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Chapter 1

• It would not harm to explain that whenever you say ”module”, you usually mean
”right module”. People are often used to left modules instead.

• 1.4 (Rieffel-Wedderburn): The arrow in ”natural map B 7→ EndD (I)” should
be an → arrow rather than an 7→ arrow.

• Between 1.4 and 1.5: You write: ”We remark that if I is a minimal right ideal
above then D must be a division ring. For if 0 6= ϕ ∈ D, then ker (ϕ) and im (ϕ)
are both right ideals of A, [...]”. Actually they are right ideals of B, not of A.

• Between 1.5 and 1.6: You write: ”In particular, dimD (eB) = n so eB is a
minimal right ideal.” Could you explain the word ”so” in this sentence? Because
for me, the real reason why eB is a minimal right ideal is that B ∼= Dn×n acts
transitively on the set eB�0 ∼= Dn�0 (since, just as in linear algebra, any
nonzero row vector can be mapped to any other nonzero row vector of the same
size by a suitably chosen square matrix).

Chapter 2

• Page 5 and some times further in the book: Your notation concerning
matrix rings and general linear groups is not 100% consistent: the notations
Mn (C) and M (n,C) are used for one and the same thing (the ring of n × n
matrices over C); the notations GLn (C) and GL (n,C) are used for one and the
same thing (the multiplicative group of units of Mn (C)).

• The long formula on page 5: In the formula∑
g∈G

α (g) g

 ∑
h∈G

β (h)h

 =
∑
g,h

α (g) β (h) gh =
∑
x

∑
g

α (x) β
(
xg−1

)
x,

the term β (xg−1) should be β (x−1g).

• Proof of (2.1): In the sentence ”[...] where P is the matrix of the permutation
g → g−1 ”, the → arrow should be a 7→ arrow.

• Between (2.5) and (2.6): You write: ”Indeed, the same argument shows more:
the class sums are a basis for the integral group ring ZG ⊆ CG.” I believe you
meant this the right way, but it is just asking to be misunderstood: of course,
the class sums are a basis for the center of the integral group ring, not for the
group ring itself.

1



• Proof of (2.8): You write: ”Let X be the s × s matrix whose (i, j) entry is
χi (xj).” Here, χi (xj) should be replaced by χj (xi) (otherwise the rest of the
proof doesn’t work - unless I have miscalculated X∗DX.)

• Page 10, between (2.8) and (2.9): In the formula

φ =
∑

χ∈Irr(g)

(χ, φ)χ,

the Irr (g) should be an Irr (G).

Chapter 3

• (3.2): In the statement of (3.2), you write: ”The functions ωi : Z (CG) → C
are algebra homomorphisms whose values are algebraic integers.” To be precise,
”values” should be ”values at elements of Z (ZG)” here.

Chapter 4

• Proof of 4.4: You write: ”In particular, the set of products {xihij | 1 ≤ i ≤ t, 1 ≤ j ≤ Ti}
is a set of right coset representatives forK inG.” The Ti in {xihij | 1 ≤ i ≤ t, 1 ≤ j ≤ Ti}
should be a ti (with lowercase t).

• 4.5 (Frobenius): In the statement of 4.5, it would be better to make the con-
ditions more precise: H ⊆ G is supposed to be a subgroup of G (not just some
arbitrary subset), and ”for g ∈ G�H” should be ”for all g ∈ G�H” (and not
just for some g ∈ G�H).

• Between (4.8) and (4.9): You write: ”This observation, originally due to
Burnside, is useful in certain enumeration problems.” Indeed, this observation is
known to the whole world as Burnside’s lemma, so the mention of Burnside is
appropriate - but it should also be mentioned that Burnside was not the original
author of this lemma.1

Chapter 5

• Between (5.2) and (5.3): You write: ”We first argue that A = CG (A), for
if not then CG (A) �A is a proper normal subgroup of the p-group G�A and
therefore meets the center of G�A nontrivially.” Here, the word ”proper” should
be ”nontrivial”, in my opinion.

• Between (5.3) and (5.4): You write: ”it suffices by induction to show that
every nonlinear character χ of G is induced from a proper subgroup of G.” Here,
”character” should be replaced by ”irreducible character”.

1cf. the historical remarks on http://en.wikipedia.org/wiki/Burnside%27s lemma
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• Between (5.4) and (5.5): You write: ”and let B (G;H) be the set of permuta-

tion characters
{
1GH | H ∈ H

}
”. This is wrong - you don’t want the set of these

characters, but you want the abelian group generated by this set.

• (5.5): Maybe it wouldn’t hurt to mention that ”ring” means ”not necessarily
unital ring” here.

• Proof of (5.6): On the last line of page 20, you write Ig = R. The R should be
a Z here.

• Page 21, before (5.7): You write: ”It is clear that any subgroup of a quasi-
elementary group is itself quasi-elementary”. But why is this clear? The shortest
proof I can think of is nontrivial2.

• Proof of (5.7): You write: ”Let P be a Sylow p-subgroup of N = NG (C)
containing g”. But a p-group cannot contain g in general (the order of g is not
always a power of p). I guess you want P to be a Sylow p-subgroup ofN = NG (C)
containing gn (this is possible and this leads to g ∈ H afterwards).

• Proof of (5.7): You write: ”Namely, choose coset representatives {x1, ..., xt}
for H in G.” I would say ”right coset representatives” here to be more precise.

2The proof mainly consists of showing the following lemma:
Lemma. Let G be a finite group. Then, G is quasi-elementary if and only if the subset

{g ∈ G | ord g is prime to p} of G is a cyclic subgroup for some prime p. Here, ord g denotes the
order of the element g in G.

Proof of the Lemma. =⇒: Assume that G is quasi-elementary. Then, there is some prime p such
that G is a semidirect product PC of some p-subgroup P of G with some cyclic normal subgroup C of
G of order prime to p. Thus, |G| = |PC| = |P | · |C|, so that |G�C| = |G|� |C| = |P | · |C|� |C| = |P |
is a power of p, so that G�C is a p-group. Now, let g ∈ G be some element such that ord g is prime to
p. Then, the order of the element g of the quotient group G�C is prime to p as well (because the order
of g in G�C divides the order of g in G). But the order of the element g of the quotient group G�C
must be a power of p (since G�C is a p-group). Hence, the order of the element g of the quotient
group G�C is 1 (because it is both prime to p and a power of p), and thus g = 1, so that g ∈ C.
We have thus shown that every element g ∈ G such that ord g is prime to p must lie in C. Therefore,
{g ∈ G | ord g is prime to p} ⊆ C. Combining this with C ⊆ {g ∈ G | ord g is prime to p} (which
is clear because ord g is prime to p for every element g ∈ C, since the order of C is prime to p), we
obtain {g ∈ G | ord g is prime to p} = C, so that {g ∈ G | ord g is prime to p} is a cyclic subgroup.
This proves the =⇒ direction of the Lemma.
⇐=: Assume that the subset {g ∈ G | ord g is prime to p} of G is a cyclic subgroup for some prime

p. Denote this subset {g ∈ G | ord g is prime to p} by C. Clearly, C is a normal subgroup of G (it
is in fact a characteristic subgroup). Now we are going to show that the quotient group G�C is a
p-group. In fact, assume that it is not. Then, |G�C| is not a power of p, so there must be a prime
q 6= p such that q | |G�C|. Thus, by Cauchy’s theorem, there exists an element of G�C which has
order q. Let g be this element (where g ∈ G). Then, gq = 1, so that gq ∈ C. By the definition of C,
this yields that ord (gq) is prime to p, and thus ord g is prime to p as well (since ord g | q · ord (gq) and
since q is prime to p), so that g ∈ C and thus g = 1. This contradicts to our fact that the order of
g is q. This contradiction shows that our assumption was wrong, and thus G�C is a p-group. Thus,
|G�C| is some power of p dividing |G|. Now let P be a Sylow p-subgroup of G. Then, |P | ≥ |G�C|
(since |G�C| is some power of p dividing |G|, while |P | is the greatest power of p dividing |G|).
Besides, P ∩C = 1 (since P is a p-group, while all elements of C have order prime to p) and obviously

|P | ≥ |G�C| yields |P | · |C| ≥ |G�C| · |C| = |G|, so that |PC| =
|P | · |C|
|P ∩ C|

≥ |G|
1

= |G| and thus

PC = G. Hence, G is a semidirect product of P and C. This shows that G is quasi-elementary, and
therefore the ⇐= direction of the Lemma is proven as well.
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• Proof of (5.8): On the fourth line from the bottom of page 20, you write ”[...]
where λ is a linear character of some H ∈ H.” I think the H here is supposed to
mean E .

• Between (5.10) and 5.11: In the formula

1G = 1GN −
∑
i>0

aiλ
G
i ,

the minus sign should be a plus sign.

• 5.11: In the statement of Brauer’s theorem 5.11, maybe you should replace
”power of p” by ”nontrivial power of p” for better clarity.

• Page 23: You write: ”Since cyclic groups are direct products of cyclic groups
of prime power order, H is of the form P × Q where P is a p-group and |Q| 6≡
0 (mod p).” But I think this follows directly from H being elementary - where are
you using the fact that cyclic groups are direct products of cyclic groups of prime
power order?

Chapter 6

• Page 27: You write: ”In a slight departure from usual terminology, we will
mean by a partition of Ω an ordered collection of pairwise disjoint nonempty
subsets P = {P1,P2, ...,Pr} such that [...]”. Actually, I would propose to write
(P1,P2, ...,Pr) instead of {P1,P2, ...,Pr} here, because {P1,P2, ...,Pr} looks too
much like ”the set with elements P1,P2, ...,Pr” which denies any ordering on the
partitions, while you want the partitions to be ordered.

• Proof of (6.2): On the second line from the bottom of page 28, a full stop is
missing after C (T ) = Q (but maybe it is just missing on the scanned version of
the book).

• Page 29: On the third line before Gale-Ryser’s theorem (6.3), you write: ”It is
clear that if λ ≤ µ, then λ � µ.” I think it’s the other way round: if λ � µ,
then λ ≤ µ.

• Proof of (6.4): You write: ”We say that σ is a k-cycle if k1 = k and k2 = 1.” To
be completely rigorous here, I would replace this by ”We say that σ is a k-cycle
if k1 = k and k2 = 1 or r = 1”.

• Proof of (6.4): You write: ”The usual notation for a k-cycle σ is (m0m1...mk−1)
where mσ

i = mi+1 (0 ≤ i < k).” I would add an explanation that mk denotes m0

here.

• Between (6.4) and (6.5): There is an empty space in the word ”Then” in the
sentence ”T hen the σi are disjoint [...]”.
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• Proof of (6.6): On page 31, you list three facts (i), (ii) and (iii). Fact (iii) is
wrong - instead, it should be

Ci ∩Ni = CNi
(σi) = 〈σi,1, σi,2, ..., σi,mi

〉 ,

where σi,1, σi,2, ..., σi,mi
are the mi disjoint i-cycles that σi consists of.

Chapter 7

• Page 33: There is an abuse of notation here: you denote by (−1) the signature
character, while one could think that it means the additive inverse of the trivial
character. Maybe it would not harm to introduce this notation explicitly.

• Proof of (7.1): On the fourth line from the bottom of page 33, you write
Qσh = P . It seems that you mean Qσh = Q here.

• Between (7.1) and (7.2): On page 34, you write: ”Since the lexicographic
order ≥ is a refinement of the partial order �, [...]”. It would be better if you
would define what you mean by ”refinement”, since this is not a standardized
notion and can be understood in two opposite ways. I think the preferred word
for what you mean by ”refinement” is ”extension”.

• Page 35: You write: ”As an example of how (7.3) is used to compute Y , [...]”.
The letter Y should be a boldfaced Y here.

Chapter 8

• Proof of (8.1): You write: ”Since
1

|SQ|
τQ is the primitive central idempotent

of CSQ corresponding to (−1)H , [...]”. The (−1)H here should be a (−1)SQ .

• Proof of (8.1): You write: ”Similarly, BχJπ′ = 0 unless (χ, φπ) 6= 0.” I don’t
see how this follows ”similarly” or how this is supposed to be true at all. Instead,
I see why we ”similarly” have Jπ′Bχ = 0 unless (χ, φπ′) 6= 0 (note that I have
switched the order of Jπ′ and Bχ and replaced φπ by φπ′).

• Proof of (8.1): You write: ”Since CG is the sum of its minimal 2-sided ideals,
we have first that

Iπ ⊆
∑

(χ,ψπ) 6=0

Bχ,

[...]”. This is true, but this doesn’t help proving that IπJπ′ ⊆ Bχπ . What you
actually seem to use is

Jπ′ ⊆
∑

(χ,φπ′ ) 6=0

Bχ

(which follows from Jπ′Bχ = 0 unless (χ, φπ′) 6= 0, since CG is the sum of its
minimal 2-sided ideals).
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• The symmetric group Sn is sometimes denoted by G and sometimes by S in this
chapter. It wouldn’t harm to use consistent notation or to define these notations
explicitly.

• Between (8.2) and (8.3): You write: ”Since the v (T ) are permuted by S, they
must span an S-submodule of Xπ, but since Xπ is irreducible, they span Xπ.”
Here, you are silently using that the v (T ) are not all 0; this is not hard to see
(in fact, every T satisfies

v (T ) = fRτC = fR
∑
g∈SC

(−1)g g =
∑
g∈SC

(−1)g fRg =
∑
g∈SC

(−1)g fRg 6= 0

because the fRg are pairwisely different vectors in the basis
{
fP | P = π

}
of

Mπ) but some readers probably won’t notice the necessity unless it be pointed
out.

• Between (8.3) and (8.4): You write: ”We first observe that if σ ∈ C (T ) then
τCσ = (−1)σ τC [...]”. It is a mystery to me where the (−1)σ factor comes from.
Shouldn’t it be τCσ = τC instead?

• (8.4): Here, again, I think the (−1)σ factor should be removed.

• Between (8.6) and (8.7): You write: ”But every element of Ω0 in column k
is bigger than every element of Ω0 in column j, so that the largest element of T
which is moved by any x ∈ X is moved to a lower-numbered column.” The word
”any” here is ambiguous; it would be better if you replace ”by any x ∈ X” by
”by x” and put a ”Let x ∈ X be arbitrary.” before the whole sentence.

• (8.8): On the right hand side of the formula (8.8), there is a minor typo: The R
in (−1)g fRg

i
should be a calligraphic R.

• Proof of (8.7): You write: ”This implies that the coefficient of fR1 in (8.8) is a1

and that the coefficient of fP is 0 for P > C1.” Here, P > C1 should be P > R1

instead.

• Last line of page 39: The TQ here should be Q (or, more precisely, ”standard
Specht vectors which are smaller than TQ” should be ”standard Specht vectors
of standard tableaux whose row partitions are smaller than Q”).

• Proof of (8.9): Two lines above the statement of (8.10), you speak of ”the map
T → T ′ ”. The → arrow here should be a 7→ arrow.

• Proof of (8.9): One line above the statement of (8.10), you write: ”the disjoint
union of the standard tableaus of type λj (1 ≤ j ≤ s)”. The λj here should be
λ(j) instead.

Chapter 9

• (9.1): When you write ”the er are algebraically independent”, you mean only
the er for r > 0 (although you have defined e0 as well). I think this is worth a
mention.
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• (9.3): Similarly, when you write ”the hr are algebraically independent”, you
mean only the hr for r > 0 (although you have defined h0 as well).

Chapter 10

• Between (10.3) and (10.4): ”Note that if αj < 0 for some j, then the jth
column of Hα is zero, so we define aα = 0 if any αj = 0.” Of course, you mean
αj < 0 when you write αj = 0 here.

• (10.6): You write: ”In particular, the Schur functions of degree n are a Z-basis
for Λn.” The Z here should be a boldface Z.

• (10.8): In this formula,
∑
λ
hλ (z) should be

∑
k
hk (z).

• (10.11): It seems to me that the condition µ < λ should be µ > λ here.

Chapter 11

• Proof of (11.2): You refer to the ”Frobenius reciprocity (3.1)”. But the Frobe-
nius reciprocity was (4.1), not (3.1).

• Proof of (11.2): In the formula

ch (fg) =
(
f]gS

n+m

, ρ
)

= (f]g, ρSn×Sm) =
1

n!m!

∑
x,y

f (x) g (y) ρ (x, y) ,

the term f]gS
n+m

should be (f]g)S
n+m

.

• Between (11.3) and (11.4): When you say ”and moreover ([λ] , ψµ) = 0 for
µ < λ”, it seems to me that you mean µ > λ instead of µ < λ.

• Between (11.3) and (11.4): You write: ”It now follows easily from (7.2) that
[λ] = χλ [...]”. But this doesn’t seem that easy to me. The simplest argument
I can come up with is the following: Since [λ] is an irreducible character of
Sn, there exists some partition ρ (λ) of n such that [λ] = χρ(λ). Thus we have
defined a map ρ from the set of all partitions of n to itself. This map ρ is
injective (since for any two partitions λ and µ such that ρ (λ) = ρ (µ), we have
[λ] = χρ(λ) = χρ(µ) = [µ] and thus 1 = ([λ] , [λ]) = ([λ] , [µ]) = 〈sλ, sµ〉 = δλ,µ, so
that λ = µ), and thus a permutation of the set of partitions of n (since this set is

finite). Since
(
ψλ, χρ(λ)

)
=

(
χρ(λ), ψλ

)
= ([λ] , ψλ) = 1 6= 0, we have ρ (λ) � λ for

every λ by (7.2). Since � is a partial order and ρ is a permutation, this yields
ρ (λ) = λ for every λ, and thus [λ] = χρ(λ) = χλ, qed. Is there some simpler
argument that I fail to see?

• Between (11.4) and (11.5): You write: ”Moreover, since λ1 + r − 1 ≤ n with
equality iff λ2 = λ3 = · · · = λr = 1, there can be at most one term equal to
[n] in the expansion of any determinant of the form (11.3), and it occurs in the
expansion of exactly one such determinant [...]”. I would add ”(for fixed r)” here
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(because if we do not fix r, then it can occur in the expansion of more than one
such determinant).

• Between (11.4) and (11.5): In the determinant

det



[n− r + 1] 1 0 · · · 0
[n− r + 2] [1] 1 · · · 0

[1]
. . .

...
...

...
. . . 1

[n] [r − 2] · · · [1]

 ,

the [r − 2] should be [r − 1].

• Page 54: You write: ”In general, we need to evaluate a determinant of the form
det (fi (µj)) where fi is a monic polynomial of degree i.” Here I would rather say
”of degree r − i”, because otherwise you have to label the rows from 0 to n − 1
rather than from 1 to n which is a bit unusual.

Chapter 12

• Last line of page 55: Here you write hij (λ′) = hi,j (λ). The notations hij and
hi,j denote one and the same thing; it would be best to decide for one of them
throughout the text (I personally favor hi,j because it is less ambiguous).

• Last line of page 56: Here, ”for any integer 〈a〉” should be ”for any integer a”.

• Between (12.4) and (12.5): On page 57, you write: ”[...] we may as well
assume that there is some index i ≥ k such that µi > µk −m > µi+1, [...]”. For
the sake of completeness, it should be added here that µr+1 is supposed to mean
−1.

• Page 57, one line above the picture of the Young diagram: You write:
”and λ(k) = 0 for all other k”. The equation λ(k) = 0 is supposed to mean ”λ(k)

is not a partition”. The same mistake is repeated three lines below the picture
of the Young diagram.

• After 12.6: You notice correctly that the Murnaghan-Nakayama formula gen-
eralizes (8.9). I would add that it also generalizes (11.5).

Chapter 13

• First sentence of Chapter 13: ”In this section we define the Hecke algebra
(of type An−1) and prove that it is isomorphic to the group algebra Q [t]Sn.” But
I don’t think it is isomorphic to Q [t]Sn. Maybe it becomes isomorphic when
tensored with an appropriate field.

• (13.1): There are two mistakes here: First, 1 ≤ i ≤ n should be 1 ≤ i < n.
Besides, 1 ≤ i < n (in (13.1)) should be 1 ≤ i < n − 1. The second of these
mistakes is also repeated further below (between (13.1) and (13.2)).
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• Proof of (13.1): You leave out the proof of (13.1). However, you are not
winning much space by doing this, since it is very easy: Let Γ be the group with
generators γ1, γ2, ..., γn−1 subject to the relations

γiγi+1γi = γi+1γiγi+1 for each 1 ≤ i < n− 1;

γiγj = γjγi for all i and j satisfying |i− j| ≥ 2;

γ2
i = 1 for all 1 ≤ i < n.

Then, define a group homomorphism P : Γ → Sn by (P (γi) = σi for every 1 ≤ i < n)
(this homomorphism is well-defined, because the transpositions σ1, σ2, ..., σn−1

are easily seen to satisfy the relations (i), (ii) and (iii) of (13.1)). This homo-
morphism Γ is surjective (because Sn = 〈σ1, σ2, ..., σn−1〉). Now we can prove a
discrete analogue of (13.2):
(13.2’) Any element of Γ has the form wγ1,i for some i ≥ 0, where w ∈ 〈γ1, γ2, ..., γn−2〉

and where γi,j means

{
γn−iγn−i−1 · · · γn−j, if i ≤ j,

1, if i > j
.

In order to obtain a proof of (13.2’), it is enough to read the proof of (13.2) with
the following changes:
- replace every gi by γi;
- replace (t− 1)wgn−1 + tw by w;
- replace Hn by Γ;
- read ”word of the form” instead of ”Q [t]-linear combination of words of the
form”;
- read ”consists of” instead of ”is spanned by”.
Now, (13.2’) yields |Γ| ≤ n |〈γ1, γ2, ..., γn−2〉|, and thus by induction |Γ| ≤ n (n− 1) · · · 1 =
n! = |Sn|, so that the group homomorphism P : Γ → Sn must be bijective (since
it is surjective), and thus Γ ∼= Sn. This proves (13.1).

• The definition of a standard word (directly above (13.3)): You write:
”Inductively, we define w ∈ Hn to be a standard word if it is of the form w1g1,i

for some i ≥ 0, where w1 is a standard word in 〈g1, ..., gn−2〉.” This is slightly
ambiguous - namely, if we would blindly follow this definition, we would believe
that a standard word in 〈g1, ..., gn−2〉 means a word of the form w2g1,i for some
i ≥ 0, where w2 is a standard word in 〈g1, ..., gn−3〉. But this makes no sense (g1,i

is not in 〈g1, ..., gn−2〉 at all). Instead, a standard word in 〈g1, ..., gn−2〉 means
a word of the form w2g2,j for some j ≥ 1. It wouldn’t hurt to warn the reader
about this pitfall.

• Proof of (13.3): In order to prove that the standard words wσ are linearly
independent, you write: ”Moreover, if there were a relation∑

σ

pσ (t)wσ = 0

with pσ (t) ∈ Q [t] and gcd {pσ (t)} = 1, [...]”. But why can you assume that
gcd {pσ (t)} = 1 here? If the pσ (t) have a common factor and you want to cancel
it from them, you need the Hecke algebra to be torsionfree; is this trivial or have
you silently proven this somewhere?
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• First line of page 64: You write: ”is really not necessary in the sequel”. But
don’t you use (13.6) on page 69?

• (13.7): In the statement of (13.7), you write: ”If σ ∈ Sn fixes {1, ..., k} and
ρ ∈ Sn fixes {k + 1, ..., n}, [...]”. However, as the statement (iii) shows, you want
it exactly the other way round: you want σ to fix {k + 1, ..., n} (so that σ ∈ Sk)
and ρ to fix {1, ..., k} (so that ρ ∈ Sn−k).

Chapter 14

• Proof of (14.1): You write: ”namely we define

τn (wg1,i) = sτn−1 (wg2,i)

where w is a standard word in Hn−1”. Here you should add ”and i > 0”, because
for i = 0 this is wrong (and there is no need to define τn (wg1,i) for i = 0, because
wg1,i ∈ Hn−1 for i = 0 and τn is supposed to extend τn−1).

• Between (14.3) and (14.4): You write: ”So we may assume that w = w1g1,j

in (14.3) for some standard word w1 in Hn−1 and some j ≥ 2.” Here, j ≥ 2 should
be j ≥ 1.

• The end of page 68: When you write ”Now if we define θ by the equation
τ (θgi) = τ

(
θ−1g−1

i

)
, [...]”, it would be nice to add that the τ that you are using

here is actually a base extended version of the τ that you have defined before
(namely, it is extended to a map τ : Q (s, t, θ) → Q (s, t, θ)).

• First line of page 69: I think πn : Bn → Hn should be πn : Bn → Hn⊗Q (s, t, θ)
here.

• Example (about the trefoil) on page 69: In this example, you obtain the
formula

τ̂
(
g3
1

)
= (θs) θ3τ

(
(t− 1) g2

1 + tg1

)
= θ4s3

[
(t− 1)2 s+ (t− 1) t+ ts

]
.

Where does the s3 come from?

• Proof of (14.9): The last equation on page 70,

engn−1 = (en−1 + gn−1ρn−1) gn−1 = ten,

should be
engn−1 = (en−1 + en−1gn−1ρn−1) gn−1 = ten.

• Proof of (14.9): In the equation

engn−i = en−1ρngn−1 = ten−1ρn = ten

(this is the last equation in the proof), the gn−1 should be gn−i.

• Page 71: Here you say: ”From (14.9) we see that enHn is a one-dimensional
right ideal [...]”. But speaking about dimension makes sense only over a field.
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