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Abstract. Inspired by Manjul Bhargava’s theory of generalized facto-
rials, Fedor Petrov and the author have defined the Bhargava greedoid – a
greedoid (a matroid-like set system on a finite set) assigned to any “ul-
tra triple” (a somewhat extended variant of a finite ultrametric space).
Here we show that the Bhargava greedoid of a finite ultra triple is always
a Gaussian elimination greedoid over any sufficiently large (e.g., infinite)
field; this is a greedoid analogue of a representable matroid. We find
necessary and sufficient conditions on the size of the field to ensure this.
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The notion of a greedoid was coined in 1981 by Korte and Lovász, and has since
seen significant developments ([KoLoSc91], [BjoZie92]). It is a type of set system
(i.e., a set of subsets of a given ground set) that is required to satisfy some axioms
weaker than the matroid axioms – so that, in particular, the independent sets of a
matroid form a greedoid.

In [GriPet19], Grinberg and Petrov have constructed a greedoid stemming from
Bhargava’s theory of generalized factorials [Bharga97, §2], albeit in a setting signif-
icantly more general than Bhargava’s. Roughly speaking, the sets that belong to
this greedoid are subsets of maximum perimeter (among all subsets of their size)
of a finite ultrametric space (which, in Bhargava’s work, was a Dedekind ring with
a metric coming from a valuation).

More precisely, the setup is more general than that of an ultrametric space: We
consider a finite set E, a distance function d that assigns a “distance” d (e, f ) to any
pair (e, f ) of distinct elements of E, and a weight function w that assigns a “weight”
w (e) to each e ∈ E. The distances and weights are required to belong to a totally
ordered abelian group V (for example, R). The distances are required to satisfy
the symmetry axiom d (e, f ) = d ( f , e) and the “ultrametric triangle inequality”
d (a, b) ⩽ max {d (a, c) , d (b, c)}. In this setting, any subset S of E has a well-defined
perimeter, obtained by summing the weights and the pairwise distances of all its
elements. The subsets S of E that have maximum perimeter (among all |S|-element
subsets of E) then form a greedoid, which has been called the Bhargava greedoid of
(E, w, d) in [GriPet19]. This greedoid is furthermore a strong greedoid [GriPet19,
Theorem 6.1], which implies in particular that for any given k ⩽ |E|, the k-element
subsets of E that have maximum perimeter are the bases of a matroid.

In the present paper, we prove that the Bhargava greedoid of (E, w, d) is a Gaus-
sian elimination greedoid over any sufficiently large (e.g., infinite) field. Roughly
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speaking, a Gaussian elimination greedoid is a greedoid analogue of a repre-
sentable matroid1. We quantify the “sufficiently large” by providing a sufficient
condition for the size of the field. When all weights w (e) are equal, we show that
this condition is also necessary.

We note that the Bhargava greedoid can be seen to arise from an optimization
problem in phylogenetics: Given a finite set E of organisms and an integer k ∈ N,
we want to choose a k-element subset of E that maximizes some kind of biodi-
versity. Depending on the definition of biodiversity used, the properties of the
maximizing subsets can differ. It appears natural to define biodiversity in terms of
distances on the evolutionary tree (which is a finite ultrametric space), and such
a definition has been considered by Moulton, Semple and Steel in [MoSeSt06],
leading to the result that the maximum-biodiversity sets form a strong greedoid.
The Bhargava greedoid is an analogue of their greedoid using a slightly different
definition of biodiversity2. The present paper potentially breaks this analogy by
showing that the Bhargava greedoid is a Gaussian elimination greedoid, whereas
this is unknown for the greedoid of Moulton, Semple and Steel. Whether the latter
is a Gaussian elimination greedoid as well remains to be understood3, as does the
question of interpolating between the two notions of biodiversity.

This paper is self-contained (up to some elementary linear algebra), and in par-
ticular can be read independently of [GriPet19].

The 12-page extended abstract [GriPet20] summarizes the highlights of both
[GriPet19] and this paper; it is thus a convenient starting point for a reader in-
terested in the subject.

1In particular, this entails that all the matroids mentioned in the preceding paragraph are repre-
sentable.

2To be specific: We view the organisms as the leaves of an evolutionary tree T that obeys a
molecular clock assumption (i.e., all its leaves have the same distance from the root). Then, the
set E of these organisms is equipped with a distance function (measuring distances along the
edges of the tree), which satisfies the “ultrametric triangle inequality”. We define the weight
function w by setting w (e) = 0 for all e ∈ E. Now, the phylogenetic diversity of a subset S ⊆ E is
defined to be the sum of the edge lengths of the minimal subtree of T that connects all leaves
in S. This phylogenetic diversity is the measure of biodiversity used in [MoSeSt06]. Meanwhile,
our notion of perimeter can also be seen as a measure of biodiversity – perhaps even a better
one for sustainability questions, as it rewards subsets that are roughly balanced across different
clades. To give a trivial example, a zoo optimized for phylogenetic diversity might have dozens
of mammals and only one bird, while this would unlikely be considered optimal in terms of
perimeter.

The molecular clock assumption can actually be dropped, at the expense of changing the
weight function to account for different distances from the root.

3This question might have algorithmic significance. At least for polymatroids, representability
can make the difference between a problem being NP-hard and in P, as shown by Lovász in
[Lovasz80] for polymatroid matching.
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1. Gaussian elimination greedoids

1.1. The definition

Convention 1.1. Here and in the following, N denotes the set {0, 1, 2, . . .}.

Convention 1.2. If E is any set, then 2E will denote the powerset of E (that is, the
set of all subsets of E).

Convention 1.3. Let K be any field, and let n ∈ N. Then, Kn shall denote the
K-vector space of all column vectors of size n over K.

We recall the definition of a Gaussian elimination greedoid:

Definition 1.4. Let E be a finite set.
Let m ∈ N be such that m ⩾ |E|. Let K be a field. For each k ∈ {0, 1, . . . , m}, let

πk : Km → Kk be the projection map that removes all but the first k coordinates

of a column vector. (That is, πk


a1
a2
...

am

 =


a1
a2
...

ak

 for each


a1
a2
...

am

 ∈ Km.)

For each e ∈ E, let ve ∈ Km be a column vector. The family (ve)e∈E will be
called a vector family over K.

Let G be the subset{
F ⊆ E | the family

(
π|F| (ve)

)
e∈F

∈
(

K|F|
)F

is linearly independent
}

of 2E. Then, G is called the Gaussian elimination greedoid of the vector family
(ve)e∈E. It is furthermore called a Gaussian elimination greedoid on ground set E.
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Example 1.5. Let K = Q and E = {1, 2, 3, 4, 5} and m = 6. Let v1, v2, v3, v4, v5 ∈
K6 be the columns of the 6 × 5-matrix

0 1 1 0 1
1 1 0 0 0
0 2 1 0 1
1 0 1 0 0
0 0 0 0 0
1 2 0 2 1

 .

Then, the Gaussian elimination greedoid of the vector family (ve)e∈E =
(v1, v2, v3, v4, v5) is the set

{∅, {2} , {3} , {5} , {1, 2} , {1, 3} , {1, 5} , {2, 3} , {2, 5} ,
{1, 2, 3} , {1, 2, 5} , {1, 2, 3, 5}} .

For example, the 3-element set {1, 2, 5} belongs to this greedoid because the
family (π3 (ve))e∈{1,2,5} ∈

(
K3){1,2,5} is linearly independent (indeed, this family

consists of the vectors

 0
1
0

,

 1
1
2

 and

 1
0
1

).

Our definition of a Gaussian elimination greedoid follows [Knapp18, §1.3], ex-
cept that we are using vector families instead of matrices (but this is equivalent,
since any matrix can be identified with the vector family consisting of its columns)
and we are talking about linear independence rather than non-singularity of matri-
ces (but this is again equivalent, since a square matrix is non-singular if and only if
its columns are linearly independent). The same definition is given in [KoLoSc91,
§IV.2.3].

1.2. Context

In the rest of Section 1, we shall briefly connect Definition 1.4 with known concepts
in the theory of greedoids. This is not necessary for the rest of our work, so the
impatient reader can well skip to Section 2.

As the name suggests, Gaussian elimination greedoids are instances of greedoids
– a class of set systems (i.e., sets of sets) characterized by some simple axioms. We
refer to Definition 12.1 below for the definition of a greedoid, and to [KoLoSc91]
for the properties of such. A subclass of greedoids that has particular interest to us
are the strong greedoids; see, e.g., Section 12 below or [GriPet19, §6.1] or [BrySha99,
§2] for their definition.4 The following theorem is implicit in [KoLoSc91, §IX.4]5:

4They also appear in [KoLoSc91, §IX.4] under the name of “Gauss greedoids”, but they are defined
differently. (The equivalence between the two definitions is proved in [BrySha99, §2].)

5A partial proof of Theorem 1.6 also appears in [Knapp18, §1.3]. (Namely, two paragraphs above
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Theorem 1.6. The Gaussian elimination greedoid G in Definition 1.4 is a strong
greedoid.

See Section 12 below for a proof of this theorem.
Matroids are a class of set systems more famous than greedoids; see [Oxley11]

for their definition. We will not concern ourselves with matroids much in this note,
but let us remark one connection to Gaussian elimination greedoids:6

Proposition 1.7. Let G be a Gaussian elimination greedoid on a ground set E.
Let k ∈ N. Let Gk be the set of all k-element sets in G. Then, Gk is either empty
or is the collection of bases of a representable matroid on the ground set E.

See Section 13 below for a proof of this proposition.
Proposition 1.7 justifies thinking of Gaussian elimination greedoids as a greedoid

analogue of representable matroids.

2. V-ultra triples

Definition 2.1. Let E be a set. Then, E × E shall denote the subset
{(e, f ) ∈ E × E | e ̸= f } of E × E.

Convention 2.2. Fix a totally ordered abelian group (V,+, 0,⩽) (with ground
set V, group operation +, zero 0 and smaller-or-equal relation ⩽). The total
order on V is required to be translation-invariant (i.e., if a, b, c ∈ V satisfy a ⩽ b,
then a + c ⩽ b + c).

We shall refer to the ordered abelian group (V,+, 0,⩽) simply as V. We will
use the standard additive notations for the abelian group V; in particular, we
will use the ∑ sign for finite sums inside the group V. We will furthermore
use the standard order-theoretical notations for the totally ordered set V; in
particular, we will use the symbol ⩾ for the reverse relation of ⩽ (that is, a ⩾ b
means b ⩽ a), and we will use the symbols < and > for the strict versions of the
relations ⩽ and ⩾. We will denote the largest element of a nonempty subset S of
V (with respect to the relation ⩽) by max S. Likewise, min S will stand for the
smallest element of S.

We will keep this group V fixed throughout this paper.

For almost all examples we are aware of, it suffices to set V to be the abelian
group R, or even the smaller abelian group Z. Nevertheless, we shall work in full
generality, as it serves to separate objects that would otherwise easily be confused.

[Knapp18, Example 1.3.15], it is shown that G is a greedoid.)
6See [Oxley11, §1.1] for the definition of a representable matroid.
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Definition 2.3. A V-ultra triple shall mean a triple (E, w, d) consisting of:

• a set E, called the ground set of this V-ultra triple;

• a map w : E → V, called the weight function of this V-ultra triple;

• a map d : E × E → V, called the distance function of this V-ultra triple, and
required to satisfy the following axioms:

– Symmetry: We have d (a, b) = d (b, a) for any two distinct elements a
and b of E.

– Ultrametric triangle inequality: We have d (a, b) ⩽
max {d (a, c) , d (b, c)} for any three distinct elements a, b and c
of E.

If (E, w, d) is a V-ultra triple and e ∈ E, then the value w (e) ∈ V is called the
weight of e.

If (E, w, d) is a V-ultra triple and e and f are two distinct elements of E, then
the value d (e, f ) ∈ V is called the distance between e and f .

Example 2.4. For this example, let V = Z, and let E be a subset of Z. Let m be
any integer. Define a map w : E → V arbitrarily. Define a map d : E × E → V by

d (a, b) =

{
1, if a ̸≡ b mod m;
0, if a ≡ b mod m

for all (a, b) ∈ E × E.

It is easy to see that (E, w, d) is a V-ultra triple.

Example 2.5. For this example, let V = Z again, and let E be a subset of Z. Fix a
prime number p. For each nonzero integer k, let vp (k) denote the largest i ∈ N

such that pi | k. (For instance, v3 (45) = 2.)
Define a map w : E → V arbitrarily. Define a map d : E × E → V by

d (a, b) = −vp (a − b) for all (a, b) ∈ E × E.

It is easy to see that (E, w, d) is a V-ultra triple.
More generally, we can replace Z by any integral domain, and vp by any

valuation on this integral domain, and obtain a V-ultra triple, where V is the
target of our valuation.

The notion of a V-ultra triple generalizes the notion of an ultra triple as defined
in [GriPet19]. More precisely, if V is the additive group (R,+, 0,⩽) (with the usual
addition and the usual total order on R), then a V-ultra triple is the same as what
is called an “ultra triple” in [GriPet19]. Several properties and examples of ultra
triples can be found in [GriPet19].



The Bhargava greedoid as a Gaussian elimination greedoid page 8

It is straightforward to adapt all the definitions and results stated in [GriPet19]
for ultra triples to the more general setting of V-ultra triples7. Let us specifically ex-
tend two definitions from [GriPet19] to V-ultra triples: the definition of a perimeter
([GriPet19, §3.1]) and the definition of the Bhargava greedoid ([GriPet19, §6.2]):

Definition 2.6. Let (E, w, d) be a V-ultra triple. Let A be a finite subset of E.
Then, the perimeter of A (with respect to (E, w, d)) is defined to be

∑
a∈A

w (a) + ∑
{a,b}⊆A;

a ̸=b

d (a, b) ∈ V.

(Here, the second sum ranges over all unordered pairs {a, b} of distinct elements
of A.)

The perimeter of A is denoted by PER (A).

For example, if A = {p, q, r} is a 3-element set, then

PER (A) = w (p) + w (q) + w (r) + d (p, q) + d (p, r) + d (q, r) .

Definition 2.7. Let S be any set, and let k ∈ N. A k-subset of S means a k-element
subset of S (that is, a subset of S having size k).

Definition 2.8. Let (E, w, d) be a V-ultra triple such that E is finite. The Bhargava
greedoid of (E, w, d) is defined to be the subset

{A ⊆ E | A has maximum perimeter among all |A| -subsets of E}
= {A ⊆ E | PER (A) ⩾ PER (B) for all B ⊆ E satisfying |B| = |A|}

of 2E.

Some examples of Bhargava greedoids can be found in [GriPet19, §6.2]. Here are
two more:

7There is one stupid exception: The definition of R in [GriPet19, Remark 8.13] requires V ̸= 0. But
[GriPet19, Remark 8.13] is just a tangent without concrete use.
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Example 2.9. For this example, let V = Z and E = {0, 1, 2, 3, 4}. Define a map
w : E → V by setting w (e) = max {e, 1} for each e ∈ E. (Thus, w (0) = 1 and
w (e) = e for all e > 0.) Define a map d : E × E → V by setting

d (e, f ) = min {3, max {4 − e, 4 − f }} for all (e, f ) ∈ E × E.

Here is a table of values of d:

d 0 1 2 3 4

0 3 3 3 3
1 3 3 3 3
2 3 3 2 2
3 3 3 2 1
4 3 3 2 1

.

It is easy to see that (E, w, d) is a V-ultra triple. Let F be its Bhargava greedoid.
Thus, F consists of the subsets A of E that have maximum perimeter among all
|A|-subsets of E. What are these subsets?

• Clearly, ∅ is the only |∅|-subset of E, and thus has maximum perimeter
among all |∅|-subsets of E. Hence, ∅ ∈ F .

• The perimeter of a 1-subset {e} of E is just the weight w (e). Thus, the
1-subsets of E having maximum perimeter among all 1-subsets of E are
precisely the subsets {e} where e ∈ E has maximum weight. In our exam-
ple, there is only one e ∈ E having maximum weight, namely 4. Thus, the
only 1-subset of E having maximum perimeter among all 1-subsets of E is
{4}. In other words, the only 1-element set in F is {4}.

• What about 2-element sets in F ? The perimeter PER {e, f } of a 2-subset
{e, f } of E is w (e) + w ( f ) + d (e, f ). Thus,

PER {0, 4} = w (0) + w (4) + d (0, 4) = 1 + 4 + 3 = 8

and similarly PER {1, 4} = 8 and PER {2, 4} = 8 and PER {3, 4} = 8 and
PER {0, 3} = 7 and PER {1, 3} = 7 and PER {2, 3} = 7 and PER {0, 2} = 6
and PER {1, 2} = 6 and PER {0, 1} = 5. Thus, the 2-subsets of E having
maximum perimeter among all 2-subsets of E are {0, 4} and {1, 4} and
{2, 4} and {3, 4}. So these four sets are the 2-element sets in F .

• Similarly, the 3-element sets in F are {0, 1, 4}, {0, 3, 4}, {1, 3, 4}, {0, 2, 4}
and {1, 2, 4}. They have perimeter 15, while all other 3-subsets of E have
perimeter 14 or 13.

• Similarly, the 4-element sets in F are {0, 1, 2, 4} and {0, 1, 3, 4}.
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• Clearly, E is the only |E|-subset of E, and thus has maximum perimeter
among all |E|-subsets of E. Hence, E ∈ F .

Thus, the Bhargava greedoid of (E, w, d) is

F = {∅, {4} , {0, 4} , {1, 4} , {2, 4} , {3, 4} ,
{0, 1, 4} , {0, 3, 4} , {1, 3, 4} , {0, 2, 4} , {1, 2, 4} , {0, 1, 2, 4} , {0, 1, 3, 4} , E} .

Example 2.10. For this example, let V = Z and E = {1, 2, 3}. Define a map
w : E → V by setting w (e) = e for each e ∈ E. Define a map d : E × E → V

by setting d (e, f ) = 1 for each (e, f ) ∈ E × E. It is easy to see that (E, w, d) is a
V-ultra triple. Let F be the Bhargava greedoid of (E, w, d). What is F ?

The same kind of reasoning as in Example 2.9 (but simpler due to the fact that
all values of d are the same) shows that

F = {∅, {3} , {2, 3} , {1, 2, 3}} .

One thing we observed in both of these examples is the following simple fact:

Remark 2.11. Let (E, w, d) be a V-ultra triple such that E is finite. Let F be the
Bhargava greedoid of (E, w, d). Then, E ∈ F .

Proof of Remark 2.11. The set E obviously has maximum perimeter among all |E|-
subsets of E (since E is the only |E|-subset of E).

But F is the Bhargava greedoid of (E, w, d). In other words,

F = {A ⊆ E | A has maximum perimeter among all |A| -subsets of E}
(by Definition 2.8). Hence, E ∈ F (since E is a subset of E that has maximum
perimeter among all |E|-subsets of E). This proves Remark 2.11.

3. The main theorem

In [GriPet19, Theorem 6.1], it was proved that the Bhargava greedoid of an ultra
triple with finite ground set is a strong greedoid8. More generally, this holds for
any V-ultra triple with finite ground set (and the same argument can be used to
prove this). However, we shall prove a stronger statement:

Theorem 3.1. Let (E, w, d) be a V-ultra triple such that E is finite. Let F be the
Bhargava greedoid of (E, w, d). Let K be a field of size |K| ⩾ |E|. Then, F is the
Gaussian elimination greedoid of a vector family over K.

We will spend the next few sections working towards a proof of this theorem.
First, however, let us extend it somewhat by strengthening the |K| ⩾ |E| bound.

8See [GriPet19, §6.1] for the definition of strong greedoids.
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4. Cliques and stronger bounds

For the rest of Section 4, we fix a V-ultra triple (E, w, d).
Let us define a certain kind of subsets of E, which we call cliques.

Definition 4.1. Let α ∈ V. An α-clique of (E, w, d) will mean a subset F of E such
that any two distinct elements a, b ∈ F satisfy d (a, b) = α.

Definition 4.2. A clique of (E, w, d) will mean a subset of E that is an α-clique for
some α ∈ V.

Thus, any 1-element subset of E is a clique (and an α-clique for every α ∈ V).
The same holds for the empty subset. Any 2-element subset {a, b} of E is a clique
and, in fact, a d (a, b)-clique.

Note that the notion of a clique (and of an α-clique) depends only on E and d,
not on w.

Example 4.3. For this example, let m, V, E, w and d be as in Example 2.4. Then:

(a) The 0-cliques of E are the subsets of E whose elements are all mutually
congruent modulo m.

(b) The 1-cliques of E are the subsets of E that have no two distinct elements
congruent to each other modulo m. Thus, any 1-clique has size ⩽ m if m is
positive.

(c) If α ∈ V is distinct from 0 and 1, then the α-cliques of E are the subsets of
E having size ⩽ 1.

Using the notion of cliques, we can assign a number mcs (E, w, d) to our V-ultra
triple (E, w, d):

Definition 4.4. Let mcs (E, w, d) denote the maximum size of a clique of (E, w, d).
(This is well-defined whenever E is finite, and sometimes even otherwise.)

Clearly, mcs (E, w, d) ⩽ |E|, since any clique of (E, w, d) is a subset of E.

Example 4.5. Let V, E, w and d be as in Example 2.9. Then, {0, 1, 2} is a 3-
clique of (E, w, d) and has size 3; no larger cliques exist in (E, w, d). Thus,
mcs (E, w, d) = 3.

Example 4.6. For this example, let m, V, E, w and d be as in Example 2.4. Then:

(a) If m = 2 and E = {1, 2, 3, 4, 5, 6}, then mcs (E, w, d) = 3, due to the 0-clique
{1, 3, 5} having maximum size among all cliques.

(b) If m = 3 and E = {1, 2, 3, 4, 5, 6}, then mcs (E, w, d) = 3, due to the 1-clique
{1, 2, 3} having maximum size among all cliques.
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We can now state a stronger version of Theorem 3.1:

Theorem 4.7. Let (E, w, d) be a V-ultra triple such that E is finite. Let F be the
Bhargava greedoid of (E, w, d). Let K be a field of size |K| ⩾ mcs (E, w, d). Then,
F is the Gaussian elimination greedoid of a vector family over K.

Theorem 4.7 is stronger than Theorem 3.1 because |E| ⩾ mcs (E, w, d).
We shall prove Theorem 4.7 in Section 10.

5. The converse direction

Before that, let us explore the question whether the bound |K| ⩾ mcs (E, w, d)
can be improved. In an important particular case – namely, when the map w is
constant9 –, it cannot, as the following theorem shows:

Theorem 5.1. Let (E, w, d) be a V-ultra triple such that E is finite. Assume that
the map w is constant. Let F be the Bhargava greedoid of (E, w, d). Let K be a
field such that F is the Gaussian elimination greedoid of a vector family over K.
Then, |K| ⩾ mcs (E, w, d).

We shall prove Theorem 5.1 in Section 11.
When the map w in a V-ultra triple (E, w, d) is constant, Theorems 4.7 and 5.1

combined yield an exact characterization of those fields K for which the Bhargava
greedoid of (E, w, d) can be represented as the Gaussian elimination greedoid of a
vector family over K: Namely, those fields are precisely the fields K of size |K| ⩾
mcs (E, w, d). When w is not constant, Theorem 4.7 gives a sufficient condition; we
don’t know a necessary condition. Here are two examples:

Example 5.2. Let V, E, w, d and F be as in Example 2.9. Then, mcs (E, w, d) = 3
(as we saw in Example 4.5). Hence, Theorem 4.7 shows that F can be represented
as the Gaussian elimination greedoid of a vector family over any field K of size
|K| ⩾ 3. This bound on |K| is optimal, since the Bhargava greedoid F is not the
Gaussian elimination greedoid of any vector family over the 2-element field F2.
(But this does not follow from Theorem 5.1, because w is not constant.)

Example 5.3. Let V, E, w, d and F be as in Example 2.10. Then, mcs (E, w, d) = 3,
since E itself is a clique. Hence, Theorem 4.7 shows that F can be represented
as the Gaussian elimination greedoid of a vector family over any field K of size
|K| ⩾ 3. However, this bound on |K| is not optimal. Indeed, the Bhargava

9A map f : X → Y between two sets X and Y is said to be constant if all values of f are equal
(i.e., if every x1, x2 ∈ X satisfy f (x1) = f (x2)). In particular, if |X| ⩽ 1, then f : X → Y is
automatically constant.
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greedoid F is the Gaussian elimination greedoid of the vector family (ve)e∈E =

(v1, v2, v3) over the field F2, where v1 =

 0
0
1

, v2 =

 0
1
1

 and v3 =

 1
1
1

.

Question 5.4. Let (E, w, d) be a V-ultra triple such that E is finite. How to
characterize the fields K for which the Bhargava greedoid of (E, w, d) is the
Gaussian elimination greedoid of a vector family over K ? Is there a constant
c (E, w, d) such that these fields are precisely the fields of size ⩾ c (E, w, d) ?

Remark 5.5. Let E, w, d and F be as in Theorem 3.1. Let K be any field. For
each k ∈ N, let Fk be the set of all k-element sets in F .

If F is the Gaussian elimination greedoid of a vector family over K, then each
Fk with k ∈ {0, 1, . . . , |E|} is the collection of bases of a representable matroid
on the ground set E. (Indeed, this follows from Proposition 1.7, since Fk is
nonempty.) But the converse is not true: It can happen that each Fk with k ∈
{0, 1, . . . , |E|} is the collection of bases of a representable matroid on the ground
set E, yet F is not the Gaussian elimination greedoid of a vector family over K.
For example, this happens if E = {1, 2, 3} and both maps w and d are constant
(so that F = 2E), and K = F2.

6. Valadic V-ultra triples

As a first step towards the proof of Theorem 4.7, we will next introduce a special
kind of V-ultra triples which, in a way, are similar to Bhargava’s for integers (see
[GriPet19, Example 2.5 and §9]). We will call them valadic10, and we will see (in
Theorem 6.9) that they satisfy Theorem 3.1. Afterwards (in Theorem 9.2), we will
prove that any V-ultra triple with finite ground set is isomorphic (in an appropriate
sense) to a valadic one over a sufficiently large field. Combining these two facts,
we will then readily obtain Theorem 4.7.

Recall that V is a totally ordered abelian group (see Convention 2.2 for details).
Let us introduce some further notations that will be used throughout Section 6.

10The name is a homage to the notion of a valuation ring, which is latent in the argument that
follows (although never used explicitly). Indeed, if we define the notion of a valuation ring as in
[Eisenb95, Exercise 11.1], then the K-algebra L+ constructed below is an instance of a valuation
ring (with L being its fraction field, and ord : L \ {0} → V being its valuation), and many
of its properties that will be used below are instances of general properties of valuation rings.
If we extended our argument to the more general setting of valuation rings, we would also
recover Bhargava’s original ultra triples based on integer divisibility (see [GriPet19, Example
2.5 and §9]). However, we have no need for this generality (as we only need the construction
as a stepping stone towards our proof of Theorem 4.7), and prefer to remain elementary and
self-contained.
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Definition 6.1. We fix a field K. Let K [V] denote the group algebra of the group
V over K. This is a free K-module with basis (tα)α∈V; it becomes a K-algebra
with unity t0 and with multiplication determined by

tαtβ = tα+β for all α, β ∈ V.

This group algebra K [V] is commutative, since the group V is abelian.
Let V⩾0 be the set of all α ∈ V satisfying α ⩾ 0; this is a submonoid of the

group V. Let K [V⩾0] be the monoid algebra of this monoid V⩾0 over K. This
is a K-algebra defined in the same way as K [V], but using V⩾0 instead of V. It
is clear that K [V⩾0] is the K-subalgebra of K [V] spanned by the basis elements
tα with α ∈ V⩾0.

Example 6.2. If V = Z (with the usual addition and total order), then V⩾0 = N.
In this case, the group algebra K [V] is the Laurent polynomial ring K

[
X, X−1]

in a single indeterminate X over K (indeed, t1 plays the role of X, and more gen-
erally, each tα plays the role of Xα), and its subalgebra K [V⩾0] is the polynomial
ring K [X].

This example should be regarded as a guide; even in the general case (where
V does not have to be Z), the reader cannot go wrong thinking of K [V] as a
generalized Laurent polynomial ring and of K [V⩾0] as a generalized polynomial
ring (in a single indeterminate) and of tα as a generalized monomial Xα. This
analogy shall clarify much of what follows.

Definition 6.3.

(a) Let L be the commutative K-algebra K [V], and let L+ be its K-subalgebra
K [V⩾0]. Thus, the K-module L has basis (tα)α∈V, while its K-submodule
L+ has basis (tα)α∈V⩾0

.

(b) If a ∈ L and β ∈ V, then
[
tβ

]
a shall denote the coefficient of tβ in a (when

a is expanded in the basis (tα)α∈V of L). This is an element of K. For
example, [t3] (t2 − t3 + 5t6) = −1 (if V = Z).

(c) If a ∈ L is nonzero, then the order of a is defined to be the smallest β ∈ V

such that
[
tβ

]
a ̸= 0. This order is an element of V, and is denoted by ord a.

For example, ord (t2 − t3 + 5t6) = 2 (if V = Z). Note that ord (tα) = α for
each α ∈ V.

The notations we just defined generalize standard features of Laurent polyno-
mials: If V = Z as in Example 6.2, then the coefficient

[
tβ

]
a of an element

a ∈ L = K
[
X, X−1] is simply the coefficient of Xβ in the Laurent polynomial

a, and the order ord a of a nonzero Laurent polynomial a ∈ L is the order of a in
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the usual sense (i.e., the smallest exponent of a monomial appearing in a). If we
substitute X−1 for X (thus replacing each monomial Xβ by X−β), then the order of
a Laurent polynomial becomes its degree (with a negative sign). In light of this,
the following properties of orders should not be surprising:

Lemma 6.4.

(a) A nonzero element a ∈ L belongs to L+ if and only if its order ord a is
nonnegative (i.e., we have ord a ⩾ 0).

(b) We have ord (−a) = ord a for any nonzero a ∈ L.

(c) Let a and b be two nonzero elements of L. Then, ab is nonzero and satisfies
ord (ab) = ord a + ord b.

(d) Let a and b be two nonzero elements of L such that a + b is nonzero. Then,
ord (a + b) ⩾ min {ord a, ord b}.

See Section 14 for the (straightforward) proof of this lemma. (This proof is en-
tirely analogous to the proof of the corresponding properties of usual polynomials.)

Corollary 6.5. The ring L is an integral domain.

Proof of Corollary 6.5. This follows from Lemma 6.4 (c).

Applying Lemma 6.4 (c) many times, we also obtain the following:

Corollary 6.6. The map ord : L \ {0} → V transforms (finite) products into
sums. In more detail: If (ai)i∈I is any finite family of nonzero elements of L,
then the product ∏

i∈I
ai is nonzero and satisfies

ord

(
∏
i∈I

ai

)
= ∑

i∈I
ord (ai) .

Proof. Induction on |I|. The induction step uses Lemma 6.4 (c); the straightforward
details are left to the reader.

We can now assign a V-ultra triple to each subset of L:

Definition 6.7. Let E be a subset of L. Define a distance function d : E × E → V

by setting
d (a, b) = − ord (a − b) for all (a, b) ∈ E × E.

(Recall that E × E means the set {(a, b) ∈ E × E | a ̸= b}.)
Then, (E, w, d) is a V-ultra triple whenever w : E → V is a function (by Lemma

6.8 below). Such a V-ultra triple (E, w, d) will be called valadic.
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Lemma 6.8. In Definition 6.7, the triple (E, w, d) is indeed a V-ultra triple.

Lemma 6.8 follows easily from Lemma 6.4. (See Section 14 for the details of the
proof.)

Now, we claim that the Bhargava greedoid of a valadic V-ultra triple (E, w, d)
with finite E is the Gaussian elimination greedoid of a vector family over K:

Theorem 6.9. Let E be a finite subset of L. Define d as in Definition 6.7. Let
w : E → V be a function. Then, the Bhargava greedoid of the V-ultra triple
(E, w, d) is the Gaussian elimination greedoid of a vector family over K.

In order to prove this theorem, we will need a determinantal identity:

Lemma 6.10. Let R be a commutative ring. Consider the polynomial ring R [X].
Let m ∈ N. Let f1, f2, . . . , fm be m polynomials in R [X]. Assume that f j is a
monic polynomial of degree j − 1 for each j ∈ {1, 2, . . . , m}. Let u1, u2, . . . , um be
m elements of R. Then,

det
((

f j (ui)
)

1⩽i⩽m, 1⩽j⩽m

)
= ∏

(i,j)∈{1,2,...,m}2;
i>j

(
ui − uj

)
.

Here, we are using the notation
(
bi,j
)

1⩽i⩽p, 1⩽j⩽q for the p × q-matrix whose (i, j)-th
entry is bi,j for all i ∈ {1, 2, . . . , p} and all j ∈ {1, 2, . . . , q}.

Lemma 6.10 is a classical generalization of the famous Vandermonde determi-
nant. In this form, it is a particular case of [Grinbe11, Theorem 2] (applied to
Pj = f j and ai = ui), because the coefficient of X j−1 in a monic polynomial of de-
gree j− 1 is 1. It also appears in [FadSom72, Exercise 267] (where it is stated for the
transpose of the matrix we are considering here), in [Muir60, Chapter XI, Exercise
2 in Set XVIII] (where it, too, is stated for the transpose of the matrix), in [Kratte99,
Proposition 1], and in [Grinbe22, Exercise 6.62].

We need two more simple lemmas for our proof of Theorem 6.9:

Lemma 6.11. The map

π : L+ → K,
x 7→ [t0] x

is a K-algebra homomorphism.

Lemma 6.12. Consider the map π : L+ → K from Lemma 6.11. Let a ∈ L+ be
nonzero. Then, π (a) ̸= 0 holds if and only if ord a = 0.

See Section 14 for the (easy) proofs of these two lemmas.
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Proof of Theorem 6.9. Let m = |E|. Consider the V-ultra triple (E, w, d); all perime-
ters discussed in this proof are defined with respect to this V-ultra triple.

We construct a list (c1, c2, . . . , cm) of elements of E by the following recursive
procedure:

• For each i ∈ {1, 2, . . . , m}, we choose ci (assuming that all the preceding en-
tries c1, c2, . . . , ci−1 of our list are already constructed) to be an element of
E \ {c1, c2, . . . , ci−1} that maximizes the perimeter PER {c1, c2, . . . , ci}.

This procedure can indeed be carried out, since at each step we can find an element
ci ∈ E \ {c1, c2, . . . , ci−1} that maximizes the perimeter PER {c1, c2, . . . , ci}. 11

Clearly, this procedure constructs an m-tuple (c1, c2, . . . , cm) of elements of E. The
m entries c1, c2, . . . , cm of this m-tuple are distinct12, and thus are m distinct elements
of E; but E has only m elements altogether (since m = |E|). Hence, the m entries
c1, c2, . . . , cm must cover the whole set E. In other words, E = {c1, c2, . . . , cm}.

Furthermore, for each i ∈ {1, 2, . . . , m} and each x ∈ E \ {c1, c2, . . . , ci−1}, we
have

PER {c1, c2, . . . , ci} ⩾ PER {c1, c2, . . . , ci−1, x} (1)

(due to how ci is chosen). Thus, in the parlance of [GriPet19, §3.2], the m-tuple
(c1, c2, . . . , cm) is a greedy m-permutation of E.

For each j ∈ {1, 2, . . . , m}, define a ρj ∈ V by

ρj = w
(
cj
)
+

j−1

∑
i=1

d
(
ci, cj

)
. (2)

(This is precisely what is called ν◦j (C) in [GriPet19], where C = E.)
Consider the polynomial ring L [X]. For each j ∈ {1, 2, . . . , m}, define a polyno-

mial f j ∈ L [X] by

f j = (X − c1) (X − c2) · · ·
(
X − cj−1

)
=

j−1

∏
i=1

(X − ci) .

This is a monic polynomial of degree j − 1.
Next we claim the following:

Claim 1: Let e ∈ E and j ∈ {1, 2, . . . , m}. Then, tρj−w(e) f j (e) ∈ L+.

11Indeed, the set E \ {c1, c2, . . . , ci−1} is nonempty (since |{c1, c2, . . . , ci−1}| ⩽ i − 1 < i ⩽ m = |E|
and thus {c1, c2, . . . , ci−1} ̸⊇ E) and finite (since E is finite), and thus at least one of its elements
will maximize the perimeter in question.

12since each ci is chosen to be an element of E \ {c1, c2, . . . , ci−1}, and thus is distinct from all the
preceding entries c1, c2, . . . , ci−1
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[Proof of Claim 1: We have f j =
j−1
∏
i=1

(X − ci) and thus f j (e) =
j−1
∏
i=1

(e − ci). Hence,

if e ∈
{

c1, c2, . . . , cj−1
}

, then f j (e) = 0 and thus our claim tρj−w(e) f j (e) ∈ L+

is obvious. Thus, we WLOG assume that e /∈
{

c1, c2, . . . , cj−1
}

. Thus, each i ∈

{1, 2, . . . , j − 1} satisfies e ̸= ci and thus e − ci ̸= 0. Hence,
j−1
∏
i=1

(e − ci) is a product

of nonzero elements of L, and thus is itself nonzero (since Corollary 6.5 says that L

is an integral domain). In other words, f j (e) is nonzero (since f j (e) =
j−1
∏
i=1

(e − ci)).

Hence, tρj−w(e) f j (e) is nonzero as well (since tρj−w(e) is nonzero, and since L is an
integral domain).

Moreover, from f j (e) =
j−1
∏
i=1

(e − ci), we obtain

ord
(

f j (e)
)
= ord

(
j−1

∏
i=1

(e − ci)

)
=

j−1

∑
i=1

ord (e − ci) (3)

(by Corollary 6.6).
From e ∈ E and e /∈

{
c1, c2, . . . , cj−1

}
, we obtain e ∈ E \

{
c1, c2, . . . , cj−1

}
. Hence,

(1) (applied to i = j and x = e) yields

PER
{

c1, c2, . . . , cj
}
⩾ PER

{
c1, c2, . . . , cj−1, e

}
. (4)

But c1, c2, . . . , cj are distinct13. Hence, the definition of the perimeter yields

PER
{

c1, c2, . . . , cj
}
=

j

∑
i=1

w (ci)︸ ︷︷ ︸
=

j−1
∑

i=1
w(ci)+w(cj)

+ ∑
1⩽i<p⩽j

d
(
ci, cp

)
︸ ︷︷ ︸

= ∑
1⩽i<p⩽j−1

d(ci,cp)+
j−1
∑

i=1
d(ci,cj)

=
j−1

∑
i=1

w (ci) + w
(
cj
)
+ ∑

1⩽i<p⩽j−1
d
(
ci, cp

)
+

j−1

∑
i=1

d
(
ci, cj

)
= w

(
cj
)
+

j−1

∑
i=1

d
(
ci, cj

)
︸ ︷︷ ︸

=ρj
(by (2))

+
j−1

∑
i=1

w (ci) + ∑
1⩽i<p⩽j−1

d
(
ci, cp

)

= ρj +
j−1

∑
i=1

w (ci) + ∑
1⩽i<p⩽j−1

d
(
ci, cp

)
13This is because c1, c2, . . . , cm are distinct.
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and

PER
{

c1, c2, . . . , cj−1, e
}
=

j−1

∑
i=1

w (ci) + w (e) + ∑
1⩽i<p⩽j−1

d
(
ci, cp

)
+

j−1

∑
i=1

d (ci, e)

(since c1, c2, . . . , cj−1, e are distinct14). Hence, (4) rewrites as

ρj +
j−1

∑
i=1

w (ci) + ∑
1⩽i<p⩽j−1

d
(
ci, cp

)
⩾

j−1

∑
i=1

w (ci) + w (e) + ∑
1⩽i<p⩽j−1

d
(
ci, cp

)
+

j−1

∑
i=1

d (ci, e) .

After cancelling equal terms, this inequality transforms into

ρj ⩾ w (e) +
j−1

∑
i=1

d (ci, e) .

In view of
j−1

∑
i=1

d (ci, e)︸ ︷︷ ︸
=d(e,ci)

(by the “Symmetry”
axiom in the definition

of a V-ultra triple)

=
j−1

∑
i=1

d (e, ci)︸ ︷︷ ︸
=− ord(e−ci)

(by the definition of d)

= −
j−1

∑
i=1

ord (e − ci)︸ ︷︷ ︸
=ord( f j(e))

(by (3))

= − ord
(

f j (e)
)

,

this rewrites as
ρj ⩾ w (e)− ord

(
f j (e)

)
.

In other words, ord
(

f j (e)
)
⩾ w (e) − ρj. Now, Lemma 6.4 (c) (applied to a =

tρj−w(e) and b = f j (e)) yields

ord
(

tρj−w(e) f j (e)
)
= ord

(
tρj−w(e)

)
︸ ︷︷ ︸

=ρj−w(e)

+ ord
(

f j (e)
)︸ ︷︷ ︸

⩾w(e)−ρj

⩾ ρj − w (e) + w (e)− ρj = 0.

Hence, Lemma 6.4 (a) (applied to a = tρj−w(e) f j (e)) shows that tρj−w(e) f j (e) belongs
to L+. Thus, tρj−w(e) f j (e) ∈ L+. This proves Claim 1.]

For each e ∈ E and j ∈ {1, 2, . . . , m}, we define an a (e, j) ∈ L+ by

a (e, j) = tρj−w(e) f j (e) . (5)

(This is well-defined, due to Claim 1.)
We now claim the following:

14This is because c1, c2, . . . , cm are distinct and e /∈
{

c1, c2, . . . , cj−1
}

.
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Claim 2: Let k ∈ N. Let u1, u2, . . . , uk be any k distinct elements of E. Let
U = {u1, u2, . . . , uk}. Then,

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
is a nonzero element of L+ (6)

and

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
=

k

∑
j=1

ρj − PER (U) . (7)

[Proof of Claim 2: The set E has at least k many elements (since u1, u2, . . . , uk are
k distinct elements of E). In other words, |E| ⩾ k. Hence, k ⩽ |E| = m. Therefore,
{1, 2, . . . , k} ⊆ {1, 2, . . . , m}. In other words, for each j ∈ {1, 2, . . . , k}, we have
j ∈ {1, 2, . . . , m}.

Hence, a (ui, j) ∈ L+ for any i, j ∈ {1, 2, . . . , k} (since we defined a (e, j) to
satisfy a (e, j) ∈ L+ for any e ∈ E and j ∈ {1, 2, . . . , m}). In other words, all
entries of the matrix (a (ui, j))1⩽j⩽k, 1⩽i⩽k belong to L+. Hence, its determinant

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
belongs to L+ as well (since L+ is a ring).

Lemma 6.10 (applied to L and k instead of R and m) yields

det
((

f j (ui)
)

1⩽i⩽k, 1⩽j⩽k

)
= ∏

(i,j)∈{1,2,...,k}2;
i>j

(
ui − uj

)
. (8)

It is known that the determinant of a matrix equals the determinant of its trans-
pose. Thus,

det
((

f j (ui)
)

1⩽j⩽k, 1⩽i⩽k

)
= det

((
f j (ui)

)
1⩽i⩽k, 1⩽j⩽k

)
(since the matrix

(
f j (ui)

)
1⩽j⩽k, 1⩽i⩽k is the transpose of the matrix

(
f j (ui)

)
1⩽i⩽k, 1⩽j⩽k).

But when we scale a column of a matrix by a scalar λ, then its determinant also
gets multiplied by λ. Hence,

det
((

t−w(ui)
f j (ui)

)
1⩽j⩽k, 1⩽i⩽k

)
=

(
k

∏
i=1

t−w(ui)

)
· det

((
f j (ui)

)
1⩽j⩽k, 1⩽i⩽k

)
︸ ︷︷ ︸

=det
(
( f j(ui))1⩽i⩽k, 1⩽j⩽k

)
= ∏
(i,j)∈{1,2,...,k}2;

i>j

(ui−uj)

(by (8))

=

(
k

∏
i=1

t−w(ui)

)
· ∏
(i,j)∈{1,2,...,k}2;

i>j

(
ui − uj

)
.
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Furthermore, when we scale a row of a matrix by a scalar λ, then its determinant
also gets multiplied by λ. Hence,

det
((

tρj t−w(ui)
f j (ui)

)
1⩽j⩽k, 1⩽i⩽k

)
=

(
k

∏
j=1

tρj

)
· det

((
t−w(ui)

f j (ui)
)

1⩽j⩽k, 1⩽i⩽k

)
︸ ︷︷ ︸
=

(
k

∏
i=1

t−w(ui)

)
· ∏
(i,j)∈{1,2,...,k}2;

i>j

(ui−uj)

=

(
k

∏
j=1

tρj

)(
k

∏
i=1

t−w(ui)

)
· ∏
(i,j)∈{1,2,...,k}2;

i>j

(
ui − uj

)
.

However, for every i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , k}, we have

a (ui, j) = tρj−w(ui)︸ ︷︷ ︸
=tρj t−w(ui)

f j (ui) (by the definition of a (ui, j))

= tρj t−w(ui)
f j (ui) .

Hence,

det


 a (ui, j)︸ ︷︷ ︸

=tρj t−w(ui)
f j(ui)


1⩽j⩽k, 1⩽i⩽k


= det

((
tρj t−w(ui)

f j (ui)
)

1⩽j⩽k, 1⩽i⩽k

)
=

(
k

∏
j=1

tρj

)(
k

∏
i=1

t−w(ui)

)
· ∏
(i,j)∈{1,2,...,k}2;

i>j

(
ui − uj

)
. (9)

The right hand side of this equality is a product of nonzero elements of L (since
u1, u2, . . . , uk are distinct), and thus is nonzero (by Corollary 6.5). Hence, the left
hand side is nonzero. In other words, det

(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
is nonzero. This

proves (6) (since we already know that det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
belongs to L+).
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Moreover, (9) yields

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))

= ord


(

k

∏
j=1

tρj

)(
k

∏
i=1

t−w(ui)

)
· ∏
(i,j)∈{1,2,...,k}2;

i>j

(
ui − uj

)


=
k

∑
j=1

ord
(

tρj

)
︸ ︷︷ ︸

=ρj

+
k

∑
i=1

ord
(

t−w(ui)

)
︸ ︷︷ ︸

=−w(ui)

+ ∑
(i,j)∈{1,2,...,k}2;

i>j

ord
(
ui − uj

)
(by Lemma 6.4 (c) and Corollary 6.6)

=
k

∑
j=1

ρj −
k

∑
i=1

w (ui) + ∑
(i,j)∈{1,2,...,k}2;

i>j

ord
(
ui − uj

)

=
k

∑
j=1

ρj −

 k

∑
i=1

w (ui)− ∑
(i,j)∈{1,2,...,k}2;

i>j

ord
(
ui − uj

)
 . (10)

But recall that U = {u1, u2, . . . , uk} with u1, u2, . . . , uk distinct. The definition of
perimeter thus yields

PER (U) =
k

∑
i=1

w (ui) + ∑
1⩽i<j⩽k

d
(
ui, uj

)
=

k

∑
i=1

w (ui) + ∑
1⩽j<i⩽k︸ ︷︷ ︸

= ∑
(i,j)∈{1,2,...,k}2;

i>j

d
(
uj, ui

)︸ ︷︷ ︸
=d(ui,uj)

(by the “Symmetry”
axiom in the definition

of a V-ultra triple)(
here, we have renamed

the index (i, j) as (j, i) in the second sum

)
=

k

∑
i=1

w (ui) + ∑
(i,j)∈{1,2,...,k}2;

i>j

d
(
ui, uj

)︸ ︷︷ ︸
=− ord(ui−uj)

(by the definition of d)

=
k

∑
i=1

w (ui)− ∑
(i,j)∈{1,2,...,k}2;

i>j

ord
(
ui − uj

)
. (11)
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Hence, (10) becomes

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))

=
k

∑
j=1

ρj −

 k

∑
i=1

w (ui)− ∑
(i,j)∈{1,2,...,k}2;

i>j

ord
(
ui − uj

)


︸ ︷︷ ︸
=PER(U)
(by (11))

=
k

∑
j=1

ρj − PER (U) .

Hence, (7) is proved. This proves Claim 2.]

As a consequence of Claim 2, we obtain the following:

Claim 3: Let k ∈ {0, 1, . . . , m}. Then,
k
∑

j=1
ρj is the maximum perimeter of

a k-subset of E.

[Proof of Claim 3: The elements c1, c2, . . . , cm are distinct; thus, the elements
c1, c2, . . . , ck are distinct. Hence, {c1, c2, . . . , ck} is a k-subset of E.

Adding up the equalities (2) for all j ∈ {1, 2, . . . , k}, we obtain

k

∑
j=1

ρj =
k

∑
j=1

(
w
(
cj
)
+

j−1

∑
i=1

d
(
ci, cj

))

=
k

∑
j=1

w
(
cj
)
+ ∑

1⩽i<j⩽k
d
(
ci, cj

)
= PER {c1, c2, . . . , ck}

(since c1, c2, . . . , ck are distinct). Since {c1, c2, . . . , ck} is a k-subset of E, we thus

conclude that
k
∑

j=1
ρj is the perimeter of some k-subset of E. Thus, in order to prove

Claim 3, we need only to show that
k
∑

j=1
ρj ⩾ PER (U) for every k-subset U of E.

So let U be a k-subset of E. We must prove
k
∑

j=1
ρj ⩾ PER (U).

Write the k-subset U in the form U = {u1, u2, . . . , uk} for k distinct elements
u1, u2, . . . , uk of E. Claim 2 thus yields that

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
is a nonzero element of L+
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and

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
=

k

∑
j=1

ρj − PER (U) . (12)

Thus, in particular, det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
belongs to L+. Hence,

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
⩾ 0

(by Lemma 6.4 (a), applied to det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
instead of a). In view of

(12), this rewrites as
k
∑

j=1
ρj − PER (U) ⩾ 0. In other words,

k
∑

j=1
ρj ⩾ PER (U). This

completes the proof of Claim 3.]

Now, recall the K-algebra homomorphism π : L+ → K from Lemma 6.11. For
each e ∈ E, define a column vector ve ∈ Km by

ve =


π (a (e, 1))
π (a (e, 2))

...
π (a (e, m))

 = (π (a (e, j)))1⩽j⩽m .

We thus have a vector family (ve)e∈E over K. Let G be the Gaussian elimination
greedoid of this family. Let F be the Bhargava greedoid of (E, w, d). Our goal is to
prove that F = G (since this will yield Theorem 6.9).

In order to do so, it suffices to show that if U is any subset of E, then we have
the logical equivalence

(U ∈ F ) ⇐⇒ (U ∈ G) . (13)

So let us do this. Let U be a subset of E. We must prove the equivalence (13).
Write the subset U in the form U = {u1, u2, . . . , uk} with u1, u2, . . . , uk distinct.

Thus, |U| = k. In other words, U is a k-subset of E. Claim 2 thus yields that

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
is a nonzero element of L+ (14)

and

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
=

k

∑
j=1

ρj − PER (U) . (15)

Also, recall that π is a K-algebra homomorphism (by Lemma 6.11), thus a ring
homomorphism. Hence,

det
(
(π (a (ui, j)))1⩽j⩽k, 1⩽i⩽k

)
= π

(
det

(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
(16)

(since ring homomorphisms respect determinants).
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Also, U is a subset of E; hence, |U| ⩽ |E| = m. Thus, k = |U| ⩽ m. Hence,

k ∈ {0, 1, . . . , m}. Therefore, Claim 3 shows that
k
∑

j=1
ρj is the maximum perimeter

of a k-subset of E. In other words,
k
∑

j=1
ρj is the maximum perimeter of a |U|-subset

of E (since |U| = k).
The definition of the Gaussian elimination greedoid G shows that we have the
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following equivalence:15

(U ∈ G)

⇐⇒
(

the family
(

π|U| (ve)
)

e∈U
∈
(

K|U|
)U

is linearly independent
)

⇐⇒
(

the family (πk (ve))e∈U ∈
(

Kk
)U

is linearly independent
)

(since |U| = k)
⇐⇒ (the vectors πk (vu1) , πk (vu2) , . . . , πk (vuk) are linearly independent)

(since U = {u1, u2, . . . , uk} with u1, u2, . . . , uk distinct)

⇐⇒
(

the columns of the matrix (π (a (ui, j)))1⩽j⩽k, 1⩽i⩽k are linearly independent
)

(
since the vectors πk (vu1) , πk (vu2) , . . . , πk (vuk)

are the columns of the matrix (π (a (ui, j)))1⩽j⩽k, 1⩽i⩽k

)
⇐⇒

(
the matrix (π (a (ui, j)))1⩽j⩽k, 1⩽i⩽k is invertible

)
(

since a square matrix over the field K is invertible
if and only if its columns are linearly independent

)
⇐⇒

(
det

(
(π (a (ui, j)))1⩽j⩽k, 1⩽i⩽k

)
̸= 0 in K

)
⇐⇒

(
π
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
̸= 0 in K

)
(by (16))

⇐⇒
(

ord
(

det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

))
= 0

)
(

by Lemma 6.12, applied to det
(
(a (ui, j))1⩽j⩽k, 1⩽i⩽k

)
instead of a

)
⇐⇒

(
k

∑
j=1

ρj − PER (U) = 0

)
(by (15))

⇐⇒
(

PER (U) =
k

∑
j=1

ρj

)
⇐⇒ (PER (U) is the maximum perimeter of a |U| -subset of E)(

since
k

∑
j=1

ρj is the maximum perimeter of a |U| -subset of E

)
⇐⇒ (U has maximum perimeter among all |U| -subsets of E)
⇐⇒ (U ∈ F )

(by the definition of the Bhargava greedoid F ). Thus, the equivalence (13) is
proven. This concludes the proof of Theorem 6.9.

15The words “linearly independent” should always be understood to mean “K-linearly indepen-
dent” here.
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7. Isomorphism

Next, we introduce the notion of a set system. This elementary notion will play a
purely technical role in what follows.

Definition 7.1. Let E be a set.

(a) We let 2E denote the powerset of E.

(b) A set system on ground set E shall mean a subset of 2E.

Thus:

• The Gaussian elimination greedoid of a vector family (ve)e∈E (over any field
K) is a set system on ground set E.

• The Bhargava greedoid of any V-ultra triple (E, w, d) is a set system on
ground set E.

(More generally, any greedoid is a set system, but we shall not need this.)
We shall use the following two simple concepts of isomorphism:

Definition 7.2. Let (E, w, d) and (F, v, c) be two V-ultra triples.

(a) A bijective map f : E → F is said to be an isomorphism of V-ultra triples from
(E, w, d) to (F, v, c) if it satisfies v ◦ f = w and

c ( f (a) , f (b)) = d (a, b) for all (a, b) ∈ E × E.

(b) The V-ultra triples (E, w, d) and (F, v, c) are said to be isomorphic if there
exists an isomorphism f : E → F of V-ultra triples from (E, w, d) to (F, v, c).
(Note that being isomorphic is clearly a symmetric relation, because if f :
E → F is an isomorphism of V-ultra triples from (E, w, d) to (F, v, c), then
f−1 : F → E is an isomorphism of V-ultra triples from (F, v, c) to (E, w, d).)

Definition 7.3. Let E and F be two set systems on ground sets E and F, respec-
tively.

(a) A bijective map f : E → F is said to be an isomorphism of set systems from E
to F if the bijection 2 f : 2E → 2F induced by it (i.e., the bijection that sends
each S ∈ 2E to f (S) ∈ 2F) satisfies 2 f (E) = F .

(b) The set systems E and F are said to be isomorphic if there exists an isomor-
phism f : E → F of set systems from E to F . (Note that being isomorphic
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is clearly a symmetric relation, because if f : E → F is an isomorphism
of set systems from E to F , then f−1 : F → E is an isomorphism of set
systems from F to E .)

The intuitive meaning of both of these two definitions is simple: Two V-ultra
triples are isomorphic if and only if one can be obtained from the other by relabel-
ing the elements of the ground set. The same holds for two set systems.

The following two propositions are obvious:

Proposition 7.4. Let (E, w, d) and (F, v, c) be two isomorphic V-ultra triples such
that E and F are finite. Then, the Bhargava greedoids of (E, w, d) and (F, v, c) are
isomorphic as set systems.

Proposition 7.5. Let K be a field. Let E and F be two isomorphic set systems. If
E is the Gaussian elimination greedoid of a vector family over K, then so is F .

8. Decomposing a V-ultra triple

For the rest of Section 8, we fix a V-ultra triple (E, w, d).
We are going to study the structure of this V-ultra triple. We recall the notions

of α-cliques and cliques (defined in Definition 4.1 and Definition 4.2, respectively).
We shall next define another kind of subsets of E: the open balls.

Definition 8.1. Let α ∈ V and e ∈ E. The open ball B◦
α (e) is defined to be the

subset
{ f ∈ E | f = e or else d ( f , e) < α}

of E.

Clearly, for each α ∈ V and each e ∈ E, we have e ∈ B◦
α (e), so that the open ball

B◦
α (e) contains at least the element e.

Proposition 8.2. Let α ∈ V and e, f ∈ E be such that e ̸= f and d (e, f ) < α.
Then, B◦

α (e) = B◦
α ( f ).

Proof. We have e ̸= f , so that f ̸= e. Hence, the “symmetry” axiom in Definition
2.3 yields that d ( f , e) = d (e, f ) < α.

From e ̸= f and d (e, f ) < α, we obtain e ∈ B◦
α ( f ) (by the definition of B◦

α ( f )).
Also, f ∈ B◦

α ( f ) (by the definition of B◦
α ( f )).

Let x ∈ B◦
α (e). We shall show that x ∈ B◦

α ( f ).
If x = e, then this follows immediately from e ∈ B◦

α ( f ). Hence, for the rest of
the proof of x ∈ B◦

α ( f ), we WLOG assume that x ̸= e. Thus, from x ∈ B◦
α (e),

we obtain d (x, e) < α (by the definition of B◦
α (e)). If x = f , then x ∈ B◦

α ( f )
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follows immediately from the fact that f ∈ B◦
α ( f ). Thus, for the rest of the proof

of x ∈ B◦
α ( f ), we WLOG assume that x ̸= f . Now, the points e, f , x are distinct

(since x ̸= e, x ̸= f and e ̸= f ). Hence, the ultrametric triangle inequality yields
d (x, f ) ⩽ max {d (x, e) , d ( f , e)} < α (since d (x, e) < α and d ( f , e) < α). Thus,
x ∈ B◦

α ( f ) (by the definition of B◦
α ( f )).

Now, forget that we fixed x. We thus have shown that x ∈ B◦
α ( f ) for each

x ∈ B◦
α (e). In other words, B◦

α (e) ⊆ B◦
α ( f ).

But our situation is symmetric in e and f (since f ̸= e and d ( f , e) < α). Hence,
the same argument that let us prove B◦

α (e) ⊆ B◦
α ( f ) can be applied with the roles

of e and f interchanged; thus we obtain B◦
α ( f ) ⊆ B◦

α (e). Combining this with
B◦

α (e) ⊆ B◦
α ( f ), we obtain B◦

α (e) = B◦
α ( f ). This proves Proposition 8.2.

Corollary 8.3. Let α ∈ V and e ∈ E. Let f ∈ B◦
α (e). Then, B◦

α (e) = B◦
α ( f ).

Proof. If e = f , then this is obvious. Hence, WLOG assume that e ̸= f . Thus, f ̸= e.
Hence, d ( f , e) < α (since f ∈ B◦

α (e)). Thus, the “symmetry” axiom in Definition
2.3 yields that d (e, f ) = d ( f , e) < α. Hence, Proposition 8.2 yields B◦

α (e) = B◦
α ( f ).

Qed.

Proposition 8.4. Let α ∈ V and e, f ∈ E be such that e ̸= f and d (e, f ) ⩾ α.
Then:

(a) If a ∈ B◦
α (e) and b ∈ B◦

α ( f ), then a ̸= b and d (a, b) ⩾ α.

(b) The open balls B◦
α (e) and B◦

α ( f ) are disjoint.

Proof. (a) Let a ∈ B◦
α (e) and b ∈ B◦

α ( f ). We must prove that a ̸= b and d (a, b) ⩾ α.
Assume the contrary. Thus, either a = b or else d (a, b) < α. Hence, a ∈ B◦

α (b)
(by the definition of B◦

α (b)). Thus, B◦
α (b) = B◦

α (a) (by Corollary 8.3, applied to b
and a instead of e and f ). Also, from a ∈ B◦

α (e), we obtain B◦
α (e) = B◦

α (a) (by
Corollary 8.3, applied to a instead of f ). Furthermore, from b ∈ B◦

α ( f ), we obtain
B◦

α ( f ) = B◦
α (b) (by Corollary 8.3, applied to f and b instead of e and f ). Finally,

the definition of B◦
α (e) yields e ∈ B◦

α (e) = B◦
α (a) = B◦

α (b) = B◦
α ( f ). Since e ̸= f ,

this entails d (e, f ) < α (by the definition of B◦
α ( f )). This contradicts d (e, f ) ⩾ α.

This contradiction shows that our assumption was false. Hence, Proposition 8.4 (a)
follows.

(b) This is simply the “a ̸= b” part of Proposition 8.4 (a).

The next proposition is trivial:

Proposition 8.5. Let F be a subset of E. Let (F, w′, d′) be the V-ultra triple(
F, w |F, d |F×F

)
. Then:

(a) If a subset of F is a clique of the V-ultra triple (E, w, d), then this subset is
also a clique of the V-ultra triple (F, w′, d′).
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(b) Any clique of the V-ultra triple (F, w′, d′) is a clique of the V-ultra triple
(E, w, d).

Proof. (a) Let C be a subset of F that is a clique of the V-ultra triple (E, w, d). We
must show that C is also a clique of the V-ultra triple (F, w′, d′).

The definition of (F, w′, d′) shows that d′ = d |F×F. Thus, any two distinct ele-
ments a, b ∈ F satisfy

d′ (a, b) = d (a, b) . (17)

We know that C is a clique of (E, w, d). In other words, C is an α-clique of (E, w, d)
for some α ∈ V. Consider this α. Thus, C is an α-clique of (E, w, d). In other words,
any two distinct elements a, b ∈ C satisfy

d (a, b) = α (18)

(by the definition of an “α-clique”). Hence, for any two distinct elements a, b ∈ C,
we have

d′ (a, b) = d (a, b) (by (17), since a, b ∈ C ⊆ F)
= α (by (18)) .

In other words, any two distinct elements a, b ∈ C satisfy d′ (a, b) = α. Since
C is a subset of F, we thus conclude that C is an α-clique of the V-ultra triple
(F, w′, d′) (by the definition of an “α-clique”). Hence, C is a clique of the V-ultra
triple (F, w′, d′). This proves Proposition 8.5 (a).

(b) This is proved essentially by reading the above proof of Proposition 8.5 (a)
backwards (as we now have to derive d (a, b) = α from d′ (a, b) = α).

The next proposition shows how a finite V-ultra triple (of size > 1) can be de-
composed into several smaller V-ultra triples; this will later be used for recursive
reasoning:16

Proposition 8.6. Assume that E is finite and |E| > 1. Let α = max (d (E × E)).
Pick any maximum-size α-clique, and write it in the form {e1, e2, . . . , em} for

some distinct elements e1, e2, . . . , em of E.
For each i ∈ {1, 2, . . . , m}, let Ei be the open ball B◦

α (ei), and let (Ei, wi, di) be
the V-ultra triple

(
Ei, w |Ei , d |Ei×Ei

)
.

Then:

(a) We have m > 1.

(b) The sets E1, E2, . . . , Em form a set partition of E. (This means that these sets
E1, E2, . . . , Em are disjoint and nonempty and their union is E.)

16See Definition 4.4 for the meaning of mcs (E, w, d).
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(c) We have |Ei| < |E| for each i ∈ {1, 2, . . . , m}.

(d) If i ∈ {1, 2, . . . , m}, and if a, b ∈ Ei are distinct, then d (a, b) < α.

(e) If i and j are two distinct elements of {1, 2, . . . , m}, and if a ∈ Ei and b ∈ Ej,
then a ̸= b and d (a, b) = α.

(f) Let ni = mcs (Ei, wi, di) for each i ∈ {1, 2, . . . , m}. Then,

mcs (E, w, d) = max {m, n1, n2, . . . , nm} .

Proof. Let us first check that α is well-defined. Indeed, the set E × E is nonempty
(since |E| > 1) and finite (since E is finite). Hence, the set d (E × E) is nonempty
and finite as well. Thus, its largest element max (d (E × E)) is well-defined. In
other words, α is well-defined.

We have
d (a, b) ⩽ α for each (a, b) ∈ E × E (19)

(since α = max (d (E × E))).
The set {e1, e2, . . . , em} is a maximum-size α-clique (by its definition), but its size

is m (since e1, e2, . . . , em are distinct). Hence, the maximum size of an α-clique is m.
Thus, every α-clique has size ⩽ m.

(a) From α = max (d (E × E)) ∈ d (E × E), we conclude that there exist two
distinct elements u and v of E satisfying d (u, v) = α. Consider these u and v.
Then, {u, v} is an α-clique. This α-clique must have size ⩽ m (since every α-clique
has size ⩽ m). Hence, |{u, v}| ⩽ m. Thus, m ⩾ |{u, v}| = 2 (since u and v are
distinct), so that m ⩾ 2 > 1. This proves Proposition 8.6 (a).

(b) If i and j are two distinct elements of {1, 2, . . . , m}, then ei ̸= ej (since
e1, e2, . . . , em are distinct) and thus d

(
ei, ej

)
= α (since {e1, e2, . . . , em} is an α-clique),

and therefore the open balls B◦
α (ei) and B◦

α

(
ej
)

are disjoint (by Proposition 8.4 (b),
applied to e = ei and f = ej). In other words, if i and j are two distinct elements
of {1, 2, . . . , m}, then the open balls Ei and Ej are disjoint (since Ei = B◦

α (ei) and
Ej = B◦

α

(
ej
)
).

Hence, the open balls E1, E2, . . . , Em are disjoint. Furthermore, these balls are
nonempty (since each open ball Ei = B◦

α (ei) contains at least the element ei).
Furthermore, the union of these balls E1, E2, . . . , Em is the whole set E.
[Proof: Assume the contrary. Thus, the union of the balls E1, E2, . . . , Em must be

a proper subset of E (since it is clearly a subset of E). In other words, there exists
some a ∈ E that belongs to none of these balls E1, E2, . . . , Em. Consider this a. Then,
for each i ∈ {1, 2, . . . , m}, we have a /∈ Ei = B◦

α (ei). By the definition of B◦
α (ei), this

entails that a ̸= ei and d (a, ei) ⩾ α, hence d (a, ei) = α (since (19) yields d (a, ei) ⩽
α). Thus, we have shown that d (a, ei) = α for all i ∈ {1, 2, . . . , m}. Therefore,
{a, e1, e2, . . . , em} is an α-clique. This α-clique has size m + 1 (since e1, e2, . . . , em are
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distinct, and since a ̸= ei for each i ∈ {1, 2, . . . , m}). But this contradicts the fact
that every α-clique has size ⩽ m. This contradiction shows that our assumption
was wrong. Hence, the union of the balls E1, E2, . . . , Em is the whole set E.]

We have now proved that the balls E1, E2, . . . , Em are disjoint and nonempty and
their union is the whole set E. In other words, they form a set partition of E. This
proves Proposition 8.6 (b).

(c) Proposition 8.6 (b) shows that the m sets E1, E2, . . . , Em form a set partition of
E. Thus, these m sets are m disjoint nonempty subsets of E; hence, each of them
is a proper subset of E (since m > 1). In other words, Ei is a proper subset of E
for each i ∈ {1, 2, . . . , m}. Hence, |Ei| < |E| for each i ∈ {1, 2, . . . , m}. This proves
Proposition 8.6 (c).

(d) Let i ∈ {1, 2, . . . , m}. Let a, b ∈ Ei be distinct. We must prove that d (a, b) < α.
We have b ∈ Ei = B◦

α (ei) (by the definition of Ei) and thus B◦
α (ei) = B◦

α (b) (by
Corollary 8.3, applied to ei and b instead of e and f ). But a ∈ Ei = B◦

α (ei) = B◦
α (b).

In other words, a = b or else d (a, b) < α (by the definition of B◦
α (b)). Hence,

d (a, b) < α (since a ̸= b). This proves Proposition 8.6 (d).

(e) Let i and j be two distinct elements of {1, 2, . . . , m}. Let a ∈ Ei and b ∈ Ej. We
must prove that a ̸= b and d (a, b) = α.

We have a ∈ Ei = B◦
α (ei) (by the definition of Ei) and similarly b ∈ B◦

α

(
ej
)
.

Furthermore, ei ̸= ej (since i ̸= j and since e1, e2, . . . , em are distinct) and thus
d
(
ei, ej

)
= α (since {e1, e2, . . . , em} is an α-clique). Hence, Proposition 8.4 (a) (ap-

plied to ei and ej instead of e and f ) yields a ̸= b and d (a, b) ⩾ α. Combining
d (a, b) ⩾ α with (19), we obtain d (a, b) = α. This proves Proposition 8.6 (e).

(f) Let us first notice that the map di (for each i ∈ {1, 2, . . . , m}) is defined to be a
restriction of the map d. Thus, for any i ∈ {1, 2, . . . , m}, we have

di (e, f ) = d (e, f ) for any two distinct e, f ∈ Ei. (20)

The V-ultra triple (E, w, d) has a clique of size m (namely, {e1, e2, . . . , em}), and
a clique of size ni for each i ∈ {1, 2, . . . , m} (indeed, ni = mcs (Ei, wi, di) shows
that the V-ultra triple (Ei, wi, di) has such a clique; but this clique must of course
be a clique of (E, w, d) as well17). Thus, the V-ultra triple (E, w, d) has a clique
of size max {m, n1, n2, . . . , nm} (since max {m, n1, n2, . . . , nm} is one of the numbers
m, n1, n2, . . . , nm). Thus,

mcs (E, w, d) ⩾ max {m, n1, n2, . . . , nm} .

It remains to prove the reverse inequality – i.e., to prove that mcs (E, w, d) ⩽
max {m, n1, n2, . . . , nm}.

Assume the contrary. Thus, mcs (E, w, d) > max {m, n1, n2, . . . , nm}.

17since Proposition 8.5 (b) (applied to (F, w′, d′) = (Ei, wi, di)) shows that any clique of the V-ultra
triple (Ei, wi, di) is a clique of the V-ultra triple (E, w, d)
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The V-ultra triple (E, w, d) has a clique C of size mcs (E, w, d) (by the definition of
mcs (E, w, d)). Consider this C. Thus, |C| = mcs (E, w, d) > max {m, n1, n2, . . . , nm} ⩾
0. Hence, the set C is nonempty. In other words, there exists some a ∈ C. Consider
this a.

But recall that E1, E2, . . . , Em form a set partition of E. Thus, E1 ∪ E2 ∪ · · · ∪ Em =
E. Now, a ∈ C ⊆ E = E1 ∪ E2 ∪ · · · ∪ Em. In other words, a ∈ Ei for some
i ∈ {1, 2, . . . , m}. Consider this i.

We are in one of the following two cases:
Case 1: We have C ⊆ Ei.
Case 2: We have C ̸⊆ Ei.
Let us first consider Case 1. In this case, we have C ⊆ Ei. In other words, C is a

subset of Ei.
Recall that C is a clique of (E, w, d). Since C is a subset of Ei, we can thus conclude

that C is a clique of the V-ultra triple (Ei, wi, di) (since Proposition 8.5 (a) (applied
to (F, w′, d′) = (Ei, wi, di)) shows that if a subset of Ei is a clique of (E, w, d), then
this subset is also a clique of the V-ultra triple (Ei, wi, di)). But the maximum
size of such a clique is mcs (Ei, wi, di) (by the definition of mcs (Ei, wi, di)). Hence,
|C| ⩽ mcs (Ei, wi, di) = ni. This contradicts |C| > max {m, n1, n2, . . . , nm} ⩾ ni.
Thus, we have obtained a contradiction in Case 1.

Let us next consider Case 2. In this case, we have C ̸⊆ Ei. In other words,
there exists some b ∈ C such that b /∈ Ei. Consider this b. From b ∈ C ⊆ E =
E1 ∪ E2 ∪ · · · ∪ Em, we conclude that b ∈ Ej for some j ∈ {1, 2, . . . , m}. Consider
this j. If we had i = j, then we would have b ∈ Ej = Ei (since j = i), which would
contradict b /∈ Ei. Hence, we cannot have i = j. Hence, i ̸= j. Thus, Proposition
8.6 (e) yields that a ̸= b and d (a, b) = α. Now, a ̸= b shows that a and b are two
distinct elements of C. But C is a clique, and thus is a γ-clique for some γ ∈ V.
Consider this γ. Since C is a γ-clique, we have d (a, b) = γ (since a and b are two
distinct elements of C). Hence, γ = d (a, b) = α. Thus, C is an α-clique (since C
is a γ-clique). Thus, |C| ⩽ m (since every α-clique has size ⩽ m). This contradicts
|C| > max {m, n1, n2, . . . , nm} ⩾ m. Thus, we have obtained a contradiction in Case
2.

We have thus found a contradiction in each of the two Cases 1 and 2. Thus, we
always have a contradiction. This completes the proof of Proposition 8.6 (f).

Remark 8.7. Here are some additional observations on Proposition 8.6, which
we will not need (and thus will not prove):

(a) The set partition {E1, E2, . . . , Em} constructed in Proposition 8.6 (b) does
not depend on the choice of e1, e2, . . . , em. Indeed, E1, E2, . . . , Em are pre-
cisely the maximal (with respect to inclusion) subsets F of E satisfying
(d (a, b) < α for any distinct a, b ∈ F).

(b) Applying Proposition 8.6 iteratively, we can see that a V-ultra triple
(E, w, d) with finite E has a recursive structure governed by a tree. This
idea is not new; see [Lemin03] and [PetDov14, §2–§3] for related results.
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9. Valadic representation of V-ultra triples

For the whole Section 9, we fix a field K, and we let V⩾0, L, L+ and tα be as in
Section 6. We also recall Definition 6.7.

Definition 9.1. Let γ ∈ V and u ∈ L. We say that a valadic V-ultra triple
(E, w, d) is (γ, u)-positioned if

E ⊆ u + t−γL+.

In other words, a valadic V-ultra triple (E, w, d) is (γ, u)-positioned if and only
if each element of E has the form u + ∑

β∈V;
β⩾−γ

pβtβ for some pβ ∈ K.

Theorem 9.2. Let (E, w, d) be a V-ultra triple such that the set E is finite. Let
γ ∈ V be such that

d (a, b) ⩽ γ for each (a, b) ∈ E × E. (21)

Let u ∈ L.
Assume that |K| ⩾ mcs (E, w, d). Then, there exists a (γ, u)-positioned valadic

V-ultra triple isomorphic to (E, w, d).

Proof of Theorem 9.2. We proceed by strong induction on |E|.
If |E| = 1, then this is clear (just take the obvious valadic V-ultra triple on the

set {u} ⊆ L, which is clearly (γ, u)-positioned). The case |E| = 0 is even more
obvious. Thus, WLOG assume that |E| > 1. Thus, the set E × E is nonempty.
Hence, d (E × E) is a nonempty finite subset of V, and therefore has a largest
element. In other words, max (d (E × E)) is well-defined.

Let α = max (d (E × E)). Thus, α ⩽ γ (by (21)).
Pick any maximum-size α-clique, and write it in the form {e1, e2, . . . , em} for some

distinct elements e1, e2, . . . , em of E. For each i ∈ {1, 2, . . . , m}, let Ei be the open
ball B◦

α (ei), and let (Ei, wi, di) be the V-ultra triple
(
Ei, w |Ei , d |Ei×Ei

)
.

Then, Proposition 8.6 (a) shows that m > 1. Moreover, Proposition 8.6 (b) shows
that the m sets E1, E2, . . . , Em form a set partition of E. Hence, E = E1 ⊔ E2 ⊔ · · · ⊔ Em
(an internal disjoint union). Each set Ei is the open ball B◦

α (ei) and thus contains ei.
Let ni = mcs (Ei, wi, di) for each i ∈ {1, 2, . . . , m}. Then,

|K| ⩾ mcs (E, w, d) = max {m, n1, n2, . . . , nm} (by Proposition 8.6 (f)) .

For any subset Z of L, we define a distance function dZ : Z × Z → V by setting

dZ (a, b) = − ord (a − b) for all (a, b) ∈ Z × Z. (22)

Note that the distance function of any valadic V-ultra triple is precisely dZ, where
Z is the ground set of this V-ultra triple.
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We have |K| ⩾ max {m, n1, n2, . . . , nm} ⩾ m. Hence, there exist m distinct ele-
ments λ1, λ2, . . . , λm of K. Fix m such elements. Define m elements u1, u2, . . . , um of
L by

ui = u + λit−α for each i ∈ {1, 2, . . . , m} . (23)

Let L++ denote the K-submodule of L+ generated by tδ for all positive δ ∈ V.
(Of course, δ ∈ V is said to be positive if and only if δ > 0.) It is easy to see that
L++ is an ideal of L+. (Actually, L++ = Ker π, where π is as defined in Lemma
6.11.) Hence, L++L+ ⊆ L++.

Let β be the second-largest element of d (E × E). (If this second-largest element
does not exist, then we leave β undefined and should interpret t−β to mean 0 from
now on.)

The definition of β yields β < α (since α = max (d (E × E))). Hence, −β > −α,
so that

t−β ∈ t−αL++. (24)

(This holds even when β is undefined, because t−β = 0 in this case.)
Let i ∈ {1, 2, . . . , m}. We shall work under the assumption that β is well-defined;

we will later explain how to proceed without it.
Let (a, b) ∈ Ei × Ei. Then, a and b are two distinct elements of Ei. Hence,

Proposition 8.6 (d) yields

d (a, b) < α = max (d (E × E)) = (the largest element of d (E × E)) .

But any element of d (E × E) that is smaller than the largest element of d (E × E)
must be at most as large as the second-largest element of d (E × E) (since there
exist no elements of d (E × E) between the largest and the second-largest elements).
Hence, from d (a, b) ∈ d (E × E) and d (a, b) < max (d (E × E)), we obtain

d (a, b) ⩽ (the second-largest element of d (E × E)) = β

(since the second-largest element of d (E × E) is β). Since di = d |Ei×Ei , we now
have di (a, b) = d (a, b) ⩽ β.

Forget that we fixed (a, b). We thus have proved that

di (a, b) ⩽ β for each (a, b) ∈ Ei × Ei.

Also, |Ei| < |E| (by Proposition 8.6 (c)) and

|K| ⩾ max {m, n1, n2, . . . , nm} ⩾ ni = mcs (Ei, wi, di) .

Hence, the induction hypothesis shows that we can apply Theorem 9.2 to β, ui and
(Ei, wi, di) instead of γ, u and (E, w, d). We thus conclude that there exists a (β, ui)-
positioned valadic V-ultra triple

(
Ei, wi, di

)
isomorphic to (Ei, wi, di). Consider

this
(

Ei, wi, di

)
. The V-ultra triple (Ei, wi, di) is isomorphic to

(
Ei, wi, di

)
(since
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(
Ei, wi, di

)
is isomorphic to (Ei, wi, di), but being isomorphic is a symmetric rela-

tion). In other words, there exists an isomorphism fi : Ei → Ei of V-ultra triples
from (Ei, wi, di) to

(
Ei, wi, di

)
. Consider this fi. Since the V-ultra triple

(
Ei, wi, di

)
is (β, ui)-positioned, we have

Ei ⊆ ui + t−β︸︷︷︸
∈t−αL++
(by (24))

L+ ⊆ ui + t−α L++L+︸ ︷︷ ︸
⊆L++

⊆ ui + t−αL++.

Hence, we have found a V-ultra triple (Ei, wi, di) and a valadic V-ultra triple(
Ei, wi, di

)
satisfying

Ei ⊆ ui + t−αL++,

and an isomorphism fi : Ei → Ei of V-ultra triples from (Ei, wi, di) to
(

Ei, wi, di

)
.

We have done so assuming that β is well-defined; but this is even easier when β is
undefined18.

Forget that we fixed i. Thus, for each i ∈ {1, 2, . . . , m}, we have constructed a
V-ultra triple (Ei, wi, di) and a valadic V-ultra triple

(
Ei, wi, di

)
satisfying

Ei ⊆ ui + t−αL++

and an isomorphism fi : Ei → Ei of V-ultra triples from (Ei, wi, di) to
(

Ei, wi, di

)
.

For later use, let us observe the following:

Claim 1: Let i and j be two distinct elements of {1, 2, . . . , m}. Let a ∈ Ei
and b ∈ Ej. Then, a − b ̸= 0 and ord (a − b) = −α.

18Proof. Assume that β is undefined. In other words, the set d (E × E) has no second-largest
element. Hence, all elements of d (E × E) are equal (since d (E × E) is a nonempty finite set).
Thus, all elements of d (E × E) are α (since α = max (d (E × E))). In other words, d (a, b) = α
for each (a, b) ∈ E × E. In other words, d (a, b) = α for any two distinct elements a and b of
E. Thus, in particular, d (a, b) = α for any two distinct elements a and b of Ei. But Proposition
8.6 (d) shows that d (a, b) < α for any two distinct elements a and b of Ei. The previous two
sentences would contradict each other if the set Ei had two distinct elements. Thus, the set Ei
has no two distinct elements; in other words, |Ei| ⩽ 1. Since ei is an element of Ei (because
Ei = B◦

α (ei)), we thus have Ei = {ei}. Now, set Ei = {ui}; let wi : Ei → V be the map that
sends ui to wi (ei); let di : Ei × Ei → V be the distance function d{ui}; and let fi : Ei → Ei be

the map that sends ei to ui. Then, it is easy to see that
(

Ei, wi, di

)
is a valadic V-ultra triple

satisfying Ei ⊆ ui + t−αL++ (since Ei = {ui} = ui + 0︸︷︷︸
⊆t−αL++

⊆ ui + t−αL++), and that the map

fi : Ei → Ei is an isomorphism of V-ultra triples from (Ei, wi, di) to
(

Ei, wi, di

)
(since Ei = {ei}

and Ei = {ui}, so that the maps di and di both have no values, whereas the map wi is defined in
such a way that wi (ui) = wi (ei) and thus wi ◦ fi = wi). Thus, everything we constructed above
still exists when β is undefined.
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[Proof of Claim 1: From i ̸= j, we conclude that λi and λj are two distinct elements
of K (since λ1, λ2, . . . , λm are distinct elements of K). Hence, λi − λj is a nonzero
element of K.

We have a ∈ Ei ⊆ ui + t−αL++, so that a − ui ∈ t−αL++. Similarly, b − uj ∈
t−αL++. Also, (23) yields ui = u + λit−α. Likewise, uj = u + λjt−α. Subtracting the
latter two equalities from one another, we obtain

ui − uj = (u + λit−α)−
(
u + λjt−α

)
=
(
λi − λj

)
t−α.

Now,

a − b =
(
ui − uj

)︸ ︷︷ ︸
=(λi−λj)t−α

+ (a − ui)︸ ︷︷ ︸
∈t−αL++

−
(
b − uj

)︸ ︷︷ ︸
∈t−αL++

∈
(
λi − λj

)
t−α + t−αL++ − t−αL++︸ ︷︷ ︸

⊆t−αL++

⊆
(
λi − λj

)
t−α + t−αL++.

In other words, a − b can be written in the form

a − b =
(
λi − λj

)
t−α +

(
a K-linear combination of tη with η > −α

)
(since the elements of t−αL++ are precisely the K-linear combinations of tη with
η > −α).

From this, we obtain two things: First, we obtain that [t−α] (a − b) = λi − λj
(since λi − λj ∈ K), hence [t−α] (a − b) = λi − λj ̸= 0 (since λi − λj is nonzero),
and thus a − b ̸= 0. Furthermore, we obtain that ord (a − b) = −α (again since
λi − λj ̸= 0). Thus, Claim 1 is proved.]

Let E denote the subset
E1 ∪ E2 ∪ · · · ∪ Em

of L. Note that the sets E1, E2, . . . , Em are disjoint19. Hence, E = E1 ⊔ E2 ⊔ · · · ⊔ Em
(an internal disjoint union). Moreover, each i ∈ {1, 2, . . . , m} satisfies

Ei ⊆ ui︸︷︷︸
=u+λit−α
(by (23))

+t−αL++ = u + λit−α + t−αL++︸ ︷︷ ︸
=t−α(λi+L++)

= u + t−α︸︷︷︸
∈t−γL+

(since −α⩾−γ
(because α⩽γ))

(λi + L++)︸ ︷︷ ︸
⊆L+

(since λi∈K⊆L+)

⊆ u + t−γ L+L+︸ ︷︷ ︸
⊆L+

⊆ u + t−γL+. (25)

19Proof. Assume the contrary. Thus, there exist some distinct i, j ∈ {1, 2, . . . , m} such that Ei ∩ Ej ̸=
∅. Consider these i and j. There exists some a ∈ Ei ∩ Ej (since Ei ∩ Ej ̸= ∅). Consider this a. We
have a ∈ Ei ∩ Ej ⊆ Ei and similarly a ∈ Ej. Hence, Claim 1 (applied to b = a) yields a − a ̸= 0
and ord (a − a) = −α. But a − a ̸= 0 clearly contradicts a − a = 0. This contradiction proves that
our assumption was false, qed.
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Now,

E = E1 ∪ E2 ∪ · · · ∪ Em =
m⋃

i=1

Ei︸︷︷︸
⊆u+t−γL+

(by (25))

⊆
m⋃

i=1

(u + t−γL+) ⊆ u + t−γL+.

Now, recall that E = E1 ⊔ E2 ⊔ · · · ⊔ Em and E = E1 ⊔ E2 ⊔ · · · ⊔ Em. Thus, we can
glue the bijections fi : Ei → Ei together to a single bijection

f : E → E,
a 7→ fi (a) , where i ∈ {1, 2, . . . , m} is such that a ∈ Ei.

Consider this f . Define a weight function w : E → V by setting w = w ◦ f−1. Then,(
E, w, dE

)
is a (γ, u)-positioned valadic V-ultra triple. (It is (γ, u)-positioned, since

E ⊆ u + t−γL+.) Moreover, it is easy to see that every i, j ∈ {1, 2, . . . , m} and any
two distinct elements a ∈ Ei and b ∈ Ej satisfy

dE (a, b) =

{
α, if i ̸= j;
dEi

(a, b) , if i = j
(26)

20. From this, it is easy to see that

dE ( f (a) , f (b)) = d (a, b) for all (a, b) ∈ E × E (27)

21. Moreover, w ◦ f = w (since w = w ◦ f−1). Hence, the bijection f : E → E is an
isomorphism of V-ultra triples from (E, w, d) to

(
E, w, dE

)
. Hence, there exists a

20Proof of (26): Let i, j ∈ {1, 2, . . . , m}, and let a ∈ Ei and b ∈ Ej be two distinct elements. We must
prove (26). It clearly suffices to verify the equality

ord (a − b) =

{
−α, if i ̸= j;
ord (a − b) , if i = j

(since both dE and dEi
are given by the formula (22)). This equality is obviously true in the case

when i = j; on the other hand, it follows from Claim 1 in the case when i ̸= j. Hence, (26) is
proved.

21Proof of (27): Let (a, b) ∈ E× E. Thus, a and b are two distinct elements of E. Let i, j ∈ {1, 2, . . . , m}
be such that a ∈ Ei and b ∈ Ej. (These i and j clearly exist, because a and b both belong to
E = E1 ⊔ E2 ⊔ · · · ⊔ Em.) Then, the definition of f yields f (a) = fi (a) and f (b) = f j (b). Hence,

dE ( f (a) , f (b)) = dE
(

fi (a) , f j (b)
)

=

{
α, if i ̸= j;
dEi

(
fi (a) , f j (b)

)
, if i = j

(28)

(by (26), applied to fi (a) and f j (b) instead of a and b). If i ̸= j, then this becomes

dE ( f (a) , f (b)) = α = d (a, b) (since Proposition 8.6 (e) yields d (a, b) = α) ,
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(γ, u)-positioned valadic V-ultra triple isomorphic to (E, w, d) (namely,
(

E, w, dE

)
).

This proves Theorem 9.2 for our (E, w, d). Thus, the induction step is complete, and
Theorem 9.2 is proven.

10. Proof of the main theorem

We can now prove Theorem 4.7 (from which we will immediately obtain Theorem
3.1).

Proof of Theorem 4.7. Pick some γ ∈ V such that

d (a, b) ⩽ γ for each (a, b) ∈ E × E.

(Such a γ clearly exists, since the set E× E is finite and the set V is totally ordered.)
Theorem 9.2 (applied to u = 0) thus yields that there exists a (γ, 0)-positioned

valadic V-ultra triple isomorphic to (E, w, d). Consider this valadic V-ultra triple,
and denote it by (F, v, c). Let E denote the Bhargava greedoid of this V-ultra
triple (F, v, c). The set F is a subset of L (since (F, v, c) is a valadic V-ultra triple)
and is finite (since (F, v, c) is isomorphic to (E, w, d), whence |F| = |E| < ∞).
Moreover, the distance function c of the V-ultra triple (F, v, c) is the function d
from Definition 6.7 (since (F, v, c) is a valadic V-ultra triple). Hence, Theorem 6.9
(applied to (F, v, c) instead of (E, w, d)) yields that the Bhargava greedoid of (F, v, c)
is the Gaussian elimination greedoid of a vector family over K. In other words, E
is the Gaussian elimination greedoid of a vector family over K (since the Bhargava
greedoid of (F, v, c) is E ).

But Proposition 7.4 yields that the Bhargava greedoids of (E, w, d) and (F, v, c)
are isomorphic. In other words, the set systems F and E are isomorphic (since F

and thus (27) is proven in this case. Hence, for the rest of this proof of (27), we WLOG assume
that i = j. Hence, b ∈ Ej = Ei (since j = i). Recall that fi : Ei → Ei is an isomorphism of V-ultra

triples from (Ei, wi, di) to
(

Ei, wi, di

)
. Hence,

di ( fi (a) , fi (b)) = di (a, b) = d (a, b) (by the definition of di) .

Also, di = dEi
(since the V-ultra triple

(
Ei, wi, di

)
is valadic). Now, (28) becomes

dE ( f (a) , f (b)) =

{
α, if i ̸= j;
dEi

(
fi (a) , f j (b)

)
, if i = j

= dEi

(
fi (a) , f j (b)

)
(since i = j)

= dEi︸︷︷︸
=di

( fi (a) , fi (b)) (since j = i)

= di ( fi (a) , fi (b)) = d (a, b) .

Thus, (27) is proven.
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and E are the Bhargava greedoids of (E, w, d) and (F, v, c), respectively). In other
words, the set systems E and F are isomorphic.

Hence, Proposition 7.5 shows that F is the Gaussian elimination greedoid of a
vector family over K. This proves Theorem 4.7.

Proof of Theorem 3.1. We have |K| ⩾ |E| ⩾ mcs (E, w, d). Thus, Theorem 4.7 yields
that F is the Gaussian elimination greedoid of a vector family over K. This proves
Theorem 3.1.

11. Proof of Theorem 5.1

For the rest of Section 11, we fix a V-ultra triple (E, w, d).
Our next goal is to prove Theorem 5.1. We have to build several tools to this

purpose.

11.1. Closed balls

We will use a counterpart to the concept of open balls: the notion of closed balls. To
wit, it is defined as follows:

Definition 11.1. Let α ∈ V and e ∈ E. The closed ball Bα (e) is defined to be the
subset

{ f ∈ E | f = e or else d ( f , e) ⩽ α}
of E.

Clearly, for each α ∈ V and each e ∈ E, we have e ∈ Bα (e), so that the closed ball
Bα (e) contains at least the element e.

Most properties of open balls have analogues for closed balls. In particular, here
is an analogue of Proposition 8.2:

Proposition 11.2. Let α ∈ V and e, f ∈ E be such that e ̸= f and d (e, f ) ⩽ α.
Then, Bα (e) = Bα ( f ).

Proof. This can be proved by a straightforward modification of the above proof of
Proposition 8.2 (namely, all “<” signs are replaced by “⩽” signs).

Next comes an analogue of Corollary 8.3:

Corollary 11.3. Let α ∈ V and e ∈ E. Let f ∈ Bα (e). Then, Bα (e) = Bα ( f ).

Proof. This can be proved by a straightforward modification of the above proof of
Corollary 8.3 (namely, all “<” signs are replaced by “⩽” signs).

Knowing these properties, we can easily obtain the following lemma:
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Lemma 11.4. Let β ∈ V. Let C be a β-clique.

(a) The closed balls Bβ (c) for all c ∈ C are identical.

Now, let B = Bβ (c) for some c ∈ C. Then:

(b) We have C ⊆ B.

(c) For any distinct elements p, q ∈ B, we have d (p, q) ⩽ β.

(d) For any n ∈ E \ B and any p, q ∈ B, we have d (n, p) = d (n, q).

(Intuitively, it helps to think of a clique C as an ultrametric analogue of a sphere,
and of the set B constructed in Lemma 11.4 as being the whole closed ball whose
boundary is this sphere. Of course, this must not be taken literally; in particular,
every point in this ball serves as the “center” of this ball, so to speak.)

Proof of Lemma 11.4. We know that C is a β-clique. In other words, C is a subset of
E such that

any two distinct elements a, b ∈ C satisfy d (a, b) = β (29)

(by the definition of a “β-clique”).

(a) We must prove that Bβ (e) = Bβ ( f ) for any e, f ∈ C.
So let e, f ∈ C. We must prove that Bβ (e) = Bβ ( f ). If e = f , then this is

obvious. Hence, we WLOG assume that e ̸= f . Thus, (29) (applied to a = e and
b = f ) yields d (e, f ) = β. Thus, the “symmetry” axiom in Definition 2.3 yields
that d ( f , e) = d (e, f ) = β ⩽ β. Hence, f = e or else d ( f , e) ⩽ β. In other words,
f ∈ Bβ (e) (by the definition of Bβ (e)). Hence, Corollary 11.3 (applied to α = β)
yields Bβ (e) = Bβ ( f ).

Hence, we have proved Bβ (e) = Bβ ( f ); thus, our proof of Lemma 11.4 (a) is
complete.

In preparation for the proofs of parts (b), (c) and (d), let us observe the following:
We have defined B to be Bβ (c) for some c ∈ C. Consider this c. Thus, B = Bβ (c).
Lemma 11.4 (a) says that

Bβ (a) = Bβ (b) for each a, b ∈ C. (30)

Thus, for each a ∈ C, we have

Bβ (a) = Bβ (c) (by (30), applied to b = c)

= B
(
since B = Bβ (c)

)
. (31)

(b) Let a ∈ C. Then, a ∈ Bβ (a) (by the definition of Bβ (a), since a = a). Hence,
a ∈ Bβ (a) = B (by (31)).
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Forget that we fixed a. We thus have proved that a ∈ B for each a ∈ C. In other
words, C ⊆ B. This proves Lemma 11.4 (b).

(c) Let p, q ∈ B be distinct. We must prove that d (p, q) ⩽ β.
We have p ∈ B = Bβ (c). Hence, Corollary 11.3 (applied to α = β, e = c and

f = p) yields Bβ (c) = Bβ (p). Now, q ∈ B = Bβ (c) = Bβ (p). In other words,
we have q = p or else d (q, p) ⩽ β (by the definition of Bβ (p)). Since q = p is
impossible (because p and q are distinct), we thus obtain d (q, p) ⩽ β. Thus, the
“symmetry” axiom in Definition 2.3 yields that d (p, q) = d (q, p) ⩽ β. This proves
Lemma 11.4 (c).

(d) Let n ∈ E \ B and p, q ∈ B. We must prove that d (n, p) = d (n, q). If p = q,
then this is obvious. Thus, we WLOG assume that p ̸= q. Hence, Lemma 11.4 (c)
yields d (p, q) ⩽ β.

We have n ∈ E \ B. In other words, n ∈ E and n /∈ B.
But we have q ∈ B = Bβ (c). Hence, Corollary 11.3 (applied to α = β, e = c and

f = q) yields Bβ (c) = Bβ (q). Now, n /∈ B = Bβ (c) = Bβ (q). In other words, we
don’t have (n = q or else d (n, q) ⩽ β) (by the definition of Bβ (q)). In other words,
we have n ̸= q and d (n, q) > β. Thus, d (n, q) > β ⩾ d (p, q) (since d (p, q) ⩽ β).

We have p ̸= n (since p ∈ B but n /∈ B) and similarly q ̸= n. Hence, the elements
n, p and q of E are distinct (since p ̸= n and q ̸= n and p ̸= q). The ultrametric
triangle inequality (applied to n, p and q instead of a, b and c) thus yields

d (n, p) ⩽ max {d (n, q) , d (p, q)} = d (n, q) (since d (n, q) > d (p, q)) .

The same argument (with the roles of p and q interchanged) yields d (n, q) ⩽
d (n, p). Combining these two inequalities, we obtain d (n, p) = d (n, q). This proves
Lemma 11.4 (d).

11.2. Exchange results for sets intersecting a ball

From now on, for the rest of Section 11, we assume that E is finite.

Corollary 11.5. Let β ∈ V. Let C be a β-clique. Let B = Bβ (c) for some c ∈ C.
Let N be a subset of E \ B.
Let P and Q be two subsets of B such that |P| = |Q|. Then:

(a) We have PER (N ∪ Q)− PER (N ∪ P) = PER (Q)− PER (P).

(b) Assume that the map w : E → V is constant. Assume further that Q is a
subset of C. Then, PER (N ∪ Q) ⩾ PER (N ∪ P).

Proof of Corollary 11.5. Let m = |P| = |Q|. Let p1, p2, . . . , pm be all the m elements
of P (listed without repetition). Let q1, q2, . . . , qm be all the m elements of Q (listed
without repetition).
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(a) We have

d (n, pi) = d (n, qi) for each n ∈ N and i ∈ {1, 2, . . . , m} . (32)

[Proof of (32): Let n ∈ N and i ∈ {1, 2, . . . , m}. Then, n ∈ N ⊆ E \ B and
pi ∈ P ⊆ B and qi ∈ Q ⊆ B. Thus, Lemma 11.4 (d) (applied to p = pi and q = qi)
yields d (n, pi) = d (n, qi). This proves (32).]

The set N is disjoint from B (since N is a subset of E \ B), and thus disjoint from
P as well (since P ⊆ B). Hence, the definition of perimeter yields

PER (N ∪ P) = PER (N) + PER (P) + ∑
n∈N

∑
p∈P

d (n, p)︸ ︷︷ ︸
=

m
∑

i=1
d(n,pi)

(since p1,p2,...,pm are all
the m elements of P

(listed without repetition))

= PER (N) + PER (P) + ∑
n∈N

m

∑
i=1

d (n, pi) .

Likewise,

PER (N ∪ Q) = PER (N) + PER (Q) + ∑
n∈N

m

∑
i=1

d (n, qi) .

Subtracting the first of these two equalities from the second, we obtain

PER (N ∪ Q)− PER (N ∪ P)

=

(
PER (N) + PER (Q) + ∑

n∈N

m

∑
i=1

d (n, qi)

)

−
(

PER (N) + PER (P) + ∑
n∈N

m

∑
i=1

d (n, pi)

)

= PER (Q)− PER (P) + ∑
n∈N

m

∑
i=1

d (n, qi)− ∑
n∈N

m

∑
i=1

d (n, pi)︸ ︷︷ ︸
=d(n,qi)
(by (32))

= PER (Q)− PER (P) + ∑
n∈N

m

∑
i=1

d (n, qi)− ∑
n∈N

m

∑
i=1

d (n, qi)

= PER (Q)− PER (P) .

This proves Corollary 11.5 (a).

(b) We know that the map w : E → V is constant. Hence,

w (a) = w (b) for any a, b ∈ E. (33)
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Each i ∈ {1, 2, . . . , m} satisfies

w (pi) = w (c) (34)

(by (33), applied to a = pi and b = c) and

w (qi) = w (c) (35)

(by (33), applied to a = qi and b = c).
We know that C is a β-clique. In other words, C is a subset of E such that

any two distinct elements a, b ∈ C satisfy d (a, b) = β (36)

(by the definition of a “β-clique”).
But p1, p2, . . . , pm are m distinct elements of P (by their definition). Hence,

p1, p2, . . . , pm are m distinct elements of B (since P ⊆ B). Thus, if i and j are
two distinct elements of {1, 2, . . . , m}, then pi and pj are two distinct elements of B,
and therefore satisfy

d
(

pi, pj
)
⩽ β (37)

(by Lemma 11.4 (c), applied to p = pi and q = pj).
On the other hand, q1, q2, . . . , qm are m distinct elements of Q (by their definition).

Hence, q1, q2, . . . , qm are m distinct elements of C (since Q ⊆ C). Thus, if i and j are
two distinct elements of {1, 2, . . . , m}, then qi and qj are two distinct elements of C,
and therefore satisfy

d
(
qi, qj

)
= β (38)

(by (36), applied to a = qi and b = qj).
Recall that p1, p2, . . . , pm are all the m elements of P (listed without repetition).

Hence, the definition of perimeter yields

PER (P) =
m

∑
i=1

w (pi)︸ ︷︷ ︸
=w(c)

(by (34))

+ ∑
1⩽i<j⩽m

d
(

pi, pj
)︸ ︷︷ ︸

⩽β
(by (37))

⩽
m

∑
i=1

w (c)︸ ︷︷ ︸
=w(qi)

(by (35))

+ ∑
1⩽i<j⩽m

β︸︷︷︸
=d(qi,qj)
(by (38))

=
m

∑
i=1

w (qi) + ∑
1⩽i<j⩽m

d
(
qi, qj

)
= PER (Q)

(by the definition of Q, since q1, q2, . . . , qm are all the m elements of Q (listed without
repetition)).

But Corollary 11.5 (a) yields

PER (N ∪ Q)− PER (N ∪ P) = PER (Q)− PER (P) ⩾ 0

(since PER (P) ⩽ PER (Q)). In other words, PER (N ∪ Q) ⩾ PER (N ∪ P). This
proves Corollary 11.5 (b).
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Corollary 11.6. Let F be the Bhargava greedoid of (E, w, d). Assume that the
map w : E → V is constant.

Let β ∈ V. Let C be a β-clique. Let B = Bβ (c) for some c ∈ C.
Let N be a subset of E \ B.
Let P and Q be two subsets of B such that |P| = |Q| and Q ⊆ C and N ∪ P ∈ F .

Then, N ∪ Q ∈ F .

Proof of Corollary 11.6. Corollary 11.5 (b) yields PER (N ∪ Q) ⩾ PER (N ∪ P).
Also, the set N is disjoint from B (since N ⊆ E \ B), and thus is disjoint from P

as well (since P is a subset of B). Hence, |N ∪ P| = |N|+ |P|. The same argument
(applied to Q instead of P) shows that |N ∪ Q| = |N| + |Q|. Hence, |N ∪ P| =
|N|+ |P|︸︷︷︸

=|Q|

= |N|+ |Q| = |N ∪ Q|.

We know that F is the Bhargava greedoid of (E, w, d). In other words,

F = {A ⊆ E | A has maximum perimeter among all |A| -subsets of E} (39)

(by Definition 2.8). Hence, from N ∪ P ∈ F , we conclude that the set N ∪ P
has maximum perimeter among all |N ∪ P|-subsets of E. In other words, the set
N ∪ P has maximum perimeter among all |N ∪ Q|-subsets of E (since |N ∪ P| =
|N ∪ Q|). Since N ∪ Q is a further |N ∪ Q|-subset of E, we thus conclude that
PER (N ∪ P) ⩾ PER (N ∪ Q). Combining this with PER (N ∪ Q) ⩾ PER (N ∪ P),
we obtain PER (N ∪ Q) = PER (N ∪ P). In other words, the subsets N ∪ Q and
N ∪ P of E have the same perimeter. Therefore, the set N ∪Q has maximum perime-
ter among all |N ∪ Q|-subsets of E (because the set N ∪ P has maximum perimeter
among all |N ∪ Q|-subsets of E). In view of (39), this entails that N ∪ Q ∈ F . This
proves Corollary 11.6.

11.3. Gaussian elimination greedoids in terms of determinants

Next, we introduce some notations for matrices.

Definition 11.7. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1⩽i⩽n, 1⩽j⩽m be an n × m-
matrix. Let i1, i2, . . . , iu be some elements of {1, 2, . . . , n}; let j1, j2, . . . , jv be some
elements of {1, 2, . . . , m}. Then, we define subj1,j2,...,jv

i1,i2,...,iu A to be the u × v-matrix(
aix,jy

)
1⩽x⩽u, 1⩽y⩽v

.

When i1 < i2 < · · · < iu and j1 < j2 < · · · < jv, the matrix subj1,j2,...,jv
i1,i2,...,iu A can

be obtained from A by crossing out all rows other than the i1-th, the i2-th, etc.,
the iu-th row and crossing out all columns other than the j1-th, the j2-th, etc., the
jv-th column. Thus, in this case, subj1,j2,...,jv

i1,i2,...,iu A is called a submatrix of A.
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Example 11.8. If n = 3 and m = 4 and A =

 a b c d
e f g h
i j k ℓ

, then sub1,3,4
1,3 A =(

a c d
i k ℓ

)
(this is a submatrix of A) and sub3,2,1

2,3 A =

(
g f e
k j i

)
(this is not,

in general, a submatrix of A).

We can now describe Gaussian elimination greedoids in terms of determinants:

Lemma 11.9. Let n ∈ N. Let E be the set {1, 2, . . . , n}.
Let m ∈ N be such that m ⩾ |E|. Let K be a field. For each e ∈ E, let ve ∈ Km

be a column vector. Let A be the m× n-matrix whose columns (from left to right)
are v1, v2, . . . , vn.

Let G be the Gaussian elimination greedoid of the vector family (ve)e∈E.
Let p ∈ N. Let i1, i2, . . . , ip ∈ E be p distinct numbers. Let I =

{
i1, i2, . . . , ip

}
.

Then,
I ∈ G holds if and only if det

(
sub

i1,i2,...,ip
1,2,...,p A

)
̸= 0.

Proof of Lemma 11.9. We have I =
{

i1, i2, . . . , ip
}

. Thus, |I| = p (since i1, i2, . . . , ip are
distinct) and I ⊆ E (since i1, i2, . . . , ip ∈ E).

Define the maps πk for all k ∈ {0, 1, . . . , m} as in Definition 1.4. Since I ⊆ E, we
have |I| ⩽ |E|. Hence, p = |I| ⩽ |E| ⩽ m (since m ⩾ |E|), so that p ∈ {0, 1, . . . , m}.
Thus, the map πp : Km → Kp is well-defined.

Write the m × n-matrix A in the form A =
(
ai,j
)

1⩽i⩽m, 1⩽j⩽n. Then, the definition

of sub
i1,i2,...,ip
1,2,...,p A yields

sub
i1,i2,...,ip
1,2,...,p A =

(
ax,iy

)
1⩽x⩽p, 1⩽y⩽p

.

Thus, for each k ∈ {1, 2, . . . , p}, we have

(
the k-th column of sub

i1,i2,...,ip
1,2,...,p A

)
=


a1,ik
a2,ik

...
ap,ik

 . (40)

The columns of the matrix A (from left to right) are v1, v2, . . . , vn. In other words,
the ℓ-th column of A is vℓ for each ℓ ∈ {1, 2, . . . , n}. In other words, for each ℓ ∈
{1, 2, . . . , n}, we have (the ℓ-th column of A) = vℓ. Thus, for each ℓ ∈ {1, 2, . . . , n},
we have

vℓ = (the ℓ-th column of A) =


a1,ℓ
a2,ℓ

...
am,ℓ


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(since A =
(
ai,j
)

1⩽i⩽m, 1⩽j⩽n) and therefore

πp (vℓ) = πp




a1,ℓ
a2,ℓ

...
am,ℓ


 =


a1,ℓ
a2,ℓ

...
ap,ℓ

 (41)

(by the definition of πp). Hence, for each k ∈ {1, 2, . . . , p}, we have

πp
(
vik
)
=


a1,ik
a2,ik

...
ap,ik

 (by (41), applied to ℓ = ik)

=
(

the k-th column of sub
i1,i2,...,ip
1,2,...,p A

)
(by (40)) .

In other words, the vectors πp
(
vi1
)

, πp
(
vi2
)

, . . . , πp

(
vip

)
are the columns of the

matrix sub
i1,i2,...,ip
1,2,...,p A.

We know that G is the Gaussian elimination greedoid of the vector family (ve)e∈E.
Thus, Definition 1.4 shows that

G =

{
F ⊆ E | the family

(
π|F| (ve)

)
e∈F

∈
(

K|F|
)F

is linearly independent
}

.
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Hence, we have the following chain of logical equivalences:

(I ∈ G)

⇐⇒
(

the family
(

π|I| (ve)
)

e∈I
∈
(

K|I|
)I

is linearly independent
)

⇐⇒
(

the family
(
πp (ve)

)
e∈I ∈ (Kp)I is linearly independent

)
(since |I| = p)

⇐⇒
(
the vectors πp (ve) for e ∈ I are linearly independent

)
⇐⇒

(
the vectors πp

(
vi1
)

, πp
(
vi2
)

, . . . , πp

(
vip

)
are linearly independent

)
 since the vectors πp (ve) for e ∈ I are precisely

the vectors πp
(
vi1
)

, πp
(
vi2
)

, . . . , πp

(
vip

) 
⇐⇒

(
the columns of the matrix sub

i1,i2,...,ip
1,2,...,p A are linearly independent

)
 since the vectors πp

(
vi1
)

, πp
(
vi2
)

, . . . , πp

(
vip

)
are

the columns of the matrix sub
i1,i2,...,ip
1,2,...,p A


⇐⇒

(
the matrix sub

i1,i2,...,ip
1,2,...,p A is invertible

)
(

since sub
i1,i2,...,ip
1,2,...,p A is a square matrix, and thus is invertible

if and only if its columns are linearly independent

)
⇐⇒

(
det

(
sub

i1,i2,...,ip
1,2,...,p A

)
̸= 0

)
.

This proves Lemma 11.9.

We can leverage Lemma 11.9 to obtain a criterion that, roughly speaking, says
that if a Gaussian elimination greedoid over a field K contains a certain “constella-
tion” (in an appropriate sense), then |K| must be ⩾ to a certain value. Namely:

Lemma 11.10. Let K be a field. Let E be a finite set. Let F be the Gaussian
elimination greedoid of a vector family (ve)e∈E over K. Let N and C be two
disjoint subsets of E. Assume that the following three conditions hold:

(i) For any i ∈ C, we have N ∪ {i} ∈ F .

(ii) For any distinct i, j ∈ C, we have N ∪ {i, j} ∈ F .

(iii) For any p ∈ N and any distinct i, j ∈ C, we have (N ∪ {i, j}) \ {p} /∈ F .

Then, |K| ⩾ |C|.
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Proof of Lemma 11.10. Let m ∈ N be such that the vectors ve belong to Km. Then,
m ⩾ |E| (since otherwise, the Gaussian elimination greedoid of the vector family
(ve)e∈E would not be well-defined).

Let n = |E| and r = |N|. Hence, N is an r-element subset of the n-element set E.
Thus, the set E consists of the r elements of N and of the n − r remaining elements
of E.

Clearly, the claim we are proving will not change if we rename the elements of
E. Thus, we can rename the elements of E arbitrarily. In particular, we can rename
them in such a way that the r elements of the subset N will become 1, 2, . . . , r
whereas all remaining n − r elements of E will become r + 1, r + 2, . . . , n. Thus, we
can WLOG assume that the r elements of N are 1, 2, . . . , r and the remaining n − r
elements of E are r + 1, r + 2, . . . , n. Assume this. Hence, N = {1, 2, . . . , r} and
E \ N = {r + 1, r + 2, . . . , n} and therefore E = {1, 2, . . . , n}.

Since the subsets N and C of E are disjoint, we have C ⊆ E \ N = {r + 1, r + 2, . . . , n}.
We must prove that |K| ⩾ |C|. If |C| ⩽ 1, then this is obvious (since |K| ⩾ 1).

Hence, we WLOG assume that |C| > 1 from now on. However, from C ⊆ E \ N,
we obtain

|C| ⩽ |E \ N| = |E|︸︷︷︸
=n

− |N|︸︷︷︸
=r

(since N ⊆ E)

= n − r.

Thus, n − r ⩾ |C| > 1, so that n − r ⩾ 2 and thus n ⩾ r + 2. Thus, r + 2 ⩽ n =
|E| ⩽ m (since m ⩾ |E|).

Let A be the m × n-matrix whose columns (from left to right) are v1, v2, . . . , vn.
Write this matrix A in the form A =

(
ai,j
)

1⩽i⩽m, 1⩽j⩽n.
We now make a few observations:

Claim 1: We have det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
̸= 0 for each i ∈ C.

[Proof of Claim 1: Let i ∈ C. Then, i ∈ C ⊆ {r + 1, r + 2, . . . , n}. Thus, the r + 1
numbers 1, 2, . . . , r, i are distinct. Also, N ∪ {i} ∈ F (by condition (i) in Lemma
11.10). But N ∪ {i} = {1, 2, . . . , r, i} (since N = {1, 2, . . . , r}). Thus, Lemma 11.9
(applied to F , N ∪ {i}, r + 1 and (1, 2, . . . , r, i) instead of G, I, p and

(
i1, i2, . . . , ip

)
)

yields that N ∪ {i} ∈ F holds if and only if det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
̸= 0. Thus, we have

det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
̸= 0 (since N ∪ {i} ∈ F ). This proves Claim 1.]

Now, for each i ∈ C, we define a scalar ri ∈ K by

ri =
ar+2,i

det
(

sub1,2,...,r,i
1,2,...,r+1 A

) . (42)

This is well-defined, since Claim 1 yields det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
̸= 0 (and since we

have r + 2 ⩽ m).



The Bhargava greedoid as a Gaussian elimination greedoid page 50

Claim 2: The scalars ri for all i ∈ C are distinct.

[Proof of Claim 2: We need to prove that ri ̸= rj for any two distinct i, j ∈ C. So let
us fix two distinct i, j ∈ C. We must prove that ri ̸= rj.

We have i, j ∈ C ⊆ {r + 1, r + 2, . . . , n}. Thus, the r + 2 numbers 1, 2, . . . , r, i, j
are distinct (since i and j are distinct). Also, N ∪ {i, j} ∈ F (by condition (ii)
in Lemma 11.10). But N ∪ {i, j} = {1, 2, . . . , r, i, j} (since N = {1, 2, . . . , r}). Thus,
Lemma 11.9 (applied to F , N ∪ {i, j}, r + 2 and (1, 2, . . . , r, i, j) instead of G, I, p and(
i1, i2, . . . , ip

)
) yields that N ∪ {i, j} ∈ F holds if and only if det

(
sub1,2,...,r,i,j

1,2,...,r+2 A
)
̸=

0. Thus, we have
det

(
sub1,2,...,r,i,j

1,2,...,r+2 A
)
̸= 0 (43)

(since N ∪ {i, j} ∈ F ).
Let us agree to use the following notation: If p ∈ {1, 2, . . . , r} is arbitrary, then

“1, 2, . . . , p̂, . . . , r, i, j” will denote the list 1, 2, . . . , r, i, j with the entry p omitted (i.e.,
the list 1, 2, . . . , p − 1, p + 1, p + 2, . . . , r, i, j).

Now, let us use Laplace expansion to expand the determinant of the (r + 2) ×
(r + 2)-matrix sub1,2,...,r,i,j

1,2,...,r+2 A along its last row. We thus obtain

det
(

sub1,2,...,r,i,j
1,2,...,r+2 A

)
=

r

∑
p=1

(−1)(r+2)+p ar+2,p det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
+ (−1)(r+2)+(r+1) ar+2,i det

(
sub1,2,...,r,j

1,2,...,r+1 A
)

+ (−1)(r+2)+(r+2) ar+2,j det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
. (44)

(Indeed, the entries of the last row of sub1,2,...,r,i,j
1,2,...,r+2 A are

ar+2,1, ar+2,2, . . . , ar+2,r︸ ︷︷ ︸
these are the ar+2,p for all p∈{1,2,...,r}

, ar+2,i, ar+2,j,

and the cofactors corresponding to the first r of these entries are

(−1)(r+2)+p det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
for all p ∈ {1, 2, . . . , r} ,

whereas the cofactors corresponding to the last two entries are

(−1)(r+2)+(r+1) det
(

sub1,2,...,r,j
1,2,...,r+1 A

)
and (−1)(r+2)+(r+2) det

(
sub1,2,...,r,i

1,2,...,r+1 A
)

.

)

Now, let us simplify the entries in the
r
∑

p=1
sum on the right hand side of (44).
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Let p ∈ {1, 2, . . . , r}. Then, p ∈ {1, 2, . . . , r} = N. Hence, (N ∪ {i, j}) \ {p} /∈ F
(by condition (iii) in Lemma 11.10). In other words, we don’t have (N ∪ {i, j}) \
{p} ∈ F . But from N ∪ {i, j} = {1, 2, . . . , r, i, j}, we obtain (N ∪ {i, j}) \ {p} =
{1, 2, . . . , r, i, j} \ {p} = {1, 2, . . . , p̂, . . . , r, i, j} (since the r + 2 numbers 1, 2, . . . , r, i, j
are distinct). Of course, the r + 1 numbers 1, 2, . . . , p̂, . . . , r, i, j are distinct (since
the r + 2 numbers 1, 2, . . . , r, i, j are distinct). Thus, Lemma 11.9 (applied to F ,
(N ∪ {i, j}) \ {p}, r+ 1 and (1, 2, . . . , p̂, . . . , r, i, j) instead of G, I, p and

(
i1, i2, . . . , ip

)
)

yields that (N ∪ {i, j}) \ {p} ∈ F holds if and only if det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
̸= 0.

Thus, we don’t have det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
̸= 0 (since we don’t have (N ∪ {i, j}) \

{p} ∈ F ). In other words, we have

det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
= 0. (45)

Forget that we fixed p. We thus have proved (45) for each p ∈ {1, 2, . . . , r}. Now,
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(44) becomes

det
(

sub1,2,...,r,i,j
1,2,...,r+2 A

)
=

r

∑
p=1

(−1)(r+2)+p ar+2,p det
(

sub1,2,...,p̂,...,r,i,j
1,2,...,r+1 A

)
︸ ︷︷ ︸

=0
(by (45))

+ (−1)(r+2)+(r+1)︸ ︷︷ ︸
=−1

ar+2,i det
(

sub1,2,...,r,j
1,2,...,r+1 A

)
+ (−1)(r+2)+(r+2)︸ ︷︷ ︸

=1

ar+2,j det
(

sub1,2,...,r,i
1,2,...,r+1 A

)

=
r

∑
p=1

(−1)(r+2)+p ar+2,p0︸ ︷︷ ︸
=0

−ar+2,i det
(

sub1,2,...,r,j
1,2,...,r+1 A

)
+ ar+2,j det

(
sub1,2,...,r,i

1,2,...,r+1 A
)

= − ar+2,i︸ ︷︷ ︸
=det(sub1,2,...,r,i

1,2,...,r+1 A)·ri
(by (42))

det
(

sub1,2,...,r,j
1,2,...,r+1 A

)

+ ar+2,j︸ ︷︷ ︸
=det

(
sub1,2,...,r,j

1,2,...,r+1 A
)
·rj

(since (42) (applied to j instead of i)

yields rj=
ar+2,j

det
(

sub1,2,...,r,j
1,2,...,r+1 A

) )

det
(

sub1,2,...,r,i
1,2,...,r+1 A

)

= −det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
· ri · det

(
sub1,2,...,r,j

1,2,...,r+1 A
)

+ det
(

sub1,2,...,r,j
1,2,...,r+1 A

)
· rj · det

(
sub1,2,...,r,i

1,2,...,r+1 A
)

= det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
det

(
sub1,2,...,r,j

1,2,...,r+1 A
)
·
(
rj − ri

)
.

Hence,

det
(

sub1,2,...,r,i
1,2,...,r+1 A

)
det

(
sub1,2,...,r,j

1,2,...,r+1 A
)
·
(
rj − ri

)
= det

(
sub1,2,...,r,i,j

1,2,...,r+2 A
)
̸= 0

(by (43)). Thus, rj − ri ̸= 0, so that ri ̸= rj. This proves Claim 2.]

Claim 2 shows that the scalars ri for all i ∈ C are distinct. Thus, we have found
|C| distinct elements of K (namely, these scalars ri for all i ∈ C). Therefore, K

must have at least |C| elements. In other words, |K| ⩾ |C|. Thus, Lemma 11.10 is
proved.

11.4. Proving the theorem

We shall need one more lemma about Gaussian elimination greedoids:
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Lemma 11.11. Let K be a field. Let F be the Gaussian elimination greedoid of a
vector family over K. If B ∈ F satisfies |B| > 0, then there exists b ∈ B such that
B \ {b} ∈ F .

Proof of Lemma 11.11. We shall use the notion of a “strong greedoid”, as defined in
Definition 12.1.

Theorem 1.6 shows that every Gaussian elimination greedoid is a strong gree-
doid. Hence, F is a strong greedoid. In other words, F is a set system that satisfies
the four axioms (i), (ii), (iii) and (iv) of Definition 12.1. Thus, in particular, F sat-
isfies axiom (ii). But this axiom says precisely that if B ∈ F satisfies |B| > 0, then
there exists b ∈ B such that B \ {b} ∈ F . Thus, Lemma 11.11 is proved.

We can now prove Theorem 5.1:

Proof of Theorem 5.1. The definition of mcs (E, w, d) shows that mcs (E, w, d) is the
maximum size of a clique of (E, w, d). Thus, there exists a clique C of size mcs (E, w, d).
Consider this C. Thus, mcs (E, w, d) = |C| (since C has size mcs (E, w, d)).

We must prove that |K| ⩾ mcs (E, w, d). In other words, we must prove that
|K| ⩾ |C| (since mcs (E, w, d) = |C|). If |C| ⩽ 1, then this is obvious (since |K| ⩾ 1).
Thus, we WLOG assume that |C| > 1. Hence, |C| ⩾ 2.

The set C is a clique. In other words, there exists a β ∈ V such that C is a
β-clique. Consider this β.

Choose some c ∈ C. (We can do this, since |C| ⩾ 2 > 0.) Set B = Bβ (c). Lemma
11.4 (b) yields C ⊆ B, so that B ⊇ C.

A secant set shall mean a subset S of E satisfying S ∈ F and |S ∩ B| ⩾ 2.
The set E itself satisfies E ∈ F (by Remark 2.11) and |E ∩ B| ⩾ 2 22. In other

words, E is a secant set. Hence, there exists at least one secant set. Thus, there
exists a secant set of smallest size (since there are only finitely many secant sets).
Consider such a secant set, and call it S.

Thus, S is a secant set of smallest size. Hence, S is a secant set; in other words, S
is a subset of E satisfying S ∈ F and |S ∩ B| ⩾ 2. Since S ∩ B is a subset of S, we
have |S ∩ B| ⩽ |S|, so that |S| ⩾ |S ∩ B| ⩾ 2 > 0. Thus, Lemma 11.11 (applied to
B = S) yields that there exists b ∈ S such that S \ {b} ∈ F . Consider this b.

We now shall show several claims:

Claim 1: We have |(S ∩ B) \ {b}| < 2.

[Proof of Claim 1: The set S \ {b} has smaller size than S (since b ∈ S), and thus
cannot be a secant set (since S is a secant set of smallest size). In other words,
S \ {b} cannot be a subset of E satisfying S \ {b} ∈ F and |(S \ {b}) ∩ B| ⩾ 2
(by the definition of “secant set”). Hence, we cannot have |(S \ {b}) ∩ B| ⩾ 2
(because S \ {b} is a subset of E satisfying S \ {b} ∈ F ). In other words, we have
|(S \ {b}) ∩ B| < 2.

22Proof. Since B is a subset of E, we have E ∩ B = B ⊇ C. Thus, |E ∩ B| ⩾ |C| ⩾ 2.
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But it is known from basic set theory that (X ∩ Y) \ Z = (X \ Z) ∩ Y for any
three sets X, Y and Z. Applying this to X = S, Y = B and Z = {b}, we obtain
(S ∩ B) \ {b} = (S \ {b}) ∩ B. Hence, |(S ∩ B) \ {b}| = |(S \ {b}) ∩ B| < 2. This
proves Claim 1.]

Claim 2: We have b ∈ S ∩ B.

[Proof of Claim 2: Claim 1 yields |(S ∩ B) \ {b}| < 2 ⩽ |S ∩ B| (since |S ∩ B| ⩾ 2).
Hence, |(S ∩ B) \ {b}| ̸= |S ∩ B|, so that (S ∩ B) \ {b} ̸= S∩ B. Therefore, b ∈ S∩ B.
This proves Claim 2.]

Claim 3: We have |S ∩ B| = 2.

[Proof of Claim 3: Claim 1 says that |(S ∩ B) \ {b}| < 2. But Claim 2 yields b ∈
S ∩ B. Thus, |(S ∩ B) \ {b}| = |S ∩ B| − 1. Hence, |S ∩ B| = |(S ∩ B) \ {b}|︸ ︷︷ ︸

<2

+1 <

2 + 1 = 3. In other words, |S ∩ B| ⩽ 2 (since |S ∩ B| is an integer). Combining this
with |S ∩ B| ⩾ 2, we find |S ∩ B| = 2. This proves Claim 3.]

Claim 3 shows that the set S ∩ B has exactly two elements. One of these two
elements is b (since Claim 2 says that b ∈ S ∩ B); let a be the other element. Thus,
a ̸= b and S ∩ B = {a, b}. Hence, {a, b} = S ∩ B ⊆ B. Also, |{a, b}| = 2 (since
a ̸= b).

Let N = S \ B. Then, it is easy to see that S = N ∪ {a, b} 23 and N ∩ {a, b} = ∅
24. From S = N ∪ {a, b}, we obtain

|S| = |N ∪ {a, b}| = |N|+ |{a, b}|︸ ︷︷ ︸
=2

(since N ∩ {a, b} = ∅)

= |N|+ 2. (46)

Moreover,
N = S︸︷︷︸

⊆E

\B ⊆ E \ B︸︷︷︸
⊇C

⊆ E \ C.

Hence, the two subsets N and C of E are disjoint.
Now, we have the following:

Claim 4: Let i ∈ C. Then, N ∩ {i} = ∅ and N ∪ {i} ∈ F .

23Proof. Any two sets X and Y satisfy X = (X \ Y) ∪ (X ∩ Y). Applying this to X = S and Y = B,
we obtain S = (S \ B)︸ ︷︷ ︸

=N

∪ (S ∩ B)︸ ︷︷ ︸
={a,b}

= N ∪ {a, b}.

24Proof. We have {a, b} ⊆ B. Hence, N︸︷︷︸
=S\B

∩ {a, b}︸ ︷︷ ︸
⊆B

⊆ (S \ B) ∩ B = ∅, so that N ∩ {a, b} = ∅.
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[Proof of Claim 4: If we had i ∈ N, then we would have i /∈ B (since i ∈ N =
S \ B), which would contradict i ∈ C ⊆ B. Hence, we cannot have i ∈ N. Thus,
N ∩ {i} = ∅. It remains to prove that N ∪ {i} ∈ F .

If we had b ∈ N, then we would have b /∈ B (since b ∈ N = S \ B), which would
contradict b ∈ {a, b} ⊆ B. Hence, we cannot have b ∈ N. Thus, b /∈ N, so that
N \ {b} = N.

We have S = N ∪ {a, b}, thus

S \ {b} = (N ∪ {a, b}) \ {b} = (N \ {b})︸ ︷︷ ︸
=N

∪ ({a, b} \ {b})︸ ︷︷ ︸
={a}

(since a ̸=b)

= N ∪ {a} .

Hence, N ∪ {a} = S \ {b} ∈ F . But {a} and {i} are subsets of B (since a ∈ {a, b} ⊆
B and i ∈ C ⊆ B), and satisfy |{a}| = |{i}| (since both |{a}| and |{i}| equal 1) and
{i} ⊆ C (since i ∈ C) and N ∪ {a} ∈ F . Hence, Corollary 11.6 (applied to P = {a}
and Q = {i}) yields N ∪ {i} ∈ F . This finishes the proof of Claim 4.]

Claim 5: Let i, j ∈ C be distinct. Then, N ∩ {i, j} = ∅ and N ∪ {i, j} ∈ F .

[Proof of Claim 5: If we had i ∈ N, then we would have i /∈ B (since i ∈ N = S \ B),
which would contradict i ∈ C ⊆ B. Hence, we cannot have i ∈ N. In other words,
i /∈ N. Likewise, j /∈ N. Combining i /∈ N with j /∈ N, we obtain N ∩ {i, j} = ∅. It
remains to prove that N ∪ {i, j} ∈ F .

Note that |{a, b}| = 2 and |{i, j}| = 2 (since i and j are distinct). Hence, |{a, b}| =
2 = |{i, j}|. Also, i, j ∈ C, so that {i, j} ⊆ C ⊆ B.

We have S = N ∪{a, b}, thus N ∪{a, b} = S ∈ F . But {a, b} and {i, j} are subsets
of B (since {a, b} ⊆ B and {i, j} ⊆ B), and satisfy |{a, b}| = |{i, j}| and {i, j} ⊆ C
and N ∪ {a, b} ∈ F . Hence, Corollary 11.6 (applied to P = {a, b} and Q = {i, j})
yields N ∪ {i, j} ∈ F . This finishes the proof of Claim 5.]

Claim 6: Let p ∈ N. Let i, j ∈ C be distinct. Then, (N ∪ {i, j}) \ {p} /∈ F .

[Proof of Claim 6: Assume the contrary. Hence, (N ∪ {i, j}) \ {p} ∈ F . Also,
|((N ∪ {i, j}) \ {p}) ∩ B| ⩾ 2 25. Therefore, (N ∪ {i, j}) \ {p} is a secant set (by
the definition of “secant set”). Hence,

|(N ∪ {i, j}) \ {p}| ⩾ |S| (47)

25Proof. We have p ∈ N = S \ B, so that p /∈ B. Hence, B \ {p} = B. Also, i, j ∈ C, so that
{i, j} ⊆ C ⊆ B.

But it is known from set theory that (X \ Y) ∩ Z = X ∩ (Z \ Y) for any three sets X, Y and Z.
Applying this to X = N ∪ {i, j}, Y = {p} and Z = B, we obtain

((N ∪ {i, j}) \ {p}) ∩ B = (N ∪ {i, j})︸ ︷︷ ︸
⊇{i,j}

∩ (B \ {p})︸ ︷︷ ︸
=B

⊇ {i, j} ∩ B = {i, j}

(since {i, j} ⊆ B). Hence, |((N ∪ {i, j}) \ {p}) ∩ B| ⩾ |{i, j}| = 2 (since i and j are distinct). Qed.
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(since S was defined to be a secant set of smallest size).
We have |{i, j}| = 2 (since i and j are distinct). But Claim 5 yields N ∩ {i, j} = ∅,

so that |N ∪ {i, j}| = |N|+ |{i, j}|︸ ︷︷ ︸
=2

= |N|+ 2 = |S| (by (46)). But p ∈ N ⊆ N ∪ {i, j}

and thus |(N ∪ {i, j}) \ {p}| = |N ∪ {i, j}|︸ ︷︷ ︸
=|S|

−1 = |S| − 1 < |S|. This contradicts (47).

This contradiction shows that our assumption was false. Hence, Claim 6 is proved.]

But recall that F is the Gaussian elimination greedoid of a vector family over K

(by assumption). Let (ve)e∈E be this vector family. Recall that N and C are two
disjoint subsets of E. Moreover, the following facts hold:

(i) For any i ∈ C, we have N ∪ {i} ∈ F (by Claim 4).

(ii) For any distinct i, j ∈ C, we have N ∪ {i, j} ∈ F (by Claim 5).

(iii) For any p ∈ N and any distinct i, j ∈ C, we have (N ∪ {i, j}) \ {p} /∈ F (by
Claim 6).

Hence, Lemma 11.10 shows that |K| ⩾ |C|. This proves Theorem 5.1.

12. Appendix: Gaussian elimination greedoids are
strong

We shall now prove Theorem 1.6. In order to do so, we will first need to recall the
definition of a strong greedoid (see, e.g., [GriPet19, §6.1]):

Definition 12.1. Let E be a finite set. A set system F on ground set E is said to
be a greedoid if it satisfies the following three axioms:

(i) We have ∅ ∈ F .

(ii) If B ∈ F satisfies |B| > 0, then there exists b ∈ B such that B \ {b} ∈ F .

(iii) If A, B ∈ F satisfy |B| = |A| + 1, then there exists b ∈ B \ A such that
A ∪ {b} ∈ F .

Furthermore, F is said to be a strong greedoid if it satisfies the following axiom
(in addition to axioms (i), (ii) and (iii)):

(iv) If A, B ∈ F satisfy |B| = |A| + 1, then there exists b ∈ B \ A such that
A ∪ {b} ∈ F and B \ {b} ∈ F .
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Note that axiom (iii) in Definition 12.1 clearly follows from axiom (iv); thus, only
axioms (i), (ii) and (iv) need to be checked in order to convince ourselves that a set
system is a strong greedoid.

We shall furthermore use a determinantal identity due to Plücker (one of sev-
eral facts known as the Plücker identities). To state this identity, we will use the
following notations:

Definition 12.2. Let K be a commutative ring. Let n ∈ N and m ∈ N. Let
A ∈ Kn×m be an n × m-matrix. (Here and in the following, Kn×m denotes the set
of all n × m-matrices with entries in K.)

(a) If v ∈ Kn×1 is a column vector with n entries, then (A | v) will denote the
n × (m + 1)-matrix whose m + 1 columns are A•,1, A•,2, . . . , A•,m, v (from
left to right). (Informally speaking, (A | v) is the matrix obtained when the
column vector v is “attached” to A at the right edge.)

(b) If j ∈ {1, 2, . . . , m}, then A•,j shall mean the j-th column of the matrix A.
This is a column vector with n entries, i.e., an n × 1-matrix.

(c) If i ∈ {1, 2, . . . , n}, then A∼i,• shall mean the matrix obtained from the
matrix A by removing the i-th row. This is an (n − 1)× m-matrix.

(d) If i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, then A∼i,∼j shall mean the matrix
obtained from A by removing the i-th row and the j-th column. This is an
(n − 1)× (m − 1)-matrix.

We can now state our Plücker identity:

Proposition 12.3. Let K be a commutative ring. Let n be a positive integer. Let
X ∈ Kn×(n−1) and Y ∈ Kn×n. Let i ∈ {1, 2, . . . , n}. Then,

det (X∼i,•)det Y =
n

∑
q=1

(−1)n+q det
(
X | Y•,q

)
det

(
Y∼i,∼q

)
.

Example 12.4. If we set n = 3, X =

 a a′

b b′

c c′

, Y =

 x x′ x′′

y y′ y′′

z z′ z′′

 and i = 2,
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then Proposition 12.3 states that

det
(

a a′

c c′

)
det

 x x′ x′′

y y′ y′′

z z′ z′′


= det

 a a′ x
b b′ y
c c′ z

det
(

x′ x′′

z′ z′′

)
− det

 a a′ x′

b b′ y′

c c′ z′

det
(

x x′′

z z′′

)

+ det

 a a′ x′′

b b′ y′′

c c′ z′′

det
(

x x′

z z′

)
.

Proposition 12.3 is precisely [Grinbe22, Proposition 6.137] (with A, C and v re-
named as X, Y and i).

Proof of Theorem 1.6. We need to prove that G is a strong greedoid. In other words,
we need to prove that the axioms (i), (ii), (iii) and (iv) from Definition 12.1 are
satisfied for F = G. Let us do this:

Proof of the axiom (i) for F = G: The vector family
(

π|∅| (ve)
)

e∈∅
∈
(

K|∅|
)∅

is

empty, and thus is linearly independent. In other words, ∅ ∈ G. This proves that
the axiom (i) from Definition 12.1 is satisfied for F = G.

Proof of the axiom (ii) for F = G: Let B ∈ G satisfy |B| > 0. We shall show that
there exists b ∈ B such that B \ {b} ∈ G.

Let n = |B|. Thus, n = |B| > 0.

We have B ∈ G. In other words, the family
(

π|B| (ve)
)

e∈B
∈
(

K|B|
)B

is linearly

independent (by the definition of G). In other words, the family (πn (ve))e∈B ∈
(Kn)B is linearly independent (since |B| = n).

Let Y be the n × n-matrix whose columns are the vectors πn (ve) for all e ∈ B
(in some order, with no repetition). The columns of this n × n-matrix Y are thus

linearly independent (since the family (πn (ve))e∈B ∈
(

K|B|
)B

is linearly indepen-
dent). Hence, this n × n-matrix Y is invertible. In other words, det Y ̸= 0.

Now, let yi,j be the (i, j)-th entry of the matrix Y for each i, j ∈ {1, 2, . . . , n}. Then,
Laplace expansion along the n-th row yields

det Y =
n

∑
q=1

(−1)n+q yn,q det
(
Y∼n,∼q

)
.

If every q ∈ {1, 2, . . . , n} satisfied det
(
Y∼n,∼q

)
= 0, then this would become

det Y =
n

∑
q=1

(−1)n+q yn,q det
(
Y∼n,∼q

)︸ ︷︷ ︸
=0

= 0,
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which would contradict det Y ̸= 0. Hence, not every q ∈ {1, 2, . . . , n} satisfies
det

(
Y∼n,∼q

)
= 0. In other words, there exists at least one q ∈ {1, 2, . . . , n} such that

det
(
Y∼n,∼q

)
̸= 0. Consider this q. The q-th column of Y is the vector πn

(
v f
)

for
some f ∈ B (by the definition of Y); consider this f . Note that |B \ { f }| = |B| − 1 =
n − 1 (since |B| = n).

The (n − 1)× (n − 1)-matrix Y∼n,∼q is invertible (since det
(
Y∼n,∼q

)
̸= 0); thus, its

n − 1 columns are linearly independent. But these n − 1 columns are precisely the
n− 1 vectors πn−1 (ve) for all e ∈ B \ { f } (by the definition of Y and the choice of f ).
Hence, the n − 1 vectors πn−1 (ve) for all e ∈ B \ { f } are linearly independent. In
other words, the family (πn−1 (ve))e∈B\{ f } is linearly independent. In other words,

the family
(

π|B\{ f }| (ve)
)

e∈B\{ f }
is linearly independent (since |B \ { f }| = n − 1).

In other words, B \ { f } ∈ G (by the definition of G). Hence, there exists b ∈ B such
that B \ {b} ∈ G (namely, b = f ). This shows that the axiom (ii) from Definition
12.1 is satisfied for F = G.

Proof of the axiom (iv) for F = G: Let A, B ∈ G satisfy |B| = |A| + 1. We shall
show that there exists b ∈ B \ A such that A ∪ {b} ∈ G and B \ {b} ∈ G.

Let n = |B|. Thus, n = |B| = |A|+ 1 ⩾ 1 > 0. Also, from n = |A|+ 1, we obtain
|A| = n − 1.

We have B ∈ G. In other words, the family
(

π|B| (ve)
)

e∈B
∈
(

K|B|
)B

is linearly

independent (by the definition of G). In other words, the family (πn (ve))e∈B ∈
(Kn)B is linearly independent (since |B| = n). Similarly, the family (πn−1 (ve))e∈A ∈(
Kn−1)A is linearly independent.

Let Y be the n × n-matrix whose columns are the vectors πn (ve) for all e ∈ B
(in some order, with no repetition). The columns of this n × n-matrix Y are thus

linearly independent (since the family (πn (ve))e∈B ∈
(

K|B|
)B

is linearly indepen-
dent). Hence, this n × n-matrix Y is invertible. In other words, det Y ̸= 0.

Let X be the n × (n − 1)-matrix whose columns are the vectors πn (ve) for all e ∈
A (in some order, with no repetition). Then, the columns of the (n − 1)× (n − 1)-
matrix X∼n,• are the vectors πn−1 (ve) for all e ∈ A; thus, they are linearly indepen-
dent (since the family (πn−1 (ve))e∈A ∈

(
Kn−1)A is linearly independent). Hence,

this (n − 1)× (n − 1)-matrix X∼n,• is invertible. In other words, det (X∼n,•) ̸= 0.
But K is a field and thus an integral domain. Hence, from det (X∼n,•) ̸= 0 and

det Y ̸= 0, we obtain
det (X∼n,•)det Y ̸= 0. (48)

If every q ∈ {1, 2, . . . , n} satisfied det
(
X | Y•,q

)
det

(
Y∼n,∼q

)
= 0, then we would
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have

det (X∼n,•)det Y =
n

∑
q=1

(−1)n+q det
(
X | Y•,q

)
det

(
Y∼n,∼q

)︸ ︷︷ ︸
=0

(by Proposition 12.3, applied to i = n)
= 0,

which would contradict (48). Hence, not every q ∈ {1, 2, . . . , n} satisfies
det

(
X | Y•,q

)
det

(
Y∼n,∼q

)
= 0. In other words, some q ∈ {1, 2, . . . , n} satisfies

det
(
X | Y•,q

)
det

(
Y∼n,∼q

)
̸= 0. Consider this q. The q-th column of Y is the vector

πn
(
v f
)

for some f ∈ B (by the definition of Y); consider this f . Thus, Y•,q =

πn
(
v f
)
.

Note that |B \ { f }| = |B| − 1 = n − 1 (since |B| = n).
From det

(
X | Y•,q

)
det

(
Y∼n,∼q

)
̸= 0, we obtain det

(
X | Y•,q

)
̸= 0 and det

(
Y∼n,∼q

)
̸=

0.
The (n − 1)× (n − 1)-matrix Y∼n,∼q is invertible (since det

(
Y∼n,∼q

)
̸= 0); thus, its

n − 1 columns are linearly independent. But these n − 1 columns are precisely the
n− 1 vectors πn−1 (ve) for all e ∈ B \ { f } (by the definition of Y and the choice of f ).
Hence, the n − 1 vectors πn−1 (ve) for all e ∈ B \ { f } are linearly independent. In
other words, the family (πn−1 (ve))e∈B\{ f } is linearly independent. In other words,

the family
(

π|B\{ f }| (ve)
)

e∈B\{ f }
is linearly independent (since |B \ { f }| = n − 1).

In other words, B \ { f } ∈ G (by the definition of G).
The n × n-matrix

(
X | Y•,q

)
is invertible (since det

(
X | Y•,q

)
̸= 0); thus, its n

columns are linearly independent. But these n columns are precisely the n − 1
vectors πn (ve) for all e ∈ A as well as the extra vector Y•,q = πn

(
v f
)
. Thus, if

we had f ∈ A, then these n columns would contain two equal vectors (namely, the
extra vector Y•,q = πn

(
v f
)

would be equal to one of the vectors πn (ve) with e ∈ A),
and thus would be linearly dependent. But this would contradict the fact that these
n columns are linearly independent. Hence, we cannot have f ∈ A. Thus, f /∈ A.
Combining f ∈ B with f /∈ A, we obtain f ∈ B \ A. From f /∈ A, we also obtain
|A ∪ { f }| = |A|+ 1 = n (since |A| = n − 1).

Recall that the n columns of the n × n-matrix
(
X | Y•,q

)
are the n − 1 vectors

πn (ve) for all e ∈ A as well as the extra vector Y•,q = πn
(
v f
)
. In other words,

they are the n vectors πn (ve) for all e ∈ A ∪ { f } (since f /∈ A). Hence, the n
vectors πn (ve) for all e ∈ A ∪ { f } are linearly independent (since the n columns
of the n × n-matrix

(
X | Y•,q

)
are linearly independent). In other words, the family

(πn (e))e∈A∪{ f } is linearly independent. In other words, the family
(

π|A∪{ f }| (e)
)

e∈A∪{ f }
is linearly independent (since n = |A ∪ { f }|). In other words, A ∪ { f } ∈ G (by the
definition of G).

We now know that f ∈ B \ A and A ∪ { f } ∈ G and B \ { f } ∈ G. Hence, there
exists b ∈ B \ A such that A ∪ {b} ∈ G and B \ {b} ∈ G (namely, b = f ). This shows
that the axiom (iv) from Definition 12.1 is satisfied for F = G.
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Proof of the axiom (iii) for F = G: Clearly, axiom (iii) from Definition 12.1 follows
from axiom (iv). Thus, axiom (iii) holds for F = G (since we already know that
axiom (iv) holds for F = G).

We have now showed that the system G satisfies the four axioms (i), (ii), (iii)
and (iv) from Definition 12.1. Thus, G is a strong greedoid. This proves Theorem
1.6.

13. Appendix: Proof of Proposition 1.7

We shall now prove Proposition 1.7. This proof is mostly bookkeeping.

Proof of Proposition 1.7 (sketched). If Gk is empty, then the claim is obvious. Thus, we
WLOG assume that Gk is nonempty.

We assumed that G is a Gaussian elimination greedoid. In other words, there
exist a field K and a vector family (ve)e∈E over K such that G is the Gaussian
elimination greedoid of this vector family (ve)e∈E. Consider these K and (ve)e∈E.
Let X be the k × |E|-matrix whose columns are the vectors πk (ve) ∈ Kk for all
e ∈ E (in some order). Then, there is a bijection ϕ : {1, 2, . . . , |E|} → E such that the
columns of the matrix X are πk

(
vϕ(1)

)
, πk

(
vϕ(2)

)
, . . . , πk

(
vϕ(|E|)

)
(in this order).

Consider this ϕ. Hence,

( f -th column of X) = πk

(
vϕ( f )

)
(49)

for each f ∈ {1, 2, . . . , |E|}. Let V be the vector matroid26 of the matrix X. This is
a matroid on the set {1, 2, . . . , |E|}; its rank is at most k (since X has k rows and
therefore rank ⩽ k).

The bijection ϕ can be used to transport the matroid V onto the set E. More
precisely, we can define a matroid V ′ on the set E by

V ′ = {ϕ (I) | I ∈ V}

(where we regard a matroid as a collection of independent sets). The independent
sets of this matroid V ′ are the subsets I of E for which ϕ−1 (I) is an independent set
of V . Moreover, the map ϕ is an isomorphism from the matroid V to the matroid
V ′. Thus, the matroid V ′ is isomorphic to the vector matroid V , and hence is
representable. Our goal is now to show that Gk is the collection of bases of V .

Let F be a k-element subset of E. Then, we have the following chain of logical

26See [Oxley11, §1.1] for the definition of a vector matroid.
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equivalences:

(F ∈ Gk)

⇐⇒ (F ∈ G) (since Gk is the set of all k-element sets in G)

⇐⇒
(

the family
(

π|F| (ve)
)

e∈F
∈
(

K|F|
)F

is linearly independent
)

(
by the definition of a Gaussian elimination greedoid,

since G is the Gaussian elimination greedoid of (ve)e∈E

)
⇐⇒

(
the family (πk (ve))e∈F ∈

(
Kk
)F

is linearly independent
)

(since |F| = k (because F is a k-element set))

⇐⇒
(

the family
(

πk

(
vϕ( f )

))
f∈ϕ−1(F)

∈
(

Kk
)ϕ−1(F)

is linearly independent
)

 since ϕ : {1, 2, . . . , |E|} → E is a bijection, and thus the

family
(

πk

(
vϕ( f )

))
f∈ϕ−1(F)

is just a reindexing of the family (πk (ve))e∈F


⇐⇒

(
the family ( f -th column of X) f∈ϕ−1(F) ∈

(
Kk
)ϕ−1(F)

is linearly independent
)

(
since (49) yields ( f -th column of X) f∈ϕ−1(F) =

(
πk

(
vϕ( f )

))
f∈ϕ−1(F)

)
⇐⇒

(
ϕ−1 (F) is an independent set of the vector matroid of X

)
(by the definition of a vector matroid)

⇐⇒
(

ϕ−1 (F) is an independent set of V
)

(50)

(since V is the vector matroid of X) .

Forget that we fixed F. We thus have proved the equivalence (50) for each k-
element subset F of E.

Recall that Gk is nonempty. In other words, there exists some B ∈ Gk. Consider
this B. Thus, B is a k-element set in G (since Gk is the set of all k-element sets in G).
Hence, the equivalence (50) (applied to F = B) yields the equivalence

(B ∈ Gk) ⇐⇒
(

ϕ−1 (B) is an independent set of V
)

.

Thus, ϕ−1 (B) is an independent set of V (since B ∈ Gk). Since ϕ is a bijection,
we have

∣∣ϕ−1 (B)
∣∣ = |B| = k (since B is a k-element set). In other words, ϕ−1 (B)

is a k-element set. Thus, the matroid V has a k-element independent set (namely,
ϕ−1 (B)). Therefore, the rank of V is at least k. Since we also know that the rank
of V is at most k, we thus conclude that the rank of V is exactly k. Hence, the
rank of V ′ is exactly k as well (since the matroid V ′ is isomorphic to the matroid
V). Therefore, the bases of V ′ are the k-element independent sets of V ′. Thus, a
k-element set is an independent set of V ′ if and only if it is a basis of V ′.
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Now, let F again be a k-element subset of E. Thus, F is an independent set of V ′

if and only if F is a basis of V ′ (since a k-element set is an independent set of V ′ if
and only if it is a basis of V ′). Also, ϕ−1 (F) is an independent set of V if and only
if F is an independent set of V ′ (since the independent sets of the matroid V ′ are
the subsets I of E for which ϕ−1 (I) is an independent set of V).

Now, we have the following chain of logical equivalences:

(F ∈ Gk) ⇐⇒
(

ϕ−1 (F) is an independent set of V
)

(by (50))

⇐⇒
(

F is an independent set of V ′)(
since ϕ−1 (F) is an independent set of V

if and only if F is an independent set of V ′

)
⇐⇒

(
F is a basis of V ′)

(since F is an independent set of V ′ if and only if F is a basis of V ′).
Forget that we fixed F. We thus have proved that, for each k-element subset F of

E, we have the equivalence

(F ∈ Gk) ⇐⇒
(

F is a basis of V ′) .

Hence, Gk is the collection of all bases of V ′ (since all bases of V ′ are k-element
subsets of E (because V ′ is a matroid of rank k)). Hence, Gk is the collection of
bases of a representable matroid on the ground set E (since V ′ is a representable
matroid on the ground set E). This proves Proposition 1.7.

14. Appendix: Proofs of some properties of L

We shall next prove four lemmas that were left unproven in Section 6: namely,
Lemma 6.4, Lemma 6.8, Lemma 6.11 and Lemma 6.12.

Proof of Lemma 6.4. (a) Let a ∈ L be a nonzero element. We must prove that the
element a belongs to L+ if and only if its order ord a is nonnegative (i.e., we have
ord a ⩾ 0). In other words, we must prove that a ∈ L+ if and only if ord a ⩾ 0.

Recall that ord a is defined as the smallest β ∈ V such that
[
tβ

]
a ̸= 0. Thus, ord a

is a β ∈ V such that
[
tβ

]
a ̸= 0. In other words, ord a ∈ V and [tord a] a ̸= 0.

We shall now prove the implication

(a ∈ L+) =⇒ (ord a ⩾ 0) . (51)

[Proof of (51): Assume that a ∈ L+. Then, a ∈ L+ = K [V⩾0]. In other words, a
is a K-linear combination of the family (tα)α∈V⩾0

. Thus, every α ∈ V that satisfies
[tα] a ̸= 0 is an element of V⩾0. Applying this to α = ord a, we conclude that ord a
is an element of V⩾0 (since [tord a] a ̸= 0). In other words, ord a ⩾ 0. Thus, the
implication (51) is proved.]
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Next, let us prove the implication

(ord a ⩾ 0) =⇒ (a ∈ L+) . (52)

[Proof of (52): Assume that ord a ⩾ 0. Now, let α ∈ V be such that α < 0. We
shall show that [tα] a = 0.

Indeed, assume the contrary. Thus, [tα] a ̸= 0. But recall that ord a is the smallest
β ∈ V such that

[
tβ

]
a ̸= 0. Hence, for any β ∈ V satisfying

[
tβ

]
a ̸= 0, we must

have β ⩾ ord a. Applying this to β = α, we obtain α ⩾ ord a ⩾ 0. This contradicts
α < 0.

This contradiction shows that our assumption was wrong. Hence, we have
proved that [tα] a = 0.

Forget that we fixed α. We thus have proved that

[tα] a = 0 for each α ∈ V satisfying α < 0. (53)

But a ∈ L = K [V]. Thus,

a = ∑
α∈V

([tα] a) · tα = ∑
α∈V;
α⩾0︸︷︷︸

= ∑
α∈V⩾0

([tα] a) · tα + ∑
α∈V;
α<0

([tα] a)︸ ︷︷ ︸
=0

(by (53))

·tα

(since each α ∈ V satisfies either α ⩾ 0 or α < 0 (but not both))

= ∑
α∈V⩾0

([tα] a) · tα + ∑
α∈V;
α<0

0tα

︸ ︷︷ ︸
=0

= ∑
α∈V⩾0

([tα] a) · tα.

Thus, a is a K-linear combination of the family (tα)α∈V⩾0
. In other words, a ∈

K [V⩾0]. In other words, a ∈ L+ (since L+ = K [V⩾0]). This proves the implication
(52).]

Combining the two implications (51) and (52), we obtain the equivalence

(a ∈ L+) ⇐⇒ (ord a ⩾ 0) .

In other words, a ∈ L+ if and only if ord a ⩾ 0. This proves Lemma 6.4 (a).

(b) Let a ∈ L be nonzero. The definition of ord a shows that

ord a =
(
the smallest β ∈ V such that

[
tβ

]
a ̸= 0

)
.

The same argument (applied to −a instead of a) yields

ord (−a) =

the smallest β ∈ V such that
[
tβ

]
(−a)︸ ︷︷ ︸

=−[tβ]a

̸= 0


=
(
the smallest β ∈ V such that −

[
tβ

]
a ̸= 0

)
=
(
the smallest β ∈ V such that

[
tβ

]
a ̸= 0

)(
since the condition “ −

[
tβ

]
a ̸= 0” is equivalent to “

[
tβ

]
a ̸= 0”

)
.
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Comparing these two equalities, we obtain ord (−a) = ord a. This proves Lemma
6.4 (b).

(c) This is analogous to the standard fact that any two nonzero polynomials f , g ∈
K [X] satisfy f g ̸= 0 and deg ( f g) = deg f + deg g. For the sake of completeness,
let us nevertheless present the proof.

Recall that ord a is defined as the smallest β ∈ V such that
[
tβ

]
a ̸= 0. Thus, ord a

is a β ∈ V such that
[
tβ

]
a ̸= 0. In other words, ord a ∈ V and [tord a] a ̸= 0. The

same argument (applied to b instead of a) yields ord b ∈ V and [tord b] b ̸= 0. From
[tord a] a ̸= 0 and [tord b] b ̸= 0, we obtain ([tord a] a) · ([tord b] b) ̸= 0 (since [tord a] a
and [tord b] b belong to the integral domain K).

Moreover, [
tβ

]
a = 0 for each β ∈ V satisfying β < ord a (54)

(since ord a is the smallest β ∈ V such that
[
tβ

]
a ̸= 0). Similarly,[

tβ

]
b = 0 for each β ∈ V satisfying β < ord b. (55)

For any α ∈ V, we have

[tα] (ab) = ∑
β∈V

([
tβ

]
a
)
·
([

tα−β

]
b
) (

by the definition of the multiplication
in the group algebra L = K [V]

)
= ∑

β∈V;
β<ord a

([
tβ

]
a
)︸ ︷︷ ︸

=0
(by (54))

·
([

tα−β

]
b
)
+ ∑

β∈V;
β⩾ord a

([
tβ

]
a
)
·
([

tα−β

]
b
)

(since each β ∈ V satisfies either β < ord a or β ⩾ ord a (but not both))

= ∑
β∈V;

β<ord a

0 ·
([

tα−β

]
b
)

︸ ︷︷ ︸
=0

+ ∑
β∈V;

β⩾ord a

([
tβ

]
a
)
·
([

tα−β

]
b
)

= ∑
β∈V;

β⩾ord a

([
tβ

]
a
)
·
([

tα−β

]
b
)

. (56)

Now, let α ∈ V be such that α < ord a + ord b. Then, for every β ∈ V satisfying
β ⩾ ord a, we have

α︸︷︷︸
<ord a+ord b

− β︸︷︷︸
⩾ord a

< (ord a + ord b)− ord a = ord b

and thus [
tα−β

]
b = 0 (57)

(by (55), applied to α − β instead of β). Hence, (56) becomes

[tα] (ab) = ∑
β∈V;

β⩾ord a

([
tβ

]
a
)
·
([

tα−β

]
b
)︸ ︷︷ ︸

=0
(by (57))

= ∑
β∈V;

β⩾ord a

([
tβ

]
a
)
· 0 = 0.
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Forget that we fixed α. We thus have proved that

[tα] (ab) = 0 for any α ∈ V satisfying α < ord a + ord b. (58)

On the other hand, for every β ∈ V satisfying β > ord a, we have

(ord a + ord b)− β︸︷︷︸
>ord a

< (ord a + ord b)− ord a = ord b

and thus [
t(ord a+ord b)−β

]
b = 0 (59)

(by (55), applied to (ord a + ord b)− β instead of β). Hence, (56) (applied to α =
ord a + ord b) yields

[tord a+ord b] (ab)

= ∑
β∈V;

β⩾ord a

([
tβ

]
a
)
·
([

t(ord a+ord b)−β

]
b
)

= ([tord a] a) ·
([

t(ord a+ord b)−ord a

]
b
)

︸ ︷︷ ︸
=[tord b]b

(since (ord a+ord b)−ord a=ord b)

+ ∑
β∈V;

β>ord a

([
tβ

]
a
)
·
([

t(ord a+ord b)−β

]
b
)

︸ ︷︷ ︸
=0

(by (59))

(here, we have split off the addend for β = ord a from the sum)

= ([tord a] a) · ([tord b] b) + ∑
β∈V;

β>ord a

([
tβ

]
a
)
· 0

︸ ︷︷ ︸
=0

= ([tord a] a) · ([tord b] b) ̸= 0.

Thus, ord a + ord b is a β ∈ V such that
[
tβ

]
(ab) ̸= 0. In view of (58), we conclude

that ord a + ord b is the smallest such β.
From [tord a+ord b] (ab) ̸= 0, we obtain ab ̸= 0. Thus, ab is a nonzero element of

L. Hence, ord (ab) is defined as the smallest β ∈ V such that
[
tβ

]
(ab) ̸= 0. But

we already know that ord a + ord b is the smallest such β. Comparing these two
results, we conclude that ord (ab) = ord a + ord b. This proves Lemma 6.4 (c).

(d) Assume the contrary. Thus, ord (a + b) < min {ord a, ord b} ⩽ ord a. Simi-
larly, ord (a + b) < ord b.

Recall that ord a is defined as the smallest β ∈ V such that
[
tβ

]
a ̸= 0. Hence, in

particular, no such β is smaller than ord a. In other words,[
tβ

]
a = 0 for each β ∈ V satisfying β < ord a.

Applying this to β = ord (a + b), we find
[
tord(a+b)

]
a = 0. Similarly,

[
tord(a+b)

]
b =

0.
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But ord (a + b) is defined as the smallest β ∈ V such that
[
tβ

]
(a + b) ̸= 0. Thus,

ord (a + b) is a β ∈ V such that
[
tβ

]
(a + b) ̸= 0. In other words, ord (a + b) ∈ V

and
[
tord(a+b)

]
(a + b) ̸= 0. But

[
tord(a+b)

]
(a + b) ̸= 0 contradicts[

tord(a+b)

]
(a + b) =

[
tord(a+b)

]
a︸ ︷︷ ︸

=0

+
[
tord(a+b)

]
b︸ ︷︷ ︸

=0

= 0 + 0 = 0.

This contradiction shows that our assumption was wrong. This proves Lemma 6.4
(d).

Proof of Lemma 6.8. First, let us observe that the distance function d : E × E → V in
Definition 6.7 is well-defined.

[Proof: We must show that − ord (a − b) ∈ V is well-defined for each (a, b) ∈
E × E.

So let us fix (a, b) ∈ E × E. Thus, a and b are two distinct elements of E (by
the definition of E × E). Since a and b are distinct, we have a − b ̸= 0. Hence, the
element a − b of L is nonzero, and therefore ord (a − b) ∈ V is well-defined. Thus,
− ord (a − b) ∈ V is well-defined.

Forget that we fixed (a, b). We thus have showed that − ord (a − b) ∈ V is well-
defined for each (a, b) ∈ E × E. This completes our proof.]

Now, consider the distance function d : E × E → V in Definition 6.7. Our goal
is to prove that (E, w, d) is a V-ultra triple whenever w : E → V is a function.
According to the definition of a “V-ultra triple”, this boils down to proving the
following two statements:

Statement 1: We have d (a, b) = d (b, a) for any two distinct elements a
and b of E.

Statement 2: We have d (a, b) ⩽ max {d (a, c) , d (b, c)} for any three dis-
tinct elements a, b and c of E.

Let us prove these two statements.
[Proof of Statement 1: Let a and b be two distinct elements of E. Thus, a − b ̸= 0

(since a and b are distinct), so that a − b is a nonzero element of L. Hence, Lemma
6.4 (b) (applied to a − b instead of a) yields ord (− (a − b)) = ord (a − b). But

the definition of d yields d (a, b) = ord (a − b) and d (b, a) = ord

 b − a︸ ︷︷ ︸
=−(a−b)

 =

ord (− (a − b)) = ord (a − b). Comparing these two equalities, we find d (a, b) =
d (b, a). This proves Statement 1.]

[Proof of Statement 2: Let a, b and c be three distinct elements of E. Then, State-
ment 1 (applied to c instead of a) yields d (c, b) = d (b, c).

We have a − b ̸= 0 (since a and b are distinct), so that a − b is a nonzero ele-
ment of L. Likewise, a − c and c − b are nonzero elements of L. Now, the nonzero
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elements a − c and c − b of L have the property that their sum (a − c) + (c − b)
is nonzero (since (a − c) + (c − b) = a − b is nonzero). Thus, Lemma 6.4 (d)
(applied to a − c and c − b instead of a and b) yields ord ((a − c) + (c − b)) ⩾
min {ord (a − c) , ord (c − b)}. In view of (a − c) + (c − b) = a − b, this rewrites as

ord (a − b) ⩾ min {ord (a − c) , ord (c − b)} .

Hence,

− ord (a − b)︸ ︷︷ ︸
⩾min{ord(a−c),ord(c−b)}

⩽ −min {ord (a − c) , ord (c − b)}

= max {− ord (a − c) ,− ord (c − b)} . (60)

But the definition of d yields

d (a, b) = − ord (a − b) and
d (a, c) = − ord (a − c) and
d (c, b) = − ord (c − b) .

In view of these equalities, we can rewrite (60) as d (a, b) ⩽ max {d (a, c) , d (c, b)}.
In view of d (c, b) = d (b, c), this further rewrites as d (a, b) ⩽ max {d (a, c) , d (b, c)}.
This proves Statement 2.]

We thus have proved both Statements 1 and 2. Therefore, (E, w, d) is a V-ultra
triple whenever w : E → V is a function (by the definition of a “V-ultra triple”).
This proves Lemma 6.8.

Proof of Lemma 6.11. The unity of the K-algebra L+ = K [V⩾0] is 1L+ = t0. Hence,
the map π sends this unity to π

(
1L+

)
= π (t0) = [t0] t0 = 1. Also, the map π

is clearly K-linear (since any x, y ∈ L+ satisfy [t0] (x + y) = ([t0] x) + ([t0] y), and
since any x ∈ L+ and λ ∈ K satisfy [t0] (λx) = λ [t0] x).

Let x, y ∈ L+. We shall prove that π (xy) = π (x) · π (y).
We have x ∈ L+ = K [V⩾0]. In other words, x is a K-linear combination of the

family (tα)α∈V⩾0
. In other words, we can write x in the form x = ∑

α∈V⩾0

λαtα for

some family (λα)α∈V⩾0
∈ KV⩾0 of coefficients λα (such that all but finitely many

α ∈ V⩾0 satisfy λα = 0). Consider this family (λα)α∈V⩾0
. From x = ∑

α∈V⩾0

λαtα, we

obtain [t0] x = λ0. Thus, the definition of π yields

π (x) = [t0] x = λ0. (61)

We have y ∈ L+ = K [V⩾0]. In other words, y is a K-linear combination of
the family (tα)α∈V⩾0

=
(
tβ

)
β∈V⩾0

. In other words, we can write y in the form

y = ∑
β∈V⩾0

µβtβ for some family
(
µβ

)
β∈V⩾0

∈ KV⩾0 of coefficients µβ (such that all
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but finitely many β ∈ V⩾0 satisfy µβ = 0). Consider this family
(
µβ

)
β∈V⩾0

. From
y = ∑

β∈V⩾0

µβtβ, we obtain [t0] y = µ0. Thus, the definition of π yields

π (y) = [t0] y = µ0. (62)

For any pair (α, β) ∈ V⩾0 × V⩾0 satisfying (α, β) ̸= (0, 0), we have

[t0]
(
tα+β

)
= 0 (63)

27.
Now, multiplying the equalities x = ∑

α∈V⩾0

λαtα and y = ∑
β∈V⩾0

µβtβ, we obtain

xy =

(
∑

α∈V⩾0

λαtα

)(
∑

β∈V⩾0

µβtβ

)
= ∑

α∈V⩾0

∑
β∈V⩾0︸ ︷︷ ︸

= ∑
(α,β)∈V⩾0×V⩾0

λαµβ tαtβ︸︷︷︸
=tα+β

= ∑
(α,β)∈V⩾0×V⩾0

λαµβtα+β.

Applying the map π to both sides of this equality, we obtain

π (xy) = π

 ∑
(α,β)∈V⩾0×V⩾0

λαµβtα+β

 = [t0]

 ∑
(α,β)∈V⩾0×V⩾0

λαµβtα+β


(by the definition of π)

= ∑
(α,β)∈V⩾0×V⩾0

λαµβ [t0]
(
tα+β

)
= λ0︸︷︷︸

=π(x)
(by (61))

µ0︸︷︷︸
=π(y)

(by (62))

[t0] (t0+0)︸ ︷︷ ︸
=[t0](t0)

=1

+ ∑
(α,β)∈V⩾0×V⩾0;

(α,β) ̸=(0,0)

λαµβ [t0]
(
tα+β

)︸ ︷︷ ︸
=0

(by (63))

(here, we have split off the addend for (α, β) = (0, 0) from the sum)

= π (x)π (y) + ∑
(α,β)∈V⩾0×V⩾0;

(α,β) ̸=(0,0)

λαµβ0

︸ ︷︷ ︸
=0

= π (x)π (y) .

27Proof of (63): Let (α, β) ∈ V⩾0 ×V⩾0 be a pair satisfying (α, β) ̸= (0, 0). From (α, β) ∈ V⩾0 ×V⩾0,
we obtain α ∈ V⩾0. In other words, α ⩾ 0 (by the definition of V⩾0). Similarly, β ⩾ 0. At least
one of the two elements α and β is ̸= 0 (since (α, β) ̸= (0, 0)). In other words, we have α ̸= 0
or β ̸= 0. Since α and β play symmetric roles in our setting, we can WLOG assume that α ̸= 0
(since otherwise, we can achieve this by swapping α with β). Combining α ̸= 0 with α ⩾ 0, we
obtain α > 0. Adding this inequality to β ⩾ 0, we obtain α + β > 0 + 0 = 0. Hence, α + β ̸= 0,
so that [t0]

(
tα+β

)
= 0. This proves (63).
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Forget that we fixed x and y. We thus have showed that π (xy) = π (x) · π (y)
for all x, y ∈ L+. Hence, π is a K-algebra homomorphism (since π is K-linear and
π
(
1L+

)
= 1). This proves Lemma 6.11.

Proof of Lemma 6.12. Lemma 6.4 (a) shows that a belongs to L+ if and only if its
order ord a is nonnegative. Hence, ord a is nonnegative (since a belongs to L+). In
other words, ord a ⩾ 0.

Recall that ord a is defined as the smallest β ∈ V such that
[
tβ

]
a ̸= 0. Thus, ord a

is a β ∈ V such that
[
tβ

]
a ̸= 0. In other words, ord a ∈ V and [tord a] a ̸= 0.

We shall first prove the implication

(ord a = 0) =⇒ (π (a) ̸= 0) . (64)

[Proof of (64): Assume that ord a = 0. Then, 0 = ord a, so that [t0] a = [tord a] a ̸= 0.
But the definition of π yields π (a) = [t0] a ̸= 0. Thus, the implication (64) is
proved.]

Next, let us prove the implication

(π (a) ̸= 0) =⇒ (ord a = 0) . (65)

[Proof of (65): Assume that π (a) ̸= 0. But the definition of π yields π (a) = [t0] a.
Hence, [t0] a = π (a) ̸= 0.

Now, recall that ord a is the smallest β ∈ V such that
[
tβ

]
a ̸= 0. Hence, if β ∈ V

satisfies
[
tβ

]
a ̸= 0, then β ⩾ ord a. Applying this to β = 0, we obtain 0 ⩾ ord a

(since [t0] a ̸= 0). Combining this with ord a ⩾ 0, we find ord a = 0. This proves
the implication (65).]

Combining the two implications (65) and (64), we obtain the logical equivalence
(π (a) ̸= 0) ⇐⇒ (ord a = 0). In other words, π (a) ̸= 0 holds if and only if
ord a = 0. This proves Lemma 6.12.
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