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attempts to correct misprints2 and add some comments (identifiable as footnotes,
marked with “Comment:”).

This re-edition was prepared by Darij Grinberg. It is unofficial and has been en-
dorsed neither by the authors of the original article nor by Elsevier (its publishers);
its legality derives from the Elsevier Open Archives license as it was formulated in
20133. The article is in copyright c© 1978 Published by Elsevier Inc.

I have tried to reproduce the original paper as faithfully as possibly while correct-
ing errors and making use of the possibilities of contemporary LaTeX typography
(e.g., numbering theorems, finishing proofs with � signs). Nevertheless, errors and
unintended discrepancies are likely to have happened. Please let me know if you
find anything wrong!4

1. Introduction

Since its emergence in the middle of the last century, invariant theory has oscil-
lated between two clearly distinguishable poles. The first, and the one that was
later to survive the temporary “death” of the field, is geometry. Invariants were
identified with the invariants of surfaces. Their study, the aim of which was to give
information about the solution of systems of polynomial equations, was to lead to
the rise of commutative algebra. From this standpoint, projective invariants were
eventually seen as poor relations of the richer algebraic invariants.

A casualty of this trend was the study of the projective generation of surfaces,
a problem which was condemned by Cremona as “too difficult,” and which has
never quite recovered from the blow, despite the recent excitement over finite fields.
In contrast, other heretical schools survived the Fata Morgana of algebra with the
promise, not always fulfilled, that sooner or later they would be brought back into
the commutative fold. Thus, the genial computations of the high school teacher
Hermann Schubert were proclaimed a “problem” by Hilbert, who was articulating
the general feeling at the time that enumerative geometry required a justification
in terms of the dominant concepts of the day, namely, rings and fields.

Similarly, the mystical vision of Hermann Grassmann, another high school teacher,
was only appreciated by other oddballs like Peano, Study, and several inevitable
English gentleman-mathematicians. It took the advocacy of someone of the stature
of Elie Cartan to get Grassmann’s techniques accepted by a public by then avid
for simplications, but reluctant to acknowledge embarrassing oversights; and then,
only at the cost of putting them to a use for which they were not intended, though
magically suited. The recognition that anti-commutativity is a sibling, with an
equally noble genealogy, of commutativity is only now beginning, under the prod-

2All corrections I have made are identified in footnotes, marked with “Correction:”.
3See https://web-beta.archive.org/web/20131022235944/http://www.elsevier.com/about/
open-access/oa-and-elsevier/oa-license-policy for an archived version of this license on
Elsevier’s website.

4My email address is darijgrinberg@gmail.com .
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https://web-beta.archive.org/web/20131022235944/http://www.elsevier.com/about/open-access/oa-and-elsevier/oa-license-policy
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ding of the particle physicists, who with exquisite salesmanship have proclaimed
it a law of nature.

The second pole of invariant theory was algorithmic. To be sure, all invariant
theory is ultimately concerned with one problem. In crude, oversimplified, off-
putting language, this problem is to generalize to tensors the eigenvalue theory of
matrices, and all invariant theorists from Boole to Mumford have been, tacitly or
otherwise, concerned with it. The algorithmic school, however, saw this problem
as one of “explicit computation,” an expression which was to smack of mathemat-
ical bad taste in the 1930s. In a century which prefers existence to construction,
structure to algorithm, algebra to combinatorics, such a school could not thrive,
and it did not, supported as it was more by the English and Italians than by the
Germans and French. There were, however, weightier reasons for this defeat of the
algorithmic school. Their most striking productions, the expansions that go under
the names of Capelli, Clebsch, Gordan, and Young, were hopelessly tethered to
characteristic zero, and seemed to belie the avowed combinatorial ideal of doing
away with all numbers that are not integers, and preferably positive ones at that.
To top it all, Igusa showed that, with the massive machinery of algebraic geome-
try, some of the results of classical invariant theory could be extended to fields of
positive characteristic.

In this environment, the 1974 paper of Doubilet, Rota, and Stein [3], which for
the first time succeeded in extending to arbitrary infinite fields, by constructive
algorithmic methods, the two “fundamental theorems” of invariant theory, could
only appear as an intrusion. To make things worse, the authors’ sympathy for the
nineteenth century went as far as to embrace matters of style, thus alienating many
readers in a less romantic century. In 1976, de Concini and Procesi [1] charitably
rewrote parts of that paper and developed some of the suggestions made therein,
thus showing that the authors’ claims were indeed well-founded.

In this paper we give a self-contained combinatorial presentation – the first one,
to be sure – of vector invariant theory over an arbitrary infinite field. We begin
by proving the Straightening Formula, which is probably one of the fundamental
algorithms of multilinear algebra. This formula is the culmination of a trend of
thought that can be traced back to Capelli, and was developed most notably by
Alfred Young and the Scottish invariant theorists. Had it not been for the disrepute
into which algorithmic methods had fallen in the thirties, the full proof of this
formula would have appeared earlier than in 1974, and might have anticipated the
current revival of classical invariant theory.

In comparison with other classical expansions, the straightening formula offers
two advantages. First, it holds over the ring of integers. Second, it recognizes
the crucial role played by the notion of a bitableau in obtaining a characteristic-
free proof of the first fundamental theorem. In fact, we give two proofs of this
result. Both of these proofs are based on new ideas, first presented in 1974. Even
in characteristic zero, either of these proofs differs from any previously given, and
is, in addition, much simpler as it only relies on elementary linear algebra and
some combinatorics. The success of the notion of a bitableau also shows why
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previous attempts to prove the first fundamental theorem by expansion into single
Young tableaux were bound to fail. Strangely, Alfred Young himself was the first
to consider bitableaux in his study of the representations of the octahedral group,
but it did not occur to him that they would be useful in the study of the projective
group.

Less surprisingly, the straightening formula is also used to give a simple proof
of the second fundamental theorem, in a version that has been proved by van der
Waerden in characteristic zero. The present proof shows that the straightening for-
mula is indeed the characteristic-free replacement of the Gordan-Capelli expansion.

The second fundamental theorem has lived in a limbo ever since Weyl’s fumbling
justification in “The Classical Groups” [4]. Some invariant theorists have taken the
easy way out and claimed it as a result in algebraic geometry, stating certain facts
about the coordinate rings of Grassmannians or flag manifolds. We believe on the
contrary that the second fundamental theorem plays a crucial role in invariant the-
ory which can perhaps be best understood by analogy with the predicate calculus.
Here, two aspects have long been recognized as complementary: a syntactical as-
pect, where the subject is presented as a purely algebraic system subject to formal
rules; and a semantical aspect, where the possible set-theoretic interpretations, or
models, are classified. These two aspects are connected by the Gödel completeness
theorem.

A corresponding situation obtains in invariant theory. Here, what we call the
letter place algebra is the syntactic counterpart to the semantics of representing
abstract brackets by actual inner products of vectors and covectors in a vector space.
The second fundamental theorem is the invariant-theoretic analog of the Gödel
completeness theorem. This suggests a host of questions on invariants which can
be gleaned from analogous questions in the predicate calculus.

Other applications of the straightening formula, some of which were adumbrated
in 1974, will be given elsewhere. We mention, as examples, a characteristic-free
theory of symmetric functions, the study of polynomial identities in an associative
algebra, the classification of transvectants, and connections with the algebra of
second quantization. The present work is merely the first in what is hoped to be a
far-reaching extension of the research program of projective invariant theory.

2. Young Tableaux

The fundamental combinatorial notion in this study is that of a Young tableau. Let
(λ) =

(
λ1, . . . , λp

)
be a partition of the integer n: that is, (λ) is a finite sequence of

positive integers such that
λ1 + · · ·+ λp = n

and
λ1 ≥ · · · ≥ λp > 0.
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If (λ) is a partition of n, then5 its shape, also denoted by (λ), is the set of integer
points (i,−j) in the plane, with 1 ≤ j ≤ p and 1 ≤ i ≤ λj. The shape (λ) =
(λ1, . . . , λs) is said to be longer than the shape (µ) = (µ1, . . . , µt) if, considered as
a finite sequence, (λ) is greater than (µ) in the lexicographic order from left to
right. Here, the definition of the lexicographic order is subject to the following
caveat:6 If a finite sequence (λ1, λ2, . . . , λs) is a proper prefix of a finite sequence
(µ1, µ2, . . . , µt) (that is, we have t > s and (µ1, µ2, . . . , µs) = (λ1, λ2, . . . , λs)), then
(λ) is understood to be greater than (µ) (not smaller than (µ) as with the usual
definition of lexicographic order).7 Thus, for example, (3, 1) is longer (i.e., greater)
than (3, 1, 2). 8

A Young tableau of9 the shape (λ) with values in the set E is an assignment of
an element of E to each point in the shape (λ). For example, T1 and T2 are Young
tableaux of shape (λ) = (5, 4, 2, 2, 1, 1) with values in the integers:10

T1 =

3 2 4 4 7 8
1 2 3 5
2 1
6 2
4

, T2 =

1 2 4 5 7 8
1 2 4 6
2 3
2 4
3

.

11 If p and q are two integers, then the cell (p, q) shall mean the point (q,−p) in
the plane. Thus, if (λ) = (λ1, λ2, . . . , λ`) is a partition, then the shape of (λ) is the
set of all cells (p, q) with 1 ≤ p ≤ ` and 1 ≤ q ≤ λp. These cells are called the cells
of (λ).

Recall that a Young tableau of shape (λ) with values in E is an assignment of
an element of E to each point in the shape (λ); in other words, a Young tableau of
shape (λ) with values in E is an assignment of an element of E to each cell of (λ).

5Correction: Added “then” to make the sentence unambiguous.
6Correction: Added this caveat. Without it, for example, the Second Fundamental Theorem of

Invariant Theory (as stated in this paper) would be false, because the partition (d, 1) would be
strictly longer than (d).

7Thus, the lexicographic order is defined as follows:
A finite sequence (λ1, λ2, . . . , λs) is greater than a finite sequence (µ1, µ2, . . . , µt) in the lexico-

graphic order if and only if one of the following two statements holds:

• There exists a k ∈ {1, 2, . . . , min {s, t}} such that λk > µk but each i ∈ {1, 2, . . . , k− 1} satisfies
λi = µi.

• We have t > s and each i ∈ {1, 2, . . . , s} satisfies λi = µi.

8Comment: If this sounds counterintuitive to you, think of the word “longer” as referring to the
horizontal length of the partition’s Young diagram (not the length of the partition as a list of
numbers).

9Correction: Replaced “on” by “of”.
10Correction: I have corrected these two tableaux. The original versions were their transposes, and

they would fail the claim that T2 is standard.
11Correction: This paragraph and the next two have been added by me.
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If R is any tableau, and if p and q are two positive integers such that the cell (p, q)
(that is, the point (q,−p)) belongs to (λ), then we let R (p, q) denote the element
of U assigned to this cell (p, q). This element R (p, q) is called the entry of R in cell
(p, q). For a given p ≥ 1, the p-th row of the tableau R consists of the entries of R in
all cells of the form (p, q) with q ≥ 1 (arranged in the order of increasing q). For a
given q ≥ 1, the q-th column of the tableau R consists of the entries of R in all cells
of the form (p, q) with p ≥ 1 (arranged in the order of increasing p). For example,
the 2-nd row of the above tableau T1 is 1235, whereas its 3-rd column is 43.

In this paper, E is always a totally ordered set. A Young tableau is said to be
standard if the entries in each row are increasing12 from left to right, and the entries
in each column are nondecreasing downward13. In our previous example, T2 is
standard but T1 is not. This definition, though unconventional, is the natural one
for dealing with bitableaux (which are introduced in the sequel).

A word on notation: Sp denotes the symmetric group on p symbols, and for a
permutation σ ∈ Sp, its signature is denoted sgn (σ).

3. The Straightening Formula

Let X = {x1, . . . , xn} and U = {u1, . . . , uk} be two alphabets, and let P be the alge-
bra of polynomials over the field K in the indeterminates

(
xi | uj

)
; this K-algebra14

P is called the letter place algebra. Suppose
(

xi1 , . . . , xip

)
and

(
ui1 , . . . , uip

)
are two fi-

nite sequences with the same length of letters from X and U . Their inner product15(
xi1 · · · xip | uj1 · · · ujp

)
is the polynomial in P defined by(

xi1 · · · xip | uj1 · · · ujp

)
= ∑

σ∈Sp

sgn (σ)
(
xiσ1 | uj1

)
· · ·
(

xiσp | ujp

)
.

12Comment: The word “increasing” means “strictly increasing” throughout this paper.
13Comment: This notion of “standard” is not the one commonly used nowadays in combinatorics

(although it seems to have had some popularity in invariant theory). What is called a “standard
Young tableau” in this paper would probably be called “cosemistandard Young tableau” or
“transpose semistandard Young tableau” (indeed, it is a Young tableau whose transpose is semi-
standard, in today’s language). The currently popular use of the word “standard” is different:
It stands for a Young tableau T with the following properties:

• The entries of T are 1, 2, . . . , n (for a fixed n ∈N).

• The entries of T are pairwise distinct.

• The entries in each row of T are increasing from left to right.

• The entries in each column of T are increasing downward.

14Correction: Added the words “this K-algebra”.
15Correction: The original wrote “

(
xi1 · · · xip | uj1 , · · · , ujp

)
” instead of “

(
xi1 · · · xip | uj1 · · · ujp

)
”. I

have removed the commas, since they seem to be unintentional.
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The inner product is an antisymmetric function in xi and in16 uj
17. Thus, we

may suppose, up to a change in sign, that in any inner product, the indices of x
and u are increasing. Moreover, an inner product is nonzero if and only if no letter
is repeated.

We define a total order on the set U by setting u1 < u2 < · · · < uk. Similarly, we
define a total order on the set X by setting x1 < x2 < · · · < xn. Thus, a tableau
with entries from X or from U may be standard.18

The content of a monomial in P is the pair of vectors

(α, β) = ((α1, . . . , αn) , (β1, . . . , βk)) ,

where αs (resp. βt) is the total degree of the factors in the monomial of the form(
xs | uj

)
, 1 ≤ j ≤ k (resp. (xi | ut), 1 ≤ i ≤ n). The monomials19 of content

(α, β) generate20 a subspace of P, denoted by P (α, β). The elements of P (α, β) are
homogeneous polynomials, in which each monomial has the same content; we say
that a polynomial in P (α, β) has content (α, β). It is clear that the product of a
polynomial of content (α, β) and21 a polynomial of content (α′, β′) is a polynomial
of content (α + α′, β + β′). For example, the inner product

(
xi1 · · · xip | uj1 · · · ujp

)
has content (α, β) where αi (resp. βi) is 1 if xi is in the sequence xi1 , . . . , xip (resp. ui
is in the sequence uj1 , . . . , ujp) and 0 otherwise.

16Comment: I have added this “in” in order to stress that it is antisymmetric in the p variables
i1, i2, . . . , ip and in the p variables j1, j2, . . . , jp separately, but not in all the 2p variables taken
together.

17Comment: Explicitly, this is saying the following:

• If two of the numbers i1, i2, . . . , ip are equal, then
(

xi1 · · · xip | uj1 · · · ujp

)
= 0. The same holds

if two of the numbers j1, j2, . . . , jp are equal.

• If we interchange two of the numbers i1, i2, . . . , ip, then the inner product(
xi1 · · · xip | uj1 · · · ujp

)
gets multiplied by −1. The same happens if we interchange

two of the numbers j1, j2, . . . , jp.

Both of these properties follow from the fact that(
xi1 · · · xip | uj1 · · · ujp

)
= ∑

σ∈Sp

sgn (σ)
(
xiσ1 | uj1

)
· · ·
(

xiσp | ujp

)

=

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣

(and from the antisymmetry of the determinant).
18Correction: I added these three sentences to clarify the definition of a “standard” tableau with

entries in X or U .
19Correction: Replaced “monomial” by “monomials” here.
20Correction: Replaced “generates” by “generate” here.
21Correction: Removed a misleading comma before this “and”.
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A bitableau is a pair [T, T′] of Young tableaux of the same shape (λ), where the
tableau T has entries from X and the tableau T′ has entries from U . The content of
the bitableau [T, T′] is the pair of vectors (α, β) where αi (resp. β j) is the number
of occurrences of xi in T (resp. uj in T′). With a bitableau [T, T′] of content (α, β),
we associate the polynomial, denoted by (T | T′), obtained by taking the product
of the inner products of each row of T with the corresponding row in T′. The
polynomial (T | T′), which is in P (α, β), is called the bideterminant of the bitableau
[T, T′], or simply, the bideterminant (T | T′).

Example 3.1. x1 x2 x3
x2 x3
x1

∣∣∣∣∣∣
u1 u3 u4
u1 u2
u3

 = (x1x2x3 | u1u3u4) (x2x3 | u1u2) (x1 | u3) .

As for inner products, the bideterminant (T | T′) is nonzero if and only if no
letter is repeated in any row of T or T′. Moreover, we can suppose, up to a change
of sign, that the entries in each row of T and T′ in the bideterminant are increasing.

A bitableau [T, T′] is standard if both T and T′ are standard. For example, the
bitableau  x1 x2 x3

x1 x3
x2

,
u1 u2 u4
u1 u3
u3


is standard.

We can now state the main result of this section.22

Theorem 3.2 (the straightening formula). Suppose [T, T′] is a bitableau of shape
(λ) and content (α, β). Then, its bideterminant (T | T′) is a linear combination,
with integer coefficients, of bideterminants of standard bitableaux of the same
content and of the same or longer shape23.

22Correction: In the following theorem and also in the Corollary that follows it, I have replaced
“standard tableaux” by “standard bitableaux”.

23Comment: Here is a less ambiguous way to state this: Its bideterminant (T | T′) can be written in

the form (T | T′) = ∑
j∈J

αj

(
Sj | S′j

)
, where J is a finite set, each αj is an integer, and each

[
Sj, S′j

]
is a bitableau having the same content as [T, T′] and with the following property: The shape of[

Sj, S′j
]

is longer or equal to the shape of [T, T′]. (The shape of a bitableau [T, T′] is defined to be

the shape of the tableau T (or, equivalently, the shape of the tableau T′).)
In general, we often speak of the “shape” or the “content” of a bideterminant, when meaning

the shape or the content of the underlying bitableau. For example, a bideterminant of shape (λ)
and content (α, β) means a bideterminant of a bitableau of shape (λ) and content (α, β).
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Example 3.3.(
x2
x1

∣∣∣∣ u1
u2

)
=

(
x1
x2

∣∣∣∣ u1
u2

)
−
(

x1 x2
∣∣ u1 u2

)
.

Corollary 3.4. The vector space P (α, β) is generated by the bideterminants of
standard bitableaux of content (α, β).

Proof of Corollary 3.4. We only need to observe that the monomial
(
xi1 | uj1

)
· · ·
(

xip | ujp

)
is the bideterminant of the bitableau: xi1

...
xip

,

uj1
...

ujp

 .

To facilitate the proof of Theorem 3.2, we introduce the notion of a shuffle product.
Let (

i1, . . . , ip, l1, . . . , lq
)

be an increasing sequence of integers, and

A =
(

xi1 · · · xip xip+1 · · · xis | uj1 · · · ujs

)
,

B =
(

xl1 · · · xlq xlq+1 · · · xlt | um1 · · · umt

)
be two inner products. The shuffle product AB supported by the variables xi1 , . . . , xip , xl1 , . . . , xlq
is defined by(

ẋi1 · · · ẋip xip+1 · · · xis | uj1 · · · ujs

) (
ẋl1 · · · ẋlq xlq+1 · · · xlt | um1 · · · umt

)
= ∑

σ

′ sgn (σ)(
xσi1 · · · xσip xip+1 · · · xis | uj1 · · · ujs

) (
xσl1 · · · xσlq xlq+1 · · · xlt | um1 · · · umt

)
,

where the summation is over all permutations σ of the set
{

i1, . . . , ip, l1, . . . , lq
}

for
which σi1 < · · · < σip and σl1 < · · · < σlq. This restricted summation is indicated
by the notation ∑ ′. Another notational device is: A dot over a letter indicates that
the letter is in the support of the shuffle product24. The notion of a shuffle product
supported by letters in U is similar.

24Comment: We say that a letter is “in the support” of the shuffle product if this letter is one of the
variables on which the shuffle product is supported.
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Example 3.5. The shuffle product (x1x2x3 | u) (x3x4x1 | u′) supported by x1, x2
in the first term and x3, x4 in the second is given by

(ẋ1ẋ2x3 | u)
(
ẋ3ẋ4x1 | u′

)
= (x1x2x3 | u)

(
x3x4x1 | u′

)
− (x1x3x3 | u)

(
x2x4x1 | u′

)
+ (x1x4x3 | u)

(
x2x3x1 | u′

)
+ (x2x3x3 | u)

(
x1x4x1 | u′

)
− (x2x4x3 | u)

(
x1x3x1 | u′

)
+ (x3x4x3 | u)

(
x1x2x1 | u′

)
.

Only two of the terms in the expansion are nonzero, and after an appropriate
reordering, we have

(ẋ1ẋ2x3 | u)
(
x1ẋ3ẋ4 | u′

)
= (x1x2x3 | u)

(
x1x3x4 | u′

)
− (x1x3x4 | u)

(
x1x2x3 | u′

)
.

Now, observe that, by definition,

(
xi1 · · · xip | uj1 · · · ujp

)
=

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣ . (1)

We can expand the determinant by the first column to obtain the identity(
xi1 · · · xip | uj1 · · · ujp

)
=
(

ẋi1 | uj1
) (

ẋi2 · · · ẋip | uj2 · · · ujp

)
. (2)

Similarly, using Laplace’s expansion, we see that each s ∈ {0, 1, . . . , p} satisfies(
xi1 · · · xip | uj1 · · · ujp

)
=
(
ẋi1 · · · ẋis | uj1 · · · ujs

) (
ẋis+1 · · · ẋip | ujs+1 · · · ujp

)
25. These two identities are examples of the fact that, under certain assumptions,

25Comment: This latter formula will be referred to as “Laplace’s identity” further on in this paper. It
follows from the following apocryphal property of determinants (sometimes known as “Laplace
expansion in the first s columns”):

Laplace expansion in the first s columns. Given p ∈ N and s ∈ {0, 1, . . . , p} and a p × p-
matrix A =

(
ai,j
)

1≤i≤p, 1≤j≤p, we have

|A| = ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

sgn (σ)

∣∣∣∣∣∣∣
aσ1,1 · · · aσ1,s

...
. . .

...
aσs,1 · · · aσs,s

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

aσ(s+1),s+1 · · · aσ(s+1),p
...

. . .
...

aσp,s+1 · · · aσp,p

∣∣∣∣∣∣∣ . (3)

Let me outline two proofs of (3):

• First proof: Argue that the right hand side of (3) is an alternating multilinear function in the
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the shuffle product of two inner products is equal to an inner product of length

rows of A (the alternating property follows from showing that the right hand side vanishes
whenever two consecutive rows of A are equal) that takes the value 1 when A = Ip. But it is
well-known that the only such function is |A|.

• Second proof: For any permutations α ∈ Ss and β ∈ Sp−s, we define a permutation α⊕ β ∈ Sp
as the map

{1, 2, . . . , p} → {1, 2, . . . , p} , i 7→
{

α (i) , if i ≤ s;
β (i− s) + s, if i > s

.

Notice that the map Ss ×Sp−s → Sp, (α, β) 7→ α ⊕ β is a group homomorphism. Now,
it is not hard to show that each permutation τ ∈ Sp can be uniquely written in the form
τ = σ ◦ (α⊕ β), where σ is a permutation in Sp satisfying σ1 < σ2 < · · · < σs and σ (s + 1) <
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σ (s + 2) < · · · < σp, and where α ∈ Ss and β ∈ Sp−s. Thus,

∑
τ∈Sp

sgn (τ)
p

∏
i=1

aτi,i

= ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

∑
α∈Ss

∑
β∈Sp−s

sgn (σ ◦ (α⊕ β))︸ ︷︷ ︸
=sgn(σ) sgn(α⊕β)

p

∏
i=1

a(σ◦(α⊕β))i,i︸ ︷︷ ︸
=

(
s

∏
i=1

a(σ◦(α⊕β))i,i

)( p
∏

i=s+1
a(σ◦(α⊕β))i,i

)

= ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

∑
α∈Ss

∑
β∈Sp−s

sgn (σ) sgn (α⊕ β)︸ ︷︷ ︸
=sgn(α) sgn(β)


s

∏
i=1

a(σ◦(α⊕β))i,i︸ ︷︷ ︸
=aσ(αi),i

(since (α⊕β)i=αi)




p

∏
i=s+1

a(σ◦(α⊕β))i,i︸ ︷︷ ︸
=aσ(β(i−s)+s),i

(since (α⊕β)i=β(i−s)+s)


= ∑

σ∈Sp ;
σ1<σ2<···<σs;

σ(s+1)<σ(s+2)<···<σp

∑
α∈Ss

∑
β∈Sp−s

sgn (σ) sgn (α) sgn (β)

(
s

∏
i=1

aσ(αi),i

) (
p

∏
i=s+1

aσ(β(i−s)+s),i

)
︸ ︷︷ ︸

=
p−s
∏

i=1
aσ(β(i)+s),i+s

(here, we have substituted i+s
for i in the sum)

= ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

∑
α∈Ss

∑
β∈Sp−s

sgn (σ) sgn (α) sgn (β)

(
s

∏
i=1

aσ(αi),i

)(
p−s

∏
i=1

aσ(β(i)+s),i+s

)

= ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

sgn (σ)

(
∑

α∈Ss

sgn (α)
s

∏
i=1

aσ(αi),i

)
︸ ︷︷ ︸

=

∣∣∣∣∣∣∣∣∣
aσ1,1 · · · aσ1,s

...
. . .

...
aσs,1 · · · aσs,s

∣∣∣∣∣∣∣∣∣

 ∑
β∈Sp−s

sgn (β)
p−s

∏
i=1

aσ(β(i)+s),i+s


︸ ︷︷ ︸
=

∣∣∣∣∣∣∣∣∣
aσ(s+1),s+1 · · · aσ(s+1),p

...
. . .

...
aσp,s+1 · · · aσp,p

∣∣∣∣∣∣∣∣∣

= ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

sgn (σ)

∣∣∣∣∣∣∣
aσ1,1 · · · aσ1,s

...
. . .

...
aσs,1 · · · aσs,s

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

aσ(s+1),s+1 · · · aσ(s+1),p
...

. . .
...

aσp,s+1 · · · aσp,p

∣∣∣∣∣∣∣ .

Since the left hand side of this equality is precisely |A| (by the definition of |A|), this rewrites
as

|A| = ∑
σ∈Sp ;

σ1<σ2<···<σs;
σ(s+1)<σ(s+2)<···<σp

sgn (σ)

∣∣∣∣∣∣∣
aσ1,1 · · · aσ1,s

...
. . .

...
aσs,1 · · · aσs,s

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

aσ(s+1),s+1 · · · aσ(s+1),p
...

. . .
...

aσp,s+1 · · · aσp,p

∣∣∣∣∣∣∣ .

This proves (3).
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greater than that of each of the two original inner products.26

Lemma 3.6. Let
(

xi1 · · · xip xip+1 · · · xis | uj1 · · · ujs

)
and(

xl1 · · · xlq xlq+1 · · · xlt | um1 · · · umt

)
be two inner products satisfying:

i1 < · · · < ip < l1 < · · · < lq,
j1 < · · · < js,

m1 < · · · < mt,
s < p + q, and t < p + q.

Then the shuffle product

C =
(

ẋi1 · · · ẋip xip+1 · · · xis | uj1 · · · ujs

) (
ẋl1 · · · ẋlq xlq+1 · · · xlt | um1 · · · umt

)
is a linear combination, with integer coefficients, of bideterminants of bitableaux
of shape strictly longer than each of the partitions (s) and (t) of the integers s
and t.

Proof of Lemma 3.6. The proof is a computation with four steps. First, expand the
shuffle product C:

C = ∑
σ

′ sgn (σ)(
xσi1 · · · xσip xip+1 · · · xis | uj1 · · · ujs

) (
xσl1 · · · xσlq xlq+1 · · · xlt | um1 · · · umt

)
.

Now apply Laplace’s identity to the letters in U;

C = ∑
σ

′ sgn (σ)
(

xσi1 · · · xσip | u̇j1 · · · u̇jp

) (
xip+1 · · · xis | u̇jp+1 · · · u̇js

)
·
(

xσl1 · · · xσlq | um1 · · · umq

) (
xlq+1 · · · xlt | umq+1 · · · umt

)
.

To distinguish between the two shuffle products, a bar instead of a dot is used in
the second. We next group together the first and third factor:

C = ∑
σ,τ,µ

′ sgn (σ) sgn (τ) sgn (µ)
[(

xσi1 · · · xσip | uτ j1 · · · uτ jp

) (
xσl1 · · · xσlq | uµm1 · · · uµmq

)]
·
(

xip+1 · · · xis | uτ jp+1 · · · uτ js

) (
xlq+1 · · · xlt | uµmq+1 · · · uµmt

)
.

26Correction: Replaced “
(

xi1 · · · xip xip+1 · · · xi1 | uj1 · · · ujs

)
” by “

(
xi1 · · · xip xip+1 · · · xis | uj1 · · · ujs

)
”

in the following lemma.
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Finally, we apply Laplace’s identity, this time on the letters xi1 , . . . , xip , xl1 , . . . , xlq :

C = ∑
τ,µ

′ sgn (τ) sgn (µ)
(

xi1 · · · xip xl1 · · · xlq | uτ j1 · · · uτ jp uµm1 · · · uµmq

)
·
(

xip+1 · · · xis | uτ jp+1 · · · uτ js

) (
xlq+1 · · · xlt | uµmq+1 · · · uµmt

)
.

Each term in this last expansion for C is a bideterminant with three rows27, with
the first row of length p + q > s, t. This concludes the proof of the lemma.

Since the summation in the shuffle product always includes the identity permu-
tation, we can restate the previous lemma in the following equivalent form:28

Lemma 3.7. Let
(

xi1 · · · xip xip+1 · · · xis | uj1 · · · ujs

)
and(

xl1 · · · xlq xlq+1 · · · xlt | um1 · · · umt

)
be two inner products satisfying

i1 < · · · < ip < l1 < · · · < lq,
j1 < · · · < js,

m1 < · · · < mt,
s < p + q, and t < p + q.

Then, (
xi1 · · · xis | uj1 · · · ujs

) (
xl1 · · · xlt | um1 · · · umt

)
= − ∑

σ,
σ 6=id

′ sgn (σ)
(

xσi1 · · · xσip xip+1 · · · xis | uj1 · · · ujs

)
(

xσl1 · · · xσlq xlq+1 · · · xlt | um1 · · · umt

)
+ D,

where the summation is over all the nonidentical permutations σ of{
i1, . . . , ip, l1, . . . , lq

}
satisfying σi1 < · · · < σip and σl1 < · · · < σlq, and the

term D is a linear combination with integer coefficients of bideterminants of
bitableaux of shape strictly longer than (s) and (t).

Remarking that all we have done remains valid if we exchange the roles of the
alphabets X and U , we are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We begin by defining a total order on bitableaux of the same
shape. Let [T, T′] be a bitableau of shape29 (λ) =

(
λ1, . . . , λp

)
. The entry in T (resp.

27Comment: Some of these rows can be empty. (This happens when p = s or q = t.)
28Correction: Added “of

{
i1, . . . , ip, l1, . . . , lq

}
” in the following lemma.

29Correction: Replaced “form” by “shape”.
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T′) on row s and column t is denoted by xi(s,t) (resp. uj(s,t)). With the bitableau
[T, T′], we associate the sequence(

i (1, 1) , . . . , i (1, λ1) , i (2, 1) , . . . , i (2, λ2) , . . . , i (p, 1) , . . . , i
(

p, λp
)

,

j (1, 1) , . . . , j (1, λ1) , j (2, 1) , . . . , j (2, λ2) , . . . , j (p, 1) , . . . , j
(

p, λp
))

,

which is the sequence obtained by reading off the bitableau row by row30. The
bitableaux are now ordered according to the lexicographic order on their associated
sequences.

Fix a pair of vectors (α, β), and consider from now on solely the bitableaux of con-
tent (α, β). Now, suppose the theorem is false for at least one of these bitableaux.31

Let (λ) be the longest shape with a bitableau of content (α, β) not satisfying the
theorem32. Among the bitableaux of shape (λ) and content (α, β), let [T, T′] be the
smallest bitableau not satisfying the theorem:

[
T, T′

]
=


xi(1,1) · · · · · · xi(1,λ1)

...
...

xi(p,1) · · · xi(p,λp)

,

uj(1,1) · · · · · · uj(1,λ1)
...

...
uj(p,1) · · · uj(p,λp)

 .

Suppose that [T1, T′1] is obtained from [T, T′] by putting each row in increasing
order. Then, [T1, T′1] has a lexicographically smaller associated sequence than [T, T′]
(unless [T1, T′1] = [T, T′]) 33. But (T1 | T′1) = ± (T | T′), and hence, if [T, T′] is
a counterexample, so is [T1, T′1]. We conclude that all the rows in [T, T′] are in
increasing order.

Clearly, [T, T′] is not standard; let us suppose that T is nonstandard. Then,
there exist integers l and m, with34 1 ≤ l ≤ p and35 1 ≤ m ≤ λl+1, such that
i (l, m) > i (l + 1, m). That is, we have the following situation:36

xi(l,1) · · · xi(l,m−1) xi(l,m) xi(l,m+1) · · · · · · xi(l,λl)

xi(l+1,1) · · · xi(l+1,m−1) xi(l+1,m) xi(l+1,m+1) · · · xi(l+1,λl+1)
.

We call such a situation a violation.
In the bideterminant (T | T′), consider the shuffle product of the two inner prod-

ucts corresponding to rows l and l + 1, which support the letters

30Comment: ... where we first read the tableau T and then the tableau T′.
31Correction: I have added the preceding two sentences (replacing “Now, suppose the theorem is

false.”) and also added the words “of content (α, β)” in the next two sentences. Otherwise, the
following sentence would not make sense (there might not be a “longest shape”).

32Comment: This is well-defined, because there are only finitely many shapes that afford bitableaux
of content (α, β), and at least one of these bitableaux fails to satisfy the theorem.

33Correction: I have added the preceding parenthetical.
34Correction: Added the word “with”. Also, replaced “1 ≤ m ≤ λl” by “1 ≤ m ≤ λl+1”.
35Correction: Replaced the ambiguous comma by an “and”.
36Correction: Fixed the size of the parentheses in the table below, and removed an unnecessary

comma.
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xi(l+1,1), . . . , xi(l+1,m), xi(l,m), . . . , xi(l,λl)
. Since the support contains λl + 1 letters, and

the length of each of the inner products is at most λl, we can apply Lemma 3.737 to
obtain (

T | T′
)
= − ∑

σ,
σ 6=id

′ ±
(
Tσ | T′

)
+ D, (4)

37Correction: Replaced “the lemma” by “Lemma 3.7”.
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where D is a linear combination of bideterminants of shape greater38 than (λ). 39

38Comment: Here and in the following, “greater” means “strictly longer”.
39Comment: Let us explain why this holds.

For each k ∈ {1, 2, . . . , p}, let

rk =
(

xi(k,1) · · · xi(k,λk)
| uj(k,1) · · · uj(k,λk)

)
.

Then, (T | T′) = r1r2 · · · rp (by the definition of the bideterminant (T | T′)).
Now, consider the inner products

rl+1 =
(

xi(l+1,1) · · · xi(l+1,m−1)xi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
and

rl =
(

xi(l,1) · · · xi(l,m−1)xi(l,m)xi(l,m+1) · · · xi(l,λl)
| uj(l,1) · · · uj(l,λl)

)
=
(

xi(l,m)xi(l,m+1) · · · xi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
.

These two inner products satisfy

i (l + 1, 1) < · · · < i (l + 1, m) < i (l, m) < · · · < i (l, λl)

(since i (l, m) > i (l + 1, m) and since the rows of T are increasing) and j (l + 1, 1) < · · · <
j (l + 1, λl+1) and j (l, 1) < · · · < j (l, λl) and λl+1 < λl + 1 and λl < λl + 1. Hence, Lemma 3.7
can be applied to these two inner products, showing that

rl+1rl

= − ∑
σ,

σ 6=id

′ sgn (σ)
(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
+ D′, (5)

where the summation is over all the nonidentical permutations σ of
{i (l + 1, 1) , . . . , i (l + 1, m) , i (l, m) , . . . , i (l, λl)} satisfying σi (l + 1, 1) < · · · < σi (l + 1, m) and
σi (l, m) < · · · < σi (l, λl), and the term D′ is a linear combination with integer coefficients of
bideterminants of bitableaux of shape strictly longer than (λl) and (λl+1).

Now, multiplying the equality (5) by (r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
, we obtain

rl+1rl (r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
= − ∑

σ,
σ 6=id

′ sgn (σ)
(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
+ D′ (r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
.
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Since rl+1rl (r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
= r1r2 · · · rp = (T | T′), this rewrites as(

T | T′
)

= − ∑
σ,

σ 6=id

′ sgn (σ)
(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
+ D′ (r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
.

Thus, in order to prove (4), we need to verify the following two claims:

Claim 1: Let σ be a nonidentical permutation of
{i (l + 1, 1) , . . . , i (l + 1, m) , i (l, m) , . . . , i (l, λl)} satisfying σi (l + 1, 1) < · · · <
σi (l + 1, m) and σi (l, m) < · · · < σi (l, λl). Then,(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
= ±

(
Tσ | T′

)
for some tableau Tσ which differs from T only in rows l and l + 1, and whose rows l
and l + 1 are

xi(l,1) · · · xi(l,m−1) xσi(l,m) xσi(l,m+1) · · · · · · xσi(l,λl)

xσi(l+1,1) · · · xσi(l+1,m−1) xσi(l+1,m) xi(l+1,m+1) · · · xi(l+1,λl+1)
.

Claim 2: Let [S, S′] be a bitableau of shape strictly longer than (λl) and (λl+1). Then,(
S | S′

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
is a bideterminant of shape greater than (λ).

[Proof of Claim 1: Let Tσ be the tableau which differs from T only in rows l and l + 1, and
whose rows l and l + 1 are

xi(l,1) · · · xi(l,m−1) xσi(l,m) xσi(l,m+1) · · · · · · xσi(l,λl)

xσi(l+1,1) · · · xσi(l+1,m−1) xσi(l+1,m) xi(l+1,m+1) · · · xi(l+1,λl+1)
.
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Then, (
Tσ | T′

)
= (r1r2 · · · rl−1)

·
(

xi(l,1) · · · xi(l,m−1)xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
| uj(l,1) · · · uj(l,λl)

)
·
(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
·
(
rl+2rl+3 · · · rp

)
=
(

xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)
| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xi(l,1) · · · xi(l,m−1)xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
| uj(l,1) · · · uj(l,λl)

)
︸ ︷︷ ︸

=±
(

xσi(l,m)xσi(l,m+1) ···xσi(l,λl)
xi(l,1) ···xi(l,m−1) |uj(l,1) ···uj(l,λl)

)
(by the antisymmetry of the inner product)

(r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
= ±

(
xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)

| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
.

Therefore, (
xσi(l+1,1) · · · xσi(l+1,m)xi(l+1,m+1) · · · xi(l+1,λl+1)

| uj(l+1,1) · · · uj(l+1,λl+1)

)
(

xσi(l,m)xσi(l,m+1) · · · xσi(l,λl)
xi(l,1) · · · xi(l,m−1) | uj(l,1) · · · uj(l,λl)

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
= ±

(
Tσ | T′

)
.

This proves Claim 1.]
[Proof of Claim 2: A composition shall mean a finite sequence of positive integers. Note that

each partition is a composition, but not each composition is a partition. If (µ) is a composition,
then the notion of the “shape of (µ)” is defined in the same way as it has been defined when µ
is a partition. If (µ) is a composition, then an almost-tableau of shape (µ) with values in the set E
means an assignment of an element of E to each point in the shape (µ).

Define a Young tableau T̃ by the following procedure:

• Step 1: Let T◦ be the Young tableau T.

• Step 2: Replace the l-th and the (l + 1)-st rows of the tableau T◦ by the rows of S. (Notice
that S may have fewer or more than 2 rows; thus, the number of rows of T◦ is not necessarily
preserved in this step. Also, the resulting array T◦ is an almost-tableau, but not necessarily
a Young tableau, because the lengths of its rows might no longer be in weakly decreasing
order.)

• Step 3: Permute the rows of the almost-tableau T◦ in such a way that their lengths become
weakly decreasing (i.e., it becomes a Young tableau once again). Denote the resulting Young
tableau T◦ by T̃.
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By our choice of (λ), the polynomial40 D is also a linear combination of bidetermi-
nants of standard tableaux of shape greater than (λ).

Now, each tableau Tσ differs from T only in rows l and l + 1, which in Tσ are:41

xi(l,1) · · · xi(l,m−1) xσi(l,m) xσi(l,m+1) · · · · · · xσi(l,λl)

xσi(l+1,1) · · · xσi(l+1,m−1) xσi(l+1,m) xi(l+1,m+1) · · · xi(l+1,λl+1)
.

In the tableau T, however, we have the inequalities

i (l, m) < i (l, m + 1) < · · · < i (l, λl)
∨

i (l + 1, 1) < · · · < i (l + 1, m− 1) < i (l + 1, m)
.

For any nonidentical permutation σ in the shuffle product, the index σi (l, m)
must equal one of the indices i (l + 1, 1) , . . . , i (l + 1, m); in particular, we have42

σi (l, m) < i (l, m). Thus, the tableau Tσ has a lexicographically smaller associated
sequence than T. By our choice of [T, T′], however, this shows that43 each of the
bitableaux44 [Tσ, T′] satisfies the theorem, and hence, by substitution, we can write

Similarly, define a Young tableau T̃′ (using the tableaux T′ and S′ instead of T and S); in doing
so, make sure to permute the rows in the same way as during the construction of T̃.

The resulting bitableau
[

T̃, T̃′
]

has the bideterminant(
T̃ | T̃′

)
=
(
S | S′

)
(r1r2 · · · rl−1)

(
rl+2rl+3 · · · rp

)
(because its rows are precisely the rows of the bitableau [T, T′] except for its l-th and (l + 1)-st
rows, which have been replaced by the rows of the bitableau [S, S′]).

Now, we shall show that the shape of T̃ is greater than (λ).
Indeed, the bitableau [S, S′] has shape strictly longer than (λl). In other words, the tableau

S has shape strictly longer than (λl). Thus, the first row of S has length > λl . Thus, in Step 2
of our procedure by which we defined T̃, the shape of the almost-tableau T◦ has increased in
lexicographic order (because the l-th row, which used to have length λl , now has length > λl ,
while the rows above it have preserved their lengths). Furthermore, in Step 3 of the procedure,
the shape of T◦ has either stayed unchanged or increased in lexicographic order (because when
we sort a list of numbers in weakly decreasing order, this list either stays unchanged or increases
in lexicographic order). Thus, throughout the procedure, the shape of T◦ has increased in lex-
icographic order. Therefore, the shape of the tableau obtained at the end of the procedure is
greater than the shape of the tableau at its beginning. In other words, the shape of T̃ is greater
than the shape of T (because the tableau obtained at the end of the procedure is T̃, while the
tableau at its beginning is T). In other words, the shape of T̃ is greater than (λ) (since the shape
of T is (λ)). Hence,

(
T̃ | T̃′

)
is a bideterminant of shape greater than (λ).

Because of
(

T̃ | T̃′
)

= (S | S′) (r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
, this rewrites as follows:

(S | S′) (r1r2 · · · rl−1)
(
rl+2rl+3 · · · rp

)
is a bideterminant of shape greater than (λ). This proves

Claim 2.]
40Correction: Added the words “the polynomial” in order to separate expressions.
41Correction: Added the words “which in Tσ are”.
42Correction: Added “we have” and replaced comma by semicolon for disambiguation.
43Correction: Added the words “this shows that” for clarity.
44Correction: Replaced “tableaux” by “bitableaux”.
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(T | T′) as a sum of bideterminants of standard bitableaux45 of shape equal to or
longer than (λ). This contradicts our initial assumption.

It remains to observe that if T were standard, then T′ would have to be nonstan-
dard; the same reasoning can then be applied to T′ to yield a contradiction. This
concludes the proof of the theorem.

The proof contains implicitly an algorithm for expressing any bitableau as a lin-
ear combination of standard bitableaux46 by successive corrections of violations.
This is inefficient for practical computations, as the number of bitableaux intro-
duced during a correction is, in general, very large.

As an exercise, apply the algorithm to obtain the following identity (only the
subscripts are shown): 2 3

1 4
2

∣∣∣∣∣∣
1 2
1 3
1

 =

 1 3
2 4
2

∣∣∣∣∣∣
1 2
1 3
1

−
 1 2

2 4
3

∣∣∣∣∣∣
1 2
1 3
1


+

 1 2
2 3
4

∣∣∣∣∣∣
1 2
1 3
1

−
 1 2 3

2
4

∣∣∣∣∣∣
1 2 3
1
1

 .

4. The Basis Theorem

As we have seen, the standard bideterminants (i.e., the bideterminants of standard
bitableaux47) of content (α, β) span48 the vector space P (α, β). In this section, using
the technique of set polarization operators, we show that, in fact, they form a basis.

We augment the alphabets X and U by adding new letters from the sets S and
T , respectively. The sets S and T are supposed finite, but large enough that the
ensuing constructions can be performed. This enlarges the algebra P, even though
the vector space P (α, β) remains unchanged.49

Thus, a bitableau can have entries from all of the four alphabets X , U , S and T
(more precisely, it consists of a tableau with entries from X ∪ S and a tableau with
entries from U ∪ T ). A bitableau with entries from the alphabets X and U only will

45Correction: Replaced “tableaux” by “bitableaux”.
46Comment: More precisely: “... for expressing the bideterminant of any bitableau as a linear

combination of bideterminants of standard bitableaux”.
47Correction: Replaced “tableaux” by “bitableaux”.
48Correction: Replaced “spans” by “span”.
49Comment: Here, we identify each pair of vectors (α, β) = ((α1, α2, . . . , αn) , (β1, β2, . . . , βk)) with

the pair of vectors
α1, α2, . . . , αn, 0, 0, . . . , 0︸ ︷︷ ︸

|S| many zeroes

 ,

β1, β2, . . . , βk, 0, 0, . . . , 0︸ ︷︷ ︸
|T | many zeroes


 ;

this allows us to speak of P (α, β) even after the alphabets X and U have been enlarged.
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be called an (X ,U )-bitableau. The (X ,U )-content of a bitableau [T, T′] is defined as
the pair of vectors (α, β) where αi (resp. β j) is the number of occurrences of xi in
T (resp. uj in T′). (Thus, the (X ,U )-content differs from the usual content only in
that it disregards the new letters from S and T .) An (X ,U )-bideterminant means a
bideterminant of an (X ,U )-bitableau. 50

The (X ,U )-content of a monomial in P is the pair of vectors

(α, β) = ((α1, . . . , αn) , (β1, . . . , βk)) ,

where αs (resp. βt) is the total degree of the factors in the monomial of the form
(xs | u) with u ∈ U ∪ T (resp. (x | ut) with x ∈ X ∪ S). 51

Let xi, ui, sj, and tj be letters from the alphabets X , U , S , and T . The set
polarization operators Dl (sj, xi

)
(for integers l ≥ 0) 52 are defined as follows: Let

M =
(
xi1 | u′1

)
· · ·
(

xip | u′p
)
·
(
sj1 | v′1

)
· · ·
(

sjq | v′q
)

be a monomial of (X ,U )-content53 (α, β), where u′1, . . . , u′p, v′1, . . . , v′q are elements
of U ∪ T . Then,

(i) if αi < l, we set Dl (sj, xi
)

M = 0,

(ii) if αi ≥ l, we set Dl (sj, xi
)

M = ∑
r

Mr, where M1, . . . , Mr, . . . , M(αi

l

) are all

the
(

αi

l

)
distinct monomials obtained from M by replacing each subset of l

letters xi by l letters sj. (In particular, each of the monomials Mr contains the
letter xi exactly54 (αi − l) times and the letter sj exactly55 l times.)56

The operator Dl (sj, xi
)

is now extended to all of P (α, β) by linearity.

50Correction: I have added the preceding paragraph, since the original paper was cavalier about
where these issues (i.e., in which contexts to disregard the new letters from S and T , and in
which context to count them in). I hope my correction is correct!

51Correction: I have added the preceding paragraph, since the original paper was cavalier about
where these issues (i.e., in which contexts to disregard the new letters from S and T , and in
which context to count them in). I hope my correction is correct!

52Correction: Added “for integers l ≥ 0”.
53Correction: Replaced “content” by “(X ,U )-content”.
54Correction: Added the word “exactly” in order to separate two unrelated expressions.
55Correction: Added the word “exactly” in order to separate two unrelated expressions.
56Comment: Notice that case (i) should be regarded as a particular case of case (ii). Indeed, if αi < l,

then
(

αi
l

)
= 0, and there is no subset of l letters xi in M (because M has fewer than l letters xi

in total); therefore, if we apply the rule for defining Dl (sj, xi
)

M in case (ii) to case (i), then we
obtain Dl (sj, xi

)
M = ∑

r
Mr = (empty sum) = 0, which is precisely how we defined Dl (sj, xi

)
M

in case (i). Therefore, strictly speaking, there was no need to treat case (i) separately.
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The operator D0 (sj, xi
) 57 is the identity operator, and for 1 ≤ l ≤ αi, the

set polarization operator Dl (sj, xi
)

maps a polynomial in P (α, β) to a polynomial
lying outside P (α, β). 58

For bideterminants, the set polarization operators act in the following simple
way.59

Lemma 4.1. Let (T | T′) be a bideterminant of (X ,U )-content (α, β). Then:

(i) If αi < l, then Dl (sj, xi
)
(T | T′) = 0.

(ii) If αi ≥ l, then Dl (sj, xi
)
(T | T′) = ∑

r
(Tr | T′), where T1, . . . , Tr, . . . , T(αi

l

)
are all the distinct

(
αi

l

)
tableaux obtained from T by replacing each subset

of l letters xi by l letters sj.

Proof of Lemma 4.1. Expand (T | T′) into a sum of monomials Mt of (X ,U )-content60

(α, β): (
T | T′

)
= ∑

t
Mt.

Now, if αi < l, then61 Dl (sj, xi
)

Mt = 0 for all the monomials Mt. Hence (i).
Now, suppose that αi ≥ l. Then,

Dl (sj, xi
) (

T | T′
)
= ∑

t
Dl (sj, xi

)
Mt = ∑

t
∑

r
Mt

r,

57Correction: Replaced “Do” by “D0”.
58Comment: It is not hard to prove that for a given choice of xi and sj, the sequence(

D0 (sj, xi
)

, D1 (sj, xi
)

, D2 (sj, xi
)

, . . .
)

is a divided-powers Hasse-Schmidt derivation in the sense
of [17, Definition 2.6]. Explicitly, this means that the following holds:

• We have D0 (sj, xi
)
= id.

• We have
(

Dl (sj, xi
))

(ab) =
l

∑
g=0

(
Dg (sj, xi

)
a
) (

Dl−g (sj, xi
)

b
)

for all a ∈ P and b ∈ P.

• We have Dp (sj, xi
)
· Dq (sj, xi

)
=

(
p + q

p

)
Dp+q (sj, xi

)
for all p ∈N and q ∈N.

As a consequence, the operator D1 (sj, xi
)

is a derivation on P, and each l ∈ N satisfies

l! · Dl (sj, xi
)
=
(

D1 (sj, xi
))l . Thus, if the ground field K has characteristic 0, then the operators

Dl (sj, xi
)

can all be computed from D1 (sj, xi
)
.

Operators such as Dl (sj, xi
)

are the hallmark of characteristic-free invariant theory (and, gen-
erally, tend to occur when studying polynomials over fields of arbitrary characteristic).

59Correction: In the following lemma, I replaced “content” by “(X ,U )-content”. Also, added the
words “then” to parts (i) and (ii) in order to separate formulas, and replaced run-on-sentence by
three separate sentences.

60Correction: Replaced “content” by “(X ,U )-content”.
61Correction: Added the word “then”.
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where Mt
r (for a fixed t) 62 are the

(
αi

l

)
monomials obtained from Mt according

to rule (ii) of the definition of Dl (sj, xi
) 63. Interchanging the order of summation,

we have
Dl (sj, xi

) (
T | T′

)
= ∑

r
∑

t
Mt

r,

But64

∑
t

Mt
r =

(
Tr | T′

)
,

where the same set of l letters xi are replaced by l letters sj on both sides of the
equation. Hence,

Dl (sj, xi
) (

T | T′
)
= ∑

r

(
Tr | T′

)
.

This proves the lemma.

The set polarization operators Dl (tj, ui
)

are defined in an analogous manner,
and the analog of the previous lemma is true for these operators.

Example 4.2.

D2 (s1, x2)

 x1 x2 x3
x1 x2
x2

∣∣∣∣∣∣ T′


=

 x1 s1 x3
x1 s1
x2

∣∣∣∣∣∣ T′

+

 x1 s1 x3
x1 x2
s1

∣∣∣∣∣∣ T′

+

 x1 x2 x3
x1 s1
s1

∣∣∣∣∣∣ T′

 ,

while

D2 (s1, x3)

 x1 x2 x3
x1 x2
x2

∣∣∣∣∣∣ T′

 = 0.

Note that since the alphabets X , U , S , and T are disjoint, the set polarization
operators commute.

The set polarization operators are the building blocks of the Capelli operator
C (T, T′) 65, which is defined for each bitableau [T, T′] of shape (λ) as follows:
Let αi (q) (resp. β j (q)) be the number of occurrences of xi

66 (resp. uj) in the

62Correction: Added “(for a fixed t)”.
63Correction: Added the words “of the definition of Dl (sj, xi

)
”.

64Correction: Removed a useless comma at this point.
65Correction: Added “C (T, T′)”.
66Correction: Replaced “xj” by “xi”.
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qth column of T (resp. T′). The Capelli operator C (T, T′) 67 is defined by the
following formula:68

C
(
T, T′

)
= ∏

1≤q≤λ1

(
∏

1≤i≤n
Dαi(q)

(
sq, xi

))(
∏

1≤j≤k
Dβ j(q)

(
tq, uj

))
.

69

Example 4.3. Suppose

[
T, T′

]
=

 x1 x2 x3
x1 x2
x2

,
u1 u2 u3
u1 u3
u1

 .

Then

C
(
T, T′

)
= D2 (s1, x1) D1 (s1, x2) D2 (s2, x2) D1 (s3, x3)

· D3 (t1, u1) D1 (t2, u2) D1 (t2, u3) D1 (t3, u3) .

We now impose a new total order on (X ,U )-bitableaux70 of the same shape.
Associate with each (X ,U )-bitableau71 the sequence formed by reading off the
indices down each column, successively, first in T and then in T′. The bitableaux
are then ordered according to the lexicographic order of their associated column
sequences.72

Example 4.4. For the bitableau in the preceding example, the associated column
sequence is

(1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 3, 3) .

If the (X ,U )-bitableau73 [T, T′] is standard, the associated column sequence can
be written(

1α1(1) · · · nαn(1)2α2(2) · · · nαn(2) · · · nαn(λ1)1β1(1) · · · kβk(1) · · · kβk(λ1)
)

.

67Correction: Added “C (T, T′)”.
68Correction: In the following formula, I replaced “Dβl(q)

(
tq, uj

)
” by “Dβ j(q)

(
tq, uj

)
”.

69Comment: Note that this is a product of commuting operators (since the set polarization operators
commute). Note also that λ1 is the number of columns of the shape (λ).

70Correction: Replaced “bitableaux” by “(X ,U )-bitableaux”.
71Correction: Replaced “bitableau” by “(X ,U )-bitableau”.
72Comment: This is indeed a total order on the set of all bitableaux of a given shape (λ). This

is because a (X ,U )-bitableau of a given shape (λ) is uniquely determined by its associated
column sequence.

73Correction: Added the words “the (X ,U )-bitableau”.
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We have used the fact that for the (X ,U )-bitableau [T, T′] to be standard74, we must
have αi (q) = βi (q) = 0 for i < q 75.

Theorem 4.5. Let [T, T′] and [V, V′] be two standard (X ,U )-bitableaux of shape
(λ) and (µ) with the same content. Then:

(i) We have C (T, T′) (T | T′) 6= 0.

(ii) If (µ) is longer than (λ), then C (T, T′) (V | V′) = 0.

(iii) If (λ) = (µ), and if [V, V′] is greater than [T, T′] in the lexicographic order
of their associated column sequences, then C (T, T′) (V | V′) = 0.

76

Proof of Theorem 4.5. (i) We calculate C (T, T′) (T | T′) explicitly; we have77

(
T | T′

)
=



α1 (1) rows


x1 · · ·
...

...
x1 · · ·
...

αl (1) rows


xl · · ·
...

...
xl · · ·
...

αn (1) rows


xn · · ·
...

...
xn · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T′



.

Now, the letter x1 can only be found in the first column of T. Hence, Dα1(1) (s1, x1) (T | T′)
78 consists of a single term, obtained by substituting s1 for all the x1 in T.
74Correction: Replaced “for the bideterminant (T | T′) to be nonzero” by “for the (X ,U )-bitableau

[T, T′] to be standard”. (Indeed, the bideterminant (T | T′) being nonzero was not a require-
ment.)

75Comment: This is because the entries in each row must be strictly increasing.
76Correction: In this theorem, I have replaced “Let (T | T′) and (V | V′) be two standard bideter-

minants” by “Let [T, T′] and [V, V′] be two standard (X ,U )-bitableaux” for precision. Also, I
have made each of (i), (ii) and (iii) a separate sentence. Also, I have replaced “smaller than” by
“smaller or equal to” in part (iii). Finally, I have rewritten part (iii) in contrapositive form, since
this is how this part is actually being proved and used (and it is more natural to state it like this
from a constructive point of view).

77Correction: In the formula below, replaced “αn (a)” by “αn (1)”; added more “
...”s and “· · · ”s;

added the words “rows” for clarity.
78Correction: Replaced “Dα1(1) (s1, xi)” by “Dα1(1) (s1, x1)”.
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Assume that

(
∏

1≤i≤l−1
Dαi(1) (s1, xi)

)
(T | T′) 79 consists of a single term, ob-

tained by substituting all the letters xi, 1 ≤ i ≤ l− 1, in the first column of T by the
letter s1. Then,(

∏
1≤i≤l

Dαi(1) (s1, xi)

) (
T | T′

)
= Dαl(1) (s1, xl)

(
∏

1≤i≤l−1
Dαi(1) (s1, xi)

) (
T | T′

)

= Dα1(1) (s1, xl)



∑
1≤i≤l−1

αi (1) rows


s1 · · ·
...

...
s1 · · ·

αl (1) rows


xl · · ·
...

...
xl · · ·
...

αn (1) rows


xn · · ·
...

...
xn · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T′



.

Since tableau T is standard, any occurrence of xl in other than the first column
must be in the first ∑

1≤i≤l−1
αi (1) rows. If any of these xl are chosen for substitu-

tion during the polarization80, the letter s1 would be repeated within a row, and
the resulting bideterminant would be zero. Hence, the only nonzero term in the
above expression is the term obtained by substituting s1 for all the αl (1) letters
xl in the first column of T. By induction, we have shown that the expression(

∏
1≤i≤n

Dα1(1) (s1, xi)

)
(T | T′) consists of a single nonzero term, obtained by sub-

stituting s1 for all the letters in the first column of T.
Repeating this argument for the other columns, we can easily see that C (T, T′) (T | T′)

is obtained by substituting sq (resp. tq) for all the letters in the qth column of T

79Correction: Replaced “α1 (1)” by “αi (1)”. Added parentheses around the product. Similarly in
the equalities below.

80Comment: “Polarization” here means the application of the operator Dα1(1) (s1, xl).
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(resp. T′); that is,81

C
(
T, T′

) (
T | T′

)
=



s1 s2 · · · sλ1
...

...
. . .

...
s1 s2 · · · sλ1
...

... . . .

s1 s2
...

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 t2 · · · tλ1
...

...
. . .

...
t1 t2 · · · tλ1
...

... . . .

t1 t2
...
t1


.

The two tableaux appearing on the right hand side will be denoted by U and U′.
Thus, C (T, T′) (T | T′) = (U | U′) 6= 0. 82

(ii) The expression C (T, T′) (V | V′) consists of a sum of bideterminants of the
same shape (µ). If it is nonzero, then one of the bideterminants, say (W |W ′), is
nonzero. The content of (W |W ′) is the same as that of (U | U′) = C (T, T′) (T | T′)
(since the set polarization operators transform the content of a polynomial in a
predictable way (i.e., the content of the output is determined by the content of the
input), and therefore so does the operator C (T, T′)) 83; that is, for 1 ≤ l ≤ λ1, the
letters sl and tl occur in (W |W ′) exactly84 λ̃l times, where

λ̃l = ∑
1≤i≤n

αi (l)

= the height of the lth column.

We are required to show that (µ) is shorter or equal to85 (λ). If (µ) 6= (λ),
let m be the smallest integer such that λm 6= µm

86. 87 We claim that: For
1 ≤ i ≤ m− 1, the contents of the ith row in U and in W are identical.

81Correction: Added a few more dots and an extra s1 to the bitableau below to hopefully make it
clearer.

82Correction: Added the previous two sentences.
83Correction: Inserted the preceding parenthetical sentence.
84Correction: Added the word “exactly”.
85Correction: Replaced “shorter than” by “shorter or equal to”.
86Comment: Such an m exists, for the following reason: The tableaux T and V have the same content.

Thus, they have the same number of boxes. In other words, (λ) and (µ) are partitions of one
and the same integer. Hence, (λ) cannot be a proper subsequence of (µ), and (µ) cannot be a
proper subsequence of (λ). Therefore, if (µ) 6= (λ), then there exists an integer m satisfying
λm 6= µm.

87Correction: At this spot, I have removed the following two sentences:
“If m = 1, it must be the case that µ1 < λ1, for the first row of W contains µ1 distinct letters

chosen from the set
{

s1, . . . , sλ1

}
.

Now, suppose that m ≥ 2.”.
In fact, these sentences are not wrong, but they are unnecessary, since the argument that

follows does not require m ≥ 2, and thus the m = 1 case needs not be treated separately.
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The proof is by strong induction88 on i. 89 Namely,90 assume that the propo-
sition is true up to the ith row. The letters sl, for l ≥ λi + 1, have all been used in
the first i− 1 rows in U, hence in W (since U and W have the same content)91. For
the ith row in W, we thus92 have to choose µi distinct letters from

{
s1, . . . , sλi

}
. But

λi = µi; hence the contents of the ith row in U and W are identical. This proves the
claim.93

Now, consider the mth row. As the contents of the94 first m− 1 rows are identical,
the mth row in W contains µm distinct letters from the set {s1, . . . , sλm} 95. Since
µm 6= λm, we must have µm < λm.

(iii) We can now suppose that (µ) = (λ). 96 Recall that the associated column
sequence of [T, T′] 97 is(

1α1(1) · · · nαn(1) · · · nαn(λ1)1β1(1) · · · kβk(1) · · · kβk(λ1)
)

.

We shall denote by γi (q) (resp. δj (q)) the number of occurrences of xi (resp. uj)
98 in the qth column of V (resp. V′). The associated column sequence of [V, V′] 99

is100 (
1γ1(1) · · · nγn(1) · · · nγn(λ1)1δ1(1) · · · kδk(1) · · · kδk(λ1)

)
.

Suppose now that [T, T′] and [V, V′] differ in the left tableau; the reasoning is
similar if the only101 difference lies in the right tableau.

Let p be the first column where T and V differ, and in the pth column, let xl be

88Correction: Replaced “induction” by “strong induction”.
89Correction: At this spot, I have removed the following sentence:

“If i = 1, then µ1 = λ1; by our preceding observations, the first row in both W and U consists
of the set

{
s1, . . . , sλ1

}
arranged in some order.”.

In fact, this sentence is useless here, since a strong induction does not contain an induction
base.

90Correction: Replaced “Now” by “Namely,”.
91Correction: Inserted the preceding parenthetical sentence.
92Correction: Added the word “thus” for clarity of the argument.
93Correction: Added the preceding sentence.
94Correction: Added “contents of the”.
95Comment: This follows from noticing that the letters sl , for l ≥ λm + 1, have all been used in the

first m − 1 rows in U, hence in W (since U and W have the same content), and thus are not
available for the mth row any more.

96Correction: Removed “and C (T, T′) (V | V′) 6= 0” from this sentence, as it was an instance of
useless proof by contradiction.

97Correction: Replaced “of (T | T′)” by “of [T, T′]”.
98Correction: Replaced “(resp. ui)” by “(resp. uj)”.
99Correction: Replaced “of (V | V′)” by “of [V, V′]”.

100Correction: In the column sequence below, I replaced “δk (3)” by “δk (1)”.
101Correction: Added the word “only” for clarity.
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the smallest index that is different. That is, we have102

for 1 ≤ i ≤ n and 1 ≤ q ≤ p− 1, we have αi (q) = γi (q) ;
for 1 ≤ i ≤ l − 1, we have αi (p) = γi (p) ;
but αl (p) 6= γl (p) .

Now, assume that [V, V′] 103 is lexicographically greater than [T, T′] 104; that
is, αl (p) > γl (p) 105. Consider the action of the Capelli operator C (T, T′) on
(V | V′). The polarizations Dα1(1) (s1, x1) , Dα2(1) (s1, x2) , . . . , Dαl−1(p) (sp, xl−1

)
act

on (V | V′) exactly as they do on (T | T′). At this instant106, the expression107(
∏

1≤i≤l−1
Dαi(p) (sp, xi

))
·
(

∏
1≤q≤p−1

(
∏

1≤i≤n
Dαi(q)

(
sq, xi

))) (
V | V′

)

102Correction: Added the words “we have” in the following statements, and replaced “δi (p)” by
“γi (p)”.

103Correction: Replaced “(V | V′)” by “[V, V′]”.
104Correction: Replaced “(T | T′)” by “[T, T′]”.
105Comment: Let me explain why the assumption (that [V, V′] is lexicographically greater than [T, T′])

yields αl (p) > γl (p).
Indeed, assume the contrary. Thus, αl (p) ≤ γl (p), so that αl (p) < γl (p) (since αl (p) 6=

γl (p)). Hence, the topmost ∑
1≤i≤l

αi (p) indices in the pth column of T equal the corresponding

indices in the pth column of V (because for 1 ≤ i ≤ l − 1, we have αi (p) = γi (p)), but the(
∑

1≤i≤l
αi (p)

)
+ 1-st index from the top is greater in T than in V (in fact, the index in T is > p

whereas the index in V is = p). Therefore, the associated column sequence of [T, T′] is greater
than the associated column sequence of [V, V′] (because the first p− 1 columns of T and of V
are equal). This contradicts the assumption that [V, V′] is lexicographically greater than [T, T′].
This contradiction completes the proof.

106Comment: i.e., after these polarizations have been applied to (V | V′)
107Correction: Replaced “1 ≤ α ≤ p− 1” by “1 ≤ q ≤ p− 1” in the following equality. Also, added

some parenthesis to disambiguate the products.
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is a bideterminant of the form108

∑
1≤i≤l−1

αi (p) rows


s1 s2 · · · sp−1 sp · · ·
...

...
. . .

...
... · · ·

s1 s2 · · · sp−1 sp · · ·

γl (p) rows


s1 s2 · · · sp−1 xl · · ·
...

...
. . .

...
... · · ·

s1 s2 · · · sp−1 xl · · ·
...

...
. . .

...
... · · ·

s1 s2 · · · sp−1
...

... . . .

s1 s2
...

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V′



.

That is, the first p− 1 columns are replaced by the appropriate letters sq; in the pth
column, the first ∑

1≤i≤l−1
αi (p) letters are replaced by sp, and the remainder of the

tableau is unchanged.
Since αl (p) > γl (p), and V is standard, any choice of αl (p) 109 letters xl must

involve a letter xl lying in the first ∑
1≤i≤l−1

αi (p) rows of V. The set polarization

operator Dαl(p) (sp, xl
) 110 substitutes sp for this particular xl. The resulting

bideterminant is zero, since there are two letters sp in a single row. This proves
C (T, T′) (V | V′) = 0. 111

With Theorem 4.5 proved, we can now proceed to the main result of this sec-
tion.112

Theorem 4.6. The standard (X ,U )-bideterminants of content (α, β) form a basis
of the vector space P (α, β).

Proof of Theorem 4.6. By Corollary 3.4113, the standard (X ,U )-bideterminants114 span
the vector space P (α, β). Suppose we have a nontrivial linear relation between these

108Correction: Added “· · · ”s at the end of the rows of the left tableau.
109Correction: Replaced “γl (p)” by “αl (p)”.
110Correction: Replaced “Dαi(p) (sp, xl

)
” by “Dαl(p) (sp, xl

)
”.

111Correction: Replaced the original sentence “This contradicts the assumption; we have therefore
proved that (V | V′) is lexicographically smaller than (T | T′)” (which was imprecise and also a
needless proof by contradiction) by “This proves C (T, T′) (V | V′) = 0”.

112Correction: In the following theorem, I have replaced “bideterminant” by “(X ,U )-
bideterminants”.

113Correction: Replaced “By Theorem 3.2” by “By Corollary 3.4”.
114Correction: Replaced “bideterminants” by “(X ,U )-bideterminants”.
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bideterminants. We can write this linear relation as follows:

a
(
T | T′

)
+ A + B = 0,

where a is a nonzero scalar in K, (λ) is the shortest shape occurring in the lin-
ear relation, [T, T′] 115 is the bitableau of shape (λ) with the lexicographically
smallest associated column sequence, A is the linear combination of the remaining
bitableaux116 of shape (λ), and B is the linear combination of the remainder of the
bitableaux, which are necessarily of shape longer than (λ).

Applying the Capelli operator C (T, T′) to the relation we have, by Theorem
4.5,117

C
(
T, T′

)
A = 0 (by Theorem 4.5 (iii)) ,

C
(
T, T′

)
B = 0 (by Theorem 4.5 (ii)) ,

but
C
(
T, T′

) (
T | T′

)
6= 0 (by Theorem 4.5 (i)) .

This implies aC (T, T′) (T | T′) = 0, which is a contradiction.118

The proof of this theorem contains another algorithm for expressing any bideter-
minant as a linear combination of standard bideterminants119. Suppose(

T | T′
)
= ∑

i
ai
(
Ti | T′i

)
is the unique decomposition of (T | T′) into standard bitableaux, written so that if
i < j, then either Ti is of shape shorter than Tj, or Ti and Tj

120 have the same

115Correction: Replaced “(T | T′)” by “[T, T′]”.
116Correction: Replaced “tableaux” by “bitableaux”.
117Correction: Here, I have added the comments “by Theorem 4.5 (iii)”, “by Theorem 4.5 (ii)” and

“by Theorem 4.5 (i)”.
118Comment: Here is (what I believe to be) a clearer way to write up this argument:

Applying the map C (T, T′) to the equality a (T | T′) + A + B = 0, we obtain

C
(
T, T′

) (
a
(
T | T′

)
+ A + B

)
= C

(
T, T′

)
0 = 0.

Thus,

0 = C
(
T, T′

) (
a
(
T | T′

)
+ A + B

)
= aC

(
T, T′

) (
T | T′

)
+ C

(
T, T′

)
A︸ ︷︷ ︸

=0

+C
(
T, T′

)
B︸ ︷︷ ︸

=0

= aC
(
T, T′

) (
T | T′

)
.

In other words, aC (T, T′) (T | T′) = 0. Since C (T, T′) (T | T′) 6= 0, this entails that a = 0. This
contradicts a 6= 0.

119Correction: Replaced “any bitableau as a linear combination of standard bitableaux” by “any
bideterminant as a linear combination of standard bideterminants”.

120Correction: Replaced “or Tj” by “or Ti and Tj”.
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shape, and
[
Ti, T′i

]
has a lexicographically smaller associated column sequence than[

Tj, T′j
]

121. The coefficients ai are called the straightening coefficients. They can be

computed by applying the Capelli operators C
(

Tj, T′j
)

to both sides of the linear
relation; by Theorem 4.5, we obtain a triangular array of equations between bide-
terminants with entries from the alphabets S and T . From this, we can extract
a triangular system of linear equations for the coefficients ai, which can then be
solved.122

Example 4.7. Consider the (X ,U )-bideterminant (where, for simplicity, all but
the subscripts are suppressed): 2 3

1 4
2

∣∣∣∣∣∣
1 2
1 3
1

 .

The standard bitableaux of the same or longer shape of the same content are 1 3
2 4
2

,
1 2
1 3
1

 ,

 1 2
2 4
3

,
1 2
1 3
1

 ,

 1 2
2 3
4

,
1 2
1 3
1

 ,

 1 3 4
2
2

,
1 2 3
1
1

 ,

 1 2 4
2
3

,
1 2 3
1
1

 ,

 1 2 3
2
4

,
1 2 3
1
1

 .

Let a1, . . . , a6 be the corresponding straightening coefficients. We obtain, through
the Capelli operators, the equations:

a1 = 1
a2 = −1

−a1 +a3 = 0
a4 = 0

a5 = 0
a3 +a6 = 0

121Correction: Replaced “and Ti has a lexicographically smaller associated column sequence than Tj”

by “and
[
Ti, T′i

]
has a lexicographically smaller associated column sequence than

[
Tj, T′j

]
”.

122Correction: In the following example, I have replaced “bideterminant” by “(X ,U )-bideterminant”.
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Therefore, we obtain 2 3
1 4
2

∣∣∣∣∣∣
1 2
1 3
1

 =

 1 3
2 4
2

∣∣∣∣∣∣
1 2
1 3
1

−
 1 2

2 4
3

∣∣∣∣∣∣
1 2
1 3
1


+

 1 2
2 3
4

∣∣∣∣∣∣
1 2
1 3
1

−
 1 2 3

2
4

∣∣∣∣∣∣
1 2 3
1
1

 .

From Theorem 4.6, we obtain a basis of the whole polynomial ring in the
(
xi | uj

)
:

123

Corollary 4.8. The standard (X ,U )-bideterminants form a basis of the algebra
of polynomials over the field K in the indeterminates

(
xi | uj

)
.

Proof of Corollary 4.8. This algebra (as a vector space) is the direct sum
⊕

(α,β) P (α, β).
Each of the addends has a basis consisting of the standard (X ,U )-bideterminants
of content (α, β) (by Theorem 4.6). Thus, the whole algebra has a basis consisting
of all the standard (X ,U )-bideterminants.

5. Invariant Theory

5.1. The Second Fundamental Theorem

Classical invariant theory is concerned with the behavior of forms under the action
of linear transformations. Let {u1, . . . , ud} be a dual basis for the vector space Vd
(of dimension d). 124 A form F (x1, . . . , xm) on m vectors in Vd is a polynomial
in the md scalar products of the m vectors xi with the d covectors uj

125 in the
dual basis. More pedantically, consider the polynomial algebra K [x, u, s, t] in the
indeterminates xir, ujr, spr, tqr, where 1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ p, 1 ≤ q, and

123Correction: Added this sentence and the next corollary.
124Comment: I am not sure what “dual basis” means here; I suspect that it means “basis for the dual

space” (i.e., a dual basis of a vector space V means a basis of the dual space V∗ of V). However,
this is not very important, because the vector space Vd and its dual basis {u1, . . . , ud} are used
only for motivation. A proper definition of the notion of forms shall be given two sentences
later.

125Correction: Replaced “ui” by “uj”.
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1 ≤ r ≤ d. In this algebra, we distinguish the following polynomials:〈
xi | uj

〉
= ∑

1≤r≤d
xirujr,〈

sp | uj
〉
= ∑

1≤r≤d
sprujr,〈

xi | tq
〉
= ∑

1≤r≤d
xirtqr,〈

sp | tq
〉
= ∑

1≤r≤d
sprtqr.

Let P̂ be the subalgebra of K [x, u, s, t] generated by these polynomials; P̂ is called
the algebra of forms. Rigorously speaking, we define a form to be an element of P̂.
126

There exists an algebra homomorphism127 φ from P (constructed as in the previ-
ous section from the alphabets X , U , S , and T ) to P̂ defined by

φ :

(
xi | uj

)
7→

〈
xi | uj

〉
,(

sp | uj
)
7→

〈
sp | uj

〉
,(

xi | tq
)
7→

〈
xi | tq

〉
,(

sp | tq
)
7→

〈
sp | tq

〉
.

Consider a monomial m =
(
xi1 | uj1

)
· · ·
(
xia | uja

)
in P. Its image in P̂ under φ is

given by
φm = ∑

f
xi1 f1uj1 f1 · · · xia fa uja fa ,

where the summation is over the set of all functions f : i 7→ fi from {1, . . . , a} to
{1, . . . , d}. We shall use the simpler notation

φm = ∑
f

m f .

128 The restriction of the homomorphism φ to P (α, β) is called the Pascal homomor-
phism.129

126Correction: Added the preceding sentence.
127Correction: Replaced “a homomorphism” by “an algebra homomorphism”.
128Comment: Thus, m f denotes the monomial xi1 f1 uj1 f1 · · · xia fa uja fa whenever f : i 7→ fi is a function

from {1, . . . , a} to {1, . . . , d}. Of course, this definition depends not just on the monomial m, but
also on the order of the factors in the product

(
xi1 | uj1

)
· · ·
(

xia | uja
)
; we can thus only use it

when this order is fixed.
129Correction: In the following theorem, I have replaced “bideterminants” by “(X ,U )-

bideterminants”.
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Theorem 5.1 (the second fundamental theorem of invariant theory). The kernel
of the Pascal homomorphism is the subspace of P (α, β) spanned by the standard
(X ,U )-bideterminants of shape strictly longer than (d).

Some preliminary observations are in order.
In the same fashion as for P, we define set polarization operators for K [x, u, s, t].

Let v = xir1 · · · xira be a monomial containing only variables of the form xir, where
i is fixed and r is arbitrary. Suppose p is a positive integer, and E a subset of
{1, . . . , a}. Then, vE,p 130 is the monomial obtained from v by replacing the vari-
able xirb by the variable sprb whenever b ∈ E. 131 Now, for a given nonnegative132

integer l, the set polarization operator D̂l (sp, xi
)

acts on the monomial v as follows:

D̂l (sp, xi
)

v = ∑
E

vE,p,

where the summation is over all the l-subsets133 of {1, . . . , a} 134. Consider now
an arbitrary monomial w. We can write w as the product of two monomials w′ and
w′′, where w′ is the product of all the variables in w of the form xir, and w′′ is the
product of the remaining variables in w 135. Then, we set

D̂l (sp, xi
)

w =
(

D̂l (sp, xi
)

w′
)

w′′. (8)

The operator D̂l (sp, xi
)

is extended to all of K [x, u, s, t] by linearity.
The operators D̂l (tq, uj

)
are defined analogously. It is clear that, as in the case of

the operators D, the operators D̂ commute136.
We have the following identity:

130Correction: Replaced “VE,p” by “vE,p”.
131Comment: This monomial vE,p depends not just on the monomial v, but also on the order of the

factors in the product xir1 · · · xira ; we can thus only use this notation when this order is fixed.
132Correction: Replaced “positive” by “nonnegative”.
133Comment: “l-subset” means “l-element subset”.
134Comment: We can rewrite this equality (without using the slippery notation vE,p) as follows:

D̂l (sp, xi
)

v = ∑
E⊆{1,2,...,a};
|E|=l

(
∏
b∈E

sprb

) ∏
b∈{1,2,...,a};

b/∈E

xirb

 (6)

= ∑
E⊆{1,2,...,a};
|E|=l

 ∏
b∈{1,2,...,a}

{
sprb , if b ∈ E
xirb , if b /∈ E

 . (7)

(It is easy to see that this does not depend on the order of the factors in xir1 · · · xira
, and thus the

image D̂l (sp, xi
)

v is really well-defined.)
135Correction: Added “in w”.
136Comment: I.e., the operators D̂l (sp, xi

)
for all p and i and the operators D̂l (tq, uj

)
for all q and j

all commute.
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Lemma 5.2.
D̂l (sp, xi

)
φ = φDl (sp, xi

)
.

Proof of Lemma 5.2. 137 It suffices to verify the identity for monomials of the form138

m =
(
xi | uj1

)
· · ·
(
xi | uja

)
,

where all the letters x have index i. 139 Let mE,p denote the monomial obtained
from m by replacing each variable

(
xi | ujb

)
by
(
sp | ujb

)
whenever b ∈ E. Then, we

observe (notation as earlier): (
mE,p

)
f
=
(
m f
)E,p .

We can now finish the proof through the following computation:

φDl (sp, xi
)

m = φ ∑
E

mE,p = ∑
E

φmE,p

= ∑
E

∑
f

(
mE,p

)
f
= ∑

E
∑

f

(
m f
)E,p

= ∑
f

D̂l (sp, xi
)

m f

= D̂l (sp, xi
) (

∑
f

m f

)
= D̂l (sp, xi

)
φm.

Alternative proof of Lemma 5.2. 140 Introduce a new indeterminate T, and consider
the polynomial rings P [T], (K [x, u, s, t]) [T] and P̂ [T]. The K-algebra homomor-
phism φ gives rise to a K-algebra homomorphism P [T] → P̂ [T] which sends T to
T while acting on P as φ. This latter K-algebra homomorphism P [T]→ P̂ [T] shall
be denoted by φ [T].

Let Vi be the set of all indeterminates in the polynomial ring K [x, u, s, t] that are
not of the form xir with 1 ≤ r ≤ d. In other words,

Vi =
{

xi′r | 1 ≤ i′ ≤ n and 1 ≤ r ≤ d satisfying i′ 6= i
}

∪
{

ujr | 1 ≤ j ≤ k and 1 ≤ r ≤ d
}

∪
{

sp′r | 1 ≤ p′ and 1 ≤ r ≤ d
}

∪
{

tqr | 1 ≤ q and 1 ≤ r ≤ d
}

.

137Comment: I don’t like this proof, as it somewhat lacks rigor (in fact, it uses the ambiguous nota-

tion
(

m f

)E,p
without properly explaining how precisely it is defined). Thus, I have added an

alternative proof of Lemma 5.2 further below.
138Comment: This is somewhat imprecise, since m should also be allowed to contain factors of the

form
(

xi | tq
)
.

139Correction: Replaced a comma by a period here.
140Correction: I have added this proof, since I do not fully trust the original proof given above.
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Let D̂ be the K-algebra homomorphism K [x, u, s, t]→ (K [x, u, s, t]) [T] that sends

xir 7→ xir + Tspr for all 1 ≤ r ≤ d;
η 7→ η for each η ∈ Vi.

Then, each w ∈ K [x, u, s, t] satisfies

D̂w = ∑
l≥0

D̂l (sp, xi
)

w · Tl (9)

141.
Let D be the K-algebra homomorphism P→ P [T] that sends

(xi | η) 7→ (xi | η) + T
(
sp | η

)
for each η ∈ U ∪ T ;

(ξ | η) 7→ (ξ | η) for each ξ ∈ (X ∪ S) \ {xi} and η ∈ U ∪ T .

Then, each w ∈ P satisfies

Dw = ∑
l≥0

Dl (sp, xi
)

w · Tl. (11)

141Proof of (9): It is clearly enough to prove the equality (9) in the case when w is a monomial. Thus,
assume that w is a monomial. Write w in the form w = w′w′′, where w′ is the product of all the
variables in w of the form xir, and w′′ is the product of the remaining variables in w.

The monomial w′′ contains no variables of the form xir (because of how w′′ was defined).
Thus, w′′ is a product of variables from the set Vi. But the K-algebra homomorphism D̂ leaves
all variables from the set Vi fixed (by the definition of D̂). Thus, D̂ also leaves any product of
such variables fixed. Hence, D̂ leaves w′′ fixed (since w′′ is a product of variables from the set
Vi). In other words, D̂w′′ = w′′.

Now, write the monomial w′ in the form w′ =
a

∏
b=1

xirb . (This is clearly possible due to how w′

was defined.) Thus, w′ =
a

∏
b=1

xirb = xir1 xir2 · · · xira . Hence, (6) (applied to v = w′) yields

D̂l (sp, xi
) (

w′
)
= ∑

E⊆{1,2,...,a};
|E|=l

(
∏
b∈E

sprb

) ∏
b∈{1,2,...,a};

b/∈E

xirb

 (10)

for each l ≥ 0.



Invariant Theory, Young Bitableaux, and Combinatorics page 39

Applying the map D̂ to the equality w′ =
a

∏
b=1

xirb , we obtain

D̂w′ = D̂

(
a

∏
b=1

xirb

)
=

a

∏
b=1

D̂
(
xirb

)︸ ︷︷ ︸
=xirb

+Tsprb(
since D̂ is a K-algebra homomorphism

)

=
a

∏
b=1

(
xirb + Tsprb

)
= ∑

E⊆{1,2,...,a}︸ ︷︷ ︸
= ∑

l≥0
∑

E⊆{1,2,...,a};
|E|=l

(
∏
b∈E

(
Tsprb

))
︸ ︷︷ ︸

=T|E| ∏
b∈E

sprb

 ∏
b∈{1,2,...,a};

b/∈E

xirb



(here, we have expanded the product)

= ∑
l≥0

∑
E⊆{1,2,...,a};
|E|=l

T|E|︸︷︷︸
=Tl

(since |E|=l)

(
∏
b∈E

sprb

) ∏
b∈{1,2,...,a};

b/∈E

xirb



= ∑
l≥0

∑
E⊆{1,2,...,a};
|E|=l

Tl

(
∏
b∈E

sprb

) ∏
b∈{1,2,...,a};

b/∈E

xirb



= ∑
l≥0

Tl ∑
E⊆{1,2,...,a};
|E|=l

(
∏
b∈E

sprb

) ∏
b∈{1,2,...,a};

b/∈E

xirb


︸ ︷︷ ︸

=D̂l(sp ,xi)(w′)
(by (10))

= ∑
l≥0

Tl D̂l (sp, xi
) (

w′
)

.
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142

Now, it is easy to see that
D̂ ◦ φ = φ [T] ◦D.

Indeed, both sides of this equality are K-algebra homomorphisms from P to (K [x, u, s, t]) [T],
and thus their equality can be comfortably proven by verifying it only on the gen-
erators (ξ | η) of the K-algebra P (which verification is straightforward and easy,
requiring only two cases depending on whether ξ = xi or not).

Now, let w ∈ P. Then,(
D̂ ◦ φ

)
(w) = D̂ (φw) = ∑

l≥0
D̂l (sp, xi

)
φw · Tl

(by (9), applied to φw instead of w). Comparing this with(
D̂ ◦ φ

)
︸ ︷︷ ︸
=φ[T]◦D

(w) = (φ [T] ◦D) (w) = (φ [T]) (Dw)︸ ︷︷ ︸
= ∑

l≥0
Dl(sp,xi)w·Tl

(by (11))

= (φ [T])

(
∑
l≥0

Dl (sp, xi
)

w · Tl

)
= ∑

l≥0
φDl (sp, xi

)
w · Tl,

we obtain
∑
l≥0

D̂l (sp, xi
)

φw · Tl = ∑
l≥0

φDl (sp, xi
)

w · Tl.

Comparing coefficients in front of Tl on both sides of this equality, we obtain
D̂l (sp, xi

)
φw = φDl (sp, xi

)
w. Since this holds for all w ∈ P, we thus find D̂l (sp, xi

)
φ =

φDl (sp, xi
)
. This proves Lemma 5.2.

Applying the map D̂ to the equality w = w′w′′, we obtain

D̂w = D̂
(
w′w′′

)
=

(
D̂w′

)
︸ ︷︷ ︸

= ∑
l≥0

Tl D̂l(sp ,xi)(w′)

(
D̂w′′

)
︸ ︷︷ ︸

=w′′(
since D̂T

(
sp, xi

)
is a K-algebra homomorphism

)
=

(
∑
l≥0

Tl D̂l (sp, xi
) (

w′
))

w′′ = ∑
l≥0

Tl D̂l (sp, xi
) (

w′
)

w′′︸ ︷︷ ︸
=D̂l(sp ,xi)w

(by (8))

= ∑
l≥0

Tl D̂l (sp, xi
)

w = ∑
l≥0

D̂l (sp, xi
)

w · Tl .

This proves (9).
142The proof of this is similar to the proof of (9).
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An analogue of Lemma 5.2 for the operators D̂l (tq, uj
)

and Dl (tq, uj
)

also holds.143

Consider now a bitableau [T, T′]. The Capelli operator Ĉ (T, T′) is144 defined on
K [x, u, s, t] by mimicking the definition of C (T, T′) with D̂ instead of D. 145

Lemma 5.2 (and its analogue for the operators D̂l (tq, uj
)

and Dl (tq, uj
)
) yields as

a corollary the following identity:146

Corollary 5.3.
Ĉ
(
T, T′

)
φ = φC

(
T, T′

)
.

Let us next prove some further observations.147

Lemma 5.4. Each inner product
(
xi1 · · · xil | uj1 · · · ujl

)
with l > d satisfies

φ
(
xi1 · · · xil | uj1 · · · ujl

)
= 0.

Proof of Lemma 5.4. Let
(
xi1 · · · xil | uj1 · · · ujl

)
be an inner product with l > d. It is

straightforward to see that
〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
 =

 xi1,1 · · · xi1,d
...

. . .
...

xil ,1 · · · xil ,d

 ·
 uj1,1 · · · ujl ,1

...
. . .

...
uj1,d · · · ujl ,d

 .

Hence, the matrix


〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
 is the product of an l × d-matrix

with a d× l-matrix. Thus, the matrix


〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
 has determi-

nant 0 (since d < l). In other words,

∣∣∣∣∣∣∣
〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
∣∣∣∣∣∣∣ = 0.

143Correction: Added this sentence.
144Correction: Replaced “are” by “is”.
145Comment: Explicitly, this means that Ĉ (T, T′) is defined as follows: Let (λ) be the shape of T. Let

αi (q) (resp. β j (q)) be the number of occurrences of xi (resp. uj) in the qth column of T (resp.
T′). The Capelli operator Ĉ (T, T′) is defined by the following formula:

Ĉ
(
T, T′

)
= ∏

1≤q≤λ1

(
∏

1≤i≤n
D̂αi(q)

(
sq, xi

))(
∏

1≤j≤k
D̂β j(q)

(
tq, uj

))
.

The right hand side of this equality is a product of commuting operators (since the operators D̂
all commute). Notice that λ1 is the number of columns of T.

146Correction: Slightly rewrote this sentence in order to make the identity an actual corollary.
147Correction: Everything between this sentence and the proof of Theorem 5.1 has been added by

me.
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But (
xi1 · · · xil | uj1 · · · ujl

)
=

∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujl

)
...

. . .
...(

xil | uj1
)
· · ·

(
xil | ujl

)
∣∣∣∣∣∣∣ .

Applying the map φ to this identity, we obtain

φ
(
xi1 · · · xil | uj1 · · · ujl

)
= φ

∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujl

)
...

. . .
...(

xil | uj1
)
· · ·

(
xil | ujl

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
φ
(
xi1 | uj1

)
· · · φ

(
xi1 | ujl

)
...

. . .
...

φ
(
xil | uj1

)
· · · φ

(
xil | ujl

)
∣∣∣∣∣∣∣

(since φ is a K-algebra homomorphism)

=

∣∣∣∣∣∣∣
〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
∣∣∣∣∣∣∣(

since φ
(
xi | uj

)
=
〈

xi | uj
〉

for all i and j
)

= 0.

This proves Lemma 5.4.

Lemma 5.5. Let ω : K [x, u, s, t]→ K be the K-algebra homomorphism given by

xir 7→ 0 for all 1 ≤ i ≤ n and 1 ≤ r ≤ d;
ujr 7→ 0 for all 1 ≤ j ≤ k and 1 ≤ r ≤ d;

spr 7→ δp,r for all 1 ≤ p and 1 ≤ r ≤ d;
tqr 7→ δq,r for all 1 ≤ q and 1 ≤ r ≤ d

(where δu,v stands for

{
1, if u = v;
0, if u 6= v

). Then, each k ∈ {0, 1, . . . , d} satisfies

ω (φ (s1s2 · · · sk | t1t2 · · · tk)) = 1.
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Proof of Lemma 5.5. Let k ∈ {0, 1, . . . , d}. Then, for each p, q ∈ {1, 2, . . . , k}, we have

ω
〈
sp | tq

〉
= ω

(
∑

1≤r≤d
sprtqr

) (
since

〈
sp | tq

〉
= ∑

1≤r≤d
sprtqr

)
= ∑

1≤r≤d
ω
(
spr
)︸ ︷︷ ︸

=δp,r
(by the definition of ω)

ω
(
tqr
)︸ ︷︷ ︸

=δq,r
(by the definition of ω)

(since ω is a K-algebra homomorphism)

= ∑
1≤r≤d

δp,rδq,r =

{
1, if p = q ≤ d;
0, otherwise

=

{
1, if p = q;
0, otherwise(

since p = q ≤ d holds if and only if p = q
(because q ≤ d always holds (since q ≤ k ≤ d))

)
= δp,q. (12)

Now,

(s1s2 · · · sk | t1t2 · · · tk) =

∣∣∣∣∣∣∣
(s1 | t1) · · · (s1 | tk)

...
. . .

...
(sk | t1) · · · (sk | tk)

∣∣∣∣∣∣∣ .

Applying the map φ to this identity, we obtain

φ (s1s2 · · · sk | t1t2 · · · tk) = φ

∣∣∣∣∣∣∣
(s1 | t1) · · · (s1 | tk)

...
. . .

...
(sk | t1) · · · (sk | tk)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

φ (s1 | t1) · · · φ (s1 | tk)
...

. . .
...

φ (sk | t1) · · · φ (sk | tk)

∣∣∣∣∣∣∣
(since φ is a K-algebra homomorphism)

=

∣∣∣∣∣∣∣
〈s1 | t1〉 · · · 〈s1 | tk〉

...
. . .

...
〈sk | t1〉 · · · 〈sk | tk〉

∣∣∣∣∣∣∣(
since φ

(
sp | tq

)
=
〈
sp | tq

〉
for all p and q

)
.
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Applying the map ω to this identity, we find

ω (φ (s1s2 · · · sk | t1t2 · · · tk)) = ω

∣∣∣∣∣∣∣
〈s1 | t1〉 · · · 〈s1 | tk〉

...
. . .

...
〈sk | t1〉 · · · 〈sk | tk〉

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ω 〈s1 | t1〉 · · · ω 〈s1 | tk〉

...
. . .

...
ω 〈sk | t1〉 · · · ω 〈sk | tk〉

∣∣∣∣∣∣∣
(since ω is a K-algebra homomorphism)

=

∣∣∣∣∣∣∣∣∣∣∣∣
δ1,1 · · · δ1,k

...
. . .

...
δk,1 · · · δk,k︸ ︷︷ ︸

=Ik

∣∣∣∣∣∣∣∣∣∣∣∣
(by (12))

= |Ik| = 1.

This proves Lemma 5.5.

Lemma 5.6. Let [T, T′] be a standard (X ,U )-bitableau of shape (λ), where (λ) is
not longer than (d). Then,

φC
(
T, T′

) (
T | T′

)
6= 0. (13)

Proof of Lemma 5.6. Consider the K-algebra homomorphism ω : K [x, u, s, t] → K
defined in Lemma 5.5.

We have assumed that (λ) is not longer than (d). Thus, λ1 ≤ d. Hence, λr ≤ d for
all r ∈ {1, 2, 3, . . .}. Therefore, for each r ∈ {1, 2, 3, . . .}, we have λr ∈ {0, 1, . . . , d}
and thus

ω (φ (s1s2 · · · sλr | t1t2 · · · tλr)) = 1 (14)

(by Lemma 5.5, applied to k = λr).
Define two tableaux U and U′ as in the proof of Theorem 4.5 (i). Then, C (T, T′) (T | T′) =

(U | U′) (this was shown in the proof of Theorem 4.5 (i)). But from the definition
of U and U′, we obtain(

U | U′
)
= ∏

r≥1
(s1s2 · · · sλr | t1t2 · · · tλr) .

Applying the map φ to both sides of this equality, we obtain

φ
(
U | U′

)
= φ

(
∏
r≥1

(s1s2 · · · sλr | t1t2 · · · tλr)

)
= ∏

r≥1
φ (s1s2 · · · sλr | t1t2 · · · tλr)
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(since φ is a K-algebra homomorphism). Applying the map φ to the equality
C (T, T′) (T | T′) = (U | U′), we now find

φC
(
T, T′

) (
T | T′

)
= φ

(
U | U′

)
= ∏

r≥1
φ (s1s2 · · · sλr | t1t2 · · · tλr) .

Applying the map ω to both sides of this equality, we find

ω
(
φC
(
T, T′

) (
T | T′

))
= ω

(
∏
r≥1

φ (s1s2 · · · sλr | t1t2 · · · tλr)

)
= ∏

r≥1
ω (φ (s1s2 · · · sλr | t1t2 · · · tλr))︸ ︷︷ ︸

=1
(by (14))

(since ω is a K-algebra homomorphism)

= ∏
r≥1

1 = 1 6= 0.

Therefore, φC (T, T′) (T | T′) 6= 0. This proves Lemma 5.6.

Lemma 5.7. Let [T, T′] be a standard (X ,U )-bitableau of shape (λ), where (λ) is
longer than (d). Then,

φ
(
T | T′

)
= 0. (15)

Proof of Lemma 5.7. We have assumed that (λ) is longer than (d). Thus, λ1 > d.
Now, for each p ≥ 1 and q ∈

{
1, 2, . . . , λp

}
, let xi(p,q) be the (p, q)-th entry of the

tableau T, and let uj(p,q) be the (p, q)-th entry of the tableau T′. Then,(
T | T′

)
= ∏

r≥1

(
xi(r,1)xi(r,2) · · · xi(r,λr) | uj(r,1)uj(r,2) · · · uj(r,λr)

)
. (16)

But λ1 > d and thus φ
(

xi(1,1)xi(1,2) · · · xi(1,λ1) | uj(1,1)uj(1,2) · · · uj(1,λ1)

)
= 0 (by

Lemma 5.4, applied to l = λ1, ik = i (1, k) and jk = j (1, k)). Hence, the prod-
uct ∏

r≥1
φ
(

xi(r,1)xi(r,2) · · · xi(r,λr) | uj(r,1)uj(r,2) · · · uj(r,λr)

)
has at least one factor equal

to 0 (namely, the factor for r = 1), and thus equals 0 itself. In other words,

∏
r≥1

φ
(

xi(r,1)xi(r,2) · · · xi(r,λr) | uj(r,1)uj(r,2) · · · uj(r,λr)

)
= 0.

But applying the map φ to the equality (16), we obtain

φ
(
T | T′

)
= φ

(
∏
r≥1

(
xi(r,1)xi(r,2) · · · xi(r,λr) | uj(r,1)uj(r,2) · · · uj(r,λr)

))
= ∏

r≥1
φ
(

xi(r,1)xi(r,2) · · · xi(r,λr) | uj(r,1)uj(r,2) · · · uj(r,λr)

)
(since φ is a K-algebra homomorphism)

= 0.
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This proves Lemma 5.7.

With these tools in hand, we can begin the proof of the theorem.

Proof of Theorem 5.1. 148 Indeed149, consider an element M ∈ P (α, β) 150 in the
kernel of φ. Using Corollary 3.4151, write M as a linear combination of standard
(X ,U )-bideterminants152:

M = a
(
T | T′

)
+ N,

where (λ) is the shortest shape occurring in the expansion, and, of all the bideter-
minants of shape (λ) occurring in the expansion, (T | T′) is the one with the lexico-
graphically smallest column sequence153. Applying the Capelli operator C (T, T′),
and observing that, by Theorem 4.5, C (T, T′) N = 0, we obtain

C
(
T, T′

)
M = aC

(
T, T′

) (
T | T′

)
.

154 Applying φ and using the identity in Corollary 5.3155, we have

aφC
(
T, T′

) (
T | T′

)
= φC

(
T, T′

)
M = Ĉ

(
T, T′

)
φM.

But φM = 0; hence, C (T, T′) (T | T′) must be a bideterminant of shape strictly
longer than (d) 156. As C (T, T′) (T | T′) and (T | T′) have the same shape, we

148Correction: I have removed the first two paragraphs of this proof, since they were a distraction
from the proof. (To be more precise, the useful parts of these two paragraphs have been pre-
served in Lemmas 5.4, 5.5, 5.6, and 5.7. The two paragraphs I removed can be found in Remark
5.8.)

149Correction: Replaced “Finally” by “Indeed”.
150Correction: Replaced “M” by “M ∈ P (α, β)”.
151Correction: Replaced “the straightening formula” by “Corollary 3.4”.
152Correction: Replaced “bideterminants” by “(X ,U )-bideterminants”.
153Comment: ... and, of course, a is a nonzero element of K.
154Comment: Here is this argument in slightly more detail:

By the definition of (λ) and (T | T′), we know that N is a K-linear combination of bidetermi-
nants (V | V′) for standard (X ,U )-bitableaux [V, V′] which either have shape longer than (λ)
or have the same shape as (λ) but have a greater column sequence than [T, T′]. All such bide-
terminants (V | V′) satisfy C (T, T′) (V | V′) = 0 (indeed, in the former case, this follows from
Theorem 4.5 (ii), whereas in the latter case it follows from Theorem 4.5 (iii)). Hence, N (being a
K-linear combination of such bideterminants) must also satisfy C (T, T′) N = 0. Now, applying
the operator C (T, T′) to the equality M = a (T | T′) + N, we obtain

C
(
T, T′

)
M = C

(
T, T′

) (
a
(
T | T′

)
+ N

)
= aC

(
T, T′

) (
T | T′

)
+C

(
T, T′

)
N︸ ︷︷ ︸

=0

= aC
(
T, T′

) (
T | T′

)
,

qed.
155Correction: Replaced “the previous corollary” by “Corollary 5.3”.
156Comment: Here is why this holds:

Define two tableaux U and U′ as in the proof of Theorem 4.5 (i). Then, C (T, T′) (T | T′) =
(U | U′) (this was shown in the proof of Theorem 4.5 (i)). Thus, C (T, T′) (T | T′) is a bideter-
minant. It only remains to show that this bideterminant C (T, T′) (T | T′) has shape longer than
(d). In other words, it remains to prove that (λ) is longer than (d) (since this bideterminant has
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conclude that (λ) is strictly longer than (d). But we have chosen (λ) to be the
shortest shape occurring in the expansion of M. Therefore, M is a linear combi-
nation of standard (X ,U )-bideterminants157 of shape strictly longer than (d). This
concludes the proof of the theorem158.

Remark 5.8. For the sake of completeness, here are the first two paragraphs from the original proof
of Theorem 5.1 (which have been omitted from our above version of this proof)159:

The image under φ of an inner product
(

xi1 · · · xil | uj1 · · · ujl
)

is the determinant160

∣∣∣∣∣∣∣
〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
∣∣∣∣∣∣∣ .

This is the determinant of the matrix xi1,1 · · · xi1,d
...

. . .
...

xil ,1 · · · xil ,d

 ·
 uj1,1 · · · ujl ,1

...
. . .

...
uj1,d · · · ujl ,d

 .

shape (λ)).
Assume the contrary. Thus, (λ) is not longer than (d). Hence, (13) yields φC (T, T′) (T | T′) 6=

0.
But aφC (T, T′) (T | T′) = Ĉ (T, T′) φM︸︷︷︸

=0

= 0, so that a = 0 (since φC (T, T′) (T | T′) 6= 0). This

contradicts a 6= 0. This contradiction shows that our assumption was false. Hence, we have
shown that (λ) is longer than (d).

157Correction: Replaced “bideterminants” by “(X ,U )-bideterminants”.
158Comment: Let me explain why this concludes the proof of Theorem 5.1:

We have just shown that each M ∈ P (α, β) lying in the kernel of φ must be a linear com-
bination of standard (X ,U )-bideterminants of shape strictly longer than (d). In other words,
each M in the kernel of the Pascal homomorphism must be a linear combination of standard
(X ,U )-bideterminants of shape strictly longer than (d).

On the other hand, each standard (X ,U )-bideterminant of shape strictly longer than (d) lies
in the kernel of φ (by (15)), thus in the kernel of the Pascal homomorphism. Hence, each linear
combination of standard (X ,U )-bideterminants of shape strictly longer than (d) lies in the kernel
of the Pascal homomorphism.

Thus, we have shown the following two facts:

• Each M in the kernel of the Pascal homomorphism must be a linear combination of standard
(X ,U )-bideterminants of shape strictly longer than (d);

• Each linear combination of standard (X ,U )-bideterminants of shape strictly longer than (d)
lies in the kernel of the Pascal homomorphism.

Combining these two facts, we conclude that the elements of the kernel of the Pascal ho-
momorphism are precisely the linear combinations of standard (X ,U )-bideterminants of shape
strictly longer than (d). This proves Theorem 5.1.

159As already mentioned, they are not necessary to the proof.
160Correction: Replaced “xj1” by “uj1” in this determinant.
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161 As the variables xir, ujr are algebraically independent, the above matrix is of maximum possible
rank162; that is to say, its determinant is zero iff l > d.

Now, consider a bideterminant (T | T′). It is a product of inner products of lengths λ1, . . . , λl .
As P̂ 163 (being a subring of K [x, u, s, t]) is an integral domain, φ (T | T′) is zero iff one of its
constituent inner products has zero image. This happens iff λ1 > d, or (λ) is strictly longer than
(d).

161Comment: This is because
〈

xi1 | uj1
〉
· · ·

〈
xi1 | ujl

〉
...

. . .
...〈

xil | uj1
〉
· · ·

〈
xil | ujl

〉
 =

 xi1,1 · · · xi1,d
...

. . .
...

xil ,1 · · · xil ,d

 ·
 uj1,1 · · · ujl ,1

...
. . .

...
uj1,d · · · ujl ,d

 .

162Comment: “Maximum possible rank” here means “rank min {l, d}” (where “rank” means the rank
over the quotient field of K [x, u, s, t]). Of course, the claim that this matrix has rank min {l, d}
is only made under the tacit assumption that the indices i1, . . . , il are distinct and the indices
j1, . . . , jl are distinct.

Let me explain why this claim holds. We must prove that the matrix xi1,1 · · · xi1,d
...

. . .
...

xil ,1 · · · xil ,d

 ·
 uj1,1 · · · ujl ,1

...
. . .

...
uj1,d · · · ujl ,d


has rank min {l, d}. Indeed, it clearly has rank ≤ min {l, d} (since it is the product of an l × d-
matrix with a d× l-matrix). Thus, it remains to show that it has rank ≥ min {l, d}. To achieve
this, it will suffice to prove that it has a nonvanishing minor of size min {l, d}. We shall distin-
guish between the cases l ≥ d and l < d:

• If l ≥ d, then the northwesternmost d× d-minor of our matrix is

det


 xi1,1 · · · xi1,d

...
. . .

...
xid ,1 · · · xid ,d

 ·
 uj1,1 · · · ujd ,1

...
. . .

...
uj1,d · · · ujd ,d


 ,

which is nonzero (because if we substitute δs,t for each variable xis ,t and for each variable
ujs ,t, then this d× d-minor becomes det (Id) = 1); this is thus a nonvanishing minor of size
d = min {l, d} (since l ≥ d).

• If l < d, then the l × l-minor of our matrix is

det


 xi1,1 · · · xi1,d

...
. . .

...
xil ,1 · · · xil ,d

 ·
 uj1,1 · · · ujl ,1

...
. . .

...
uj1,d · · · ujl ,d


 ,

which is nonzero (because if we substitute δs,t for each variable xis ,t and for each variable
ujs ,t, then this l × l-minor becomes det (Il) = 1); this is thus a nonvanishing minor of size
l = min {l, d} (since l < d).

163Correction: Replaced “P” by “P̂”.
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5.2. The First Fundamental Theorem: statement

Consider the algebra P, defined on the alphabets X = {x1, . . . , xn} and U =
{u1, . . . , ud}. 164 In P, all the bideterminants of shape strictly longer than (d)
are identically 0 165; hence, by Theorem 5.1, the map166 φ is an injection. This
allows us to transfer questions about forms to questions about elements of P.

(Recall that P is the K-algebra of polynomials in the indeterminates
(
xi | uj

)
with

1 ≤ i ≤ n and 1 ≤ j ≤ d over K.) 167

Let L be a linear transformation from the vector space Vd to itself.168 If F is a
form on Vd, then169 L acts on F by

LF (x1, . . . , xm) = F (Lx1, . . . , Lxm) .

A form F 170 is invariant if, for all invertible linear transformations L, there exists
a scalar a (L) such that LF = a (L) F.

Transferring to the algebra P, a form F (x1, . . . , xn) is an element of P, that is,
a polynomial in the variables

(
xi | uj

)
with 1 ≤ i ≤ n and 1 ≤ j ≤ d. 171 A

d× d-matrix172 L =
(
lkj
)

1≤j,k≤d ∈ Kd×d acts upon P as an algebra homomorphism
as follows:

L
(
xi | uj

)
= ∑

1≤k≤d
ljk (xi | uk) , 1 ≤ i ≤ n, 1 ≤ j ≤ d.

A form F is invariant if, for all invertible d × d-matrices L ∈ Kd×d, there exists a
scalar a (L) such that LF = a (L) F.

164Comment: In other words, from here on, we return to the original version of the K-algebra P,
which does not include the indeterminates from the alphabets S and T ; we furthermore set
d = k.

From here on, the letter k shall no longer stand for the size of the alphabet U (as it did in
“U = {u1, . . . , uk}”). Indeed, we do not need it in this role any more, since the letter d serves the
same purpose (because U = {u1, . . . , ud}). Thus, the letter k is now free for any other use.

165Comment: This is because if (T | T′) is a bideterminant of shape strictly longer than (d), then the
first row of T′ has length > d and thus contains two equal letters.

166Correction: Added the words “the map”.
167Correction: Added the preceding sentence.
168Comment: This paragraph, again, just serves the purpose of providing motivation.
169Correction: Added the word “then”.
170Correction: Replaced “form” by “form F”.
171Correction: I have simplified the preceding sentence, removing some confusing generality. I re-

introduce said generality later on where it becomes necessary (in the second proof of Theorem
5.9).

172Correction: Here and in the following, I have replaced the word “transformation” (or “linear
transformation”) by “d× d-matrix L ∈ Kd×d”. Indeed, the algebra P is not defined in a basis-free
fashion, so the use of transformations instead of matrices does not serve any useful purpose (but
it does create an extra level of indirection).

Also, in this specific place, I have replaced “An invertible linear transformation L, given by
an invertible d × d square matrix

(
ljk

)
” by “A a d × d-matrix L =

(
lkj

)
1≤j,k≤d

∈ Kd×d”. (In

particular, I have replaced the matrix
(

ljk

)
by
(

lkj

)
in order for the action to be left-associative.)
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An example of an invariant form is the inner product
(
xi1 · · · xid | u1 · · · ud

) 173;

it is the determinant
∣∣∣(xij | uk

)∣∣∣
1≤j,k≤d

, and in this case a (L) = det
(
ljk
) 174.

Similarly, the bideterminants of shape (d, . . . , d) are invariant forms175; these bide-

173Correction: Replaced “
(

xi1 · · · did | u1 · · · ud
)
” by “

(
xi1 · · · xid | u1 · · · ud

)
”.

174Comment: Let me show why this is true:
Let F =

(
xi1 · · · xid | u1 · · · ud

)
for some choice of indices i1, . . . , id ∈ {1, 2, . . . , n}. Let L =(

lkj

)
1≤j,k≤d

be any d× d-matrix. (It needs not be invertible.) Set a (L) = det
(

ljk

)
. We must then

prove that LF = a (L) F.
From L =

(
lkj

)
1≤j,k≤d

, we obtain LT =
(

ljk

)
1≤j,k≤d

, so that det
(

LT) = det
(

ljk

)
1≤j,k≤d

=

det
(

ljk

)
. Hence, det

(
ljk

)
= det

(
LT) = det L = det

((
lkj

)
1≤j,k≤d

)
(since L =

(
lkj

)
1≤j,k≤d

).

We have F =
(

xi1 · · · xid | u1 · · · ud
)
=
∣∣∣(xij | uk

)∣∣∣
1≤j,k≤d

and thus

LF = L
∣∣∣(xij | uk

)∣∣∣
1≤j,k≤d

=
∣∣∣L (xij | uk

)∣∣∣
1≤j,k≤d

(since L acts on P by an algebra homomorphism)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
L
(

xij | ur

)
︸ ︷︷ ︸

= ∑
1≤k≤d

lrk

(
xij
|uk

)
(by the definition of the action of L)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1≤j,r≤d

=

∣∣∣∣∣ ∑
1≤k≤d

lrk

(
xij | uk

)∣∣∣∣∣
1≤j,r≤d

= det


(

∑
1≤k≤d

lrk

(
xij | uk

))
1≤j,r≤d︸ ︷︷ ︸

=
((

xij
|uk

))
1≤j,k≤d

·(lkj)1≤j,k≤d


= det

(((
xij | uk

))
1≤j,k≤d

·
(

lkj

)
1≤j,k≤d

)

= det
((

xij | uk

)
1≤j,k≤d

)
︸ ︷︷ ︸

=
∣∣∣(xij

|uk

)∣∣∣
1≤j,k≤d

=F

·det
((

lkj

)
1≤j,k≤d

)
︸ ︷︷ ︸

=det(ljk)=a(L)

= F · a (L) = a (L) F,

qed.
175Comment: This holds for the following reason: Let [T, T′] be a bitableau of shape (d, . . . , d). Then,

we claim that the bideterminant (T | T′) is an invariant form.
Proof of the claim: We are in one of the following two cases:

Case 1: Each row of T′ consists of the d entries u1, . . . , ud (possibly reordered).
Case 2: At least one row of T′ does not consist of the d entries u1, . . . , ud (possibly
reordered).

Let us first consider Case 1. In this case, each row of T′ consists of the d entries u1, . . . , ud
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terminants are called rectangular. For a rectangular bideterminant with g rows,
a (L) =

(
det

(
ljk
))g. Note that since any bideterminant of shape longer than (d) is

zero, a rectangular bideterminant is a linear combination of standard rectangular
bideterminants (with the same number of rows)176.

These examples are in fact paradigmatic.177

Theorem 5.9 (the first fundamental theorem of invariant theory). Over an infi-
nite field K, a form in P is invariant iff it is a linear combination of standard
rectangular bideterminants.

Note that the “if” part of Theorem 5.9 is clearly true (since rectangular bidetermi-
nants are always invariant). Thus, only the “only if” part remains to be proven.178

5.3. The First Fundamental Theorem: first proof

Before we prove this theorem in two different ways, let us see how certain matrices
act on inner products:179

Lemma 5.10. Let j ∈ {2, 3, . . . , d}. Let L be the the d × d-matrix
(
lqp
)

1≤p,q≤d,
where

lj−1,j = 1;

lpp = 1 for all p;
lqp = 0 for all p, q satisfying p 6= q and (p, q) 6= (j, j− 1) .

Thus, L acts upon P as an algebra homomorphism.

(possibly reordered). Hence, upon reordering the entries in the rows of T′, we can ensure that
each row of T′ has the form u1 · · · ud. Thus, the bideterminant (T | T′) is a product of inner
products of the form of the form

(
xi1 · · · xid | u1 · · · ud

)
. Since all inner products of the latter

form are invariant forms, we therefore conclude that the bideterminant (T | T′) is an invariant
form as well (since any product of invariant forms must be an invariant form). Thus, the claim
is proven in Case 1.

Let us now consider Case 2. In this case, at least one row of T′ does not consist of the d entries
u1, . . . , ud (possibly reordered). Hence, this row must have two equal entries (because it has d
entries chosen from the set U = {u1, . . . , ud}, and thus it either consists of the d entries u1, . . . , ud
or has two equal entries). Consequently, the inner product in (T | T′) corresponding to this row
is 0. Therefore, the bideterminant (T | T′) is 0. Thus, of course, (T | T′) is an invariant form
(since 0 is an invariant form). Hence, the claim is proven in Case 2.

We thus have proven the claim in both possible cases.
176Comment: This is a consequence of Theorem 3.2. For a more detailed proof, see Lemma 5.15

further below.
177Correction: Replaced “has” by “have” in the following theorem. Also, removed the “all of which

have the same shape (d, . . . , d)” part, since it only holds for homogeneous invariants.
178Correction: Added the preceding two sentences.
179Correction: I have added this sentence, the next lemma and its proof, in order to make the subse-

quent first proof of Theorem 5.9 clearer.



Invariant Theory, Young Bitableaux, and Combinatorics page 52

Let p ∈N. Let xi1 , . . . , xip be any p letters in X , and let uj1 , . . . , ujp be p distinct
letters in U .

(a) If no g ∈ {1, 2, . . . , p} satisfies jg = j− 1, then

L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
.

(b) If some g ∈ {1, 2, . . . , p} satisfies jg = j− 1, then this g satisfies

L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
+
(

xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)
.

(c) If some g ∈ {1, 2, . . . , p} satisfies jg = j− 1, and if some h ∈ {1, 2, . . . , p}
satisfies jh = j, then

L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
.

Proof of Lemma 5.10. The action of L on P satisfies the equality

L
(
xi | uj−1

)
=
(
xi | uj−1

)
+
(
xi | uj

)
(17)

for all i ∈ {1, 2, . . . , n}, as well as

L (xi | uk) = (xi | uk) (18)

for all i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , d} satisfying k 6= j− 1.
Applying the action of L to the equality (1), we obtain

L
(

xi1 · · · xip | uj1 · · · ujp

)

= L

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣ (19)

(since L acts upon P as an algebra homomorphism).
(b) Assume that some g ∈ {1, 2, . . . , p} satisfies jg = j− 1. Consider this g.
The equality (17) rewrites as

L
(

xi | ujg

)
=
(

xi | ujg

)
+
(
xi | uj

)
(20)
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(since j− 1 = jg). Furthermore, every h ∈ {1, 2, . . . , p} satisfying h 6= g satisfies

L
(
xi | ujh

)
=
(
xi | ujh

)
(21)

180.
Applying the equality (1) to

(
j1, . . . , jg−1, j, jg+1, . . . , jp

)
instead of

(
j1, . . . , jp

)
, we

obtain (
xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)

=

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | uj

)
· · ·

(
xi1 | ujp

)
...

. . .
...

. . .
...(

xip | uj1

)
· · ·

(
xip | uj

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣ , (22)

where the matrix on the right hand side is to be understood as the p × p-matrix

whose (s, t)-th entry is

{(
xis | ujt

)
, if t 6= g;(

xis | uj
)

, if t = g
.

But the equalities (20) and (21) show that the matrix


L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)


differs from the matrix


(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
 only in its g-th column,

which is


(

xi1 | ujg

)
+
(
xi1 | uj

)
...(

xip | ujg

)
+
(

xip | uj

)
. Since the determinant of a matrix is multilin-

ear in its columns (in particular, linear in its g-th column), we thus conclude that

the determinant of the matrix


L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
 can be expressed

180Proof: Let h ∈ {1, 2, . . . , p} be such that h 6= g. The numbers j1, . . . , jp are distinct (since uj1 , . . . , ujp

are distinct letters). Thus, from h 6= g, we obtain jh 6= jg = j− 1. Hence, (18) (applied to k = jh)
shows that L

(
xi | ujh

)
=
(

xi | ujh
)
. This proves (21).
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as follows:∣∣∣∣∣∣∣∣∣
L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=
(

xi1
···xip |uj1

···ujp

)
(by (1))

+

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | uj

)
· · ·

(
xi1 | ujp

)
...

. . .
...

. . .
...(

xip | uj1

)
· · ·

(
xip | uj

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=
(

xi1
···xip |uj1

···ujg−1
ujujg+1

···ujp

)
(by (22))(

where the second matrix is the same as the
matrix on the right hand side of (22)

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
+
(

xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)
.

Hence, (19) becomes

L
(

xi1 · · · xip | uj1 · · · ujp

)

=

∣∣∣∣∣∣∣∣∣
L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣

=
(

xi1 · · · xip | uj1 · · · ujp

)
+
(

xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)
.

This proves Lemma 5.10 (b).
(c) Assume that some g ∈ {1, 2, . . . , p} satisfies jg = j− 1. Consider this g.
Assume that some h ∈ {1, 2, . . . , p} satisfies jh = j. Consider this h.
We have jg = j − 1 6= j = jh and thus g 6= h. Hence, h 6= g; this shows

that jh is one of the numbers j1, . . . , jg−1, jg+1, . . . , jp. Hence, two of the num-
bers j1, . . . , jg−1, j, jg+1, . . . , jp are equal (namely, jh and j). Thus, two of the letters
uj1 , . . . , ujg−1 , uj, ujg+1 , . . . , ujp are equal. Therefore, the inner product(

xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)
= 0

(since the inner product is antisymmetric in the u’s). Now, Lemma 5.10 (b) yields

L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
+
(

xi1 · · · xip | uj1 · · · ujg−1ujujg+1 · · · ujp

)
︸ ︷︷ ︸

=0

=
(

xi1 · · · xip | uj1 · · · ujp

)
.
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This proves Lemma 5.10 (c).
(a) Assume that no g ∈ {1, 2, . . . , p} satisfies jg = j − 1. Then, every h ∈
{1, 2, . . . , p} satisfies

L
(
xi | ujh

)
=
(
xi | ujh

)
(23)

181. Thus,
L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
 =


(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
 . (24)

Now, (19) becomes

L
(

xi1 · · · xip | uj1 · · · ujp

)

=

∣∣∣∣∣∣∣∣∣
L
(
xi1 | uj1

)
· · · L

(
xi1 | ujp

)
...

. . .
...

L
(

xip | uj1

)
· · · L

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
(
xi1 | uj1

)
· · ·

(
xi1 | ujp

)
...

. . .
...(

xip | uj1

)
· · ·

(
xip | ujp

)
∣∣∣∣∣∣∣∣∣ (by (24))

=
(

xi1 · · · xip | uj1 · · · ujp

)
(by (1)) .

This proves Lemma 5.10 (a).

A further lemma will help us analyze bitableaux:182

Lemma 5.11. Let T be a standard tableau with values in the alphabet U . Let
j > 1 be an integer. Let g be a positive integer.

An entry uj−1 in T shall be called malleable if the letter uj does not appear in
the same row of T as this entry.

Let T̃ be the tableau obtained from T by replacing each malleable entry uj−1
in the g-th column of T by uj.

Then, the tableau T̃ is again standard.

181Proof: Let h ∈ {1, 2, . . . , p}. Recall that no g ∈ {1, 2, . . . , p} satisfies jg = j− 1. In other words,
each g ∈ {1, 2, . . . , p} satisfies jg 6= j− 1. Applying this to g = h, we obtain jh 6= j− 1. Hence,
(18) (applied to k = jh) shows that L

(
xi | ujh

)
=
(
xi | ujh

)
. This proves (23).

182Correction: I have added this sentence, the next lemma and its proof, in order to make the subse-
quent first proof of Theorem 5.9 clearer.
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Proof of Lemma 5.11. 183 Recall that the entries of T and T̃ belong to the totally or-
dered set U .

The tableau T is standard; in other words, the entries in each row of T are in-
creasing from left to right, and the entries in each column of T are nondecreasing
downward. We must prove the same for the tableau T̃.

Let λ1, λ2, λ3, . . . be the lengths of the rows of T (from top to bottom), and let
λ′1, λ′2, λ′3, . . . be the lengths of the columns of T (from left to right). Thus, of course,
λ1, λ2, λ3, . . . are also the lengths of the rows of T̃, whereas λ′1, λ′2, λ′3, . . . are also
the lengths of the columns of T̃.

Recall that the tableau T̃ is obtained from T by replacing each malleable entry
uj−1 in the g-th column of T by uj. Thus, each entry of T̃ either equals the corre-
sponding entry of T, or is larger than it (because the only entries that were replaced
were entries uj−1, and these were replaced by the larger letter uj). In other words,
each cell (p, q) of T satisfies

T̃ (p, q) ≥ T (p, q) . (25)

Recall again that the tableau T̃ is obtained from T by replacing each malleable
entry uj−1 in the g-th column of T by uj. Thus, each malleable entry uj−1 in the
g-th column of T was replaced by uj. In other words, if some cell (p, q) in the g-th
column of T contains a malleable entry uj−1, then the corresponding entry of T̃ is
uj. In other words, if some cell (p, q) in the g-th column of T contains a malleable
entry uj−1, then

T̃ (p, q) = uj. (26)

(Of course, under this condition, we must have q = g; but we nevertheless chose to
call the cell (p, q) and not (p, g) just for the sake of uniform notations.)

Recall again that the tableau T̃ is obtained from T by replacing each malleable
entry uj−1 in the g-th column of T by uj. Thus, each entry of T has been preserved
unchanged in T̃ unless it was a malleable entry uj−1 in the g-th column of T. In
other words, if (p, q) is a cell of T, then

T̃ (p, q) = T (p, q) , (27)

unless the entry of T in cell (p, q) is a malleable entry uj−1 in the g-th column of T.
Let us make the following simple observation:

Observation 0: Let (p, q) be a cell of T satisfying T (p, q) 6= T̃ (p, q). Then:

• We have q = g and T (p, q) = uj−1 and T̃ (p, q) = uj.

• Furthermore, the letter uj does not appear in the p-th row of T.

183This proof is here purely for the sake of completeness. It is a long-winded writeup of a fairly
straightforward combinatorial argument, which you will probably have found faster than you
can read my proof.
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[Proof of Observation 0: We have T (p, q) 6= T̃ (p, q). In other words, T̃ (p, q) 6=
T (p, q).

If the entry of T in cell (p, q) was not a malleable entry uj−1 in the g-th column
of T, then we would have T̃ (p, q) = T (p, q) (by (27)); but this would contradict
T̃ (p, q) 6= T (p, q). Hence, the entry of T in cell (p, q) is a malleable entry uj−1 in
the g-th column of T.

Thus, in particular, the entry of T in cell (p, q) lies in the g-th column of T. In
other words, cell (p, q) lies in the g-th column. In other words, q = g.

Moreover, the entry of T in cell (p, q) is a malleable entry uj−1 in the g-th column
of T. In particular, this entry is uj−1. In other words, T (p, q) = uj−1.

The cell (p, q) in the g-th column of T contains a malleable entry uj−1 (since the
entry of T in cell (p, q) is a malleable entry uj−1 in the g-th column of T). Thus,
(26) shows that T̃ (p, q) = uj.

Recall that the entry of T in cell (p, q) is a malleable entry uj−1 in the g-th column
of T. In particular, this entry is malleable. In other words, the letter uj does not
appear in the same row of T as this entry (by the definition of “malleable”). In
other words, the letter uj does not appear in the p-th row of T (since clearly, the
row of T that contains the entry in cell (p, q) must be the p-th row of T). Thus, the
proof of Observation 0 is complete.]

We know that the entries of each row of T are increasing from left to right. In
other words, each positive integer p satisfies

T (p, 1) < T (p, 2) < · · · < T
(

p, λp
)

. (28)

We know that the entries of each column of T are nondecreasing downward. In
other words, each positive integer q satisfies

T (1, q) ≤ T (2, q) ≤ · · · ≤ T
(

λ′q, q
)

. (29)

We now make the following two claims:

Claim 1: Each positive integer p satisfies

T̃ (p, 1) < T̃ (p, 2) < · · · < T̃
(

p, λp
)

.

Claim 2: Each positive integer q satisfies

T̃ (1, q) ≤ T̃ (2, q) ≤ · · · ≤ T̃
(

λ′q, q
)

.

[Proof of Claim 1: Let p be a positive integer. Let q ∈
{

1, 2, . . . , λp − 1
}

. We are
going to show that T̃ (p, q) < T̃ (p, q + 1).

Indeed, assume the contrary. Thus, T̃ (p, q) ≥ T̃ (p, q + 1).
However, (p, q + 1) is also a cell of T (since q ∈

{
1, 2, . . . , λp − 1

}
). Thus, (25)

(applied to (p, q + 1) instead of (p, q)) yields T̃ (p, q + 1) ≥ T (p, q + 1). Hence,
T̃ (p, q) ≥ T̃ (p, q + 1) ≥ T (p, q + 1).
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But (28) shows that T (p, q) < T (p, q + 1) ≤ T̃ (p, q) (since T̃ (p, q) ≥ T (p, q + 1)).
Hence, T (p, q) 6= T̃ (p, q). Thus, Observation 0 shows that:

• We have q = g and T (p, q) = uj−1 and T̃ (p, q) = uj.

• Furthermore, the letter uj does not appear in the p-th row of T.

From T (p, q) = uj−1, we obtain uj−1 = T (p, q) < T (p, q + 1). Therefore,
T (p, q + 1) > uj−1, so that T (p, q + 1) = uh for some h ∈ {j, j + 1, . . . , d}. Con-
sider this h. We have h ≥ j (since h ∈ {j, j + 1, . . . , d}). But we have T̃ (p, q) = uj.
Hence, uj = T̃ (p, q) ≥ T (p, q + 1) = uh. In other words, j ≥ h. Combined with
h ≥ j, this yields h = j. Hence, uh = uj. Thus, T (p, q + 1) = uh = uj. Thus, the
letter uj appears in the p-th row of T (namely, in cell (p, q + 1)). This contradicts
the fact that the letter uj does not appear in the p-th row of T.

This contradiction shows that our assumption was false. Hence, T̃ (p, q) <

T̃ (p, q + 1) is proven.
Now, forget that we fixed q. We thus have shown that T̃ (p, q) < T̃ (p, q + 1) for

each q ∈
{

1, 2, . . . , λp − 1
}

. In other words, T̃ (p, 1) < T̃ (p, 2) < · · · < T̃
(

p, λp
)
.

This proves Claim 1.]
[Proof of Claim 2: Let q be a positive integer. Let p ∈

{
1, 2, . . . , λ′q − 1

}
. We are

going to show that T̃ (p, q) ≤ T̃ (p + 1, q).
Indeed, assume the contrary. Thus, T̃ (p, q) > T̃ (p + 1, q).
However, (p + 1, q) is also a cell of T (since p ∈

{
1, 2, . . . , λ′q − 1

}
). Thus, (25)

(applied to (p + 1, q) instead of (p, q)) yields T̃ (p + 1, q) ≥ T (p + 1, q). Hence,
T̃ (p, q) > T̃ (p + 1, q) ≥ T (p + 1, q).

But (29) shows that T (p, q) ≤ T (p + 1, q) < T̃ (p, q) (since T̃ (p, q) > T (p + 1, q)).
Hence, T (p, q) 6= T̃ (p, q). Thus, Observation 0 shows that:

• We have q = g and T (p, q) = uj−1 and T̃ (p, q) = uj.

• Furthermore, the letter uj does not appear in the p-th row of T.

From T (p, q) = uj−1, we obtain uj−1 = T (p, q) ≤ T (p + 1, q). Therefore,
T (p + 1, q) ≥ uj−1, so that T (p + 1, q) = uh for some h ∈ {j− 1, j, . . . , d}. Con-
sider this h. We have h ≥ j− 1 (since h ∈ {j− 1, j, . . . , d}). But uh = T (p + 1, q) <
T̃ (p, q) = uj. In other words, h < j. Hence, h ≤ j − 1. Combining this with
h ≥ j − 1, we obtain h = j − 1. Now, T (p + 1, q) = uh = uj−1 (since h = j − 1).
Thus, there is an entry uj−1 in cell (p + 1, q) of T.

The letter uj does not appear in the (p + 1)-st row of T 184. In other words, the
letter uj does not appear in the same row of T as the entry of T in cell (p + 1, q).

184Proof. Assume the contrary. Thus, the letter uj appears in the (p + 1)-st row of T. In other words,
there exists an r ∈

{
1, 2, . . . , λp+1

}
such that T (p + 1, r) = uj. Consider this r.

Applying (28) to p + 1 instead of p, we obtain T (p + 1, 1) < T (p + 1, 2) < · · · <



Invariant Theory, Young Bitableaux, and Combinatorics page 59

Hence, the entry uj−1 in cell (p + 1, q) of T has the property that the letter uj does
not appear in the same row of T as this entry. In other words, this entry uj−1 is
malleable (by the definition of “malleable”).

Also, (p + 1, q) is a cell in the g-th column of T (since q = g). Hence, (p + 1, q)
is a cell in the g-th column of T containing a malleable entry uj−1 (since the entry
uj−1 in cell (p + 1, q) of T is malleable). Thus, (26) (applied to (p + 1, q) instead of
(p, q)) yields T̃ (p + 1, q) = uj. Now, recall that T̃ (p, q) = uj; hence, uj = T̃ (p, q) >
T̃ (p + 1, q) = uj. This is clearly absurd.

This contradiction shows that our assumption was false. Hence, T̃ (p, q) ≤
T̃ (p + 1, q) is proven.

Now, forget that we fixed p. We thus have shown that T̃ (p, q) ≤ T̃ (p + 1, q) for
each p ∈

{
1, 2, . . . , λ′q − 1

}
. In other words, T̃ (1, q) ≤ T̃ (2, q) ≤ · · · ≤ T̃

(
λ′q, q

)
.

This proves Claim 2.]
Now, consider the tableau T̃. The entries in each row of T̃ are increasing from

left to right (by Claim 1), and the entries in each column of T̃ are nondecreasing
downward (by Claim 2). In other words, the tableau T̃ is standard. This proves
Lemma 5.11.

We shall say that a standard tableau with entries from the alphabet U is rectan-
gular if and only if it has shape (d, . . . , d) (for some number of entries d, possibly
zero). Notice that such a rectangular tableau must necessarily look like this:

u1 u2 · · · ud
...

...
. . .

...
u1 u2 · · · ud

(because each of its rows has length d and is strictly increasing, whence it has the
form u1u2 · · · ud). Notice also that a bideterminant (T | T′) is rectangular if and
only if the tableau T′ is rectangular.185

T
(

p + 1, λp+1
)
. Hence, if we had r ≤ q, then we would have T (p + 1, r) ≤ T (p + 1, q) = uj−1,

which would contradict T (p + 1, r) = uj > uj−1. Thus, we cannot have r ≤ q. Hence, we have
r > q. In other words, q < r.

Thus, the cell (p, r) lies “between” the cells (p, q) and (p + 1, r) (in the sense that there is
a shortest northwest-to-southeast lattice path from (p, q) to (p + 1, r) passing through (p, r)).
Thus, the tableau T must have a cell (p, r) (since T has a cell (p, q) and a cell (p + 1, r)). Now,
from (28), we obtain T (p, q) < T (p, r) (since q < r). Hence, T (p, r) > T (p, q) = uj−1.

But (29) (applied to r instead of q) yields T (1, r) ≤ T (2, r) ≤ · · · ≤ T (λ′r, r). Hence, T (p, r) ≤
T (p + 1, r) = uj. In other words, T (p, r) = ui for some i ∈ {1, 2, . . . , j}. Consider this i.

But ui = T (p, r) > uj−1, so that i > j− 1. In other words, i ≥ j. Combining this with i ≤ j
(since i ∈ {1, 2, . . . , j}), we obtain i = j. Hence, T (p, r) = ui = uj (since i = j). Hence, the letter
uj appears in the p-th row of T (namely, in cell (p, r)). This contradicts the fact that the letter uj
does not appear in the p-th row of T. This contradiction shows that our assumption was false,
qed.

185Correction: I have added this paragraph in order to clarify what the word “rectangular” means
when it is applied to a single tableau (as it is in the following proof).
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First proof of Theorem 5.9. Suppose F is invariant. WLOG assume that F 6= 0 (other-
wise, everything is clear).186 Using the straightening formula, we can express F as
a linear combination of standard bideterminants:

F = ∑
s

αs
(
Ts | T′s

)
, (30)

where the [Ts, T′s] are distinct standard bitableaux and where the αs are nonzero
scalars for all s 187. Our goal is to prove that all tableaux T′s appearing in (30) are
rectangular.188

Assume the contrary.189 We shall probe F with appropriate d× d-matrices.
Consider first the d× d-matrix L ∈ Kd×d defined by

L
(
xi | uj

)
= c

(
xi | uj

)
, (31)

L (xi | uk) = (xi | uk) , for k 6= j, (32)

where j is a fixed element of {1, 2, . . . , d} and190 where c is a nonzero scalar191. If
b(s)j is the number of occurrences of uj in T′s, then

L
(
Ts | T′s

)
= cb(s)j

(
Ts | T′s

)
and therefore192

LF = ∑
s

αsc
b(s)j
(
Ts | T′s

)
. (33)

As F is invariant, we also have

LF = a (L) F = ∑
s

αsa (L)
(
Ts | T′s

)
. (34)

But the expansion into standard bideterminants is unique. Hence, comparing (33)
with (34), we obtain193

αsc
b(s)j = αsa (L) for all s, (35)

186Correction: Added this sentence.
187Correction: Added “where the [Ts, T′s ] are distinct standard bitableaux and where the αs are

nonzero scalars for all s” (this later becomes important).
188Correction: Added this sequence.
189Correction: Added this sequence.
190Correction: Added “where j is a fixed element of {1, 2, . . . , d} and”.
191Comment: Here is a more precise way to say this: Fix a j ∈ {1, 2, . . . , d} and a nonzero scalar c.

Let L be the d× d-matrix
(
lqp
)

1≤p,q≤d ∈ Kd×d, where

ljj = c;

lkk = 1 for k 6= j;
lqp = 0 for p 6= q.

Clearly, this d× d-matrix L is invertible (since it is a diagonal matrix with nonzero entries on the
diagonal). It is now straightforward to see that this L satisfies (31) and (32).

192Correction: Added the word “therefore”.
193Correction: Added this sequence for clarity.
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and therefore
cb(s)j = a (L) for all s (36)

(since the αs are nonzero). Hence, we must have, for all s and t,

cb(s)j = cb(t)j = a (L) .

This equality holds for all the nonzero194 scalars c in the infinite field K 195.
Therefore,

b(s)j = b(t)j for all s and t (37)

196. We shall write bj for the common value of the integers b(s)j . Hence, each tableau
T′s contains the letter uj exactly bj times.197

Now, fix two distinct elements j and k of {1, 2, . . . , d}, and198 let L be the d× d-
matrix in Kd×d defined by

L
(
xi | uj

)
= (xi | uk) , (38)

L (xi | uk) =
(
xi | uj

)
, (39)

L
(
xi | up

)
=
(
xi | up

)
, for p 6= j and p 6= k (40)

194Correction: Added the word “nonzero”.
195Correction: Replaced “k” by “K”.
196Comment: Here is this argument in more detail:

Comparing (33) with (34), we obtain

∑
s

αscb(s)j
(
Ts | T′s

)
= ∑

s
αsa (L)

(
Ts | T′s

)
.

Since the standard bideterminants (Ts | T′s) are K-linearly independent (by Theorem 4.6, since
the [Ts, T′s ] are distinct standard bitableaux), this shows that

αscb(s)j = αsa (L) for each s.

We can divide this equality by αs (since αs is nonzero), and thus obtain

cb(s)j = a (L) for each s.

Hence, cb(s)j︸︷︷︸
=a(L)

− cb(t)j︸︷︷︸
=a(L)

= a (L)− a (L) = 0 for any s and t.

Now, let s and t be arbitrary indices. Then, we have just shown that cb(s)j − cb(t)j = 0. We have

proven this for every nonzero scalar c ∈ K. Thus, cb(s)j − cb(t)j = 0 holds for infinitely many values
of c ∈ K (since there are infinitely many nonzero scalars c ∈ K).

Now, consider the polynomial Tb(s)j − Tb(t)j ∈ K [T]. This polynomial has infinitely many roots

in K (since cb(s)j − cb(t)j = 0 holds for infinitely many values of c ∈ K), and thus must be identically
zero. Therefore, b(s)j = b(t)j , qed.

197Correction: Added this sentence.
198Correction: Added “fix two distinct elements j and k of {1, 2, . . . , d}, and”.
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199. Each of the bideterminants L (Ts | T′s) contains200 the letter uk exactly201 bj

times. As the content of a bideterminant is preserved under straightening202,
LF is therefore203 a linear combination of standard bideterminants each contain-
ing the letter uk exactly204 bj times. But F is invariant, and therefore205 LF =

∑
s

αsa (L) (Ts | T′s), where each of the bideterminants in this expansion contains206

the letter uk exactly207 bk times. Applying the basis theorem208, we conclude that
bj = bk

209. We shall denote by b the common value of the integers bj. Thus,

each tableau T′s contains the letter uj exactly b times (41)

210.
Since each letter uj is repeated b times, the minimum number of rows in T′s is b.

The number of rows is exactly b if and only if T′s is rectangular211.
Now, suppose that T′s is not rectangular; that is, the number of rows in T′s is

strictly greater than b. In T′s, all the letters u1 are in the first column. Let ul be
the first letter in the first column following the run of letters u1

212. Then, all

199Comment: Here is a more precise way to say this: Fix two distinct elements j and k of {1, 2, . . . , d}.
Let L be the d× d-matrix

(
lqp
)

1≤p,q≤d ∈ Kd×d, where

ljk = 1;

ljp = 0 for p 6= k;

lkj = 1;

lkp = 0 for p 6= j;

lpp = 1 for p 6= j and p 6= k;

lqp = 0 for q /∈ {j, k} and p 6= q.

Clearly, this matrix L is invertible (since it is a permutation matrix). It is now straightforward to
see that this L satisfies (38), (39) and (40).

200Correction: Replaced “contain” by “contains”.
201Correction: Added the word “exactly”.
202Comment: This is just a reference to Theorem 3.2.
203Correction: Added the word “therefore”.
204Correction: Added the word “exactly”.
205Correction: Added the word “therefore”.
206Correction: Replaced “contain” by “contains”.
207Correction: Added the word “exactly”.
208Comment: i.e., Corollary 4.8
209Comment: Here, we are using the fact that a (L) 6= 0. Why is this the case?

Indeed, assume the contrary. Thus, a (L) = 0. But since F is invariant, we have LF = a (L) F
and L−1F = a

(
L−1) F. Hence, L−1 LF︸︷︷︸

=a(L)F

= a (L)︸︷︷︸
=0

L−1F = 0, which contradicts L−1LF = F 6= 0.

This contradiction shows that our assumption was false; hence, a (L) 6= 0.
210Correction: Added this sentence.
211Comment: Recall that a standard tableau T′s is rectangular if and only if each of its rows has the

form u1u2 · · · ud. (Thus, if T′s is rectangular, then the bideterminant (Ts | T′s) is rectangular.)
212Comment: Such a letter exists, because the run of letters u1 cannot cover the whole first column
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the letters from u1 to ul−1 occur in the first b rows. Hence, each of the letters from
u1 to ul−1 occurs in each of the first b rows (since it must occur b times in total,
but can only occur in the first b rows, and therefore has to occur at least once in
each of these b rows). Thus, each of the first b rows begins with u1u2 · · · ul−1

213.
Moreover, if q is the number of occurrences of ul in the first column, then214 the
remaining b− q letters ul must all occur in the first b− q rows215. The situation is

(since the number of rows is greater than b, but the letter u1 appears only b times).
213Correction: Added this and the preceding sentence.
214Correction: Added “then”.
215Comment: Let me justify this:

We must prove that each occurrence of ul in T′s other than in the first column must be in one
of the first b− q rows. In other words, we must prove that if the (r, c)-th entry of T′s equals ul
for some integers r ≥ 1 and s ≥ 2, then r ≤ b− q.

So let us assume that the (r, c)-th entry of T′s equals ul for some integers r ≥ 1 and c > 1. We
must prove that r ≤ b− q.

We are in one of the following two cases:

Case 1: We have r ≤ b.
Case 2: We have r > b.

Let us first consider Case 1. In this case, we have r ≤ b. Thus, the r-th row of T′s begins with
u1u2 · · · ul−1 (since each of the first b rows begins with u1u2 · · · ul−1). The next entry of this r-th
row after u1u2 · · · ul−1 must then be ul (since ul occurs in the r-th row of T′s (since the (r, c)-th
entry of T′s equals ul)). Hence, the (r, l)-th entry of T′s is ul . Therefore, the first r entries of the
l-th column of T′s must be of the form ug with g ≤ l (since T′s is standard). However, these entries
must also be of the form ug with g ≥ l (since any entry in the l-th column of T′s has this form
(again since T′s is standard)). Hence, these entries must be of the form ug with g satisfying both
g ≤ l and g ≥ l simultaneously. In other words, these entries must be of the form ul . Hence,
there are at least r entries ul in the l-th column of T′s . Since there are also q entries ul in the 1-st
column of T′s , we conclude that there are at least r + q entries ul in T′s (since the l-th column of T′s
and the 1-st column of T′s are two different columns). In other words, b ≥ r + q (since the total
number of entries ul in T′s is b). Hence, r ≤ b− q. Thus, we have proven r ≤ b− q in Case 1.

Now, let us consider Case 2. In this case, we have r > b. Hence, the first entry of the r-th row
of T′s has the form ug with g ≥ l. Consider this g.

Recall that c > 1. Hence, the c-th entry of the r-th row of T′s is larger than the first entry of
the r-th row of T′s . In other words, the c-th entry of the r-th row of T′s has the form uh for some
h > g (since the first entry of the r-th row of T′s is ug). Consider this h. Thus,

uh =
(
the c-th entry of the r-th row of T′s

)
=
(
the (r, c) -th entry of T′s

)
= ul

(since the (r, c)-th entry of T′s equals ul). Hence, h = l ≤ g (since g ≥ l). This contradicts h > g.
Thus, we have obtained a contradiction in Case 2. Hence, Case 2 cannot occur. Thus, r ≤ b− q
is proven (since we have proven r ≤ b− q in Case 1). This completes the proof.
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summarized by:216

T′s =

b rows

q rows



u1 · · · ul−1 ul · · ·
...

. . .
...

... · · ·
u1 · · · ul−1 ul · · ·
u1 · · · ul−1 um · · ·
...

. . .
... . . .

u1 · · · ul−1

q rows


ul · · · · · ·
...

. . . . . .

ul · · ·
...

(42)

where m ≥ l + 1. Such a tableau is called an l-critical tableau, and its parameter is q.
Let j be the smallest index such that there exists a j-critical tableau in the expan-

sion (30)217 of F. We break up the expansion (30)218 of F into

F = ∑
s

αs
(
Ts | T′s

)
+ ∑

t
αt
(
Tt | T′t

)
+ G, (43)

where the first summation is over all the indices s such that T′s is j-critical, the
second summation is over all t such that T′t is l-critical219 for some l > j 220, and
G is the linear combination of all the b× d rectangular standard bideterminants.

Now, fix any j ∈ {2, 3, . . . , d}, and221 let L be the d× d-matrix in Kd×d defined by

L
(
xi | uj−1

)
=
(
xi | uj−1

)
+
(
xi | uj

)
, (44)

L (xi | uk) = (xi | uk) , for k 6= j− 1 (45)

222. Under L, those bideterminants in which all the letters uj−1 and uj occur in
the first b rows are unchanged223; in particular, the rectangular bideterminants

216Correction: Replaced “T′” by “T′s” in the display. As usual, added some “· · · ”s and the words
“rows”.

217Correction: Added “(30)”.
218Correction: Added “(30)”.
219Correction: Removed a redundant comma here.
220Correction: Replaced “l > q” by “l > j”.
221Correction: Added “Now, fix any j ∈ {2, 3, . . . , d}, and”.
222Comment: Here is a more precise way to say this: Fix any j ∈ {2, 3, . . . , d}. Let L be the d× d-matrix(

lqp
)

1≤p,q≤d ∈ Kd×d, where

lj−1,j = 1;

lpp = 1 for all p;

lqp = 0 for all p, q satisfying p 6= q and (p, q) 6= (j, j− 1) .

Clearly, this matrix L is invertible (since it is lower-unitriangular). It is now straightforward to
see that this L satisfies (44) and (45).

223Comment: This is because
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in G and the l-critical bideterminants in the second summation in (43)224 remain
unaltered. In other words,225

LG = G, (46)

and

L
(
Tt | T′t

)
=
(
Tt | T′t

)
for each t in the second summation in (43). (47)

For the j-critical bideterminants,226

L
(
Ts | T′s

)
= ∑

r
(Ts | Tr

s ) , (48)

where Tr
s is a tableau (not necessarily standard)227 of the following form:228

b rows

q rows



u1 · · · uj−1 uj · · ·
...

. . .
...

... · · ·
u1 · · · uj−1 uj · · ·
u1 · · · ∗ um · · ·
...

. . .
... . . .

u1 · · · ∗

q rows


uj · · · · · ·
...

. . . . . .

uj · · ·
...

(49)

where any of the ∗ symbols in column j− 1 229 may be uj−1 or uj, and where230

m ≥ j + 1. 231

• any inner product containing both letters uj−1 and uj is unchanged under L (by Lemma 5.10
(c));

• any inner product that does not contain the letter uj is unchanged under L (by Lemma 5.10
(a));

• L acts upon P as an algebra homomorphism.

(Here, we are only talking about inner products in which the indices of the u are distinct. But
all the inner products forming a bideterminant have this property.)

224Correction: Added “in (43)”.
225Correction: Inserted this sentence.
226Correction: In the following display, I have removed the “(Ts | T′s)” addend, because I prefer to

regard this addend as part of the sum ∑
r
(Ts | Tr

s ).
227Correction: Added “(not necessarily standard)”.
228Correction: As usual, added some “· · · ”s and the words “rows” in the display below.
229Correction: Replaced “∗” by “any of the ∗ symbols in column j− 1”.
230Correction: Added “where”.
231Comment: This follows from the following argument:
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Fix any s.
Let w be the number of rows of the tableau Ts; thus, w is also the number of rows of the

tableau T′s .
The tableau T′s is j-critical; thus, it looks as follows:

T′s =

b rows

q rows



u1 · · · uj−1 uj · · ·
...

. . .
...

... · · ·
u1 · · · uj−1 uj · · ·
u1 · · · uj−1 um · · ·
...

. . .
... . . .

u1 · · · uj−1

q rows


uj · · · · · ·
...

. . . . . .

uj · · ·
...

. (50)

In particular, all entries of T′s in row b+ 1 and the rows below have the form uh for h ≥ j (because
the first entry of row b + 1 is uj, and the entries are nondecreasing along rows and column).

For each k ∈ {1, 2, . . . , w}, we set rk =
(

xi1 · · · xip | uj1 · · · ujp

)
, where xi1 · · · xip is the k-th

row of the tableau Ts, and where uj1 · · · ujp is the k-th row of the tableau T′s . Thus, (Ts | T′s) =
r1r2 · · · rw. Hence,

L
(
Ts | T′s

)
= L (r1r2 · · · rw) = (Lr1) (Lr2) · · · (Lrw) (51)

(since L acts upon P as an algebra homomorphism).
Fix k ∈ {1, 2, . . . , w}. We shall now compute the value Lrk. First, let xi1 · · · xip be the

k-th row of the tableau Ts, and let uj1 · · · ujp be the k-th row of the tableau T′s . Thus,

rk =
(

xi1 · · · xip | uj1 · · · ujp

)
(by the definition of rk). Notice that j1 < j2 < · · · < jp (since

T′s is a standard tableau); thus, the letters uj1 , . . . , ujp are distinct. Now, let us compute Lrk
depending on the value of k:

• Let us first assume that k ≤ b − q. Thus, the k-th row of T′s contains both uj−1 and uj
(because of (50)). In other words, uj1 · · · ujp contains both uj−1 and uj (since uj1 · · · ujp is the
k-th row of T′s). In other words, some g ∈ {1, 2, . . . , p} satisfies jg = j − 1, and some h ∈
{1, 2, . . . , p} satisfies jh = j. Hence, Lemma 5.10 (c) shows that L

(
xi1 · · · xip | uj1 · · · ujp

)
=(

xi1 · · · xip | uj1 · · · ujp

)
. Since rk =

(
xi1 · · · xip | uj1 · · · ujp

)
, this rewrites as Lrk = rk. Thus,

we have computed Lrk in the case when k ≤ b− q.

• Let us now assume that b − q < k ≤ b. Thus, the k-th row of T′s contains uj−1 but not uj
(because of (50)). In other words, uj1 · · · ujp contains uj−1 but not uj (since uj1 · · · ujp is the
k-th row of T′s). In particular, uj1 · · · ujp contains uj−1. In other words, some g ∈ {1, 2, . . . , p}
satisfies jg = j− 1. Consider this g. Hence, Lemma 5.10 (b) shows that

L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
+
(

xi1 · · · xip | uj1 · · · ujg−1 ujujg+1 · · · ujp

)
. (52)
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Let T′′s be the tableau such that all the ∗’s are uj
232; thus, T′′s is a standard

Set r′k =
(

xi1 · · · xip | uj1 · · · ujg−1 ujujg+1 · · · ujp

)
. Thus, r′k is the same inner product rk, except

that the letter ujg (that is, the g-th letter to the right of the vertical bar) has been replaced by
uj. In other words, r′k is the result of replacing the letter uj−1 by uj in the inner product rk

(since jg = j− 1). Now, (52) rewrites as Lrk = rk + r′k (since rk =
(

xi1 · · · xip | uj1 · · · ujp

)
and

r′k =
(

xi1 · · · xip | uj1 · · · ujg−1 ujujg+1 · · · ujp

)
). Thus, we have computed Lrk in the case when

b− q < k ≤ b.

• Let us finally assume that k > b. Thus, all entries in the k-th row of T′s have the form uh for
h ≥ j (because all entries of T′s in row b+ 1 and the rows below have the form uh for h ≥ j). In
particular, the k-th row of T′s does not contain uj−1. In other words, uj1 · · · ujp does not contain
uj−1 (since uj1 · · · ujp is the k-th row of T′s). In other words, no g ∈ {1, 2, . . . , p} satisfies jg =

j− 1. Hence, Lemma 5.10 (a) shows that L
(

xi1 · · · xip | uj1 · · · ujp

)
=
(

xi1 · · · xip | uj1 · · · ujp

)
.

Since rk =
(

xi1 · · · xip | uj1 · · · ujp

)
, this rewrites as Lrk = rk. Thus, we have computed Lrk in

the case when k > q.

Now, forget that we fixed k. Thus, for each k ∈ {1, 2, . . . , w}, we have obtained a formula for
Lrk, namely:

• If k satisfies either k ≤ b− q or k > b, then Lrk = rk.

• If k satisfies b− q < k ≤ b, then Lrk = rk + r′k, where r′k is the result of replacing the letter
uj−1 by uj in the inner product rk.

Multiplying all of these formulas, we obtain

(Lr1) (Lr2) · · · (Lrw)

= r1r2 · · · rb−q

(
rb−q+1 + r′b−q+1

) (
rb−q+2 + r′b−q+2

)
· · ·
(
rb + r′b

)
rb+1rb+2 · · · rw.

Hence, (51) becomes

L
(
Ts | T′s

)
= (Lr1) (Lr2) · · · (Lrw)

= r1r2 · · · rb−q

(
rb−q+1 + r′b−q+1

) (
rb−q+2 + r′b−q+2

)
· · ·
(
rb + r′b

)
rb+1rb+2 · · · rw.

Expanding the right hand side, we thus conclude that L (Ts | T′s) is the sum of all prod-
ucts obtained from r1r2 · · · rw by replacing some of the factors rb−q+1, rb−q+2, . . . , rb by
r′b−q+1, r′b−q+2, . . . , r′b (respectively). But of course, these products are precisely the bidetermi-
nants of all bitableaux that are obtained from (Ts | T′s) by replacing some of the letters uj−1 in
rows b− q + 1, b− q + 2, . . . , b by uj. Hence, L (Ts | T′s) is the sum of the bideterminants of all
these bitableaux. Hence, L (Ts | T′s) = ∑

r
(Ts | Tr

s ), where each Tr
s is a tableau of the form (49),

where any of the ∗ symbols in column j− 1 may be uj−1 or uj, and where m ≥ j + 1. This proves
(48).

232Comment: More precisely: Let T′′s be the tableau obtained from T′s by replacing all the letters uj−1
in rows b − q + 1, b − q + 2, . . . , b by uj. Thus, T′′s is one of the tableaux Tr

s on the right hand
side of (48). Actually, among all those tableaux Tr

s , the tableau T′′s is the one with the most
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tableau containing uj exactly233 b + q times234. Applying the operator L to the
equality (43), we obtain235

LF = ∑
s

αs L
(
Ts | T′s

)︸ ︷︷ ︸
=∑

r
(Ts|Tr

s )

(by (48))

+∑
t

αt L
(
Tt | T′t

)︸ ︷︷ ︸
=(Tt|T′t )
(by (47))

+ LG︸︷︷︸
=G

(by (46))

= ∑
s

αs ∑
r
(Ts | Tr

s ) + ∑
t

αt
(
Tt | T′t

)
+ G

= ∑
s,r

αs (Ts | Tr
s ) + ∑

t
αt
(
Tt | T′t

)
+ G,

so that

∑
s,r

αs (Ts | Tr
s ) + ∑

t
αt
(
Tt | T′t

)
+ G

= LF = a (L) F (since F is invariant)

= ∑
s

a (L) αs
(
Ts | T′s

)
+ ∑

t
a (L) αt

(
Tt | T′t

)
+ a (L) G. (53)

(by (43)).
236 Let q′ be the largest parameter for the j-critical tableaux T′s appearing in

(53)237. The only bideterminants in the equality (53)238 containing uj exactly b + q′

times are the bideterminants (Tv | T′′v ), where T′v is a j-critical tableau with param-

occurrences of the letter uj.
233Correction: Added the word “exactly”.
234Comment: Here is why this is true:

First, let us see why T′′s is a standard tableau.
An entry uj−1 in T′s shall be called malleable if the letter uj does not appear in the same row of

T′s as this entry.
Indeed, recall that the tableau T′s is standard. The tableau T′′s is obtained from it by replacing

some entries (namely, the entries uj−1 in rows b− q + 1, b− q + 2, . . . , b of the (j− 1)-th column)
of T′s by uj. It is easy to see (from a look at (50)) that these entries are precisely the malleable
entries uj−1 in the (j− 1)-th column of T′s . Thus, the tableau T′′s is obtained from T′s by replacing
each malleable entry uj−1 in the (j− 1)-th column of T by uj. Hence, Lemma 5.11 (applied to
T′s , j− 1 and T′′s instead of T, g and T̃) yields the tableau T′′s is standard.

It now remains to prove that the tableau T′′s contains uj exactly b + q times.
Indeed, we know that the tableau T′s contains uj exactly b times. The tableau T′′s differs from

T′s in having q further entries equal to uj (in fact, T′′s was obtained from T′s by replacing a total
of q entries by uj, and none of these entries had been uj in T′s). Thus, the tableau T′′s contains uj
exactly b + q times. This completes our proof.

235Correction: This sentence has been refactored and expanded. Also, I have again removed the
“(Ts | T′s)” addend, because I prefer to regard this addend as part of the sum ∑

r
(Ts | Tr

s ).
236Correction: Removed the sentence “Each bideterminant (Ts | Tr

s ) contains the letter uj at least b+ 1
times.”. This sentence was useless and does not hold with my definition of (Ts | Tr

s ).
237Correction: Added the words “T′s appearing in (53)”.
238Correction: Replaced “the above equality” by “the equality (53)”.
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eter q′ 239. Therefore, the projection of the equality (53)240 onto the subspace
spanned by the bideterminants containing uj exactly b + q′ times yields

∑
v

αv
(
Tv | T′′v

)
= 0 (54)

239Comment: Let me explain why this is true.
First, we recall that a j-critical tableau must have at least one entry uj in its first column; thus,

its parameter is positive (since its parameter is the number of entries uj in its first column).
Hence, q′ is positive (since q′ is the parameter of a j-critical tableau). Thus, q′ 6= 0, so that
b + q′ 6= b.

Each of the bideterminants appearing in (30) contains uj exactly b times (because of (41)).
In other words, each of the bideterminants appearing in (43) contains uj exactly b times (since
these bideterminants are the same as the bideterminants appearing in (30)). Hence, none of the
bideterminants appearing in (43) contains uj exactly b + q′ times (since b + q′ 6= b). Thus, none
of the bideterminants (Ts | T′s) and (Tt | T′t ) in (53) contains uj exactly b + q′ times. The same
holds for the bideterminants contained in G (for the same reason).

Therefore, any bideterminants in (53) that contain uj exactly b + q′ times must be of the form
(Ts | Tr

s ). However, not every bideterminant of this form actually contains uj exactly b+ q′ times.
Let us see which ones do:

Consider a bideterminant (Ts | Tr
s ) that appears in (53) and contains uj exactly b + q′ times.

The corresponding tableau T′s is j-critical; let q be its parameter. Thus, q′ ≥ q (since q′ is the
largest parameter for the j-critical tableaux appearing in (53)). Furthermore, the tableau Tr

s has
the form (49), where any of the ∗ symbols in column j− 1 may be uj−1 or uj. Let h be the number
of ∗ symbols that are uj; thus, h ≤ q (since the total number of ∗ symbols in (49) is q). Notice
that the equality h = q holds if and only if each of the ∗ symbols is a uj.

From (41), we know that the tableau T′s contains the letter uj exactly b times. The tableau Tr
s

is obtained from T′s by replacing some of the letters uj−1 by uj (indeed, the positions of the ∗
symbols in (49) were occupied by uj−1 in T′s). Hence, the tableau Tr

s contains the letter uj exactly
b + h times (since there are precisely h letters uj−1 that are replaced by uj in Tr

s ). Comparing
this with the fact that the tableau Tr

s contains the letter uj exactly b + q′ times, we conclude that
b + h = b + q′. Thus, h = q′. Combining h = q′ ≥ q with h ≤ q, we obtain h = q. In other words,
exactly q of the ∗ symbols in (49) are uj. This means that all the ∗ symbols in (49) are uj (because
q is the total number of ∗ symbols in (49)). Hence, Tr

s is the tableau T′′s (because T′′s was defined
as the one tableau Tr

s for which all the ∗ symbols in (49) are uj).
Furthermore, q′ = h = q. Hence, the j-critical tableau T′s has parameter q′ (since it has

parameter q). Thus, we have shown that Tr
s is the tableau T′′s , and that the j-critical tableau T′s

has parameter q′.
Now, forget that we fixed (Ts | Tr

s ). We thus have shown that if (Ts | Tr
s ) is a bideterminant

that appears in (53) and contains uj exactly b + q′ times, then Tr
s is the tableau T′′s , and the

j-critical tableau T′s has parameter q′. Since any bideterminants in (53) that contain uj exactly
b + q′ times must be of the form (Ts | Tr

s ), we can therefore summarize: Any bideterminants in
(53) that contain uj exactly b + q′ times must be of the form (Ts | Tr

s ), where Tr
s is the tableau

T′′s , and the j-critical tableau T′s has parameter q′. In other words, any bideterminants in (53)
that contain uj exactly b + q′ times must be of the form (Ts | T′′s ), where the j-critical tableau T′s
has parameter q′. In other words, any bideterminants in (53) that contain uj exactly b + q′ times
must be of the form (Tv | T′′v ), where T′v is a j-critical tableau with parameter q′.

Conversely, any bideterminant of this form must contain uj exactly b + q′ times (as one can
easily show by following the above argument backwards). Thus, the bideterminants in the
equality (53) containing uj exactly b + q′ times are exactly the bideterminants (Tv | T′′v ), where
T′v is a j-critical tableau with parameter q′. Qed.

240Correction: Replaced “this equality” by “the equality (53)”.
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241 (where the sum is over all v for which T′v is a j-critical tableau with parameter
q′) 242.

All the bitableaux243 [Tv, T′v], and hence [Tv, T′′v ], are distinct and standard244. By
the basis theorem (specifically, the part of Corollary 4.8 that says that the stan-
dard (X ,U )-bideterminants are linearly independent)245, we thus conclude that all
the coefficients αv in (54) must be 0. We conclude that there cannot be a j-critical
bideterminant in the expansion of F; in particular, there cannot be a nonrectangu-
lar bideterminant in the expansion. This contradicts our assumption that not all
tableaux T′s appearing in (30) are rectangular246. This completes the first proof of
Theorem 5.9.

241Correction: I have switched the left and the right hand side of this equality, to match my modified
version of (53).

242Correction: Added the preceding parenthetical.
243Correction: Just as many times before, I have replaced bideterminants by bitableaux.
244Comment: Let me explain why this is true.

We already know that the tableaux T′′v are standard; thus, the bitableaux [Tv, T′′v ] are standard.
It remains to show that these bitableaux [Tv, T′′v ] are distinct.

Assume the contrary. Thus, there exist two distinct indices v and w (having the property
that T′v and T′w are j-critical tableaux with parameters q′) such that [Tv, T′′v ] = [Tw, T′′w]. Hence,
Tv = Tw and T′′v = T′′w.

Recall that T′v is a j-critical tableau with parameter q′. Hence, the tableau T′′v is obtained from
T′v by replacing the entries uj−1 in rows b− q′ + 1, b− q′ + 2, . . . , b of the (j− 1)-th column by
uj (by the definition of T′′v ). Therefore, the tableau T′v can be obtained from the tableau T′′v by
replacing the entries uj in rows b− q′ + 1, b− q′ + 2, . . . , b of the (j− 1)-th column by uj−1 (since
the entries in rows b − q′ + 1, b − q′ + 2, . . . , b of the (j− 1)-th column of T′v are uj−1 (again,
because T′v is j-critical)). Similarly, the tableau T′w can be obtained from the tableau T′′w by the
exact same replacements. Therefore, T′v = T′w (since T′′v = T′′w). Combined with Tv = Tw, this
yields [Tv, T′v] = [Tw, T′w]. But this contradicts the fact that the bitableaux [Ts, T′s ] were chosen to
be distinct. This contradiction completes our proof.

245Correction: I have expanded this sentence to be clearer.
246Correction: Inserted this sentence.
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5.4. The First Fundamental Theorem: second proof

In preparation for the second proof of Theorem 5.9, let us state a few lemmas.247

Lemma 5.12. Let K be a field. Let d ≥ 1. Considered as a polynomial in the d2

indeterminates lij (for 1 ≤ i ≤ d and 1 ≤ j ≤ d), the determinant ∆ =
∣∣lij∣∣ is

irreducible.

Proof of Lemma 5.12. Suppose that ∆ = AB. Since ∆ is linear in each variable lij,
the variable l11 cannot occur in both A and B. Suppose that l11 occurs in A. In
the expansion of ∆ into monomials, each monomial contains exactly one variable
from each row and column. Hence, none of the variables l1r, ls1 with 1 ≤ r ≤ d and
1 ≤ s ≤ d can occur in B. 248

If B is not a constant polynomial, then B contains a variable lpq, where, a fortiori,
p, q > 1. By a similar argument, A cannot contain the variables lpr, lsq with r 6= q
and s 6= p. But this implies that neither A nor B contain the variables lp1 and

247Correction: I have rewritten this second proof in many ways. Here are the most important changes:

• Lemma 5.12 and Lemma 5.17 have been moved out of the proof, as they are easier to under-
stand as separate results.

• I have made “Weyl’s principle of the irrelevance of algebraic inequalities” into a separate
proposition (Proposition 5.13), and fixed it by requiring g1, . . . , gr to be nonzero. I have also
added a proof outline.

• I have explicitly stated two corollaries of Weyl’s principle (Corollaries 5.14 and 5.19) as well
as two further auxiliary facts (Propositions 5.15 and 5.16) which were mostly implicit in the
original proof.

• Multiple wrong indices have been fixed in the treatment of the adjugate L∗.

• Arguments such as the proofs of (59) and (60) have been expanded significantly, and I have
clarified why a (L) is a polynomial in the entries of the matrix L.

• I have introduced an extra polynomial ring K [λ], which allows me to clarify the various
applications of Weyl’s principle to matrices as well as make Lemma 5.22 more precise (the
λij in Lemma 5.22 are now polynomial indeterminates rather than elements of K). This has
the additional advantage that an important puzzle piece (the invariance of the polynomials
Fi(1,1),...,i(m,d)) could be proved in higher generality and in a simpler way. As a consequence of
the latter, a part of the original proof (the argument that the Bjk are algebraically independent,
and its consequences) has been removed for uselessness.

• Lemma 5.20 and Lemma 5.21 have been switched, thus allowing me to deduce the latter from
the former, sidestepping the somewhat complicated proof in the original paper.

• The definition of the evaluation εL and various other parts of the proof has been rewritten in
a clearer fashion.

• Generally, details have been added.

248Comment: Here is why:
Assume (for the sake of contradiction) that one of these variables does occur in B. Let us

assume that it is a variable of the form l1r with 1 ≤ r ≤ d (since the case when it is a variable of
the form ls1 with 1 ≤ s ≤ d is analogous).
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l1q, both of which appear in the expansion of ∆. Hence, B must be a constant
polynomial, and our lemma is proved.

A technical result we shall use time and again is Weyl’s principle of the irrelevance
of algebraic inequalities:

Proposition 5.13 (Weyl’s principle of the irrelevance of algebraic inequalities).
Let K be an infinite field. Let

{
z1, . . . , zp

}
be a finite set of indeterminates. Let

f , g1, . . . , gr be polynomials in K
[
z1, . . . , zp

]
such that g1, . . . , gr are nonzero. Sup-

pose that
f
(
s1, . . . , sp

)
= 0 (55)

for all s1, . . . , sp ∈ K such that

gi
(
s1, . . . , sp

)
6= 0 for all 1 ≤ i ≤ r. (56)

Then, f is identically zero.

Proof of Proposition 5.13. The proof is routine commutative algebra (see Weyl [4,
Chapter I, Lemma (1.1.A)]). For the sake of completeness, let us nevertheless sketch
it: We know that K is a field; thus, the ring K

[
z1, . . . , zp

]
is an integral domain. Let

Let S be the ring of all polynomials in the indeterminates

l1,1, l1,2, . . . , l1,d,
l2,1, l2,2, . . . , l2,d,
. . . ,
ld,1, ld,2, . . . , ld,d

over K. For any polynomial g ∈ S, we let degg denote the total degree of g with respect to the
indeterminates l1,1, l1,2, . . . , l1,d (that is, the total degree of g when g is considered as a polynomial
in the indeterminates l1,1, l1,2, . . . , l1,d, while all the remaining indeterminates

l2,1, l2,2, . . . , l2,d,
l3,1, l3,2, . . . , l3,d,
. . . ,
ld,1, ld,2, . . . , ld,d

are regarded as constants). Then, any two nonzero polynomials g and h in S satisfy deg (gh) =
degg + degh. Applying this to g = A and h = B, we obtain deg (AB) = degA + degB.

The determinant ∆ =
∣∣lij∣∣ is homogeneous of degree 1 in the variables l1,1, l1,2, . . . , l1,d (since

the determinant of a d× d-matrix is linear with respect to its first row). Thus, deg∆ ≤ 1.
But the variable l11 occurs in A; thus, degA ≥ 1. Also, a variable of the form l1r with 1 ≤ r ≤ d

occurs in B (according to our assumption); thus, degB ≥ 1. Hence, deg (AB) = degA︸ ︷︷ ︸
≥1

+degB︸ ︷︷ ︸
≥1

≥

1 + 1 > 1. This contradicts deg

 AB︸︷︷︸
=∆

 = deg∆ ≤ 1. This contradiction shows that our

assumption was false. This completes the proof.
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g be the polynomial g1g2 · · · gr. Since the polynomials g1, . . . , gr are nonzero, their
product g1g2 · · · gr must also be nonzero (since K

[
z1, . . . , zp

]
is an integral domain).

In other words, g is nonzero (since g = g1g2 · · · gr).
Every s1, . . . , sp ∈ K satisfy

( f g)
(
s1, . . . , sp

)
= 0 (57)

249.
But the field K is infinite. Thus, the subset Kp of Kp is Zariski-dense. In ele-

mentary terms, this says the following: If h ∈ K
[
z1, . . . , zp

]
is a polynomial such

that every s1, . . . , sp ∈ K satisfy h
(
s1, . . . , sp

)
= 0, then h = 0. We can apply this

to h = f g (since every s1, . . . , sp ∈ K satisfy (57)). Thus, we conclude that f g = 0.
Since the ring K

[
z1, . . . , zp

]
is an integral domain, we thus have either f = 0 or

g = 0 (or both). Since g is nonzero, we thus conclude that f = 0. This proves
Proposition 5.13.

For the sake of convenience, let us specifically state the particular case of Propo-
sition 5.13 for r = 1:

Corollary 5.14. Let K be an infinite field. Let
{

z1, . . . , zp
}

be a finite set of indeter-
minates. Let f be a polynomial in K

[
z1, . . . , zp

]
. Let g be a nonzero polynomial

in K
[
z1, . . . , zp

]
. Assume that f

(
s1, . . . , sp

)
= 0 for all s1, . . . , sp ∈ K such that

g
(
s1, . . . , sp

)
6= 0. Then, f is identically zero.

For each d-tuple (i1, i2, . . . , id) ∈ {1, 2, . . . , n}d, we adopt the following bracket
notation: [

xi1 , . . . , xid
]
=
(
xi1 · · · xid | u1 · · · ud

)
∈ P.

249Proof of (57): Let s1, . . . , sp ∈ K. If all 1 ≤ i ≤ r satisfy gi
(
s1, . . . , sp

)
6= 0, then

( f g)
(
s1, . . . , sp

)
= f

(
s1, . . . , sp

)︸ ︷︷ ︸
=0

(by (55))

g
(
s1, . . . , sp

)
= 0.

Thus, if all 1 ≤ i ≤ r satisfy gi
(
s1, . . . , sp

)
6= 0, then (57) is proven. Hence, for the rest of the

proof of (57), we WLOG assume that not all 1 ≤ i ≤ r satisfy gi
(
s1, . . . , sp

)
6= 0. Thus, at least

one 1 ≤ i ≤ r satisfies gi
(
s1, . . . , sp

)
= 0. Therefore, the product

r
∏
i=1

gi
(
s1, . . . , sp

)
has at least

one factor equal to 0; consequently, the whole product is 0. In other words,
r

∏
i=1

gi
(
s1, . . . , sp

)
= 0.

But g = g1g2 · · · gr =
r

∏
i=1

gi and therefore

g
(
s1, . . . , sp

)
=

r

∏
i=1

gi
(
s1, . . . , sp

)
= 0.

Hence,
( f g)

(
s1, . . . , sp

)
= f

(
s1, . . . , sp

)
g
(
s1, . . . , sp

)︸ ︷︷ ︸
=0

= 0.

This proves (57).
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Any such polynomial
[
xi1 , . . . , xid

]
will be called a bracket. A bracket monomial shall

mean a product of brackets. The following is easy to see:

Lemma 5.15. Any bracket monomial is a linear combination of standard rectan-
gular bideterminants, all of which have the same shape (d, . . . , d).

Proof of Lemma 5.15. Clearly, any bracket monomial is a rectangular bideterminant.
It thus remains to show that each rectangular bideterminant is a linear combination
of standard rectangular bideterminants, all of which have the same shape (d, . . . , d).

In other words, it remains to show that if [T, T′] is a bitableau such that the
tableau T′ is rectangular, then (T | T′) is a linear combination of standard rectan-
gular bideterminants, all of which have the same shape (d, . . . , d).

So let [T, T′] be a bitableau such that the tableau T′ is rectangular. Let (λ) be the
shape of T′. Thus, (λ) = (d, . . . , d)︸ ︷︷ ︸

g entries

for some g ∈N (since T′ is rectangular).

Now, we notice the following:

Claim 1: Let [W, W ′] be a standard bitableau of the same content as
[T, T′] and of the same or longer shape. Then, the tableau W ′ has shape
(λ).

[Proof of Claim 1: Assume the contrary. Thus, W ′ does not have shape (λ). In
other words, the tableau W ′ does not have the same shape as T′ (because the shape
of T′ is (λ)).

The tableau T′ has shape (λ) = (d, . . . , d)︸ ︷︷ ︸
g entries

. Hence, it has gd entries.

The bitableau [W, W ′] has the same content as [T, T′]. Thus, the tableau W ′ has
equally many entries as T′. Therefore, the tableau W ′ has gd entries (since the
tableau T′ has gd entries).

Let (µ) = (µ1, µ2, . . . , µh) be the shape of the tableau W ′. Therefore, the tableau
W ′ has µ1 + µ2 + · · · + µh entries. Since the tableau W ′ has gd entries, we thus
conclude that µ1 + µ2 + · · ·+ µh = gd.

The bitableau [W, W ′] has the same or longer shape than [T, T′]. In other words,
the tableau W ′ has the same or longer shape than T′. Hence, the tableau W ′ has
longer shape than T′ (because the tableau W ′ cannot have the same shape as T′). In
other words, (µ1, µ2, . . . , µh) > (d, . . . , d)︸ ︷︷ ︸

g entries

in lexicographic order (since the tableau

W ′ has shape (µ1, µ2, . . . , µh), while the tableau T′ has shape (d, . . . , d)︸ ︷︷ ︸
g entries

). By the

definition of lexicographic order, this means that we must be in one of the following
two cases:

Case 1: There exists some i ∈ {1, 2, . . . , min {h, g}} such that µi > d and(
µj = d for each j < i

)
.

Case 2: We have h < g and
(
µj = d for each j ∈ {1, 2, . . . , h}

)
.
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Let us first consider Case 1. In this case, there exists some i ∈ {1, 2, . . . , min {h, g}}
such that µi > d and

(
µj = d for each j < i

)
. Consider this i. Then, µi > d. But

the i-th row of W ′ has more than d entries (since (µ1, µ2, . . . , µh) is the shape of
the tableau W ′). Thus, the i-th row of W ′ has more than d entries (since µi > d).
Consequently, two of these entries must be equal (since the only available entries
for W ′ are the d entries u1, u2, . . . , ud). This contradicts the fact that the entries in
the i-th row of W ′ are strictly increasing (since W ′ is a standard tableau). Thus, we
have found a contradiction in Case 1.

Let us now consider Case 2. In this case, we have h < g and(
µj = d for each j ∈ {1, 2, . . . , h}

)
. Now,

µ1 + µ2 + · · ·+ µh = h︸︷︷︸
<g

d
(
since µj = d for each j ∈ {1, 2, . . . , h}

)
< gd (since d > 0) .

This contradicts µ1 + µ2 + · · ·+ µh = gd. Thus, we have obtained a contradiction
in Case 2.

Hence, we have obtained a contradiction in both Cases 1 and 2. This contradic-
tion shows that our assumption was wrong; hence, Claim 1 is proven.]

Now, Theorem 3.2 shows that (T | T′) is a linear combination, with integer co-
efficients, of bideterminants (W |W ′) of standard bitableaux [W, W ′] of the same
content and of the same or longer shape. All these bideterminants (W |W ′) have
shape (λ) (since Claim 1 yields that the respective tableaux W ′ have shape (λ))
and thus are rectangular (since (λ) = (d, . . . , d)︸ ︷︷ ︸

g entries

) and have the same shape (d, . . . , d)

(again since (λ) = (d, . . . , d)︸ ︷︷ ︸
g entries

). Thus, (T | T′) is a linear combination of standard

rectangular bideterminants (W |W ′), all of which have the same shape (d, . . . , d).
This proves Lemma 5.15.

Lemma 5.16. Assume that n ≥ d. Let F ∈ P be an invariant form, and let
g ∈ N be such that [x1, . . . , xd]

g · F is a polynomial in the brackets (i.e., a linear
combination of bracket monomials). Then, F is a linear combination of standard
rectangular bideterminants.

Proof of Lemma 5.16. By Corollary 3.4, we can write F as a linear combination of
bideterminants of standard bitableaux:

F = ∑
i∈I

bi
(
Ui | U′i

)
, (58)

where the
[
Ui, U′i

]
are distinct standard bitableaux, and where the bi are nonzero

elements of K. For each i ∈ I, each row of the tableau U′i has length ≤ d 250, and

250Proof. Let i ∈ I. The tableau U′i is standard; thus, each row of U′i is strictly increasing. Hence, each
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therefore each row of the tableau Ui has length ≤ d as well (since the length of a
row of Ui equals the length of the corresponding row of U′i ).

If each of the bitableaux
[
Ui, U′i

]
is rectangular, then Lemma 5.16 is proven (be-

cause in this case, (58) shows that F is a linear combination of standard rectangular
bideterminants). Let us thus assume that this is not the case. Hence, not all of the
bitableaux

[
Ui, U′i

]
are rectangular.

For each i ∈ I, we let Ûi be the tableau

g rows


x1 x2 · · · xd
...

...
. . .

...
x1 x2 · · · xd

Ui

(that is, the result of piling g rows of the form x1x2 · · · xd on top of the tableau Ui).
This tableau Ûi is standard (since Ui is standard, since each row of the tableau Ui
has length ≤ d, and since xk is the smallest possible entry that an entry in the k-th
column of a standard tableau can have).

Similarly, for each i ∈ I, we let Û′i be the tableau

g rows


u1 u2 · · · ud
...

...
. . .

...
u1 u2 · · · ud

U′i
(that is, the result of piling g rows of the form u1u2 · · · ud on top of the tableau
U′i ). A similar argument shows that this tableau Û′i is standard. Thus,

[
Ûi, Û′i

]
is

a standard bitableau for each i ∈ I. Moreover, the bitableaux
[
Ûi, Û′i

]
for i ∈ I are

distinct (since the bitableaux
[
Ui, U′i

]
are distinct, and since the bitableaux

[
Ûi, Û′i

]
are obtained from

[
Ui, U′i

]
by piling g new rows on top). Also notice that not all of

the bitableaux
[
Ûi, Û′i

]
are rectangular (since not all of the bitableaux

[
Ui, U′i

]
are

rectangular).
Clearly, each i ∈ I satisfies

(
Ûi | Û′i

)
=

(x1x2 · · · xd | u1u2 · · · ud)︸ ︷︷ ︸
=[x1,x2,...,xd]


g (

Ui | U′i
)

(
by the construction of Ûi and Û′i

)
= [x1, x2, . . . , xd]

g (Ui | U′i
)

.

row of U′i must have at most d entries (because if it had more than d entries, then two of these
entries would be equal (since the only available entries for U′i are the d letters u1, u2, . . . , ud), and
this would contradict the fact that this row is strictly increasing). In other words, each row of U′i
has length ≤ d. Qed.
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Thus,

∑
i∈I

bi

(
Ûi | Û′i

)
︸ ︷︷ ︸

=[x1,x2,...,xd]
g(Ui|U′i)

= [x1, x2, . . . , xd]
g ·∑

i∈I
bi
(
Ui | U′i

)
︸ ︷︷ ︸

=F
(by (58))

= [x1, x2, . . . , xd]
g · F.

Thus, the decomposition of [x1, x2, . . . , xd]
g · F into a linear combination of standard

bideterminants is ∑
i∈I

bi

(
Ûi | Û′i

)
. (We are allowed to speak of “the” decomposition,

because Corollary 4.8 shows that there is a unique such decomposition.)
But [x1, . . . , xd]

g · F is a polynomial in the brackets, i.e., a linear combination of
bracket monomials. Hence, [x1, . . . , xd]

g · F is a linear combination of standard rect-
angular bideterminants (since Lemma 5.15 shows that any bracket monomial is a
linear combination of standard rectangular bideterminants). Thus, the decompo-
sition of [x1, . . . , xd]

g · F into a linear combination of standard bideterminants has
the property that all bideterminants appearing in it are rectangular. Since this de-
composition is ∑

i∈I
bi

(
Ûi | Û′i

)
, this shows that all of the bideterminants

(
Ûi | Û′i

)
are rectangular. In other words, all of the bitableaux

[
Ûi, Û′i

]
are rectangular. This

contradicts the fact that not all of the bitableaux
[
Ûi, Û′i

]
are rectangular. This con-

tradiction shows that our assumption was wrong. As we have seen, this completes
the proof of Lemma 5.16.

Lemma 5.17. Assume that n ≥ d. In the letter place algebra P, we have

[x1, . . . , xd]
(
xj | um

)
=

d

∑
k=1

[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]
(xk | um)

for any 1 ≤ j ≤ n and 1 ≤ m ≤ d.

Proof of Lemma 5.17. The identity follows from expanding, by Laplace’s rule, the
inner product

(
x1 · · · xdxj | u1 · · · udum

)
, which is identically zero in P (since it is a

determinant with two equal columns).251

Second proof of Theorem 5.9. Recall that a form F is invariant if, for all invertible
d × d-matrices L ∈ Kd×d, there exists a scalar a (L) such that LF = a (L) F. Let
F = F0 + · · · + Ft be the decomposition of the polynomial F into homogeneous
components with respect to the total degree (such that each component Fi has total
degree i). Then, if F is invariant,

LF = LF0 + · · ·+ LFt,
251In more detail:

Applying (2) to p = d + 1,
(
i1, i2, . . . , ip

)
= (j, 1, 2, . . . , d) and

(
j1, j2, . . . , jp

)
= (m, 1, 2, . . . , d),
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whence
LF0 + · · ·+ LFt = LF = a (L) F = a (L) F0 + · · ·+ a (L) Ft.

Since the action of L on P preserves the total degree, we must thus have

LFi = a (L) Fi for all 0 ≤ i ≤ t.

In other words, all the homogeneous components F0, F1, . . . , Ft of F are themselves
invariant. It suffices, therefore, to consider only invariant forms that are homoge-
neous.

Now, fix a nonzero homogeneous invariant form F of degree t. Then, for all
invertible d× d-matrices L ∈ Kd×d, there exists a scalar a (L) such that LF = a (L) F
(since F is invariant). This scalar a (L) is uniquely determined by L and F (since F
is nonzero), and is a polynomial in the entries ljk of the matrix L 252. If c ∈ K is a

we obtain(
xjx1 · · · xd | umu1 · · · ud

)
=
(

xj | um
)
(x1 · · · xd | u1 · · · ud)︸ ︷︷ ︸

=[x1,...,xd ]

+
d

∑
k=1

(−1)k (xk | um)
(

xjx1 · · · xk−1xk+1 · · · xd | u1 · · · ud
)︸ ︷︷ ︸

=(xjx1···xk−1xk+1···xd |u1···ud)(xk |um)

=
(

xj | um
)
[x1, . . . , xd] +

d

∑
k=1

(−1)k (xjx1 · · · xk−1xk+1 · · · xd | u1 · · · ud
)︸ ︷︷ ︸

=(−1)k−1(x1···xk−1xjxk+1···xd |u1···ud)

(xk | um)

=
(

xj | um
)
[x1, . . . , xd]︸ ︷︷ ︸

=[x1,...,xd ](xj |um)

+
d

∑
k=1

(−1)k (−1)k−1︸ ︷︷ ︸
=−1

(
x1 · · · xk−1xjxk+1 · · · xd | u1 · · · ud

)︸ ︷︷ ︸
=[x1,...,xk−1,xj ,xk+1,...,xd]

(xk | um)

= [x1, . . . , xd]
(

xj | um
)
−

d

∑
k=1

[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]
(xk | um) .

But
(

xjx1 · · · xd | umu1 · · · ud
)
= 0 (since

(
xjx1 · · · xd | umu1 · · · ud

)
is a determinant having two

equal columns (since um also appears among u1, u2, . . . , ud)). Thus,

0 =
(

xjx1 · · · xd | umu1 · · · ud
)

= [x1, . . . , xd]
(

xj | um
)
−

d

∑
k=1

[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]
(xk | um) .

In other words,

[x1, . . . , xd]
(

xj | um
)
=

d

∑
k=1

[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]
(xk | um) .

This proves Lemma 5.17.
252Comment: To be more precise: There exists a polynomial map a : Kd×d → K such that every

invertible d× d-matrix L ∈ Kd×d satisfies a (L) = a (L).
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nonzero scalar, then we have
a (cI) = ct. (59)

[Proof: Let c ∈ K be a nonzero scalar. Consider the invertible d× d-matrix L ∈
Kd×d defined by L = cI, where I is the identity matrix. Under the action of this L
on P, we have

(
xi | uj

)
7→ c

(
xi | uj

)
. Thus, LF = ctF (since F is homogeneous of

degree t). Thus, the formula LF = a (L) F becomes ctF = a (L) F = a (cI) F (since
L = cI). Hence, ct = a (cI) (since F is nonzero), qed.]

Moreover, the function a (L) is multiplicative, in the sense that for any two in-
vertible d× d-matrices L1 and L2 in Kd×d, we have

a (L1L2) = a (L1) a (L2) . (60)

[Proof: Let L1 and L2 be two invertible d × d-matrices in Kd×d. The formula
LF = a (L) F then yields

L1F = a (L1) F, L2F = a (L2) F, and L1L2F = a (L1L2) F.

Hence, a (L1L2) F = L1 L2F︸︷︷︸
=a(L2)F

= a (L2) L1F︸︷︷︸
=a(L1)F

= a (L1) a (L2) F. Since F is nonzero,

this results in a (L1L2) = a (L1) a (L2), qed.]
Given a d× d-matrix L =

(
ljk
)
∈ Kd×d, its adjugate L∗ is the d× d-matrix

(
l∗jk
)

,
where

l∗jk = (the kjth cofactor of the matrix L) = (−1)j+k ∣∣lpq
∣∣

p 6=k, q 6=j .

The adjugate has the property
LL∗ =

∣∣lij∣∣ I. (61)

[Proof of (61): Fix 1 ≤ s ≤ d and 1 ≤ t ≤ d. The stth entry of the matrix LL∗ is

∑
m

lsml∗mt = ∑
m
(−1)m+t lsm

∣∣lpq
∣∣

p 6=t, q 6=m .

This can be proven as follows:
Since F is nonzero, there exists some monomial m such that the coefficient of m in F is 6= 0.

Fix such an m. Let λ be the coefficient of m in F; thus, λ 6= 0. Now, each invertible d× d-matrix
L ∈ Kd×d satisfiesthe coefficient of m in LF︸︷︷︸

=a(L)F


= (the coefficient of m in a (L) F) = a (L) · (the coefficient of m in F)︸ ︷︷ ︸

=λ

= a (L) · λ

and therefore
a (L) =

1
λ
· (the coefficient of m in LF) .

Therefore, a (L) is a polynomial in the entries of the matrix L (since the coefficient of m in LF is
a polynomial in the entries of the matrix L). This is what we wanted to prove.



Invariant Theory, Young Bitableaux, and Combinatorics page 80

By the Laplace expansion, the right-hand side is the determinant of the matrix
(
ljk
)

with the tth row replaced by the row vector (lsm)1≤m≤d. This determinant is zero if
s 6= t (since it has two equal rows in this case) and equals

∣∣lij∣∣ if s = t. This is, of
course, precisely the stth entry of the matrix

∣∣lij∣∣ I. Hence, (61) follows.]
As an immediate consequence of (61), we obtain

a (L) a (L∗) =
∣∣lij∣∣t

(because of (60) and (59)). As the determinant is irreducible (by Lemma 5.12)253,
each of the factors on the left must therefore also be a power of the determinant
(since the polynomial ring P is a unique factorization domain). In particular, a (L)
is a power of the determinant. In other words, there is a nonnegative integer g such
that every invertible d × d-matrix L ∈ Kd×d satisfies a (L) = (det L)g. For this g,
every invertible d× d-matrix L ∈ Kd×d satisfies LF = a (L)︸︷︷︸

=(det L)g

F = (det L)g F. We

have thus proved:

Lemma 5.18. Let F ∈ P be a nonzero homogeneous invariant form. Then, there is
a nonnegative integer g such that every invertible d× d-matrix L ∈ Kd×d satisfies
LF = (det L)g F.

Let us now introduce a polynomial ring, which we will call K [λ]. Namely, we
let K [λ] be the polynomial ring over K in the d2 indeterminates

λ1,1, λ1,2, . . . , λ1,d,
λ2,1, λ2,2, . . . , λ2,d,
... ,
λd,1, λd,2, . . . , λd,d.

More generally, if R is any commutative ring, then R [λ] shall mean the polynomial
ring over R in these d2 indeterminates.

If f ∈ K [λ] is a polynomial, if A is a commutative K-algebra, and if M =(
mj,k

)
1≤j≤d, 1≤k≤d ∈ Ad×d is a d × d-matrix over A, then f [M] shall mean the

result of substituting aj,k for each indeterminate λj,k in f . For example, if f =
λ1,1 + λ2,2 + · · · + λd,d, then f [M] = m1,1 + m2,2 + · · · + md,d = Tr M for any
M =

(
mj,k

)
1≤j≤d, 1≤k≤d ∈ Ad×d.

We let det λ be the polynomial ∑
σ∈Sd

sgn (σ) λ1,σ(1)λ2,σ(2) · · · λd,σ(d) ∈ K [λ]. Thus,

(det λ) [M] = det M for any M =
(
mj,k

)
1≤j≤d, 1≤k≤d ∈ Ad×d.

The following particular case of Corollary 5.14 will be particularly useful:

253Comment: This requires d ≥ 1. In the (degenerate) case d = 0, everything is obvious anyway.
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Corollary 5.19. Let K be an infinite field. Let f be a polynomial in K [λ]. Assume
that f [L] = 0 for every invertible d× d-matrix L ∈ Kd×d. Then, f = 0.

Proof of Corollary 5.19. We have assumed that f [L] = 0 for every invertible d × d-
matrix L ∈ Kd×d. In other words, f [M] = 0 for every invertible d × d-matrix
M ∈ Kd×d (here, we have renamed the index L as M). In other words, f [M] = 0 for
every matrix M ∈ Kd×d such that det M 6= 0 (since a d × d-matrix M ∈ Kd×d

is invertible if and only if det M 6= 0). In other words, f [M] = 0 for every
matrix M ∈ Kd×d such that (det λ) [M] 6= 0 (since (det λ) [M] = det M). In
other words, f

((
mj,k

)
1≤j≤d, 1≤k≤d

)
= 0 for every family

(
mj,k

)
1≤j≤d, 1≤k≤d ∈ Kd×d

such that (det λ)
((

mj,k
)

1≤j≤d, 1≤k≤d

)
6= 0. Therefore, Corollary 5.14 (applied to{

z1, . . . , zp
}

=
{

λj,k | 1 ≤ j ≤ d and 1 ≤ k ≤ d
}

and g = det λ) shows that f is
identically zero (since det λ is nonzero). This proves Corollary 5.19.

We also introduce the following notation: Let L =
(
ljk
)

be a d× d-matrix in Kd×d.
The evaluation εL is the K-algebra homomorphism from P to K given by

(
xj | uk

)
7→
{

lkj, if 1 ≤ j ≤ d;
0, otherwise

.

An easy computation shows that the evaluation satisfies

εLF = εI LF for any form F ∈ P, (62)

where I is the identity matrix.254

254Proof. We need to show that the maps

P→ K, F 7→ εLF and
P→ K, F 7→ εI LF

are identical. Since both of these maps are K-algebra homomorphism, it suffices to show that
these maps send the form

(
xj | uk

)
(for any j and k) to the same image. In other words, it suffices

to show that εL
(

xj | uk
)
= εI L

(
xj | uk

)
for all j and k.

So let us fix j and k. The definition of the action of L on P yields L
(
xj | uk

)
= ∑

1≤r≤d
lkr
(

xj | ur
)
.

Hence,

εI L
(

xj | uk
)
= εI

(
∑

1≤r≤d
lkr
(

xj | ur
))

= ∑
1≤r≤d

lkr εI
(
xj | ur

)︸ ︷︷ ︸
=

1, if j = r;
0, if j 6= r

(by the definition of εI )

= ∑
1≤r≤d

lkr

{
1, if j = r;
0, if j 6= r

=

{
lkj, if 1 ≤ j ≤ d;
0, otherwise

.
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For our next considerations, it will be helpful to consider the rings P for various
values of n simultaneously. This necessitates the following notation: We denote the
K-algebra P by Pn when we want to stress its dependence on n. Then,

the K-algebra Pm canonically becomes a K-subalgebra of Pn (63)

whenever m ∈ N and n ∈ N satisfy m ≤ n (because each of the indeterminates(
xi | uj

)
appearing in Pm is one of the indeterminates of Pn as well). Any d × d-

matrix L ∈ Kd×d acts on Pm for all m ∈ N, and these actions are compatible (i.e.,
the canonical inclusions Pm → Pn commute with the actions of L).

Thus, for every m ∈ {0, 1, . . . , n}, the K-algebra Pm is a subalgebra of Pn = P, and
the action of any d× d-matrix L ∈ Kd×d on Pm is the restriction of the corresponding
action on Pn. When F is an element of the K-algebra Pm, we shall write F (x1, . . . , xm)
for F in order to stress that it belongs to Pm.

(For example, if n = 4 and d = 3, then the form (x2 | u3) (x3 | u3) belongs not
only to P = P4 but also to P3.)

Lemma 5.20. Assume that n ≥ d. If F (x1, . . . , xd) ∈ Pd is a nonzero homogeneous
invariant, then

F (x1, . . . , xd) = c (x1 · · · xd | u1 · · · ud)
g

for some nonnegative integer g, and scalar c.

Proof of Lemma 5.20. The K-algebra homomorphism

ψ : K [λ]→ Pd, f 7→ f
(((

xj | uk
))

1≤j≤d, 1≤k≤d

)
is a K-algebra isomorphism255. Define f ∈ K [λ] by f = ψ−1 (F). Thus,

F = ψ ( f ) = f
(((

xj | uk
))

1≤j≤d, 1≤k≤d

)
. (64)

Hence, every d× d-matrix L ∈ Kd×d satisfies

εLF = f [L] (65)

256.

Comparing this with

εL
(

xj | uk
)
=

{
lkj, if 1 ≤ j ≤ d;
0, otherwise

(by the definition of εL) ,

this yields εL
(

xj | uk
)
= εI L

(
xj | uk

)
. This completes our proof.

255In fact, K [λ] is the polynomial ring in the d2 indeterminates λj,k for 1 ≤ j ≤ d and 1 ≤ k ≤ d,
whereas Pd is the polynomial ring in the d2 indeterminates

(
xj | uk

)
for 1 ≤ j ≤ d and 1 ≤

k ≤ d. The homomorphism ψ sends each of the former indeterminates λj,k to the corresponding(
xj | uk

)
; thus, it can be viewed as just a renaming of the indeterminates.

256Proof. Let L be a d× d-matrix in Kd×d. Write this matrix L in the form L =
(

lkj

)
.
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Denote the scalar εI F ∈ K by c.
Lemma 5.18 shows that there is a nonnegative integer g such that every invertible

d× d-matrix L ∈ Kd×d satisfies LF = (det L)g F. Consider this g.
Now, any invertible d× d-matrix L ∈ Kd×d satisfies

f [L] = εLF (by (65))
= εI LF︸︷︷︸

=(det L)gF

(by (62))

= (det L)g εI F︸︷︷︸
=c

= (det L)g c = c

 det L︸ ︷︷ ︸
=(det λ)[L]

g

= c ((det λ) [L])g

=
(
c (det λ)g) [L] .

In other words, any invertible d× d-matrix L ∈ Kd×d satisfies
(

f − c (det λ)g) [L] =
0. Therefore, Corollary 5.19 (applied to f − c (det λ)g instead of f ) shows that

Let ωL : K [λ]→ K be the K-algebra homomorphism sending each g ∈ K [λ] to g [L].
Every j and k satisfy

(εL ◦ ψ)
(

λj,k

)
= εL

 ψ
(

λj,k

)
︸ ︷︷ ︸
=(xj |uk)

(by the definition of ψ)

 = εL
(
xj | uk

)

=

{
lkj, if 1 ≤ j ≤ d;
0, otherwise

(by the definition of εL)

= lkj (since 1 ≤ j ≤ d)

= ωL

(
λj,k

)
(since the definition of ωL yields ωL

(
λj,k

)
= λj,k [L] = lkj). In other words, the two K-algebra

homomorphisms εL ◦ ψ and ωL from K [λ] to K are equal to each other on the generators λj,k
of the K-algebra K [λ]. Hence, these two homomorphisms must be identical. In other words,
εL ◦ ψ = ωL. Applying both sides of this equality to f , we find (εL ◦ ψ) ( f ) = ωL ( f ) = f [L] (by

the definition of ωL). Hence, f [L] = (εL ◦ ψ) ( f ) = εL

ψ ( f )︸ ︷︷ ︸
=F

 = εL (F), qed.
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f − c (det λ)g = 0. Thus, f = c (det λ)g. Hence, (64) becomes

F = f︸︷︷︸
=c(det λ)g

(((
xj | uk

))
1≤j≤d, 1≤k≤d

)
=
(
c (det λ)g) (((xj | uk

))
1≤j≤d, 1≤k≤d

)

= c

det
((

xj | uk
))

1≤j≤d, 1≤k≤d︸ ︷︷ ︸
=(x1···xd|u1···ud)


g

= c (x1 · · · xd | u1 · · · ud)
g .

This proves Lemma 5.20.

Lemma 5.21. If F (x1, . . . , xm) ∈ Pm is a nonzero homogeneous invariant form
with m < d, then F is constant.

Proof of Lemma 5.21. Let F (x1, . . . , xm) ∈ Pm be a nonzero homogeneous invariant
form with m < d.

If n < d, then Pn canonically becomes a K-subalgebra of Pd (by (63)). Hence,
we WLOG assume that n ≥ d (because if n < d, then we can replace n by d, and
perform the argument below in Pd instead of Pn).

Now, m < d. Hence, (63) (applied to d instead of n) shows that Pm canonically
becomes a K-subalgebra of Pd. Thus, Pm ⊆ Pd.

Now, F (x1, . . . , xm) ∈ Pm ⊆ Pd. Therefore, we can write F (x1, . . . , xd) for F (x1, . . . , xm).
Since this form F (x1, . . . , xd) = F (x1, . . . , xm) is invariant, we can thus apply Lemma
5.20, and conclude that

F (x1, . . . , xd) = c (x1 · · · xd | u1 · · · ud)
g (66)

for some nonnegative integer g, and scalar c. Consider these g and c.
Consider the K-algebra homomorphism

η : Pd → Pm,
(
xj | uk

)
7→
{(

xj | uk
)

, if 1 ≤ j ≤ m;
0, otherwise

.

This homomorphism η sends

(xd | uk) 7→
{
(xd | uk) , if 1 ≤ d ≤ m;
0, otherwise

= 0 (since d > m)

for each k. Thus, it sends the whole d-th row of the determinant (x1 · · · xd | u1 · · · ud)
to 0. Consequently, it also sends this determinant to 0. In other words,

η (x1 · · · xd | u1 · · · ud) = 0.
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But on the other hand, η acts as the identity on the subalgebra Pm of Pd (since
it fixes

(
xj | uk

)
whenever 1 ≤ j ≤ m); therefore, it fixes F (x1, . . . , xd) (since

F (x1, . . . , xd) = F (x1, . . . , xm) ∈ Pm). In other words, η (F (x1, . . . , xd)) = F (x1, . . . , xd).
Now, applying the map η to the equality (66), we find

η (F (x1, . . . , xd)) = η
(
c (x1 · · · xd | u1 · · · ud)

g) = c

η (x1 · · · xd | u1 · · · ud)︸ ︷︷ ︸
=0

g

(since η is a K-algebra homomorphism)

= c0g.

Hence, c0g = η (F (x1, . . . , xd)) = F (x1, . . . , xd) 6= 0 (since F is nonzero). Con-
sequently, 0g 6= 0. Therefore, g = 0. Hence, (66) rewrites as F (x1, . . . , xd) =

c (x1 · · · xd | u1 · · · ud)
0 = c. Therefore, F is constant. This proves Lemma 5.21.

The next lemma is a simple variation on the multinomial theorem.

Lemma 5.22. Let F ∈ Pn be a homogeneous form of degree t. Let

F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
∈ Pd [λ] be the result of substituting

d
∑

i=1
λj,i (xi | ur)

for each indeterminate
(
xj | ur

)
(with 1 ≤ j ≤ n and 1 ≤ r ≤ d) in F.

(a) Then,

F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)

= ∑
(

n

∏
j=1

d

∏
r=1

λ
i(j,r)
j,r

)
· Fi(1,1),i(1,2),...,i(n,d) (x1, . . . , xd) , (67)

where the summation is over all families (i (1, 1) , i (1, 2) , . . . , i (n, d)) =
(i (j, r))1≤j≤n, 1≤r≤d ∈Nn×d of nonnegative integers satisfying

d

∑
q=1

n

∑
p=1

i (p, q) = t,

and where the polynomials Fi(1,1),i(1,2),...,i(n,d) ∈ Pd are homogeneous of degree t.
(b) Assume that F is invariant. Then, each of the polynomials

Fi(1,1),i(1,2),...,i(n,d) ∈ Pd is invariant.

Proof of Lemma 5.22. (a) The polynomial ring Pd [λ] can be regarded as a polynomial
ring over K in the nd + d2 indeterminates(

xj | uk
)

for 1 ≤ j ≤ n and 1 ≤ k ≤ d, as well as

λj,k for 1 ≤ j ≤ d and 1 ≤ k ≤ d.
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Let us consider this polynomial ring Pd [λ] as a Z×Z-graded K-algebra, where
each of the variables

(
xj | uk

)
has degree (1, 0) whereas the variables λj,k have

degree (0, 1). Thus, the sums
d
∑

i=1
λj,i (xi | ur) ∈ Pd [λ] (for all 1 ≤ j ≤ n and 1 ≤

r ≤ d) are homogeneous of degree (1, 1). Therefore, substituting these sums for
the indeterminates

(
xj | ur

)
transforms any homogeneous polynomial G ∈ Pn of

degree t into a homogeneous polynomial in Pd [λ] of degree (t, t) 257. Therefore,

the polynomial F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
∈ Pd [λ] is homogeneous of degree (t, t)

(since it is obtained by this substitution from the polynomial F ∈ Pn, which is
homogeneous of degree t). Hence, it can be written in the form

F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)

= ∑
(

n

∏
j=1

d

∏
r=1

λ
i(j,r)
j,r

)
· Fi(1,1),i(1,2),...,i(n,d) (x1, . . . , xd) ,

where the summation is over all families
(i (1, 1) , i (1, 2) , . . . , i (n, d)) = (i (j, r))1≤j≤n, 1≤r≤d ∈ Nn×d of nonnegative integers
satisfying

d

∑
q=1

n

∑
p=1

i (p, q) = t,

and where the polynomials Fi(1,1),i(1,2),...,i(n,d) ∈ Pd are homogeneous of degree t.
This proves Lemma 5.22 (a).

(b) Every d× d-matrix L ∈ Kd×d acts on Pd as a K-algebra endomorphism, and
thus also acts on Pd [λ] as a K [λ]-algebra endomorphism258. This leads to a notion
of invariant elements of Pd [λ]: Namely, we say that a G ∈ Pd [λ] is invariant if and
only if, for all invertible d × d-matrices L ∈ Kd×d, there exists a scalar a (L) ∈ K
such that LG = a (L) G.

Now, let us show the following claim:

Claim 1: Each G ∈ Pn satisfies

(LG)

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
= L · G

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
.

257If you don’t believe this, just check it in the case when G is a monomial (from which the general
case follows by linearity).

258The action of a d× d-matrix L ∈ Kd×d on Pd [λ] is obtained by extending the action of L on Pd as
a K [λ]-algebra endomorphism. Thus, if we regard an element of Pd [λ] as a polynomial in the
λj,k with coefficients in Pd, then L acts on each of these coefficients separately.
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[Proof of Claim 1: We consider the two maps

Pn → Pd [λ] , G 7→ (LG)

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)

and

Pn → Pd [λ] , G 7→ L · G
(

d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
.

Our goal is to show that these two maps are equal. Since both of these maps are K-
algebra homomorphisms259, we only need to check that these two maps take equal
values on the generators

(
xj | ur

)
of Pn. In other words, we need to prove Claim 1

in the case when G =
(
xj | ur

)
for some 1 ≤ j ≤ n and 1 ≤ r ≤ d.

So let us fix 1 ≤ j ≤ n and 1 ≤ r ≤ d. Let us set G =
(
xj | ur

)
. We must prove

Claim 1 for this G.
Write the d× d-matrix L in the form L =

(
lkj
)

1≤j,k≤d. We have G =
(
xj | ur

)
and

thus
LG = L

(
xj | ur

)
= ∑

1≤k≤d
lrk
(
xj | uk

)
(by the definition of the action of L on Pn). Hence, the definition of

(LG)

(
d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
yields

(LG)

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
= ∑

1≤k≤d
lrk

d

∑
i=1

λj,i (xi | uk)

= ∑
1≤k≤d

d

∑
i=1

lrkλj,i (xi | uk) . (68)

On the other hand, G =
(
xj | ur

)
. Hence, the definition of G

(
d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
yields

G

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
=

d

∑
i=1

λj,i (xi | ur) .

259This is because L acts as K-algebra endomorphisms on both Pd and Pd [λ], and because the map

Pn → Pd [λ] , G 7→ G

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)

is a K-algebra homomorphism as well.
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Hence,

L · G
(

d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
= L ·

d

∑
i=1

λj,i (xi | ur)

=
d

∑
i=1

λj,i L (xi | ur)︸ ︷︷ ︸
= ∑

1≤k≤d
lrk(xi|uk)

(by the definition of the action of L)

=
d

∑
i=1

λj,i ∑
1≤k≤d

lrk (xi | uk)

= ∑
1≤k≤d

d

∑
i=1

lrkλj,i (xi | uk) .

Comparing this with (68), we obtain

(LG)

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
= L · G

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
.

Thus, Claim 1 is proven for G =
(
xj | ur

)
. As we have already explained, this

completes the proof of Claim 1.]
Now, consider our invariant form F ∈ Pn. Thus, any invertible d × d-matrix

L ∈ Kd×d satisfies LF = a (L) F for some scalar a (L) (since F is invariant). Now,
any invertible d× d-matrix L ∈ Kd×d satisfies

L · F
(

d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
= (LF)︸︷︷︸

=a(L)F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)

(by Claim 1, applied to G = F)

= a (L) F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
.

Hence, the element F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
∈ Pd [λ] is invariant.

But it is easy to see that if a polynomial G ∈ Pd [λ] is invariant, then each of its
coefficients is invariant260 (because d× d-matrices L ∈ Kd×d act on Pd [λ] by acting

on each coefficient separately). Applying this to G = F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
,

we conclude that each coefficient of F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
is invariant. But

260Here, we are regarding G as a polynomial in the indeterminates λk,j over the ring Pd. Thus, the
indeterminates in Pd are regarded as constants, not as indeterminates.
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the coefficients of F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
are none other than the polynomials

Fi(1,1),i(1,2),...,i(n,d) ∈ Pd (by the equality (67)). Hence, we have shown that each of the
polynomials Fi(1,1),i(1,2),...,i(n,d) ∈ Pd is invariant. This proves Lemma 5.22 (b).

The preliminary lemmas are now disposed of. Let F ∈ P = Pn be a homoge-
neous invariant form of degree t. We must show that F is a linear combination of
standard rectangular bideterminants. Due to Lemma 5.15, it will suffice to show
that F is a linear combination of bracket monomials. We can WLOG assume that
F is nonconstant (since constant forms are clearly linear combinations of bracket
monomials); thus, t > 0. If we had n < d, then Lemma 5.21 (applied to m = n)
would yield that F is constant. Thus, we cannot have n < d. Hence, we have n ≥ d.

Let PB be the K-subalgebra of P = Pn generated by all brackets.
Let PI

d be the K-subalgebra of Pd consisting of all forms polynomials in Pd.
Then, PI

d is spanned (as a K-vector space) by all homogeneous invariants in Pd;
but all the latter are scalar multiples of powers of (x1 · · · xd | u1 · · · ud) (by Lemma
5.20). Hence, PI

d is spanned (as a K-vector space) by scalar multiples of powers of
(x1 · · · xd | u1 · · · ud). In other words, PI

d is generated as a K-algebra by the form
(x1 · · · xd | u1 · · · ud). In other words, PI

d is generated as a K-algebra by the bracket
[x1, . . . , xd] (since [x1, . . . , xd] = (x1 · · · xd | u1 · · · ud)). Hence, PI

d ⊆ PB (since PB is
the K-subalgebra of P generated by all brackets).

For each 1 ≤ j ≤ n and 1 ≤ k ≤ d, we define a bracket Bj,k ∈ P by

Bj,k =
[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]
. (69)

Then, every 1 ≤ j ≤ n and 1 ≤ r ≤ d satisfy

[x1, . . . , xd]
(
xj | ur

)
=

d

∑
k=1

[
x1, . . . , xk−1, xj, xk+1, . . . , xd

]︸ ︷︷ ︸
=Bj,k

(by (69))

(xk | ur) (by Lemma 5.17, applied to m = r)

=
d

∑
k=1

Bj,k (xk | ur) =
d

∑
i=1

Bj,i (xi | ur) . (70)

Lemma 5.22 (a) yields that the polynomial F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
∈ Pd [λ]

(defined as in Lemma 5.22) can be written in the form (67), where the summa-
tion is over all families (i (1, 1) , i (1, 2) , . . . , i (n, d)) = (i (j, r))1≤j≤n, 1≤r≤d ∈ Nn×d

of nonnegative integers satisfying
d
∑

q=1

n
∑

p=1
i (p, q) = t, and where the polynomials

Fi(1,1),i(1,2),...,i(n,d) ∈ Pd are homogeneous of degree t. Consider these polynomi-
als Fi(1,1),i(1,2),...,i(n,d) ∈ Pd. Lemma 5.22 (b) shows that each of these polynomials
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Fi(1,1),i(1,2),...,i(n,d) ∈ Pd is invariant, i.e., belongs to PI
d . Thus, the equality (67) shows

that

F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

)
∈ PI

d [λ] .

Let ω : PI
d [λ] → PB be the unique PI

d-algebra homomorphism sending each inde-
terminate λj,k to Bj,k. This is well-defined, since both Bj,k ∈ PB for all j and k (since
Bj,k is a bracket) and PI

d ⊆ PB.
We claim that the polynomial

[x1, . . . , xd]
t F

equals a polynomial in the brackets
[
xi1 , . . . , xid

]
. Indeed, as F is homogeneous of

degree t, we have

[x1, . . . , xd]
t · F = F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) (71)

261. But

F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) = ω

(
F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

))
(72)

262. Hence, (71) becomes

[x1, . . . , xd]
t · F = F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn)

= ω

(
F

(
d

∑
i=1

λ1,ixi, . . . ,
d

∑
i=1

λn,ixi

))
∈ PB.

261We are here using the following notation: If a1, a2, . . . , an are n elements of Pn, then
F (a1x1, . . . , anxn) denotes the result of substituting aj ·

(
xj | ur

)
for each indeterminate

(
xj | ur

)
(with 1 ≤ j ≤ n and 1 ≤ r ≤ d) in F.

262Proof of (72): Recall that F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

)
is the result of substituting

d
∑

i=1
λj,i (xi | ur) for

each indeterminate
(

xj | ur
)

in F. Applying the map ω further replaces each λj,i by Bj,i (by the

definition of ω). Combining these two facts, we conclude that ω

(
F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

))
is the result of substituting

d
∑

i=1
Bj,i (xi | ur) for each indeterminate

(
xj | ur

)
in F.

But the definition of F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) shows that
F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) is the result of substituting [x1, . . . , xd]

(
xj | ur

)
for each indeterminate

(
xj | ur

)
in F. In light of (70), this rewrites as follows:

F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) is the result of substituting
d
∑

i=1
Bj,i (xi | ur) for each in-

determinate
(
xj | ur

)
in F.

Hence, both forms F ([x1, . . . , xd] x1, . . . , [x1, . . . , xd] xn) and ω

(
F
(

d
∑

i=1
λ1,ixi, . . . ,

d
∑

i=1
λn,ixi

))
have been characterized in the same way (namely, as the result of substituting

d
∑

i=1
Bj,i (xi | ur)

for each indeterminate
(

xj | ur
)

in F). Thus, these two forms are equal. In other words, (72) is
proven.
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In other words, [x1, . . . , xd]
t · F belongs to the K-subalgebra of P generated by all

brackets (since PB is the K-subalgebra of P generated by all brackets). In other
words, [x1, . . . , xd]

t · F is a polynomial in the brackets. Hence, Lemma 5.16 (applied
to g = t) shows that F is a linear combination of standard rectangular bidetermi-
nants. This completes the second proof of Theorem 5.9.

5.5. A note on homogeneous forms

Theorem 5.9 quickly yields the following corollary:

Corollary 5.23. Let K be an infinite field. A homogeneous form in P is invariant
iff it is a linear combination of standard rectangular bideterminants, all of which
have the same shape (d, . . . , d).

Proof of Corollary 5.23. The “if” part of Corollary 5.23 is clearly true (since rectan-
gular bideterminants are always invariant). Thus, it remains to prove the “only if”
part.

Let F be an invariant homogeneous form in P. We must show that F is a linear
combination of standard rectangular bideterminants, all of which have the same
shape (d, . . . , d).

The form F is homogeneous; let t be its degree.
Theorem 5.9 shows that F is a linear combination of standard rectangular bide-

terminants. In other words, F can be written in the form

F = ∑
i∈I

bi
(
Ui | U′i

)
, (73)

where the
[
Ui, U′i

]
are standard bitableaux such that the tableaux U′i are rectangu-

lar, and where the bi are elements of K.
For each i ∈ I, we let gi be the number of rows of the tableau U′i .
Now, let i ∈ I. Then, the tableau U′i is rectangular and has gi rows (by the

definition of gi). Consequently, this tableau must have shape (d, . . . , d)︸ ︷︷ ︸
gi entries

. Hence, this

tableau has dgi cells. Therefore,

the bideterminant
(
Ui | U′i

)
∈ P is homogeneous of degree dgi (74)

(because the bideterminant (U | U′) of a bitableau [U, U′] always is homogeneous
of degree equal to the number of cells of U′).

Moreover, the tableau U′i has shape (d, . . . , d)︸ ︷︷ ︸
gi entries

. In other words,

the bideterminant
(
Ui | U′i

)
has shape (d, . . . , d)︸ ︷︷ ︸

gi entries

. (75)
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Now, forget that we fixed i. We thus have proven (74) and (75) for each i ∈ I.
Now, let πt : P → P be the projection of the graded ring P onto its t-th homo-

geneous component. Then, πt (F) = F (since F is homogeneous of degree t). But
applying the map πt to both sides of the equality (73), we obtain

πt (F) = πt

(
∑
i∈I

bi
(
Ui | U′i

))
= ∑

i∈I
biπt

(
Ui | U′i

)
= ∑

i∈I;
dgi=t

bi πt
(
Ui | U′i

)︸ ︷︷ ︸
=(Ui|U′i)

(since (74) shows that (Ui|U′i)
is homogeneous of degree dgi=t)

+ ∑
i∈I;

dgi 6=t

bi πt
(
Ui | U′i

)︸ ︷︷ ︸
=0

(since (74) shows that (Ui|U′i)
is homogeneous of degree dgi 6=t)

= ∑
i∈I;

dgi=t

bi
(
Ui | U′i

)
+ ∑

i∈I;
dgi 6=t

bi0

︸ ︷︷ ︸
=0

= ∑
i∈I;

dgi=t

bi
(
Ui | U′i

)
= ∑

i∈I;
gi=t/d

bi
(
Ui | U′i

)
.

Comparing this with πt (F) = F, we obtain

F = ∑
i∈I;

gi=t/d

bi
(
Ui | U′i

)
. (76)

But for each i ∈ I satisfying gi = t/d, the shape of the bideterminant
(
Ui | U′i

)
is

(d, . . . , d)︸ ︷︷ ︸
gi entries

(by (75)). In other words, for each i ∈ I satisfying gi = t/d, the shape of

the bideterminant
(
Ui | U′i

)
is (d, . . . , d)︸ ︷︷ ︸

t/d entries

(since gi = t/d). Thus, (76) shows that F is

a linear combination of standard rectangular bideterminants, all of which have the
same shape (d, . . . , d)︸ ︷︷ ︸

t/d entries

. This proves Corollary 5.23.

6. Appendix (Darij Grinberg)

Let me add some remarks on the paper above.
This paper is one of the first studies in characteristic-free invariant theory (i.e.,

invariant theory over a field K of arbitrary characteristic). What is called an in-
variant form in this paper is more or less the same as (what is nowadays known
as) an invariant of the special linear group SL (d) acting on the coordinate ring
O
((

Kd)n
)

, where SL (d) acts on Kd in the usual way. (This situation is commonly
known as “invariants of SL (d) on n vectors”.) An equivalent version of Theorem
5.9 appears already in [13, Theorem 4], but the proof given there is far too brief
to be considered complete. Theorem 5.9 also appears in [3, Section 9, Theorem 1],
where it is proven more or less in the same way as in the paper above. (Actually,
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the paper [3] can be regarded as a preliminary version of the above paper; it offers
much motivation and neat applications to elementary geometry, but is lacking in
mathematical rigor.)

On the other hand, many more works have appeared since the publication of the
paper above. I shall mention only a few of them:

• The paper [9] by DeConcini, Eisenbud and Procesi studies the algebra that
we call P in Theorem 5.9 in much more depth. In particular, our Theorem
5.9 is (more or less) [9, Corollary 3.5]263. Also, [9, Theorem 2.1] combines the
above paper’s Theorem 3.2 and Corollary 4.8 (and generalizes them to the
case where K is an arbitrary commutative ring).

• The booklet [10] by Grosshans, Rota and Stein appears to extend the above
considerations to the “superalgebra case” (i.e., forms containing “positively”
and “negatively” signed variables). (I have not read the booklet.)

• Swan’s preprint [11] gives a different approach to the straightening algorithm.
Specifically, the above paper’s Corollary 4.8 is covered by [11, Corollary 5.1
and Theorem 5.3] (and it is not hard to derive Theorem 3.2 from [11, Theorem
4.1] as well).

• Procesi’s book [12] covers characteristic-free invariant theory in its Chapter
13. In particular, [12, Section 13.4, Theorem] is exactly Corollary 4.8 but using
the base ring Z instead of the field K; furthermore, [12, Section 13.6.3] comes
rather close to the Theorem 5.9 above.

Let me now briefly discuss the possibility of extending some of the results in the
above paper to the more general situation when K is an arbitrary commutative ring
(rather than a field).

Assume from now on that K (instead of being a field) is just a commutative ring
(with unity).

Then, all claims and proofs made in Section 3 remain valid. (Of course, we
need to make obvious modifications, such as replacing the word “vector space” by
“module” everywhere.)

Furthermore, all claims and proofs made in Section 4 remain valid, as long as
the following modification is made: The claim of Theorem 4.5 (i) must be replaced
by “The one-element family (C (T, T′) (T | T′)) is K-linearly independent (i.e., if an

263The proof of [9, Corollary 3.5] is somewhat similar to our first proof of Theorem 5.9, but is slicker.
As an intermediate result, it also characterizes the forms F ∈ P that are “invariant under lower-
unitriangular matrices” (i.e., that satisfy LF = F for every lower-unitriangular d × d-matrix
L ∈ Kd×d); namely, these forms are linear combinations of standard bideterminants (U | U′)
such that each row of the tableau U′ has the form uiui+1 · · · ud for some i ∈ {1, 2, . . . , d}. (See
[9, Theorem 3.3 0)] for this result; but beware that what we call LF for an invertible d× d-matrix
L ∈ Kd×d and a form F ∈ P corresponds to what [9] would call

(
LT)−1 F, which is why our

lower-triangular matrices correspond to upper-triangular matrices in [9].)
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a ∈ K satisfies aC (T, T′) (T | T′) = 0, then a = 0).”. (The proof of this new claim is
exactly the proof of Theorem 4.5 (i) we gave above.)

All claims and proofs made in Subsection 5.1 remain valid (except for the ar-
guments in Remark 5.8, which are unimportant), as long as the following modi-
fication is made: The equality (15) must be replaced by “The one-element family
(φ (T | T′)) is K-linearly independent (i.e., if an a ∈ K satisfies φ (T | T′) = 0, then
a = 0).”. (The proof of this new claim is exactly the proof of Lemma 5.7 we gave
above.)

Much more complicated is the situation with Subsections 5.2, 5.3 and 5.4. The-
orem 5.9, to begin with, doesn’t even hold when K is a finite field264. But merely
requiring K to be infinite is not sufficient when K is not a field.265 Instead, a mean-
ingful way to salvage Theorem 5.9 is to replace the concept of invariant by the
concept of an absolute invariant:

A form F ∈ P is said to be an absolute invariant if it satisfies LF = a (L) F not
just for invertible d× d-matrices L ∈ Kd×d defined over K, but also for invertible
d× d-matrices L ∈ Ad×d defined over any commutative K-algebra A (where a (L)
is now required to be an element of A). In particular, this allows for an invertible

264Indeed, let K be the finite field Fq for some prime power q. Set n = 1. Then, the ring P is
the polynomial ring over K in the indeterminates

(
x1 | uj

)
for all 1 ≤ j ≤ d. Let us denote

these indeterminates by Xj; thus, P = K [X1, X2, . . . , Xd]. As before, the group of all invertible
d × d-matrices L ∈ Kd×d acts on P by algebra endomorphisms. If the conclusion of Theorem
5.9 were to hold for our field K, then, for any d ≥ 2, the only invariant forms in P would be
constants (since the only standard rectangular bideterminant in this setting is the empty one
( | ), because d ≥ 2 > 1 = n ensures that a rectangular bitableau cannot be standard). But this
is not the case: For each d-tuple (α1, α2, . . . , αd) ∈Nd of nonnegative integer, the determinant

Aα = det


Xqα1

1 Xqα1

2 · · · Xqα1

d
Xqα2

1 Xqα2

2 · · · Xqα2

d
...

...
. . .

...
Xqαd

1 Xqαd

2 · · · Xqαd

d


is an invariant in the sense of the above paper (more precisely, it has the property that every
d× d-matrix L ∈ Kd×d satisfies LAα = (det L) Aα; see [16, 7th Variation] for this). If the entries
of the d-tuple α are distinct (and if d ≥ 1), then Aα is not a constant. Thus, the requirement that
K is infinite in Theorem 5.9 cannot be dropped!

The phenomenon of these nonconstant invariants over finite fields is interesting in its own
right; it has been studied already by Dickson in 1911. We can find nonconstant forms in F
that are not only invariant in the above sense, but actually satisfy the stronger condition that
each invertible d × d-matrix L ∈ Kd×d satisfies LF = F (not just LF = a (L) F for some scalar
a (L)). Indeed, such invariants can be constructed from the above determinants Aα; namely, if
we let δ be the d-tuple (d− 1, d− 2, . . . , 0), then it can be shown that Aα/Aδ is a polynomial
for every d-tuple α, and this polynomial Aα/Aδ satisfies the stronger condition (i.e., if we set
F = Aα/Aδ, then each invertible d× d-matrix L ∈ Kd×d satisfies LF = F). Polynomials satisfying
this condition have been characterized by Dickson (see, e.g., [15, Theorem 1.2] or [14, Theorem
A]).

265Counterexamples can easily be obtained when K is the (infinite) ring Fq × Fq × Fq × · · · for a
prime power q.
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d× d-matrix whose entries are distinct indeterminates. This makes the LF = a (L) F
condition stronger, and as one can see, this added strength suffices to make Theo-
rem 5.9 valid for every commutative ring K:

Theorem 6.1 (the first fundamental theorem of invariant theory). Let K be a com-
mutative ring. A form in P is an absolute invariant iff it is a linear combination
of standard rectangular bideterminants.

The first proof of Theorem 5.9 given above actually can be extended (with some
additional work) to prove Theorem 6.1266. (The second proof can probably not be
extended, at least not easily.)
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