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Errata and addenda by Darij Grinberg

I will refer to the results appearing in the book “Approche Duale des représen-
tations du groupe symétrique” by the numbers under which they appear in this
book (specifically, in its version of 29 August 2016).

Most of my corrections are written in English, as I don’t speak French well
enough.

9. Errata

• Page 2, Exemple 1.5: The words “permutation de Sn” are ambiguous: do
you mean a permutation in the set Sn (of which there are n!), or a per-
mutation of the set Sn (of which there are (n!)!) ? I know you mean the
former, but maybe not every reader does.

• Pages 1–13: Somewhere here you should introduce a few more notations
that you are using. Namely:

– If (V, ρ) is a representation of a group G, and if u is any element of
the group ring C [G], then the endomorphism ρ (u) of V is defined
as follows: Write u in the form u = ∑

g∈G
αgeg (with αg ∈ C), and set

ρ (u) = ∑
g∈G

αgρ (g). (You are using this notation, e.g., in the formulas

(a) and (b) on page 13.) Notice that ρ (u) depends C-linearly on u,
and that we have ρ

(
eg
)
= ρ (g) for each g ∈ G. Thus, the values ρ (u)

for u ∈ C [G] encode exactly the same information as the original
homomorphism ρ : G → GL (V).

– If G is a group, if χ : G → C is any map, and if u is any element
of the group ring C [G], then the complex number χ (u) is defined
as follows: Write u in the form u = ∑

g∈G
αgeg (with αg ∈ C), and set

χ (u) = ∑
g∈G

αgχ (g). (You are using this notation, e.g., in Lemme 3.4 on

page 39.) Notice that χ (u) depends C-linearly on u, and that we have
χ
(
eg
)
= χ (g) for each g ∈ G. Thus, the values χ (u) for u ∈ C [G]

encode exactly the same information as the original map χ : G → C.

• Page 3, Définition 1.7: Replace “Une représentation est dite irréductible”
by “Une représentation (V, ρ) est dite irréductible” (since you later refer
to both V and ρ in this sentence).
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• Page 3, Définition 1.7: Both in the definition of “indécomposable” and in
the definition of “irréductible”, a requirement that V 6= 0 should be added.

• Page 3, Remarque 1.8: You probably want to replace the word “irré-
ductibles” by “indécomposables”. (They are, of course, equivalent, but
only the version with “indécomposables” really follows directly from the
definitions).

• Page 3, Théorème 1.9: When you say “un nombre fini”, it might be use-
ful to point out that you are counting irreducible representations up to
isomorphism.

• Page 4, Démonstration de Corollaire 1.15: Replace “χVN ” by “χVN ”.

• Page 5, §1.2: When you define the “type cyclique”, it would be worthwhile
pointing out that cycles of size 1 (that is, cycles corresponding to fixed
points of σ) are included in the decomposition. (Many authors, particularly
those of introductory algebra texts, tend to omit them.)

• Page 6: In “et donc de représentations irréductibles de Sn”, replace “Sn”
by “Sn”.

• Page 8, Démonstration de Lemme 1.23: In “d’un seul paramètre αid”,
replace “id” by “Id”.

• Page 8, Démonstration de Lemme 1.23: You write: “Il n’est pas difficile de
vérifier la CNS suivante”.

From a sufficiently experienced point of view, this CNS is really not hard to
verify. However, I don’t think that omitting this proof is appropriate when
you are targeting an undergraduate readership. The proof is somewhat
similar to the proof of Lemme 1.31, and more difficult if anything; it is
strange that you present the latter in all its detail while leaving the former
entirely to the reader. At the very least, it’s reasonable to give some refer-
ences for the proof of your CNS (more precisely: of the fact that π ∈ Sn
can be written in the form στ with σ ∈ RS (T) and τ ∈ CS (T) if and only
if the condition (P) is satisfied):

– The fact that you are claiming (or, more precisely, the sufficiency of
your condition (P)) is implicit in the proof of Lemma 4.40 in:

Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwend-
ner, Dmitry Vaintrob, Elena Yudovina, Introduction to representation the-
ory, arXiv:0901.0827v5.

– The same fact is a particular case of Lemma 3 (b) in:

Graham Gill, Representation theory of the symmetric group: basic elements,
16 January 2006.
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– It is also a consequence of the Lemma in §2.3 of:

Claudio Procesi, Chapter 9: Tensor symmetry, 28 November 2005.

– It also follows from Lemma (2.6) in:

Stuart Martin, Part III Representation Theory, Lent Term 2013 (notes by
Clive Newstead), 26 April 2013

(applied to µ = λ, tλ = π−1 (T) and tµ = T).

– It also follows from Lemma 2 in §2 of:

William Crawley-Boevey, Lectures on representation theory and invariant
theory, 1999

(or, rather, is proven by a similar argument).

(I have only listed references freely available online; of course, there are
many others as well.)

• Page 9, Démonstration de Lemme 1.23: In “ne vérifiant pas (P)”, replace
the “(P)” by a textmode “(P)”.

• Page 10, Exemple 1.26: On the last line of this example, replace
“Vect ((u1 + · · ·+ un))” by “Vect ((e1 + · · ·+ en))”.

• Page 11, Démonstration de Proposition 1.27: Let me suggest a different
proof of Proposition 1.27 – one that does not apply the (somewhat ob-
scure) Lemme 1.19, but instead makes use of Proposition 1.28. (This is not
circular reasoning, because the proof of Proposition 1.28 does not rely on
Proposition 1.27 anywhere.)

Second proof of Proposition 1.27. We want to prove that Vλ is irreducible.
Since “irreducible” is equivalent to “indecomposable” (for a representation
of a finite group), it suffices to show that Vλ is indecomposable. Thus, let
us prove this. Since Cλ 6= 0, we have Vλ 6= {0}. Thus, it remains to show
that Vλ cannot be written in the form (V1 ⊕V2, ρ1 ⊕ ρ2) for two nonzero
subspaces V1 and V2.

Assume the contrary. Thus, Vλ = (V1 ⊕V2, ρ1 ⊕ ρ2) for two nonzero sub-
spaces V1 and V2. Thus, both subspaces V1 and V2 are stable under the
action of Sn. We have Vλ = V1 ⊕V2 and thus dim (Vλ) = dim (V1 ⊕V2) =
dim (V1) + dim (V2)︸ ︷︷ ︸

>0
(since V2 is nonzero)

> dim (V1). Hence, Vλ 6⊆ V1.

Let n1 and n2 be as in Proposition 1.28. Then, Proposition 1.28 yields
n1n2 | n!, so that n1n2 6= 0 and thus n2 6= 0. Now, C2

λ = n2Cλ 6= 0 (since
n2 6= 0 and Cλ 6= 0).

We have Cλ ∈ C [Sn]Cλ = Vλ = V1 ⊕ V2. Hence, there exist some v1 ∈ V1
and v2 ∈ V2 such that Cλ = v1 + v2. Consider these v1 and v2.
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If we had Cλ ∈ V1, then we would have Vλ = C [Sn] Cλ︸︷︷︸
∈V1

⊆ C [Sn]V1 ⊆ V1

(since Vλ is stable under the action of Sn), which would contradict Vλ 6⊆ V1.
Hence, we cannot have Cλ ∈ V1. In other words, we have Cλ /∈ V1.

We have v1 ∈ V1 ⊆ Vλ = C [Sn]Cλ. In other words, there exists some
w1 ∈ C [Sn] satisfying v1 = w1Cλ. Consider this w1.

The element x = Cλw1Cλ satisfies the equalities (1) and (2) from the proof
of Lemme 1.23 (because of (1.3) and (1.4)). Hence, x is a scalar multiple of
Cλ (as follows from Lemme 1.23). In other words, Cλw1Cλ = αCλ for some
α ∈ C. Consider this α. We have αCλ = Cλ w1Cλ︸ ︷︷ ︸

=v1∈V1

∈ CλV1 ⊆ V1 (since Vλ

is stable under the action of Sn). If α was nonzero, then we would have

Cλ =
1
α

Cλ︸︷︷︸
∈V1

∈ 1
α

V1 ⊆ V1, which would contradict Cλ /∈ V1. Hence, α

cannot be nonzero. Thus, α = 0. Hence, Cλw1Cλ = α︸︷︷︸
=0

Cλ = 0. Thus,

Cλ v1︸︷︷︸
=w1Cλ

= Cλw1Cλ = 0. Similarly, Cλv2 = 0. Now,

C2
λ = Cλ Cλ︸︷︷︸

=v1+v2

= Cλ (v1 + v2) = Cλv1︸︷︷︸
=0

+Cλv2︸︷︷︸
=0

= 0.

This contradicts C2
λ 6= 0. This contradiction shows that our assumption was

false. Hence, Vλ cannot be written in the form (V1 ⊕V2, ρ1 ⊕ ρ2) for two
nonzero subspaces V1 and V2. Thus, the representation Vλ is indecompos-
able (since Vλ 6= {0}), and therefore irreducible (since Maschke’s theorem
tells us that “irreducible” and “indecomposable” is the same thing). This
proves Proposition 1.27 again. �

• Page 12, Démonstration de Proposition 1.28: Replace “id” by “Id” twice in
this proof. (Maybe it is easier to just root out these errors by a find-replace?
Or do you use Id and id for two different things at some point?)

• Page 18, Démonstration de Lemma 2.2: On the second line of this proof,
the words “dans ce cas” sound somewhat inappropriate to me (you aren’t
really focussing on a case). Maybe something like “for this reason” would
be better.

• Page 18: The last equality sign in the equality

χλ (π) := Tr (ρ (π)) = Tr (ϕλ,π)

=
dim (Vλ)

n! ∑
σ∈Sn

σ∈RS(T)

∑
τ∈Sn

τ∈CS(T)

ε (τ)Tr (x 7→ eπ · x · eσ · eτ)
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requires some work to verify; maybe it’s better to add some explanation
such as “because the definition of ϕλ,π becomes

ϕλ,π =
dim (Vλ)

n!
(x 7→ eπ · x · Cλ) (by the definition of pλ)

=
dim (Vλ)

n! ∑
σ∈Sn

σ∈RS(T)

∑
τ∈Sn

τ∈CS(T)

ε (τ) (x 7→ eπ · x · eσ · eτ)

(by the definition of Cλ) .

”.

• Page 18: Before “Nous allons manipuler”, I’d suggest adding something
like “Therefore,

n!χλ (π)

dim (Vλ)
= ∑

σ∈Sn
σ∈RS(T)

∑
τ∈Sn

τ∈CS(T)

ε (τ)Card {g ∈ Sn | g = π · g · σ · τ}

= ∑
σ∈Sn

σ∈RS(T)

∑
τ∈Sn

τ∈CS(T)

ε (τ) ∑
g∈Sn

δg,π·g·σ·τ = ∑
g∈Sn

∑
σ∈RS(T)
τ∈CS(T)

ε (τ) δg,π·g·σ·τ.

”. This would help bridge the gap to the computations on page 19 (which
otherwise seem to come out of the blue).

• Page 19: Replace “δπ=τ′σ′” by “δπ,τ′σ′”.

• Page 19: Replace “δπ=τσ” by “δπ,τσ”.

• Page 19: Replace “CS (T)” by “CS (T)” (twice on this page).

Also, replace “RS (T)” by “RS (T)”.

(Again, this kind of mistake might be susceptible to an automated search.)

• Page 20, Remarque 2.6: Replace “CS (T)” by “CS (T)”.

Also, replace “RS (T)” by “RS (T)”.

• Page 21, Démonstration de Proposition 2.7: Replace “de la définition
(2.5)” by “de la Définition 2.5”. (You are citing a definition, not a formula.)

• Page 22, Démonstration de Proposition 2.7: Replace “sont dans la même
case” by “sont la même case”.

• Page 22, Démonstration de Proposition 2.7: In the last equation in this
proof, replace the “ε (τ)” (on the right hand side) by an “ε (τ̌)” (and maybe
add a justification, such as “because ε

(
τ|{1,...,k}

)
= ε (τ)”).
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• Page 22, Exemple 2.9: Replace “∈ S2” by “∈ S2”.

• Page 23, Exemple 2.9: Replace “Le théorème nous donne” by “Proposition
2.7 nous donne”.

• Page 24, Démonstration de Théorème 2.13: In this proof, you are using

the notation δA for

{
1, if A is true;
0, if A is false

when A is any logical statement. It

might be worth defining this notation.

• Page 26, Corollaire 2.16: Replace “dim (Vp×q)” by “dim
(
Vp×q

)
”.

• Page 26, Remarque 2.17: Replace “dim (Vp×q)” by “dim
(
Vp×q

)
”.

• Page 27, Corollaire 2.22: I’d clarify here that λ is considered fixed.

• Page 27, Exemple 2.24: These aren’t all the possible graphs; you are miss-
ing the ones where one of V◦ (G) and V• (G) is empty :)

• Page 27, Exemple 2.24: I don’t think you have ever defined the notation
` (λ) for the length of a partition λ.

• Page 27, Remarque 2.25: I know it looks totally obvious, but it wouldn’t
hurt to explain what the “sommets blancs” of a bipartite graph G are
(namely, the elements of V◦ (G)), and what the “sommets noirs” of a bi-
partite graph G are (namely, the elements of V• (G)).

• Page 29, Proposition 2.31: The sum on the right hand side has many un-
defined addends. You should either replace “ϕ : VG → N∗” by “ϕ : VG →
{1, 2, . . . , m}” under the summation sign (saying that m is the size of p), or
define the values pi and qi to be 0 for i > m.

• Page 29, Démonstration de Proposition 2.31: You write: “On part du
lemme 2.19”, but the setting of Proposition 2.31 is more general than the
setting of Lemme 2.19 (for example, the bipartite graph G in Proposition
2.31 may have isolated vertices, which can never happen for a bipartite
graph of the form Gσ,τ). You probably want to refer to Définition 2.23
instead. Furthermore, whenever you refer to “(?)h”, you mean the third
condition in Définition 2.23.

• Page 29, Démonstration de Proposition 2.31: Replace “ϕ (v) = j si q1 +
· · · + qj−1 < hc (v) ≤ q1 + · · · + qj” by “ϕ (v) = j si qj+1 + · · · + qm <
hc (v) ≤ qj + · · ·+ qm”.

• Page 31, Proposition 2.39: The graphs in this bijection should not be al-
lowed to have isolated vertices.
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• Page 35, Notes et références: You seem to write (my bad grasp of French
might be misleading me here) that Young symmetrizers have (surprisingly)
not been previously used to compute characters of Sn. This doesn’t seem
true to me. In §36–§38 of Daniel Edwin Rutherford’s Substitutional Analysis,
these characters are computed using the material previously studied in the
book, which includes both Young symmetrizers and Young’s seminormal
form; this is more complicated than your argument, but still doesn’t use
symmetric functions.

• Page 37: After “et l’appellerons le caractère normalisé”, add a period.

• Page 38, §2.1: You say that “Λ est une algèbre”, and that this follows
from Proposition 3.3. Maybe it is worth pointing out one more step in this
argument: Namely, the function Ch∅ (corresponding to the partition ∅ of
0) sends every partition λ to

|λ| (|λ| − 1) · · · (|λ| − 0 + 1)︸ ︷︷ ︸
=(empty product)=1

χ̂λ (Id)︸ ︷︷ ︸
=

χλ (Id)
dim (Vλ)

=
χλ (Id)

dim (Vλ)
=

1
dim (Vλ)

χλ (Id)︸ ︷︷ ︸
=Tr(ρλ(id))
=dim(Vλ)

=
1

dim (Vλ)
dim (Vλ) = 1.

Hence, Ch∅ is the unity of the algebra of all functions on the set of all
Young diagrams. Therefore, the latter unity belongs to Λ. Hence, in order
to prove that Λ is an algebra, it suffices to prove Proposition 3.3.

• Page 39, Lemme 3.4: It is not necessary to relegate the proof of Lemme 3.4
to [Sag 01]. Here is a simple proof using nothing but the results shown in
Chapter 1 of your book:

Proof of Lemme 3.4. Assume that x ∈ C [Sn] is central.

The element x of C [Sn] is central. In other words, x lies in the center of the
ring C [Sn]. Hence, xCλ = Cλx. Hence, every σ ∈ RS (T) satisfies

eσ · xCλ︸︷︷︸
=Cλx

= eσ · Cλ︸ ︷︷ ︸
=Cλ

(by (1.3))

x = Cλx = xCλ. (1)

Moreover, every τ ∈ CS (T) satisfies

x Cλ · eτ︸ ︷︷ ︸
=ε(τ)Cλ
(by (1.4))

= ε (τ) xCλ. (2)

But Lemme 1.23 shows that if some element y ∈ C [Sn] satisfies

(eσ · y = y for every σ ∈ RS (T))
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and
(y · eτ = ε (τ) y for every τ ∈ CS (T)) ,

then y is a scalar multiple of Cλ. Applying this to y = xCλ, we conclude
that xCλ is a scalar multiple of Cλ (since we have (1) for every σ ∈ RS (T),
and since we have (2) for every τ ∈ CS (T)). In other words, there exists
some scalar γ ∈ C such that xCλ = γCλ. Consider this γ.

Now, let w ∈ Vλ. Then, w ∈ Vλ = C [Sn]Cλ. In other words, there exists
some u ∈ C [Sn] such that w = uCλ. Consider this u. We have xu = ux
(since x lies in the center of the ring C [Sn]). Now,(

ρλ (x)
)
(w) = x w︸︷︷︸

=uCλ

= xu︸︷︷︸
=ux

Cλ = u xCλ︸︷︷︸
=γCλ

= γ uCλ︸︷︷︸
=w

= γw =
(
γ IdVλ

)
(w) .

Now, forget that we fixed w. We thus have shown that
(
ρλ (x)

)
(w) =(

γ IdVλ

)
(w) for each w ∈ Vλ. In other words, ρλ (x) = γ IdVλ

. But the
definition of the character χλ yields

χλ (x) = Tr

ρλ (x)︸ ︷︷ ︸
=γ IdVλ

 = Tr
(
γ IdVλ

)
= γ Tr

(
IdVλ

)︸ ︷︷ ︸
=dim(Vλ)

= γ dim (Vλ) .

Now, the definition of χ̂λ yields χ̂λ (x) =
χλ (x)

dim (Vλ)
= γ (since χλ (x) =

γ dim (Vλ)). Now,

ρλ (x) = γ︸︷︷︸
=χ̂λ(x)

IdVλ
= χ̂λ (x) IdVλ

.

This proves Lemme 3.4. �

• Page 40, Démonstration de Proposition 3.3: After the word “Ainsi”, re-
place “Ch(2,1) (λ)” by “Ch(2) (λ) ·Ch(2) (λ)”.

• Page 41: How exactly do you mean the word “planaire” in “{M ∈ Mk, M planaire}”?
Do you mean that the underlying graph is planar, or does there have to be
a planar embedding under which the “système de rotation” goes counter-
clockwise around each vertex?

(This asked, you don’t seem to use this characterization of Tk anywhere;
thus, maybe it is better left to some footnote, where it is less likely to trip
up readers?)

• Page 41: Replace “Cette famille correspond aux factorisations στ = ζk” by
“Cette famille correspond aux factorisations τσ = ζk”.
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• Page 41, Définition 3.8: Remove the first option (“soit un sommet noir
seul •,”). Indeed, a node with no children is already covered by the second
option (since the “liste ordonnée d’arbres plans enracinés” can be an empty
list). That said, of course, it’s worth pointing out that the list is allowed to
be empty, which allows you to construct “the first rooted plane tree” out
of nothing.

• Pages 41–42, Démonstration de Lemme 3.10: I find this somewhat too
brief. Maybe it is worth at least pointing out why the map constructed is
unicellular (intuitively, walking along the edges starting from the chosen
edge performs something like a left-to-right depth-first traversal of the tree;
I am not sure about the details myself).

• Page 42: Maybe replace “en restreignant dans Ch(l−1)” by “en restreignant

dans Ch(l−1) = (−1)l−1 ∑
M∈Ml−1

(−1)|V•(M)| NG(M)”. (Otherwise it is not

clear where there is a sum in Ch(l−1); after all, the definition Ch(l−1) in-
volves no summations.)

• Page 42, Définition 3.12: I would replace “ ∑
T arbre plan enraciné

à l sommets
(l−1 arêtes)

” by “ ∑
T∈Tl−1

”.

(In writing “ ∑
T arbre plan enraciné

à l sommets
(l−1 arêtes)

(−1)|V•(T)| NG(T)”, you are tacitly using the

bijection from Lemme 3.10 to identify plane binary trees with elements of
Tk. I don’t think this is a good idea, seeing that your proof of Lemme 3.10
is rather sketchy and that the identification creates fertile ground for con-
fusion, as you point out yourself in Remarque 3.11. My suggested replace-
ment avoids this identification. As far as I understand, you don’t really
use the “arbres plans enracinés” anywhere outside Lemme 3.10; therefore
it seems unreasonable to invoke them in Définition 3.12.)

• Page 42, Proposition 3.14: I would replace “vect
(
Chµ

)
” by “vect

(
Chµ

)
=

Λ”, so that the reader won’t have to wonder why you are suddenly cir-
cumscribing Λ.

• Page 42, Proposition 3.14: Is this obvious, or are you intending to prove
this later, or are you omitting the proof? Maybe a few words could clear
this up.

• Page 61, Lemme 4.17: Instead of “τi et σi permutent les mêmes éléments
que πi”, I would suggest “τi et σi sont des permutations de l’ensemble des
éléments du cycle πi” (or whatever is the closest correct French sentence
to this). Your formulation falsely suggests that τi and σi actually have
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to nontrivially permute the elements of πi (i.e., cannot leave any of them
fixed).

• Page 61, Remarque 4.18: I would add the extra observation (between the
first observation and the second observation) that

C (σ) =
s⊔

i=1

C (σi) and C (τ) =
s⊔

i=1

C (τi)

(since the permutations σ1, σ2, . . . , σs act on disjoint sets, and so do the
permutations τ1, τ2, . . . , τs). This is a useful step towards the second obser-
vation you make (about decomposing the graph Gσ,τ as a disjoint union).

10. An approach to Proposition 3.38

Here is something more speculative. I am just as vexed as you seem to be
about the fact that no elementary proof of Proposition 3.38 is known. To me,
it says that we are missing some insights about matchings in bipartite graphs
that perhaps could shed a new light on matching theory. (You don’t actually
mention matchings, but transport polytopes are closely related to them, and the
“expanseur” condition has a well-known interpretation in terms of existence of
matchings at least in the particular case where each v ∈ V◦ satisfies h (◦) = 2.)
I have been trying for a while to find the missing insights (independently from
your [DFŚ 10] paper because I don’t speak the language of polytopes), and I
have something that looks like a partial result. Maybe you see a way to complete
it?

I call a decorated graph (G, h) a semi-expander if each subset V of V◦ satisfies∣∣∣V (V)
∣∣∣ ≥ ∑

◦∈V
h (◦). Thus, expanders1 are always semi-expanders, but not vice

versa.
If V◦ and V• are two finite sets, and if k is a nonnegative integer, then I intro-

duce the following notations:

• A map ϕ : V◦ t V• → N∗ is k-packed if ϕ (V◦) = ϕ (V•) = {1, 2, . . . , k}.
(Notice that a k-packed map ϕ : V◦ t V• → N∗ can exist only if |V◦| ≥ k
and |V•| ≥ k.)

• Now, let h : V◦ → {2, 3, 4, . . .} be a map. A map ϕ : V◦ t V• → N∗ is said
to be h-equitable if each i ∈N∗ satisfies

∣∣ϕ−1 (i)
∣∣ = ∑

◦∈V◦;
ϕ(◦)=i

h (◦).

I can prove the following fact:

1I have taken the liberty to translate your “graph expanseur” as “expander”. I don’t know
whether this is reasonable...
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Proposition 10.1. Let (G, h) be a decorated graph that is a semi-expander.
Then,

∑
k≥0

(−1)k ∑
ϕ:V◦tV•→N∗ is k-packed

and h-equitable

[ϕ is increasing on G]

= (−1)Con(G) [(G, h) is an expander] .

(Here, as usual, the Iverson bracket notation [A] for the truth value of a state-
ment A is used; you seem to call it δA.)

How does this proposition help?
It lets us deduce your Proposition 3.38 easily from a variant of your Proposi-

tion 3.192 under the extra assumption that all the (G \ E′, h) involved are semi-
expanders. This obnoxious assumption is what stands between this approach
and a self-contained proof of your Proposition 3.38.3

My questions thus are the following:

• Question 1: Can we find a formula similar to Proposition 10.1 but without
requiring (G, h) to be a semi-expander? This formula would represent
(−1)Con(G) [(G, h) is an expander] as a linear combination of terms of the
form [ϕ is increasing on G] for varying ϕ : V◦ tV• →N∗ (with coefficients
dependent on h but independent of G). Thus, roughly speaking, we want
to tell if (G, h) is an expander (and whether it has an even or an odd
number of connected components) by probing lots of maps ϕ : V◦ tV• →
N∗ for their increasingness on G.

• Question 2: My proof of Proposition 10.1 is not as simple as I’d prefer it
to be. It starts by showing that the set of all subsets V of V◦ satisfying∣∣∣V (V)

∣∣∣ = ∑
◦∈V

h (◦) is a sublattice of the Boolean lattice of all subsets of V◦

2Here is the variant I am talking about:
Let us use the notation of your Proposition 3.19. Let ϕ : V◦ tV• →N∗ be any map. Then,

∑
E′⊆E−→

C

(−1)|E
′ | [ϕ is increasing on G \ E′

]
= 0.

(Of course, the proof of this is similar to the proof of your Proposition 3.19.)
3Moreover, if we can somehow get this assumption lifted, then we might also be able to simplify

your argument: Your approach is to prove Proposition 3.38 and then use it to define a linear
functional Iν (on the space of all polynomials in the variables p1, p2, p3, . . . , q1, q2, q3, . . .) that
satisfies

Iν (NG) = Iν (G) for each bipartite graph G. (3)

I believe that this detour is unnecessary: We should instead be able to define the linear
functional Iν directly, and then use it to prove Proposition 3.38. Thus, the problem is shifted
to defining Iν. Again, this could be done if not for the “semi-expander” assumption in
Proposition 10.1.
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4. Then, it proceeds by observing that this sublattice is a Boolean lattice of
rank Con (G) if (G, h) is an expander, and otherwise has some behavior5

which quickly dooms it to having Möbius function 0; therefore, its Möbius
function is always (−1)Con(G) [(G, h) is an expander]. Finally, Proposition
10.1 is obtained from this by comparing this with another evaluation of
the Möbius function, viz. Philip Hall’s theorem (Proposition 3.8.5 in Stan-
ley’s Enumerative Combinatorics volume 1), and re-encoding it via decreasing
maps.

I suspect that there should be an easier proof, using a sign-reversing invo-
lution with few fixed points (the way such identities are usually proven in
combinatorics). The involution should probably act on the set⊔
k≥0

{h-equitable k-packed maps ϕ : V◦ tV• →N∗ that are increasing on G} .

I furthermore would not be surprised if the involution uses what Benedetti
and Sagan (arXiv:1410.5023v4) call the “split-merge technique”: i.e.,

– under some conditions (the “splitting case”), the involution maps a
k-packed map ϕ to a (k + 1)-packed map ϕ′ given by

ϕ′ (v) =


ϕ (v) , if ϕ (v) < i;
i, if ϕ (v) = i and C (v) holds;
i + 1, if ϕ (v) = i and C (v) does not hold;
ϕ (v) + 1, if ϕ (v) > i

for all v ∈ V◦tV•

where i is some number and C is some predicate;

– under some other conditions (the “merging case”), the involution
maps a k-packed map ϕ to a (k− 1)-packed map ϕ′ given by

ϕ′ (v) =


ϕ (v) , if ϕ (v) < i;
i, if ϕ (v) ∈ {i, i + 1} ;
ϕ (v)− 1, if ϕ (v) > i + 1

for all v ∈ V◦ tV•

where i is some number;

– in the remaining (rare) cases, the involution sends ϕ to ϕ.

If we are lucky, then this involution might generalize to an answer to Ques-
tion 1 as well.

4This is actually a particular case of a known fact about cuts in networks: See, e.g., Exercise 7
on UMN Math 5707 Spring 2017 homework set #5.

5Specifically: It is a bounded lattice that is not complemented.
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