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***

This is just a skeleton of what will hopefully become a paper.
The paper will construct a new family (ηα)α∈Comp of quasisymmetric functions

that is a basis of QSym whenever 2 is invertible in the base ring. We will show a
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formula for expanding products of the form ηαηβ as Z-linear combinations of ηγ’s,
and we will apply it to partially solve [Grinbe18, Question 2.51].

Once again: this is nowhere near finished (partially more of a todo list than a
paper).
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1. Introduction

1.1. Formal power series and quasisymmetry

We will use some of the standard notations from [GriRei20, Chapter 5]. Namely:

• We let N = {0, 1, 2, . . .}.

• We fix a commutative ring k.

• We consider the ring k [[x1, x2, x3, . . .]] of formal power series in countably
many commuting variables x1, x2, x3, . . .. A monomial shall mean a formal
expression of the form xα1

1 xα2
2 xα3

3 · · · , where α = (α1, α2, α3, . . .) ∈ N∞ is a
sequence of nonnegative integers such that only finitely many αi are posi-
tive. Formal power series are formal infinite k-linear combinations of such
monomials.

• Each monomial xα1
1 xα2

2 xα3
3 · · · has degree α1 + α2 + α3 + · · · .

• A formal power series f ∈ k [[x1, x2, x3, . . .]] is said to be of bounded degree if
there exists some d ∈ N such that each monomial in f has degree ≤ d (that
is, each monomial of degree > d has coefficient 0 in f ).

For example, the formal power series (x1 + x2 + x3 + · · · )3 is of bounded degree,

but the formal power series
1

1− x1
= 1 + x1 + x2

1 + x3
1 + · · · is not.
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Question: What do the monomials x4
1x7

3x4x2
9 and x4

3x7
4x10x2

16 and x4
5x7

6x8x2
9 have

in common (but not in common with x7
1x4

3x4x2
9) ?

Answer: They have the same sequence of nonzero exponents (when the variables
are ordered in increasing order – i.e., if i < j, then xi goes before xj). Or, to put it
differently, they all have the form x4

ax7
bxcx2

d for some a < b < c < d. We shall call
such monomials pack-equivalent.

Let us define this concept more rigorously:

Definition 1.1. Two monomials m and n are said to be pack-equivalent if they can
be written in the forms

m = xa1
i1

xa2
i2
· · · xa`

i`
and n = xa1

j1
xa2

j2
· · · xa`

j`

for some ` ∈ N, some positive integers a1, a2, . . . , a` and two strictly increasing
`-tuples (i1 < i2 < · · · < i`) and (j1 < j2 < · · · < j`) of positive integers.

For example, the monomials x4
1x7

3x4x2
9 and x4

3x7
4x10x2

16 are pack-equivalent, since
they can be written as x4

1x7
3x4x2

9 = xa1
i1

xa2
i2
· · · xa`

i`
and x4

3x7
4x10x2

16 = xa1
j1

xa2
j2
· · · xa`

j`
for

` = 4 and (a1, a2, . . . , a`) = (4, 7, 1, 2) and (i1 < i2 < · · · < i`) = (1, 3, 4, 9) and
(j1 < j2 < · · · < j`) = (3, 4, 10, 16).

Definition 1.2. (a) A formal power series f ∈ k [[x1, x2, x3, . . .]] is quasisymmetric
if it has the property that any two pack-equivalent monomials have the same
coefficient in f (that is: if m and n are two pack-equivalent monomials, then the
coefficient of m in f equals the coefficient of n in f ).

(b) A quasisymmetric function means a formal power series f ∈ k [[x1, x2, x3, . . .]]
that is quasisymmetric and of bounded degree.

Quasisymmetric functions are studied in [GriRei20, Chapters 5–6], [Stanle01,
§7.19], [Sagan20, Chapter 8] and elsewhere.

It is known ([GriRei20, Proposition 5.1.3]) that the set of all quasisymmetric func-
tions is a k-subalgebra of k [[x1, x2, x3, . . .]]. It is denoted by QSym and called the
ring of quasisymmetric functions. It has several bases (as a k-module), most of which
are indexed by compositions.

1.2. Compositions

A composition means a finite list (α1, α2, . . . , αk) of positive integers. The set of all
compositions will be denoted by Comp. The empty composition ∅ is the composition
(), which is a 0-tuple.

The length ` (α) of a composition α = (α1, α2, . . . , αk) is defined to be the number
k.

If α = (α1, α2, . . . , αk) is a composition, then the nonnegative integer α1 + α2 +
· · ·+ αk is called the size of α and is denoted by |α|. For any n ∈ N, we define a
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composition of n to be a composition that has size n. We let Compn be the set of
all compositions of n (for given n ∈ N). The notation “α |= n” is short for “α ∈
Compn”. For example, (1, 5, 2, 1) is a composition with size 9, so that |(1, 5, 2, 1)| =
1 + 5 + 2 + 1 = 9, so that (1, 5, 2, 1) ∈ Comp9, or, in other words, (1, 5, 2, 1) |= 9.

For any n ∈ Z, we let [n] denote the set {1, 2, . . . , n}. This set is empty whenever
n ≤ 0, and otherwise has size n.

It is well-known that any positive integer n has exactly 2n−1 compositions. This
has a standard bijective proof (“stars and bars”) which is worth recalling in detail,
as the bijection itself will be used a lot:

Definition 1.3. Let n ∈ N. Let P ([n− 1]) be the powerset of [n− 1] (that is, the
set of all subsets of [n− 1]).

(a) We define a map D : Compn → P ([n− 1]) by

D (α1, α2, . . . , αk) = {α1 + α2 + · · ·+ αi | i ∈ [k− 1]}
= {α1 < α1 + α2 < α1 + α2 + α3 < · · · < α1 + α2 + · · ·+ αk−1} .

(b) We define a map comp : P ([n− 1]) → Compn as follows: For any I ∈
P ([n− 1]), we set

comp (I) = (i1 − i0, i2 − i1, . . . , im − im−1) ,

where i0, i1, . . . , im are the elements of the set I∪{0, n} in increasing order (so that
i0 < i1 < · · · < im, therefore i0 = 0 and im = n and {i1 < i2 < · · · < im−1} = I).

The maps D and comp are mutually inverse bijections. (See [Grinbe15, de-
tailed version, Proposition 10.17] for a detailed proof of this.)

The notation D we just introduced presumably originates in the word “descent”,
but the connection between D and actual descents is indirect and rather misleading.
I prefer to call D the “partial sum map” (as D (α) consists of the partial sums of the
composition α) and its inverse comp the “interstitial map” (as comp (I) consists of
the lengths of the intervals into which the elements of I split the interval [n]).

Note that every composition α of size |α| > 0 satisfies |D (α)| = ` (α) − 1, so
that |D (α)|+ 1 = ` (α). But this fails if α is the empty composition ∅ = () (since
D () = ∅ and ` () = 0).

1.3. The monomial and fundamental bases of QSym

We will only need two bases of QSym: the monomial basis and the fundamental
basis.

If α = (α1, α2, . . . , α`) is a composition, then we define the monomial quasisymmet-
ric function Mα ∈ QSym by

Mα = ∑
i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
= ∑

m is a monomial pack-equivalent
to x

α1
1 xα2

2 ···x
α`
`

m. (1)
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For example,

M(2,1) = ∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + x2
1x4 + x2

2x4 + x2
3x4 + · · · .

The family (Mα)α∈Comp is a basis of the k-module QSym, and is known as the
monomial basis of QSym.

For any composition α, we define the fundamental quasisymmetric function Lα ∈
QSym by

Lα = ∑
β∈Compn;

D(β)⊇D(α)

Mβ, (2)

where n = |α| (so that α ∈ Compn). It is not hard to rewrite this as

Lα = ∑
i1≤i2≤···≤in;

ij<ij+1 whenever j∈D(α)

xi1 xi2 · · · xin (3)

(again with n = |α|). This quasisymmetric function Lα is sometimes denoted by Fα.
The family (Lα)α∈Comp is a basis of the k-module QSym, and is known as the

fundamental basis of QSym.
Using Möbius inversion on the Boolean lattice P ([n− 1]), the definition (2) of

the fundamental basis can be turned around to obtain an expression of the Mα in
the fundamental basis. Namely, if α is a composition, and if n = |α|, then

Mα = ∑
β∈Compn;

D(β)⊇D(α)

(−1)`(β)−`(α) Lβ.

(See [GriRei20, Proposition 5.2.8] for more details of the proof. In a nutshell, the
equality follows from Möbius inversion using the fact that |D (β) \ D (α)| = ` (β)−
` (α) whenever α, β ∈ Compn satisfy D (β) ⊇ D (α).)

2. The η-basis of QSym

2.1. The η-functions

I shall now define a new family of quasisymmetric functions:

Definition 2.1. For any n ∈ N and any composition α ∈ Compn, we define a
quasisymmetric function ηα ∈ QSym by

ηα = ∑
β∈Compn;

D(β)⊆D(α)

2`(β)Mβ. (4)
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Example 2.2. (a) Setting n = 5 and α = (1, 3, 1) in this definition, we obtain

η(1,3,1) = ∑
β∈Comp5;

D(β)⊆D(1,3,1)

2`(β)Mβ = ∑
β∈Comp5;

D(β)⊆{1,4}

2`(β)Mβ (since D (1, 3, 1) = {1, 4})

= 2`(5)M(5) + 2`(1,4)M(1,4) + 2`(4,1)M(4,1) + 2`(1,3,1)M(1,3,1)

(since the compositions β ∈ Comp5 satisfying D (β) ⊆ {1, 4} are (5), (1, 4), (4, 1)
and (1, 3, 1)). This simplifies to

η(1,3,1) = 2M(5) + 4M(1,4) + 4M(4,1) + 8M(1,3,1).

(b) For any positive integer n, we have η(n) = 2M(n), because the only com-
position β ∈ Compn satisfying D (β) ⊆ D (n) is the composition (n) itself (since
D (n) is the empty set ∅) and has length ` (n) = 1. Likewise, the empty compo-
sition ∅ = () satisfies η∅ = M∅.

When α is an odd composition (i.e., all entries of α are odd), our definition of
ηα is precisely the one given in [AgBeSo14, (6.1)], and differs only in sign from
the one given in [Hsiao07, (2.1)] (because of [Hsiao07, Proposition 2.1]). Our main
innovation is extending this definition to arbitrary compositions α.

The following is easy to see:

Proposition 2.3. Let n ∈N and α ∈ Compn. Then,

ηα = ∑
g=(g1≤g2≤···≤gn);

gi=gi+1 for each i∈[n−1]\D(α)

2|{g1,g2,...,gn}|xg1 xg2 · · · xgn ,

where the sum is over all weakly increasing n-tuples g = (g1 ≤ g2 ≤ · · · ≤ gn)
of positive integers that satisfy (gi = gi+1 for each i ∈ [n− 1] \ D (α)).

Proof. TODO. The slickest way to prove this is using the definition of ηα and
[Grinbe15, detailed version, Proposition 10.10].

Proposition 2.4. Let α = (α1, α2, . . . , αk) ∈ Comp. Then,

ηα = ∑
h1≤h2≤···≤hk

2|{h1,h2,...,hk}|xα1
h1

xα2
h2
· · · xαk

hk
.

Proof. TODO. The slickest way to prove this is by imitating [Grinbe15, detailed
version, Proposition 10.69], after realizing that Proposition 2.3 rewrites as

ηα = ∑
g=(g1≤g2≤···≤gn);

{j∈[n−1] | gj<gj+1}⊆D(α)

2|{g1,g2,...,gn}|xg1 xg2 · · · xgn .
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We can also write the ηα in the fundamental basis:

Proposition 2.5. Let n be a positive integer. Let α ∈ Compn. Then,

ηα = 2 ∑
γ∈Compn

(−1)|D(γ)\D(α)| Lγ.

This proposition generalizes [Hsiao07, Proposition 2.2], and is a bit similar to the
discrete Radon transform on a hypercube ([Stanle18, ca. Theorem 2.2]).

It can be proved using the following simple binomial identity:

Lemma 2.6. Let S and T be two finite sets. Then,

∑
I⊆S

(−1)|I\T| =

{
2|S|, if S ⊆ T;
0, otherwise

.

Proof of Lemma 2.6. Here is a sketch; a detailed proof can be found in [Grinbe20,
solution to Exercise 2.9.11].

If S ⊆ T, then each subset I of S satisfies I \T = ∅, and thus the sum ∑
I⊆S

(−1)|I\T|

is a sum of 2|S| many addends each equal to (−1)|∅| = 1. On the other hand, if
S 6⊆ T, then there exists some v ∈ S such that v /∈ T, and therefore the addends
of the sum ∑

I⊆S
(−1)|I\T| cancel each other out in pairs (viz., for each subset K of

S \ {v}, the addend for I = K cancels the addend for I = K ∪ {v}); thus, the sum
is 0 in this case.

Proof of Proposition 2.5. We have

2 ∑
γ∈Compn

(−1)|D(γ)\D(α)| Lγ︸︷︷︸
= ∑

β∈Compn;
D(β)⊇D(γ)

Mβ

(by the definition of Lγ)

= 2 ∑
γ∈Compn

(−1)|D(γ)\D(α)| ∑
β∈Compn;

D(β)⊇D(γ)

Mβ

= 2 ∑
β∈Compn

∑
γ∈Compn;

D(β)⊇D(γ)

(−1)|D(γ)\D(α)| Mβ.
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But every β ∈ Compn satisfies

∑
γ∈Compn;

D(β)⊇D(γ)

(−1)|D(γ)\D(α)| = ∑
I⊆[n−1];
D(β)⊇I

(−1)|I\D(α)|

(
here, we have substituted I for D (γ) in the sum,

since the map D : Compn → P ([n− 1]) is a bijection

)
= ∑

I⊆D(β)

(−1)|I\D(α)|

=

{
2|D(β)|, if D (β) ⊆ D (α) ;
0, otherwise

(by Lemma 2.6) .

Hence, this becomes

2 ∑
γ∈Compn

(−1)|D(γ)\D(α)| Lγ

= 2 ∑
β∈Compn

∑
γ∈Compn;

D(β)⊇D(γ)

(−1)|D(γ)\D(α)|

︸ ︷︷ ︸
=

2|D(β)|, if D (β) ⊆ D (α) ;
0, otherwise

Mβ

= 2 ∑
β∈Compn

{
2|D(β)|, if D (β) ⊆ D (α) ;
0, otherwise

Mβ

= 2 ∑
β∈Compn;

D(β)⊆D(α)

2|D(β)|Mβ = ∑
β∈Compn;

D(β)⊆D(α)

2|D(β)|+1︸ ︷︷ ︸
=2`(β)

(since |D(β)|+1=`(β))

Mβ

= ∑
β∈Compn;

D(β)⊆D(α)

2`(β)Mβ = ηα (by the definition of ηα) .

2.2. The antipode of ηα

The antipode of QSym is a certain k-linear map S : QSym → QSym that can be
defined in terms of the Hopf algebra structure of QSym, which we have not defined
so far. But there are various formulas for its values on certain quasisymmetric
functions that can be used as alternative definitions. For example, for any n ∈ N

and any α = (α1, α2, . . . , α`) ∈ Compn, we have

S (Mα) = (−1)` ∑
γ∈Compn;

D(γ)⊆D(α`,α`−1,...,α1)

Mγ.
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This can be used to define S (since S is to be k-linear). Also, for each composition α,
we have S (Lα) = (−1)|α| Lω(α), where ω (α) is a certain composition known as the
complement of α. See [GriRei20, Theorem 5.1.11 and Proposition 5.2.15] for details
and proofs. Note that S is a k-algebra homomorphism and an involution (that is,
S2 = id). (Again, this is derived from abstract algebraic properties of antipodes in
[GriRei20], but can also be showed more directly.)

Definition 2.7. If α = (α1, α2, . . . , α`) is a composition, then the reversal of α is
defined to be the composition (α`, α`−1, . . . , α1). It is denoted by rev α.

Proposition 2.8. Let α ∈ Comp. Then, the antipode S of QSym satisfies

S (ηα) = (−1)`(α) ηrev α.

Proof. TODO. (This follows easily from Proposition 2.5.)

Proposition 2.8 generalizes [Hsiao07, Proposition 2.9].

2.3. The ηα as a basis

Theorem 2.9. Assume that 2 is invertible in k. Then, the family (ηα)α∈Comp is a
basis of the k-module QSym.

Proof. TODO. Fix n ∈N. Consider the n-th graded component QSymn of QSym.
Define a partial order ≺ on the finite set Compn by setting β ≺ α if and only if

` (β) < ` (α)
The definition of ηα shows that

ηα = 2`(α)Mα +
(
a linear combination of Mβ with β ∈ Compn satisfying ` (β) < ` (α)

)
= 2`(α)Mα +

(
a linear combination of Mβ with β ∈ Compn satisfying β ≺ α

)
for each α ∈ Compn. Thus, the family (ηα)α∈Compn

expands invertibly triangularly
in the family (Mα)α∈Compn

with respect to the partial order ≺ (where we are using
the terminology from [GriRei20, §11.1]). Hence, [GriRei20, Corollary 11.1.19(e)]
shows that the family (ηα)α∈Compn

is a basis of the k-module QSymn (since the
family (Mα)α∈Compn

is a basis of QSymn).
Forget that we fixed n. Thus, we have shown that the family (ηα)α∈Compn

is a
basis of the k-module QSymn for each n ∈ N. Hence, the family (ηα)α∈Comp is a
basis of the k-module

⊕
n∈N QSymn = QSym. This proves Theorem 2.9.

We can explicitly expand the monomial quasisymmetric functions Mβ in the
basis (ηα)α∈Comp:
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Proposition 2.10. Let n ∈N. Let β ∈ Compn be a composition. Then,

2`(β)Mβ = ∑
α∈Compn;

D(α)⊆D(β)

(−1)`(β)−`(α) ηα.

Proof. TODO. (Follows from (4) using Möbius inversion.)

2.4. The product rule

Next comes a fairly nontrivial result: Given two compositions α and β, the product
ηαηβ is a k-linear combination of the family (ηγ)γ∈Comp. If 2 is invertible in k, this
follows from Theorem 2.9, but in the general case (thus, e.g., for k = Z), I don’t
see any simple reasons why this should hold. Nevertheless it does, and there is
a combinatorial expression. To state it, we need a weird variant of shuffles that I
have never seen in the literature. First, as inspiration, let me cite the analogous rule
for products of the form MαMβ:

Definition 2.11. Let α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm) be two compo-
sitions.

Fix two chains (i.e., totally ordered sets) {p1 < p2 < · · · < p`} and
{q1 < q2 < · · · < qm}, and let

D = {p1 < p2 < · · · < p`} t {q1 < q2 < · · · < qm}

be their disjoint union. This D is a poset with ` + m elements
p1, p2, . . . , p`, q1, q2, . . . , qm, whose relations are given by p1 < p2 < · · · < p`
and q1 < q2 < · · · < qm (while each pi is incomparable to each qj).

A stuffler for α and β shall mean a surjective and strictly order-preserving map

f : D → {1 < 2 < · · · < k} for some k ∈N.

(“Strictly order-preserving” means that if u and v are two elements of the poset
D satisfying u < v, then f (u) < f (v).)

If f : D → {1 < 2 < · · · < k} is a stuffler for α and β, then we define the weight
wt ( f ) of the stuffler f to be the composition (wt1 ( f ) , wt2 ( f ) , . . . , wtk ( f )),
where

wts ( f ) = ∑
u∈[`];

f (pu)=s

αu + ∑
v∈[m];
f (qv)=s

βv for each s ∈ [k] .

Note that each of the two sums on the right hand side has at most 1 addend.
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Example 2.12. Let α = (4, 2) and β = (1, 3, 1) be two compositions. Then, the
poset D in Definition 2.11 is D = {p1 < p2} t {q1 < q2 < q3}. The following
maps (written in two-line notation) are stufflers for α and β:(

p1 p2 q1 q2 q3
1 2 3 4 5

)
,

(
p1 p2 q1 q2 q3
1 4 2 3 5

)
,(

p1 p2 q1 q2 q3
2 5 1 3 4

)
,

(
p1 p2 q1 q2 q3
1 2 1 3 4

)
,(

p1 p2 q1 q2 q3
1 3 2 3 4

)
,

(
p1 p2 q1 q2 q3
1 3 1 2 3

)
.

(The list is not exhaustive – there are many more stufflers for α and β.) On the

other hand,
(

p1 p2 q1 q2 q3
1 4 2 2 3

)
is not a stuffler for α and β (since it fails the

“strictly order-preserving” condition, by way of sending q1 and q2 to the same

number), and
(

p1 p2 q1 q2 q3
2 4 2 3 4

)
is not a stuffler either (since it fails to be

surjective onto {1 < 2 < 3 < 4}).
Here are the weights of the above listed stufflers:

wt
(

p1 p2 q1 q2 q3
1 2 3 4 5

)
= (4, 2, 1, 3, 1) ,

wt
(

p1 p2 q1 q2 q3
1 4 2 3 5

)
= (4, 1, 3, 2, 1) ,

wt
(

p1 p2 q1 q2 q3
2 5 1 3 4

)
= (1, 4, 3, 1, 2) ,

wt
(

p1 p2 q1 q2 q3
1 2 1 3 4

)
= (4 + 1, 2, 3, 1) = (5, 2, 3, 1) ,

wt
(

p1 p2 q1 q2 q3
1 3 2 3 4

)
= (4, 1, 2 + 3, 1) = (4, 1, 5, 1) ,

wt
(

p1 p2 q1 q2 q3
1 3 1 2 3

)
= (4 + 1, 3, 2 + 1) = (5, 3, 3) .

The composition wt ( f ) in Definition 2.11 is called a stuffle (or overlapping shuffle)
of α with β. Each of its entries is either an entry of α or an entry of β or a sum of
an entry of α with an entry of β; moreover, each of the entries of α and of β is used
in exactly one entry of wt ( f ), and the entries of α appear in their original order in
the entries of wt ( f ), and so do the entries of β.

Now we can state the multiplication rule for products of the form MαMβ ([GriRei20,
Proposition 5.1.3]):
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Theorem 2.13. Let α and β be two compositions. Then,

MαMβ = ∑
f is a stuffler for α and β

Mwt( f ).

Example 2.14. Let α = (a, b) and β = (c, d) be two compositions of length 2. Let
us compute M(a,b)M(c,d) using Theorem 2.13. The stufflers for α and β are the
maps (written here in two-line notation)(

p1 p2 q1 q2
1 2 3 4

)
,

(
p1 p2 q1 q2
1 3 2 4

)
,

(
p1 p2 q1 q2
1 4 2 3

)
,(

p1 p2 q1 q2
2 3 1 4

)
,

(
p1 p2 q1 q2
2 4 1 3

)
,

(
p1 p2 q1 q2
3 4 1 2

)
,(

p1 p2 q1 q2
1 2 1 3

)
,

(
p1 p2 q1 q2
1 3 1 2

)
,

(
p1 p2 q1 q2
1 2 2 3

)
,(

p1 p2 q1 q2
2 3 1 2

)
,

(
p1 p2 q1 q2
1 3 2 3

)
,

(
p1 p2 q1 q2
2 3 1 3

)
,(

p1 p2 q1 q2
1 2 1 2

)
.

Their respective weights are

(a, b, c, d) , (a, c, b, d) , (a, c, d, b) , (c, a, b, d) ,
(c, a, d, b) , (c, d, a, b) , (a + c, b, d) , (a + c, d, b) ,
(a, b + c, d) , (c, a + d, b) , (a, c, b + d) , (c, a, b + d) ,
(a + c, b + d) .

Thus, Theorem 2.13 yields

M(a,b)M(c,d) = M(a,b,c,d) + M(a,c,b,d) + M(a,c,d,b) + M(c,a,b,d) + M(c,a,d,b) + M(c,d,a,b)

+ M(a+c,b,d) + M(a+c,d,b) + M(a,b+c,d) + M(c,a+d,b)

+ M(a,c,b+d) + M(c,a,b+d) + M(a+c,b+d).

The formula for ηαηβ is similar but subtler. Instead of stufflers, we need what I
call the liminal stufflers, which are defined as follows:

Definition 2.15. Let α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm) be two compo-
sitions.

Fix two chains (i.e., totally ordered sets) {p1 < p2 < · · · < p`} and
{q1 < q2 < · · · < qm}, and define a poset D as in Definition 2.11.
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A liminal stuffler for α and β shall mean a surjective and weakly order-
preserving map

f : D → {1 < 2 < · · · < k} for some k ∈N

with the property that each s ∈ {1 < 2 < · · · < k} satisfies

|{u ∈ [`] | f (pu) = s}| − |{v ∈ [m] | f (qv) = s}|
∈ {1,−1} . (5)

(“Weakly order-preserving” means that if u and v are two elements of the
poset D satisfying u < v, then f (u) ≤ f (v).)

If f : D → {1 < 2 < · · · < k} is a liminal stuffler for α and β, then we define
the weight wt ( f ) of f to be the composition (wt1 ( f ) , wt2 ( f ) , . . . , wtk ( f )), where

wts ( f ) = ∑
u∈[`];

f (pu)=s

αu + ∑
v∈[m];
f (qv)=s

βv for each s ∈ [k] .

(This time, the sums on the right hand side can have more than 1 addend. But
(5) ensures that one of the two sums has exactly 1 more addend than the other.)

If f : D → {1 < 2 < · · · < k} is a liminal stuffler for α and β, then the loss of f
is defined to be the nonnegative integer

k

∑
s=1

min {|{u ∈ [`] | f (pu) = s}| , |{v ∈ [m] | f (qv) = s}|} .

This is denoted by loss ( f ). It is easy to see that k = `+ m− 2 loss ( f ).

Example 2.16. Let α = (4, 2) and β = (1, 3, 1) be two compositions. Then, the
poset D in Definition 2.11 is D = {p1 < p2} t {q1 < q2 < q3}. The following
maps (written in two-line notation) are liminal stufflers for α and β:(

p1 p2 q1 q2 q3
1 2 3 4 5

)
,

(
p1 p2 q1 q2 q3
2 5 1 3 4

)
,(

p1 p2 q1 q2 q3
1 1 1 2 3

)
,

(
p1 p2 q1 q2 q3
1 2 2 2 3

)
,(

p1 p2 q1 q2 q3
2 2 1 2 3

)
,

(
p1 p2 q1 q2 q3
1 1 1 1 1

)
.

(The list is not exhaustive – there are many more liminal stufflers for α and β.
In particular, any injective stuffler for α and β is a liminal stuffler for α and β

as well.) On the other hand,
(

p1 p2 q1 q2 q3
1 1 1 1 2

)
is not a liminal stuffler for

α and β (since (5) fails for s = 1), and
(

p1 p2 q1 q2 q3
2 2 2 2 2

)
is not a liminal
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stuffler either (since it fails to be surjective onto {1 < 2 < 3 < 4}).
Here are the weights of the above listed liminal stufflers:

wt
(

p1 p2 q1 q2 q3
1 2 3 4 5

)
= (4, 2, 1, 3, 1) ,

wt
(

p1 p2 q1 q2 q3
2 5 1 3 4

)
= (1, 4, 3, 1, 2) ,

wt
(

p1 p2 q1 q2 q3
1 1 1 2 3

)
= (4 + 2 + 1, 3, 1) = (7, 3, 1) ,

wt
(

p1 p2 q1 q2 q3
1 2 2 2 3

)
= (4, 2 + 1 + 3, 1) = (4, 6, 1) ,

wt
(

p1 p2 q1 q2 q3
2 2 1 2 3

)
= (1, 4 + 2 + 3, 1) = (1, 9, 1) ,

wt
(

p1 p2 q1 q2 q3
1 1 1 1 1

)
= (4 + 2 + 1 + 3 + 1) = (11) .

The losses of these liminal stufflers are 0, 0, 1, 1, 1 and 2, respectively.

Intuitively, the composition wt ( f ) in Definition 2.15 can be thought of as a vari-
ant of a stuffle of α with β, but instead of adding an entry of α with an entry of β,
it allows adding i consecutive entries of α and j consecutive entries of β whenever
i and j are integers satisfying i− j ∈ {1,−1}. The statistic loss ( f ) tells how much
is being added, i.e., how far this “stuffle” deviates from a shuffle.

Now we can state the multiplication rule for products of the form ηαηβ:

Theorem 2.17. Let α and β be two compositions. Then,

ηαηβ = ∑
f is a liminal stuffler

for α and β

(−1)loss( f ) ηwt( f ).

Example 2.18. Let α = (a, b) and β = (c, d) be two compositions of length 2. Let
us compute η(a,b)η(c,d) using Theorem 2.17. The liminal stufflers for α and β are
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the maps (written here in two-line notation)(
p1 p2 q1 q2
1 2 3 4

)
,

(
p1 p2 q1 q2
1 3 2 4

)
,

(
p1 p2 q1 q2
1 4 2 3

)
,(

p1 p2 q1 q2
2 3 1 4

)
,

(
p1 p2 q1 q2
2 4 1 3

)
,

(
p1 p2 q1 q2
3 4 1 2

)
,(

p1 p2 q1 q2
1 2 2 2

)
,

(
p1 p2 q1 q2
2 2 1 2

)
,(

p1 p2 q1 q2
1 1 1 2

)
,

(
p1 p2 q1 q2
1 2 1 1

)
.

Their respective weights are

(a, b, c, d) , (a, c, b, d) , (a, c, d, b) , (c, a, b, d) ,
(c, a, d, b) , (c, d, a, b) , (a, b + c + d) ,
(c, a + b + d) , (a + b + c, d) , (a + c + d, b) ,

and their respective losses are 0, 0, 0, 0, 0, 0, 1, 1, 1, 1. Thus, Theorem 2.17 yields

η(a,b)η(c,d) = η(a,b,c,d) + η(a,c,b,d) + η(a,c,d,b) + η(c,a,b,d) + η(c,a,d,b) + η(c,d,a,b)

− η(a,b+c+d) − η(c,a+b+d) − η(a+b+c,d) − η(a+c+d,b).

We will prove Theorem 2.17 further below.

Question 2.19. Is there a direct/combinatorial proof of Theorem 2.17, possibly
using Proposition 2.4 and a sign-reversing involution?

Theorem 2.17 can be seen to generalize [Hsiao07, Corollary 2.5].

2.5. The dual basis η∗α in NSym

In order to prove Theorem 2.17, it suffices to prove it when k = Q (because all
identities that hold in QSym over Q but involve no denominators will automatically
hold in QSym over Z, and therefore also in QSym over any commutative ring k).
Thus, the following convention is harmless:

Convention 2.20. For the rest of this section, we WLOG assume that 2 is invert-
ible in k.

Recall the Hopf algebra NSym defined in [GriRei20, §5.4]. It is the graded dual
of the Hopf algebra QSym.

We will use only one basis of NSym, namely the basis (Hα)α∈Comp. This is the
basis of NSym dual to the basis (Mα)α∈Comp of NSym. We write Hn for H(n)
whenever n is a positive integer. We also set H0 = 1 and Hn = 0 for all n < 0.
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(What I call Hβ is called Sβ in [GKLLRT94].)

Definition 2.21. For each n ∈N and each composition α of n, we define

η∗α = ∑
β∈Compn;

D(α)⊆D(β)

1
2`(β)

(−1)`(β)−`(α) Hβ ∈ NSym .

Then, it is straightforward to see the following:

Proposition 2.22. The family (η∗α)α∈Comp is the basis of NSym dual to the basis
(ηα)α∈Comp of QSym.

Proof. TODO. (Follows from Proposition 2.10 by dualization.)

Definition 2.23. For each positive integer n, let

η∗n = η∗(n) = ∑
β∈Compn

1
2`(β)

(−1)`(β)−1 Hβ ∈ NSym .

It turns out that we can easily express η∗α for any composition α using these η∗n:

Proposition 2.24. We have

η∗α = η∗α1
η∗α2
· · · η∗αk

for each composition α = (α1, α2, . . . , αk) .

The main idea of the proof of Proposition 2.24 is to recognize that if n = |α|, then
the compositions β ∈ Compn satisfying D (α) ⊆ D (β) are precisely the composi-
tions obtained from α by breaking up each entry of α into pieces. A slicker way to
formalize this proof proceeds using the notion of concatenation:

Definition 2.25. If α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βk) are two composi-
tions, then the composition αβ is defined by

αβ = (α1, α2, . . . , α`, β1, β2, . . . , βk) .

This composition αβ is called the concatenation of α and β. The operation of con-
catenation (sending any two compositions α and β to αβ) is associative, and the
empty composition ∅ is a neutral element for it; thus, the set of all compositions
is an abelian monoid under this operation.

The following proposition is saying (in the jargon of combinatorial Hopf alge-
bras) that the basis (η∗α)α∈Comp of NSym is multiplicative:
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Proposition 2.26. Let α and β be two compositions. Then,

η∗αη∗β = η∗αβ.

Proof of Proposition 2.26. TODO. Sketch: The definition of a concatenation easily
yields that ` (γ) + ` (δ) = ` (γδ) for any two compositions γ and δ. Thus, in
particular, ` (αβ) = ` (α) + ` (β).

Let n = |α| and m = |β|. Thus, α ∈ Compn and β ∈ Compn, so that αβ ∈
Compn+m.

The definitions of η∗α and η∗β yield

η∗α = ∑
γ∈Compn;

D(α)⊆D(γ)

1
2`(γ)

(−1)`(γ)−`(α) Hγ and

η∗β = ∑
δ∈Compm;
D(β)⊆D(δ)

1
2`(δ)

(−1)`(δ)−`(β) Hδ.

Multiplying these two equalities, we obtain

η∗αη∗β =

 ∑
γ∈Compn;

D(α)⊆D(γ)

1
2`(γ)

(−1)`(γ)−`(α) Hγ


 ∑

δ∈Compm;
D(β)⊆D(δ)

1
2`(δ)

(−1)`(δ)−`(β) Hδ


= ∑

(γ,δ)∈Compn ×Compm;
D(α)⊆D(γ) and D(β)⊆D(δ)

1
2`(γ)

· 1
2`(δ)︸ ︷︷ ︸

=
1

2`(γ)+`(δ)
=

1
2`(γδ)

(−1)`(γ)−`(α) (−1)`(δ)−`(β)︸ ︷︷ ︸
=(−1)(`(γ)−`(α))+(`(δ)−`(β))

=(−1)(`(γ)+`(δ))−(`(α)+`(β))

=(−1)`(γδ)−`(αβ)

HγHδ︸ ︷︷ ︸
=Hγδ

= ∑
(γ,δ)∈Compn ×Compm;

D(α)⊆D(γ) and D(β)⊆D(δ)

1
2`(γδ)

(−1)`(γδ)−`(αβ) Hγδ. (6)

But it is easy to see that every two compositions γ ∈ Compn and δ ∈ Compm satisfy
D (γδ) = D (γ)∪{n}∪ (D (δ) + n), where D (δ)+n denotes the set {d + n | d ∈ D (δ)}.
Using this fact, it is easy to see that the map{

(γ, δ) ∈ Compn×Compm | D (α) ⊆ D (γ) and D (β) ⊆ D (δ)
}

→
{

ζ ∈ Compn+m | D (αβ) ⊆ D (ζ)
}

,

(γ, δ) 7→ γδ

is well-defined and is a bijection. Hence, we can substitute ζ for γδ in the sum on
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the right hand side of (6). Thus, (6) rewrites as

η∗αη∗β = ∑
ζ∈Compn+m;
D(αβ)⊆D(ζ)

1
2`(ζ)

(−1)`(ζ)−`(αβ) Hζ .

Comparing this with

η∗αβ = ∑
ζ∈Compn+m;
D(αβ)⊆D(ζ)

1
2`(ζ)

(−1)`(ζ)−`(αβ) Hζ

(
by the definition of η∗αβ

)
,

we obtain η∗αη∗β = η∗αβ. This proves Proposition 2.26.

Corollary 2.27. Let β1, β2, . . . , βk be finitely many compositions. Then,

η∗β1
η∗β2
· · · η∗βk

= η∗β1β2···βk
.

Proof. TODO. (This follows by induction on k using Proposition 2.26.)

Proof of Proposition 2.24. This follows from applying Corollary 2.27 to the 1-element
compositions βi = (αi) (since η∗n = η∗(n) for each n > 0).

Define the formal power series

H (t) = ∑
n≥0

Hntn ∈ NSym [[t]]

and
G (t) = ∑

n≥1
η∗ntn ∈ NSym [[t]] .

Then, it is easy to see that:

Proposition 2.28. We have

G (t) = 1− 1

1 +
H (t)− 1

2

=
H (t)− 1
H (t) + 1

.

Proof. TODO. (Indeed, the first equality sign follows from the geometric series ex-
pansion, and the second is simple manipulation.)

Consider the comultiplication ∆ : NSym → NSym⊗NSym of the Hopf algebra
NSym. The following formula for ∆ (η∗n) is a dual of Theorem 2.17:
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Theorem 2.29. Let n ∈N. Then,

∆ (η∗n) = ∑
β,γ∈Comp;
|β|+|γ|=n;

`(β)−`(γ)∈{1,−1}

(−1)min{`(β),`(γ)} η∗β ⊗ η∗γ.

Proof. From G (t) = ∑
n≥1

η∗ntn, we obtain

G (t)k =

(
∑
n≥1

η∗ntn

)k

= ∑
n1,n2,...,nk≥1

η∗n1
η∗n2
· · · η∗nk

tn1+n2+···+nk

= ∑
β=(β1,β2,...,βk)∈Comp;

`(β)=k

η∗β1
η∗β2
· · · η∗βk︸ ︷︷ ︸

=η∗β
(by Proposition 2.24)

tβ1+β2+···+βk︸ ︷︷ ︸
=t|β|

= ∑
β=(β1,β2,...,βk)∈Comp;

`(β)=k

η∗βt|β| = ∑
β∈Comp;
`(β)=k

η∗βt|β| (7)

for every k ∈N.
The comultiplication ∆ : NSym → NSym⊗NSym induces a k-algebra homo-

morphism
∆t : NSym [[t]]→ (NSym⊗NSym) [[t]]

that sends each formal power series ∑
i∈N

aiti to ∑
i∈N

∆ (ai) ti. Note that there is a

canonical k-algebra homomorphism

ι : NSym [[t]]⊗k[[t]] NSym [[t]]→ (NSym⊗NSym) [[t]] ,(
∑

i∈N

aiti

)
⊗
(

∑
j∈N

bjtj

)
7→
(

∑
i∈N

(ai ⊗ 1) ti

)(
∑

j∈N

(
1⊗ bj

)
tj

)
.

Authors often treat ι as an embedding. We won’t, but we will still use the fact that
ι is a k-algebra homomorphism a lot without saying.

It is easy to see that
∆t (H (t)) = ι (H (t)⊗ H (t)) (8)

(this follows from [GriRei20, (5.4.2)]).
Define four elements h1, h2, g1 and g2 of (NSym⊗NSym) [[t]] by

h1 = ι (H (t)⊗ 1) and h2 = ι (1⊗ H (t)) and
g1 = ι (G (t)⊗ 1) and g2 = ι (1⊗ G (t)) .

The elements h1 and h2 commute (since H (t)⊗ 1 and 1⊗ H (t) commute). The ele-

ments
1

h1 + 1
,

1
h2 + 1

and
1

h1h2 + 1
are rational functions in h1 and h2 and therefore
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also commute with them (and with each other). Thus, h1, h2,
1

h1 + 1
,

1
h2 + 1

and

1
h1h2 + 1

generate a commutative k-subalgebra H of (NSym⊗NSym) [[t]].

Moreover, from G (t) =
H (t)− 1
H (t) + 1

, we obtain

g1 =
h1 − 1
h1 + 1

and g2 =
h2 − 1
h2 + 1

. (9)

Thus, the elements g1 and g2 also belong to the commutative k-subalgebra H gen-

erated by h1, h2,
1

h1 + 1
,

1
h2 + 1

and
1

h1h2 + 1
.

The equality (8) becomes

∆t (H (t)) = ι

 H (t)⊗ H (t)︸ ︷︷ ︸
=(H(t)⊗1)(1⊗H(t))

 = ι ((H (t)⊗ 1) (1⊗ H (t)))

= ι (H (t)⊗ 1)︸ ︷︷ ︸
=h1

· ι (1⊗ H (t))︸ ︷︷ ︸
=h2

= h1h2. (10)

Hence,
∆t (H (t))− 1
∆t (H (t)) + 1

=
h1h2 − 1
h1h2 + 1

=
g1 + g2

1 + g1g2
. (11)

(Indeed, the last equality sign can easily be verified by straightforward computation
in the commutative k-algebra H, using the equalities (9).)

From g1 = ι (G (t)⊗ 1) and g2 = ι (1⊗ G (t)), we obtain

g1 + g2 = ι (G (t)⊗ 1) + ι (1⊗ G (t)) = ι (G (t)⊗ 1 + 1⊗ G (t)) (12)

(since ι is a k-algebra homomorphism) and

g1g2 = ι (G (t)⊗ 1) · ι (1⊗ G (t)) = ι

(1⊗ G (t)) · (G (t)⊗ 1)︸ ︷︷ ︸
=G(t)⊗G(t)


(since ι is a k-algebra homomorphism)

= ι (G (t)⊗ G (t)) . (13)
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Now, Proposition 2.28 yields

∆t (G (t)) = ∆t

(
H (t)− 1
H (t) + 1

)
=

∆t (H (t))− 1
∆t (H (t)) + 1

(since ∆t is a continuous k-algebra homomorphism)

=
g1 + g2

1 + g1g2
(by (11))

= ∑
i∈N

(−1)i (g1g2)
i (g1 + g2)

= ∑
i∈N

(−1)i (ι (G (t)⊗ G (t)))i · ι (G (t)⊗ 1 + 1⊗ G (t))︸ ︷︷ ︸
=ι
((

G(t)i⊗G(t)i
)
(G(t)⊗1+1⊗G(t))

)
(since ι is a k-algebra homomorphism)

(by (13) and (12))

= ∑
i∈N

(−1)i ι

(G (t)i ⊗ G (t)i
)
(G (t)⊗ 1 + 1⊗ G (t))︸ ︷︷ ︸

=G(t)i+1⊗G(t)i+G(t)i⊗G(t)i+1


= ∑

i∈N

(−1)i ι
(

G (t)i+1 ⊗ G (t)i + G (t)i ⊗ G (t)i+1
)

= ∑
i∈N;
j∈N;

i−j∈{1,−1}

(−1)min{i,j} ι


G (t)i︸ ︷︷ ︸

= ∑
β∈Comp;
`(β)=i

η∗βt|β|

(by (7))

⊗ G (t)j︸ ︷︷ ︸
= ∑

γ∈Comp;
`(γ)=j

η∗γt|γ|

(by (7))



= ∑
i∈N;
j∈N;

i−j∈{1,−1}

(−1)min{i,j} ι


 ∑

β∈Comp;
`(β)=i

η∗βt|β|

⊗
 ∑

γ∈Comp;
`(γ)=j

η∗γt|γ|




︸ ︷︷ ︸
= ∑

β∈Comp;
`(β)=i

∑
γ∈Comp;
`(γ)=j

η∗β⊗η∗γt|β|+|γ|

= ∑
i∈N;
j∈N;

i−j∈{1,−1}

(−1)min{i,j} ∑
β∈Comp;
`(β)=i

∑
γ∈Comp;
`(γ)=j

η∗β ⊗ η∗γt|β|+|γ|

= ∑
β,γ∈Comp;

`(β)−`(γ)∈{1,−1}

(−1)min{`(β),`(γ)} η∗β ⊗ η∗γt|β|+|γ|.
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Comparing coefficients of tn here, we obtain

∆ (η∗n) = ∑
β,γ∈Comp;
|β|+|γ|=n;

`(β)−`(γ)∈{1,−1}

(−1)min{`(β),`(γ)} η∗β ⊗ η∗γ

for every positive integer n.

2.6. The proof of the product rule

Proof of Theorem 2.17. TODO. (This needs some fleshing out.)
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Let α = (α1, α2, . . . , αk) be any composition. Then,

∆ (η∗α) = ∆
(

η∗α1
η∗α2
· · · η∗αk

)
(by Proposition 2.24)

= ∆
(
η∗α1

)
∆
(
η∗α2

)
· · ·∆

(
η∗αk

)
(since ∆ is a k-algebra homomorphism)

=

 ∑
β1,γ1∈Comp;
|β1|+|γ1|=α1;

`(β1)−`(γ1)∈{1,−1}

(−1)min{`(β1),`(γ1)} η∗β1
⊗ η∗γ1



·

 ∑
β2,γ2∈Comp;
|β2|+|γ2|=α2;

`(β2)−`(γ2)∈{1,−1}

(−1)min{`(β2),`(γ2)} η∗β2
⊗ η∗γ2



· · · · ·

 ∑
βk,γk∈Comp;
|βk|+|γk|=αk;

`(βk)−`(γk)∈{1,−1}

(−1)min{`(βk),`(γk)} η∗βk
⊗ η∗γk


(by Theorem 2.29)

= ∑
β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

|βs|+|γs|=αs for each s;
`(βs)−`(γs)∈{1,−1} for each s

(
(−1)min{`(β1),`(γ1)} η∗β1

⊗ η∗γ1

)

·
(
(−1)min{`(β2),`(γ2)} η∗β2

⊗ η∗γ2

)
· · · · ·

(
(−1)min{`(βk),`(γk)} η∗βk

⊗ η∗γk

)
= ∑

β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

|βs|+|γs|=αs for each s;
`(βs)−`(γs)∈{1,−1} for each s

(−1)min{`(β1),`(γ1)}+min{`(β2),`(γ2)}+···+min{`(βk),`(γk)}

(
η∗β1

η∗β2
· · · η∗βk

)
︸ ︷︷ ︸

=η∗β1β2···βk
(by Corollary 2.27)

⊗
(

η∗γ1
η∗γ2
· · · η∗γk

)
︸ ︷︷ ︸

=η∗γ1γ2···γk
(by Corollary 2.27)

= ∑
β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

|βs|+|γs|=αs for each s;
`(βs)−`(γs)∈{1,−1} for each s

(−1)min{`(β1),`(γ1)}+min{`(β2),`(γ2)}+···+min{`(βk),`(γk)}

η∗β1β2···βk
⊗ η∗γ1γ2···γk
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= ∑
δ,ε∈Comp

∑
β1,β2,...,βk∈Comp;
γ1,γ2,...,γk∈Comp;

β1β2···βk=δ;
γ1γ2···γk=ε;

|βs|+|γs|=αs for each s;
`(βs)−`(γs)∈{1,−1} for each s

(−1)min{`(β1),`(γ1)}+min{`(β2),`(γ2)}+···+min{`(βk),`(γk)}

η∗δ ⊗ η∗ε . (14)

Now, let us take a closer look at the inner sum on the right hand side. For a given
pair (δ, ε) of compositions, what are the pairs

((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk))

satisfying the six conditions

β1, β2, . . . , βk ∈ Comp; γ1, γ2, . . . , γk ∈ Comp;
β1β2 · · · βk = δ; γ1γ2 · · · γk = ε;
|βs|+ |γs| = αs for each s;

` (βs)− ` (γs) ∈ {1,−1} for each s

? I claim that they are in bijection with the liminal stufflers f for δ and ε that satisfy
wt ( f ) = α. Indeed, if we write the compositions δ and ε as δ = (δ1, δ2, . . . , δ`) and
ε = (ε1, ε2, . . . , εm), and if we define D as in Definition 2.11, then the bijection sends
any such liminal stuffler f to the pair

((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk)) ,

where

βs = (the composition consisting of the δu for all u ∈ [`] satisfying f (pu) = s
(in the order of increasing u))

γs = (the composition consisting of the εv for all v ∈ [m] satisfying f (qv) = s
(in the order of increasing v))

(We are here using the fact that our liminal stuffler f must necessarily be a map
from D to {1 < 2 < · · · < k}, because its weight wt ( f ) = α is a composition of
length k.)

Using this bijection, we can rewrite (14) as

∆ (η∗α) = ∑
δ,ε∈Comp

∑
f is a liminal stuffler

for δ and ε;
wt( f )=α

(−1)loss( f ) η∗δ ⊗ η∗ε . (15)

(Here, we have used the fact that if our bijection sends a liminal stuffler f to a pair
((β1, β2, . . . , βk) , (γ1, γ2, . . . , γk)), then

min {` (β1) , ` (γ1)}+ min {` (β2) , ` (γ2)}+ · · ·+ min {` (βk) , ` (γk)} = loss ( f ) .

This is easily seen from the definition of the bijection and of the loss.)
Dualizing the equality (15), we find precisely the claim of Theorem 2.17. (This

needs some formalization.)
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2.7. The coproduct of ηα

Consider the coproduct ∆ : QSym → QSym⊗QSym of the Hopf algebra QSym.
(See [GriRei20, §5.1] for its definition.) We claim the following simple formula for
∆ (ηα):

Theorem 2.30. Let α ∈ Comp. Then,

∆ (ηα) = ∑
β,γ∈Comp;

α=βγ

ηβ ⊗ ηγ.

This generalizes [Hsiao07, Corollary 2.7].

Proof of Theorem 2.30. TODO. (This follows by dualizing Proposition 2.26.)

3. The liminal stuffle algebra

Here is a different way of rewriting Theorem 2.17.
Let F be the free k-algebra with generators x1, x2, x3, . . .. It has a basis consisting

of all words over the alphabet {x1, x2, x3, . . .}; these words are in bijection with the
compositions.

For any k ≥ 0, we let rk : F → F be the linear operator defined recursively by

rk (1) = 0;
rk (xiw) = xi+kw for each i ≥ 1 and any word w.

(Thus, explicitly: rk sends 1 to 0, and transforms any nonempty word by adding k
to the subscript of its first letter. For example, rk (xaxbxc) = xa+kxbxc.)

Let # : F ×F → F be the bilinear map on F defined recursively by

1#w = w for any word w;
w#1 = w for any word w;

(xiu) #
(
xjv
)
= xi

(
u#
(
xjv
))

+ xj ((xiu) #v)− ri+j (u#v) .

I call this bilinear map # the liminal stuffle. Thus, if u = xα1 xα2 · · · xα` and v =
xβ1 xβ2 · · · xβm are two words in F , then

u#v = ∑
f is a liminal stuffler

for α and β

(−1)loss( f ) xwt( f ),

where we set xγ = xγ1 xγ2 · · · xγk for every composition γ = (γ1, γ2, . . . , γk). (This
needs to be formally proven.)

Let eta : F → QSym be the k-linear map that sends xα1 xα2 · · · xαk to ηα for
each composition α = (α1, α2, . . . , αk). Then, the claim of Theorem 2.17 is that
eta (u#v) = eta u · eta v.
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Proposition 3.1. The liminal stuffle # on F is commutative and associative and
has identity 1.

Proof. Only associativity is nontrivial. It follows from Theorem 2.17, since eta is
injective when 2 is invertible in k. Is there a direct proof? I haven’t found one so
far, but it is likely an induction argument.

Thus, (F , #) is a k-algebra with unity 1. Hence, eta is a k-algebra homomorphism
from (F , #) to QSym.

Let ∆ : F → F ⊗ F be the k-linear map that sends each word w1w2 · · ·wn to
n
∑

i=0
w1w2 · · ·wi ⊗wi+1wi+2 · · ·wn. This map ∆ is called the deconcatenation coproduct

(or the cut coproduct). This coproduct turns F into a Hopf algebra (with counit

ε : F → k sending each word w1w2 · · ·wn to

{
1, if n = 0;
0, if n > 0

). The map eta : F →

QSym is then easily seen to be a k-coalgebra homomorphism (by Theorem 2.30).
The liminal stuffle # on F respects the deconcatenation coproduct ∆ of F , in the

following sense:

Proposition 3.2. We have ∆ (u) #∆ (v) = ∆ (u#v) for any u, v ∈ F . Here, the “#”
sign on the left hand side stands for the multiplication in the k-algebra (F , #)⊗
(F , #) (so, explicitly, is given by (u1 ⊗ u2) # (v1 ⊗ v2) = (u1#v1)⊗ (u2#v2) for any
u1, u2, v1, v2 ∈ F ).

Proof. This follows from the corresponding property of QSym, since eta : F →
QSym is an injective k-coalgebra homomorphism when 2 is invertible in k.

Probably an inductive proof also exists.

4. The original problem

4.1. 2-phobic compositions

Definition 4.1. We say that a composition α is 2-phobic if none of the entries of α
equals 2.

Proposition 4.2. The span span (ηα)α is a 2-phobic composition is a k-subalgebra of
QSym.

Proof. This follows from Theorem 2.17, because if α and β are 2-phobic composi-
tions, then wt ( f ) is a 2-phobic composition whenever f is a limited stuffler for α
and β. (Note that this is a special property of 2. Nothing like this holds for 4-phobic
compositions.)
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Remark 4.3. TODO! Proposition 4.2 seems to be the same as [BMSW00, Theorem
5.7], if my ηα are (proportional to) their θα (possibly for different α). Check this
and say this.

4.2. The watered-down original problem

Now, we define another family of quasisymmetric functions (not a basis this time):

Definition 4.4. Let n ∈N, and let Λ ⊆ [n]. Then, we set

Kn,Λ = ∑
(g1,g2,...,gn)∈{1,2,3,...}n;

g1≤g2≤···≤gn;
no i∈Λ satisfies gi−1=gi=gi+1

(where we set g0=0 and gn+1=∞)

2|{g1,g2,...,gn}|xg1 xg2 · · · xgn .

Theorem 4.5. (a) These Kn,Λ are quasisymmetric functions.
(b) The span span

(
Kn,Λ

)
n∈N; Λ⊆[n] is a k-subalgebra of QSym.

Proof of Theorem 4.5. Set

Ln,Λ = ∑
(g1,g2,...,gn)∈{1,2,3,...}n;

g1≤g2≤···≤gn;
each i∈Λ satisfies gi−1=gi=gi+1

(where we set g0=0 and gn+1=∞)

2|{g1,g2,...,gn}|xg1 xg2 · · · xgn

for each Λ ⊆ [n]. Then, a standard inclusion/exclusion computation yields

Kn,Λ = ∑
M⊆Λ

(−1)|M| Ln,M

for each Λ ⊆ [n]. Thus,

span
(
Kn,Λ

)
n∈N; Λ⊆[n] = span

(
Ln,Λ

)
n∈N; Λ⊆[n]

(by the standard triangularity argument).
But Ln,Λ is 0 if 1 or n belongs to Λ (since neither g0 = g1 nor gn = gn+1 can

hold), and otherwise equals ηα for the 2-phobic composition α defined by [n− 1] \
D (α) = Λ ∪ (Λ− 1). Conversely, for each 2-phobic composition α, we can find
a Λ ⊆ [n] containing neither 1 nor n that satisfies Ln,Λ = ηα. Thus, the families(

Ln,Λ
)

n∈N; Λ⊆[n] and (ηα)α is a 2-phobic composition contain the same nonzero elements.
Hence,

span
(

Ln,Λ
)

n∈N; Λ⊆[n] = span (ηα)α is a 2-phobic composition .
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Hence,

span
(
Kn,Λ

)
n∈N; Λ⊆[n] = span

(
Ln,Λ

)
n∈N; Λ⊆[n]

= span (ηα)α is a 2-phobic composition .

Thus, Theorem 4.5 (a) follows immediately (since span (ηα)α is a 2-phobic composition ⊆
QSym), and Theorem 4.5 (b) follows from Proposition 4.2.

4.3. Note on the Φ and Ψ bases

Remark 4.6. Consider the Φ and Ψ bases of NSymQ from [GKLLRT94], and
consider their dual bases φ and ψ of QSymQ ([BDHMN17]). Then, over Q, we
have

span (φα)α is a 2-phobic composition = span (ψα)α is a 2-phobic composition

= span (ηα)α is a 2-phobic composition .

This follows from the fact that Φ2 = Ψ2 = 4η∗2 .

4.4. The original problem

Here comes the original problem ([Grinbe18, Question 2.51]) that all the above was
invented to solve.

Let N be the totally ordered set {0, 1, 2, . . .} ∪ {∞}, with total order given by
0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.

Let PowN be the ring of formal power series Z [[x0, x1, x2, . . . , x∞]].
Let n ∈N. For any map g : [n]→ N , we define a subset FE (g) of [n] as follows:

FE (g) =
{

min
(

g−1 (h)
)
| h ∈ {1, 2, 3, . . . , ∞} with g−1 (h) 6= ∅

}
∪
{

max
(

g−1 (h)
)
| h ∈ {0, 1, 2, 3, . . .} with g−1 (h) 6= ∅

}
.

In other words, FE (g) is the set comprising the smallest elements of all nonempty
fibers of g except for g−1 (0) as well as the largest elements of all nonempty fibers
of g except for g−1 (∞). We shall refer to the elements of FE (g) as the fiber-ends of
g.
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If Λ is any subset of [n], then we define a power series KZn,Λ ∈ PowN by

KZn,Λ = ∑
g:[n]→N is

weakly increasing;
Λ⊆FE(g)

2|g([n])∩{1,2,3,...}|xg

= ∑
g:[n]→N is weakly increasing;

no i∈Λ satisfies g(i−1)=g(i)=g(i+1)
(where we set g(0)=0 and g(n+1)=∞)

2|g([n])∩{1,2,3,...}|xg

= ∑
(g1,g2,...,gn)∈N n;

04g14g24···4gn4∞;
no i∈Λ satisfies gi−1=gi=gi+1

(where we set g0=0 and gn+1=∞)

2|{g1,g2,...,gn}∩{1,2,3,...}|xg1 xg2 · · · xgn ,

where xg := xg(1)xg(2) · · · xg(n).

Question 4.7. Is the span span
(

KZn,Λ

)
n∈N; Λ⊆[n]

a Z-subalgebra of PowN ?

In other words, is it true that KZn,Λ · KZm,Ω is a Z-linear combination of KZn+m,Ξ’s
whenever Λ ⊆ [n] and Ω ⊆ [m] are sets?

In [Grinbe18, Corollary 2.42], I have shown a formula for rewriting a product
of the form KZn,Λ · KZm,Ω as a Z-linear combination of KZn+m,Ξ’s when Λ ⊆ [n] and
Ω ⊆ [m] are lacunar nonempty sets. But can it also be rewritten in such a way if Λ
and Ω are arbitrary subsets of [n] and [m] ? Computations with SageMath suggest
that the answer is “yes”. For example,

KZ2,{1,2} · K
Z
1,{1} = KZ3,{2} + 2 · KZ3,{1,3} and

KZ2,∅ · KZ1,{1} = KZ3,∅ + KZ3,{2} + KZ3,{1,3} = KZ3,{1} + KZ3,{2} + KZ3,{3}.

But in general, the coefficients cannot be taken to be nonnegative!
Nevertheless, do they have combinatorial interpretations?
Note that the Q-linear span of the KZn+m,Ξ’s for all Ξ ⊆ [n + m] is (generally)

larger than that of the KZn+m,Ξ’s with Ξ lacunar nonempty. It has dimension Se-
quence A005251 in the OEIS (I believe):
a(0) = 0, a(1) = a(2) = a(3) = 1;
thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
Theorem 4.5 (b) shows that Question 4.7 has a positive answer if we set the

indeterminates x0 and x∞ to 0. Indeed, the Kn,Λ from Definition 4.4 can be rewritten
as follows:

Kn,Λ = KZn,Λ |x0=0 and x∞=0 .

Now let us try to go back to the original Question 4.7, where 0 and ∞ are allowed
as gi-values (and x0 and x∞ are not set to 0).

Can we transform the duality argument (from the proof of Theorem 2.17) into a
“Cauchy kernel” style computation in NSymQ [[x0, x1, x2, . . . , x∞]] ?

https://oeis.org/A005251
https://oeis.org/A005251
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