definition

Recall: A greedoid on a set E means a set system F on E
such that

1. We have ∅ ∈ F .
2. If B ∈ F satisfies |B| > 0, then there exists b ∈ B such

that B \ {b} ∈ F .
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A strong greedoid on E means a greedoid F on E that also
satisfies

4. If A,B ∈ F satisfy |B| = |A|+ 1, then there exists
b ∈ B \ A such that A ∪ {b} ∈ F and B \ {b} ∈ F .

Strong greedoids are also known as “Gauss greedoids” (not to
be confused with Gaussian elimination greedoids).
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Strong greedoids: examples

All matroid greedoids (Example 1 above) are strong greedoids.

All Gaussian elimination greedoids (Example 2 above) are
strong greedoids.

(Proof idea: Plücker relations for determinants can be used.)

Not all order ideal greedoids (Example 3 above) are strong
greedoids.

Theorem (Bryant, Sharpe): Let F be a strong greedoid,
and k ∈ N. Then, the k-element sets that belong to F are
the bases of a matroid (unless there are none of them).
If F is a Gaussian elimination greedoid, then the latter
matroid is representable.
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(Proof idea: Plücker relations for determinants can be used.)

Not all order ideal greedoids (Example 3 above) are strong
greedoids.

Theorem (Bryant, Sharpe): Let F be a strong greedoid,
and k ∈ N. Then, the k-element sets that belong to F are
the bases of a matroid (unless there are none of them).
If F is a Gaussian elimination greedoid, then the latter
matroid is representable.

31 / 38



Strong greedoids: examples

All matroid greedoids (Example 1 above) are strong greedoids.

All Gaussian elimination greedoids (Example 2 above) are
strong greedoids.
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Gaussianity of the Bhargava greedoid

Theorem (G., Petrov): The Bhargava greedoid B (E ,w , d)
of any ultra triple (E ,w , d) is a strong greedoid.
Theorem (G.): Let (E ,w , d) be an ultra triple. Let K be any
field of size |K| ≥ |E |.
Then, the Bhargava greedoid B (E ,w , d) is (up to renaming
the elements of E ) a Gaussian elimination greedoid over K.

Note that this Theorem yields the previous one, which is thus
proved twice.
Converse theorem (G.): Assume that the map w is
constant. Let K be a field. Then, the Bhargava greedoid
B (E ,w , d) is (up to renaming the elements of E ) a Gaussian
elimination greedoid over K if and only if
|K| ≥ mcs (E ,w , d).
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A few words about the proofs, 1

We have a combinatorial proof that B (E ,w , d) is a strong
greedoid (using what we call “projections”).
But the theorem about B (E ,w , d) being a Gaussian
elimination greedoid requires a different approach. Here are
its main ideas:

1st step: If (E ,w , d) is a Bhargava-type ultra triple
(E ,w , dp) for some prime p and some E ⊆ Z, then we can
explicitly find a matrix A over Fp that gives B (E ,w , d) as its
Gaussian elimination greedoid.
2nd step: So we know how to deal with Bhargava-type ultra
triples. It would be nice if any ultra triple was isomorphic to
one of them!
I’m not sure this is true, but I can prove something close that
suffices:
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vp
(

det
(

subF
{1,2,...,|F |} Ã

))
= (max. possible perimeter)−PER (F )

for each subset F of E .
(The matrix Ã is a Vandermonde-like matrix, with entries

1

psomething
(ai − e1) (ai − e2) · · · (ai − ej).)
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A few words about the proofs, 2

2nd step, continued: Replace Z by an arbitrary valuation
ring with value group R, and replace vp by its valuation.
Construct the natural analogue of the Bhargava-type
(E ,w , dp) in this setting.

A similar argument shows that its Bhargava greedoid is a
Gaussian elimination greedoid.
Actually, let’s not complicate our life: It suffices to find one
valuation ring that works – e.g., the monoid ring of the
additive monoid R+ over K. (Think of it as a polynomial ring
that allows non-integer exponents.)

3rd step: Prove that every ultra triple (E ,w , d) with
|K| ≥ mcs (E ,w , d) is isomorphic to a generalized
Bhargava-type ultra triple in this monoid ring over K.
(The proof proceeds by strong induction, decomposing the
ultra triple into smaller ones. Iterating this decomposition
again reveals the connection to phylogenetic trees.)
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Questions

If w is constant, then we have a necessary and sufficient
condition for B (E ,w , d) to be a Gaussian elimination
greedoid over K.
What about the general case? (|K| ≥ mcs (E ,w , d) is still
sufficient, but no longer necessary.)

Moulton, Semple and Steel define phylogenetic diversity (for a
set of leaves of a phylogenetic tree) somewhat similarly to our
perimeter, yet differently. Still, they show that their
maximum-diversity subsets form a strong greedoid (not the
same as ours).
Is this greedoid a Gaussian elimination greedoid, too?

It is not too hard to define a multiset analogue of greedoids
(e.g., by lifting the “simple” requirement on greedoid
languages). How much of the theory adapts?

35 / 38

https://doi.org/10.1016/j.jtbi.2006.12.021


Questions

If w is constant, then we have a necessary and sufficient
condition for B (E ,w , d) to be a Gaussian elimination
greedoid over K.
What about the general case? (|K| ≥ mcs (E ,w , d) is still
sufficient, but no longer necessary.)

Moulton, Semple and Steel define phylogenetic diversity (for a
set of leaves of a phylogenetic tree) somewhat similarly to our
perimeter, yet differently. Still, they show that their
maximum-diversity subsets form a strong greedoid (not the
same as ours).
Is this greedoid a Gaussian elimination greedoid, too?

It is not too hard to define a multiset analogue of greedoids
(e.g., by lifting the “simple” requirement on greedoid
languages). How much of the theory adapts?

35 / 38

https://doi.org/10.1016/j.jtbi.2006.12.021


Questions

If w is constant, then we have a necessary and sufficient
condition for B (E ,w , d) to be a Gaussian elimination
greedoid over K.
What about the general case? (|K| ≥ mcs (E ,w , d) is still
sufficient, but no longer necessary.)

Moulton, Semple and Steel define phylogenetic diversity (for a
set of leaves of a phylogenetic tree) somewhat similarly to our
perimeter, yet differently. Still, they show that their
maximum-diversity subsets form a strong greedoid (not the
same as ours).
Is this greedoid a Gaussian elimination greedoid, too?

It is not too hard to define a multiset analogue of greedoids
(e.g., by lifting the “simple” requirement on greedoid
languages). How much of the theory adapts?

35 / 38

https://doi.org/10.1016/j.jtbi.2006.12.021


Bonus problem

.
Bonus problem: stalagmic greedoids

References:

to be written (contact me).
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Bonus problem: stalagmic greedoids

Proposition (G., easy consequence of known facts):
Let E and U = {u1, u2, . . . , un} be two disjoint finite sets
(with u1, u2, . . . , un distinct).
Let B be the set of bases of a matroid on ground set E ∪ U.
Assume that {u1, u2, . . . , un} ∈ B. Let

F =
{
F ⊆ E | |F | ≤ n and F ∪

{
u|F |+1, u|F |+2, . . . , un

}
∈ B

}
.

Then, F is a strong greedoid on ground set E .

We call such a greedoid F stalagmic.

It is easy to see that matroid greedoids and Gaussian
elimination greedoids are stalagmic.

Question: Is every strong greedoid stalagmic?

If no, then we have a new class of greedoids at our hands,
which we can try to axiomatically characterize.

If yes, then we have found a machine for deriving properties
of strong greedoids from properties of matroids.
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Thank you!

Fedor Petrov for getting this started by answering my
MathOverflow question #314130.

Alexander Postnikov for interesting conversations.

you for your patience and typo hunting.
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