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Abstract

The dual immaculate functions are a basis of the ring QSym of quasisym-
metric functions, and form one of the most natural analogues of the Schur
functions. The dual immaculate function corresponding to a composition
is a weighted generating function for immaculate tableaux in the same way
as a Schur function is for semistandard Young tableaux; an “immaculate
tableau” is defined similarly to a semistandard Young tableau, but the shape
is a composition rather than a partition, and only the first column is required
to strictly increase (whereas the other columns can be arbitrary; but each
row has to weakly increase). Dual immaculate functions have been intro-
duced by Berg, Bergeron, Saliola, Serrano and Zabrocki in arXiv:1208.5191,
and have since been found to possess numerous nontrivial properties.

In this note, we prove a conjecture of Mike Zabrocki which provides an al-
ternative construction for the dual immaculate functions in terms of certain
"vertex operators". The proof uses a dendriform structure on the ring QSym;
we discuss the relation of this structure to known dendriform structures on
the combinatorial Hopf algebras FQSym and WQSym.

1. Introduction

The three most well-known combinatorial Hopf algebras that are defined over
any commutative ring k are the Hopf algebra of symmetric functions, the Hopf
algebra of quasisymmetric functions, and that of noncommutative symmetric
functions. The first of these three Hopf algebras has been studied for several
decades, while the latter two are newer (the quasisymmetric functions, for ex-
ample, have been first defined by Ira M. Gessel in 1984); we refer to [HaGuKi10,
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Chapters 4 and 6] and [GriRei15, Chapters 2 and 5] for expositions of them1. All
three of these Hopf algebras are known to carry multiple algebraic structures
(such as additional products, skewing operators, pairings etc.) and have several
bases of combinatorial and algebraic significance. The Schur functions – forming
a basis of the symmetric functions – are probably the most important of these
bases (certainly the most natural in terms of relations to representation theory
and several other applications); a natural question is thus to seek similar bases
for quasisymmetric and noncommutative symmetric functions.

Several answers to this question have been suggested, but the simplest one
appears to be given in a 2013 paper by Berg, Bergeron, Saliola, Serrano and
Zabrocki [BBSSZ13a]: They define the immaculate (noncommutative symmetric)
functions (which form a basis of the noncommutative symmetric functions) and
the dual immaculate (quasi-symmetric) functions (which form a basis of the qua-
sisymmetric functions). These two bases are mutually dual and satisfy analogues
of various properties of the Schur basis (i.e., the basis of the symmetric functions
consisting of the Schur functions). Among these properties are a Littlewood-
Richardson rule [BBSSZ13b], a Pieri rule [BSOZ13] (which is not a consequence
of the Littlewood-Richardson rule), and a representation-theoretical interpreta-
tion [BBSSZ13c]. The immaculate functions can be defined by an analogue of
the Jacobi-Trudi identity (see [BBSSZ13a, Remark 3.28] for details), whereas the
dual immaculate functions can be defined as generating functions for “immacu-
late tableaux” in analogy to the Schur functions being generating functions for
semistandard tableaux (see Proposition 4.4 below for details).

The original definition of the immaculate functions ([BBSSZ13a, Definition
3.2]) is by applying a sequence of so-called noncommutative Bernstein operators to
the constant power series 1. Around 2013, Mike Zabrocki conjectured that the
dual immaculate functions can be obtained by a similar use of “quasi-symmetric
Bernstein operators”. The purpose of this note is to prove this conjecture (Corol-
lary 5.6 below). Along the way, we define certain new binary operations on
QSym (the ring of quasisymmetric functions); two of them give rise to a struc-
ture of a dendriform algebra [EbrFar08], which seems to be interesting in its own
right.

This note is organized as follows: In Section 2, we recall basic properties of
quasisymmetric (and symmetric) functions and introduce the notations that we
shall use. In Section 3, we define two binary operations ≺ and Á on the power
series ring k [[x1, x2, x3, . . .]] and show that they restrict to operations on QSym
which interact with the Hopf algebra structure of QSym in a useful way. In Sec-
tion 4, we define the dual immaculate functions, and show that this definition
agrees with the one given in [BBSSZ13a, Remark 3.28]; we then give a com-
binatorial interpretation of dual immaculate functions (which is not new, but

1Historically, the origin of the noncommutative symmetric functions is in [GKLLRT95], whereas
the quasisymmetric functions have been introduced in [Gessel84]. See also [Stanle99, Section
7.19] specifically for the quasisymmetric functions and their enumerative applications (al-
though the Hopf algebra structure does not appear in this source).
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has apparently never been explicitly stated). In Section 5, we prove Zabrocki’s
conjecture. In Section 6, we discuss how our binary operations can be lifted to
noncommutative power series and restrict to operations on WQSym, which are
closely related to similar operations that have appeared in the literature. In the
final Section 7, we ask some further questions.

This note is available in two versions: a short one and a long one (with more
details, mainly in proofs). The former is available at
https://www.cip.ifi.lmu.de/~grinberg/algebra/dimcreation.pdf , the latter
at
https://www.cip.ifi.lmu.de/~grinberg/algebra/dimcreation-long.pdf . The
version you are currently reading is the long (detailed) one. Both versions are
compiled from the same sourcecode (the short one compiles by default; see the
comments at front of the TeX file for precise instructions to get the long one).
Both versions appear on the arXiv as preprint arXiv:1410.0079 (the short version
being the regular PDF download, while the long version is an ancillary file).

This note has been published as:

Darij Grinberg, Dual Creation Operators and a Dendriform Algebra Struc-
ture on the Quasisymmetric Functions, Canad. J. Math. 69 (1), 2017, pp.
21–53, https://doi.org/10.4153/CJM-2016-018-8 .

The published version differs insignificantly from the above-mentioned short
version of this note. (The former has editorial changes; the latter has some trivial
corrections and updated references.)

1.1. Acknowledgments

Mike Zabrocki kindly shared his conjecture with me during my visit to Univer-
sity of York, Toronto in March 2014. I am also grateful to Nantel Bergeron for
his invitation and hospitality. An anonymous referee made numerous helpful
remarks.

2. Quasisymmetric functions

We assume that the reader is familiar with the basics of the theory of symmetric
and quasisymmetric functions (as presented, e.g., in [HaGuKi10, Chapters 4 and
6] and [GriRei15, Chapters 2 and 5]). However, let us define all the notations that
we need (not least because they are not consistent across literature). We shall try
to have our notations match those used in [BBSSZ13a, Section 2] as much as
possible.

We use N to denote the set {0, 1, 2, . . .}.
A composition means a finite sequence of positive integers. For instance, (2, 3)

and (1, 5, 1) are compositions. The empty composition (i.e., the empty sequence
()) is denoted by ∅. We denote by Comp the set of all compositions. For every
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composition α = (α1, α2, . . . , α`), we denote by |α| the size of the composition α;
this is the nonnegative integer α1 + α2 + · · ·+ α`. If n ∈ N, then a composition of
n simply means a composition having size n. A nonempty composition means a
composition that is not empty (or, equivalently, that has size > 0).

Let k be a commutative ring (which, for us, means a commutative ring with
unity). This k will stay fixed throughout the paper. We shall define our sym-
metric and quasisymmetric functions over this commutative ring k. 2 Every
tensor sign ⊗ without a subscript should be understood to mean ⊗k.

Let x1, x2, x3, . . . be countably many distinct indeterminates. We let Mon be the
free abelian monoid on the set {x1, x2, x3, . . .} (written multiplicatively); it con-
sists of elements of the form xa1

1 xa2
2 xa3

3 · · · for finitely supported (a1, a2, a3, . . .) ∈
N∞ (where “finitely supported” means that all but finitely many positive inte-
gers i satisfy ai = 0). A monomial will mean an element of Mon. Thus, monomials
are combinatorial objects (without coefficients), independent of k.

We consider the k-algebra k [[x1, x2, x3, . . .]] of (commutative) power series in
countably many distinct indeterminates x1, x2, x3, . . . over k. By abuse of nota-
tion, we shall identify every monomial xa1

1 xa2
2 xa3

3 · · · ∈ Mon with the correspond-
ing element xa1

1 · x
a2
2 · x

a3
3 · · · · of k [[x1, x2, x3, . . .]] when necessary (e.g., when we

speak of the sum of two monomials or when we multiply a monomial with an
element of k); however, monomials don’t live in k [[x1, x2, x3, . . .]] per se3.

The k-algebra k [[x1, x2, x3, . . .]] is a topological k-algebra; its topology is the
product topology4. The polynomial ring k [x1, x2, x3, . . .] is a dense subset of
k [[x1, x2, x3, . . .]] with respect to this topology. This allows to prove certain iden-
tities in the k-algebra k [[x1, x2, x3, . . .]] (such as the associativity of multiplica-
tion, just to give a stupid example) by first proving them in k [x1, x2, x3, . . .] (that

2We do not require anything from k other than being a commutative ring. Some authors prefer
to work only over specific rings k, such as Z or Q (for example, [BBSSZ13a] always works
over Q). Usually, their results (and often also their proofs) nevertheless are just as valid over
arbitrary k. We see no reason to restrict our generality here.

3This is a technicality. Indeed, the monomials 1 and x1 are distinct, but the corresponding
elements 1 and x1 of k [[x1, x2, x3, . . .]] are identical when k = 0. So we could not regard the
monomials as lying in k [[x1, x2, x3, . . .]] by default.

4More precisely, this topology is defined as follows (see also [GriRei15, Section 2.6]):
We endow the ring k with the discrete topology. To define a topology on the k-algebra

k [[x1, x2, x3, . . .]], we (temporarily) regard every power series in k [[x1, x2, x3, . . .]] as the fam-
ily of its coefficients. Thus, k [[x1, x2, x3, . . .]] becomes a product of infinitely many copies of
k (one for each monomial). This allows us to define a product topology on k [[x1, x2, x3, . . .]].
This product topology is the topology that we will be using whenever we make statements
about convergence in k [[x1, x2, x3, . . .]] or write down infinite sums of power series. A se-
quence (an)n∈N of power series converges to a power series a with respect to this topology if
and only if for every monomial m, all sufficiently high n ∈N satisfy

(the coefficient of m in an) = (the coefficient of m in a) .

Note that this is not the topology obtained by taking the completion of k [x1, x2, x3, . . .]
with respect to the standard grading (in which all xi have degree 1). Indeed, this completion
is not even the whole k [[x1, x2, x3, . . .]].
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is, for polynomials), and then arguing that they follow by density in k [[x1, x2, x3, . . .]].
If m is a monomial, then Suppm will denote the subset

{i ∈ {1, 2, 3, . . .} | the exponent with which xi occurs in m is > 0}

of {1, 2, 3, . . .}; this subset is finite. The degree degm of a monomial m = xa1
1 xa2

2 xa3
3 · · ·

is defined to be a1 + a2 + a3 + · · · ∈N.
A power series P ∈ k [[x1, x2, x3, . . .]] is said to be bounded-degree if there exists

an N ∈N such that every monomial of degree > N appears with coefficient 0 in
P. Let k [[x1, x2, x3, . . .]]bdd denote the k-subalgebra of k [[x1, x2, x3, . . .]] formed
by the bounded-degree power series in k [[x1, x2, x3, . . .]].

The k-algebra of symmetric functions over k is defined as the k-subalgebra of
k [[x1, x2, x3, . . .]]bdd consisting of all bounded-degree power series which are
invariant under any permutation of the indeterminates. This k-subalgebra is
denoted by Sym. (Notice that Sym is denoted Λ in [GriRei15].) As a k-module,
Sym is known to have several bases, such as the basis of complete homogeneous
symmetric functions (hλ) and that of the Schur functions (sλ), both indexed by
the integer partitions.

Two monomials m and n are said to be pack-equivalent if they have the form
m = xα1

i1
xα2

i2
· · · xα`

i`
and n = xα1

j1
xα2

j2
· · · xα`

j`
for some ` ∈ N, some positive integers

α1, α2, . . ., α`, some positive integers i1, i2, . . ., i` satisfying i1 < i2 < · · · < i`, and
some positive integers j1, j2, . . ., j` satisfying j1 < j2 < · · · < j` 5. A power series
P ∈ k [[x1, x2, x3, . . .]] is said to be quasisymmetric if any two pack-equivalent
monomials have equal coefficients in P. The k-algebra of quasisymmetric functions
over k is defined as the k-subalgebra of k [[x1, x2, x3, . . .]]bdd consisting of all
bounded-degree power series which are quasisymmetric. It is clear that Sym ⊆
QSym.

For every composition α = (α1, α2, . . . , α`), the monomial quasisymmetric func-
tion Mα is defined by

Mα = ∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
∈ k [[x1, x2, x3, . . .]]bdd .

One easily sees that Mα ∈ QSym for every α ∈ Comp. It is well-known that
(Mα)α∈Comp is a basis of the k-module QSym; this is the so-called monomial basis
of QSym. Other bases of QSym exist as well, some of which we are going to
encounter below.

It is well-known that the k-algebras Sym and QSym can be canonically en-
dowed with Hopf algebra structures such that Sym is a Hopf subalgebra of
QSym. We refer to [HaGuKi10, Chapters 4 and 6] and [GriRei15, Chapters 2 and
5] for the definitions of these structures (and for a definition of the notion of a
Hopf algebra); at this point, let us merely state a few properties. The comultipli-

5For instance, the monomial x4
1x2

2x3x6
7 is pack-equivalent to x4

2x2
4x4x6

5, but not to x2
2x4

1x3x6
7.
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cation ∆ : QSym→ QSym⊗QSym of QSym satisfies

∆ (Mα) =
`

∑
i=0

M(α1,α2,...,αi)
⊗M(αi+1,αi+2,...,α`)

for every α = (α1, α2, . . . , α`) ∈ Comp. The counit ε : QSym → k of QSym

satisfies ε (Mα) =

{
1, if α = ∅;
0, if α 6= ∅

for every α ∈ Comp.

We shall always use the notation ∆ for the comultiplication of a Hopf alge-
bra, the notation ε for the counit of a Hopf algebra, and the notation S for the
antipode of a Hopf algebra. Occasionally we shall use Sweedler’s notation for
working with coproducts of elements of a Hopf algebra6.

If α = (α1, α2, . . . , α`) is a composition of an n ∈ N, then we define a subset
D (α) of {1, 2, . . . , n− 1} by

D (α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ α`−1} .

This subset D (α) is called the set of partial sums of the composition α; see
[GriRei15, Definition 5.1.10] for its further properties. Most importantly, a com-
position α of size n can be uniquely reconstructed from n and D (α).

If α = (α1, α2, . . . , α`) is a composition of an n ∈ N, then the fundamental
quasisymmetric function Fα ∈ k [[x1, x2, x3, . . .]]bdd can be defined by

Fα = ∑
i1≤i2≤···≤in;

ij<ij+1 if j∈D(α)

xi1 xi2 · · · xin . (1)

(This is only one of several possible definitions of Fα. In [GriRei15, Definition
5.2.4], the power series Fα is denoted by Lα and defined differently; but [GriRei15,
Proposition 5.2.9] proves the equivalence of this definition with ours.7) One can
easily see that Fα ∈ QSym for every α ∈ Comp. The family (Fα)α∈Comp is a basis
of the k-module QSym as well; it is called the fundamental basis of QSym.

6In a nutshell, Sweedler’s notation (or, more precisely, the special case of Sweedler’s notation
that we will use) consists in writing ∑

(c)
c(1) ⊗ c(2) for the tensor ∆ (c) ∈ C⊗ C, where c is an

element of a k-coalgebra C. The sum ∑
(c)

c(1) ⊗ c(2) symbolizes a representation of the tensor

∆ (c) as a sum
N
∑

i=1
c1,i ⊗ c2,i of pure tensors; it allows us to manipulate ∆ (c) without having

to explicitly introduce the N and the c1,i and the c2,i. For instance, if f : C → k is a k-linear

map, then we can write ∑
(c)

f
(

c(1)
)

c(2) for
N
∑

i=1
f (c1,i) c2,i. Of course, we need to be careful not

to use Sweedler’s notation for terms which do depend on the specific choice of the N and
the c1,i and the c2,i; for instance, we must not write ∑

(c)
c2
(1)c(2).

7In fact, [GriRei15, (5.2.3)] is exactly our equality (1).
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3. Restricted-product operations

We shall now define two binary operations on k [[x1, x2, x3, . . .]].

Definition 3.1. We define a binary operation ≺ : k [[x1, x2, x3, . . .]] ×
k [[x1, x2, x3, . . .]] → k [[x1, x2, x3, . . .]] (written in infix notation8) by the re-
quirements that it be k-bilinear and continuous with respect to the topology
on k [[x1, x2, x3, . . .]] and that it satisfy

m ≺ n =

{
m · n, if min (Suppm) < min (Supp n) ;
0, if min (Suppm) ≥ min (Supp n)

(2)

for any two monomials m and n.

Some clarifications are in order. First, we are using ≺ as an operation symbol
(rather than as a relation symbol as it is commonly used)9. Second, we consider
min∅ to be ∞, and this symbol ∞ is understood to be greater than every inte-
ger10. Hence, m ≺ 1 = m for every nonconstant monomial m, and 1 ≺ m = 0 for
every monomial m.

Let us first see why the operation ≺ in Definition 3.1 is well-defined. Recall
that the topology on k [[x1, x2, x3, . . .]] is the product topology. Hence, if ≺ is to
be k-bilinear and continuous with respect to it, we must have(

∑
m∈Mon

λmm

)
≺
(

∑
n∈Mon

µnn

)
= ∑

m∈Mon
∑

n∈Mon
λmµnm ≺ n

for any families (λm)m∈Mon ∈ kMon and (µn)n∈Mon ∈ kMon of scalars. Combined
with (2), this uniquely determines ≺ . Therefore, the binary operation ≺ satis-
fying the conditions of Definition 3.1 is unique (if it exists). But it also exists,
because if we define a binary operation ≺ on k [[x1, x2, x3, . . .]] by the explicit
formula (

∑
m∈Mon

λmm

)
≺
(

∑
n∈Mon

µnn

)
= ∑

(m,n)∈Mon×Mon ;
min(Suppm)<min(Supp n)

λmµnmn

for all (λm)m∈Mon ∈ kMon and (µn)n∈Mon ∈ kMon,

then it clearly satisfies the conditions of Definition 3.1 (and is well-defined).
The operation ≺ is not associative; however, it is part of what is called a

dendriform algebra structure on k [[x1, x2, x3, . . .]] (and on QSym, as we shall see

8By this we mean that we write a ≺ b instead of ≺ (a, b).
9Of course, the symbol has been chosen because it is reminiscent of the smaller symbol in

“min (Suppm) < min (Supp n)”.
10but not greater than itself
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below). The following remark (which will not be used until Section 6, and thus
can be skipped by a reader not familiar with dendriform algebras) provides
some details:

Remark 3.2. Let us define another binary operation � on k [[x1, x2, x3, . . .]]
similarly to ≺ except that we set

m � n =

{
m · n, if min (Suppm) ≥ min (Supp n) ;
0, if min (Suppm) < min (Supp n)

.

Then, the structure (k [[x1, x2, x3, . . .]] , ≺ , � ) is a dendriform algebra aug-
mented to satisfy [EbrFar08, (15)]. In particular, any three elements a, b and c
of k [[x1, x2, x3, . . .]] satisfy

a ≺ b + a � b = ab;
(a ≺ b) ≺ c = a ≺ (bc) ;
(a � b) ≺ c = a � (b ≺ c) ;
a � (b � c) = (ab) � c.

Now, we introduce another binary operation.

Definition 3.3. We define a binary operation Á : k [[x1, x2, x3, . . .]] ×
k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] (written in infix notation) by the require-
ments that it be k-bilinear and continuous with respect to the topology on
k [[x1, x2, x3, . . .]] and that it satisfy

m Á n =

{
m · n, if max (Suppm) ≤ min (Supp n) ;
0, if max (Suppm) > min (Supp n)

for any two monomials m and n.

Here, max∅ is understood as 0. The welldefinedness of the operation Á in
Definition 3.3 is proven in the same way as that of the operation ≺ .

Let us make a simple observation which will not be used until Section 6, but
provides some context:

Proposition 3.4. The binary operation Á is associative. It is also unital (with
1 serving as the unity).

Proof of Proposition 3.4. Let us first show that Á is associative.
In order to show this, we must prove that

(a Á b) Á c = a Á (b Á c) (3)

8
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for any three elements a, b and c of k [[x1, x2, x3, . . .]].
But if m, n and p are three monomials, then the definition of Á readily shows

that

(m Á n) Á p =


mnp, if max (Suppm) ≤ min (Supp n)

and max (Supp (mn)) ≤ min (Supp p) ;
0, otherwise

=


mnp, if max (Suppm) ≤ min (Supp n)

and max ((Suppm) ∪ (Supp n)) ≤ min (Supp p) ;
0, otherwise

(since Supp (mn) = (Suppm) ∪ (Supp n))

and

m Á (n Á p) =


mnp, if max (Supp n) ≤ min (Supp p)

and max (Suppm) ≤ min (Supp (np)) ;
0, otherwise

=


mnp, if max (Supp n) ≤ min (Supp p)

and max (Suppm) ≤ min ((Supp n) ∪ (Supp p)) ;
0, otherwise

(since Supp (np) = (Supp n) ∪ (Supp p)) ;

thus, (m Á n) Á p = m Á (n Á p) (since it is straightforward to check that the
condition
(max (Suppm) ≤ min (Supp n) and max ((Suppm) ∪ (Supp n)) ≤ min (Supp p))
is equivalent to the condition
(max (Supp n) ≤ min (Supp p) and max (Suppm) ≤ min ((Supp n) ∪ (Supp p)))
11). In other words, the equality (3) holds when a, b and c are monomials. Thus,
this equality also holds whenever a, b and c are polynomials (since it is k-linear
in a, b and c), and consequently also holds whenever a, b and c are power series
(since it is continuous in a, b and c). This proves that Á is associative.

The proof of the fact that Á is unital (with unity 1) is similar and left to the
reader. Proposition 3.4 is thus shown.

Here is another property of Á that will not be used until Section 6:

Proposition 3.5. Every a ∈ QSym and b ∈ QSym satisfy a ≺ b ∈ QSym and
a Á b ∈ QSym.

For example, we can explicitly describe the operation Á on the monomial
basis (Mγ)γ∈Comp of QSym. Namely, any two nonempty compositions α and β

11Indeed, both conditions are equivalent to
(max (Suppm) ≤ min (Supp n) and max (Suppm) ≤ min (Supp p) and max (Supp n) ≤ min (Supp p)).

9
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satisfy Mα Á Mβ = M[α,β] + Mα�β, where [α, β] and α� β are two compositions
defined by

[(α1, α2, . . . , α`) , (β1, β2, . . . , βm)] = (α1, α2, . . . , α`, β1, β2, . . . , βm) ;
(α1, α2, . . . , α`)� (β1, β2, . . . , βm) = (α1, α2, . . . , α`−1, α` + β1, β2, β3, . . . , βm) .

12 If one of α and β is empty, then Mα Á Mβ = M[α,β].
Proposition 3.5 can reasonably be called obvious; the below proof owes its

length mainly to the difficulty of formalizing the intuition.

Proof of Proposition 3.5. We shall first introduce a few more notations.
If m is a monomial, then the Parikh composition of m is defined as follows: Write

m in the form m = xα1
i1

xα2
i2
· · · xα`

i`
for some ` ∈ N, some positive integers α1, α2,

. . ., α`, and some positive integers i1, i2, . . ., i` satisfying i1 < i2 < · · · < i`.
(Notice that this way of writing m is unique.) Then, the Parikh composition of
m is defined to be the composition (α1, α2, . . . , α`).

We denote by Parikhm the Parikh composition of a monomial m. Now, it is
easy to see that the definition of a monomial quasisymmetric function Mα can
be rewritten as follows: For every α ∈ Comp, we have

Mα = ∑
m∈Mon;

Parikhm=α

m. (4)

(Indeed, for any given composition α = (α1, α2, . . . , α`), the monomials m satis-
fying Parikhm = α are precisely the monomials of the form xα1

i1
xα2

i2
· · · xα`

i`
with

i1, i2, . . ., i` being positive integers satisfying i1 < i2 < · · · < i`.)
Now, pack-equivalent monomials can be characterized as follows: Two mono-

mials m and n are pack-equivalent if and only if they have the same Parikh
composition.

Now, we come to the proof of Proposition 3.5.
Let us first fix two compositions α and β. We shall prove that Mα ≺ Mβ ∈

QSym.
Write the compositions α and β as α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm).

Let S0 denote the `-element set {0} × {1, 2, . . . , `}. Let S1 denote the m-element
set {1} × {1, 2, . . . , m}. Let S denote the (`+ m)-element set S0 ∪ S1. Let inc0 :
{1, 2, . . . , `} → S be the map which sends every p ∈ {1, 2, . . . , `} to (0, p) ∈ S0 ⊆
S . Let inc1 : {1, 2, . . . , m} → S be the map which sends every q ∈ {1, 2, . . . , m}
to (1, q) ∈ S1 ⊆ S . Define a map ρ : S → {1, 2, 3, . . .} by setting

ρ (0, p) = αp for all p ∈ {1, 2, . . . , `} ;
ρ (1, q) = βq for all q ∈ {1, 2, . . . , m} .

For every composition γ = (γ1, γ2, . . . , γn), we define a γ-smap to be a map
f : S → {1, 2, . . . , n} satisfying the following three properties:

12What we call [α, β] is denoted by α · β in [GriRei15, before Proposition 5.1.7].
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• The maps f ◦ inc0 and f ◦ inc1 are strictly increasing.

• We have13 min ( f (S0)) < min ( f (S1)).

• Every u ∈ {1, 2, . . . , n} satisfies

∑
s∈ f−1(u)

ρ (s) = γu.

These three properties will be called the three defining properties of a γ-smap.
Now, we make the following claim:
Claim 1: Let q be any monomial. Let γ be the Parikh composition of q. The

coefficient of q in Mα ≺ Mβ equals the number of all γ-smaps.
Proof of Claim 1: Write the composition γ in the form γ = (γ1, γ2, . . . , γn). Write

the monomial q in the form q = xγ1
k1

xγ2
k2
· · · xγn

kn
for some positive integers k1, k2,

. . ., kn satisfying k1 < k2 < · · · < kn. (This is possible because (γ1, γ2, . . . , γn) =
γ is the Parikh composition of q.) Then, Supp q = {k1, k2, . . . , kn}.

From (4), we get Mα = ∑
m∈Mon;

Parikhm=α

m. Similarly, Mβ = ∑
n∈Mon;

Parikh n=β

n. Hence,

Mα ≺ Mβ

=

 ∑
m∈Mon;

Parikhm=α

m

 ≺
 ∑

n∈Mon;
Parikh n=β

n


= ∑

m∈Mon;
Parikhm=α

∑
n∈Mon;

Parikh n=β

m ≺ n︸ ︷︷ ︸
=

mn, if min (Suppm) < min (Supp n) ;
0, if min (Suppm) ≥ min (Supp n)

(by the definition of ≺ on monomials)

(since the operation ≺ is k-bilinear and continuous)

= ∑
m∈Mon;

Parikhm=α

∑
n∈Mon;

Parikh n=β

{
mn, if min (Suppm) < min (Supp n) ;
0, if min (Suppm) ≥ min (Supp n)

= ∑
(m,n)∈Mon×Mon;

Parikhm=α;
Parikh n=β;

min(Suppm)<min(Supp n)

mn.

Thus, the coefficient of q in Mα ≺ Mβ equals the number of all pairs (m, n) ∈
Mon×Mon such that Parikhm = α, Parikh n = β, min (Suppm) < min (Supp n)
and mn = q. These pairs shall be called spairs. (The concept of a spair depends
on q; we nevertheless omit q from the notation, since we regard q as fixed.)

13Keep in mind that we set min∅ = ∞.

11
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Now, we shall construct a bijection between the γ-smaps and the spairs.
Indeed, we first define a map Φ from the set of γ-smaps to the set of spairs as

follows: Let f : S → {1, 2, . . . , n} be a γ-smap. Then, Φ ( f ) is defined to be the
spair (

`

∏
p=1

xαp
k f (0,p)

,
m

∏
q=1

xβq
k f (1,q)

)
.

14

Conversely, we define a map Ψ from the set of spairs to the set of γ-smaps
as follows: Let (m, n) be a spair. Then, we write the monomial m in the form

14This is a well-defined spair, for the following reasons:

• The first defining property of a γ-smap can be rewritten as “ f (0, 1) < f (0, 2) < · · · <
f (0, `) and f (1, 1) < f (1, 2) < · · · < f (1, m)”. Combined with k1 < k2 < · · · < kn,
this shows that k f (0,1) < k f (0,2) < · · · < k f (0,`) and k f (1,1) < k f (1,2) < · · · < k f (1,m).

Hence, Parikh

(
`

∏
p=1

x
αp
k f (0,p)

)
= α and Parikh

(
m
∏

q=1
x

βq
k f (1,q)

)
= β.

• The second defining property of a γ-smap shows that min ( f (S0)) < min ( f (S1)), so

that kmin( f (S0)) < kmin( f (S1))
(since k1 < k2 < · · · < kn). But Supp

(
`

∏
p=1

x
αp
k f (0,p)

)
=

{
k f (s) | s ∈ S0

}
and thus min

(
Supp

(
`

∏
p=1

x
αp
k f (0,p)

))
= min

{
k f (s) | s ∈ S0

}
=

kmin( f (S0)) (since k1 < k2 < · · · < kn). Similarly, min

(
Supp

(
m
∏

q=1
x

βq
k f (1,q)

))
=

kmin( f (S1))
. Hence,

min

(
Supp

(
`

∏
p=1

x
αp
k f (0,p)

))
= kmin( f (S0)) < kmin( f (S1))

= min

(
Supp

(
m

∏
q=1

x
βq
k f (1,q)

))
.

• The third defining property of a γ-smap shows that ∑
s∈ f−1(u)

ρ (s) = γu for every

u ∈ {1, 2, . . . , n}. Now, every p ∈ {1, 2, . . . , `} satisfies αp = ρ (0, p). Hence,
`

∏
p=1

x
αp
k f (0,p)

=
`

∏
p=1

xρ(0,p)
k f (0,p)

= ∏
s∈S0

xρ(s)
k f (s)

. Similarly,
m
∏

q=1
x

βq
k f (1,q)

= ∏
s∈S1

xρ(s)
k f (s)

. Multiplying

these two identities, we obtain(
`

∏
p=1

x
αp
k f (0,p)

)(
m

∏
q=1

x
βq
k f (1,q)

)
=

(
∏

s∈S0

xρ(s)
k f (s)

)(
∏

s∈S1

xρ(s)
k f (s)

)
= ∏

s∈S
xρ(s)

k f (s)
=

n

∏
u=1

∏
s∈ f−1(u)

xρ(s)
k f (s)︸︷︷︸

=xρ(s)
ku

(since f (s)=u)

=
n

∏
u=1

∏
s∈ f−1(u)

xρ(s)
ku︸ ︷︷ ︸

=xγu
ku

(since ∑
s∈ f−1(u)

ρ(s)=γu)

=
n

∏
u=1

xγu
ku

= xγ1
k1

xγ2
k2
· · · xγn

kn
= q.

12
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m = xα1
i1

xα2
i2
· · · xα`

i`
for some positive integers i1, i2, . . ., i` satisfying i1 < i2 <

· · · < i` (this is possible since Parikhm = α), and we write the monomial n

in the form n = xβ1
j1

xβ2
j2
· · · xβm

jm for some positive integers j1, j2, . . ., jm satis-
fying j1 < j2 < · · · < jm (this is possible since Parikh n = β). Of course,
Suppm = {i1, i2, . . . , i`} and Supp n = {j1, j2, . . . , jm}, so that min {i1, i2, . . . , i`} <
min {j1, j2, . . . , jm} (since min (Suppm) < min (Supp n)).

Now, we define a map f : S → {1, 2, . . . , n} as follows:

• For every p ∈ {1, 2, . . . , `}, we let f (0, p) be the unique r ∈ {1, 2, . . . , n}
such that ip = kr. 15

• For every q ∈ {1, 2, . . . , m}, we let f (1, q) be the unique r ∈ {1, 2, . . . , n}
such that jq = kr. 16

It is now straightforward to show that f is a γ-smap.17 We define Ψ (m, n) to
be this γ-smap f .

15To prove that this is well-defined, we need to show that this r exists and is unique. The
uniqueness of r is obvious (since k1 < k2 < · · · < kn). To prove its existence, we notice that
ip ∈ Suppm (since m = xα1

i1
xα2

i2
· · · xα`

i`
and αp > 0) and thus ip ∈ Suppm ⊆ Supp (mn)︸ ︷︷ ︸

=q

=

Supp q = {k1, k2, . . . , kn}.
16This is again well-defined, for similar reasons as the r in the definition of f (0, p).
17Indeed:

• The first defining property of a γ-smap holds. (Proof: Let us show that f ◦ inc0 is
strictly increasing (the proof for f ◦ inc1 is similar). Assume it is not. Then there
exist some p, p′ ∈ {1, 2, . . . , `} satisfying p < p′ and ( f ◦ inc0) (p) ≥ ( f ◦ inc0) (p′).
Consider these p, p′. We have p < p′, and therefore ip < ip′ (since i1 < i2 < · · · < i`).
But ( f ◦ inc0) (p) ≥ ( f ◦ inc0) (p′), and thus k( f ◦inc0)(p) ≥ k( f ◦inc0)(p′) (since k1 < k2 <

· · · < kn). Since k( f ◦inc0)(p) = k f (0,p) = ip (by the definition of f (0, p)) and similarly
k( f ◦inc0)(p′) = ip′ , this rewrites as ip ≥ ip′ . This contradicts ip < ip′ . This contradiction
completes the proof.)

• The second defining property of a γ-smap holds. (Proof: We WLOG assume that ` and
m are positive, since the other case is straightforward. We have i1 < i2 < · · · < i`.
In other words, k f (0,1) < k f (0,2) < · · · < k f (0,`) (since k f (0,p) = ip for every
p ∈ {1, 2, . . . , `}). Hence, f (0, 1) < f (0, 2) < · · · < f (0, `) (since k1 < k2 < · · · <
kn). Hence, min ( f (S0)) = f (0, 1). Similarly, min ( f (S1)) = f (1, 1). But from
i1 < i2 < · · · < i`, we obtain i1 = min {i1, i2, . . . , i`}; similarly, j1 = min {j1, j2, . . . , jm}.
Hence, k f (0,1) = i1 = min {i1, i2, . . . , i`} < min {j1, j2, . . . , jm} = j1 = k f (1,1), so that
f (0, 1) < f (1, 1) (since k1 < k2 < · · · < kn). Hence, min ( f (S0)) = f (0, 1) <
f (1, 1) = min ( f (S1)), qed.)

• The third defining property of a γ-smap holds. (Proof: We have

m = xα1
i1

xα2
i2
· · · xα`

i`
=

`

∏
p=1

x
αp
ip︸︷︷︸

=xρ(0,p)
k f (0,p)

(since αp=ρ(0,p)
and ip=k f (0,p))

=
`

∏
p=1

xρ(0,p)
k f (0,p)

= ∏
s∈S0

xρ(s)
k f (s)

13



Dual immaculate creation operators May 6, 2020

We thus have defined a map Φ from the set of γ-smaps to the set of spairs,
and a map Ψ from the set of spairs to the set of γ-smaps. It is straightforward to
see that these two maps Φ and Ψ are mutually inverse, and thus Φ is a bijection.
We thus have found a bijection between the set of γ-smaps and the set of spairs.
Consequently, the number of all γ-smaps equals the number of all spairs.

Now, recall that the coefficient of q in Mα ≺ Mβ equals the number of all
spairs. Hence, the coefficient of q in Mα ≺ Mβ equals the number of all γ-smaps
(since the number of all γ-smaps equals the number of all spairs). In other
words, Claim 1 is proven.

Claim 1 shows that the coefficient of a monomial q in Mα ≺ Mβ depends not
on q but only on the Parikh composition of q. Thus, any two pack-equivalent
monomials have equal coefficients in Mα ≺ Mβ (since any two pack-equivalent
monomials have the same Parikh composition). In other words, the power series
Mα ≺ Mβ is quasisymmetric. Since Mα ≺ Mβ ∈ k [[x1, x2, x3, . . .]]bdd, this yields
that Mα ≺ Mβ ∈ QSym.

[At this point, let us remark that we can give an explicit formula for Mα ≺ Mβ:
Namely,

Mα ≺ Mβ = ∑
γ∈Comp

s
γ
α,βMγ, (5)

where s
γ
α,β is the number of all γ-smaps. Indeed, for every monomial q, the

coefficient of q on the left-hand side of (5) equals s
γ
α,β where γ is the Parikh

composition of q (because of Claim 1), whereas the coefficient of q on the right-
hand side of (5) also equals s

γ
α,β (for obvious reasons). Hence, every monomial

has equal coefficients on the two sides of (5), and so (5) holds. Of course, (5)
again proves that Mα ≺ Mβ ∈ QSym, since the sum ∑

γ∈Comp
s

γ
α,βMγ has only

finitely many nonzero addends (indeed, γ-smaps can only exist if |γ| ≤ |α| +
|β|).]

Now, let us forget that we fixed α and β. We thus have shown that every two
compositions α and β satisfy Mα ≺ Mβ ∈ QSym.

Now, let a ∈ QSym and b ∈ QSym. We shall only prove that a ≺ b ∈ QSym

and similarly n = ∏
s∈S1

xρ(s)
k f (s)

. Hence,

mn =

(
∏

s∈S0

xρ(s)
k f (s)

)(
∏

s∈S1

xρ(s)
k f (s)

)
= ∏

s∈S
xρ(s)

k f (s)
(since S = S0 ∪ S1 and S0 ∩ S1 = ∅) .

Thus, ∏
s∈S

xρ(s)
k f (s)

= mn = q = xγ1
k1

xγ2
k2
· · · xγn

kn
. Now, for any u ∈ {1, 2, . . . , n}, the exponent

of xku on the left hand side of this equality is ∑
s∈ f−1(u)

ρ (s) (since k1 < k2 < · · · < kn),

whereas the exponent of xku on the right hand side is γu. Comparing these coefficients,
we find ∑

s∈ f−1(u)
ρ (s) = γu.)

14
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(since the proof of a Á b ∈ QSym is very similar18).
The statement that we need to prove (a ≺ b ∈ QSym) is k-linear in each of

a and b. Hence, we can WLOG assume that both a and b are elements of the
monomial basis of QSym. Assume this. Thus, a = Mα and b = Mβ for some
compositions α and β. Consider these α and β. Now, as we know, Mα ≺ Mβ ∈
QSym, so that a︸︷︷︸

=Mα

≺ b︸︷︷︸
=Mβ

= Mα ≺ Mβ ∈ QSym. This completes our proof of

Proposition 3.5.

Remark 3.6. The proof of Proposition 3.5 given above actually yields a com-
binatorial formula for Mα ≺ Mβ whenever α and β are two compositions.
Namely, let α and β be two compositions. Then,

Mα ≺ Mβ = ∑
γ∈Comp

s
γ
α,βMγ, (6)

where s
γ
α,β is the number of all smaps (α, β) → γ. Here a smap (α, β) → γ

means what was called a γ-smap in the above proof of Proposition 3.5.
This is similar to the well-known formula for MαMβ (see, for example,

[GriRei15, Proposition 5.1.3]) which (translated into our language) states that

MαMβ = ∑
γ∈Comp

t
γ
α,βMγ, (7)

where t
γ
α,β is the number of all overlapping shuffles (α, β) → γ. Here, the

overlapping shuffles (α, β) → γ are defined in the same way as the γ-smaps,
with the only difference that the second of the three properties that define a γ-
smap (namely, the property min ( f (S0)) < min ( f (S1))) is omitted. Needless
to say, (7) can be proven similarly to our proof of (6) above.

Here is a somewhat nontrivial property of Á and ≺ :

Theorem 3.7. Let S denote the antipode of the Hopf algebra QSym. Let us use
Sweedler’s notation ∑

(b)
b(1) ⊗ b(2) for ∆ (b), where b is any element of QSym.

Then,

∑
(b)

(
S
(

b(1)
)
Á a
)

b(2) = a ≺ b

for any a ∈ k [[x1, x2, x3, . . .]] and b ∈ QSym.

Proof of Theorem 3.7. Let a ∈ k [[x1, x2, x3, . . .]]. We can WLOG assume that a
is a monomial (because all operations in sight are k-linear and continuous).

18Alternatively, of course, a Á b ∈ QSym can be checked using the formula Mα Á Mβ = M[α,β] +
Mα�β (which is easily proven). However, there is no such simple proof for a ≺ b ∈ QSym.

15
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So assume this. That is, a = n for some monomial n. Consider this n. Let
k = min (Supp n). Notice that k ∈ {1, 2, 3, . . .} ∪ {∞}.

(Some remarks about ∞ are in order. We use ∞ as an object which is greater
than every integer. We will use summation signs like ∑

1≤i1<i2<···<i`≤k
and ∑

k<i1<i2<···<i`
in the following. Both of these summation signs range over (i1, i2, . . . , i`) ∈
{1, 2, 3, . . .}` satisfying certain conditions (1 ≤ i1 < i2 < · · · < i` ≤ k in the
first case, and k < i1 < i2 < · · · < i` in the second case). In particular, none of
the i1, i2, . . . , i` is allowed to be ∞ (unlike k). So the summation ∑

1≤i1<i2<···<i`≤k
is identical to ∑

1≤i1<i2<···<i`
when k = ∞, whereas the summation ∑

k<i1<i2<···<i`
is

empty when k = ∞ unless ` = 0. (If ` = 0, then the summation ∑
k<i1<i2<···<i`

ranges over the empty 0-tuple, no matter what k is.)
We shall also use an additional symbol ∞ + 1, which is understood to be

greater than every element of {1, 2, 3, . . .} ∪ {∞}.)
Every composition α = (α1, α2, . . . , α`) satisfies

a ≺ Mα =

(
∑

k<i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
· a (8)

19.
Let us define a map Bk : k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] by

Bk (p) = p (x1, x2, . . . , xk, 0, 0, 0, . . .) for every p ∈ k [[x1, x2, x3, . . .]]

(where p (x1, x2, . . . , xk, 0, 0, 0, . . .) has to be understood as p (x1, x2, x3, . . .) = p
when k = ∞). Then, Bk is an evaluation map (in an appropriate sense) and thus
a continuous k-algebra homomorphism. Any monomial m satisfies

Bk (m) =

{
m, if max (Suppm) ≤ k;
0, if max (Suppm) > k

(9)

19Proof of (8): Let α = (α1, α2, . . . , α`) be a composition. The definition of Mα yields Mα =

16
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20. Any p ∈ k [[x1, x2, x3, . . .]] satisfies

p Á a = a ·Bk (p) (10)

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
. Combined with a = n, this yields

a ≺ Mα = n ≺
(

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
= ∑

1≤i1<i2<···<i`

n ≺
(

xα1
i1

xα2
i2
· · · xα`

i`

)
︸ ︷︷ ︸

=

n · x
α1
i1

xα2
i2
· · · xα`

i`
, if min (Supp n) < min {i1, i2, . . . , i`} ;

0, if min (Supp n) ≥ min {i1, i2, . . . , i`}
(by the definition of ≺ on monomials)

(since ≺ is k-bilinear and continuous)

= ∑
1≤i1<i2<···<i`

{
n · xα1

i1
xα2

i2
· · · xα`

i`
, if min (Supp n) < min {i1, i2, . . . , i`} ;

0, if min (Supp n) ≥ min {i1, i2, . . . , i`}

= ∑
1≤i1<i2<···<i`;

min(Suppn)<min{i1,i2,...,i`}︸ ︷︷ ︸
= ∑

min(Suppn)<i1<i2<···<i`
= ∑

k<i1<i2<···<i`
(since min(Suppn)=k)

n︸︷︷︸
=a

·xα1
i1

xα2
i2
· · · xα`

i`
= ∑

k<i1<i2<···<i`

a · xα1
i1

xα2
i2
· · · xα`

i`

=

(
∑

k<i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
· a.

This proves (8).
20Proof. Let m be a monomial. Then,

Bk (m) = m (x1, x2, . . . , xk, 0, 0, 0, . . .) (by the definition of Bk)

= (the result of replacing the indeterminates xk+1, xk+2, xk+3, . . . by 0 in m)

=

{
m, if none of the indeterminates xk+1, xk+2, xk+3, . . . appears in m;
0, if some of the indeterminates xk+1, xk+2, xk+3, . . . appear in m

=

{
m, if max (Suppm) ≤ k;
0, if max (Suppm) > k

(because none of the indeterminates xk+1, xk+2, xk+3, . . . appears in m if and only if
max (Suppm) ≤ k). This proves (9).

17
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21. Also, every composition α = (α1, α2, . . . , α`) satisfies

Bk (Mα) = ∑
1≤i1<i2<···<i`≤k

xα1
i1

xα2
i2
· · · xα`

i`
(12)

22.
We shall use one further obvious observation: If i1, i2, . . . , i` are some positive

integers satisfying i1 < i2 < · · · < i`, then

there exists exactly one j ∈ {0, 1, . . . , `} satisfying ij ≤ k < ij+1 (13)

(where i0 is to be understood as 1, and i`+1 as ∞ + 1).
Let us now notice that every f ∈ QSym satisfies

a f = ∑
( f )

Bk

(
f(1)
) (

a ≺ f(2)
)

. (14)

Proof of (14): Both sides of the equality (14) are k-linear in f . Hence, it is
enough to check (14) on the basis (Mγ)γ∈Comp of QSym, that is, to prove that
(14) holds whenever f = Mγ for some γ ∈ Comp. In other words, it is enough
to show that

aMγ = ∑
(Mγ)

Bk

(
(Mγ)(1)

)
·
(

a ≺ (Mγ)(2)

)
for every γ ∈ Comp .

21Proof of (10): Fix p ∈ k [[x1, x2, x3, . . .]]. Since the equality (10) is k-linear and continuous in p,
we can WLOG assume that p is a monomial. Assume this. Hence, p = m for some monomial
m. Consider this m. We have

Bk

 p︸︷︷︸
=m

 = Bk (m) =

{
m, if max (Suppm) ≤ k;
0, if max (Suppm) > k

(11)

(by (9)). Now,

p︸︷︷︸
=m

Á a︸︷︷︸
=n

= m Á n =

{
m · n, if max (Suppm) ≤ min (Supp n) ;
0, if max (Suppm) > min (Supp n)

(by the definition of Á )

=

{
m · n, if max (Suppm) ≤ k;
0, if max (Suppm) > k

(since min (Supp n) = k)

= n︸︷︷︸
=a

·
{
m, if max (Suppm) ≤ k;
0, if max (Suppm) > k︸ ︷︷ ︸

=Bk(p)
(by (11))

= a ·Bk (p) .

This proves (10).
22Proof of (12): Let α = (α1, α2, . . . , α`) be a composition. The definition of Mα yields Mα =
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But this is easily done: Let γ ∈ Comp. Write γ in the form γ = (γ1, γ2, . . . , γ`).

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
. Applying the map Bk to both sides of this equality, we obtain

Bk (Mα) = Bk

(
∑

1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
= ∑

1≤i1<i2<···<i`

Bk

(
xα1

i1
xα2

i2
· · · xα`

i`

)
︸ ︷︷ ︸

=


xα1

i1
xα2

i2
· · · xα`

i`
, if max

(
Supp

(
xα1

i1
xα2

i2
· · · xα`

i`

))
≤ k;

0, if max
(

Supp
(

xα1
i1

xα2
i2
· · · xα`

i`

))
> k

(by (9), applied to m=x
α1
i1

xα2
i2
···xα`

i`
)

(since Bk is k-linear and continuous)

= ∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
, if max

(
Supp

(
xα1

i1
xα2

i2
· · · xα`

i`

))
≤ k;

0, if max
(

Supp
(

xα1
i1

xα2
i2
· · · xα`

i`

))
> k︸ ︷︷ ︸

=

xα1
i1

xα2
i2
· · · xα`

i`
, if max {i1, i2, . . . , i`} ≤ k;

0, if max {i1, i2, . . . , i`} > k
(since Supp

(
x

α1
i1

xα2
i2
···xα`

i`

)
={i1,i2,...,i`})

= ∑
1≤i1<i2<···<i`

{
xα1

i1
xα2

i2
· · · xα`

i`
, if max {i1, i2, . . . , i`} ≤ k;

0, if max {i1, i2, . . . , i`} > k

= ∑
1≤i1<i2<···<i`;

max{i1,i2,...,i`}≤k︸ ︷︷ ︸
= ∑

1≤i1<i2<···<i`≤k

xα1
i1

xα2
i2
· · · xα`

i`
= ∑

1≤i1<i2<···<i`≤k
xα1

i1
xα2

i2
· · · xα`

i`
.

This proves (12).
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Then,

∑
(Mγ)

Bk

(
(Mγ)(1)

)
·
(

a ≺ (Mγ)(2)

)
=

`

∑
j=0

Bk

(
M(γ1,γ2,...,γj)

)
︸ ︷︷ ︸

= ∑
1≤i1<i2<···<ij≤k

x
γ1
i1

xγ2
i2
···x

γj
ij

(by (12))

·
(

a ≺ M(γj+1,γj+2,...,γ`)

)
︸ ︷︷ ︸

=

 ∑
k<i1<i2<···<i`−j

x
γj+1
i1

x
γj+2
i2
···xγ`

i`−j

·a
(by (8))since ∑

(Mγ)

(Mγ)(1) ⊗ (Mγ)(2) = ∆ (Mγ) =
`

∑
j=0

M(γ1,γ2,...,γj)
⊗M(γj+1,γj+2,...,γ`)


=

`

∑
j=0

 ∑
1≤i1<i2<···<ij≤k

xγ1
i1

xγ2
i2
· · · xγj

ij

 ∑
k<i1<i2<···<i`−j

x
γj+1
i1

x
γj+2
i2
· · · xγ`

i`−j


︸ ︷︷ ︸

= ∑
k<ij+1<ij+2<···<i`

x
γj+1
ij+1

x
γj+2
ij+2
···xγ`

i`

(here, we have renamed the summation index
(i1,i2,...,i`−j) as (ij+1,ij+2,...,i`))

·a

=
`

∑
j=0

 ∑
1≤i1<i2<···<ij≤k

xγ1
i1

xγ2
i2
· · · xγj

ij

 ∑
k<ij+1<ij+2<···<i`

x
γj+1
ij+1

x
γj+2
ij+2
· · · xγ`

i`

 · a
=

`

∑
j=0

∑
1≤i1<i2<···<ij≤k

∑
k<ij+1<ij+2<···<i`︸ ︷︷ ︸

= ∑
1≤i1<i2<···<i`

∑
j∈{0,1,...,`};
ij≤k<ij+1

(where i0 is to be understood as 1, and i`+1 as ∞+1)

(
xγ1

i1
xγ2

i2
· · · xγj

ij

) (
x

γj+1
ij+1

x
γj+2
ij+2
· · · xγ`

i`

)
︸ ︷︷ ︸

=x
γ1
i1

xγ2
i2
···xγ`

i`

·a

= ∑
1≤i1<i2<···<i`

∑
j∈{0,1,...,`};
ij≤k<ij+1

xγ1
i1

xγ2
i2
· · · xγ`

i`

︸ ︷︷ ︸
this sum has precisely one addend,

(because of (13)),
and thus equals x

γ1
i1

xγ2
i2
···xγ`

i`

·a = ∑
1≤i1<i2<···<i`

xγ1
i1

xγ2
i2
· · · xγ`

i`︸ ︷︷ ︸
=Mγ

·a

= Mγ · a = aMγ,

qed. Thus, (14) is proven.
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Now, every b ∈ QSym satisfies

∑
(b)

(
S
(

b(1)
)
Á a
)

︸ ︷︷ ︸
=a·Bk(S(b(1)))

(by (10), applied to p=S(b(1)))

b(2)

= ∑
(b)

a ·Bk

(
S
(

b(1)
))

b(2) = ∑
(b)

Bk

(
S
(

b(1)
))
· ab(2)︸︷︷︸
= ∑
(b(2))

Bk

(
(b(2))(1)

)(
a≺(b(2))(2)

)
(by (14), applied to f=b(2))

= ∑
(b)

Bk

(
S
(

b(1)
)) ∑

(b(2))

Bk

((
b(2)
)
(1)

)(
a ≺

(
b(2)
)
(2)

)
= ∑

(b)
∑
(b(2))

Bk

(
S
(

b(1)
))

Bk

((
b(2)
)
(1)

)(
a ≺

(
b(2)
)
(2)

)

= ∑
(b)

∑
(b(1))

Bk

(
S
((

b(1)
)
(1)

))
Bk

((
b(1)
)
(2)

)
︸ ︷︷ ︸

=Bk

 ∑
(b(1))

S
(
(b(1))(1)

)
·(b(1))(2)


(since Bk is a k-algebra homomorphism)

(
a ≺ b(2)

)

 since the coassociativity of ∆ yields

∑
(b)

∑
(b(2))

b(1) ⊗
(

b(2)
)
(1)
⊗
(

b(2)
)
(2)

= ∑
(b)

∑
(b(1))

(
b(1)
)
(1)
⊗
(

b(1)
)
(2)
⊗ b(2)



= ∑
(b)

Bk


∑
(b(1))

S
((

b(1)
)
(1)

)(
b(1)
)
(2)︸ ︷︷ ︸

=ε(b(1))
(by one of the defining equations of the antipode)


(

a ≺ b(2)
)

= ∑
(b)

Bk

(
ε
(

b(1)
))

︸ ︷︷ ︸
=ε(b(1))

(since Bk is a k-algebra
homomorphism, and
ε(b(1))∈k is a scalar)

(
a ≺ b(2)

)
= ∑

(b)
ε
(

b(1)
)
·
(

a ≺ b(2)
)

= ∑
(b)

a ≺
(

ε
(

b(1)
)

b(2)
)
= a ≺

∑
(b)

ε
(

b(1)
)

b(2)


︸ ︷︷ ︸

=b

= a ≺ b.
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This proves Theorem 3.7.

Let us connect the Á operation with the fundamental basis of QSym:

Proposition 3.8. For any two compositions α and β, define a composition α� β
as follows:

– If α is empty, then set α� β = β.
– Otherwise, if β is empty, then set α� β = α.
– Otherwise, define α� β as (α1, α2, . . . , α`−1, α` + β1, β2, β3, . . . , βm), where

α is written as α = (α1, α2, . . . , α`) and where β is written as β =
(β1, β2, . . . , βm).

Then, any two compositions α and β satisfy

Fα Á Fβ = Fα�β.

Our proof of this proposition will rely on the following lemma:

Lemma 3.9. If G is a set of integers and r is an integer, then we let G+ r denote
the set {g + r | g ∈ G} of integers.

Let p ∈ N and q ∈ N. Let α be a composition of p. Let β be a composition
of q. Consider the composition α� β defined in Proposition 3.8.

(a) Then, α � β is a composition of p + q satisfying D (α� β) = D (α) ∪
(D (β) + p).

(b) Also, define a composition [α, β] by [α, β] =
(α1, α2, . . . , α`, β1, β2, . . . , βm), where α and β are written in the forms
α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm). Assume that p > 0
and q > 0. Then, [α, β] is a composition of p + q satisfying
D ([α, β]) = D (α) ∪ {p} ∪ (D (β) + p).

(Actually, part (b) of this lemma will not be used until much later, but part (a)
will be used soon.)

Proof of Lemma 3.9. Write α in the form α = (α1, α2, . . . , α`). Thus, |α| = α1 + α2 +
· · ·+ α`, so that α1 + α2 + · · ·+ α` = |α| = p (since α is a composition of p).

Write β in the form β = (β1, β2, . . . , βm). Thus, |β| = β1 + β2 + · · ·+ βm, so
that β1 + β2 + · · ·+ βm = |β| = q (since β is a composition of q).

We have β = (β1, β2, . . . , βm), and thus

D (β) = {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βm−1}
(by the definition of D (β))

=
{

β1 + β2 + · · ·+ β j | j ∈ {1, 2, . . . , m− 1}
}

.

Also, α = (α1, α2, . . . , α`), and thus

D (α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ α`−1}
(by the definition of D (α))

= {α1 + α2 + · · ·+ αi | i ∈ {1, 2, . . . , `− 1}} .
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(a) If α or β is empty, then Lemma 3.9 (a) holds for obvious reasons (because
of the definition of α� β in this case). Thus, we WLOG assume that neither α
nor β is empty.

We have α� β = (α1, α2, . . . , α`−1, α` + β1, β2, β3, . . . , βm) (by the definition of
α� β) and thus

|α� β| = α1 + α2 + · · ·+ α`−1 + (α` + β1) + β2 + β3 + · · ·+ βm

= (α1 + α2 + · · ·+ α`)︸ ︷︷ ︸
=p

+ (β1 + β2 + · · ·+ βm)︸ ︷︷ ︸
=q

= p + q.

Thus, α� β is a composition of p+ q. Hence, it remains to show that D (α� β) =
D (α) ∪ (D (β) + p).

Now, α� β = (α1, α2, . . . , α`−1, α` + β1, β2, β3, . . . , βm), so that

D (α� β)

= {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ α`−1,
α1 + α2 + · · ·+ α`−1 + (α` + β1) , α1 + α2 + · · ·+ α`−1 + (α` + β1) + β2,
α1 + α2 + · · ·+ α`−1 + (α` + β1) + β2 + β3, . . . ,
α1 + α2 + · · ·+ α`−1 + (α` + β1) + β2 + β3 + · · ·+ βm−1}
(by the definition of D (α� β))

= {α1 + α2 + · · ·+ αi | i ∈ {1, 2, . . . , `− 1}}︸ ︷︷ ︸
=D(α)

∪


α1 + α2 + · · ·+ α`−1 + (α` + β1) + β2 + β3 + · · ·+ β j︸ ︷︷ ︸

=(α1+α2+···+α`)+(β1+β2+···+β j)
=(β1+β2+···+β j)+(α1+α2+···+α`)

| j ∈ {1, 2, . . . , m− 1}


= D (α) ∪

(β1 + β2 + · · ·+ β j
)
+ (α1 + α2 + · · ·+ α`)︸ ︷︷ ︸

=p

| j ∈ {1, 2, . . . , m− 1}


= D (α) ∪

{(
β1 + β2 + · · ·+ β j

)
+ p | j ∈ {1, 2, . . . , m− 1}

}︸ ︷︷ ︸
={β1+β2+···+β j | j∈{1,2,...,m−1}}+p

= D (α) ∪

{β1 + β2 + · · ·+ β j | j ∈ {1, 2, . . . , m− 1}
}︸ ︷︷ ︸

=D(β)

+p


= D (α) ∪ (D (β) + p) .

This completes the proof of Lemma 3.9 (a).
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(b) We have p > 0. Thus, the composition α is nonempty (since α is a compo-
sition of p). In other words, the composition (α1, α2, . . . , α`) is nonempty (since
α = (α1, α2, . . . , α`)). Hence, ` > 0.

We have q > 0. Thus, the composition β is nonempty (since β is a composition
of q). In other words, the composition (β1, β2, . . . , βm) is nonempty (since β =
(β1, β2, . . . , βm)). Hence, m > 0.

We have [α, β] = (α1, α2, . . . , α`, β1, β2, . . . , βm) (by the definition of [α, β]) and
thus

|α� β| = α1 + α2 + · · ·+ α` + β1 + β2 + · · ·+ βm

= (α1 + α2 + · · ·+ α`)︸ ︷︷ ︸
=p

+ (β1 + β2 + · · ·+ βm)︸ ︷︷ ︸
=q

= p + q.

Thus, [α, β] is a composition of p + q. Hence, it remains to show that D ([α, β]) =
D (α) ∪ (D (β) + p).

24



Dual immaculate creation operators May 6, 2020

Now, [α, β] = (α1, α2, . . . , α`, β1, β2, . . . , βm), so that

D ([α, β])

= {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ α`−1,
α1 + α2 + · · ·+ α`−1 + α`, α1 + α2 + · · ·+ α`−1 + α` + β1,
α1 + α2 + · · ·+ α`−1 + α` + β1 + β2, . . . ,
α1 + α2 + · · ·+ α`−1 + α` + β1 + β2 + · · ·+ βm−1}
(by the definition of D ([α, β]))

= {α1 + α2 + · · ·+ αi | i ∈ {1, 2, . . . , `− 1}}︸ ︷︷ ︸
=D(α)

∪

α1 + α2 + · · ·+ α`︸ ︷︷ ︸
=p



∪


α1 + α2 + · · ·+ α`−1 + α` + β1 + β2 + · · ·+ β j︸ ︷︷ ︸

=(α1+α2+···+α`)+(β1+β2+···+β j)
=(β1+β2+···+β j)+(α1+α2+···+α`)

| j ∈ {1, 2, . . . , m− 1}


= D (α) ∪ {p} ∪

(β1 + β2 + · · ·+ β j
)
+ (α1 + α2 + · · ·+ α`)︸ ︷︷ ︸

=p

| j ∈ {1, 2, . . . , m− 1}


= D (α) ∪ {p} ∪

{(
β1 + β2 + · · ·+ β j

)
+ p | j ∈ {1, 2, . . . , m− 1}

}︸ ︷︷ ︸
={β1+β2+···+β j | j∈{1,2,...,m−1}}+p

= D (α) ∪ {p} ∪

{β1 + β2 + · · ·+ β j | j ∈ {1, 2, . . . , m− 1}
}︸ ︷︷ ︸

=D(β)

+p


= D (α) ∪ {p} ∪ (D (β) + p) .

This completes the proof of Lemma 3.9 (b).

Proof of Proposition 3.8. If either α or β is empty, then this is obvious (since Á is
unital with 1 as its unity, and since F∅ = 1). So let us WLOG assume that neither
is. Write α as α = (α1, α2, . . . , α`), and write β as β = (β1, β2, . . . , βm). Thus, `
and m are positive (since α and β are nonempty).

Let p = |α| and q = |β|. Thus, p and q are positive (since α and β are
nonempty). Recall that we use the notation D (α) for the set of partial sums
of a composition α. If G is a set of integers and r is an integer, then we let G + r
denote the set {g + r | g ∈ G} of integers.
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Lemma 3.9 (a) shows that α� β is a composition of p+ q satisfying D (α� β) =
D (α) ∪ (D (β) + p).

Applying (1) to p instead of n, we obtain

Fα = ∑
i1≤i2≤···≤ip;

ij<ij+1 if j∈D(α)

xi1 xi2 · · · xip . (15)

Applying (1) to q and β instead of n and α, we obtain

Fβ = ∑
i1≤i2≤···≤iq;

ij<ij+1 if j∈D(β)

xi1 xi2 · · · xiq = ∑
ip+1≤ip+2≤···≤ip+q;
ij<ij+1 if j∈D(β)+p

xip+1 xip+2 · · · xip+q

(here, we renamed the summation index
(
i1, i2, . . . , iq

)
as
(
ip+1, ip+2, . . . , ip+q

)
).

This, together with (15), yields

Fα Á Fβ

=

 ∑
i1≤i2≤···≤ip;

ij<ij+1 if j∈D(α)

xi1 xi2 · · · xip

 Á
 ∑

ip+1≤ip+2≤···≤ip+q;
ij<ij+1 if j∈D(β)+p

xip+1 xip+2 · · · xip+q


= ∑

i1≤i2≤···≤ip;
ij<ij+1 if j∈D(α)

∑
ip+1≤ip+2≤···≤ip+q;
ij<ij+1 if j∈D(β)+p

(
xi1 xi2 · · · xip

)
Á

(
xip+1 xip+2 · · · xip+q

)
︸ ︷︷ ︸

=

xi1 xi2 · · · xip xip+1 xip+2 · · · xip+q , if ip ≤ ip+1;
0, if ip > ip+1

(by the definition of Á on monomials)

= ∑
i1≤i2≤···≤ip;

ij<ij+1 if j∈D(α)

∑
ip+1≤ip+2≤···≤ip+q;
ij<ij+1 if j∈D(β)+p

{
xi1 xi2 · · · xip xip+1 xip+2 · · · xip+q , if ip ≤ ip+1;
0, if ip > ip+1

= ∑
i1≤i2≤···≤ip;

ij<ij+1 if j∈D(α);
ip+1≤ip+2≤···≤ip+q;
ij<ij+1 if j∈D(β)+p;

ip≤ip+1︸ ︷︷ ︸
= ∑

i1≤i2≤···≤ip+q;
ij<ij+1 if j∈D(α)∪(D(β)+p)

xi1 xi2 · · · xip xip+1 xip+2 · · · xip+q︸ ︷︷ ︸
=xi1

xi2 ···xip+q

= ∑
i1≤i2≤···≤ip+q;

ij<ij+1 if j∈D(α)∪(D(β)+p)

xi1 xi2 · · · xip+q . (16)

On the other hand, α � β is a composition of p + q satisfying D (α� β) =
D (α) ∪ (D (β) + p). Thus, (1) (applied to α � β and p + q instead of α and n)
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yields

Fα�β = ∑
i1≤i2≤···≤ip+q;

ij<ij+1 if j∈D(α�β)

xi1 xi2 · · · xip+q = ∑
i1≤i2≤···≤ip+q;

ij<ij+1 if j∈D(α)∪(D(β)+p)

xi1 xi2 · · · xip+q

(since D (α� β) = D (α)∪ (D (β) + p)). Compared with (16), this yields Fα Á Fβ =
Fα�β. This proves Proposition 3.8.

For our goals, we need a certain particular case of Proposition 3.8. Namely, let
us recall that for every m ∈ N, the m-th complete homogeneous symmetric function
hm is defined as the element ∑

1≤i1≤i2≤···≤im
xi1 xi2 · · · xim of Sym. It is easy to see

that hm = F(m) for every positive integer m. From this, we obtain:

Corollary 3.10. For any two compositions α and β, define a composition α� β
as in Proposition 3.8. Then, every composition α and every positive integer m
satisfy

Fα�(m) = Fα Á hm. (17)

Proof of Corollary 3.10. Let α be a composition. Let m be a positive integer. Recall
that hm = F(m). Proposition 3.8 yields Fα Á F(m) = Fα�(m). Hence, Fα�(m) =
Fα Á F(m)︸︷︷︸

=hm

= Fα Á hm. This proves Corollary 3.10.

For the sake of completeness (or, rather, in order not to lose old writing), let
me write down the definitions of some more operations on k [[x1, x2, x3, . . .]].

Definition 3.11. We define a binary operation � : k [[x1, x2, x3, . . .]] ×
k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] (written in infix notation) by the require-
ments that it be k-bilinear and continuous with respect to the topology on
k [[x1, x2, x3, . . .]] and that it satisfy

m � n =

{
m · n, if min (Suppm) ≤ min (Supp n) ;
0, if min (Suppm) > min (Supp n)

for any two monomials m and n.

Here, all the remarks we made after Definition 3.1 apply. In particular, min∅ =
∞, and we are using � as an operation symbol.

We have m � 1 = m for every monomial m, and 1 � m = 0 for every noncon-
stant monomial m.
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Remark 3.12. The operation � is part of a dendriform algebra structure on
k [[x1, x2, x3, . . .]] (and on QSym). More precisely, if we define another binary
operation � on k [[x1, x2, x3, . . .]] similarly to � except that we set

m � n =

{
m · n, if min (Suppm) > min (Supp n) ;
0, if min (Suppm) ≤ min (Supp n)

,

then the structure (k [[x1, x2, x3, . . .]] , � , � ) is a dendriform algebra aug-
mented to satisfy [EbrFar08, (15)]. In particular, any three elements a, b and c
of k [[x1, x2, x3, . . .]] satisfy

a � b + a � b = ab;
(a � b) � c = a � (bc) ;
(a � b) � c = a � (b � c) ;
a � (b � c) = (ab) � c.

And here is an analogue of Á which has mostly similar properties:

Definition 3.13. We define a binary operation ź : k [[x1, x2, x3, . . .]] ×
k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] (written in infix notation) by the require-
ments that it be k-bilinear and continuous with respect to the topology on
k [[x1, x2, x3, . . .]] and that it satisfy

m ź n =

{
m · n, if max (Suppm) < min (Supp n) ;
0, if max (Suppm) ≥ min (Supp n)

for any two monomials m and n.

Here, again, max∅ is understood as 0. The binary operation ź is associative.
It is also unital (with 1 serving as the unity).

Proposition 3.14. Every a ∈ QSym and b ∈ QSym satisfy a � b ∈ QSym and
a ź b ∈ QSym.

For example, any two compositions α and β satisfy Mα ź Mβ = M[α,β], where
[α, β] denotes the concatenation of α and β (defined by [(α1, α2, . . . , α`) , (β1, β2, . . . , βm)] =
(α1, α2, . . . , α`, β1, β2, . . . , βm)). (Recall that (Mγ)γ∈Comp is the monomial basis of
QSym.)

Theorem 3.15. Let S denote the antipode of the Hopf algebra QSym. Let
us use Sweedler’s notation ∑

(b)
b(1) ⊗ b(2) for ∆ (b), where b is any element of

QSym. Then,

∑
(b)

(
S
(

b(1)
)
ź a
)

b(2) = a � b
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for any a ∈ k [[x1, x2, x3, . . .]] and b ∈ QSym.

Proof of Theorem 3.15. The following proof is mostly analogous to the proof of
Theorem 3.7.

Let a ∈ k [[x1, x2, x3, . . .]]. We can WLOG assume that a is a monomial (because
all operations in sight are k-linear and continuous). So assume this. That is,
a = n for some monomial n. Consider this n. Let k = min (Supp n). Notice that
k ∈ {1, 2, 3, . . .} ∪ {∞}.

(Some remarks about ∞ are in order. We use ∞ as an object which is greater
than every integer. We will use summation signs like ∑

1≤i1<i2<···<i`<k
and ∑

k≤i1<i2<···<i`
in the following. Both of these summation signs range over (i1, i2, . . . , i`) ∈
{1, 2, 3, . . .}` satisfying certain conditions (1 ≤ i1 < i2 < · · · < i` < k in the
first case, and k ≤ i1 < i2 < · · · < i` in the second case). In particular, none of
the i1, i2, . . . , i` is allowed to be ∞ (unlike k). So the summation ∑

1≤i1<i2<···<i`<k
is identical to ∑

1≤i1<i2<···<i`
when k = ∞, whereas the summation ∑

k≤i1<i2<···<i`
is

empty when k = ∞ unless ` = 0. (If ` = 0, then the summation ∑
k≤i1<i2<···<i`

ranges over the empty 0-tuple, no matter what k is.))
Every composition α = (α1, α2, . . . , α`) satisfies

a � Mα =

(
∑

k≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
· a (18)

23.
Let us define a map B′k : k [[x1, x2, x3, . . .]]→ k [[x1, x2, x3, . . .]] by

B′k (p) = p (x1, x2, . . . , xk−1, 0, 0, 0, . . .) for every p ∈ k [[x1, x2, x3, . . .]]

(where p (x1, x2, . . . , xk−1, 0, 0, 0, . . .) has to be understood as p (x1, x2, x3, . . .) = p
when k = ∞). Then, B′k is an evaluation map (in an appropriate sense) and thus
a continuous k-algebra homomorphism. Any monomial m satisfies

B′k (m) =

{
m, if max (Suppm) < k;
0, if max (Suppm) ≥ k

(19)

23Proof of (18): Let α = (α1, α2, . . . , α`) be a composition. The definition of Mα yields Mα =
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24. Any p ∈ k [[x1, x2, x3, . . .]] satisfies

p ź a = a ·B′k (p) (20)

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
. Combined with a = n, this yields

a � Mα = n �
(

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
= ∑

1≤i1<i2<···<i`

n �
(

xα1
i1

xα2
i2
· · · xα`

i`

)
︸ ︷︷ ︸

=

n · x
α1
i1

xα2
i2
· · · xα`

i`
, if min (Supp n) ≤ min {i1, i2, . . . , i`} ;

0, if min (Supp n) > min {i1, i2, . . . , i`}
(by the definition of � on monomials)

(since � is k-bilinear and continuous)

= ∑
1≤i1<i2<···<i`

{
n · xα1

i1
xα2

i2
· · · xα`

i`
, if min (Supp n) ≤ min {i1, i2, . . . , i`} ;

0, if min (Supp n) > min {i1, i2, . . . , i`}

= ∑
1≤i1<i2<···<i`;

min(Suppn)≤min{i1,i2,...,i`}︸ ︷︷ ︸
= ∑

min(Suppn)≤i1<i2<···<i`
= ∑

k≤i1<i2<···<i`
(since min(Suppn)=k)

n︸︷︷︸
=a

·xα1
i1

xα2
i2
· · · xα`

i`
= ∑

k≤i1<i2<···<i`

a · xα1
i1

xα2
i2
· · · xα`

i`

=

(
∑

k≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
· a.

This proves (18).
24Proof. Let m be a monomial. Then,

B′k (m) = m (x1, x2, . . . , xk−1, 0, 0, 0, . . .)
(
by the definition of B′k

)
= (the result of replacing the indeterminates xk, xk+1, xk+2, . . . by 0 in m)

=

{
m, if none of the indeterminates xk, xk+1, xk+2, . . . appears in m;
0, if some of the indeterminates xk, xk+1, xk+2, . . . appear in m

=

{
m, if max (Suppm) < k;
0, if max (Suppm) ≥ k

(because none of the indeterminates xk, xk+1, xk+2, . . . appears in m if and only if
max (Suppm) < k). This proves (19).
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25. Also, every composition α = (α1, α2, . . . , α`) satisfies

B′k (Mα) = ∑
1≤i1<i2<···<i`<k

xα1
i1

xα2
i2
· · · xα`

i`
(22)

(where the sum ∑
1≤i1<i2<···<i`<k

xα1
i1

xα2
i2
· · · xα`

i`
has to be interpreted as being equal

to 1, rather than being empty, when ` = 0) 26.
We shall use one further obvious observation: If i1, i2, . . . , i` are some positive

integers satisfying i1 < i2 < · · · < i`, then

there exists exactly one j ∈ {0, 1, . . . , `} satisfying ij < k ≤ ij+1 (23)

(where i0 is to be understood as 0, and i`+1 as ∞).
Let us now notice that every f ∈ QSym satisfies

a f = ∑
( f )

B′k

(
f(1)
) (

a � f(2)
)

. (24)

Proof of (24): Both sides of the equality (24) are k-linear in f . Hence, it is
enough to check (24) on the basis (Mγ)γ∈Comp of QSym, that is, to prove that
(24) holds whenever f = Mγ for some γ ∈ Comp. In other words, it is enough
to show that

aMγ = ∑
(Mγ)

B′k

(
(Mγ)(1)

)
·
(

a � (Mγ)(2)

)
for every γ ∈ Comp .

25Proof of (20): Fix p ∈ k [[x1, x2, x3, . . .]]. Since the equality (20) is k-linear and continuous in p,
we can WLOG assume that p is a monomial. Assume this. Hence, p = m for some monomial
m. Consider this m. We have

B′k

 p︸︷︷︸
=m

 = B′k (m) =

{
m, if max (Suppm) < k;
0, if max (Suppm) ≥ k

(21)

(by (19)). Now,

p︸︷︷︸
=m

ź a︸︷︷︸
=n

= m ź n =

{
m · n, if max (Suppm) < min (Supp n) ;
0, if max (Suppm) ≥ min (Supp n)

(by the definition of ź )

=

{
m · n, if max (Suppm) < k;
0, if max (Suppm) ≥ k

(since min (Supp n) = k)

= n︸︷︷︸
=a

·
{
m, if max (Suppm) < k;
0, if max (Suppm) ≥ k︸ ︷︷ ︸

=B′k(p)
(by (21))

= a ·B′k (p) .

This proves (20).
26Proof of (22): Let α = (α1, α2, . . . , α`) be a composition. The definition of Mα yields Mα =
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But this is easily done: Let γ ∈ Comp. Write γ in the form γ = (γ1, γ2, . . . , γ`).

∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
. Applying the map B′k to both sides of this equality, we obtain

B′k (Mα) = B′k

(
∑

1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`

)
= ∑

1≤i1<i2<···<i`

B′k

(
xα1

i1
xα2

i2
· · · xα`

i`

)
︸ ︷︷ ︸

=


xα1

i1
xα2

i2
· · · xα`

i`
, if max

(
Supp

(
xα1

i1
xα2

i2
· · · xα`

i`

))
< k;

0, if max
(

Supp
(

xα1
i1

xα2
i2
· · · xα`

i`

))
≥ k

(by (19), applied to m=x
α1
i1

xα2
i2
···xα`

i`
)(

since B′k is k-linear and continuous
)

= ∑
1≤i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
, if max

(
Supp

(
xα1

i1
xα2

i2
· · · xα`

i`

))
< k;

0, if max
(

Supp
(

xα1
i1

xα2
i2
· · · xα`

i`

))
≥ k︸ ︷︷ ︸

=

xα1
i1

xα2
i2
· · · xα`

i`
, if max {i1, i2, . . . , i`} < k;

0, if max {i1, i2, . . . , i`} ≥ k
(since Supp

(
x

α1
i1

xα2
i2
···xα`

i`

)
={i1,i2,...,i`})

= ∑
1≤i1<i2<···<i`

{
xα1

i1
xα2

i2
· · · xα`

i`
, if max {i1, i2, . . . , i`} < k;

0, if max {i1, i2, . . . , i`} ≥ k

= ∑
1≤i1<i2<···<i`;

max{i1,i2,...,i`}<k︸ ︷︷ ︸
= ∑

1≤i1<i2<···<i`<k

xα1
i1

xα2
i2
· · · xα`

i`
= ∑

1≤i1<i2<···<i`<k
xα1

i1
xα2

i2
· · · xα`

i`
.

This proves (22).
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Then,

∑
(Mγ)

B′k

(
(Mγ)(1)

)
·
(

a � (Mγ)(2)

)
=

`

∑
j=0

B′k

(
M(γ1,γ2,...,γj)

)
︸ ︷︷ ︸

= ∑
1≤i1<i2<···<ij<k

x
γ1
i1

xγ2
i2
···x

γj
ij

(by (22))

·
(

a � M(γj+1,γj+2,...,γ`)

)
︸ ︷︷ ︸

=

 ∑
k≤i1<i2<···<i`−j

x
γj+1
i1

x
γj+2
i2
···xγ`

i`−j

·a
(by (18))since ∑

(Mγ)

(Mγ)(1) ⊗ (Mγ)(2) = ∆ (Mγ) =
`

∑
j=0

M(γ1,γ2,...,γj)
⊗M(γj+1,γj+2,...,γ`)


=

`

∑
j=0

 ∑
1≤i1<i2<···<ij<k

xγ1
i1

xγ2
i2
· · · xγj

ij

 ∑
k≤i1<i2<···<i`−j

x
γj+1
i1

x
γj+2
i2
· · · xγ`

i`−j


︸ ︷︷ ︸

= ∑
k≤ij+1<ij+2<···<i`

x
γj+1
ij+1

x
γj+2
ij+2
···xγ`

i`

(here, we have renamed the summation index
(i1,i2,...,i`−j) as (ij+1,ij+2,...,i`))

·a

=
`

∑
j=0

 ∑
1≤i1<i2<···<ij<k

xγ1
i1

xγ2
i2
· · · xγj

ij

 ∑
k≤ij+1<ij+2<···<i`

x
γj+1
ij+1

x
γj+2
ij+2
· · · xγ`

i`

 · a
=

`

∑
j=0

∑
1≤i1<i2<···<ij<k

∑
k≤ij+1<ij+2<···<i`︸ ︷︷ ︸

= ∑
1≤i1<i2<···<i`

∑
j∈{0,1,...,`};
ij<k≤ij+1

(where i0 is to be understood as 0, and i`+1 as ∞)

(
xγ1

i1
xγ2

i2
· · · xγj

ij

) (
x

γj+1
ij+1

x
γj+2
ij+2
· · · xγ`

i`

)
︸ ︷︷ ︸

=x
γ1
i1

xγ2
i2
···xγ`

i`

·a

= ∑
1≤i1<i2<···<i`

∑
j∈{0,1,...,`};
ij<k≤ij+1

xγ1
i1

xγ2
i2
· · · xγ`

i`

︸ ︷︷ ︸
this sum has precisely one addend

(because of (23)),
and thus equals x

γ1
i1

xγ2
i2
···xγ`

i`

·a = ∑
1≤i1<i2<···<i`

xγ1
i1

xγ2
i2
· · · xγ`

i`︸ ︷︷ ︸
=Mγ

·a

= Mγ · a = aMγ,

qed. Thus, (24) is proven.
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Now, every b ∈ QSym satisfies

∑
(b)

(
S
(

b(1)
)
ź a
)

︸ ︷︷ ︸
=a·B′k(S(b(1)))

(by (20), applied to p=S(b(1)))

b(2)

= ∑
(b)

a ·B′k
(

S
(

b(1)
))

b(2) = ∑
(b)

B′k

(
S
(

b(1)
))
· ab(2)︸︷︷︸
= ∑
(b(2))

B′k

(
(b(2))(1)

)(
a�(b(2))(2)

)
(by (24), applied to f=b(2))

= ∑
(b)

B′k

(
S
(

b(1)
)) ∑

(b(2))

B′k

((
b(2)
)
(1)

)(
a �

(
b(2)
)
(2)

)
= ∑

(b)
∑
(b(2))

B′k

(
S
(

b(1)
))

B′k

((
b(2)
)
(1)

)(
a �

(
b(2)
)
(2)

)

= ∑
(b)

∑
(b(1))

B′k

(
S
((

b(1)
)
(1)

))
B′k

((
b(1)
)
(2)

)
︸ ︷︷ ︸

=B′k

 ∑
(b(1))

S
(
(b(1))(1)

)
·(b(1))(2)


(since B′k is a k-algebra homomorphism)

(
a � b(2)

)

 since the coassociativity of ∆ yields

∑
(b)

∑
(b(2))

b(1) ⊗
(

b(2)
)
(1)
⊗
(

b(2)
)
(2)

= ∑
(b)

∑
(b(1))

(
b(1)
)
(1)
⊗
(

b(1)
)
(2)
⊗ b(2)



= ∑
(b)

B′k


∑
(b(1))

S
((

b(1)
)
(1)

)(
b(1)
)
(2)︸ ︷︷ ︸

=ε(b(1))
(by one of the defining equations of the antipode)


(

a � b(2)
)

= ∑
(b)

B′k

(
ε
(

b(1)
))

︸ ︷︷ ︸
=ε(b(1))

(since B′k is a k-algebra
homomorphism, and
ε(b(1))∈k is a scalar)

(
a � b(2)

)
= ∑

(b)
ε
(

b(1)
)
·
(

a � b(2)
)

= ∑
(b)

a �
(

ε
(

b(1)
)

b(2)
)
= a �

∑
(b)

ε
(

b(1)
)

b(2)


︸ ︷︷ ︸

=b

= a � b.
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This proves Theorem 3.15.

4. Dual immaculate functions and the operation ≺
We will now study the dual immaculate functions defined in [BBSSZ13a]. How-
ever, instead of defining them as was done in [BBSSZ13a, Section 3.7], we shall
give a different (but equivalent) definition. First, we introduce immaculate
tableaux (which we define as in [BBSSZ13a, Definition 3.9]), which are an ana-
logue of the well-known semistandard Young tableaux (also known as “column-
strict tableaux”)27:

Definition 4.1. Let α = (α1, α2, . . . , α`) be a composition.
(a) The Young diagram of α will mean the subset{
(i, j) ∈ Z2 | 1 ≤ i ≤ `; 1 ≤ j ≤ αi

}
of Z2. It is denoted by Y (α).

(b) An immaculate tableau of shape α will mean a map T : Y (α)→ {1, 2, 3, . . .}
which satisfies the following two axioms:

1. We have T (i, 1) < T (j, 1) for any integers i and j satisfying 1 ≤ i < j ≤ `.

2. We have T (i, u) ≤ T (i, v) for any integers i, u and v satisfying 1 ≤ i ≤ `
and 1 ≤ u < v ≤ αi.

The entries of an immaculate tableau T mean the images of elements of Y (α)
under T.

We will use the same graphical representation of immaculate tableaux (anal-
ogous to the “English notation” for semistandard Young tableaux) that was
used in [BBSSZ13a]: An immaculate tableau T of shape α = (α1, α2, . . . , α`)
is represented as a table whose rows are left-aligned (but can have different
lengths), and whose i-th row (counted from top) has αi boxes, which are re-
spectively filled with the entries T (i, 1), T (i, 2), . . ., T (i, αi) (from left to right).
For example, an immaculate tableau T of shape (3, 1, 2) is represented by the
picture

a1,1 a1,2 a1,3

a2,1

a3,1 a3,2

,

where ai,j = T (i, j) for every (i, j) ∈ Y ((3, 1, 2)). Thus, the first of the above
two axioms for an immaculate tableau T says that the entries of T are strictly
increasing down the first column of Y (α), whereas the second of the above

27See, e.g., [Stanle99, Chapter 7] for a study of semistandard Young tableaux. We will not use
them in this note; however, our terminology for immaculate tableaux will imitate some of the
classical terminology defined for semistandard Young tableaux.
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two axioms says that the entries of T are weakly increasing along each row of
Y (α).

(c) Let β = (β1, β2, . . . , βk) be a composition of |α|. An immaculate tableau
T of shape α is said to have content β if every j ∈ {1, 2, 3, . . .} satisfies

∣∣∣T−1 (j)
∣∣∣ = {β j, if j ≤ k;

0, if j > k
.

Notice that not every immaculate tableau has a content (with this definition),
because we only allow compositions as contents. More precisely, if T is an
immaculate tableau of shape α, then there exists a composition β such that
T has content β if and only if there exists a k ∈ N such that T (Y (α)) =
{1, 2, . . . , k}.

(d) Let β be a composition of |α|. Then, Kα,β denotes the number of immac-
ulate tableaux of shape α and content β.

For future reference, let us notice that if α is a nonempty composition and if T
is an immaculate tableau of shape α, then

the smallest entry of T is T (1, 1) (25)

(because every (i, j) ∈ Y (α) satisfies T (1, 1) ≤ T (i, 1) ≤ T (i, j)). Moreover, if α
is a composition, if T is an immaculate tableau of shape α, and if (i, j) ∈ Y (α) is
such that i > 1, then

T (1, 1) < T (i, 1) ≤ T (i, j) . (26)

Definition 4.2. Let α be a composition. The dual immaculate function S∗α corre-
sponding to α is defined as the quasisymmetric function

∑
β|=|α|

Kα,βMβ.

This definition is not identical to the definition of S∗α used in [BBSSZ13a], but
it is equivalent to it, as the following proposition shows.

Proposition 4.3. Definition 4.2 is equivalent to the definition of S∗α used in
[BBSSZ13a].

Proof of Proposition 4.3. Let ≤` denote the lexicographic order on compositions.
Let α be a composition. Then, [BBSSZ13a, Proposition 3.36] yields the follow-

ing:

(the dual immaculate function S∗α as defined in [BBSSZ13a]) = ∑
β|=|α|;
β≤`α

Kα,βMβ.
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Compared with

(the dual immaculate function S∗α as defined in Definition 4.2)

= ∑
β|=|α|

Kα,βMβ = ∑
β|=|α|;
β≤`α

Kα,βMβ + ∑
β|=|α|;

not β≤`α

Kα,β︸︷︷︸
=0

(by [BBSSZ13a, Proposition 3.15 (2)])

Mβ

= ∑
β|=|α|;
β≤`α

Kα,βMβ + ∑
β|=|α|;

not β≤`α

0Mβ

︸ ︷︷ ︸
=0

= ∑
β|=|α|;
β≤`α

Kα,βMβ,

this yields

(the dual immaculate function S∗α as defined in [BBSSZ13a])
= (the dual immaculate function S∗α as defined in Definition 4.2) .

Hence, Definition 4.2 is equivalent to the definition of S∗α used in [BBSSZ13a].
This proves Proposition 4.3.

It is helpful to think of dual immaculate functions as analogues of Schur
functions obtained by replacing semistandard Young tableaux by immaculate
tableaux. Definition 4.2 is the analogue of the well-known formula sλ = ∑

µ`|λ|
kλ,µmµ

for any partition λ, where sλ denotes the Schur function corresponding to λ,
where mµ denotes the monomial symmetric function corresponding to the par-
tition µ, and where kλ,µ is the (λ, µ)-th Kostka number (i.e., the number of semi-
standard Young tableaux of shape λ and content µ). The following formula for
the S∗α (known to the authors of [BBSSZ13a] but not explicitly stated in their
work) should not come as a surprise:

Proposition 4.4. Let α be a composition. Then,

S∗α = ∑
T is an immaculate
tableau of shape α

xT.

Here, xT is defined as ∏
(i,j)∈Y(α)

xT(i,j) when T is an immaculate tableau of shape

α.

Before we prove this proposition, let us state a fundamental and simple lemma:

Lemma 4.5. (a) If I is a finite subset of {1, 2, 3, . . .}, then there exists a unique
strictly increasing bijection {1, 2, . . . , |I|} → I. Let us denote this bijection by
rI . Its inverse r−1

I is obviously again a strictly increasing bijection.
Now, let α be a composition.
(b) If T is an immaculate tableau of shape α, then r−1

T(Y(α)) ◦ T (remember that
immaculate tableaux are maps from Y (α) to {1, 2, 3, . . .}) is an immaculate
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tableau of shape α as well, and has the additional property that there exists a
unique composition β of |α| such that r−1

T(Y(α)) ◦ T has content β.
(c) Let Q be an immaculate tableau of shape α. Let β be a composition of
|α| such that Q has content β. Then,

Mβ = ∑
T is an immaculate
tableau of shape α;

r−1
T(Y(α))◦T=Q

xT. (27)

Proof of Lemma 4.5. (a) Lemma 4.5 (a) is obvious.
(b) Let T be an immaculate tableau of shape α. Then, r−1

T(Y(α)) ◦ T is an immacu-

late tableau of shape α as well28. Let R = r−1
T(Y(α)) ◦T : Y (α)→ {1, 2, . . . , |T (Y (α))|}.

Then,

R︸︷︷︸
=r−1

T(Y(α))◦T

(Y (α)) =
(

r−1
T(Y(α)) ◦ T

)
(Y (α))

= r−1
T(Y(α)) (T (Y (α))) = {1, 2, . . . , |T (Y (α))|} .

Hence,
(∣∣R−1 (1)

∣∣ ,
∣∣R−1 (2)

∣∣ , . . . ,
∣∣R−1 (|T (Y (α))|)

∣∣) is a composition. There-
fore, there exists a unique composition β of |α| such that R has content β (namely,
β =

(∣∣R−1 (1)
∣∣ ,
∣∣R−1 (2)

∣∣ , . . . ,
∣∣R−1 (|T (Y (α))|)

∣∣)). In other words, there ex-
ists a unique composition β of |α| such that r−1

T(Y(α)) ◦ T has content β (since

R = r−1
T(Y(α)) ◦ T). This completes the proof of Lemma 4.5 (b).

(c) If T is a map Y (α) → {1, 2, 3, . . .} satisfying r−1
T(Y(α)) ◦ T = Q, then T

is automatically an immaculate tableau of shape α 29. Hence, the summa-
tion sign “ ∑

T is an immaculate
tableau of shape α;

r−1
T(Y(α))◦T=Q

” on the right hand side of (27) can be replaced by

28This is because the map r−1
T(Y(α)) is strictly increasing, and the inequality conditions which

decide whether a map Y (α)→ {1, 2, 3, . . .} is an immaculate tableau of shape α are preserved
under composition with a strictly increasing map.

29Proof. Let T be a map Y (α) → {1, 2, 3, . . .} satisfying r−1
T(Y(α)) ◦ T = Q. Thus, T = rT(Y(α)) ◦ Q.

Since Q is an immaculate tableau of shape α, this shows that T is an immaculate tableau
of shape α (since the map rT(Y(α)) is strictly increasing, and the inequality conditions which
decide whether a map Y (α)→ {1, 2, 3, . . .} is an immaculate tableau of shape α are preserved
under composition with a strictly increasing map).
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“ ∑
T:Y(α)→{1,2,3,...};

r−1
T(Y(α))◦T=Q

”. Hence,

∑
T is an immaculate
tableau of shape α;

r−1
T(Y(α))◦T=Q

xT = ∑
T:Y(α)→{1,2,3,...};

r−1
T(Y(α))◦T=Q

xT.

Now, let us write the composition β in the form (β1, β2, . . . , β`). Then, we have

∣∣∣Q−1 (k)
∣∣∣ = {βk, if k ≤ `;

0, if k > `
for every positive integer k (28)

(since Q has content β). Hence, Q (Y (α)) = {1, 2, . . . , `}. As a consequence,
the maps T : Y (α) → {1, 2, 3, . . .} satisfying r−1

T(Y(α)) ◦ T = Q are in 1-to-1
correspondence with the `-element subsets of {1, 2, 3, . . .} (the correspondence
sends a map T to the `-element subset T (Y (α)), and the inverse correspon-
dence sends an `-element subset I to the map rI ◦ Q). But these latter sub-
sets, in turn, are in 1-to-1 correspondence with the strictly increasing length-
` sequences (i1 < i2 < · · · < i`) of positive integers (the correspondence sends
a subset G to the sequence (rG (1) , rG (2) , . . . , rG (`)); of course, this latter se-
quence is just the list of all elements of G in increasing order). Composing these
two 1-to-1 correspondences, we conclude that the maps T : Y (α) → {1, 2, 3, . . .}
satisfying r−1

T(Y(α)) ◦ T = Q are in 1-to-1 correspondence with the strictly increas-
ing length-` sequences (i1 < i2 < · · · < i`) of positive integers (the correspon-
dence sends a map T to the sequence

(
rT(Y(α)) (1) , rT(Y(α)) (2) , . . . , rT(Y(α)) (`)

)
),

and this correspondence has the property that xT = xβ1
i1

xβ2
i2
· · · xβ`

i`
whenever

some map T gets sent to some sequence (i1 < i2 < · · · < i`) (because if some
map T gets sent to some sequence (i1 < i2 < · · · < i`), then (i1, i2, . . . , i`) =(

rT(Y(α)) (1) , rT(Y(α)) (2) , . . . , rT(Y(α)) (`)
)

, so that every k ∈ {1, 2, . . . , `} satisfies
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ik = rT(Y(α)) (k), and now we have

xT = ∏
(i,j)∈Y(α)

xT(i,j) =
`

∏
k=1

∏
(i,j)∈Y(α);
Q(i,j)=k

xT(i,j)︸ ︷︷ ︸
=xrT(Y(α))(Q(i,j))

(since T(i,j)=rT(Y(α))(Q(i,j))
(because r−1

T(Y(α))◦T=Q
and thus T=rT(Y(α))◦Q))

(since Q (Y (α)) = {1, 2, . . . , `})

=
`

∏
k=1

∏
(i,j)∈Y(α);
Q(i,j)=k︸ ︷︷ ︸

= ∏
(i,j)∈Q−1(k)

xrT(Y(α))(Q(i,j))︸ ︷︷ ︸
=xrT(Y(α))(k)

(since Q(i,j)=k)

=
`

∏
k=1

∏
(i,j)∈Q−1(k)

xrT(Y(α))(k)︸ ︷︷ ︸
=x
|Q−1(k)|
rT(Y(α))(k)

=x
|Q−1(k)|
ik

(since rT(Y(α))(k)=ik)

=
`

∏
k=1

x|Q
−1(k)|

ik︸ ︷︷ ︸
=x

βk
ik

(since |Q−1(k)|=βk
(by (28)))

=
`

∏
k=1

xβk
ik

= xβ1
i1

xβ2
i2
· · · xβ`

i`

). Hence,

∑
T:Y(α)→{1,2,3,...};

r−1
T(Y(α))◦T=Q

xT = ∑
1≤i1<i2<···<i`

xβ1
i1

xβ2
i2
· · · xβ`

i`
= Mβ

(by the definition of Mβ). Altogether, we thus have

∑
T is an immaculate
tableau of shape α;

r−1
T(Y(α))◦T=Q

xT = ∑
T:Y(α)→{1,2,3,...};

r−1
T(Y(α))◦T=Q

xT = Mβ.

This proves Lemma 4.5 (c).

Proof of Proposition 4.4. For every finite subset I of {1, 2, 3, . . .}, we shall use the
notation rI introduced in Lemma 4.5 (a). Recall Lemma 4.5 (b); it says that if T
is an immaculate tableau of shape α, then r−1

T(Y(α)) ◦ T is an immaculate tableau
of shape α as well, and has the additional property that there exists a unique
composition β of |α| such that r−1

T(Y(α)) ◦ T has content β.
Now,

S∗α = ∑
β|=|α|

Kα,βMβ︸ ︷︷ ︸
= ∑

Q is an immaculate
tableau of shape α

and content β

Mβ

(by the definition of Kα,β)

= ∑
β|=|α|

∑
Q is an immaculate
tableau of shape α

and content β

Mβ. (29)
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But (27) shows that every composition β of |α| satisfies

∑
Q is an immaculate
tableau of shape α

and content β

Mβ = ∑
Q is an immaculate
tableau of shape α

and content β

∑
T is an immaculate
tableau of shape α;

r−1
T(Y(α))◦T=Q

xT = ∑
T is an immaculate
tableau of shape α

such that r−1
T(Y(α))◦T

has content β

xT

(because for every immaculate tableau T of shape α, the map r−1
T(Y(α)) ◦ T is an

immaculate tableau of shape α as well). Substituting this into (29), we obtain

S∗α = ∑
β|=|α|

∑
Q is an immaculate
tableau of shape α

and content β

Mβ

︸ ︷︷ ︸
= ∑

T is an immaculate
tableau of shape α

such that r−1
T(Y(α))◦T

has content β

xT

= ∑
β|=|α|

∑
T is an immaculate
tableau of shape α

such that r−1
T(Y(α))◦T

has content β

xT

= ∑
T is an immaculate
tableau of shape α

xT

(because for every immaculate tableau T of shape α, there exists a unique com-
position β of |α| such that r−1

T(Y(α)) ◦ T has content β), whence Proposition 4.4
follows.

Corollary 4.6. Let α = (α1, α2, . . . , α`) be a composition with ` > 0. Let α
denote the composition (α2, α3, . . . , α`) of |α| − α1. Then,

S∗α = hα1 ≺ S∗α.

Here, hn denotes the n-th complete homogeneous symmetric function for ev-
ery n ∈N.

Proof of Corollary 4.6. Proposition 4.4 shows that

S∗α = ∑
T is an immaculate
tableau of shape α

xT = ∑
Q is an immaculate
tableau of shape α

xQ (30)

(here, we have renamed the summation index T as Q).
Let n = α1. If i1, i2, . . . , in are positive integers satisfying i1 ≤ i2 ≤ · · · ≤ in,
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and if T is an immaculate tableau of shape α, then(
xi1 xi2 · · · xin

)
≺ xT

=

{
xi1 xi2 · · · xin xT, if min

(
Supp

(
xi1 xi2 · · · xin

))
< min (Supp (xT)) ;

0, if min
(
Supp

(
xi1 xi2 · · · xin

))
≥ min (Supp (xT))

(by the definition of ≺ on monomials)

=

{
xi1 xi2 · · · xin xT, if i1 < min (T (Y (α))) ;
0, if i1 ≥ min (T (Y (α)))

(31)(
since min

(
Supp

(
xi1 xi2 · · · xin

))
= i1 and Supp (xT) = T (Y (α))

)
.

But from n = α1, we obtain hn = hα1 , so that hα1 = hn = ∑
i1≤i2≤···≤in

xi1 xi2 · · · xin

and S∗α = ∑
T is an immaculate
tableau of shape α

xT (by Proposition 4.4). Hence,

hα1 ≺ S∗α

=

(
∑

i1≤i2≤···≤in

xi1 xi2 · · · xin

)
≺

 ∑
T is an immaculate
tableau of shape α

xT


= ∑

i1≤i2≤···≤in
∑

T is an immaculate
tableau of shape α

(
xi1 xi2 · · · xin

)
≺ xT︸ ︷︷ ︸

=

xi1 xi2 · · · xin xT, if i1 < min (T (Y (α))) ;
0, if i1 ≥ min (T (Y (α)))

(by (31))

= ∑
i1≤i2≤···≤in

∑
T is an immaculate
tableau of shape α

{
xi1 xi2 · · · xin xT, if i1 < min (T (Y (α))) ;
0, if i1 ≥ min (T (Y (α)))

= ∑
i1≤i2≤···≤in;

T is an immaculate
tableau of shape α;
i1<min(T(Y(α)))

xi1 xi2 · · · xin xT. (32)

We need to check that this equals S∗α = ∑
Q is an immaculate
tableau of shape α

xQ.

Now, let us define a map Φ from:

• the set of all pairs ((i1, i2, . . . , in) , T), where i1, i2, . . ., in are positive integers
satisfying i1 ≤ i2 ≤ · · · ≤ in, and where T is an immaculate tableau of
shape α satisfying i1 < min (T (Y (α)))

to:
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• the set of all immaculate tableaux of shape α.

Namely, we define the image of a pair ((i1, i2, . . . , in) , T) under Φ to be the im-
maculate tableau obtained by adding a new row, filled with the entries i1, i2, . . . , in
(from left to right), to the top30 of the tableau T 31.

This map Φ is a bijection32, and has the property that if Q denotes the image of
a pair ((i1, i2, . . . , in) , T) under the bijection Φ, then xQ = xi1 xi2 · · · xin xT. Hence,

∑
Q is an immaculate
tableau of shape α

xQ = ∑
i1≤i2≤···≤in;

T is an immaculate
tableau of shape α;
i1<min(T(Y(α)))

xi1 xi2 · · · xin xT.

In light of (30) and (32), this rewrites as S∗α = hα1 ≺ S∗α. So Corollary 4.6 is
proven.

Corollary 4.7. Let α = (α1, α2, . . . , α`) be a composition. Then,

S∗α = hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )) .

Proof of Corollary 4.7. We prove Corollary 4.7 by induction over `:
Induction base: If ` = 0, then α = ∅ and thus S∗α = S∗∅ = 1. But if ` = 0,

then we also have hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )) = 1. Hence, if ` = 0, then
S∗α = 1 = hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )). Thus, Corollary 4.7 is proven
when ` = 0. The induction base is complete.

Induction step: Let L be a positive integer. Assume that Corollary 4.7 holds for
` = L− 1. We now need to prove that Corollary 4.7 by holds for ` = L.

So let α = (α1, α2, . . . , α`) be a composition with ` = L. Then, ` = L > 0.
Now, let α denote the composition (α2, α3, . . . , α`) of |α| − α1. Then, Corollary 4.6
yields S∗α = hα1 ≺ S∗α. But by our induction hypothesis, we can apply Corollary
4.7 to α = (α2, α3, . . . , α`) instead of α = (α1, α2, . . . , α`) (since `− 1 = L− 1). As
a result, we obtain S∗α = hα2 ≺ (hα3 ≺ (· · · ≺ (hα` ≺ 1) · · · )). Hence,

S∗α = hα1 ≺ S∗α︸︷︷︸
=hα2 ≺(hα3 ≺(···≺(hα`

≺1)··· ))

= hα1 ≺ (hα2 ≺ (hα3 ≺ (· · · ≺ (hα` ≺ 1) · · · )))

= hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )) .

30Here, we are using the graphical representation of immaculate tableaux introduced in Defini-
tion 4.1.

31Formally speaking, this means that the image of ((i1, i2, . . . , in) , T) is the map Y (α) →

{1, 2, 3, . . .} which sends every (u, v) ∈ Y (α) to

{
iv, if u = 1;
T (u− 1, v) , if u 6= 1

. Proving that

this map is an immaculate tableau is easy.
32Proof. The injectivity of the map Φ is obvious. Its surjectivity follows from the observation

that if Q is an immaculate tableau of shape α, then the first entry of its top row is smaller
than the smallest entry of the immaculate tableau formed by all other rows of Q. (This is a
consequence of (26), applied to Q instead of T.)

43



Dual immaculate creation operators May 6, 2020

Now, let us forget that we fixed α. We thus have shown that
S∗α = hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )) for every composition α = (α1, α2, . . . , α`)
which satisfies ` = L. In other words, Corollary 4.7 holds for ` = L. This
completes the induction step. The induction proof of Corollary 4.7 is thus com-
plete.

5. An alternative description of hm ≺
In this section, we shall also use the Hopf algebra of noncommutative symmetric
functions. This Hopf algebra (a noncommutative one, for a change) is denoted
by NSym and has been discussed in [GriRei15, Section 5.4] and [HaGuKi10,
Chapter 6]; all we need to know about it are the following properties:

• There is a nondegenerate pairing between NSym and QSym, that is, a
nondegenerate k-bilinear form NSym×QSym → k. We shall denote this
bilinear form by (·, ·). This k-bilinear form is a Hopf algebra pairing, i.e.,
it satisfies

(ab, c) = ∑
(c)

(
a, c(1)

) (
b, c(2)

)
(33)

for all a ∈ NSym , b ∈ NSym and c ∈ QSym;

(1, c) = ε (c) for all c ∈ QSym;

∑
(a)

(
a(1), b

) (
a(2), c

)
= (a, bc)

for all a ∈ NSym , b ∈ QSym and c ∈ QSym;

(a, 1) = ε (a) for all a ∈ NSym;

(S (a) , b) = (a, S (b)) for all a ∈ NSym and b ∈ QSym

(where we use Sweedler’s notation).

• There is a basis of the k-module NSym which is dual to the fundamental
basis (Fα)α∈Comp of QSym with respect to the bilinear form (·, ·). This basis
is called the ribbon basis and will be denoted by (Rα)α∈Comp.

Both of these properties are immediate consequences of the definitions of
NSym and of (Rα)α∈Comp given in [GriRei15, Section 5.5] (although other sources
define these objects differently, and then the properties no longer are immedi-
ate). The notations we are using here are the same as the ones used in [GriRei15,
Section 5.5] (except that [GriRei15, Section 5.5] calls Lα what we denote by Fα),
and only slightly differ from those in [BBSSZ13a] (namely, [BBSSZ13a] denotes
the pairing (·, ·) by 〈·, ·〉 instead).
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We need some more definitions. For any g ∈ NSym, let Lg : NSym → NSym
denote the left multiplication by g on NSym (that is, the k-linear map NSym→
NSym, f 7→ g f ). For any g ∈ NSym, let g⊥ : QSym → QSym be the k-linear
map adjoint to Lg : NSym → NSym with respect to the pairing (·, ·) between
NSym and QSym. Thus, for any g ∈ NSym, a ∈ NSym and c ∈ QSym, we have

(
a, g⊥c

)
=

Lg a︸︷︷︸
=ga

, c

 = (ga, c) . (34)

The following fact is well-known (and also is an easy formal consequence of the
definition of g⊥ and of (33)):

Lemma 5.1. Every g ∈ NSym and f ∈ QSym satisfy

g⊥ f = ∑
( f )

(
g, f(1)

)
f(2). (35)

Proof of Lemma 5.1. Let g ∈ NSym and f ∈ QSym. For every a ∈ NSym, we have

(
a, g⊥ f

)
=

 Lg a︸︷︷︸
=ga

(by the definition of Lg )

, f


(

since the map g⊥ is adjoint to Lg
with respect to the pairing (·, ·)

)

= (ga, f ) = ∑
( f )

(
g, f(1)

) (
a, f(2)

) (
by (33), applied to g, a and f

instead of a, b and c

)

=

a, ∑
( f )

(
g, f(1)

)
f(2)

 (since the pairing (·, ·) is k-bilinear) .

Since the pairing (·, ·) is nondegenerate, this entails that g⊥ f = ∑
( f )

(
g, f(1)

)
f(2).

This proves Lemma 5.1.

For any composition α, we define a composition ω (α) as follows: Let n = |α|,
and write α as α = (α1, α2, . . . , α`). Let rev α denote the composition (α`, α`−1, . . . , α1)
of n. Then, ω (α) shall be the unique composition β of n which satisfies D (β) =
{1, 2, . . . , n− 1} \ D (rev α). (This definition is identical with that in [GriRei15,
Definition 5.2.14]. Some authors denote ω (α) by α′ instead.) We notice that
ω (ω (α)) = α for any composition α.

Here is a simple property of the composition ω (α) that will later be used:
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Proposition 5.2. (a) We have ω ([α, β]) = ω (β)� ω (α) for any two composi-
tions α and β.

(b) We have ω (α� β) = [ω (β) , ω (α)] for any two compositions α and β.
(c) We have ω (ω (γ)) = γ for every composition γ.

Proof of Proposition 5.2. For any composition α, we define a composition rev α as
follows: Let n = |α|, and write α as α = (α1, α2, . . . , α`). Let rev α denote the
composition (α`, α`−1, . . . , α1) of n. (This definition of rev α is the same as the
one we gave above during the definition of ω (α).) Clearly,

|rev γ| = |γ| for any composition γ. (36)

It is easy to see that

rev ([α, β]) = [rev β, rev α] and (37)
rev (α� β) = (rev β)� (rev α) (38)

for any two compositions α and β.
Recall that a composition γ of a nonnegative integer n is uniquely determined

by the set D (γ) and the number n. Thus, if γ1 and γ2 are two compositions of
one and the same nonnegative integer n satisfying D (γ1) = D (γ2), then

γ1 = γ2. (39)

For every composition γ, we define a composition ρ (γ) as follows: Let n =
|γ|. Let ρ (γ) be the unique composition β of n which satisfies D (β) = {1, 2, . . . , n− 1} \
D (γ). (This is well-defined, because for every subset T of {1, 2, . . . , n− 1}, there
exists a unique composition τ of n which satisfies D (τ) = T.) Notice that

|ρ (γ)| = |γ| for any composition γ. (40)

Also, if n ∈N, and if γ is a composition of n, then

D (ρ (γ)) = {1, 2, . . . , n− 1} \ D (γ) (41)

33.
Notice also that

ω (α) = ρ (rev α) for any composition α (42)

33Proof of (41): Let n ∈ N. Let γ be a composition of n. Then, ρ (γ) is the unique composition β
of n which satisfies D (β) = {1, 2, . . . , n− 1} \ D (γ) (because this is how ρ (γ) was defined).
Thus, ρ (γ) is a composition of n which satisfies D (ρ (γ)) = {1, 2, . . . , n− 1} \ D (γ). This
proves (41).
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34.
Now, we shall prove that

ρ ([α, β]) = ρ (α)� ρ (β) (43)

for any two compositions α and β.
Proof of (43): Let α and β be two compositions. Let p = |α| and q = |β|; thus,

α and β are compositions of p and q, respectively. We WLOG assume that both
compositions α and β are nonempty (since otherwise, (43) is fairly obvious).
The composition α is a composition of p. Thus, p > 0 (since α is nonempty).
Similarly, q > 0.

Hence, [α, β] is a composition of p + q satisfying D ([α, β]) = D (α) ∪ {p} ∪
(D (β) + p) (by Lemma 3.9 (b)). The definition of ρ ([α, β]) thus yields

D (ρ ([α, β])) = {1, 2, . . . , p + q− 1} \ D ([α, β])︸ ︷︷ ︸
=D(α)∪{p}∪(D(β)+p)

= {1, 2, . . . , p + q− 1} \ ({p} ∪ D (α) ∪ (D (β) + p)) . (44)

Applying (40) to γ = α, we obtain |ρ (α)| = |α| = p. Thus, ρ (α) is a compo-
sition of p. Similarly, ρ (β) is a composition of q. Thus, Lemma 3.9 (a) (applied
to ρ (α) and ρ (β) instead of α and β) shows that ρ (α)� ρ (β) is a composition
of p + q satisfying D (ρ (α)� ρ (β)) = D (ρ (α)) ∪ (D (ρ (β)) + p). Also, apply-
ing (40) to γ = [α, β], we obtain |ρ ([α, β])| = |[α, β]| = p + q (since [α, β] is a
composition of p + q). In other words, ρ ([α, β]) is a composition of p + q.

But the definition of ρ (α) shows that D (ρ (α)) = {1, 2, . . . , p− 1} \ D (α).
Also, the definition of ρ (β) shows that D (ρ (β)) = {1, 2, . . . , q− 1} \ D (β).
Hence,

D (ρ (β))︸ ︷︷ ︸
={1,2,...,q−1}\D(β)

+p

= ({1, 2, . . . , q− 1} \ D (β)) + p
= ({1, 2, . . . , q− 1}+ p)︸ ︷︷ ︸

={p+1,p+2,...,p+q−1}

\ (D (β) + p)

= {p + 1, p + 2, . . . , p + q− 1} \ (D (β) + p) .

34Proof of (42): Let α be a composition. Let n = |α|. Thus, α is a composition of n. Hence,
ω (α) is a composition of n as well. Also, rev α is a composition of n. Now, the definition
of ρ (rev α) shows that ρ (rev α) is the unique composition β of n which satisfies D (β) =
{1, 2, . . . , n− 1} \D (rev α). Hence, ρ (rev α) is a composition of n and satisfies D (ρ (rev α)) =
{1, 2, . . . , n− 1} \ D (rev α).

On the other hand, ω (α) is the unique composition β of n which satisfies D (β) =
{1, 2, . . . , n− 1} \ D (rev α) (by the definition of ω (α)). Thus, ω (α) is a composition of n
and satisfies D (ω (α)) = {1, 2, . . . , n− 1} \ D (rev α).

Hence,
D (ρ (rev α)) = {1, 2, . . . , n− 1} \ D (rev α) = D (ω (α)) .

Applying (39) to γ1 = ρ (rev α) and γ2 = ω (α), we therefore obtain ρ (rev α) = ω (α). Qed.
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Also, D (β) ⊆ {1, 2, . . . , q− 1}, so that D (β) + p ⊆ {1, 2, . . . , q− 1} + p =
{p + 1, p + 2, . . . , p + q− 1}.

Now, it is well-known that if X, Y, X′ and Y′ are four sets such that X′ ⊆ X,
Y′ ⊆ Y and X ∩Y = ∅, then(

X \ X′
)
∪
(
Y \Y′

)
= (X ∪Y) \

(
X′ ∪Y′

)
. (45)

Now,

D (ρ (α)� ρ (β))

= D (ρ (α))︸ ︷︷ ︸
={1,2,...,p−1}\D(α)

∪ (D (ρ (β)) + p)︸ ︷︷ ︸
={p+1,p+2,...,p+q−1}\(D(β)+p)

= ({1, 2, . . . , p− 1} \ D (α)) ∪ ({p + 1, p + 2, . . . , p + q− 1} \ (D (β) + p))
= ({1, 2, . . . , p− 1} ∪ {p + 1, p + 2, . . . , p + q− 1})︸ ︷︷ ︸

={1,2,...,p+q−1}\{p}

\ (D (α) ∪ (D (β) + p))(
by (45), applied to X = {1, 2, . . . , p− 1} ,

Y = {p + 1, p + 2, . . . , p + q− 1} , X′ = D (α) and Y′ = D (β) + p

)
= ({1, 2, . . . , p + q− 1} \ {p}) \ (D (α) ∪ (D (β) + p))
= {1, 2, . . . , p + q− 1} \ ({p} ∪ D (α) ∪ (D (β) + p))︸ ︷︷ ︸

=D(α)∪{p}∪(D(β)+p)

= {1, 2, . . . , p + q− 1} \ ({p} ∪ D (α) ∪ (D (β) + p))
= D (ρ ([α, β])) (by (44)) .

Thus, (39) (applied to n = p + q, γ1 = ρ (α)� ρ (β) and γ2 = ρ ([α, β])) shows
that ρ (α)� ρ (β) = ρ ([α, β]). This proves (43).

(a) Let α and β be two compositions. Then, (42) yields ω (α) = ρ (rev α). Also,
(42) (applied to β instead of α) yields ω (β) = ρ (rev β).

From (42) (applied to [α, β] instead of α), we obtain

ω ([α, β]) = ρ

rev ([α, β])︸ ︷︷ ︸
=[rev β,rev α]

(by (37))

 = ρ ([rev β, rev α])

= ρ (rev β)︸ ︷︷ ︸
=ω(β)

� ρ (rev α)︸ ︷︷ ︸
=ω(α)

(
by (43), applied to rev β

and rev α instead of α and β

)
= ω (β)�ω (α) .

This proves Proposition 5.2 (a).
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(c) First of all, it is clear that

rev (rev γ) = γ for every composition γ. (46)

Furthermore,

ρ (ρ (γ)) = γ for every composition γ (47)

35.
On the other hand, if G is a set of integers and r is an integer, then we let

r− G denote the set {r− g | g ∈ G} of integers. Then, for any n ∈ N and any
composition γ of n, we have

D (rev γ) = n− D (γ) (48)

36.
Now,

ρ (rev γ) = rev (ρ (γ)) for every composition γ (51)

35Proof of (47): Let γ be a composition. Let n = |γ|. Thus, γ is a composition of n.
The definition of ρ (γ) shows that ρ (γ) is the unique composition β of n which satis-
fies D (β) = {1, 2, . . . , n− 1} \ D (γ). Thus, ρ (γ) is a composition of n and satisfies
D (ρ (γ)) = {1, 2, . . . , n− 1} \ D (γ).

Therefore, the definition of ρ (ρ (γ)) shows that ρ (ρ (γ)) is the unique composition β of n
which satisfies D (β) = {1, 2, . . . , n− 1} \D (ρ (γ)). Thus, ρ (ρ (γ)) is a composition of n and
satisfies D (ρ (ρ (γ))) = {1, 2, . . . , n− 1} \ D (ρ (γ)). Hence,

D (ρ (ρ (γ))) = {1, 2, . . . , n− 1} \ D (ρ (γ))︸ ︷︷ ︸
={1,2,...,n−1}\D(γ)

= {1, 2, . . . , n− 1} \ ({1, 2, . . . , n− 1} \ D (γ))

= D (γ) (since D (γ) ⊆ {1, 2, . . . , n− 1}) .

Hence, (39) (applied to γ1 = ρ (ρ (γ)) and γ2 = γ) shows that ρ (ρ (γ)) = γ. This proves (47).
36Proof of (48): Let n ∈ N. Let γ be a composition of n. Thus, γ is a composition satisfying
|γ| = n.

Write γ in the form γ = (γ1, γ2, . . . , γ`). Then, rev γ = (γ`, γ`−1, . . . , γ1) (by the definition
of rev γ). Also, from γ = (γ1, γ2, . . . , γ`), we obtain |γ| = γ1 + γ2 + · · ·+ γ`, whence γ1 +
γ2 + · · ·+ γ` = |γ| = n. Hence, every i ∈ {1, 2, . . . , `− 1} satisfies

n = γ1 + γ2 + · · ·+ γ` = (γ1 + γ2 + · · ·+ γi) + (γi+1 + γi+2 + · · ·+ γ`)︸ ︷︷ ︸
=γ`+γ`−1+···+γi+1

= (γ1 + γ2 + · · ·+ γi) + (γ` + γ`−1 + · · ·+ γi+1) . (49)

Also, γ = (γ1, γ2, . . . , γ`), so that the definition of D (γ) yields

D (γ) = {γ1, γ1 + γ2, γ1 + γ2 + γ3, . . . , γ1 + γ2 + · · ·+ γ`−1}
= {γ1 + γ2 + · · ·+ γi | i ∈ {1, 2, . . . , `− 1}} . (50)
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37.
Now, let γ be a composition. Then, (42) (applied to α = γ) yields ω (γ) =

ρ (rev γ) = rev (ρ (γ)) (by (51)). But (42) (applied to α = ω (γ)) yields

ω (ω (γ)) = ρ

rev

 ω (γ)︸ ︷︷ ︸
=rev(ρ(γ))


 = ρ


rev (rev (ρ (γ)))︸ ︷︷ ︸

=ρ(γ)
(by (46), applied to
ρ(γ) instead of γ)


= ρ (ρ (γ)) = γ (by (47)) .

But rev γ = (γ`, γ`−1, . . . , γ1). Hence, the definition of D (rev γ) yields

D (rev γ) = {γ`, γ` + γ`−1, γ` + γ`−1 + γ`−2, . . . , γ` + γ`−1 + γ`−2 + · · ·+ γ2}

=

γ` + γ`−1 + · · ·+ γi+1︸ ︷︷ ︸
=n−(γ1+γ2+···+γi)

(by (49))

| i ∈ {1, 2, . . . , `− 1}


= {n− (γ1 + γ2 + · · ·+ γi) | i ∈ {1, 2, . . . , `− 1}}
= n− {γ1 + γ2 + · · ·+ γi | i ∈ {1, 2, . . . , `− 1}}︸ ︷︷ ︸

=D(γ)
(by (50))

= n− D (γ) .

This proves (48).
37Proof of (51): Let γ be a composition. Let n = |γ|. Thus, γ is a composition of n.

Now, (40) (applied to rev γ instead of γ) yields |ρ (rev γ)| = |rev γ| = |γ| (by (36)). Also,
(36) (applied to ρ (γ) instead of γ) yields |rev (ρ (γ))| = |ρ (γ)| = |γ| (by (40)). Now,
|ρ (rev γ)| = |γ| = n, |rev γ| = |γ| = n, |ρ (γ)| = |γ| = n and |rev (ρ (γ))| = |γ| = n.
Hence, all of ρ (rev γ), rev γ, ρ (γ) and rev (ρ (γ)) are compositions of n.

Applying (41) to rev γ instead of γ, we obtain

D (ρ (rev γ)) = {1, 2, . . . , n− 1}︸ ︷︷ ︸
=n−{1,2,...,n−1}

\D (rev γ)︸ ︷︷ ︸
=n−D(γ)
(by (48))

= (n− {1, 2, . . . , n− 1}) \ (n− D (γ))

= n− ({1, 2, . . . , n− 1} \ D (γ))︸ ︷︷ ︸
=D(ρ(γ))
(by (41))

= n− D (ρ (γ)) .

Comparing this with

D (rev (ρ (γ))) = n− D (ρ (γ)) (by (48), applied to ρ (γ) instead of γ) ,

we obtain D (ρ (rev γ)) = D (rev (ρ (γ))). Hence, (39) (applied to γ1 = ρ (rev γ) and γ2 =
rev (ρ (γ))) yields ρ (rev γ) = rev (ρ (γ)). This proves (51).
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This proves Proposition 5.2 (c).
(b) Let α and β be two compositions. Then, Proposition 5.2 (a) (applied to

ω (β) and ω (α) instead of α and β) yields

ω ([ω (β) , ω (α)]) = ω (ω (α))︸ ︷︷ ︸
=α

(by Proposition 5.2 (c),
applied to γ=α)

� ω (ω (β))︸ ︷︷ ︸
=β

(by Proposition 5.2 (c),
applied to γ=β)

= α� β.

Hence, α � β = ω ([ω (β) , ω (α)]). Applying the map ω to both sides of this
equality, we conclude that

ω (α� β) = ω (ω ([ω (β) , ω (α)])) = [ω (β) , ω (α)]

(by Proposition 5.2 (c), applied to γ = [ω (β) , ω (α)]). This proves Proposition
5.2 (b).

The notion of ω (α) gives rise to a simple formula for the antipode S of the
Hopf algebra QSym in terms of its fundamental basis:

Proposition 5.3. Let α be a composition. Then, S (Fα) = (−1)|α| Fω(α).

This is proven in [GriRei15, Proposition 5.2.15].
We now state the main result of this note:

Theorem 5.4. Let f ∈ QSym and let m be a positive integer. For any two
compositions α and β, define a composition α� β as in Proposition 3.8. Then,

hm ≺ f = ∑
α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α) f .

(Here, the sum on the right hand side converges, because all but finitely many
compositions α satisfy R⊥ω(α) f = 0 for degree reasons.)

The proof is based on the following simple lemma:

Lemma 5.5. Let a ∈ QSym and f ∈ QSym. Then,

∑
α∈Comp

(−1)|α| (Fα Á a) R⊥ω(α) f = a ≺ f .

Proof of Lemma 5.5. The basis (Fα)α∈Comp of QSym and the basis (Rα)α∈Comp of
NSym are dual bases. Thus,

∑
α∈Comp

Fα (Rα, g) = g for every g ∈ QSym . (52)
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Let us use Sweedler’s notation. The map Comp → Comp, α 7→ ω (α) is a
bijection (since ω (ω (α)) = α for any composition α). Hence, we can substitute
ω (α) for α in the sum ∑

α∈Comp
(−1)|α| (Fα Á a) R⊥ω(α) f . We thus obtain

∑
α∈Comp

(−1)|α| (Fα Á a) R⊥ω(α) f

= ∑
α∈Comp

(−1)|ω(α)|︸ ︷︷ ︸
=(−1)|α|

(since |ω(α)|=|α|)

(
Fω(α) Á a

)
R⊥ω(ω(α))︸ ︷︷ ︸

=R⊥α
(since ω(ω(α))=α)

f

= ∑
α∈Comp

(−1)|α|
(

Fω(α) Á a
)

R⊥α f︸︷︷︸
=∑

( f )
(Rα, f(1)) f(2)

(by (35))

= ∑
α∈Comp

(−1)|α|
(

Fω(α) Á a
)

∑
( f )

(
Rα, f(1)

)
f(2)

= ∑
( f )

∑
α∈Comp

(−1)|α|
(

Fω(α) Á a
) (

Rα, f(1)
)

f(2)

= ∑
( f )


 ∑

α∈Comp
(−1)|α| Fω(α)︸ ︷︷ ︸

=S(Fα)
(by Proposition 5.3)

(
Rα, f(1)

)
 Á a

 f(2)

= ∑
( f )

((
∑

α∈Comp
S (Fα)

(
Rα, f(1)

))
Á a

)
f(2)

= ∑
( f )


S


∑

α∈Comp
Fα

(
Rα, f(1)

)
︸ ︷︷ ︸

= f(1)
(by (52), applied to g= f(1))


Á a


f(2) = ∑

( f )

(
S
(

f(1)
)
Á a
)

f(2) = a ≺ f

(by Theorem 3.7, applied to b = f ). This proves Lemma 5.5.
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Proof of Theorem 5.4. We have

∑
α∈Comp

(−1)|α| Fα�(m)︸ ︷︷ ︸
=FαÁ hm
(by (17))

R⊥ω(α) f

= ∑
α∈Comp

(−1)|α| (Fα Á hm) R⊥ω(α) f = hm ≺ f

(by Lemma 5.5, applied to a = hm). This proves Theorem 5.4.

As a consequence, we obtain the following result, conjectured by Mike Zabrocki
(private correspondence):

Corollary 5.6. For every positive integer m, define a k-linear operator Wm :
QSym→ QSym by

Wm = ∑
α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α)

(where Fα�(m) means left multiplication by Fα�(m)). Then, every composition
α = (α1, α2, . . . , α`) satisfies

S∗α = (Wα1 ◦Wα2 ◦ · · · ◦Wα`) (1) .

Proof of Corollary 5.6. For every positive integer m and every f ∈ QSym, we have

Wm f = ∑
α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α) f = hm ≺ f (by Theorem 5.4) .

Hence, by induction, for every composition α = (α1, α2, . . . , α`), we have

Wα1 (Wα2 (· · · (Wα` (1)) · · · )) = hα1 ≺ (hα2 ≺ (· · · ≺ (hα` ≺ 1) · · · )) = S∗α

(by Corollary 4.7). In other words,

S∗α = Wα1 (Wα2 (· · · (Wα` (1)) · · · )) = (Wα1 ◦Wα2 ◦ · · · ◦Wα`) (1) .

This proves Corollary 5.6.

Let us finish this section with two curiosities: two analogues of Theorem 5.4,
one of which can be viewed as an “m = 0 version” and the other as a “negative
m version”. We begin with the “m = 0 one”, as it is the easier one to state:

Proposition 5.7. Let f ∈ QSym. Then,

ε ( f ) = ∑
α∈Comp

(−1)|α| FαR⊥ω(α) f .
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Proof of Proposition 5.7. Let us use Sweedler’s notation. The map

Comp→ Comp, α 7→ ω (α)

is a bijection (since ω (ω (α)) = α for any composition α). Hence, we can substi-
tute ω (α) for α in the sum ∑

α∈Comp
(−1)|α| FαR⊥ω(α) f . We thus obtain

∑
α∈Comp

(−1)|α| FαR⊥ω(α) f

= ∑
α∈Comp

(−1)|ω(α)|︸ ︷︷ ︸
=(−1)|α|

(since |ω(α)|=|α|)

Fω(α) R⊥ω(ω(α))︸ ︷︷ ︸
=R⊥α

(since ω(ω(α))=α)

f

= ∑
α∈Comp

(−1)|α| Fω(α)︸ ︷︷ ︸
=S(Fα)

(by Proposition 5.3)

R⊥α f︸︷︷︸
=∑

( f )
(Rα, f(1)) f(2)

(by (35))

= ∑
α∈Comp

S (Fα)∑
( f )

(
Rα, f(1)

)
f(2) = ∑

α∈Comp
∑
( f )

S (Fα)
(

Rα, f(1)
)

f(2)

= ∑
( f )

(
∑

α∈Comp
S (Fα)

(
Rα, f(1)

))
f(2) = ∑

( f )
S


∑

α∈Comp
Fα

(
Rα, f(1)

)
︸ ︷︷ ︸

= f(1)
(by (52), applied to g= f(1))


f(2)

= ∑
( f )

S
(

f(1)
)

f(2) = ε ( f )

(by one of the defining properties of the antipode). This proves Proposition
5.7.

The “negative m” analogue is less obvious:38

Proposition 5.8. Let f ∈ QSym and let m be a positive integer. For any com-
position α = (α1, α2, . . . , α`), we define an element F\mα of QSym as follows:

• If ` = 0 or α` < m, then F\mα = 0.

• If α` = m, then F\mα = F(α1,α2,...,α`−1).

38Proposition 5.8 does not literally involve a negative m, but it involves an element F\mα which
can be viewed as “something like F(α)�(−m)”.
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• If α` > m, then F\mα = F(α1,α2,...,α`−1,α`−m).

(Here, any equality or inequality in which α` is mentioned is understood to
include the statement that ` > 0.)

Then,
(−1)m ∑

α∈Comp
(−1)|α| F\mα R⊥ω(α) f = ε

(
R⊥(1m) f

)
.

Here, (1m) denotes the composition

1, 1, . . . , 1︸ ︷︷ ︸
m times

.

Proof of Proposition 5.8. Let us first make some auxiliary observations.
Any two elements a and b of NSym satisfy

(ab)⊥ = b⊥ ◦ a⊥ (53)

39.
For every two compositions α and β, we define a composition [α, β] by [α, β] =

(α1, α2, . . . , α`, β1, β2, . . . , βm), where α and β are written as α = (α1, α2, . . . , α`)
and β = (β1, β2, . . . , βm). We further define a composition α� β as in Proposition
3.8. Then, every two nonempty compositions α and β satisfy

RαRβ = R[α,β] + Rα�β. (54)

(This is part of [GriRei15, Theorem 5.4.10(c)].) Now it is easy to see that

Rω([α,(m)]) + Rω(α�(m)) = R(1m)Rω(α) (55)

39Proof of (53): Let a and b be two elements of NSym. Let c ∈ QSym. Then,

(ab)⊥ c = ∑
(c)

(
ab, c(1)

)
︸ ︷︷ ︸

= ∑
(c(1))

(
a,(c(1))(1)

)(
b,(c(1))(2)

)
(by (33), applied to c(1) instead of c)

c(2) (by (35), applied to g = ab and f = c)

= ∑
(c)

∑
(c(1))

(
a,
(

c(1)
)
(1)

)(
b,
(

c(1)
)
(2)

)
c(2) = ∑

(c)
∑
(c(2))

(
a, c(1)

)(
b,
(

c(2)
)
(1)

)(
c(2)
)
(2) since the coassociativity of ∆ yields

∑
(c)

∑
(c(1))

(
c(1)
)
(1)
⊗
(

c(1)
)
(2)
⊗ c(2) = ∑

(c)
∑

(c(2))
c(1) ⊗

(
c(2)
)
(1)
⊗
(

c(2)
)
(2)


= ∑

(c)

(
a, c(1)

)
∑
(c(2))

(
b,
(

c(2)
)
(1)

)(
c(2)
)
(2)

.
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for every nonempty composition α 40. Hence, for every nonempty composition
α, we haveRω([α,(m)]) + Rω(α�(m))︸ ︷︷ ︸

=R(1m)Rω(α)


⊥

=
(

R(1m)Rω(α)

)⊥
= R⊥ω(α) ◦ R⊥(1m) (56)

(by (53), applied to a = R(1m) and b = Rω(α)).
We furthermore notice that ω (∅) = ∅ and thus R⊥ω(∅) = R⊥∅ = id (since

R∅ = 1).

Compared with

(
b⊥ ◦ a⊥

)
(c) = b⊥

 a⊥c︸︷︷︸
=∑

(c)
(a,c(1))c(2)

(by (35), applied to g=a and f=c)

 = b⊥

∑
(c)

(
a, c(1)

)
c(2)



= ∑
(c)

(
a, c(1)

)
b⊥
(

c(2)
)

︸ ︷︷ ︸
= ∑
(c(2))

(
b,(c(2))(1)

)
(c(2))(2)

(by (35), applied to g=b and f=c(2))

(
since the map b⊥ is k-linear

)

= ∑
(c)

(
a, c(1)

)
∑
(c(2))

(
b,
(

c(2)
)
(1)

)(
c(2)
)
(2)

,

this yields (ab)⊥ c =
(
b⊥ ◦ a⊥

)
(c).

Now, let us forget that we fixed c. We thus have shown that (ab)⊥ c =
(
b⊥ ◦ a⊥

)
(c) for

every c ∈ QSym. In other words, (ab)⊥ = b⊥ ◦ a⊥. This proves (53).
40Proof of (55): Let α be a nonempty composition. Proposition 5.2 (a) shows that ω ([α, β]) =

ω (β) � ω (α) for every nonempty composition β. Applying this to β = (m), we obtain
ω ([α, (m)]) = ω ((m))︸ ︷︷ ︸

=(1m)

�ω (α) = (1m)�ω (α). But Proposition 5.2(b) shows that ω (α� β) =

[ω (β) , ω (α)] for every nonempty composition β. Applying this to β = (m), we obtain

ω (α� (m)) =

ω ((m))︸ ︷︷ ︸
=(1m)

, ω (α)

 = [(1m) , ω (α)]. Now,

Rω([α,(m)]) + Rω(α�(m)) = Rω(α�(m)) + Rω([α,(m)]) = R[(1m),ω(α)] + R(1m)�ω(α)

(since ω (α� (m)) = [(1m) , ω (α)] and ω ([α, (m)]) = (1m)�ω (α))

= R(1m)Rω(α)

(since (54) (applied to (1m) and ω (α) instead of α and β) shows that R(1m)Rω(α) =
R[(1m),ω(α)] + R(1m)�ω(α)). This proves (55).
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Now,

∑
(α1,α2,...,α`)∈Comp;

α`=m

(−1)|(α1,α2,...,α`)|︸ ︷︷ ︸
=(−1)|(α1,α2,...,α`−1,m)|

(since α`=m)

F\m
(α1,α2,...,α`)︸ ︷︷ ︸

=F(α1,α2,...,α`−1)
(since α`=m)

R⊥ω((α1,α2,...,α`))︸ ︷︷ ︸
=R⊥

ω((α1,α2,...,α`−1,m))
(since α`=m)

f

= ∑
(α1,α2,...,α`)∈Comp;

α`=m︸ ︷︷ ︸
= ∑
(α1,α2,...,α`−1)∈Comp

(−1)|(α1,α2,...,α`−1,m)|︸ ︷︷ ︸
=(−1)|(α1,α2,...,α`−1)|+m

F(α1,α2,...,α`−1)
R⊥ω((α1,α2,...,α`−1,m))︸ ︷︷ ︸
=R⊥

ω([(α1,α2,...,α`−1),(m)])
(since (α1,α2,...,α`−1,m)
=[(α1,α2,...,α`−1),(m)])

f

= ∑
(α1,α2,...,α`−1)∈Comp

(−1)|(α1,α2,...,α`−1)|+m F(α1,α2,...,α`−1)
R⊥ω([(α1,α2,...,α`−1),(m)]) f

= ∑
α∈Comp

(−1)|α|+m FαR⊥ω([α,(m)]) f

(here, we have substituted α for (α1, α2, . . . , α`−1) in the sum)

= (−1)|∅|+m F∅R⊥ω([∅,(m)]) f + ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω([α,(m)]) f (57)

(here, we have split off the addend for α = ∅ from the sum). On the other hand,

∑
(α1,α2,...,α`)∈Comp;

α`>m

(−1)|(α1,α2,...,α`)| F\m
(α1,α2,...,α`)︸ ︷︷ ︸

=F(α1,α2,...,α`−1,α`−m)
(since α`>m)

R⊥ω((α1,α2,...,α`))
f

= ∑
(α1,α2,...,α`)∈Comp;

α`>m

(−1)|(α1,α2,...,α`)| F(α1,α2,...,α`−1,α`−m)R
⊥
ω((α1,α2,...,α`))

f

= ∑
(α1,α2,...,α`)∈Comp;

`>0

(−1)|(α1,α2,...,α`−1,α`+m)|︸ ︷︷ ︸
=(−1)|(α1,α2,...,α`)|+m

F(α1,α2,...,α`)

R⊥ω((α1,α2,...,α`−1,α`+m))︸ ︷︷ ︸
=R⊥

ω((α1,α2,...,α`)�(m))
(since (α1,α2,...,α`−1,α`+m)=(α1,α2,...,α`)�(m))

f

(
here, we have substituted (α1, α2, . . . , α`)
for (α1, α2, . . . , α`−1, α` −m) in the sum

)
= ∑

(α1,α2,...,α`)∈Comp;
`>0

(−1)|(α1,α2,...,α`)|+m F(α1,α2,...,α`)R
⊥
ω((α1,α2,...,α`)�(m)) f

= ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω(α�(m)) f (58)
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(here, we have substituted α for (α1, α2, . . . , α`) in the sum).
But

∑
α∈Comp

(−1)|α| F\mα R⊥ω(α) f

= ∑
(α1,α2,...,α`)∈Comp

(−1)|(α1,α2,...,α`)| F\m
(α1,α2,...,α`)

R⊥ω((α1,α2,...,α`))
f

(here, we have renamed the summation index α as (α1, α2, . . . , α`))

= ∑
(α1,α2,...,α`)∈Comp;

`=0 or α`<m

(−1)|(α1,α2,...,α`)| F\m
(α1,α2,...,α`)︸ ︷︷ ︸

=0
(since `=0 or α`<m)

R⊥ω((α1,α2,...,α`))
f

+ ∑
(α1,α2,...,α`)∈Comp;

α`=m

(−1)|(α1,α2,...,α`)| F\m
(α1,α2,...,α`)

R⊥ω((α1,α2,...,α`))
f

︸ ︷︷ ︸
=(−1)|∅|+mF∅R⊥

ω([∅,(m)]) f+ ∑
α∈Comp;

α is nonempty

(−1)|α|+mFαR⊥
ω([α,(m)]) f

(by (57))

+ ∑
(α1,α2,...,α`)∈Comp;

α`>m

(−1)|(α1,α2,...,α`)| F\m
(α1,α2,...,α`)

R⊥ω((α1,α2,...,α`))
f

︸ ︷︷ ︸
= ∑

α∈Comp;
α is nonempty

(−1)|α|+mFαR⊥
ω(α�(m)) f

(by (58))

= ∑
(α1,α2,...,α`)∈Comp;

`=0 or α`<m

(−1)|(α1,α2,...,α`)| 0R⊥ω((α1,α2,...,α`))
f

︸ ︷︷ ︸
=0

+ (−1)|∅|+m F∅R⊥ω([∅,(m)]) f + ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω([α,(m)]) f

+ ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω(α�(m)) f
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= (−1)|∅|+m F∅R⊥ω([∅,(m)]) f + ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω([α,(m)]) f

+ ∑
α∈Comp;

α is nonempty

(−1)|α|+m FαR⊥ω(α�(m)) f

= (−1)|∅|+m F∅ R⊥ω([∅,(m)])︸ ︷︷ ︸
=R⊥

(1m)

(since ω([∅,(m)])=ω((m))=(1m))

f

+ ∑
α∈Comp;

α is nonempty

(−1)|α|+m Fα

(
Rω([α,(m)]) + Rω(α�(m))

)⊥
︸ ︷︷ ︸

=R⊥
ω(α)◦R

⊥
(1m)

(by (56))

f

= (−1)|∅|+m F∅ R⊥(1m) f︸ ︷︷ ︸
=R⊥

ω(∅)

(
R⊥
(1m)

f
)

(since R⊥
ω(∅)=id and thus

R⊥
ω(∅)

(
R⊥
(1m)

f
)
=R⊥

(1m)
f )

+ ∑
α∈Comp;

α is nonempty

(−1)|α|+m Fα

(
R⊥ω(α) ◦ R⊥(1m)

)
f︸ ︷︷ ︸

=R⊥
ω(α)

(
R⊥
(1m)

f
)

= (−1)|∅|+m F∅R⊥ω(∅)

(
R⊥(1m) f

)
+ ∑

α∈Comp;
α is nonempty

(−1)|α|+m FαR⊥ω(α)

(
R⊥(1m) f

)

= ∑
α∈Comp

(−1)|α|+m︸ ︷︷ ︸
=(−1)m(−1)|α|

FαR⊥ω(α)

(
R⊥(1m) f

) (
here, we have incorporated the

α = ∅ addend into the sum

)

= (−1)m ∑
α∈Comp

(−1)|α| FαR⊥ω(α)

(
R⊥(1m) f

)
.

Multiplying both sides of this equality with (−1)m, we obtain

(−1)m ∑
α∈Comp

(−1)|α| F\mα R⊥ω(α) f = ∑
α∈Comp

(−1)|α| FαR⊥ω(α)

(
R⊥(1m) f

)
.

Comparing this with

ε
(

R⊥(1m) f
)
= ∑

α∈Comp
(−1)|α| FαR⊥ω(α)

(
R⊥(1m) f

)
(by Proposition 5.7, applied to R⊥(1m) f instead of f ), we obtain

(−1)m ∑
α∈Comp

(−1)|α| F\mα R⊥ω(α) f = ε
(

R⊥(1m) f
)

.

This proves Proposition 5.8.
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6. Lifts to WQSym and FQSym

We have so far been studying the Hopf algebras Sym, QSym and NSym. These
are merely the tip of an iceberg; dozens of combinatorial Hopf algebras are
currently known, many of which are extensions of these. In this final section,
we shall discuss how (and whether) our operations ≺ and Á as well as some
similar operations can be lifted to the bigger Hopf algebras WQSym and FQSym.
We shall give no proofs, as these are not difficult and the whole discussion is
tangential to this note.

Let us first define these two Hopf algebras (which are discussed, for example,
in [FoiMal14]).

We start with WQSym. (Our definition of WQSym follows the papers of the
Marne-la-Vallée school, such as [AFNT13, Section 5.1]41; it will differ from that
in [FoiMal14], but we will explain why it is equivalent.)

Let X1, X2, X3, . . . be countably many distinct symbols. These symbols will be
called letters. We define a word to be an `-tuple of elements of {X1, X2, X3, . . .}
for some ` ∈N. Thus, for example, (X3, X5, X2) and (X6) are words. We denote
the empty word () by 1, and we often identify the one-letter word (Xi) with
the symbol Xi for every i > 0. For any two words u =

(
Xi1 , Xi2 , . . . , Xin

)
and

v =
(
Xj1 , Xj2 , . . . , Xjm

)
, we define the concatenation uv as the word(

Xi1 , Xi2 , . . . , Xin , Xj1 , Xj2 , . . . , Xjm
)
. Concatenation is an associative operation and

the empty word 1 is a neutral element for it; thus, the words form a monoid.
We let Wrd denote this monoid. This monoid is the free monoid on the set
{X1, X2, X3, . . .}. Concatenation allows us to rewrite any word

(
Xi1 , Xi2 , . . . , Xin

)
in the shorter form Xi1 Xi2 · · ·Xin .

Notice that Mon (the set of all monomials) is also a monoid under multi-
plication. We can thus define a monoid homomorphism π : Wrd → Mon by
π (Xi) = xi for all i ∈ {1, 2, 3, . . .}. This homomorphism π is surjective.

We define k 〈〈X〉〉 to be the k-module kWrd; its elements are all families
(λw)w∈Wrd ∈ kWrd. We define a multiplication on k 〈〈X〉〉 by

(λw)w∈Wrd · (µw)w∈Wrd =

 ∑
(u,v)∈Wrd2; uv=w

λuµv


w∈Wrd

. (59)

This makes k 〈〈X〉〉 into a k-algebra, with unity (δw,1)w∈Wrd. This k-algebra is
called the k-algebra of noncommutative power series in X1, X2, X3, . . .. For every
u ∈ Wrd, we identify the word u with the element (δw,u)w∈Wrd of k 〈〈X〉〉 42.
The k-algebra k 〈〈X〉〉 becomes a topological k-algebra via the product topol-
ogy (recalling that k 〈〈X〉〉 = kWrd as sets). Thus, every element (λw)w∈Wrd of
k 〈〈X〉〉 can be rewritten in the form ∑

w∈Wrd
λww. This turns the equality (59) into

41where WQSym is denoted by WQSym
42This identification is harmless, since the map Wrd → k 〈〈X〉〉 , u 7→ (δw,u)w∈Wrd is a monoid

homomorphism from Wrd to (k 〈〈X〉〉 , ·). (However, it fails to be injective if k = 0.)
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a distributive law (for infinite sums), and explains why we refer to elements of
k 〈〈X〉〉 as “noncommutative power series”. We think of words as noncommuta-
tive analogues of monomials.

The degree of a word w will mean its length (i.e., the integer n for which w
is an n-tuple). Let k 〈〈X〉〉bdd denote the k-subalgebra of k 〈〈X〉〉 formed by the
bounded-degree noncommutative power series43 in k 〈〈X〉〉. The surjective monoid
homomorphism π : Wrd → Mon canonically gives rise to surjective k-algebra
homomorphisms k 〈〈X〉〉 → k [[x1, x2, x3, . . .]] and k 〈〈X〉〉bdd → k [[x1, x2, x3, . . .]]bdd,
which we also denote by π. Notice that the k-algebra k 〈〈X〉〉bdd is denoted R 〈X〉
in [GriRei15, Section 8.1].

If w is a word, then we denote by Supp w the subset

{i ∈ {1, 2, 3, . . .} | the symbol Xi is an entry of w}

of {1, 2, 3, . . .}. Notice that Supp w = Supp (π (w)) is a finite set.
A word w is said to be packed if there exists an ` ∈ N such that Supp w =
{1, 2, . . . , `}.

For each word w, we define a packed word pack w as follows: Replace the
smallest letter44 that appears in w by X1, the second-smallest letter by X2, etc..45

This word pack w is called the packing of w. For example, pack (X3X1X6X1) =
X2X1X3X1.

For every packed word u, we define an element Mu of k 〈〈X〉〉bdd by

Mu = ∑
w∈Wrd;

pack w=u

w.

(This element Mu is denoted Pu in [AFNT13, Section 5.1].) We denote by WQSym
the k-submodule of k 〈〈X〉〉bdd spanned by the Mu for all packed words u.
It is known that WQSym is a k-subalgebra of k 〈〈X〉〉bdd which can further-
more be endowed with a Hopf algebra structure (the so-called Hopf algebra of
word quasisymmetric functions) such that π restricts to a Hopf algebra surjection
WQSym→ QSym. Notice that π (Mu) = MParikh(π(u)) for every packed word u,
where the Parikh composition Parikhm of any monomial m is defined as in the
proof of Proposition 3.5.

The elements Mu with u ranging over all packed words form a basis of the
k-module WQSym, which is usually called the monomial basis46. Furthermore,

43A noncommutative power series (λw)w∈Wrd ∈ k 〈〈X〉〉 is said to be bounded-degree if there is an
N ∈N such that every word w of length > N satisfies λw = 0.

44We use the total ordering on the set {X1, X2, X3, . . .} given by X1 < X2 < X3 < · · · .
45Here is a more pedantic way to restate this definition: Write w as

(
Xi1 , Xi2 , . . . , Xi`

)
, and let I =

Supp w (so that I = {i1, i2, . . . , i`}). Let rI be the unique increasing bijection {1, 2, . . . , |I|} → I.

Then, pack w denotes the word
(

Xr−1
I (i1)

, Xr−1
I (i2)

, . . . , Xr−1
I (i`)

)
.

46Sometimes it is parametrized not by packed words but instead by set compositions (i.e., or-
dered set partitions) of sets of the form {1, 2, . . . , n} with n ∈ N. But the packed words
of length n are in a 1-to-1 correspondence with set compositions of {1, 2, . . . , n}, so this is
merely a matter of relabelling.
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the product of two such elements can be computed by the well-known formula47

MuMv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v

Mw, (60)

where ` is the length of u, and where we use the notation w [: `] for the word
formed by the first ` letters of w and we use the notation w [` :] for the word
formed by the remaining letters of w. This equality (which should be consid-
ered a noncommutative analogue of (7), and can be proven similarly) makes it
possible to give an alternative definition of WQSym, by defining WQSym as the
free k-module with basis (Mu)u is a packed word and defining multiplication using
(60). This is precisely the approach taken in [FoiMal14, Section 1.1].

The Hopf algebra WQSym has also appeared under the name NCQSym (“qua-
sisymmetric functions in noncommuting variables”) in [BerZab05, Section 5.2]
and other sources.

We now define five binary operations ≺ , ◦, � , Á , and ź on k 〈〈X〉〉.

Definition 6.1. (a) We define a binary operation ≺ : k 〈〈X〉〉 × k 〈〈X〉〉 →
k 〈〈X〉〉 (written in infix notation) by the requirements that it be k-bilinear
and continuous with respect to the topology on k 〈〈X〉〉 and that it satisfy

u ≺ v =

{
uv, if min (Supp u) < min (Supp v) ;
0, if min (Supp u) ≥ min (Supp v)

for any two words u and v.
(b) We define a binary operation ◦ : k 〈〈X〉〉 × k 〈〈X〉〉 → k 〈〈X〉〉 (written in

infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k 〈〈X〉〉 and that it satisfy

u ◦ v =

{
uv, if min (Supp u) = min (Supp v) ;
0, if min (Supp u) 6= min (Supp v)

for any two words u and v.
(c) We define a binary operation � : k 〈〈X〉〉 × k 〈〈X〉〉 → k 〈〈X〉〉 (written

in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k 〈〈X〉〉 and that it satisfy

u � v =

{
uv, if min (Supp u) > min (Supp v) ;
0, if min (Supp u) ≤ min (Supp v)

for any two words u and v.

47This formula appears in [MeNoTh11, Proposition 4.1].
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(d) We define a binary operation Á : k 〈〈X〉〉 × k 〈〈X〉〉 → k 〈〈X〉〉 (written
in infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k 〈〈X〉〉 and that it satisfy

u Á v =

{
uv, if max (Supp u) ≤ min (Supp v) ;
0, if max (Supp u) > min (Supp v)

for any two words u and v.
(e) We define a binary operation ź : k 〈〈X〉〉×k 〈〈X〉〉 → k 〈〈X〉〉 (written in

infix notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k 〈〈X〉〉 and that it satisfy

u ź v =

{
uv, if max (Supp u) < min (Supp v) ;
0, if max (Supp u) ≥ min (Supp v)

for any two words u and v.

The first three of these five operations are closely related to those defined by
Novelli and Thibon in [NovThi05a]; the main difference is the use of minima
instead of maxima in our definitions.

The operations ≺ , Á and ź on WQSym lift the operations ≺ , Á and ź on
QSym. More precisely, any a ∈ k 〈〈X〉〉 and b ∈ k 〈〈X〉〉 satisfy

π (a) ≺ π (b) = π (a ≺ b) = π (b � a) ;
π (a) Á π (b) = π (a Á b) ;
π (a) ź π (b) = π (a ź b)

(and similar formulas would hold for ◦ and � had we bothered to define such
operations on QSym). Also, using the operation � defined in Remark 3.2, we
have

π (a) � π (b) = π (a � b + a ◦ b) for any a ∈ k 〈〈X〉〉 and b ∈ k 〈〈X〉〉 .

We now have the following analogue of Proposition 3.5:

Proposition 6.2. Every a ∈WQSym and b ∈WQSym satisfy a ≺ b ∈WQSym,
a ◦ b ∈WQSym, a � b ∈WQSym, a Á b ∈WQSym and a ź b ∈WQSym.

The proof of Proposition 6.2 is easier than that of Proposition 3.5; we omit it
here. In analogy to Remark 3.6 and to (60), let us give explicit formulas for these
five operations on the basis (Mu)u is a packed word of WQSym:

Remark 6.3. Let u and v be two packed words. Let ` be the length of u. Then:
(a) We have

Mu ≺Mv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v;
min(Supp(w[:`]))<min(Supp(w[`:]))

Mw.
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(b) We have

Mu ◦Mv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v;
min(Supp(w[:`]))=min(Supp(w[`:]))

Mw.

(c) We have

Mu �Mv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v;
min(Supp(w[:`]))>min(Supp(w[`:]))

Mw.

(d) We have

Mu ÁMv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v;
max(Supp(w[:`]))≤min(Supp(w[`:]))

Mw.

The sum on the right hand side consists of two addends (unless u or v is
empty), namely Muv+h−1 and Muv+h , where h = max (Supp u), and where v+j

denotes the word obtained by replacing every letter Xk in v by Xk+j.
(e) We have

Mu źMv = ∑
w is a packed word;

pack(w[:`])=u; pack(w[`:])=v;
max(Supp(w[:`]))<min(Supp(w[`:]))

Mw.

The sum on the right hand side consists of one addend only, namely Muv+h .

Let us now move on to the combinatorial Hopf algebra FQSym, which is
known as the Malvenuto-Reutenauer Hopf algebra or the Hopf algebra of free quasi-
symmetric functions. We shall define it as a Hopf subalgebra of WQSym. This is
not identical to the definition in [GriRei15, Section 8.1], but equivalent to it.

For every n ∈ N, we let Sn be the symmetric group on the set {1, 2, . . . , n}.
(This notation is identical with that in [GriRei15]. It has nothing to do with
the Sα from [BBSSZ13a].) We let S denote the disjoint union

⊔
n∈N Sn. We

identify permutations in S with certain words – namely, every permutation
π ∈ S is identified with the word

(
Xπ(1), Xπ(2), . . . , Xπ(n)

)
, where n is such that

π ∈ Sn. The words thus identified with permutations in S are precisely the
packed words which do not have repeated elements.

For every word w, we define a word std w ∈ S as follows: Write w in the
form

(
Xi1 , Xi2 , . . . , Xin

)
. Then, std w shall be the unique permutation π ∈ Sn

such that, whenever u and v are two elements of {1, 2, . . . , n} satisfying u < v,
we have (π (u) < π (v) if and only if iu ≤ iv). Equivalently (and less formally),
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std w is the word which is obtained by

• replacing the leftmost smallest letter of w by X1, and marking it as “pro-
cessed”;

• then replacing the leftmost smallest letter of w that is not yet processed by
X2, and marking it as “processed”;

• then replacing the leftmost smallest letter of w that is not yet processed by
X3, and marking it as “processed”;

• etc., until all letters of w are processed.

For instance, std (X3X5X2X3X2X3) = X3X6X1X4X2X5 (which, regarded as
permutation, is the permutation written in one-line notation as (3, 6, 1, 4, 2, 5)).

We call std w the standardization of w.
Now, for every σ ∈ S, we define an element Gσ ∈WQSym by

Gσ = ∑
w is a packed word;

std w=σ

Mw = ∑
w∈Wrd;
std w=σ

w.

(The second equality sign can easily be checked.) Then, the k-submodule of
WQSym spanned by (Gσ)σ∈S turns out to be a Hopf subalgebra, with basis
(Gσ)σ∈S. This Hopf subalgebra is denoted by FQSym. This definition is not
identical with the one given in [GriRei15, Section 8.1]; however, it gives an iso-
morphic Hopf algebra, as our Gσ correspond to the images of the Gσ introduced
in [GriRei15, Section 8.1] under the embedding FQSym → R

〈
{Xi}i∈I

〉
also de-

fined therein.
Only two of the five operations ≺ , ◦, � , Á , and ź defined in Definition 6.1

can be restricted to binary operations on FQSym:

Proposition 6.4. Every a ∈ FQSym and b ∈ FQSym satisfy a � b ∈ FQSym
and a Á b ∈ FQSym.

Moreover, we have the following explicit formulas on the basis (Gσ)σ∈S:

Remark 6.5. Let σ ∈ S and τ ∈ S. Let ` be the length of σ (so that σ ∈ S`).
(a) We have

Gσ � Gτ = ∑
π∈S;

std(π[:`])=σ; std(π[`:])=τ;
min(Supp(π[:`]))>min(Supp(π[`:]))

Gπ.

(b) We have

Gσ Á Gτ = ∑
π∈S;

std(π[:`])=σ; std(π[`:])=τ;
max(Supp(π[:`]))≤min(Supp(π[`:]))

Gπ.

The sum on the right hand side consists of one addend only, namely Gστ+` .
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The statements of Remark 6.5 can be easily derived from Remark 6.3. The
proof for (a) rests on the following simple observations:

• Every word w satisfies std (pack w) = std w.

• Every n ∈N, every word w of length n and every ` ∈ {0, 1, . . . , n} satisfy

std ((std w) [: `]) = std (w [: `]) and std ((std w) [` :]) = std (w [` :]) .

• Every n ∈ N, every word w of length n and every ` ∈ {0, 1, . . . , n} satisfy
the equivalence

(min (Supp (w [: `])) > min (Supp (w [` :])))
⇐⇒ (min (Supp ((std w) [: `])) > min (Supp ((std w) [` :]))) .

The third of these three observations would fail if the greater sign were to
be replaced by a smaller sign; this is essentially why FQSym ⊆ WQSym is not
closed under ≺ .

The operation � on FQSym defined above is closely related to the operation
� on FQSym introduced by Foissy in [Foissy07, Section 4.2]. Indeed, the latter
differs from the former in the use of max instead of min.

7. Epilogue

We have introduced five binary operations ≺ , ◦, � , Á , and ź on k [[x1, x2, x3, . . .]]
and their restrictions to QSym; we have further introduced five analogous op-
erations on k 〈〈X〉〉 and their restrictions to WQSym (as well as the restrictions
of two of them to FQSym). We have used these operations (specifically, ≺ and
Á ) to prove a formula (Corollary 5.6) for the dual immaculate functions S∗α.
Along the way, we have found that the S∗α can be obtained by repeated appli-
cation of the operation ≺ (Corollary 4.7). A similar (but much more obvious)
result can be obtained for the fundamental quasisymmetric functions: For every
α = (α1, α2, . . . , α`) ∈ Comp, we have

Fα = hα1 ź hα2 ź · · · ź hα` ź 1

(we do not use parentheses here, since ź is associative). This shows that the
k-algebra (QSym, ź) is free. Moreover,

Fω(α) = eα` Á eα`−1 Á · · · Á eα1 Á 1,

where em stands for the m-th elementary symmetric function; thus, the k-algebra
(QSym, Á) is also free.48 (Incidentally, this shows that S (a ź b) = S (b) Á S (a)
for any a, b ∈ QSym. But this does not hold for a, b ∈WQSym.)

48We owe these two observations to the referee.
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One might wonder what “functions” can be similarly constructed using the
operations ≺ , ◦, � , Á , and ź in WQSym, using the noncommutative analogues
Hm = ∑

i1≤i2≤···≤im
Xi1 Xi2 · · ·Xim = G(1,2,...,m) and Em = ∑

i1>i2>···>im
Xi1 Xi2 · · ·Xim =

G(m,m−1,...,1) of hm and em. (These analogues actually live in NSym, where NSym
is embedded into FQSym as in [GriRei15, Corollary 8.1.14(b)]; but the operations
do not preserve NSym, and only two of them preserve FQSym.) However, it
seems somewhat tricky to ask the right questions here; for instance, the k-linear
span of the � -closure of {Hm | m ≥ 0} is not a k-subalgebra of FQSym (since
H2H1 is not a k-linear combination of H3, H1 � (H1 � H1), (H1 � H1) � H1,
H1 � H2 and H2 � H1).

On the other hand, one might also try to write down the set of identities satis-
fied by the operations ·, ≺ , ◦, � , Á and ź on the various spaces (k [[x1, x2, x3, . . .]],
QSym, k 〈〈X〉〉, WQSym and FQSym), or by subsets of these operations; these
identities could then be used to define new operads, i.e., algebraic structures
comprising a k-module and some operations on it that imitate (some of) the op-
erations ·, ≺ , ◦, � , Á and ź . For instance, apart from being associative, the
operations Á and ź on k 〈〈X〉〉 satisfy the identity

(a Á b) ź c + (a ź b) Á c = a Á (b ź c) + a ź (b Á c) (61)

for all a, b, c ∈ k 〈〈X〉〉. This follows from the (easily verified) identities

(a Á b) ź c− a Á (b ź c) = ε (b) (a ź c− a Á c) ;
(a ź b) Á c− a ź (b Á c) = ε (b) (a Á c− a ź c) ,

where ε : k 〈〈X〉〉 → k is the map which sends every noncommutative power
series to its constant term. The equality (61) (along with the associativity of Á
and ź ) makes (k 〈〈X〉〉 , Á , ź) into what is called an As〈2〉-algebra (see [Zinbie10,
p. 39]). Is QSym or WQSym a free As〈2〉-algebra? What if we add the existence
of a common neutral element for the operations Á and ź to the axioms of this
operad?
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