The Petrie symmetrie functions and Murnaghan–Nakayama rules

Darij Grinberg

4 February 2020 Institut Mittag-Leffler, Djursholm, Sweden

```
slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/
djursholm2020.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/petriesym.pdf
overview: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/fps20pet.pdf
```

Manifest

- What you are going to see:
 - A new family $(G(k, m))_{m \ge 0}$ of symmetric functions for each k > 0. (So, a family of families.)
 - It "interpolates" between the e's and the h's in a sense.
 - Various nice properties if I do say so myself.
 - A proof (sketch) of a conjecture coming from algebraic groups.
 - A source of homework exercises for your symmetric functions class.

Manifest

- What you are going to see:
 - A new family $(G(k, m))_{m \ge 0}$ of symmetric functions for each k > 0. (So, a family of families.)
 - It "interpolates" between the e's and the h's in a sense.
 - Various nice properties if I do say so myself.
 - A proof (sketch) of a conjecture coming from algebraic groups.
 - A source of homework exercises for your symmetric functions class.
- What you are **not** going to see:
 - Meaning.
 - Theories.
 - (mostly) actual combinatorics (algorithms, bijections, etc.).

- We will use standard notations for symmetric functions, such as used in:
 - Richard Stanley, Enumerative Combinatorics, volume 2, CUP 2001.
 - D.G. and Victor Reiner, *Hopf algebras in Combinatorics*, 2012-2020+.

- We will use standard notations for symmetric functions, such as used in:
 - Richard Stanley, Enumerative Combinatorics, volume 2, CUP 2001.
 - D.G. and Victor Reiner, *Hopf algebras in Combinatorics*, 2012-2020+.
- Let k be a commutative ring (\mathbb{Z} and \mathbb{Q} will suffice).
- Let $\mathbb{N} := \{0, 1, 2, \ldots\}.$

- A weak composition means a sequence $(\alpha_1, \alpha_2, \alpha_3, ...) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_i = 0$.
- We let WC be the set of all weak compositions.
- We write α_i for the *i*-th entry of a weak composition α .
- The *size* of a weak composition α is defined to be $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3 + \cdots$.

- A weak composition means a sequence $(\alpha_1, \alpha_2, \alpha_3, ...) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_i = 0$.
- We let WC be the set of all weak compositions.
- We write α_i for the *i*-th entry of a weak composition α .
- The *size* of a weak composition α is defined to be $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3 + \cdots$.
- A *partition* means a weak composition α satisfying $\alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$.
- A partition of n means a partition α with $|\alpha| = n$.
- We let Par denote the set of all partitions. For each $n \in \mathbb{Z}$, we let Par_n denote the set of all partitions of n.

- A weak composition means a sequence $(\alpha_1, \alpha_2, \alpha_3, ...) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_i = 0$.
- We let WC be the set of all weak compositions.
- We write α_i for the *i*-th entry of a weak composition α .
- The *size* of a weak composition α is defined to be $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3 + \cdots$.
- A *partition* means a weak composition α satisfying $\alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$.
- A partition of n means a partition α with $|\alpha| = n$.
- We let Par denote the set of all partitions. For each $n \in \mathbb{Z}$, we let Par_n denote the set of all partitions of n.
- We often omit trailing zeroes from partitions: e.g., $(3,2,1,0,0,0,\ldots) = (3,2,1) = (3,2,1,0)$.
- The partition $(0,0,0,\ldots) = ()$ is called the *empty partition* and denoted by \emptyset .

• We will use the notation m^k for " $\underline{m}, \underline{m}, \dots, \underline{m}$ " in partitions.

(For example,
$$\left(2,1^4\right)=\left(2,1,1,1,1\right)$$
.)

- We will use the notation m^k for $(\underline{m}, \underline{m}, \dots, \underline{m})$ in partitions.
 - (For example, $(2,1^4) = (2,1,1,1,1)$.)
- For any weak composition α , we let \mathbf{x}^{α} denote the monomial $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\cdots$. It has degree $|\alpha|$.

- We will use the notation m^k for " $\underline{m}, \underline{m}, \dots, \underline{m}$ " in partitions.
 - (For example, $(2,1^4) = (2,1,1,1,1)$.)
- For any weak composition α , we let \mathbf{x}^{α} denote the monomial $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\cdots$. It has degree $|\alpha|$.
- The ring $k[[x_1, x_2, x_3, \ldots]]$ consists of formal infinite k-linear combinations of monomials x^{α} . These combinations are called *formal power series*.
- The *symmetric functions* are the formal power series $f \in k[[x_1, x_2, x_3, \ldots]]$ that are
 - of bounded degree (i.e., all monomials in f have degrees $\langle N \text{ for some } N = N_f \rangle$;
 - symmetric (i.e., permuting the x_i does not change f).

• We will use the notation m^k for " $\underbrace{m, m, \dots, m}$ " in partitions.

```
(For example, (2,1^4) = (2,1,1,1,1).)
```

- For any weak composition α , we let \mathbf{x}^{α} denote the monomial $x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \cdots$. It has degree $|\alpha|$.
- The ring $k[[x_1, x_2, x_3, \ldots]]$ consists of formal infinite k-linear combinations of monomials x^{α} . These combinations are called *formal power series*.
- The *symmetric functions* are the formal power series $f \in k[[x_1, x_2, x_3, \ldots]]$ that are
 - of bounded degree (i.e., all monomials in f have degrees $\langle N \text{ for some } N = N_f \rangle$;
 - symmetric (i.e., permuting the x_i does not change f).
- We let

$$\Lambda = \{\text{symmetric functions } f \in \mathbb{k} [[x_1, x_2, x_3, \ldots]] \}.$$

This is a k-subalgebra of $k[[x_1, x_2, x_3, \ldots]]$, graded by the degree.

ullet The k-module Λ has several bases indexed by the set Par.

- ullet The k-module Λ has several bases indexed by the set Par.
- The monomial basis $(m_{\lambda})_{\lambda \in Par}$: For each partition λ , we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$m_{\lambda} = \sum_{\substack{lpha ext{ is a weak composition;} \ lpha ext{ can be obtained from } \lambda \ ext{ by permuting entries}} \mathsf{x}^{lpha}.$$

- ullet The k-module Λ has several bases indexed by the set Par.
- The monomial basis $(m_{\lambda})_{\lambda \in Par}$: For each partition λ , we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$m_{\lambda} = \sum_{egin{array}{c} lpha ext{ is a weak composition;} \ lpha ext{ can be obtained from } \lambda \ ext{ by permuting entries} \end{array}$$

For example:

$$m_{(2,2,1)} = \sum_{i < j < k} x_i^2 x_j^2 x_k + \sum_{i < j < k} x_i^2 x_j x_k^2 + \sum_{i < j < k} x_i x_j^2 x_k^2.$$

- The k-module Λ has several bases indexed by the set Par.
- The monomial basis $(m_{\lambda})_{\lambda \in Par}$: For each partition λ , we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$m_{\lambda} = \sum_{\substack{\alpha \text{ is a weak composition;} \\ \alpha \text{ can be obtained from } \lambda \\ \text{by permuting entries}}} \mathbf{x}^{\alpha}.$$

For example:

$$m_{(2,2,1)} = \sum_{i < j < k} x_i^2 x_j^2 x_k + \sum_{i < j < k} x_i^2 x_j x_k^2 + \sum_{i < j < k} x_i x_j^2 x_k^2.$$

The family $(m_{\lambda})_{{\lambda}\in \mathsf{Par}}$ is a basis of the k-module Λ , called the monomial basis.

The complete basis (h_λ)_{λ∈Par}:
 For each n∈ Z, define the complete homogeneous symmetric function h_n by

$$h_n = \sum_{i_1 \leq i_2 \leq \dots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC}; \\ |\alpha| = n}} \mathsf{x}^\alpha = \sum_{\lambda \in \mathsf{Par}_n} m_\lambda.$$

The complete basis (h_λ)_{λ∈Par}:
 For each n∈ Z, define the complete homogeneous symmetric function h_n by

$$h_n = \sum_{\substack{i_1 \leq i_2 \leq \dots \leq i_n}} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC}; \\ |\alpha| = n}} \mathsf{x}^\alpha = \sum_{\lambda \in \mathsf{Par}_n} m_\lambda.$$

For example,

$$h_1 = x_1 + x_2 + x_3 + \cdots;$$

 $h_2 = \sum_{i \le j} x_i x_j = \sum_i x_i^2 + \sum_{i < j} x_i x_j;$
 $h_0 = 1;$
 $h_n = 0$ for all $n < 0$.

The complete basis (h_λ)_{λ∈Par}:
 For each n∈ Z, define the complete homogeneous symmetric function h_n by

$$h_n = \sum_{\substack{i_1 \leq i_2 \leq \dots \leq i_n}} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC}; \\ |\alpha| = n}} \mathsf{x}^\alpha = \sum_{\lambda \in \mathsf{Par}_n} m_\lambda.$$

For example,

$$h_1 = x_1 + x_2 + x_3 + \cdots;$$
 $h_2 = \sum_{i \le j} x_i x_j = \sum_i x_i^2 + \sum_{i < j} x_i x_j;$
 $h_0 = 1;$
 $h_n = 0$ for all $n < 0$.

For each partition λ , we define

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} h_{\lambda_3} \cdots \in \Lambda.$$

The family $(h_{\lambda})_{\lambda \in \mathsf{Par}}$ is a basis of the k-module Λ .

• The elementary basis $(e_{\lambda})_{\lambda \in \mathsf{Par}}$: For each $n \in \mathbb{Z}$, define the elementary symmetric function e_n by

$$e_n = \sum_{\substack{i_1 < i_2 < \dots < i_n}} x_{i_1} x_{i_2} \dots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC} \cap \{0,1\}^{\infty}; \\ |\alpha| = n}} \mathsf{x}^{\alpha} = m_{\left(1^n\right)}.$$

• The elementary basis $(e_{\lambda})_{\lambda \in \mathsf{Par}}$: For each $n \in \mathbb{Z}$, define the elementary symmetric function e_n by

$$e_n = \sum_{i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \dots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC} \cap \{0,1\}^{\infty}; \\ |\alpha| = n}} \mathsf{x}^{\alpha} = m_{\left(1^n\right)}.$$

For example,

$$e_1 = x_1 + x_2 + x_3 + \cdots;$$
 $e_2 = \sum_{i < j} x_i x_j;$
 $e_0 = 1;$
 $e_n = 0$ for all $n < 0$.

• The elementary basis $(e_{\lambda})_{\lambda \in \mathsf{Par}}$: For each $n \in \mathbb{Z}$, define the elementary symmetric function e_n by

$$e_n = \sum_{\substack{i_1 < i_2 < \dots < i_n}} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\substack{\alpha \in \mathsf{WC} \cap \{0,1\}^{\infty}; \\ |\alpha| = n}} \mathsf{x}^{\alpha} = m_{(1^n)}.$$

For example,

$$e_1 = x_1 + x_2 + x_3 + \cdots;$$
 $e_2 = \sum_{i < j} x_i x_j;$
 $e_0 = 1;$
 $e_n = 0$ for all $n < 0$.

For each partition λ , we define

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} e_{\lambda_3} \cdots \in \Lambda.$$

The family $(e_{\lambda})_{\lambda \in Par}$ is a basis of the k-module Λ .

The power-sum symmetric functions p_n:
 For each positive integer n, define the power-sum symmetric function p_n by

$$p_n = x_1^n + x_2^n + x_3^n + \cdots = m_{(n)}.$$

The power-sum symmetric functions p_n:
 For each positive integer n, define the power-sum symmetric function p_n by

$$p_n = x_1^n + x_2^n + x_3^n + \cdots = m_{(n)}.$$

We can make a basis out of (products of) p_n 's when k is a \mathbb{Q} -algebra.

- The Schur basis $(s_{\lambda})_{\lambda \in Par}$: For each partition λ , we can define the Schur function s_{λ} in many equivalent ways, e.g.:
 - We have

$$s_{\lambda} = \sum_{\substack{T \text{ is a semistandard} \\ ext{Young tableau of shape } \lambda}} \mathbf{x}_{T},$$

where x_T denotes the monomial obtained by multiplying the x_i for all entries i of T.

- The Schur basis $(s_{\lambda})_{\lambda \in Par}$: For each partition λ , we can define the Schur function s_{λ} in many equivalent ways, e.g.:
 - We have

$$s_{\lambda} = \sum_{\substack{T \text{ is a semistandard} \\ ext{Young tableau of shape } \lambda}} \mathbf{x}_{T},$$

where x_T denotes the monomial obtained by multiplying the x_i for all entries i of T.

• If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$, then

$$s_{\lambda} = \det\left(\left(h_{\lambda_i - i + j}\right)_{1 \leq i \leq \ell, \ 1 \leq j \leq \ell}\right)$$

(the first Jacobi-Trudi formula).

The family $(s_{\lambda})_{\lambda \in Par}$ is a basis of the k-module Λ .

Petrie functions: definition of G(k)

For any positive integer k, set

$$\begin{split} &G\left(k\right)\\ &= \sum_{\substack{\alpha \in \mathsf{WC};\\ \alpha_i < k \text{ for all } i}} \mathsf{x}^\alpha\\ &= \sum_{\substack{\alpha \in \mathsf{WC};\\ \alpha_i < k \text{ for all } i}} \mathsf{x}^\alpha\\ &\in \mathsf{k}\left[\left[x_1, x_2, x_3, \ldots\right]\right] \qquad \text{(not } \in \Lambda \text{ in general)}\,. \end{split}$$

Petrie functions: definition of G(k, m)

• For any positive integer k and any $m \in \mathbb{N}$, we let

$$\begin{split} &G\left(k,m\right) \\ &= \sum_{\substack{\alpha \in \mathsf{WC}; \\ |\alpha| = m; \\ \alpha_i < k \text{ for all } i}} \mathsf{x}^{\alpha} \\ &= \sum_{\substack{\alpha \in \mathsf{WC}; \\ |\alpha| = m; \\ \alpha_i < k \text{ for all } i}} \left(\mathsf{all degree-} m \text{ monomials whose exponents are all } < k \right) \\ &\in \Lambda. \end{split}$$

Petrie functions: definition of G(k, m)

• For any positive integer k and any $m \in \mathbb{N}$, we let

$$\begin{split} &G\left(k,m\right)\\ &= \sum_{\substack{\alpha \in \mathsf{WC};\\ |\alpha| = m;\\ \alpha_i < k \text{ for all } i}} \mathsf{x}^\alpha\\ &= \sum_{\substack{\alpha \in \mathsf{WC};\\ |\alpha| = m;\\ \alpha_i < k \text{ for all } i}} \left(\mathsf{all degree-}m \text{ monomials whose exponents are all } < k\right)\\ &\in \mathsf{\Lambda}. \end{split}$$

For example,

$$G(3,4) = \sum_{i < j < k < \ell} x_i x_j x_k x_\ell + \sum_{i < j < k} x_i^2 x_j x_k + \sum_{i < j < k} x_i x_j^2 x_k$$
$$+ \sum_{i < j < k} x_i x_j x_k^2 + \sum_{i < j} x_i^2 x_j^2$$
$$= m_{(1,1,1,1)} + m_{(2,1,1)} + m_{(2,2)}.$$

• I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

0

$$G(k) = \sum_{\substack{\lambda \in \text{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

•

$$G(k) = \sum_{\substack{\lambda \in \text{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

• G(k, m) is the m-th degree component of G(k).

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

•

$$G(k) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

• G(k, m) is the *m*-th degree component of G(k).

•

$$G\left(k,m
ight) = \sum_{\substack{\lambda \in \mathsf{Par};\ |\lambda| = m;\ \lambda_i < k \; \mathsf{for \; all} \; i}} m_{\lambda}$$

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

0

$$G(k) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

• G(k, m) is the *m*-th degree component of G(k).

-

$$G\left(k,m
ight) = \sum_{\substack{\lambda \in \mathsf{Par};\ |\lambda| = m;\ \lambda_i < k ext{ for all } i}} m_{\lambda}$$

• $G(2, m) = e_m$.

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

0

$$G(k) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

• G(k, m) is the *m*-th degree component of G(k).

.

$$G(k,m) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ |\lambda| = m; \\ \lambda_i < k \text{ for all } i}} m_{\lambda}$$

- $G(2, m) = e_m$.
- $G(k, m) = h_m$ whenever k > m.

- I named G(k) and G(k, m) the *Petrie functions*, for reasons that will become clear eventually.
- Basic properties (for arbitrary k > 0 and $m \in \mathbb{N}$):

•

$$G(k) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ \lambda_i < k \text{ for all } i}} m_{\lambda} = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \dots + x_i^{k-1} \right).$$

• G(k, m) is the m-th degree component of G(k).

-

$$G(k,m) = \sum_{\substack{\lambda \in \mathsf{Par}; \\ |\lambda| = m; \\ \lambda : < k \text{ for all } i}} m_{\lambda}$$

- $G(2, m) = e_m$.
- $G(k, m) = h_m$ whenever k > m.
- $G(m, m) = h_m p_m$.

Petrie functions and the coproduct of Λ

This is for the friends of Hopf algebras:

$$\Delta(G(k,m)) = \sum_{i=0}^{m} G(k,i) \otimes G(k,m-i)$$

for each k > 0 and $m \in \mathbb{N}$.

Here, Δ is the *comultiplication* of Λ , defined to be the k-algebra homomorphism

$$\Delta: \Lambda \to \Lambda \otimes \Lambda,$$

$$e_n \mapsto \sum_{i=0}^n e_i \otimes e_{n-i}.$$

Petrie functions and the coproduct of Λ

This is for the friends of Hopf algebras:

$$\Delta(G(k,m)) = \sum_{i=0}^{m} G(k,i) \otimes G(k,m-i)$$

for each k > 0 and $m \in \mathbb{N}$.

Here, Δ is the *comultiplication* of Λ , defined to be the k-algebra homomorphism

$$\Delta: \Lambda \to \Lambda \otimes \Lambda,$$

$$e_n \mapsto \sum_{i=0}^n e_i \otimes e_{n-i}.$$

In terms of alphabets, this says

$$(G(k,m))(x_1,x_2,x_3,...,y_1,y_2,y_3,...)$$

$$= \sum_{i=0}^{m} (G(k,i))(x_1,x_2,x_3,...) \cdot (G(k,m-i))(y_1,y_2,y_3,...).$$

• We can expand the G(k, m) in the Schur basis $(s_{\lambda})_{\lambda \in Par}$: e.g.,

$$G(4,6) = s_{(2,1,1,1,1)} - s_{(2,2,1,1)} + s_{(3,3)}.$$

• We can expand the G(k, m) in the Schur basis $(s_{\lambda})_{\lambda \in Par}$: e.g.,

$$G(4,6) = s_{(2,1,1,1,1)} - s_{(2,2,1,1)} + s_{(3,3)}.$$

• Surprisingly, it turns out that all coefficients are in $\{0, 1, -1\}$.

• We can expand the G(k, m) in the Schur basis $(s_{\lambda})_{\lambda \in Par}$: e.g.,

$$G(4,6) = s_{(2,1,1,1,1)} - s_{(2,2,1,1)} + s_{(3,3)}.$$

- Surprisingly, it turns out that all coefficients are in $\{0, 1, -1\}$.
- Better yet: Any product $G(k, m) \cdot s_{\mu}$ expands in the Schur basis with coefficients in $\{0, 1, -1\}$.

• We can expand the G(k, m) in the Schur basis $(s_{\lambda})_{\lambda \in Par}$: e.g.,

$$G(4,6) = s_{(2,1,1,1,1)} - s_{(2,2,1,1)} + s_{(3,3)}.$$

- Surprisingly, it turns out that all coefficients are in $\{0, 1, -1\}$.
- Better yet: Any product $G(k, m) \cdot s_{\mu}$ expands in the Schur basis with coefficients in $\{0, 1, -1\}$.
- Let us see what the coefficients are.

• We let [A] denote the *truth value* of a statement A (that is, 1 if A is true, and 0 if A is false).

- We let [A] denote the *truth value* of a statement A (that is, 1 if A is true, and 0 if A is false).
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \in \mathsf{Par}$ and $\mu = (\mu_1, \mu_2, \dots, \mu_\ell) \in \mathsf{Par}$, and let k be a positive integer. Then, the k-Petrie number $\mathsf{pet}_k \, (\lambda, \mu)$ of λ and μ is the integer defined by

$$\operatorname{pet}_k(\lambda, \mu) = \operatorname{det}\left(\left(\left[0 \le \lambda_i - \mu_j - i + j < k\right]\right)_{1 \le i \le \ell, \ 1 \le j \le \ell}\right).$$

- We let [A] denote the *truth value* of a statement A (that is, 1 if A is true, and 0 if A is false).
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \in \mathsf{Par}$ and $\mu = (\mu_1, \mu_2, \dots, \mu_\ell) \in \mathsf{Par}$, and let k be a positive integer. Then, the k-Petrie number $\mathsf{pet}_k \, (\lambda, \mu)$ of λ and μ is the integer defined by

$$\operatorname{pet}_k(\lambda, \mu) = \operatorname{det}\left(\left(\left[0 \le \lambda_i - \mu_j - i + j < k\right]\right)_{1 \le i \le \ell, \ 1 \le j \le \ell}\right).$$

For example, for $\ell=3$, we have

$$\begin{split} & \mathsf{pet}_k \left(\lambda, \mu \right) \\ & = \mathsf{det} \left(\begin{smallmatrix} [0 \le \lambda_1 - \mu_1 < k] & [0 \le \lambda_1 - \mu_2 + 1 < k] & [0 \le \lambda_1 - \mu_3 + 2 < k] \\ [0 \le \lambda_2 - \mu_1 - 1 < k] & [0 \le \lambda_2 - \mu_2 < k] & [0 \le \lambda_2 - \mu_3 + 1 < k] \\ [0 \le \lambda_3 - \mu_1 - 2 < k] & [0 \le \lambda_3 - \mu_2 - 1 < k] & [0 \le \lambda_3 - \mu_3 < k] \end{smallmatrix} \right). \end{split}$$

For example,

$$\mathsf{pet}_4\left(\left(3,1,1\right),\left(2,1\right)\right) = \mathsf{det}\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right) = 1.$$

- We let [A] denote the *truth value* of a statement A (that is, 1 if A is true, and 0 if A is false).
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \in \mathsf{Par}$ and $\mu = (\mu_1, \mu_2, \dots, \mu_\ell) \in \mathsf{Par}$, and let k be a positive integer. Then, the $k\text{-Petrie number pet}_k(\lambda, \mu)$ of λ and μ is the integer defined by

$$\operatorname{pet}_k(\lambda, \mu) = \operatorname{det}\left(\left(\left[0 \le \lambda_i - \mu_j - i + j < k\right]\right)_{1 \le i \le \ell, \ 1 \le j \le \ell}\right).$$

• **Proposition:** We have $\operatorname{pet}_k(\lambda,\mu) \in \{0,1,-1\}$ for all λ and μ .

- We let [A] denote the *truth value* of a statement A (that is, 1 if A is true, and 0 if A is false).
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \in \mathsf{Par}$ and $\mu = (\mu_1, \mu_2, \dots, \mu_\ell) \in \mathsf{Par}$, and let k be a positive integer. Then, the $k\text{-Petrie number pet}_k(\lambda, \mu)$ of λ and μ is the integer defined by

$$\mathsf{pet}_k\left(\lambda,\mu\right) = \mathsf{det}\left(\left(\left[0 \le \lambda_i - \mu_j - i + j < k\right]\right)_{1 \le i \le \ell, \ 1 \le j \le \ell}\right).$$

- **Proposition:** We have $\operatorname{pet}_k(\lambda,\mu) \in \{0,1,-1\}$ for all λ and μ .
- Proof idea. Each row of the matrix $([0 \leq \lambda_i \mu_j i + j < k])_{1 \leq i \leq \ell, \ 1 \leq j \leq \ell} \text{ has the form}$ $(\underbrace{0,0,\ldots,0}_{a \text{ zeroes}},\underbrace{1,1,\ldots,1}_{b \text{ ones}},\underbrace{0,0,\ldots,0}_{c \text{ zeroes}}) \text{ for some } a,b,c \in \mathbb{N}.$

Thus, this matrix is the transpose of a *Petrie matrix*. Hence, its determinant is $\in \{-1,0,1\}$ (by Gordon and Wilkinson 1974).

• **Theorem:** Let k be a positive integer. Let $\mu \in \mathsf{Par}$. Then,

$$G\left(k
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}}\mathsf{pet}_{k}\left(\lambda,\mu
ight)s_{\lambda}.$$

• **Theorem:** Let k be a positive integer. Let $\mu \in \mathsf{Par}$. Then,

$$G\left(k
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}}\mathsf{pet}_{k}\left(\lambda,\mu
ight)s_{\lambda}.$$

Thus, for each $m \in \mathbb{N}$, we have

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}}\mathsf{pet}_{k}\left(\lambda,\mu
ight)s_{\lambda}.$$

• **Theorem:** Let k be a positive integer. Let $\mu \in \mathsf{Par}$. Then,

$$G(k) \cdot s_{\mu} = \sum_{\lambda \in \mathsf{Par}} \mathsf{pet}_{k}(\lambda, \mu) \, s_{\lambda}.$$

Thus, for each $m \in \mathbb{N}$, we have

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}}\mathsf{pet}_{k}\left(\lambda,\mu
ight)s_{\lambda}.$$

• **Corollary:** Let *k* be a positive integer. Then,

$$G(k) = \sum_{\lambda \in \mathsf{Par}} \mathsf{pet}_k(\lambda, \varnothing) \, s_{\lambda}.$$

Thus, for each $m \in \mathbb{N}$, we have

$$G(k,m) = \sum_{\lambda \in \mathsf{Par}_m} \mathsf{pet}_k(\lambda,\varnothing) \, s_{\lambda}.$$

• **Theorem:** Let k be a positive integer. Let $\mu \in \mathsf{Par}$. Then,

$$G(k) \cdot s_{\mu} = \sum_{\lambda \in \mathsf{Par}} \mathsf{pet}_{k}(\lambda, \mu) \, s_{\lambda}.$$

Thus, for each $m \in \mathbb{N}$, we have

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}}\mathsf{pet}_{k}\left(\lambda,\mu
ight)s_{\lambda}.$$

 One proof of the Theorem uses alternants; the other uses the "semi-skew Cauchy identity"

$$\sum_{\lambda \in \mathsf{Par}} \mathsf{s}_{\lambda}\left(\mathsf{x}\right) \mathsf{s}_{\lambda/\mu}\left(\mathsf{y}\right) = \mathsf{s}_{\mu}\left(\mathsf{x}\right) \cdot \prod_{i,j=1}^{\mathsf{sd}} \left(1 - \mathsf{x}_{i} \mathsf{y}_{j}\right)^{-1} \ = \mathsf{s}_{\mu}\left(\mathsf{x}\right) \cdot \sum_{\lambda \in \mathsf{Par}} h_{\lambda}\left(\mathsf{x}\right) m_{\lambda}\left(\mathsf{y}\right)$$

(for any $\mu \in \text{Par}$ and for two sets of indeterminates $x = (x_1, x_2, x_3, ...)$ and $y = (y_1, y_2, y_3, ...)$).

What are the Petrie numbers?

• We have shown that $\operatorname{pet}_k(\lambda,\mu) \in \{0,1,-1\}$, but what exactly is it?

What are the Petrie numbers?

- We have shown that $\operatorname{pet}_k(\lambda,\mu) \in \{0,1,-1\}$, but what exactly is it?
- Gordon and Wilkinson 1974 prove that Petrie matrices have determinants $\in \{0,1,-1\}$ by induction. This is little help to us.

What are the Petrie numbers? The easy case

• **Proposition:** Let $\lambda \in \text{Par}$ and k > 0 be such that $\lambda_1 \geq k$. Then, $\text{pet}_k(\lambda, \emptyset) = 0$.

What are the Petrie numbers? The easy case

- **Proposition:** Let $\lambda \in \mathsf{Par}$ and k > 0 be such that $\lambda_1 \geq k$. Then, $\mathsf{pet}_k (\lambda, \varnothing) = 0$.
- To get a description in all other cases, recall the definition of transpose (aka conjugate) partitions:
 Given a partition λ ∈ Par, we define the transpose partition λ^t of λ to be the partition μ given by

$$\mu_i = |\{j \in \{1, 2, 3, \ldots\} \mid \lambda_j \ge i\}|$$
 for all $i \ge 1$.

In terms of Young diagrams, this is just flipping the diagram of λ across the diagonal.

What are the Petrie numbers? Formula for $pet_k(\lambda, \emptyset)$

• Theorem: Let $\lambda \in \text{Par}$ and k > 0 be such that $\lambda_1 < k$. Let $\mu = \lambda^t$ (the transpose partition of λ). Thus, $\mu_k = 0$. For each $i \in \{1, 2, \dots, k-1\}$, set

$$eta_i = \mu_i - i$$
 and $\gamma_i = 1 + \underbrace{\left(eta_i - 1\right)\%k}_{ ext{remainder of $eta_i - 1$}}$.

- (a) If the k-1 numbers $\gamma_1, \gamma_2, \dots, \gamma_{k-1}$ are not distinct, then $\operatorname{pet}_k(\lambda, \emptyset) = 0$.
- **(b)** If the k-1 numbers $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are distinct, then

$$\mathsf{pet}_k\left(\lambda,\varnothing\right) = \left(-1\right)^{\left(\beta_1+\beta_2+\cdots+\beta_{k-1}\right)+g+\left(\gamma_1+\gamma_2+\cdots+\gamma_{k-1}\right)},$$

where

$$g = \left| \left\{ (i,j) \in \{1,2,\ldots,k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \right\} \right|.$$

What are the Petrie numbers? Formula for $pet_k(\lambda, \emptyset)$

• Theorem: Let $\lambda \in \text{Par}$ and k > 0 be such that $\lambda_1 < k$. Let $\mu = \lambda^t$ (the transpose partition of λ). Thus, $\mu_k = 0$. For each $i \in \{1, 2, \dots, k-1\}$, set

$$eta_i = \mu_i - i$$
 and $\gamma_i = 1 + \underbrace{\left(eta_i - 1\right)\%k}_{ ext{remainder of $eta_i - 1$}}$.

- (a) If the k-1 numbers $\gamma_1, \gamma_2, \dots, \gamma_{k-1}$ are not distinct, then $\operatorname{pet}_k(\lambda, \emptyset) = 0$.
- **(b)** If the k-1 numbers $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are distinct, then

$$\mathsf{pet}_k\left(\lambda,\varnothing\right) = \left(-1\right)^{\left(\beta_1+\beta_2+\cdots+\beta_{k-1}\right)+g+\left(\gamma_1+\gamma_2+\cdots+\gamma_{k-1}\right)},$$

where

$$g = \left| \left\{ (i,j) \in \{1,2,\ldots,k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \right\} \right|.$$

• **Question:** Is there such a description for $\operatorname{pet}_k(\lambda, \mu)$?

Other properties

• For any k > 0, we define a map $f_k : \Lambda \to \Lambda$ by setting

$$f_k(a) = a\left(x_1^k, x_2^k, x_3^k, \ldots\right)$$
 for each $a \in \Lambda$.

This map f_k is called the *k-th Frobenius endomorphism* of Λ . (Also known as plethysm by p_k . Perhaps the nicest plethysm!)

Other properties

• For any k > 0, we define a map $f_k : \Lambda \to \Lambda$ by setting

$$f_k(a) = a\left(x_1^k, x_2^k, x_3^k, \ldots\right)$$
 for each $a \in \Lambda$.

This map f_k is called the *k-th Frobenius endomorphism* of Λ . (Also known as plethysm by p_k . Perhaps the nicest plethysm!)

• **Theorem:** Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$G\left(k,m\right) = \sum_{i \in \mathbb{N}} \left(-1\right)^{i} h_{m-ki} \cdot f_{k}\left(e_{i}\right).$$

Other properties

• For any k > 0, we define a map $f_k : \Lambda \to \Lambda$ by setting

$$f_k(a) = a\left(x_1^k, x_2^k, x_3^k, \ldots\right)$$
 for each $a \in \Lambda$.

This map f_k is called the *k-th Frobenius endomorphism* of Λ . (Also known as plethysm by p_k . Perhaps the nicest plethysm!)

• **Theorem:** Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$G(k,m) = \sum_{i \in \mathbb{N}} (-1)^{i} h_{m-ki} \cdot f_{k}(e_{i}).$$

- Theorem: Fix a positive integer k. Assume that 1-k is invertible in k. Then, the family $(G(k,m))_{m\geq 1}=(G(k,1),G(k,2),G(k,3),\ldots)$ is an algebraically independent generating set of the commutative k-algebra Λ .
- Thus, products of several elements of this family form a basis of Λ (if 1-k is invertible in k). These bases remain to be studied.

The Liu-Polo conjecture

 This all begin with the following conjecture (Liu and Polo, arXiv:1908.08432):

$$\sum_{\substack{\lambda \in \mathsf{Par}_{2n-1}; \\ (n-1,n-1,1) \triangleright \lambda}} m_{\lambda} = \sum_{i=0}^{n-2} \left(-1\right)^i s_{(n-1,n-1-i,1^{i+1})} \qquad \text{for any } n > 1.$$

Here, the symbol \triangleright stands for *dominance* of partitions (also known as majorization); i.e., for two partitions λ and μ , we have

$$\lambda \triangleright \mu$$
 if and only if
$$(\lambda_1 + \lambda_2 + \dots + \lambda_i \ge \mu_1 + \mu_2 + \dots + \mu_i \text{ for all } i).$$

Let me briefly outline how this conjecture can be proved.

• The partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $(n-1, n-1, 1) \triangleright \lambda$ are precisely the partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $\lambda_i < n$ for all i.

- The partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $(n-1,n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $\lambda_i < n$ for all i.
- Thus,

$$\sum_{\substack{\lambda \in \mathsf{Par}_{2n-1}; \\ (n-1,n-1,1) \triangleright \lambda}} m_{\lambda} = G\left(n,2n-1\right).$$

- The partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $(n-1,n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $\lambda_i < n$ for all i.
- Thus,

$$\sum_{\substack{\lambda \in \mathsf{Par}_{2n-1};\ (n-1,n-1,1)
brace \lambda}} m_{\lambda} = \mathit{G}\left(n,2n-1
ight).$$

So it remains to show that

$$G(n,2n-1) = \sum_{i=0}^{n-2} (-1)^i s_{(n-1,n-1-i,1^{i+1})}.$$

- The partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $(n-1,n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \mathsf{Par}_{2n-1}$ satisfying $\lambda_i < n$ for all i.
- Thus,

$$\sum_{\substack{\lambda \in \mathsf{Par}_{2n-1};\ (n-1,n-1,1)
angle \lambda}} m_{\lambda} = \mathit{G}\left(n,2n-1
ight).$$

So it remains to show that

$$G(n,2n-1) = \sum_{i=0}^{n-2} (-1)^i s_{(n-1,n-1-i,1^{i+1})}.$$

 The formula for pet_k (λ, Ø) should be useful here, but the combinatorics is tortuous.
 Instead, we can work algebraically:

The Liu-Polo conjecture, proof: G(n, 2n - 1) explicitly

• We can easily see that

$$G(n, n + k) = h_{n+k} - h_k p_n$$
 for each $k \in \{0, 1, ..., n - 1\}$.

The Liu–Polo conjecture, proof: G(n, 2n - 1) explicitly

• We can easily see that

$$G(n, n + k) = h_{n+k} - h_k p_n$$
 for each $k \in \{0, 1, ..., n - 1\}$.

Thus, in particular,
$$G(n, 2n - 1) = h_{2n-1} - h_{n-1}p_n$$
.

The Liu–Polo conjecture, proof: G(n, 2n - 1) explicitly

We can easily see that

$$G(n, n+k) = h_{n+k} - h_k p_n$$
 for each $k \in \{0, 1, \dots, n-1\}$.

Thus, in particular, $G(n, 2n - 1) = h_{2n-1} - h_{n-1}p_n$.

• By the way, this is also a particular case of the

$$G(k,m) = \sum_{i \in \mathbb{N}} (-1)^{i} h_{m-ki} \cdot f_{k}(e_{i})$$

formula.

• Recall the *skewing operations* $f^{\perp}: \Lambda \to \Lambda$ for all $f \in \Lambda$.

- Recall the *skewing operations* $f^{\perp}: \Lambda \to \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_m : \Lambda \to \Lambda$ (known as a *m-th Bernstein operator* in Zelevinsky's language, or as a *Schur row-adder* in Garsia's) by setting

$$\mathsf{B}_m\left(f
ight) = \sum_{i \in \mathbb{N}} \left(-1
ight)^i h_{m+i} \mathsf{e}_i^\perp f \qquad \qquad \mathsf{for all} \ f \in \Lambda.$$

- Recall the *skewing operations* $f^{\perp} : \Lambda \to \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_m : \Lambda \to \Lambda$ (known as a *m-th Bernstein operator* in Zelevinsky's language, or as a *Schur row-adder* in Garsia's) by setting

$$\mathsf{B}_{m}\left(f
ight) = \sum_{i \in \mathbb{N}} \left(-1
ight)^{i} h_{m+i} \mathsf{e}_{i}^{\perp} f \qquad \qquad \mathsf{for all} \ f \in \Lambda.$$

• **Theorem** (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \text{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_1$, then

$$\mathsf{B}_{m}(s_{\lambda})=s_{(m,\lambda_{1},\lambda_{2},\lambda_{3},\ldots)}.$$

- Recall the *skewing operations* $f^{\perp}: \Lambda \to \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_m : \Lambda \to \Lambda$ (known as a *m-th Bernstein operator* in Zelevinsky's language, or as a *Schur row-adder* in Garsia's) by setting

$$\mathsf{B}_m\left(f
ight) = \sum_{i \in \mathbb{N}} \left(-1
ight)^i h_{m+i} \mathsf{e}_i^\perp f \qquad \qquad \mathsf{for all} \ f \in \Lambda.$$

• **Theorem** (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \text{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_1$, then

$$\mathsf{B}_{m}(s_{\lambda})=s_{(m,\lambda_{1},\lambda_{2},\lambda_{3},\ldots)}.$$

• On the other hand, it is not hard to see that

$$B_m(h_n) = h_m h_n - h_{m+1} h_{n-1}$$
 and $B_m(p_n) = h_m p_n - h_{m+n}$

for each n > 0 and each $m \in \{0, 1, \dots, n\}$.

The Liu-Polo conjecture, proof: Bernstein operators

- Recall the *skewing operations* $f^{\perp}: \Lambda \to \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_m : \Lambda \to \Lambda$ (known as a *m-th Bernstein operator* in Zelevinsky's language, or as a *Schur row-adder* in Garsia's) by setting

$$\mathsf{B}_{m}\left(f
ight) = \sum_{i \in \mathbb{N}} \left(-1
ight)^{i} h_{m+i} e_{i}^{\perp} f$$
 for all $f \in \Lambda$.

• **Theorem** (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \text{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_1$, then

$$\mathsf{B}_m(s_\lambda) = s_{(m,\lambda_1,\lambda_2,\lambda_3,\ldots)}.$$

• On the other hand, it is not hard to see that

$$B_m(h_n) = h_m h_n - h_{m+1} h_{n-1}$$
 and
 $B_m(p_n) = h_m p_n - h_{m+n}$

for each n > 0 and each $m \in \{0, 1, \dots, n\}$. Hence,

$$B_{n-1}(h_n-p_n)=h_{2n-1}-h_{n-1}p_n=G(n,2n-1).$$

The Liu-Polo conjecture, proof: Applying Murnaghan-Nakayama

The Murnaghan–Nakayama rule yields

$$p_n = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)}.$$

Subtracting this from $h_n = s_{(n)} = s_{(n-0.1^0)}$, we find

$$h_n - p_n = \sum_{i=0}^{n-2} (-1)^i s_{(n-1-i,1^{i+1})}.$$

Hence,

$$B_{n-1}(h_n - p_n) = \sum_{i=0}^{n-2} (-1)^i B_{n-1} \left(s_{(n-1-i,1^{i+1})} \right)$$
$$= \sum_{i=0}^{n-2} (-1)^i s_{(n-1,n-1-i,1^{i+1})}$$

(by
$$B_m(s_\lambda) = s_{(m,\lambda_1,\lambda_2,\lambda_3,...)}$$
).

The Liu-Polo conjecture, proof: Applying Murnaghan-Nakayama

• Since $B_{n-1}(h_n - p_n) = G(n, 2n - 1)$, we now get

$$G(n,2n-1) = B_{n-1}(h_n - p_n) = \sum_{i=0}^{n-2} (-1)^i s_{(n-1,n-1-i,1^{i+1})}.$$

This proves the conjecture from Liu/Polo.

MNable symmetric functions

Now to something different.
 Recall our formula

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}} \underbrace{\mathsf{pet}_{k}\left(\lambda,\mu
ight)}_{\in\{0,1,-1\}} s_{\lambda}.$$

MNable symmetric functions

Now to something different.
 Recall our formula

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}} \underbrace{\mathsf{pet}_{k}\left(\lambda,\mu
ight)}_{\in\{0,1,-1\}} s_{\lambda}.$$

• **Problem:** What other functions can we replace G(k, m) by and still get such a formula? In other words, what other $f \in \Lambda$ satisfy

$$f \cdot s_{\mu} = \sum_{\lambda \in \mathsf{Par}} \left(\mathsf{something in} \ \left\{ 0, 1, -1 \right\} \right) s_{\lambda} \quad ?$$

MNable symmetric functions

Now to something different.
 Recall our formula

$$G\left(k,m
ight)\cdot s_{\mu} = \sum_{\lambda\in\mathsf{Par}_{m+|\mu|}} \underbrace{\mathsf{pet}_{k}\left(\lambda,\mu
ight)}_{\in\{0,1,-1\}} s_{\lambda}.$$

• **Problem:** What other functions can we replace G(k, m) by and still get such a formula? In other words, what other $f \in \Lambda$ satisfy

$$f \cdot s_{\mu} = \sum_{\lambda \in \mathsf{Par}} \left(\mathsf{something in} \ \left\{ 0, 1, -1 \right\} \right) s_{\lambda} \quad ?$$

Let us restate this more formally.

The Hall inner product

• We recall the *Hall inner product* $(\cdot, \cdot) : \Lambda \times \Lambda \to k$; it is the unique k-bilinear form on Λ that satisfies

$$(s_{\lambda}, s_{\mu}) = \delta_{\lambda, \mu}$$
 for all $\lambda, \mu \in \mathsf{Par}$.

It also is symmetric and nondegenerate and satisfies

$$(h_{\lambda}, m_{\mu}) = \delta_{\lambda,\mu}$$
 for all $\lambda, \mu \in \mathsf{Par}$.

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- For example, h_3p_2 is signed multiplicity-free, since

$$h_3p_2 = s_{(5)} + s_{(3,2)} - s_{(3,1,1)};$$

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- For example, h_3p_2 is signed multiplicity-free, since

$$h_3p_2 = s_{(5)} + s_{(3,2)} - s_{(3,1,1)};$$

but it is not MNable, since the product

$$h_3 p_2 s_{(2)} = -s_{(3,2,1,1)} + s_{(3,2,2)} - s_{(4,1,1,1)} + s_{(4,3)} - s_{(5,1,1)} + 2s_{(5,2)} + s_{(6,1)} + s_{(7)}$$

is not signed multiplicity-free (due to the coefficient of $s_{(5,2)}$ being 2).

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- First Pieri rule: Each $\mu \in \mathsf{Par}$ and $i \in \mathbb{N}$ satisfy

$$h_i s_\mu = \sum_{\substack{\lambda \in \mathsf{Par};\ \lambda/\mu ext{ is a horizontal } i ext{-strip}}} s_\lambda.$$

The right hand side is signed multiplicity-free (without any -1's). Thus, h_i is MNable.

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- **Second Pieri rule:** Each $\mu \in \mathsf{Par}$ and $i \in \mathbb{N}$ satisfy

$$e_i s_\mu = \sum_{\substack{\lambda \in \mathsf{Par};\ \lambda/\mu ext{ is a vertical } i ext{-}\mathsf{strip}}} s_\lambda.$$

The right hand side is signed multiplicity-free (without any -1's). Thus, e_i is MNable.

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- Murnaghan–Nakayama rule: Each $\mu \in Par$ and i > 0 satisfy

$$p_i s_\mu = \sum_{\substack{\lambda \in \mathsf{Par};\ \lambda/\mu ext{ is a rim hook of size } i}} \pm s_\lambda.$$

The right hand side is signed multiplicity-free. Thus, p_i is MNable.

- **Definition:** Let $k = \mathbb{Z}$ from now on.
 - A symmetric function $f \in \Lambda$ will be called *signed* multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product (f,s_{μ}) is -1 or 0 or 1 for each partition μ .)
 - A symmetric function $f \in \Lambda$ will be called *MNable* if for each partition μ , the product fs_{μ} is signed multiplicity-free.
- Murnaghan–Nakayama rule: Each $\mu \in Par$ and i > 0 satisfy

$$p_i s_\mu = \sum_{\substack{\lambda \in \mathsf{Par};\ \lambda/\mu ext{ is a rim hook of size } i}} \pm s_\lambda.$$

The right hand side is signed multiplicity-free. Thus, p_i is MNable.

• Roughly speaking, an $f \in \Lambda$ is MNable if and only if there is a Murnaghan-Nakayama-like rule for fs_{μ} . Thus, the name "MNable".

• Question: Which symmetric functions are MNable?

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.
 - The Petrie function G(k, m) and the difference $G(k, m) h_m$ are MNable for any integers $k \ge 1$ and m > 0.

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.
 - The Petrie function G(k, m) and the difference $G(k, m) h_m$ are MNable for any integers $k \ge 1$ and $m \ge 0$.
 - The differences $h_i p_i$ and $h_i e_i$ are MNable for each positive integer i. (This includes $h_1 e_1 = 0$.)

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.
 - The Petrie function G(k, m) and the difference $G(k, m) h_m$ are MNable for any integers $k \ge 1$ and $m \ge 0$.
 - The differences $h_i p_i$ and $h_i e_i$ are MNable for each positive integer i. (This includes $h_1 e_1 = 0$.)
 - The difference $h_i p_i e_i$ is MNable for each **even** positive integer i.

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.
 - The Petrie function G(k, m) and the difference $G(k, m) h_m$ are MNable for any integers $k \ge 1$ and $m \ge 0$.
 - The differences $h_i p_i$ and $h_i e_i$ are MNable for each positive integer i. (This includes $h_1 e_1 = 0$.)
 - The difference $h_i p_i e_i$ is MNable for each **even** positive integer i.
 - The product $p_i p_j$ is MNable whenever i > j > 0.

- Question: Which symmetric functions are MNable?
- Theorem:
 - The functions h_i and e_i are MNable for each $i \in \mathbb{N}$.
 - The function p_i is MNable for each positive integer i.
 - The Petrie function G(k, m) and the difference $G(k, m) h_m$ are MNable for any integers $k \ge 1$ and $m \ge 0$.
 - The differences $h_i p_i$ and $h_i e_i$ are MNable for each positive integer i. (This includes $h_1 e_1 = 0$.)
 - The difference $h_i p_i e_i$ is MNable for each **even** positive integer i.
 - The product $p_i p_j$ is MNable whenever i > j > 0.
 - The function $m_{(k^n)}$ as well as the differences $h_{nk} m_{(k^n)}$ and $e_{nk} (-1)^{(k-1)n} m_{(k^n)}$ are MNable for any positive integers n and k (where (k^n) denotes the n-tuple (k, k, \ldots, k)).

- Theorem (continued):
 - If some $f \in \Lambda$ is MNable, then so are -f and ω (f), where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).

- Theorem (continued):
 - If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
 - A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.

Theorem (continued):

- If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.

Theorem (continued):

- If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $(f, s_{\lambda/\mu}) \in \{-1, 0, 1\}$ for each skew partition λ/μ .

- Theorem (continued):
 - If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
 - A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
 - If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.
 - A symmetric function $f \in \Lambda$ is MNable if and only if $(f, s_{\lambda/\mu}) \in \{-1, 0, 1\}$ for each skew partition λ/μ .
- The proofs use various techniques; the coefficients are not always easy to describe.

- Theorem (continued):
 - If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
 - A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
 - If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.
 - A symmetric function $f \in \Lambda$ is MNable if and only if $(f, s_{\lambda/\mu}) \in \{-1, 0, 1\}$ for each skew partition λ/μ .
- The MNability of a symmetric function can be tested in finite time using the last bullet point.

- Theorem (continued):
 - If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
 - A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
 - If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.
 - A symmetric function $f \in \Lambda$ is MNable if and only if $(f, s_{\lambda/\mu}) \in \{-1, 0, 1\}$ for each skew partition λ/μ .
- The families listed above cover all MNable homogeneous symmetric functions of degree < 4. In degree 4, we also have

$$s_{(1,1,1,1)} - s_{(3,1)} + s_{(4)}$$
 and $s_{(4)} - s_{(2,2)}$.

Theorem (continued):

- If some $f \in \Lambda$ is MNable, then so are -f and $\omega(f)$, where $\omega : \Lambda \to \Lambda$ is the *fundamental involution* of Λ (that is, the k-algebra automorphism sending $e_n \mapsto h_n$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $f_k(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $(f, s_{\lambda/\mu}) \in \{-1, 0, 1\}$ for each skew partition λ/μ .
- All MNable s_{λ} , m_{λ} , h_{λ} and e_{λ} appear in the list above. Not sure if all MNable p_{λ} .

MNable symmetric functions: question

- Question: What symmetric functions are MNable?
 - Any hope of a full classification?
 - Any more infinite families?

Bonus problem

Dual stable Grothendieck polynomials

Reminder on Schur functions

• Here is a conjecture I'm curious to hear ideas about.

Reminder on Schur functions

- Here is a conjecture I'm curious to hear ideas about.
- Fix a commutative ring k. Recall that for any skew partition λ/μ , the (skew) Schur function $s_{\lambda/\mu}$ is defined as the power series

$$\sum_{\textit{T is an SST of shape λ/μ}} \mathsf{x}^{\mathsf{cont} \; \textit{T}} \in \mathsf{k}\left[\left[x_1, x_2, x_3, \ldots\right]\right],$$

where "SST" is short for "semistandard Young tableau", and where

$$\mathbf{x}^{\text{cont }T} = \prod_{k>1} x_k^{\text{number of times }T \text{ contains entry }k}$$

Reminder on Schur functions

- Here is a conjecture I'm curious to hear ideas about.
- Fix a commutative ring k. Recall that for any skew partition λ/μ , the (skew) Schur function $s_{\lambda/\mu}$ is defined as the power series

$$\sum_{\textit{T is an SST of shape λ/μ}} \mathsf{x}^{\mathsf{cont} \; \textit{T}} \in \mathsf{k}\left[\left[x_1, x_2, x_3, \ldots\right]\right],$$

where "SST" is short for "semistandard Young tableau", and where

$$x^{\text{cont } T} = \prod_{k>1} x_k^{\text{number of times } T \text{ contains entry } k}$$

 Let us generalize this by extending the sum and introducing extra parameters.

Dual stable Grothendieck polynomials, 1: RPPs

 A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

our along roms and					40111
	1	2	2	is an	RPP.
	2	2			
2	4		•		

 A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

	1	2	2	is an	RPP.
	2	2			
2	4				

(In detail: An RPP is a map T from a skew Young diagram to {positive integers} such that $T(i,j) \leq T(i,j+1)$ and $T(i,j) \leq T(i+1,j)$ whenever these are defined.)

 A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

	1	2	2	is an	RPP.
	2	2			
2	4				

(In detail: An RPP is a map T from a skew Young diagram to {positive integers} such that $T(i,j) \leq T(i,j+1)$ and $T(i,j) \leq T(i+1,j)$ whenever these are defined.)

• Let k be a commutative ring, and fix any elements $t_1, t_2, t_3, \ldots \in k$.

Dual stable Grothendieck polynomials, 2: definition

• Given a skew partition λ/μ , we define the *refined dual stable* Grothendieck polynomial $\widetilde{g}_{\lambda/\mu}$ to be the formal power series

$$\sum_{T \text{ is an RPP of shape } \lambda/\mu} \mathsf{x}^{\mathsf{ircont} \ T} \mathsf{t}^{\mathsf{ceq} \ T} \in \mathsf{k} \left[\left[x_1, x_2, x_3, \ldots \right] \right],$$

where

$$x^{\text{ircont } T} = \prod_{k>1} x_k^{\text{number of columns of } T \text{ containing entry } k}$$

and

$$\mathsf{t}^{\mathsf{ceq} \, T} = \prod_{i > 1} t_i^{\mathsf{number} \; \mathsf{of} \; j \; \mathsf{such} \; \mathsf{that} \; T(i,j) = T(i+1,j)}$$

(where T(i,j) = T(i+1,j) implies, in particular, that both (i,j) and (i+1,j) are cells of T).

This is a formal power series in $x_1, x_2, x_3, ...$ (despite the name "polynomial").

Recall:

$$\mathbf{x}^{\mathsf{ircont} \; T} = \prod_{k > 1} \mathbf{x}^{\mathsf{number} \; \mathsf{of} \; \mathsf{columns} \; \mathsf{of} \; T \; \mathsf{containing \; entry} \; k}.$$

• If
$$T = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \end{bmatrix}$$
, then $x^{ircont T} = x_1 x_2^4 x_3$. The x_2 has $\begin{bmatrix} 2 & 3 \end{bmatrix}$

exponent 4, not 5, because the two 2's in column 3 count only once.

Recall:

$$\mathbf{x}^{\mathsf{ircont}\,T} = \prod_{k>1} x_k^{\mathsf{number}\,\mathsf{of}\,\mathsf{columns}\,\mathsf{of}\,T\,\mathsf{containing}\,\mathsf{entry}\,^k.$$

• If
$$T = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 \end{bmatrix}$$
, then $x^{ircont T} = x_1 x_2^4 x_3$. The x_2 has $\begin{bmatrix} 2 & 3 \end{bmatrix}$

exponent 4, not 5, because the two 2's in column 3 count only once.

• If T is an SST, then $x^{ircont T} = x^{cont T}$.

Recall that

$$\mathsf{t}^{\mathsf{ceq} \; T} = \prod_{i \geq 1} t_i^{\mathsf{number} \; \mathsf{of} \; j \; \mathsf{such} \; \mathsf{that} \; T(i,j) = T(i+1,j)}$$

• If
$$T=egin{array}{|c|c|c|c|}\hline 1&2&2\\\hline 2&2\\\hline \hline &2&3\\\hline &T~(1,3)=T~(2,3).\\\hline \end{array}$$
 , then $\mathsf{t}^{\mathsf{ceq}~T}=t_1$, due to

Recall that

$$\mathsf{t}^{\mathsf{ceq} \; T} = \prod_{i \geq 1} t_i^{\mathsf{number} \; \mathsf{of} \; j \; \mathsf{such} \; \mathsf{that} \; T(i,j) = T(i+1,j)}$$

If
$$T=egin{array}{|c|c|c|c|}\hline 1&2&2\\\hline 2&2\\\hline 2&3\\\hline T&(1,3)=T&(2,3). \end{array}$$
 then $\mathsf{t}^{\mathsf{ceq}\;T}=t_1$, due to

- If T is an SST, then $t^{ceq T} = 1$.
- In general, t^{ceq T} measures "how often" T breaks the SST condition.

• If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.

- If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.
- If we set $t_1=t_2=t_3=\cdots=1$, then $\widetilde{g}_{\lambda/\mu}=g_{\lambda/\mu}$, the *dual stable Grothendieck polynomial* of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.

- If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.
- If we set $t_1=t_2=t_3=\cdots=1$, then $\widetilde{g}_{\lambda/\mu}=g_{\lambda/\mu}$, the *dual stable Grothendieck polynomial* of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda/\mu}$ is symmetric in the x_i (not in the t_i).

- If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.
- If we set $t_1=t_2=t_3=\cdots=1$, then $\widetilde{g}_{\lambda/\mu}=g_{\lambda/\mu}$, the *dual stable Grothendieck polynomial* of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda/\mu}$ is symmetric in the x_i (not in the t_i).
- Example 1: If $\lambda = (n)$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = h_n$, the *n*-th complete homogeneous symmetric function.

- If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.
- If we set $t_1=t_2=t_3=\cdots=1$, then $\widetilde{g}_{\lambda/\mu}=g_{\lambda/\mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda/\mu}$ is symmetric in the x_i (not in the t_i).
- Example 1: If $\lambda = (n)$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = h_n$, the *n*-th complete homogeneous symmetric function.
- Example 2: If $\lambda = \underbrace{\left(\underbrace{1,1,\ldots,1}_{n \text{ ones}}\right)}$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = e_n \, (t_1,t_2,\ldots,t_{n-1},x_1,x_2,x_3,\ldots)$, where e_n is the n-th elementary symmetric function.

- If we set $t_1=t_2=t_3=\cdots=0$, then $\widetilde{g}_{\lambda/\mu}=s_{\lambda/\mu}$.
- If we set $t_1=t_2=t_3=\cdots=1$, then $\widetilde{g}_{\lambda/\mu}=g_{\lambda/\mu}$, the *dual stable Grothendieck polynomial* of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda/\mu}$ is symmetric in the x_i (not in the t_i).
- Example 1: If $\lambda = (n)$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = h_n$, the *n*-th complete homogeneous symmetric function.
- Example 2: If $\lambda = \underbrace{\left(\underbrace{1,1,\ldots,1}_{n \text{ ones}}\right)}$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = e_n \, (t_1,t_2,\ldots,t_{n-1},x_1,x_2,x_3,\ldots)$, where e_n is the n-th elementary symmetric function.
- Example 3: If $\lambda = (2,1)$ and $\mu = ()$, then $\widetilde{g}_{\lambda/\mu} = \sum_{a \le b; \ a < c} x_a x_b x_c + t_1 \sum_{a \le b} x_a x_b = s_{(2,1)} + t_1 s_{(2)}$.

• Conjecture: Let the conjugate partitions of λ and μ be $\lambda^t = ((\lambda^t)_1, (\lambda^t)_2, \dots, (\lambda^t)_N)$ and $\mu^t = ((\mu^t)_1, (\mu^t)_2, \dots, (\mu^t)_N)$. Then,

$$\begin{split} &\widetilde{g}_{\lambda/\mu} \\ &= \det \left(\left(e_{(\lambda^t)_i - i - (\mu^t)_j + j} \left(\mathsf{x}, \mathsf{t} \left[\left(\mu^t \right)_j + 1 : \left(\lambda^t \right)_i \right] \right) \right)_{1 \leq i \leq N, \ 1 \leq j \leq N} \right). \end{split}$$

Here, $(x, t[k : \ell])$ denotes the alphabet $(x_1, x_2, x_3, \dots, t_k, t_{k+1}, \dots, t_{\ell-1})$.

Warning: If $\ell \leq k$, then $t_k, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

• Conjecture: Let the conjugate partitions of λ and μ be $\lambda^t = ((\lambda^t)_1, (\lambda^t)_2, \dots, (\lambda^t)_N)$ and $\mu^t = ((\mu^t)_1, (\mu^t)_2, \dots, (\mu^t)_N)$. Then,

$$\begin{split} &\widetilde{g}_{\lambda/\mu} \\ &= \det \left(\left(e_{(\lambda^t)_i - i - (\mu^t)_j + j} \left(\mathsf{x}, \mathsf{t} \left[\left(\mu^t \right)_j + 1 : \left(\lambda^t \right)_i \right] \right) \right)_{1 \leq i \leq N, \ 1 \leq j \leq N} \right). \end{split}$$

Here, $(x, t [k : \ell])$ denotes the alphabet $(x_1, x_2, x_3, \dots, t_k, t_{k+1}, \dots, t_{\ell-1})$.

Warning: If $\ell \leq k$, then $t_k, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

 This would generalize the Jacobi-Trudi identity for Schur functions in terms of e_i's.

• Conjecture: Let the conjugate partitions of λ and μ be $\lambda^t = ((\lambda^t)_1, (\lambda^t)_2, \dots, (\lambda^t)_N)$ and $\mu^t = ((\mu^t)_1, (\mu^t)_2, \dots, (\mu^t)_N)$. Then,

$$\begin{split} &\widetilde{g}_{\lambda/\mu} \\ &= \det \left(\left(e_{(\lambda^t)_i - i - (\mu^t)_j + j} \left(\mathsf{x}, \mathsf{t} \left[\left(\mu^t \right)_j + 1 : \left(\lambda^t \right)_i \right] \right) \right)_{1 \leq i \leq N, \ 1 \leq j \leq N} \right). \end{split}$$

Here, $(x, t[k : \ell])$ denotes the alphabet $(x_1, x_2, x_3, \dots, t_k, t_{k+1}, \dots, t_{\ell-1})$.

Warning: If $\ell \leq k$, then $t_k, t_{k+1}, \dots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- This would generalize the Jacobi-Trudi identity for Schur functions in terms of e_i 's.
- I have some even stronger conjectures, with less evidence...

• Conjecture: Let the conjugate partitions of λ and μ be $\lambda^t = ((\lambda^t)_1, (\lambda^t)_2, \dots, (\lambda^t)_N)$ and $\mu^t = ((\mu^t)_1, (\mu^t)_2, \dots, (\mu^t)_N)$. Then,

$$\begin{split} &\widetilde{g}_{\lambda/\mu} \\ &= \det \left(\left(e_{(\lambda^t)_i - i - (\mu^t)_j + j} \left(\mathbf{x}, \mathbf{t} \left[\left(\mu^t \right)_j + 1 : \left(\lambda^t \right)_i \right] \right) \right)_{1 \leq i \leq N, \ 1 \leq j \leq N} \right). \end{split}$$

Here, $(x, t[k : \ell])$ denotes the alphabet $(x_1, x_2, x_3, \dots, t_k, t_{k+1}, \dots, t_{\ell-1})$.

Warning: If $\ell \leq k$, then $t_k, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- This would generalize the Jacobi-Trudi identity for Schur functions in terms of *ei*'s.
- I have some even stronger conjectures, with less evidence...
- The case $\mu = \emptyset$ has been proven by Damir Yeliussizov in arXiv:1601.01581.

Thank you

- Linyuan Liu, Patrick Polo for the original motivation.
- Ira Gessel, Jim Haglund, Christopher Ryba, Richard Stanley and Mark Wildon for interesting discussions.
- the Mathematisches Forschungsinstitut Oberwolfach and the Institut Mittag-Leffler for hosting me.
- you for your patience and corrections.