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Abstract. A number of combinatorial identities are concerned
with certain classes of subsets of a finite set (e.g., matchings of a
graph); they can be viewed as saying (roughly speaking) that equal
numbers of these subsets have even size and odd size. In this talk,
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1. Introduction

1.1. Alternating sums

• Enumerative combinatorics is full of alternating sums. Some examples:

n

∑
k=0

(−1)k
(

n
k

)
= 0 for integers n > 0;

m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n − 1

m

)
for m ⩾ 0;

⌊n/2⌋

∑
k=0

(−1)k
(

n − k
k

)
= (1 or 0 or − 1) ;

n

∑
k=0

(−1)k
(

n
k

)(
ak + b

c

)
= 0 for c, n ∈ N with c < n;

m

∑
i=0

(−1)i sur (m, i) = (−1)m ,

where sur (m, i) = (# of surjections from {1, 2, . . . , m} to {1, 2, . . . , i}).

• These alternating sums are among the most helpful tools in proving iden-
tities. (They often play a similar role as the formula 1 + ζ + ζ2 + · · · +
ζn−1 = 0 for ζ being a nontrivial n-th root of unity plays in the discrete
Fourier transform.)

• An alternating sum identity generally looks like this:

∑
(some finite set)

(−1)(something) (something) = (something typically simpler) .

• In this talk, I shall

– present some alternating sum identities and their combinatorial proofs
by “toggling” or “sign-reversing involutions”;

– discuss how a few of these identities can be lifted to topological
statements about simplicial complexes,

– and how these topological statements can be lifted to combinatorial
statements again using discrete Morse theory.

• This is not a theory talk; you’ll hear my personal favorites, not the most
general or most important results.

• There will be various open questions.
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2. Toggling

2.1. All subsets

• We start with the first identity listed above:

Theorem. Let n be a positive integer. Then,

n

∑
k=0

(−1)k
(

n
k

)
= 0.

• There are many ways to prove this:

e.g., expand (1 − 1)n using the binomial theorem.

• Here is a combinatorial proof:

Set [n] = {1, 2, . . . , n}. Then,

n

∑
k=0

(−1)k
(

n
k

)
= ∑

I⊆[n]
(−1)|I| .

Claim: In the sum on the RHS, all the addends cancel out.

Proof. For each subset I of [n], we can

1. insert 1 into I if 1 /∈ I, or

2. remove 1 from I if 1 ∈ I.

This gives us a new subset of [n], which we denote by I △ {1}.

Easy to see: The map

{subsets of [n]} → {subsets of [n]} ,
I 7→ I △ {1}

is an involution (i.e., applying it twice gives the identity), and it flips the
sign (meaning (−1)|I△{1}| = − (−1)|I| for any subset I of [n]).

Hence, all addends in the sum ∑
I⊆[n]

(−1)|I| cancel out (the I-addend can-

celling the I △ {1}-addend). Thus, the sum is 0, qed.

• Our notation I △ {1} is a particular case of the notation

I △ J = (I ∪ J) \ (I ∩ J)
= (I \ J) ∪ (J \ I)
= {all elements that belong to exactly one of I and J}

for any two sets I and J.
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• If a is any element, then the operation of replacing a set I by I △{a} (that
is, inserting a into I if a /∈ I, and removing a from I otherwise) is called
toggling a in I. This is always an involution: (I △ {a})△ {a} = I for any
I and a.

• Remark: It was actually sufficient for our proof that the map I 7→ I △{1}
is a bijection, not necessarily an involution. But all such maps we will
encounter are involutions.

2.2. All subsets not too large

• Let us try the second identity:

Theorem. Let n be any number (e.g., a real), and let m be a nonnegative
integer. Then,

m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n − 1

m

)
.

• Proof. First of all, we are proving a polynomial identity in n, so we WLOG
assume that n is a positive integer (since two polynomials over a field are
equal if they agree on sufficiently many points).

We have
m

∑
k=0

(−1)k
(

n
k

)
= ∑

I⊆[n];
|I|⩽m

(−1)|I| .

Now, we try the involution from the previous proof:

{subsets of [n]} → {subsets of [n]} ,
I 7→ I △ {1} .

Unfortunately, applying it to a set I might break the |I| ⩽ m restriction.
But it restricts to an involution

A → A,
I 7→ I △ {1} ,

where
A = {subsets I of [n] with |I \ {1}| < m} .

Thus, all addends in the sum ∑
I⊆[n];
|I|⩽m

(−1)|I| cancel except for those with

|I \ {1}| = m. We get

∑
I⊆[n];
|I|⩽m

(−1)|I| = ∑
I⊆[n];
|I|⩽m;

|I\{1}|=m

(−1)|I| = ∑
I⊆[n];
1/∈I;
|I|=m

(−1)|I| = (−1)m
(

n − 1
m

)
,



page 5

since there are exactly
(

n − 1
m

)
many subsets I of [n] satisfying 1 /∈ I and

|I| = m. This completes our proof.

2.3. Lacunar subsets

• Now to the third identity:

Theorem. Let n be a nonnegative integer. Then,

⌊n/2⌋

∑
k=0

(−1)k
(

n − k
k

)
=


1, if n%6 ∈ {0, 1} ;
0, if n%6 ∈ {2, 5} ;
−1, if n%6 ∈ {3, 4} ,

where n%6 means the remainder of n divided by 6.

• To prove this combinatorially, we need to find out what
(

n − k
k

)
counts.

• Convention. We shall write [m] for {1, 2, . . . , m} whenever m ∈ Z.

• Definition. A set I of integers is said to be lacunar if it contains no two
consecutive integers (i.e., there is no i ∈ I such that i + 1 ∈ I).

• For example, {1, 3, 6} is lacunar, but {1, 3, 4} is not. Empty and one-
element sets are always lacunar.

• Note that any lacunar subset of [n − 1] has size ⩽ ⌊n/2⌋.

• Proposition. For any n ⩾ k ⩾ 0, the number of lacunar k-element subsets

of [n − 1] is
(

n − k
k

)
.

• Proof. Write “elt” for “element”, and “subs” for “subsets”.

There is a bijection

{lacunar k-elt subs of [n − 1]} → {k-elt subs of {0, 1, . . . , n − k − 1}} ,
{i1 < i2 < · · · < ik} 7→ {i1 − 1 < i2 − 2 < · · · < ik − k} .

• Thus, we can start a combinatorial proof of our theorem as follows:

⌊n/2⌋

∑
k=0

(−1)k
(

n − k
k

)
= ∑

I⊆[n−1];
I is lacunar

(−1)|I| .

We want to prove that this is 1 or 0 or −1.
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So let us try to construct a sign-reversing involution on the set

{lacunar subsets of [n − 1]}
except for possibly one element.

Let I be a lacunar subset of [n − 1].

– We try to toggle 1 in I, but we only do this if the result is lacunar.

If we succeed (i.e., if the result is lacunar), then we are done.

[Examples:

* If I = {1, 3, 7}, then we toggle 1, and obtain the set {3, 7}. Thus,
in this case, we succeed and have found the image of I under our
involution.

* If I = {3, 7}, then we toggle 1, and obtain the set {1, 3, 7}. Thus,
in this case, we succeed and have found the image of I under our
involution.

* If I = {2, 7}, then we cannot toggle 1, since this would produce
the non-lacunar set {1, 2, 7}. Thus, in this case, we don’t succeed
and move on to the next step.]

– If we have not succeeded in the previous step, then 2 ∈ I and thus
3 /∈ I.

Thus we try to toggle 4 in I, but we only do this if the result is
lacunar.

If we succeed, then we are done.

[Examples:

* If I = {2, 4, 9}, then we toggle 4, and obtain the set {2, 9}. Thus,
in this case, we succeed and have found the image of I under our
involution.

* If I = {2, 9}, then we toggle 4, and obtain the set {2, 4, 9}. Thus,
in this case, we succeed and have found the image of I under our
involution.

* If I = {2, 5, 8}, then we cannot toggle 4, since this would pro-
duce the non-lacunar set {2, 4, 5, 8}. Thus, in this case, we don’t
succeed and move on to the next step.

* If I = {1, 3, 7}, then we do not get to this step in the first place,
since the first step has already succeeded (turning I into {3, 7}).]

– If we have not succeeded in the previous step, then 5 ∈ I and thus
6 /∈ I.

Thus we try to toggle 7 in I, but we only do this if the result is
lacunar.

If we succeed, then we are done.
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– And so on.

This operation goes on until we have run out of elements of [n − 1] to
toggle. The only case in which we fail to toggle anything is if

n ̸≡ 2 mod 3 and I = {2, 5, 8, . . .} ∩ [n − 1] .

Thus we have found a sign-reversing involution on the set {lacunar subsets of [n − 1]}
with the exception of a single lacunar subset if n ̸≡ 2 mod 3 (and with no
exceptions if n ≡ 2 mod 3). The conclusion easily follows.

• This proof is in [BenQui08] (where it is worded using domino tilings in-
stead of lacunar subsets).

2.4. Independent sets of a graph

• Let us generalize this.

• Definition. Let Γ = (V, E) be an (undirected) graph. An independent set
of Γ means a subset I of V such that no two vertices in I are adjacent (i.e.,
no edge of Γ connects two vertices in I).

• Example. For the following graph:

u

y w

x

vz

the independent sets are

{x, y} , {y, z} , {z, x} , {u, x} , {v, y} , {w, z} , {x, y, z}

as well as all 1-element sets and the empty set.

• For any m ⩾ 0, let the m-path be the graph

1 − 2 − 3 − · · · − m

(that is, the graph with vertices 1, 2, . . . , m and edges {i, i + 1} for each
0 < i < m).

Then, the lacunar subsets of [m] are the independent sets of the m-path.
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• Now we can generalize our previous theorem as follows:

Question: For what graphs Γ do we have

∑
I is an independent

set of Γ

(−1)|I| ∈ {1, 0,−1} ?

• Certainly not for all graphs Γ (e.g., the 4-cycle is a counterexample).

• But we know it’s true for path graphs. For what other graphs?

• We can try to construct a sign-reversing involution again, and see where
we fail.

• What order do we try to toggle the vertices in?

• Well, we can always pick some order at random.

• Unfortunately, toggling a vertex might be blocked by several vertices.

• Trying to solve the resulting conflicts often fails (e.g., for a 4-cycle, even
though the sum is −1 for a 4-cycle).

• Our above proof can be adapted when Γ is a forest ([EhrHet06, Corollary
6.1])).

• However, a much more general result holds:

• Theorem (conjectured by Kalai and Meshulam, 1990s, proved by Chud-
novsky, Scott, Seymour, Spirkl, 2018 ([CSSS18])): Let Γ be a simple loop-
less undirected graph that has no induced cycle of length divisible by 3.
Then,

∑
I is an independent

set of Γ

(−1)|I| ∈ {1, 0,−1} .

• Question: Is there any proof under 10 pages length?

2.5. Dominating sets of a graph

• Definition. Let Γ = (V, E) be an (undirected) graph. A dominating set of
Γ means a subset I of V such that each vertex of Γ belongs to I or has a
neighbor in I.
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• Example. For the following graph:

u

y w

x

vz

the non-dominating sets are

{u, y, z} , {v, z, x} , {w, x, y}
as well as all their subsets.

• Theorem (e.g., Brouwer 2009 ([Brouwe09], [BrCsSc09])): The number of
dominating sets of a graph Γ is always odd.

• Theorem (Heinrich, Tittmann, 2017 ([HeiTit17], [Grinbe17, Theorem
3.2.2])): The number of dominating sets of a graph Γ = (V, E) is

2|V| − 1 + ∑
pairs (A,B) of disjoint

nonempty subsets of V;
{a,b}/∈E for all a∈A and b∈B;

|A|≡|B|mod 2

(−1)|A|

︸ ︷︷ ︸
This is even for symmetry reasons

(for any (A,B), there is a (B,A))

.

• What about the alternating sum

∑
I is a dominating

set of Γ

(−1)|I| ?

Is it ±1 ?

• No; for example:

Theorem (Alikhani, 2012 ([Alikha12, Lemma 1])): If Γ is an n-cycle (for
n > 0), then this alternating sum is{

3, if n ≡ 0 mod 4;
−1, otherwise.

Exercise: Prove this! (Is there a nice proof without too much casework?)
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• Theorem (Ehrenborg, Hetyei, 2005 ([EhrHet06, §7])): The alternating sum
is ±1 whenever Γ is a forest.

3. Simplicial complexes

3.1. Basic definitions

• The sums we have been discussing so far didn’t range over some random
collections of sets. Most of them had a commonality: If a set I appeared
in the sum, then so did any subset of I.

• Such collections of sets are called simplicial complexes.

• Formally:

Definition. A simplicial complex means a pair (S, ∆), where S is a finite set
and ∆ is a collection (= set) of subsets of S such that

any I ∈ ∆ and J ⊆ I satisfy J ∈ ∆.

• We often just write ∆ for a simplicial complex (S, ∆).

• A face of a simplicial complex ∆ means a set I ∈ ∆.

• Note that {} and {∅} are two different simplicial complexes on any set S.

• Examples of simplicial complexes:

– {all subsets of S} for a given finite set S.

– {all lacunar subsets of [m]} for a given m ∈ N.

– {all independent sets of Γ} for a given graph Γ.

– not {all dominating sets of Γ} for a given graph Γ.

– {all non-dominating sets of Γ} and {all complements of dominating sets of Γ}
for a given graph Γ.

(Here the ground set is the set of vertices of Γ.)

3.2. Geometric realizations

• Each simplicial complex (S, ∆) has a geometric realization |∆|, which is a
topological space glued out of (geometric) simplices. The easiest way to
define it is by assuming (WLOG) that S = [n] for some n ∈ N, and setting

|∆| =
{
(t1, t2, . . . , tn) ∈ Rn

⩾0 | t1 + t2 + · · ·+ tn = 1

and {i | ti > 0} ∈ ∆} .
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• Normally we don’t draw the literal |∆| (since Rn has too high dimension)
but just something homeomorphic to it (usually in a smaller space).

• Some examples:

– The complex {all independent sets of Γ} of the graph Γ on the left is
the simplicial complex drawn on the right:

u

y w

x

vz

w

x

v

z

u

y

– The complex {all non-dominating sets of Γ} of the graph Γ on the
left is the simplicial complex drawn on the right:

u

y w

x

vz

x

v z

u

yw

3.3. Homotopy and homology

• A lot of features come for free with the geometric realization:

The homotopy type, the homology and the reduced Euler characteristic of a
simplicial complex ∆ are defined to be the homotopy type, the homology
and the reduced Euler characteristic of its geometric realization.
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• Explicitly, the Euler characteristic of a complex ∆ is simply

∑
I∈∆

(−1)|I|−1 .

(The “−1” in the exponent just negates the whole sum.)

• Thus, the alternating sums we have been computing are actually Euler
characteristics in disguise.

• Homology is a stronger invariant than Euler characteristic, and homotopy
type is an even stronger invariant than homology:

(homotopy type) ↠ (homology over Z) ↠ (homology over Q)

↠ (Euler characteristic) .

Our results above are all about Euler characteristics; can we lift them to
those stronger invariants?

• Note that homology can be easily redefined combinatorially in terms of
∆. (Homotopy type, too, but less easily; see [Kozlov20, Proposition 9.28].)

3.4. Examples of homotopy types

• Our first theorem said that the reduced Euler characteristic of the simpli-
cial complex

{all subsets of E}
is 0 for any nonempty finite set E. This lifts all the way up to homotopy
level:

Proposition. This simplicial complex is contractible (i.e., homotopy-equivalent
to a point).

Geometrically, this is clear: Its geometric realization is a simplex, hence
homeomorphic to an (n − 1)-ball, where n = |E|.

• Our second theorem was
m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n − 1

m

)
.

This corresponds to the simplicial complex

{all subsets of [n] having size ⩽ m} .

This is called the (m − 1)-skeleton of the (n − 1)-ball. By classical alge-

braic topology, it is homotopy-equivalent to a bouquet of
(

n − 1
m

)
many

(m − 1)-spheres, which again explains the Euler characteristic.
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• Now, recall the independent sets of graphs.

Theorem (Kalai, Meshulam, Engström, Chudnovsky, Scott, Seymour,
Spirkl, Zhang, Wu, Kim, 2021 ([ZhaWu20], [Kim21])): Let Γ be a simple
loopless undirected graph that has no induced cycle of length divisible by
3. Then, the simplicial complex

{independent sets of Γ}

is either contractible or homotopy-equivalent to a sphere (whence its re-
duced Euler characteristic is in {1, 0,−1}).

• As we recall, the dominating sets of a graph do not form a simplicial
complex, but their complements do, and so do the non-dominating sets.
As far as the alternating sum ∑

I
(−1)|I| is concerned, these are just as good

(switching between dominating and non-dominating sets or between the
sets and their complements changes the sum by a factor of ±1).

Theorem (Ehrenborg, Hetyei, 2005 ([EhrHet06, §7])): Let Γ be a forest.
Then, both simplicial complexes

{non-dominating sets of Γ} and
{complements of dominating sets of Γ}

are either contractible or homotopy-equivalent to a sphere.

• Question: What can be said about the case when Γ is an n-cycle?

3.5. Discrete Morse theory

• Thus we have two approaches to proving formulas for alternating sums:

sign-reversing
involution

%%

homotopy
type

zz

∑
I∈∆

(−1)|I|

• Could these two approaches be combined? I.e., is there a technique that
gets us both homotopy information and a sign-reversing involution in one
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(possibly harder) swoop?

???

&&ww

sign-reversing
involution

%%

homotopy
type

zz

∑
I∈∆

(−1)|I|

• Discrete Morse theory is an answer. We will use some of its very basics.

• Definition. For two sets I and J, we write I ≺ J if J = I ∪{a single element}
(that is, if I ⊆ J and |J \ I| = 1). Equivalently, we write J ≻ I for this.

• Definition. Let (S, ∆) be a simplicial complex. A partial matching on ∆
shall mean an involution µ : ∆ → ∆ such that

µ (I) = I or µ (I) ≺ I or µ (I) ≻ I for each I ∈ ∆.

In other words, µ (I) is either I itself or is obtained from I by removing or
inserting a single element.

• Definition. If µ is a partial matching on ∆, then the sets I ∈ ∆ satisfying
µ (I) = I will be called unmatched (by µ).

• Thus, if µ is a partial matching on ∆, then

∑
I∈∆

(−1)|I| = ∑
I∈∆ is

unmatched

(−1)|I|

(by cancellation).

• Thus, partial matchings are just our partial sign-reversing involutions
rewritten (instead of taking some sets out of our complex, we are now
leaving them fixed).

• What about the homotopy information? We cannot in general “cancel”
matched faces from a simplicial complex and hope that the homotopy
information is preserved.

• However, we can restrict our matchings in a way that will make them
homotopy-friendly! This is one of the main contributions of Forman that
became discrete Morse theory ([Forman02, §3, §6], [Kozlov20]):
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• Definition. Let (S, ∆) be a simplicial complex. A partial matching µ on ∆
is said to be acyclic (or a Morse matching) if there exists no “cycle” of the
form

I1 ≻ µ (I1) ≺ I2 ≻ µ (I2) ≺ I3 ≻ · · · ≺ In ≻ µ (In) ≺ I1

with n ⩾ 2 and with I1, I2, . . . , In distinct.

• Intuition: The easiest way to ensure this is by making sure that when
µ adds an element to a face I, then it does so in an “optimal” way (i.e.,
among all ways to add an element to I and still obtain a face of ∆, it
picks the “best” one in some sense). This way, in the above “cycle”, the
faces I1, I2, . . . , In, I1 become “better and better”, so the cycle cannot exist.
There is freedom in defining what “optimal”/“best” is (it means specify-
ing some partial order on the faces of any given size).

This is why Forman calls acyclic matchings “gradient vector fields” in [Forman02].

• Empiric fact(?): Sign-reversing involutions in combinatorics tend to be
acyclic partial matchings.

• Question: Really? Check some of the more complicated ones!

• Theorem (Forman, I believe). Let (S, ∆) be a simplicial complex, and µ
an acyclic partial matching on ∆. For each k ∈ N, let ck be the number of
unmatched size-k faces of ∆.

Then, there is a CW-complex homotopy-equivalent to ∆ that has exactly
ck faces of dimension k − 1 for each k ∈ N.

• Corollary. (a) If a simplicial complex (S, ∆) has an acyclic partial matching
that leaves no face unmatched, then it is contractible.

(b) If a simplicial complex (S, ∆) has an acyclic partial matching that
leaves exactly one face unmatched, then it is homotopy-equivalent to a
sphere.

• As a consequence, having a good Morse matching gets us good (if not
100% complete) information both about the homotopy type and about the
combinatorics of a simplicial complex.

• For example, all the sign-reversing involutions we used in our proofs
above are Morse matchings.

4. Elser’s “pandemic” complex

• A remarkable alternating sum identity appeared in a 1984 paper by Elser
on mathematical physics (percolation theory) [Elser84]. I shall restate it
in a slightly simpler language.
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• Fix a (finite undirected multi)graph Γ with vertex set V and edge set E.

Fix a vertex v ∈ V.

• If F ⊆ E, then an F-path shall mean a path of Γ such that all edges of the
path belong to F.

• If e ∈ E is any edge and F ⊆ E is any subset, then we say that F infects e
if there exists an F-path from v to some endpoint of e.

(My go-to mental model: A virus starts out in v and spreads along any
F-edge it can get to. Then, F infects e if the virus will eventually reach an
endpoint of e. Note that F always infects any edge through v.)

• A subset F ⊆ E is said to be pandemic if it infects each edge e ∈ E.

• Example: Let Γ be

v

p

w

q

t

r

1

2 3

4

56

78

.

Then:

– The set {1, 2} ⊆ E infects edges 1, 2, 3, 6, 8 (but no others), since the
virus gets to the vertices v, p, q.

– The set {1, 2, 5} infects the same edges.

– The set {1, 2, 3} infects every edge other than 5.

– The set {1, 2, 3, 4} infects each edge, and thus is pandemic (even
though the virus never gets to vertex w).

• Theorem (Elser, 1984 ([Elser84, Lemma 1], [Grinbe20, Theorem 1.2])):
Assume that E ̸= ∅. Then,

∑
F⊆E is

pandemic

(−1)|F| = 0.

• Remark: A version of pandemicity in which F has to infect all vertices
(rather than all edges) would fail to produce such a theorem.
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4.1. More generally

• If F is a subset of E, then we define a subset Shade F of E by

Shade F = {e ∈ E | F infects e} .

• Example: Let Γ be

v

p

w

q

t

r

1

2 3

4

56

78

.

Then, Shade {1, 2} = {1, 2, 3, 6, 8} and Shade {1} = {1, 2, 6} and Shade {8} =
{1, 6}.

• Theorem ([Grinbe20, Theorem 2.5], generalizing Elser’s theorem): Let
G be any subset of E. Assume that E ̸= ∅. Then,

∑
F⊆E;

G⊆Shade F

(−1)|F| = 0.

• Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous
theorem): Let G be any subset of E. Then,

∑
F⊆E;

G ̸⊆Shade F

(−1)|F| = 0.

• This restatement looks useful since it gets rid of the E ̸= ∅ assumption.
That’s a good sign!

4.2. Proof idea

• Let’s prove this latter restatement. Here is it again:

Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous
theorem): Let G be any subset of E. Then,

∑
F⊆E;

G ̸⊆Shade F

(−1)|F| = 0.
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• Proof. Let
A = {F ⊆ E | G ̸⊆ Shade F} .

Equip the set E with a total order. If F ∈ A, then let ε (F) be the smallest
edge e ∈ G \ Shade F.

Define a sign-reversing involution

A → A,
F 7→ F △ {ε (F)} .

Check that this works! (The key observation: Shade F does not change
when we toggle ε (F) in F.)

4.3. Variants

• We cannot replace “infects all edges” by “infects all vertices” as long as
we work with sets of edges.

• However, we can work with sets of vertices instead (mutatis mutandis).

• In detail:

• If F ⊆ V, then an F-vertex-path shall mean a path of Γ such that all vertices
of the path except (possibly) for its two endpoints belong to F. (Thus, if a
path has only one edge or none, then it automatically is an F-vertex-path.)

• If w ∈ V \ {v} is any vertex and F ⊆ V \ {v} is any subset, then we say
that F vertex-infects w if there exists an F-vertex-path from v to w. (This is
always true when w is v or a neighbor of v.)

• A subset F ⊆ V \ {v} is said to be vertex-pandemic if it vertex-infects each
vertex w ∈ V \ {v}.

• Theorem ([Grinbe20, Theorem 3.2]). Assume that V \ {v} ̸= ∅. Then,

∑
F⊆V\{v} is

vertex-pandemic

(−1)|F| = 0.

• Generalizations similar to the one above also hold.

4.4. A hammer in search of nails

• The proofs of the original Elser’s theorem and of its vertex variant are
suspiciously similar.
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• Even worse, they use barely any graph theory. All we needed is that E is a
finite set, and that Shade : P (E) → P (E) (where P (E) = {all subsets of E})
is a map with the property that

Shade (F △ {u}) = Shade F
for any F ⊆ E and u ∈ E \ Shade F.

I call such a map Shade a shade map. Our above argument then shows that

∑
F⊆E;

G ̸⊆Shade F

(−1)|F| = 0 for any G ⊆ E.

• Question. Have you seen other maps satisfying this property in the wild?

• Answer 1 ([Grinbe20, Example 4.10]). Let A be an affine space over R.
Fix a finite subset E of A. For any F ⊆ E, we define

Shade F = {e ∈ E | e is not a nontrivial convex combination of F} .

(A convex combination is said to be nontrivial if all coefficients are < 1.)

Then, this map Shade : P (E) → P (E) is a shade map.

• Answer 2 ([Grinbe20, Theorem 4.18]). Each antimatroid (a type of gree-
doids, a variation on the concept of matroids) produces a shade map.

• Other answers? Can you get shade maps from matroids? spanning trees?
lattices?

• Remark ([Grinbe20, Theorem 4.33]). Shade maps on E are in bijection
with the partitions of the Boolean lattice B (E) into intervals.

4.5. The topological viewpoint

• Now let us return to the case of a graph Γ = (V, E). Fix a subset G of E,
and let

A = {F ⊆ E | G ̸⊆ Shade F}
= {F ⊆ E | not every edge in G is infected by F}

as in the proof above.

• This A is clearly a simplicial complex on ground set E.

• Theorem (G., 2020 ([Grinbe20, Theorem 5.5])). This simplicial com-
plex has a Morse matching (i.e., an acyclic partial matching) with no un-
matched faces. Thus, it is contractible.

• Proof idea. Argue that the sign-reversing involution above is a Morse
matching.
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4.6. The Alexander dual

• The complex
A = {F ⊆ E | G ̸⊆ Shade F}

is not the only simplicial complex we can obtain from our setup. There is
also

A∗ = {F ⊆ E | G ⊆ Shade (E \ F)} .

• More generally, if (S, ∆) is any simplicial complex, then we can define a
new simplicial complex (S, ∆∗), where

∆∗ := {I ⊆ S | S \ I /∈ ∆}
= {the complements of the non-faces of ∆} .

This (S, ∆∗) is called the Alexander dual of (S, ∆).

• The homologies of (S, ∆∗) and (S, ∆) are isomorphic (folklore – see, e.g.,
[BjoTan09]); thus the Euler characteristics agree up to sign.

But the homotopy types are not in general equivalent! Nor is the existence
of a Morse matching with good properties.

• Thus, for any homotopy type question we can answer, we can state an
analogous one for its dual.

• Question. What is the homotopy type of the A∗ above?

4.7. Multi-shades?

• I can’t help spreading yet another open question that essentially comes
from Dorpalen-Barry et al. [DHLetc19, Conjecture 9.1].

• Return to the setup of a graph Γ = (V, E), but don’t fix the vertex v this
time.

• Rename Shade F as Shadev F to stress its dependence on v.

• For any subset U ⊆ V, define the simplicial complex

AU := {F ⊆ E | G ̸⊆ Shadev F for some v ∈ U} .

• Question: What can we say about the homotopy and discrete Morse the-
ory of AU ? What about its Alexander dual?

• An optimistic yet reasonable expectation would be: a Morse matching
whose unmatched faces all have the same size. (Thus, AU should be
homotopy-equivalent to a bouquet of spheres.)

• Update: I am skeptical about the proof given in arXiv:2203.12525v2 (but I
might be misunderstanding it).

https://arxiv.org/abs/2203.12525v2


page 21

5. Bonus: Path-free and path-missing complexes

• This is joint work with Lukas Katthän and Joel Brewster Lewis [GrKaLe21].

• Fix a directed graph G = (V, E) and two vertices s and t. We define the
two simplicial complexes

PF (G) = {F ⊆ E | there is no F-path from s to t}
(the “path-free” complex of G)

and

PM (G) = {F ⊆ E | there is an (E \ F) -path from s to t}
(the “path-missing” complex of G) .

(These are Alexander duals of each other.)

• Example: Let G be the following directed graph:

s

p

q

r

t

a

b

c

d e

f g

.

Then:

– The faces of the simplicial complex PF (G) are the sets

{b, c, e, f , g} , {a, c, e, f , g} , {b, c, d, g} , {a, c, d, f , g} , {a, b, e, f } , {a, b, d, f , g}

as well as all their subsets.

– The faces of the simplicial complex PM(G) are the sets

{d, e, f , g} , {c, d, f } , {a, b, c, f , g} , {a, e, g}

as well as all their subsets.

• Theorem (G., Katthän, Lewis, 2021 ([GrKaLe21])). Assume that s ̸= t
and E ̸= ∅ (the other cases are trivial). Then, both complexes PF (G)
and PM (G) are contractible or homotopy-equivalent to spheres. The
dimensions of the spheres can be determined explicitly. The complexes
are contractible if and only if G has a useless edge (i.e., an edge that
appears in no path from s to t) or a (directed) cycle.
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• Theorem (G., Katthän, Lewis, 2024 ([GrKaLe21])). Both complexes PF (G)
and PM (G) have Morse matchings with at most one unmatched face.

• The proofs use (fairly intricate) deletion/contraction arguments.

• Question. Is there a good non-recursive description of these Morse match-
ings?
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