The Petrie symmetrie functions and

Murnaghan—Nakayama rules

Darij Grinberg

4 February 2020
Institut Mittag—Leffler, Djursholm, Sweden

slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/
djursholm2020.pdf

paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/petriesym.pdf
overview: http:
//www.cip.ifi.1lmu.de/~grinberg/algebra/fps20pet.pdf

1/43


http://www.cip.ifi.lmu.de/~grinberg/
http://www.cip.ifi.lmu.de/~grinberg/algebra/djursholm2020.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/djursholm2020.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/petriesym.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/petriesym.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/fps20pet.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/fps20pet.pdf

@ What you are going to see:

o A new family (G (k, m)),,~, of symmetric functions for
each k > 0. (So, a family of families.)

It “interpolates” between the e's and the h's in a sense.
Various nice properties if | do say so myself.

A proof (sketch) of a conjecture coming from algebraic
groups.

A source of homework exercises for your symmetric
functions class.
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@ What you are going to see:

o A new family (G (k, m)),,~, of symmetric functions for
each k > 0. (So, a family of families.)

It “interpolates” between the e's and the h's in a sense.
Various nice properties if | do say so myself.

A proof (sketch) of a conjecture coming from algebraic
groups.

A source of homework exercises for your symmetric
functions class.

@ What you are not going to see:
o Meaning.
o Theories.
o (mostly) actual combinatorics (algorithms, bijections,
etc.).
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Symmetric functions: notation, 1

@ We will use standard notations for symmetric functions, such
as used in:
e Richard Stanley, Enumerative Combinatorics, volume 2,

CUP 2001.
e D.G. and Victor Reiner, Hopf algebras in Combinatorics,

2012-2020+.
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Symmetric functions: notation, 1

@ We will use standard notations for symmetric functions, such
as used in:

e Richard Stanley, Enumerative Combinatorics, volume 2,
CUP 2001.

e D.G. and Victor Reiner, Hopf algebras in Combinatorics,
2012-2020+.

o Let k be a commutative ring (Z and Q will suffice).
o Let N:=1{0,1,2,...}.
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Symmetric functions: notation, 2

@ A weak composition means a sequence (a1, @z, a3, ...) € N
such that all / > 0 satisfy a; = 0.

@ We let WC be the set of all weak compositions.
@ We write «; for the j-th entry of a weak composition .

@ The size of a weak composition « is defined to be
\a\ =o1tay+a3+ -
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A weak composition means a sequence (a1, ap,a3,...) € N®
such that all / > 0 satisfy a; = 0.

We let WC be the set of all weak compositions.

We write «; for the j-th entry of a weak composition a.
The size of a weak composition « is defined to be

la] ==a1+ax+az+---.

A partition means a weak composition « satisfying
Q2 Q2> az >,

A partition of n means a partition « with |a| = n.

We let Par denote the set of all partitions. For each n € Z, we
let Par,, denote the set of all partitions of n.
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@ A weak composition means a sequence (a1, @z, a3, ...) € N
such that all / > 0 satisfy a; = 0.

We let WC be the set of all weak compositions.

We write «; for the j-th entry of a weak composition a.
The size of a weak composition « is defined to be

la] ==a1+ax+az+---.

A partition means a weak composition « satisfying
Q2 Q2> az >,

A partition of n means a partition « with |a| = n.

We let Par denote the set of all partitions. For each n € Z, we
let Par,, denote the set of all partitions of n.

We often omit trailing zeroes from partitions: e.g.,
(3,2,1,0,0,0,...) = (3,2,1) =(3,2,1,0).

The partition (0,0,0,...) = () is called the empty partition
and denoted by @.
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Symmetric functions: notation, 3

@ We will use the notation m* for “m, m,..., m" in partitions.
N——

k times

(For example, (2, 14) =(2,1,1,1,1).)
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@ We will use the notation m* for “m, m,..., m" in partitions.
N——

k times
(For example, (2, 14) =(2,1,1,1,1).)
@ For any weak composition «, we let x* denote the monomial

a1, a2, Q3
X1 x5 2 x5 - -+ . It has degree |a.
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@ We will use the notation m* for “m, m,..., m" in partitions.
N——

k times
(For example, (2, 14) =(2,1,1,1,1).)

@ For any weak composition «, we let x* denote the monomial
X1 x52x5% -+ - . It has degree |a.

@ The ring k[[x1, x2, x3, .. .]] consists of formal infinite k-linear
combinations of monomials x“. These combinations are called
formal power series.

@ The symmetric functions are the formal power series
f € k[[x1,x2,x3,...]] that are

o of bounded degree (i.e., all monomials in f have degrees
< N for some N = Nf);
o symmetric (i.e., permuting the x; does not change f).
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Symmetric functions: notation, 3

@ We will use the notation m* for “m, m,..., m" in partitions.
N——

k times

(For example, (2, 14) =(2,1,1,1,1).)
For any weak composition «, we let x* denote the monomial
X1 x52x5% -+ - . It has degree |a.
The ring k[[x1, x2, x3, . . .]| consists of formal infinite k-linear
combinations of monomials x“. These combinations are called
formal power series.
The symmetric functions are the formal power series
f € k[[x1,x2,x3,...]] that are

o of bounded degree (i.e., all monomials in f have degrees

< N for some N = Nf);

o symmetric (i.e., permuting the x; does not change f).

We let

N = {symmetric functions f € k [[x1, x2, x3,...]]} .
This is a k-subalgebra of k [[x1, X2, x3, .. .]], graded by the

degree. /a3



Symmetric functions: m

@ The k-module A has several bases indexed by the set Par.
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@ The k-module A has several bases indexed by the set Par.
@ The monomial basis (my)ycpa,:

For each partition A\, we define the monomial symmetric
function my € N by

my = Z x<.

« is a weak composition;
a can be obtained from A
by permuting entries
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Symmetric functions: m

@ The k-module A has several bases indexed by the set Par.
@ The monomial basis (my)ycpa,:

For each partition A\, we define the monomial symmetric
function my € N by

my = Z x<.

« is a weak composition;
a can be obtained from A
by permuting entries

For example:

m2,1) E x2x2xk+ g xxjxk—i- g x,xxk

i<j<k i<j<k i<j<k
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Symmetric functions: m

@ The k-module A has several bases indexed by the set Par.

@ The monomial basis (my)ycpa,:
For each partition A\, we define the monomial symmetric
function my € N by

my = Z x<.

« is a weak composition;

a can be obtained from A
by permuting entries

For example:

m2,1) E x2x2xk+ g xxjxk—i- g x,xxk

i<j<k i<j<k i<j<k

The family (my),cp,, is a basis of the k-module A, called the
monomial basis.
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Symmetric functions: h

@ The complete basis (hy)y\cpa:
For each n € 7Z, define the complete homogeneous symmetric
function h, by

h, = g Xiy Xy =+ Xi, = E x& = g my.

I'1SI'2S---SI',, aceWC; AePar,
|a|=n
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Symmetric functions: h

@ The complete basis (hy)y\cpa:

For each n € 7Z, define the complete homogeneous symmetric
function h, by

(67
h, = g Xiy Xip =+ Xj, = E x* = g my.
1<ip<:-<ip aceWC; AePar,
loe|=n

For example,
h=x1+x+x3+-;
b= Y = Y8+
i<j i i<j
ho =1,
h,=0 for all n < 0.
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Symmetric functions: h

@ The complete basis (hy)y\cpa:
For each n € 7Z, define the complete homogeneous symmetric
function h, by

(67
h, = g Xiy Xip =+ Xj, = E x* = g my.
1<ip<:-<ip aceWC; AePar,
loe|=n

For example,
h=x1+x+x3+-;
=Y = Y+ Yy
i<j i i<j
ho =1,
h,=0 for all n < 0.
For each partition A, we define
hx ::hAlhA2hA3"’ e A

The family (hy)ycp,, is a basis of the k-module A.
7/43



Symmetric functions: e

@ The elementary basis (ex)cpar:
For each n € 7Z, define the elementary symmetric function ey,

by
§ : § : ol
enh = Xig Xip *+ + Xj, = X" = m(ln).
1 <ip<--<ip aeWCN{0,1}°°;
jal=n
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@ The elementary basis (ex)cpar:
For each n € 7Z, define the elementary symmetric function ey,

by
§ : § : ol
enh = Xig Xip *+ + Xj, = X" = m(ln).
1 <ip<--<ip aeWCN{0,1}°°;
jal=n

For example,

e =Xy +x2+ X3+
&= xx;
i<j
e =1,
e, =0 for all n < 0.
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Symmetric functions: e

@ The elementary basis (ex)cpar:
For each n € 7Z, define the elementary symmetric function ey,

by
§ : § : ol
enh = Xig Xip *+ + Xj, = X" = m(ln).
1 <ip<--<ip aeWCN{0,1}°°;
jal=n

For example,

eg=x1+xX2+x3+---;
&= XX
i<j
e = 1,
e =0 for all n < 0.
For each partition A, we define
€\ =€)\, €),6)\; € A.

The family (ex)cpar is @ basis of the k-module A. )
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Symmetric functions: p

@ The power-sum symmetric functions py:
For each positive integer n, define the power-sum symmetric
function p, by

Pn =X +x3 + x5+ =mey).
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Symmetric functions: p

@ The power-sum symmetric functions py:
For each positive integer n, define the power-sum symmetric
function p, by

Pn =X +x3 + x5+ =mey).

We can make a basis out of (products of) p,'s when k is a
Q-algebra.
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Symmetric functions: s

@ The Schur basis (S)\)ycpar:
For each partition A\, we can define the Schur function sy in
many equivalent ways, e.g.:

N

T is a semistandard
Young tableau of shape A

o We have

where x7 denotes the monomial obtained by multiplying
the x; for all entries j of T.

10/43



Symmetric functions: s

@ The Schur basis (S)\)ycpar:
For each partition A\, we can define the Schur function sy in
many equivalent ways, e.g.:

S\ = > X7,

T is a semistandard
Young tableau of shape A\

o We have

where x7 denotes the monomial obtained by multiplying
the x; for all entries j of T.
o If A= (/\1, A2, ,)\g), then

Sy = det <(h>\i—i+f)1§i§€, 1§j§£)

(the first Jacobi-Trudi formula).
The family (s))ycpar is @ basis of the k-module A.
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Petrie functions: definition of G(k)

@ For any positive integer k, set
G (k)

- Y

aceWC;
a;<k for all i

= Z (all monomials whose exponents are all < k)

€ k[[x1, x2, x3, .. .]] (not € A in general).
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Petrie functions: definition of G(k, m)

@ For any positive integer k and any m € N, we let
G (k, m)
-y o
aceWC;

laf=m:
a;<k for all i

= Z (all degree-m monomials whose exponents are all < k)

eA.
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Petrie functions: definition of G(k, m)

@ For any positive integer k and any m € N, we let
G (k, m)

- >
aceWC;

laf=m:
a;<k for all i

= Z (all degree-m monomials whose exponents are all < k)
e

For example,

G(3,4) = Z XiXjXkXp + Z X,-2Xij+ Z X,'XJ-2Xk

i<j<k<t i<j<k i<j<k
2 2.2
+ E XiXjXje + E X X;
i<j<k i<j

= M(1,1,1) + M211) + mMep2).
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Petrie functions: basic properties

@ | named G (k) and G (k, m) the Petrie functions, for reasons
that will become clear eventually.
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@ | named G (k) and G (k, m) the Petrie functions, for reasons
that will become clear eventually.
e Basic properties (for arbitrary k > 0 and m € N):

G (k) = Z my = ﬁ(x +x} 4+ ,-k_l).

AEPar; i=1
i<k for all i
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@ | named G (k) and G (k, m) the Petrie functions, for reasons
that will become clear eventually.
e Basic properties (for arbitrary k > 0 and m € N):

AEPar; i=1
i<k for all i

o G (k, m) is the m-th degree component of G (k).

°
G (k,m) = E my.
A€EPar;
|Al=m;
i<k for all i

o G(2,m) = en.
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Petrie functions: basic properties

@ | named G (k) and G (k, m) the Petrie functions, for reasons
that will become clear eventually.
e Basic properties (for arbitrary k > 0 and m € N):

AEPar; i=1
i<k for all i

G (k, m) is the m-th degree component of G (k).

G (k,m) = Z my.

A€EPar;
|Al=m;
i<k for all i
o G(2,m) = en.
o G (k,m) = hy, whenever k > m.
o G(m,m)=hp, —
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Petrie functions and the coproduct of A

@ This is for the friends of Hopf algebras:

A(G(k,m) =Y G(ki)®G(k,m—1i)
i=0
for each kK > 0 and m € N.
Here, A is the comultiplication of A, defined to be the
k-algebra homomorphism

AN ADA,

n
€ — E e & ep—_j.
i=0
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Petrie functions and the coproduct of A

@ This is for the friends of Hopf algebras:

ZG N®G(k,m—i)

for each kK > 0 and meN.

Here, A is the comultiplication of A, defined to be the
k-algebra homomorphism

AN ARA,
n
en'—>Ze;®en_,-.
i=0

@ In terms of alphabets, this says

(G(k7m)) (X17X27X3) e Y1, Y2, 3, - )
m

= Z(G(/ﬂ M) (X1, %23, ..) - (G (k;m = 1)) (y1, y2, 35+ ) -
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Expanding Petries in the Schur basis

@ We can expand the G (k, m) in the Schur basis (s))cp,,: €-8-

G (4,6) = s52,1,1,1,1) — S22,1,1) T 53,3)-
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G (4,6) = s52,1,1,1,1) — S22,1,1) T 53,3)-

@ Surprisingly, it turns out that all coefficients are in {0,1,—1}.

o Better yet: Any product G (k,m) - s, expands in the Schur
basis with coefficients in {0,1, —1}.
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Expanding Petries in the Schur basis

@ We can expand the G (k, m) in the Schur basis (s))cp,,: €-8-
G (4,6) = s52,1,1,1,1) — S22,1,1) T 53,3)-

@ Surprisingly, it turns out that all coefficients are in {0,1,—1}.

o Better yet: Any product G (k,m) - s, expands in the Schur
basis with coefficients in {0,1, —1}.

@ Let us see what the coefficients are.
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Petrie numbers

@ We let [A] denote the truth value of a statement A (that is, 1
if Ais true, and 0 if A is false).
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Petrie numbers

@ We let [A] denote the truth value of a statement A (that is, 1
if Ais true, and 0 if A is false).

o Let \= ()\1,)\2, R ,)\g) € Par and
w=(pa, p2,..., 1) € Par, and let k be a positive integer.
Then, the k-Petrie number pet, (A, 1) of A and p is the
integer defined by

pet, (A, 1) = det (([0 <N i< KD)icics 1358) :
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Petrie numbers

@ We let [A] denote the truth value of a statement A (that is, 1
if Ais true, and 0 if A is false).

o Let \= ()\1,)\2, R ,)\g) € Par and
w=(pa, p2,..., 1) € Par, and let k be a positive integer.
Then, the k-Petrie number pet, (A, 1) of A and p is the
integer defined by

pet, (A, 1) = det (([0 <N i< KD)icics 1<J.SZ) :
For example, for £ = 3, we have

pety (A, i)

D<M—p <k [0<AM—p+1<k] [0<A—p3+2<K]
=det| o<ro—m-1<k [0<o-jp<kl [0<lo-pu+l<kl |.
O<As—p—2<k [0<As—jpo—1<kl [0<As—ps<k

For example,

1
pet, ((3,1,1),(2,1)) = det | ©
0

o~
= = O
Il
—
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Petrie numbers

@ We let [A] denote the truth value of a statement A (that is, 1
if Ais true, and 0 if A is false).

o Let \= ()\1,)\2, R ,)\g) € Par and
w=(pa, p2,..., 1) € Par, and let k be a positive integer.
Then, the k-Petrie number pet, (A, 1) of A and p is the
integer defined by

pet, (A, 1) = det (([0 <N i< KD)icics 1358) :

o Proposition: We have pet, (A, 1) € {0,1,—1} for all A and
78
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Petrie numbers

@ We let [A] denote the truth value of a statement A (that is, 1
if Ais true, and 0 if A is false).

o Let \= ()\1,)\2, R ,)\g) € Par and
w=(pa, p2,..., 1) € Par, and let k be a positive integer.
Then, the k-Petrie number pet; (A, 1) of X and p is the
integer defined by

paAMMZdﬂ«WSAr#U—“H<kMggﬂgﬁ»

o Proposition: We have pet, (A, 1) € {0,1,—1} for all A and
L.

@ Proof idea. Each row of the matrix
(0 < Ai—pj—i+J <k])icicp 1<j<¢ has the form

(0,0,...,0,1,1,...,1,0,0,...,0) for some a, b,c € N.
———— ——— ———
a zeroes b ones C zeroes

Thus, this matrix is the transpose of a Petrie matrix. Hence,
its determinant is € {—1,0,1} (by Gordon and Wilkinson
1974).
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Expanding Petries in the Schur basis: the formula

@ Theorem: Let k be a positive integer. Let p € Par. Then,

G (k) su=Y_ pety (X p)sy.
AePar
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@ Theorem: Let k be a positive integer. Let p € Par. Then,
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AePar
Thus, for each m € N, we have

Gk,m)-su= > pety (A p)s
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Expanding Petries in the Schur basis: the formula

@ Theorem: Let k be a positive integer. Let i € Par. Then,
G (k) su= 3 petic () sn
AePar
Thus, for each m € N, we have

G (k,m)-s, = Z pety (A, 1) sx.

)\EParerM

@ Corollary: Let k be a positive integer. Then,

G (k)= ) pety () 2)sh
AePar
Thus, for each m € N, we have

G (k,m) = Z pet, (A, @) sy.

AePary,
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Expanding Petries in the Schur basis: the formula

@ Theorem: Let k be a positive integer. Let p € Par. Then,
G (k) su=Y_ pety (X p)sy.
AePar
Thus, for each m € N, we have

Gk,m)-su= > pety (A p)s

)\EParmHM

@ One proof of the Theorem uses alternants; the other uses the
“semi-skew Cauchy identity”

Z sx () sy/u (v) = s (%) - H (1- Xi}/j)_l
AEPar ij=1
=5, (<) D () m(y)
A€Par

(for any u € Par and for two sets of indeterminates
x = (x1,x2,x3,...) and y = (y1,¥2,¥3,...)).
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What are the Petrie numbers?

@ We have shown that pet, (A, 1) € {0,1, -1}, but what
exactly is it?
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What are the Petrie numbers?

@ We have shown that pet, (A, 1) € {0,1, -1}, but what
exactly is it?

@ Gordon and Wilkinson 1974 prove that Petrie matrices have

determinants € {0,1, —1} by induction. This is little help to
us.

18/43


https://projecteuclid.org/euclid.pjm/1102912464

What are the Petrie numbers? The easy case

@ Proposition: Let X\ € Par and k > 0 be such that \; > k.
Then, pet, (A, @) =0.
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What are the Petrie numbers? The easy case

@ Proposition: Let X\ € Par and k > 0 be such that \; > k.
Then, pet, (A, @) =0.

@ To get a description in all other cases, recall the definition of
transpose (aka conjugate) partitions:
Given a partition X\ € Par, we define the transpose partition \*
of A to be the partition p given by

wi=NHj€{1,2,3,...} | A =i} for all i > 1.

In terms of Young diagrams, this is just flipping the diagram
of A\ across the diagonal.
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What are the Petrie numbers? Formula for pet, (\, @)

@ Theorem: Let X € Par and k > 0 be such that A\; < k. Let
= At (the transpose partition of \). Thus, ux = 0.
Foreach i € {1,2,..., k —1}, set

Bi=pi—i and =14+ (Bi—1)%k .
—_—

remainder of 8;—1
modulo k

(a) If the k — 1 numbers v1,72,...,7k—1 are not distinct,
then pet, (A, @) = 0.
(b) If the kK — 1 numbers 71,72, ...,7k—1 are distinct, then

pet, (\, @) = (_1)(61+6z+.,.+Bk,1)+g+(71+fy2+...+w71) 7

where

g:H(i,j)e{l,2,...,k—l}2 | i<jandfy,-<fyj}).
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What are the Petrie numbers? Formula for pet, (\, @)

@ Theorem: Let X € Par and k > 0 be such that A\; < k. Let
= At (the transpose partition of \). Thus, ux = 0.
Foreach i € {1,2,..., k —1}, set

ﬁ,':,u,'*l' and ’y,':].+ (ﬁ,‘*l)%k .
N——

remainder of 8;—1
modulo k

(a) If the k — 1 numbers v1,72,...,7k—1 are not distinct,
then pet, (A, @) = 0.
(b) If the kK — 1 numbers 71,72, ...,7k—1 are distinct, then

pet, (A, @) = (_1)(61+6z+.,.+Bk,1)+g+(71+fy2+...+w71) 7

where
g:H(i,j)e{l,2,...,k—l}2 | i<jandfy,-<fyj}).

@ Question: Is there such a description for pet; (A, i) ?
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Other properties

@ For any k > 0, we define a map f, : A — A by setting

fk(a):a(x{‘,xzk,xé‘,...) for each a € A.

This map fx is called the k-th Frobenius endomorphism of A.
(Also known as plethysm by pi. Perhaps the nicest plethysm!)
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Other properties

@ For any k > 0, we define a map f, : A — A by setting

fk(a):a(x{‘,xzk,xé‘,...) for each a € A.
This map fx is called the k-th Frobenius endomorphism of A.
(Also known as plethysm by pi. Perhaps the nicest plethysm!)
@ Theorem: Let k be a positive integer. Let m € N. Then,

G(k,m) = (=1) hmsi - fic (&i) -

ieN

@ Theorem: Fix a positive integer k. Assume that 1 — k is
invertible in k. Then, the family
(G (k,m)),~1 = (G (k,1),G (k,2),G(k,3),...)is an
algebraically independent generating set of the commutative
k-algebra A.

@ Thus, products of several elements of this family form a basis
of A (if 1 — k is invertible in k). These bases remain to be

studied.
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The Liu—Polo conjecture

@ This all begin with the following conjecture (Liu and Polo,
arXiv:1908.08432):

n—2
Z my = Z (—1)I S(n717n717,"1i+1) for any n > 1.
AEParpn_1; i=0

(n—1,n—1,1)>X

Here, the symbol > stands for dominance of partitions (also
known as majorization); i.e., for two partitions A and p, we
have

A>p o if and only if
A4+ Ao+ N> pg+po+ -+ p forall §).

@ Let me briefly outline how this conjecture can be proved.
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The Liu—Polo conjecture, proof: 1

@ The partitions A\ € Parp,_1 satisfying (n—1,n—1,1)> X are
precisely the partitions A € Parp,_1 satisfying A\; < n for all .
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The Liu—Polo conjecture, proof: 1

@ The partitions A\ € Parp,_1 satisfying (n—1,n—1,1)> X are
precisely the partitions A € Parp,_1 satisfying A\; < n for all .
@ Thus,
Z my =G (n,2n—1).

AePary,_1;
(n—1,n—1,1)>X

@ So it remains to show that

N

G(n2n—1)=> (1) sp_1,0-1-i1041)-

i

I
o
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The Liu—Polo conjecture, proof: 1

@ The partitions A\ € Parp,_1 satisfying (n—1,n—1,1)> X are
precisely the partitions A € Parp,_1 satisfying A\; < n for all .
@ Thus,
Z my =G (n,2n—1).

AePary,_1;
(n—1,n—1,1)>X

@ So it remains to show that

N

n—

G(n2n—1)=> (-1) S(n—1,n—1—i,1/+1)-

I
o

@ The formula for pet, (A, &) should be useful here, but the
combinatorics is tortuous.
Instead, we can work algebraically:
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The Liu—Polo conjecture, proof: G(n,2n — 1) explicitly

@ We can easily see that

G(n,n+ k)= hyk—hkp,  foreach k€ {0,1,...,n—1}.
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The Liu—Polo conjecture, proof: G(n,2n — 1) explicitly

@ We can easily see that

G(n,n+ k)= hyk—hkp,  foreach k€ {0,1,...,n—1}.

Thus, in particular, G (n,2n — 1) = hap—1 — hp—1pn.

@ By the way, this is also a particular case of the

G (k,m) = Z (—1)i hm—ki - fk (&)

ieN

formula.
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The Liu—Polo conjecture, proof: Bernstein operators

@ Recall the skewing operations f+ : A — A for all f € A.
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Schur row-adder in Garsia's) by setting
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The Liu—Polo conjecture, proof: Bernstein operators

@ Recall the skewing operations f+ : A — A for all f € A.

@ For any m € N, we define a map B, : A — A (known as a
m-th Bernstein operator in Zelevinsky's language, or as a
Schur row-adder in Garsia's) by setting

Bm (f)=> (~1) Amyieff for all f € A.
ieN
@ Theorem (implicit in Zelevinsky's book; solved exercise in
G./Reiner): If X\ € Par and m € Z satisfy m > A1, then

Bm(sx) = S(m,A1,00,23,...)
@ On the other hand, it is not hard to see that
Bm (hn) = hmhn — hmi1hn—1 and
Bm (Pn) = Ampn — Amtn
for each n > 0 and each m € {0,1,...,n}.
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The Liu—Polo conjecture, proof: Bernstein operators

@ Recall the skewing operations f+ : A — A for all f € A.

@ For any m € N, we define a map B, : A — A (known as a
m-th Bernstein operator in Zelevinsky's language, or as a
Schur row-adder in Garsia's) by setting

Bm (f)=> (~1) Amyieff for all f € A.
ieN

@ Theorem (implicit in Zelevinsky's book; solved exercise in
G./Reiner): If X\ € Par and m € Z satisfy m > A1, then

Bm (5)‘) = S(mA1,02,)3,..)
@ On the other hand, it is not hard to see that
Bm (hn) = hmhn — hmi1hn—1 and
Bm (Pn) = hmpn - hm+n
for each n > 0 and each m € {0,1,...,n}.
Hence,

Bn—1 (hn - pn) = h2n—1 - hn—lpn =G (n7 2n — ]-) .
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The Liu—Polo conjecture, proof: Applying Murnaghan—Nakayama

@ The Murnaghan—Nakayama rule yields

n—1

Pn = Z (—1)i S(n—i,1i)-

i=0
Subtracting this from h, = s,) = 5(,_0,10), we find

n—2

hn — pn = Z (_1)i S(n—1—i,1i+1)-

(—1)'Bn_1 <S(n—1—i,1"+1)>

(_1)i5(n71,n717i,1"+1)
(by Bm (5)\) = S(m,)\l,)\g,)\3,...))'
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The Liu—Polo conjecture, proof: Applying Murnaghan—Nakayama

@ Since B,_1 (hy — pn) = G (n,2n — 1), we now get

n—2

G (n,2n—1)=Bp_1(hn— pn) = Z (—1)i S(n—1,n—1—i,1/+1)-
i=0

This proves the conjecture from Liu/Polo.
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MNable symmetric functions

@ Now to something different.
Recall our formula

G (k,m)-s, = Z pety (A, 1) sx.
)\GPaFerlH‘ 6{0,1,*1}
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)\EPaFerlH‘ 6{0,1,*1}

@ Problem: What other functions can we replace G (k, m) by
and still get such a formula?
In other words, what other f € A satisfy

fs,= Z (something in {0,1,—1})s\ 7
AePar
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MNable symmetric functions

@ Now to something different.
Recall our formula

G (k,m)-s, = Z pety (A, 1) sx.
)\EPaFerlH‘ 6{0,1,*1}

@ Problem: What other functions can we replace G (k, m) by
and still get such a formula?
In other words, what other f € A satisfy

fs,= Z (something in {0,1,—1})s\ 7
AePar

@ Let us restate this more formally.
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The Hall inner product

@ We recall the Hall inner product (-,-) : A x A — k; it is the
unique k-bilinear form on A that satisfies

(s5x:8u) = Oa for all \, u € Par.
It also is symmetric and nondegenerate and satisfies

(hx,my) = 0xp for all A\, € Par.
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MNable symmetric functions: definition

o Definition: Let k = Z from now on.

o A symmetric function f € A will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)
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MNable symmetric functions: definition

o Definition: Let k = Z from now on.

o A symmetric function f € A will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)

o A symmetric function f € A will be called MNable if for
each partition p, the product fs, is signed
multiplicity-free.

@ For example, h3py is signed multiplicity-free, since

h3p2 = s5) + 5(3.2) — S(3,1,1):
but it is not MNable, since the product
h3P25(2) = —532,1,1) T 5322) — 54,1,1,1) T 54,3)
—S511) T 2552) T 561) 1 5(7)
is not signed multiplicity-free (due to the coefficient of 55 2)
being 2). )45



MNable symmetric functions: examples

o Definition: Let k = Z from now on.

o A symmetric function f € A will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)

o A symmetric function f € A will be called MNable if for
each partition p, the product fs, is signed
multiplicity-free.

o First Pieri rule: Each i € Par and i/ € N satisfy

h,'Su = Z S\-

AePar;
A/ is a horizontal i-strip

The right hand side is signed multiplicity-free (without any
—1's). Thus, h; is MNable.
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o Definition: Let k = Z from now on.

o A symmetric function f € A will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)

o A symmetric function f € A will be called MNable if for
each partition p, the product fs, is signed
multiplicity-free.

@ Second Pieri rule: Each p € Par and i € N satisfy

€iSy = Z SH\.

A€Par;
A/ is a vertical i-strip

The right hand side is signed multiplicity-free (without any
—1's). Thus, e; is MNable.
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multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)

o A symmetric function f € A will be called MNable if for
each partition p, the product fs, is signed
multiplicity-free.

@ Murnaghan—Nakayama rule: Each p € Par and i/ > 0 satisfy
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A€Par;
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The right hand side is signed multiplicity-free. Thus, p; is
MNable.
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MNable symmetric functions: examples

o Definition: Let k = Z from now on.

o A symmetric function f € A will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {—1,0,1}. (That is, if the Hall inner
product (f,s,) is —1 or 0 or 1 for each partition f.)

o A symmetric function f € A will be called MNable if for
each partition p, the product fs, is signed
multiplicity-free.

@ Murnaghan—Nakayama rule: Each p € Par and i/ > 0 satisfy

PisSy = Z +s,.

A€Par;
A/ is a rim hook of size i

The right hand side is signed multiplicity-free. Thus, p; is
MNable.

@ Roughly speaking, an f € A is MNable if and only if there is a
Murnaghan-Nakayama-like rule for fs,. Thus, the name
“MNable”. 31/43



MNable symmetric functions: results, 1

@ Question: Which symmetric functions are MNable?
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@ Question: Which symmetric functions are MNable?

@ Theorem:
e The functions h; and ¢; are MNable for each / € N.
o The function p; is MNable for each positive integer i.
o The Petrie function G (k, m) and the difference

G (k, m) — hp, are MNable for any integers k > 1 and
m > 0.
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The function p; is MNable for each positive integer i.
The Petrie function G (k, m) and the difference

G (k, m) — hp, are MNable for any integers kK > 1 and
m > 0.

The differences h; — p; and h; — e; are MNable for each
positive integer i. (This includes h; — e; = 0.)

o The difference h; — p; — €; is MNable for each even
positive integer i.
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MNable symmetric functions: results, 1

@ Question: Which symmetric functions are MNable?
@ Theorem:

The functions h; and e; are MNable for each i € N.
The function p; is MNable for each positive integer i.
The Petrie function G (k, m) and the difference

G (k, m) — hp, are MNable for any integers k > 1 and
m > 0.

The differences h; — p; and h; — e; are MNable for each
positive integer i. (This includes h; —e; =0.)

o The difference h; — p; — €; is MNable for each even
positive integer i.

The product p;p; is MNable whenever i > j > 0.
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MNable symmetric functions: results, 1

@ Question: Which symmetric functions are MNable?
@ Theorem:

e The functions h; and ¢; are MNable for each / € N.

o The function p; is MNable for each positive integer i.

o The Petrie function G (k, m) and the difference
G (k, m) — hp, are MNable for any integers kK > 1 and
m > 0.

o The differences h; — p; and h; — e; are MNable for each
positive integer i. (This includes h; — e; = 0.)

o The difference h; — p; — €; is MNable for each even
positive integer i.

e The product p;p; is MNable whenever i > j > 0.

o The function m,n) as well as the differences hpx — myyn)
and ey — (—1)(k1n mkny are MNable for any positive
integers n and k (where (k") denotes the n-tuple
(k,k,..., k)).
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MNable symmetric functions: results, 2

@ Theorem (continued):
o If some f € A is MNable, then so are —f and w (f),
where w : A — A is the fundamental involution of A (that
is, the k-algebra automorphism sending e, — hj,).
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o If f € Ais MNable and k is a positive integer, then fy ()
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MNable symmetric functions: results, 2

@ Theorem (continued):

o If some f € A is MNable, then so are —f and w (f),
where w : A — A is the fundamental involution of A (that
is, the k-algebra automorphism sending e, — hj,).

o A symmetric function f € A is MNable if and only if all
its homogeneous components are MNable.

o If f € Ais MNable and k is a positive integer, then fy ()
is MNable.

o A symmetric function f € A is MNable if and only if
(f,s5/u) € {—1,0,1} for each skew partition \/.

@ The proofs use various techniques; the coefficients are not
always easy to describe.
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MNable symmetric functions: results, 2

@ Theorem (continued):

o If some f € A is MNable, then so are —f and w (f),
where w : A — A is the fundamental involution of A (that
is, the k-algebra automorphism sending e, — hj,).

o A symmetric function f € A is MNable if and only if all
its homogeneous components are MNable.

o If f € Ais MNable and k is a positive integer, then fy ()
is MNable.

o A symmetric function f € A is MNable if and only if
(f,s5/u) € {—1,0,1} for each skew partition \/.

@ The MNability of a symmetric function can be tested in finite
time using the last bullet point.
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MNable symmetric functions: results, 2

@ Theorem (continued):

o If some f € A is MNable, then so are —f and w (f),
where w : A — A is the fundamental involution of A (that
is, the k-algebra automorphism sending e, — hj,).

o A symmetric function f € A is MNable if and only if all
its homogeneous components are MNable.

o If f € Ais MNable and k is a positive integer, then fy ()
is MNable.

o A symmetric function f € A is MNable if and only if
(f,s5/u) € {—1,0,1} for each skew partition \/.

@ The families listed above cover all MNable homogeneous
symmetric functions of degree < 4. In degree 4, we also have

5(1,1,1,1) — 5(3,1) + S(4) and S(a) — 5(2,2)-
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MNable symmetric functions: results, 2

@ Theorem (continued):

o If some f € A is MNable, then so are —f and w (f),
where w : A — A is the fundamental involution of A (that
is, the k-algebra automorphism sending e, — hj,).

o A symmetric function f € A is MNable if and only if all
its homogeneous components are MNable.

o If f € Ais MNable and k is a positive integer, then fy ()
is MNable.

o A symmetric function f € A is MNable if and only if
(f,s5/u) € {—1,0,1} for each skew partition \/.

@ All MNable sy, my, hy and ey appear in the list above. Not
sure if all MNable py.
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MNable symmetric functions: question

@ Question: What symmetric functions are MNable?

o Any hope of a full classification?
e Any more infinite families?
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Bonus problem

Bonus problem

Dual stable Grothendieck polynomials
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Reminder on Schur functions

@ Here is a conjecture I'm curious to hear ideas about.

36/43



Reminder on Schur functions

@ Here is a conjecture I'm curious to hear ideas about.

@ Fix a commutative ring k.
Recall that for any skew partition A/, the (skew) Schur
function sy, is defined as the power series

tT
Z x©°" e k[x1, x2, x3, .. .]],
T is an SST of shape \/p

where “SST" is short for “semistandard Young tableau”, and
where
cont T __ Xnumber of times T contains entry k
= . .
k>1
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Reminder on Schur functions

@ Here is a conjecture I'm curious to hear ideas about.

@ Fix a commutative ring k.
Recall that for any skew partition A/, the (skew) Schur
function sy, is defined as the power series

tT
Z x©°" e k[x1, x2, x3, .. .]],
T is an SST of shape \/p

where “SST" is short for “semistandard Young tableau”, and
where
cont T __ Xnumber of times T contains entry k
= . i
k>1
@ Let us generalize this by extending the sum and introducing
extra parameters.
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Dual stable Grothendieck polynomials, 1: RPPs

@ A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

2 | is an RPP.

1]2
2|2
|24
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@ A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

112]2 |isan RPP.
2|2
(2[4
(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that T (i,j) < T (i,j+ 1) and

T (i,j) < T (i +1,j) whenever these are defined.)
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Dual stable Grothendieck polynomials, 1: RPPs

@ A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

1]2 2|isanRPP.
212
(2[4

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that T (i,j) < T (i,j+ 1) and
T (i,j) < T (i +1,j) whenever these are defined.)
@ Let k be a commutative ring, and fix any elements
ti, b, t3,... € k.
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Dual stable Grothendieck polynomials, 2: definition

@ Given a skew partition A/, we define the refined dual stable
Grothendieck polynomial gy, to be the formal power series

2 : X|rcont theq T c k [[X1,X2,X3, N ]] ,
T is an RPP of shape \/u

where

ircont T __ Xnumber of columns of T containing entry k
- k
k>1
and ber of h th (i)=T( )
ceqT __ number of j such that T(ij)=T(i+1,
e’ =1[
i>1
(where T (i,j) = T (i + 1,j) implies, in particular, that both
(i,j) and (i 4+ 1,) are cells of T).
This is a formal power series in x1, x2, X3, ... (despite the
name “polynomial”).
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Dual stable Grothendieck polynomials, 3: examples on x°"t "

@ Recall:
ircont T __ number of columns of T containing entry k
X = Xy .
k>1
1 2 | :
o If T = then " T = x; x¥x3. The x» has
2
123
exponent 4, not 5, because the two 2's in column 3 count only
once.
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Dual stable Grothendieck polynomials, 3: examples on x°"t "

@ Recall:
Xircont T — Xlr:umber of
k>1
o If T = 1 2 | then x
2
123

columns of T containing entry k

rcont T — x; x3x3. The xp has

exponent 4, not 5, because the two 2's in column 3 count only

once.

o If T is an SST, then xireont T — ycont T
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Dual stable Grothendieck polynomials, 3: examples on t¢9 7

@ Recall that

tceq T _ H tr]umber of j such that T(ij)=T(i+1,))
i

i>1
e If T = 1 2 | then t<¢@ 7 = ¢, due to
2
|2 3
T(1,3)=T(2,3).
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Dual stable Grothendieck polynomials, 3: examples on t¢9 7

@ Recall that

tceq T _ H trlumber of j such that T(ij)=T(i+1,))
i

i>1
e If T = 12 2|thentc'3@'T:1.“1,dueto
212
|2 3

T(1,3)=T(2,3).
If Tis an SST, then tcd7 =1,

In general, 97 measures “how often” T breaks the SST
condition.
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Dual stable Grothendieck polynomials, 5

o lfwesetty =tp =t3=---=0, then g,/, = s)/,,-
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Dual stable Grothendieck polynomials, 5

o Ifwesettj =tp=t3="---=0, then g/, = 5\ /.

o Ifwesett; =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series gy, is symmetric in the x; (not in the t;).

e Example 1: If A = (n) and p = (), then gy/,, = hy, the n-th
complete homogeneous symmetric function.

e Example 2: If A= | 1,1,...,1| and u = (), then
—_———
n ones
&/u = en(t1, t2,. .., th1,X1,X2,3,...), where e, is the n-th

elementary symmetric function.
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Dual stable Grothendieck polynomials, 5

o Ifwesettj =tp=t3="---=0, then g/, = 5\ /.

o Ifwesett; =tp=t3="---=1, then g/, = g/, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

@ The general case, to our knowledge, is new.

e Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series gy, is symmetric in the x; (not in the t;).

e Example 1: If A = (n) and p = (), then gy/,, = hy, the n-th
complete homogeneous symmetric function.

e Example 2: If A= | 1,1,...,1| and u = (), then
——
n ones
&/u = en(t1, t2,. .., th1,X1,X2,3,...), where e, is the n-th
elementary symmetric function.
e Example 3: If A = (2,1) and px = (), then

8\/u= D, XaXbXc T t1 ) XaXp = S(21) t t1502)-
a<b; a<c a<b
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Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and p be
AE=((A)y, (A", ..., (AY)y) and
/’Lt = ((lu’t)l ’ (/’Lt)2 ey (Mt)N) Then,

g/\/u
et ((e(Af),,-(uf)J-H <X’t [(“t)f 1 ()‘t)"D)lsigN, 1SISN> '

Here, (x,t[k : £]) denotes the alphabet

(X17X27X37 NP 7 7S PN te—l)-

Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!
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@ Conjecture: Let the conjugate partitions of A and p be
AE=((A)y, (A", ..., (AY)y) and
/’Lt = ((lu’t)l ’ (/’Lt)2 ey (Mt)N) Then,

g/\/u
= det ((e(At)iI(ut)j+j <x,t [(,u,t)j +1: ()\t)'}>)1§i§N, 1SISN> )

Here, (x,t[k : £]) denotes the alphabet

(X17X27X37 NP 7 7S PN t[*l)-
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Jacobi-Trudi identity?

@ Conjecture: Let the conjugate partitions of A and p be
AE=((A)y, (A", ..., (AY)y) and
/’Lt = ((lu’t)l ’ (/’Lt)2 ey (Mt)N) Then,

g/\/u
= det ((e(At)iI(ut)j+j <x,t [(,u,t)j +1: ()\t)'}>)1§i§N, 1SISN> )

Here, (x,t[k : £]) denotes the alphabet
(X1,X2,X3, ey by tege1, tgfl).
Warning: If ¢ < k, then ty, tx11, ..., ty—1 means nothing. No
“antimatter” variables!

@ This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ¢;'s.

@ | have some even stronger conjectures, with less evidence...

@ The case ;4 = & has been proven by Damir Yeliussizov in
arXiv:1601.01581.
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