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Abstract. A number of combinatorial identities are concerned
with certain classes of subsets of a finite set (e.g., matchings of a
graph); they can be viewed as saying (roughly speaking) that equal
numbers of these subsets have even size and odd size. In this talk,
I will discuss a few such identities — some of them new — and their
topological meaning. As a common theme, the "parity bias" (or lack
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to provide one more pair of "simplex glasses" through which com-
binatorial identities appear in a new light.
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1. Introduction

1.1. Alternating sums

* Enumerative combinatorics is full of alternating sums. Some examples:
Y (1) <k> =0  forintegers n > 0;

k=0
£ ()=o) e

k=0
[n/2] _
y (=1)F (nk k) =(lor0or —1);
k=0
" k(n\ (ak+b .
Z(_l) ()( ):0 for c,n € N with c < n;
= k c

where sur (m,i) = (# of surjections from {1,2,...,m} to {1,2,...,i}).

¢ These alternating sums are among the most helpful tools in proving iden-
tities. (They often play a similar role as the formula 1+ + %+ -+ +
g1 = 0 for ¢ being a nontrivial n-th root of unity plays in the discrete
Fourier transform.)

* An alternating sum identity generally looks like this:

Y. (—1)tsomething) (g5 mething) = (something typically simpler) .

(some finite set)

e In this talk, I shall

- present some alternating sum identities and their combinatorial proofs
by “toggling” or “sign-reversing involutions”;

— discuss how a few of these identities can be lifted to topological
statements about simplicial complexes,

- and how these topological statements can be lifted to combinatorial
statements again using discrete Morse theory.

* This is not a theory talk; you'll hear my personal favorites, not the most
general or most important results.

* There will be various open questions.
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2. Toggling

2.1. All subsets

* We start with the first identity listed above:

Theorem. Let n be a positive integer. Then,

>t (}) =0

k=0

* There are many ways to prove this:

e.g., expand (1 —1)" using the binomial theorem.

* Here is a combinatorial proof:
Set [n] = {1,2,...,n}. Then,

C (—1)f (1) = —lt,
bl >(k) I

Claim: In the sum on the RHS, all the addends cancel out.

Proof. For each subset I of [n], we can

1. insert linto [ if 1 € I, or

2. remove 1 from [ if 1 € 1.
This gives us a new subset of 1], which we denote by I A {1}.
Easy to see: The map

{subsets of [n]} — {subsets of [n]},
[~ IA{1}

is an involution (i.e., applying it twice gives the identity), and it flips the
sign (meaning (—1)|1A{1}‘ = — (—1)“| for any subset I of [n]).

Hence, all addends in the sum }_ (—1)'1| cancel out (the I-addend can-
IC[n]

celling the I A {1}-addend). Thus, the sum is 0, ged.

* Qur notation I A {1} is a particular case of the notation

[AT=(Tu)\(IN])
= (I\UJN\D)

= {all elements that belong to exactly one of I and J}

for any two sets I and J.
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2.2

If a is any element, then the operation of replacing a set I by I A {a} (that
is, inserting a into I if a ¢ I, and removing a from I otherwise) is called
toggling a in I. This is always an involution: (I A {a}) A {a} = I for any
I and a.

Remark: It was actually sufficient for our proof that the map I — I A {1}
is a bijection, not necessarily an involution. But all such maps we will
encounter are involutions.

All subsets not too large

Let us try the second identity:

Theorem. Let n be any number (e.g., a real), and let m be a nonnegative

integer. Then,
B (i) -cr ()

Proof. First of all, we are proving a polynomial identity in 1, so we WLOG
assume that n is a positive integer (since two polynomials over a field are
equal if they agree on sufficiently many points).

We have .
_nk () = _ 1\
Z( R <k> IC%} T

k=0

7

|I|<m
Now, we try the involution from the previous proof:

{subsets of [n]} — {subsets of [n]},
[—IA{1}.

Unfortunately, applying it to a set I might break the |I| < m restriction.
But it restricts to an involution

A— A,
[ IA{1},

where
A = {subsets I of [n] with |I\ {1} < m}.

Thus, all addends in the sum Y, (—1)'1‘ cancel except for those with
Icn);
|1 |<nm

I\ {1}| = m. We get

m(n—1
DRCEED DN ILED s VLR CRA (i
IC[n]; IC[n]; IC]n];
I|l<m I|<m; 1¢1;
! \1\'{'1}|=m [|=m
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2.3.

since there are exactly <n ) many subsets I of [n] satisfying 1 ¢ I and

|I| = m. This completes our proof.

Lacunar subsets

Now to the third identity:

Theorem. Let 1 be a nonnegative integer. Then,

1n/2] ik 1, ifn%6 € {0,1};
Y, (-1 < ' )z 0, ifn%6 e {2,5};
k=0 —1, if n%6 € {3,4},

where 1%6 means the remainder of n divided by 6.

To prove this combinatorially, we need to find out what (n P

) counts.

Convention. We shall write [m] for {1,2,...,m} whenever m € Z.

Definition. A set I of integers is said to be lacunar if it contains no two
consecutive integers (i.e., there isno i € I such thati+1 € I).

For example, {1,3,6} is lacunar, but {1,3,4} is not. Empty and one-
element sets are always lacunar.

Note that any lacunar subset of [n — 1] has size < [n/2].
Proposition. For any n > k > 0, the number of lacunar k-element subsets

of [n —1] is <n;k).

Proof. Write “elt” for “element”, and “subs” for “subsets”.

There is a bijection

{lacunar k-elt subs of [n — 1]} — {k-elt subs of {0,1,...,n —k—1}},
{ii<ip<---<i}—={iH—-1<ip—-2<---<iy—k}.

Thus, we can start a combinatorial proof of our theorem as follows:

[n/2]
_F (MR —plt,
2()(,()1%2_1]()

’

I is lacunar

We want to prove that this is 1 or 0 or —1.
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So let us try to construct a sign-reversing involution on the set
{lacunar subsets of [n —1]}

except for possibly one element.

Let I be a lacunar subset of [n —1].

- We try to toggle 1 in I, but we only do this if the result is lacunar.
If we succeed (i.e., if the result is lacunar), then we are done.
[Examples:

« If I = {1,3,7}, then we toggle 1, and obtain the set {3,7}. Thus,
in this case, we succeed and have found the image of I under our
involution.

« If I = {3,7}, then we toggle 1, and obtain the set {1,3,7}. Thus,
in this case, we succeed and have found the image of I under our
involution.

« If I = {2,7}, then we cannot toggle 1, since this would produce
the non-lacunar set {1,2,7}. Thus, in this case, we don’t succeed
and move on to the next step.]

— If we have not succeeded in the previous step, then 2 € I and thus
3¢ 1
Thus we try to toggle 4 in I, but we only do this if the result is
lacunar.
If we succeed, then we are done.
[Examples:

« If I = {2,4,9}, then we toggle 4, and obtain the set {2,9}. Thus,
in this case, we succeed and have found the image of I under our
involution.

« If I = {2,9}, then we toggle 4, and obtain the set {2,4,9}. Thus,
in this case, we succeed and have found the image of I under our
involution.

« If I = {2,5,8}, then we cannot toggle 4, since this would pro-
duce the non-lacunar set {2,4,5,8}. Thus, in this case, we don’t
succeed and move on to the next step.

« If I = {1,3,7}, then we do not get to this step in the first place,
since the first step has already succeeded (turning I into {3,7}).]

- If we have not succeeded in the previous step, then 5 € I and thus
6¢&lI

Thus we try to toggle 7 in I, but we only do this if the result is
lacunar.

If we succeed, then we are done.
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2.4.

— And so on.

This operation goes on until we have run out of elements of [n — 1] to
toggle. The only case in which we fail to toggle anything is if

n#2mod3and I ={2,58,...} N[n—1].

Thus we have found a sign-reversing involution on the set {lacunar subsets of [n —1]}
with the exception of a single lacunar subset if 7 # 2mod 3 (and with no
exceptions if n = 2mod 3). The conclusion easily follows.

This proof is in [BenQuiO8] (where it is worded using domino tilings in-
stead of lacunar subsets).

Independent sets of a graph
Let us generalize this.

Definition. Let I' = (V,E) be an (undirected) graph. An independent set
of I' means a subset I of V such that no two vertices in I are adjacent (i.e.,
no edge of I' connects two vertices in I).

Example. For the following graph:

the independent sets are

oyt Ay 2y, Az}, {wx}, {oy}, {wz}, {xy,2}
as well as all 1-element sets and the empty set.
For any m > 0, let the m-path be the graph
1-2-3——m

(that is, the graph with vertices 1,2,...,m and edges {i,i + 1} for each
0 <i<m).

Then, the lacunar subsets of [m] are the independent sets of the m-path.
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2.5.

Now we can generalize our previous theorem as follows:

Question: For what graphs I' do we have

Y (-1 e {1,0,-1} 2

I is an independent
set of I’

Certainly not for all graphs I (e.g., the 4-cycle is a counterexample).
But we know it’s true for path graphs. For what other graphs?

We can try to construct a sign-reversing involution again, and see where
we fail.

What order do we try to toggle the vertices in?
Well, we can always pick some order at random.
Unfortunately, toggling a vertex might be blocked by several vertices.

Trying to solve the resulting conflicts often fails (e.g., for a 4-cycle, even
though the sum is —1 for a 4-cycle).

Our above proof can be adapted when I’ is a forest ([EhrHet06, Corollary
6.1])).

However, a much more general result holds:

Theorem (conjectured by Kalai and Meshulam, 1990s, proved by Chud-
novsky, Scott, Seymour, Spirkl, 2018 ([CSSS18])): Let I" be a simple loop-
less undirected graph that has no induced cycle of length divisible by 3.

Then,
Y (-1 e {1,0,—1}.
I is an independent
set of T

Question: Is there any proof under 10 pages length?

Dominating sets of a graph

Definition. Let I' = (V, E) be an (undirected) graph. A dominating set of
I' means a subset I of V such that each vertex of I' belongs to I or has a
neighbor in 1.
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¢ Example. For the following graph:

the non-dominating sets are

{wy.zp, {vzx}, {wxy}

as well as all their subsets.

* Theorem (e.g., Brouwer 2009 ([Brouwe09], [BrCsSc09])): The number of
dominating sets of a graph I' is always odd.

¢ Theorem (Heinrich, Tittmann, 2017 ([Hei1Titl7], [Grinbel7, Theorem
3.2.2])): The number of dominating sets of a graph I' = (V,E) is

2VI—1 4 Y (—1)Al
pairs (A,B) of disjoint
nonempty subsets of V;
{a,b}¢E for all ac A and beB;
|A|=|B| mod 2

This is even for symmetry reasons
(for any (A,B), there is a (B,A))

¢ What about the alternating sum

(—1) || ?
I is a dominating
setof I’

Isit £17

* No; for example:

Theorem (Alikhani, 2012 ([Alikhal2, Lemma 1])): If T is an n-cycle (for
n > 0), then this alternating sum is

3, if n = 0mod 4;
—1, otherwise.

Exercise: Prove this! (Is there a nice proof without too much casework?)
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Theorem (Ehrenborg, Hetyei, 2005 (I[EhrHet06, §71)): The alternating sum
is £1 whenever I' is a forest.

3. Simplicial complexes

3.1.

3.2

Basic definitions

The sums we have been discussing so far didn’t range over some random
collections of sets. Most of them had a commonality: If a set I appeared
in the sum, then so did any subset of I.

Such collections of sets are called simplicial complexes.

Formally:

Definition. A simplicial complex means a pair (S, A), where S is a finite set
and A is a collection (= set) of subsets of S such that

any I € Aand | C [ satisfy | € A.

We often just write A for a simplicial complex (S, A).
A face of a simplicial complex A means a set [ € A.
Note that {} and {@} are two different simplicial complexes on any set S.

Examples of simplicial complexes:

— {all subsets of S} for a given finite set S.

— {all lacunar subsets of [m]} for a given m € IN.

— {all independent sets of I'} for a given graph T

— not {all dominating sets of I'} for a given graph I".

- {all non-dominating sets of I'} and {all complements of dominating sets of I'}

for a given graph I'.

(Here the ground set is the set of vertices of I'.)

Geometric realizations

Each simplicial complex (S, A) has a geometric realization |A|, which is a
topological space glued out of (geometric) simplices. The easiest way to
define it is by assuming (WLOG) that S = [n] for some n € IN, and setting

Al = {(ti,to, ..., t) ERLy | 14+t + -+ 1, =1
and {i | t; >0} € A}.
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* Normally we don’t draw the literal |A| (since R” has too high dimension)
but just something homeomorphic to it (usually in a smaller space).

* Some examples:

— The complex {all independent sets of I'} of the graph I' on the left is
the simplicial complex drawn on the right:

— The complex {all non-dominating sets of I'} of the graph I' on the
left is the simplicial complex drawn on the right:

3.3. Homotopy and homology

* A lot of features come for free with the geometric realization:

The homotopy type, the homology and the reduced Euler characteristic of a
simplicial complex A are defined to be the homotopy type, the homology
and the reduced Euler characteristic of its geometric realization.
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3.4.

Explicitly, the Euler characteristic of a complex A is simply
Z (_1)|I‘—1 .
IeA

(The “—1” in the exponent just negates the whole sum.)

Thus, the alternating sums we have been computing are actually Euler
characteristics in disguise.

Homology is a stronger invariant than Euler characteristic, and homotopy
type is an even stronger invariant than homology:

(homotopy type) — (homology over Z) — (homology over Q)
—» (Euler characteristic) .

Our results above are all about Euler characteristics; can we lift them to
those stronger invariants?

Note that homology can be easily redefined combinatorially in terms of
A. (Homotopy type, too, but less easily; see [Kozlov20, Proposition 9.28].)

Examples of homotopy types

Our first theorem said that the reduced Euler characteristic of the simpli-
cial complex
{all subsets of E}

is 0 for any nonempty finite set E. This lifts all the way up to homotopy
level:

Proposition. This simplicial complex is contractible (i.e., homotopy-equivalent

to a point).

Geometrically, this is clear: Its geometric realization is a simplex, hence
homeomorphic to an (n — 1)-ball, where n = |E|.

Our second theorem was

() = e (M),

This corresponds to the simplicial complex
{all subsets of [n] having size < m}.

This is called the (m — 1)-skeleton of the (n —1)-ball. By classical alge-

; ) many
(m — 1)-spheres, which again explains the Euler characteristic.

braic topology, it is homotopy-equivalent to a bouquet of (n
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* Now, recall the independent sets of graphs.

Theorem (Kalai, Meshulam, Engstrom, Chudnovsky, Scott, Seymour,
Spirkl, Zhang, Wu, Kim, 2021 ([ZhaWu20], [Kim21])): Let I be a simple
loopless undirected graph that has no induced cycle of length divisible by
3. Then, the simplicial complex

{independent sets of I'}

is either contractible or homotopy-equivalent to a sphere (whence its re-
duced Euler characteristic is in {1,0, —1}).

e As we recall, the dominating sets of a graph do not form a simplicial
complex, but their complements do, and so do the non-dominating sets.

As far as the alternating sum }_ (—1) Il is concerned, these are just as good
I

(switching between dominating and non-dominating sets or between the
sets and their complements changes the sum by a factor of +1).

Theorem (Ehrenborg, Hetyei, 2005 ([EhrHet06, §71)): Let I' be a forest.
Then, both simplicial complexes

{non-dominating sets of I'} and
{complements of dominating sets of I'}

are either contractible or homotopy-equivalent to a sphere.

* Question: What can be said about the case when I is an n-cycle?

3.5. Discrete Morse theory

* Thus we have two approaches to proving formulas for alternating sums:

sign-reversing homotopy
involution type
I
L (-1
IeA

* Could these two approaches be combined? I.e., is there a technique that
gets us both homotopy information and a sign-reversing involution in one




page 14

(possibly harder) swoop?

sign-reversing homotopy
involution type
I
L (-1
IeA

Discrete Morse theory is an answer. We will use some of its very basics.

Definition. For two sets I and ], we write I < Jif ] = U {a single element}
(thatis, if I C Jand |J \ I| = 1). Equivalently, we write | > I for this.

Definition. Let (S,A) be a simplicial complex. A partial matching on A
shall mean an involution y : A — A such that

p(I)=TIoru(l)<IToru(l)>=1 foreachI € A.

In other words, yu (I) is either I itself or is obtained from I by removing or
inserting a single element.

Definition. If y is a partial matching on A, then the sets I € A satisfying
i (I) = I will be called unmatched (by p).

Thus, if p is a partial matching on A, then

BECEIEE D N C
IeA IeA is
unmatched

(by cancellation).

Thus, partial matchings are just our partial sign-reversing involutions
rewritten (instead of taking some sets out of our complex, we are now
leaving them fixed).

What about the homotopy information? We cannot in general “cancel”
matched faces from a simplicial complex and hope that the homotopy
information is preserved.

However, we can restrict our matchings in a way that will make them
homotopy-friendly! This is one of the main contributions of Forman that
became discrete Morse theory ([Forman02, §3, §6], [Kozlov20]):
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* Definition. Let (S, A) be a simplicial complex. A partial matching y on A
is said to be acyclic (or a Morse matching) if there exists no “cycle” of the
form

h-u(lh)<L>=u(hh)<L>---<I,=u(ly) <h

with n > 2 and with I, I, . . ., I, distinct.

* Intuition: The easiest way to ensure this is by making sure that when
u adds an element to a face I, then it does so in an “optimal” way (i.e.,
among all ways to add an element to I and still obtain a face of A, it
picks the “best” one in some sense). This way, in the above “cycle”, the
faces I1, I, . . ., I, I; become “better and better”, so the cycle cannot exist.
There is freedom in defining what “optimal”/“best” is (it means specify-
ing some partial order on the faces of any given size).

This is why Forman calls acyclic matchings “gradient vector fields” in [Forman02].

* Empiric fact(?): Sign-reversing involutions in combinatorics tend to be
acyclic partial matchings.

* Question: Really? Check some of the more complicated ones!

e Theorem (Forman, I believe). Let (S,A) be a simplicial complex, and p
an acyclic partial matching on A. For each k € IN, let ¢, be the number of
unmatched size-k faces of A.

Then, there is a CW-complex homotopy-equivalent to A that has exactly
cx faces of dimension k — 1 for each k € IN.

 Corollary. (a) If a simplicial complex (S, A) has an acyclic partial matching
that leaves no face unmatched, then it is contractible.

(b) If a simplicial complex (S,A) has an acyclic partial matching that
leaves exactly one face unmatched, then it is homotopy-equivalent to a
sphere.

* As a consequence, having a good Morse matching gets us good (if not
100% complete) information both about the homotopy type and about the
combinatorics of a simplicial complex.

* For example, all the sign-reversing involutions we used in our proofs
above are Morse matchings.

4. Elser’s “pandemic” complex

* A remarkable alternating sum identity appeared in a 1984 paper by Elser
on mathematical physics (percolation theory) [Elser84]. I shall restate it
in a slightly simpler language.
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Fix a (finite undirected multi)graph I' with vertex set V and edge set E.

Fix a vertex v € V.

If F C E, then an F-path shall mean a path of I such that all edges of the
path belong to F.

If e € E is any edge and F C E is any subset, then we say that F infects e
if there exists an F-path from v to some endpoint of e.

(My go-to mental model: A virus starts out in v and spreads along any
F-edge it can get to. Then, F infects e if the virus will eventually reach an
endpoint of e. Note that F always infects any edge through v.)

A subset F C E is said to be pandemic if it infects each edge e € E.

Example: Let I be

Then:

— The set {1,2} C E infects edges 1,2, 3, 6,8 (but no others), since the
virus gets to the vertices v, p, g.

— The set {1,2,5} infects the same edges.

— The set {1,2,3} infects every edge other than 5.

— The set {1,2,3,4} infects each edge, and thus is pandemic (even
though the virus never gets to vertex w).

e Theorem (Elser, 1984 ([Elser84, Lemma 1], [Grinbe20, Theorem 1.2])):
Assume that E # @. Then,

Yy (-pfi=o.
FCE s
pandemic

* Remark: A version of pandemicity in which F has to infect all vertices
(rather than all edges) would fail to produce such a theorem.
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4.1. More generally
e If F is a subset of E, then we define a subset Shade F of E by

ShadeF = {e € E | Finfectse}.

e Example: Let I be

Then, Shade {1,2} = {1,2,3,6,8} and Shade {1} = {1,2,6} and Shade {8} =

(1,6},

¢ Theorem ([Grinbe20, Theorem 2.5], generalizing Elser’s theorem): Let
G be any subset of E. Assume that E # @. Then,

Y, (-pfi=o

FCE;
GCShade F

* Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous
theorem): Let G be any subset of E. Then,

Yy (-pnfi=o

FCE;
G¢ZShade F

* This restatement looks useful since it gets rid of the E # & assumption.
That’s a good sign!

4.2. Proof idea

¢ Let’s prove this latter restatement. Here is it again:

Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous
theorem): Let G be any subset of E. Then,

Y, (—pfi=o

FCE;
G¢ZShade F
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4.3.

4.4.

Proof. Let
A={FCE | G¢ShadeF}.

Equip the set E with a total order. If F € A, then let € (F) be the smallest
edge e € G\ ShadeF.

Define a sign-reversing involution

A— A,
F— FA{e(F)}.

Check that this works! (The key observation: Shade F does not change
when we toggle ¢ (F) in F.)

Variants

We cannot replace “infects all edges” by “infects all vertices” as long as
we work with sets of edges.

However, we can work with sets of vertices instead (mutatis mutandis).
In detail:

If F C V, then an F-vertex-path shall mean a path of I' such that all vertices
of the path except (possibly) for its two endpoints belong to F. (Thus, if a
path has only one edge or none, then it automatically is an F-vertex-path.)

If w e V\ {v} is any vertex and F C V \ {v} is any subset, then we say
that F vertex-infects w if there exists an F-vertex-path from v to w. (This is
always true when w is v or a neighbor of v.)

A subset F C V' \ {v} is said to be vertex-pandemic if it vertex-infects each
vertex w € V' \ {v}.

Theorem ([Grinbe20, Theorem 3.2]). Assume that V' \ {v} # &. Then,

Yy  (-pF=o
FCV\{v}is
vertex-pandemic

Generalizations similar to the one above also hold.

A hammer in search of nails

The proofs of the original Elser’s theorem and of its vertex variant are
suspiciously similar.
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4.5.

Even worse, they use barely any graph theory. All we needed is that E is a

finite set, and that Shade : P (E) — P (E) (where P (E) = {all subsets of E})

is a map with the property that

Shade (F A {u}) = Shade F
forany F C E and u € E \ Shade F.

I call such a map Shade a shade map. Our above argument then shows that

Y. (—1)|F‘ =0 forany G C E.
FCE;
G¢ZShade F

Question. Have you seen other maps satisfying this property in the wild?

Answer 1 ([Grinbe20, Example 4.10]). Let A be an affine space over R.
Fix a finite subset E of A. For any F C E, we define

Shade F = {e € E | e is not a nontrivial convex combination of F}.

(A convex combination is said to be nontrivial if all coefficients are < 1.)
Then, this map Shade : P (E) — P (E) is a shade map.

Answer 2 ([Grinbe20, Theorem 4.18]). Each antimatroid (a type of gree-
doids, a variation on the concept of matroids) produces a shade map.

Other answers? Can you get shade maps from matroids? spanning trees?
lattices?

Remark ([Grinbe20, Theorem 4.33]). Shade maps on E are in bijection
with the partitions of the Boolean lattice 3 (E) into intervals.

The topological viewpoint

Now let us return to the case of a graph I' = (V,E). Fix a subset G of E,
and let

A={FCE | G ¢ShadeF}
= {F C E | notevery edge in G is infected by F}

as in the proof above.
This A is clearly a simplicial complex on ground set E.

Theorem (G., 2020 ([Grinbe20, Theorem 5.5])). This simplicial com-
plex has a Morse matching (i.e., an acyclic partial matching) with no un-
matched faces. Thus, it is contractible.

Proof idea. Argue that the sign-reversing involution above is a Morse
matching.
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4.6.

4.7.

The Alexander dual

The complex
A={FCE | G¢ShadeF}

is not the only simplicial complex we can obtain from our setup. There is
also
A*={FCE | GCShade(E\F)}.

More generally, if (S,A) is any simplicial complex, then we can define a
new simplicial complex (S, A*), where

A :={ICS | S\I¢A}
= {the complements of the non-faces of A} .

This (S, A*) is called the Alexander dual of (S, A).

The homologies of (S,A*) and (S, A) are isomorphic (folklore — see, e.g.,
[BjoTan(09]); thus the Euler characteristics agree up to sign.

But the homotopy types are not in general equivalent! Nor is the existence
of a Morse matching with good properties.

Thus, for any homotopy type question we can answer, we can state an
analogous one for its dual.

Question. What is the homotopy type of the .A* above?

Multi-shades?

I can’t help spreading yet another open question that essentially comes
from Dorpalen-Barry et al. [DHLetc19, Conjecture 9.1].

Return to the setup of a graph I' = (V,E), but don’t fix the vertex v this
time.

Rename Shade F as Shade, F to stress its dependence on v.

For any subset U C V, define the simplicial complex

Ay:={FCE | GZShade,F for somev € U}.

Question: What can we say about the homotopy and discrete Morse the-
ory of Ay ? What about its Alexander dual?

An optimistic yet reasonable expectation would be: a Morse matching
whose unmatched faces all have the same size. (Thus, A;; should be
homotopy-equivalent to a bouquet of spheres.)

Update: I am skeptical about the proof given in arXiv:2203.12525v2 (but I
might be misunderstanding it).



https://arxiv.org/abs/2203.12525v2
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5. Bonus: Path-free and path-missing complexes

¢ This is joint work with Lukas Katthdn and Joel Brewster Lewis [GrKaLe21].

* Fix a directed graph G = (V,E) and two vertices s and t. We define the
two simplicial complexes

PF (G) ={F CE | thereisno F-path from s to ¢}
(the “path-free” complex of G)

and

PM(G)={F CE | thereisan (E\ F)-path from s to t}
(the “path-missing” complex of G).

(These are Alexander duals of each other.)

e Example: Let G be the following directed graph:

Then:
— The faces of the simplicial complex PF(G) are the sets

{b.ce fr gy, {acef, gy, {bcd g}, {a.cdf,8}, {abef}, {abdf g}

as well as all their subsets.

— The faces of the simplicial complex PM(G) are the sets

{def gy, edfy, {abecf gy, {aeg}

as well as all their subsets.

e Theorem (G., Katthdn, Lewis, 2021 ([GrKaLe21[])). Assume that s # ¢t
and E # @ (the other cases are trivial). Then, both complexes PF (G)
and PM (G) are contractible or homotopy-equivalent to spheres. The
dimensions of the spheres can be determined explicitly. The complexes
are contractible if and only if G has a useless edge (i.e., an edge that
appears in no path from s to t) or a (directed) cycle.
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e Theorem (G., Katthin, Lewis, 2024 ([GrKaLe21])). Both complexes PF (G)
and PM (G) have Morse matchings with at most one unmatched face.

* The proofs use (fairly intricate) deletion/contraction arguments.

* Question. Is there a good non-recursive description of these Morse match-
ings?
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