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I will refer to the results appearing in the paper “A Determinantal Formula
for the Exterior Powers of the Polynomial Ring” by Dan Laksov and Anders
Thorup by the numbers under which they appear in this preprint.

10. Errata

• page 828, §0.3: It is worth saying that if g = bNTN + bN−1TN−1 + bN−2TN−2 +
· · · is a Laurent series, and if i is an integer such that i > N, then you set
bi = 0. (This is used, for example, in the definition of Res (g1, . . . , gn), since
otherwise the entries bi,−j of the determinant are undefined if one of the
series g1, . . . , gn begins with a very low negative power of T.)

• page 829, Theorem 0.1: In part (3), I’d replace “exponents” by “nonnega-
tive exponents” for clarity.

• page 829, Remark 0.5: The reasoning for why “(2) is a consequence of (3)”
can be simplified. All you need is the following: In order to prove (2) in
general, it suffices to prove (2) in the case when f1, . . . , fn are monomials
(since any polynomial is an A-linear combination of monomials). In other
words, it suffices to prove (2) in the case when each i ∈ {1, 2, . . . , n} satisfies
fi = Tqi for some qi ∈ N. So assume WLOG that we are in this case.
Then, note that both the left hand side and the right hand side of (2) are
alternating as functions in the parameters q1, q2, . . . , qn (because the residue
of n polynomials f1, f2, . . . , fn vanishes when two of the polynomials are
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equal, and switches sign if two of the polynomials are swapped). Thus,
we can assume WLOG that q1 > q2 > · · · > qn. Assume this, and write
the qi in the form qi = hi + n− i for some hi ∈ N; then, the inequalities
q1 > q2 > · · · > qn ≥ 0 lead to h1 ≥ h2 ≥ · · · ≥ hn ≥ 0. Thus, f1 (X) ∧
· · · ∧ fn (X) = Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn (since each i ∈ {1, 2, . . . , n}
satisfies fi = Tqi = Thi+n−i (since qi = hi + n− i)) and

Res
(

f1

P
, . . . ,

fn

P

)
= sh1,h2,...,hn

(this has been proven in the previous paragraph). Thus, the claim of (2) is
precisely the assertion (3).

Note that we did not need to assume (1) to make this argument.

• page 831, proof of Lemma 1.1: Before “To prove assertion (3)”, add “Now
assume I to be equipped with a total order.”.

• page 832, §1.3: When defining S here, you should perhaps say that this S is
not the same S that was defined in §0.1, but rather a generalization thereof.

• page 832, proof of Proposition 1.3: Remove the four sentences that begin
with “Then we have an equality” and end with “and hence f y is in the
kernel”. (These four sentences merely repeat the four preceding sentences.)

• page 832, proof of Proposition 1.3: “Assume that M is A free”→ “Assume
that M is A-free”.

• page 833, §2.1: In “and it is clear that the action of S on A [X1, . . . , Xn]
is determined by these equations”, replace “A [X1, . . . , Xn]” by “∧n

A A [X]”.
(Or perhaps remove these words altogether, since you don’t seem to use
them anywhere.)

• page 833, proof of Proposition 2.1: Replace “of (2.2)” by “of (2.1)”.

• page 833, proof of Proposition 2.1: This proof is not complete. You im-
plicitly build up an involution for each k ∈ {1, 2, . . . , n− 1} that pairs up
cancelling addends on the right hand side of (2.1); but why don’t these
involutions for different values of k “snatch away” addends from one an-
other? An addend may be paired up by more than one of the involutions.

I suggest replacing the proof by a cleaner argument, which I show in the
Appendix to these errata (Section 11.1):

• page 834, proof of Corollary 2.2: I find this proof somewhat harrowing
to read; the combinatorics requires too much handwaving. I present a
different proof (longer, but a lot less reliant on mental acrobatics) in the
Appendix to these errata (Section 11.2).
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• page 834, proof of Corollary 2.2: In the proof of Corollary 2.2 (your proof,
not mine), replace “into n + 1 intervals” by “into m + 1 intervals”.

• page 835, §2.2: “Note that the Schur function sh1h2...hm0...0” → “Note that
the Schur function sh1,h2,...,hm,0,...,0”.

• page 835, §2.2: The sentence “For m = 1 Gatto’s formula clearly holds”
should be moved after the next sentence (“We prove Gatto’s formula ...”),
since at its current position it is unclear what the “m” stands for.

• page 835, §2.2: “on the positive integers m” → “on the smallest positive
integer m”.

• page 835, §2.2: Before “Development of the determinant”, insert “Now
assume that (h1, h2, . . . , hn) ∈ Nn has hm+1 = hm+2 = · · · = hn = 0 but
hm > 0”.

• page 835, §2.2: In the first displayed equation of §2.2, replace the subscript
“h1, . . . , hi−1, hi+1, . . . , hm−1, 0, . . . , 0” by “h1, . . . , hi−1, hi+1− 1, . . . , hm− 1, 0, . . . , 0”.

• page 835, proof of Lemma 2.3: I cannot follow this proof at the point where
you argue that “ f Xn−1∧Xn−2∧ · · · ∧X0 contains the term Xh1+n−1∧Xh2+n−2∧
· · · ∧ Xhn”. A slightly different (but cleaner) proof of Lemma 2.3 is shown
in the Appendix to these errata (Section 11.3).

• page 836, §3: On the first line of §3, I would replace “of Section 1” by “of
(1.2)”, just to be a bit more specific.

• page 836, §3.1: I suggest replacing “free A-module of rank 1 over S” by
“free S-module of rank 1”.

• page 836, §3.1: Replace “alt
(

Xh1+n−1
1 · · ·X0

n

)
” by “alt

(
Xh1+n−1

1 · · ·Xhn
n

)
”.

• page 836, §3.1: I would simplify this whole paragraph, avoiding the first
reference to [22], as follows:

“Let ∆ be the Vandermonde determinant

det
((

Xn−i
j

)
1≤i≤n, 1≤j≤n

)
= alt

(
Xn−1

1 Xn−2
2 · · ·Xn−n

n

)
.

Note that ∆ = ∏
1≤i<j≤n

(
Xi − Xj

)
.

The Jacobi-Trudi formula ([22, I.3, (3.4) on p. 41]) shows that

sh1,h2,...,hn = alt
(

Xh1+n−1
1 Xh2+n−2

2 · · ·Xhn+n−n
n

)
/∆ (1)

for any (h1, h2, . . . , hn) ∈ Nn satisfying h1 ≥ h2 ≥ · · · ≥ hn. (Keep in mind
that what is called sλ in [22, §I.3] corresponds to our
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alt
(

Xh1+n−1
1 Xh2+n−2

2 · · ·Xhn+n−n
n

)
/∆, where (h1, h2, . . . , hn) = (λ1, λ2, . . . , λn);

meanwhile, what we call sh1,h2,...,hn corresponds to the determinant det
(
hλi−i+j

)
1≤i,j≤n

in [22, §I.3].)

Let γ denote the S-linear isomorphism
∧n

A A [X] → A [X1, . . . , Xn]
alt con-

structed in Proposition 3.1. Then, γ is bijective (since γ is an isomor-
phism) and thus injective. Now, for any (h1, h2, . . . , hn) ∈ Nn satisfying
h1 ≥ h2 ≥ · · · ≥ hn, we have

γ
(

Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n
)

= alt
(

Xh1+n−1
1 Xh2+n−2

2 · · ·Xhn+n−n
n

)
(by the definition of γ)

= sh1,h2,...,hn ∆ (by (1))

= sh1,h2,...,hn alt
(

Xn−1
1 Xn−2

2 · · ·Xn−n
n

)
︸ ︷︷ ︸
=γ(Xn−1∧Xn−2∧···∧Xn−n)

(
since ∆ = alt

(
Xn−1

1 Xn−2
2 · · ·Xn−n

n

))

= sh1,h2,...,hn γ
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n
)

= γ
(

sh1,h2,...,hn · X
n−1 ∧ Xn−2 ∧ · · · ∧ Xn−n

)
(since γ is S-linear)

and therefore

Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n = sh1,h2,...,hn · X
n−1 ∧ Xn−2 ∧ · · · ∧ Xn−n.

(2)
This proves part (3) of the Main Theorem. As we know from Remark 0.5,
this entails that part (2) of the Main Theorem also holds. It remains to
prove part (1).

The family (
Xi1 ∧ Xi2 ∧ · · · ∧ Xin

)
(i1,i2,...,in)∈Nn; i1>i2>···>in

and the family(
Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n

)
(h1,h2,...,hn)∈Nn; h1≥h2≥···≥hn

can be obtained from one another by relabelling1. Hence, these two fami-
lies have the same span. Since the first family spans the A-module

∧n
A A [X]

1Indeed, there is a bijection from the set {(i1, i2, . . . , in) ∈Nn | i1 > i2 > · · · > in} to the
set {(h1, h2, . . . , hn) ∈Nn | h1 ≥ h2 ≥ · · · ≥ hn}; this bijection sends each (i1, i2, . . . , in) to
(i1 − n + 1, i2 − n + 2, . . . , in − n + n). This bijection has the property that if it sends some
n-tuple (i1, i2, . . . , in) to an n-tuple (h1, h2, . . . , hn), then Xh1+n−1 ∧Xh2+n−2 ∧ · · · ∧Xhn+n−n =
Xi1 ∧ Xi2 ∧ · · · ∧ Xin . Therefore, if we relabel the first of our two families using this bijection,
then we obtain the second family.
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(because the A-module A [X] is spanned by X0, X1, X2, . . .), we thus con-
clude that the second family spans the A-module

∧n
A A [X] as well.

For any (h1, h2, . . . , hn) ∈Nn satisfying h1 ≥ h2 ≥ · · · ≥ hn, we have

Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n

= sh1,h2,...,hn︸ ︷︷ ︸
∈S

·Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n (by (2))

∈ S ·
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n
)

.

In other words, f ∈ S ·
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n) whenever f is an ele-

ment of the family
(
Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n)

(h1,h2,...,hn)∈Nn; h1≥h2≥···≥hn
.

Hence, f ∈ S ·
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n) holds for each f ∈ ∧n

A A [X]

(since the family
(
Xh1+n−1 ∧ Xh2+n−2 ∧ · · · ∧ Xhn+n−n)

(h1,h2,...,hn)∈Nn; h1≥h2≥···≥hn

spans the A-module
∧n

A A [X]). In other words,∧n

A
A [X] ⊆ S ·

(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n

)
.

Combining this with S ·
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n) ⊆ ∧n

A A [X] (which is
obvious), we obtain∧n

A
A [X] = S ·

(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n

)
.

Hence, the n-vector Xn−1∧Xn−2∧ · · · ∧Xn−n generates the S-module
∧n

A A [X].
Since the annihilator of this n-vector is zero (by Lemma 2.3), we thus
conclude that the 1-tuple

(
Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n) is a basis of the S-

module
∧n

A A [X]. In other words, the S-module
∧n

A A [X] is free of rank 1,
generated by the n-vector Xn−1 ∧ Xn−2 ∧ · · · ∧ Xn−n. This proves part (1)
of the Main Theorem. Thus, the Main Theorem is completely proven.

• page 836, §4.1: Before “The residue algebra S [T] /P is freely generated”,
add “The polynomial P ∈ S [T] is monic of degree n. Thus,”.

• page 836, §4.1: After “well-known to be an isomorphism”, add “(but this
latter fact will not be used)”.

• page 836, §4.1: After “and it is free of rank 1”, add “with a basis consisting
of the single element ξn−1 ∧ ξn−2 ∧ · · · ∧ ξ0 (since S [ξ] is a free S-module
with basis ξn−1, ξn−2, . . . , ξ0)”.

• page 837, §4.1: “exterior product”→ “exterior power”.

• page 837, proof of Lemma 4.1: “from the equation 0 = P (ξ) = ξn−1 −
c1ξn−2 + · · ·+ (−1)n cn” → “from the equation 0 = P (ξ) = ξn − c1ξn−1 +
· · ·+ (−1)n cn”.
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• page 838, proof of Theorem 4.2: “natural injection of S-algebras”→ “nat-
ural homomorphism of S-algebras”. (It is true that this homomorphism is
an injection, but this is not obvious at this point, and not needed for your
argument; it is thus only distraction.)

• page 838, proof of Theorem 4.2: After “and equal to the identity on S”,
add “(by the universal property of the residue algebra S [ξ] = S [T] /P,
since P (Xi) = 0)”.

• page 838, proof of Theorem 4.2: “with the natural surjection A [X1, . . . , An]→∧n
A A [X]” → “with the natural surjection A [X1, . . . , Xn] =

⊗n
A A [X] →∧n

A A [X]”.

• page 838, proof of Theorem 4.2: I suggest explaining somewhere what
you mean by “alternating” when talking about maps out of a tensor power.
(Namely, you say that an A-linear map f :

⊗n
A V →W (for two A-modules

V and W) is alternating if and only if the map

Vn →W,
(v1, v2, . . . , vn) 7→ f (v1 ⊗ v2 ⊗ · · · ⊗ vn)

is alternating; equivalently, you say that f :
⊗n

A V → W is alternating if
and only if f factors through the canonical projection

⊗n
A V → ∧n

A W.)

• page 838, §4.3: After “is upper triangular with 1’s on the diagonal”, add

“(by the equality Th/P (T) =
∞
∑

j=n−h
sh+j−nT−j in Remark 0.5, and because

s0 = 1)”.

• page 838, §4.3: You write: “Therefore, since
∧n

S S [ξ] is free of rank 1 over
S with generator ξn−1 ∧ · · · ∧ ξ0, equation (4.5) is general”. In my opinion,
this can be explained better. Indeed, if f1, f2, . . . , fn ∈ S [T] are n polyno-

mials, then the residue Res
(

f1

P
,

f2

P
, . . . ,

fn

P

)
depends only on the residue

classes of the polynomials f1, f2, . . . , fn modulo P (but not on these poly-
nomials themselves)2. In other words, this residue can be depends only
on the values f1 (ξ) , f2 (ξ) , . . . , fn (ξ) (since these values encode the same
information as the residue classes of the polynomials f1, f2, . . . , fn modulo

2This is because the residue Res
(

f1

P
,

f2

P
, . . . ,

fn

P

)
does not change when a multiple of P is

added to one of f1, f2, . . . , fn (since this residue is S-multilinear in f1, f2, . . . , fn and vanishes
when one of f1, f2, . . . , fn is divisible by P).
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P). Hence, the map

α : (S [ξ])n →
∧n

S
S [ξ] ,

( f1 (ξ) , f2 (ξ) , . . . , fn (ξ)) 7→ Res
(

f1

P
,

f2

P
, . . . ,

fn

P

)
ξn−1 ∧ ξn−2 ∧ · · · ∧ ξ0

(for f1, f2, . . . , fn ∈ S [T])

is well-defined. This map α is furthermore S-multilinear (since the residue
is S-multilinear) and alternating (since the residue is alternating). Hence,
it induces an S-linear map

α′ :
∧n

S
S [ξ]→

∧n

S
S [ξ] ,

f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ) 7→ Res
(

f1

P
,

f2

P
, . . . ,

fn

P

)
ξn−1 ∧ ξn−2 ∧ · · · ∧ ξ0

(for f1, f2, . . . , fn ∈ S [T]) .

But you have proved the equality (4.5) in the case when fi (T) = Tn−i for
all i ∈ {1, 2, . . . , n}. In other words, you have shown that

ξn−1∧ ξn−2∧ · · · ∧ ξn−n = Res
(

Tn−1

P
,

Tn−2

P
, . . . ,

Tn−n

P

)
ξn−1∧ ξn−2∧ · · · ∧ ξ0.

But the definition of α′ (applied to the polynomials Tn−1, Tn−2, . . . , Tn−n

instead of f1, f2, . . . , fn) yields

α′
(

ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n
)

= Res
(

Tn−1

P
,

Tn−2

P
, . . . ,

Tn−n

P

)
ξn−1 ∧ ξn−2 ∧ · · · ∧ ξ0.

Comparing these two equalities, we find

α′
(

ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n
)
= ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n

= id
(

ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n
)

.

Hence, the two S-linear maps α′ :
∧n

S S [ξ] → ∧n
S S [ξ] and id :

∧n
S S [ξ] →∧n

S S [ξ] are equal to each other on the element ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n.
Since this element ξn−1 ∧ ξn−2 ∧ · · · ∧ ξn−n generates the S-module

∧n
S S [ξ],

we can thus conclude that the two maps α′ and id are identical (because
if two S-linear maps are equal to each other on a given generating set of
their domain, then they must be identical). In other words, α′ = id. Hence,
every f1, f2, . . . , fn ∈ S [T] satisfy

α′︸︷︷︸
=id

( f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ))

= id ( f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ)) = f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ) .
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Hence,

f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ)

= α′ ( f1 (ξ) ∧ f2 (ξ) ∧ · · · ∧ fn (ξ))

= Res
(

f1

P
,

f2

P
, . . . ,

fn

P

)
ξn−1 ∧ ξn−2 ∧ · · · ∧ ξ0

(by the definition of α′). Hence, (4.5) is proven.

• page 839, §5.1: Replace “isomorphism of S-algebras S [ξ]→ S [Xi]” by “ho-
momorphism of S-algebras S [ξ] → A [X1, X2, . . . , Xn]”. (It is true that this
homomorphism restricts to an isomorphism of S-algebras S [ξ] → S [Xi],
but this is neither needed nor easy to prove at this point.)

• page 839, §5.1: It is worth mentioning here that you are considering
∧n

S S [ξ]
to be equipped with its natural structure (not its symmetric structure)
throughout §5.

• page 839, §5.2: Replace “when Fi = Tn−i for i = 1, 2, . . . , n” by “when(
Fi = Tn−i for i = 1, 2, . . . , n

)
”. (The parentheses are meant to clarify the

logical structure of this sentence:

“The function R is equal to 1 when
(

Fi = Tn−i for i = 1, 2, . . . , n
)
”,

not

“
(
The function R is equal to 1 when Fi = Tn−i) for i = 1, 2, . . . , n”.

• page 839, §5.2: You write: “It follows immediately that”. I don’t find this
obvious enough to deserve the word “immediately”. The argument you
are tacitly making here is essentially the argument you have done in §4.2
in order to prove (4.5); it is not in any way made unnecessary by the slight
change of viewpoint done in §5.

• page 839, §5.2: “prove that the generator ξn−1 ∧ · · · ∧ ξ0 has no S-torsion”
→ “prove that the generator Xn−1 ∧ · · · ∧ X0 has no S-torsion”. (For the
generator ξn−1 ∧ · · · ∧ ξ0, this is obvious, but that is not the generator you
need here.)

• page 839, §5.2: “Under the composition of the map (4.4) with the alterna-
tor”→ “Under the alternator”. (The map (4.4) is not needed here.)

• page 839, §5.2: “
∧n A [X]”→ “

∧n
A A [X]”.

• page 839, §5.2: “the generator ξn−1 ∧ · · · ∧ ξ0 is mapped”→ “the generator
Xn−1 ∧ · · · ∧ X0 is mapped”.

• page 839, §5.2: After “the generator itself has no S-torsion”, add “(since
the alternator map alt is S-linear)”.
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• page 839, §5.3: “Therefore the target is a free S-module of rank 1” →
“Therefore the target is generated (as an S-module) by the regular polyno-
mial ∆. Hence, it is a free S-module of rank 1”.

• page 839, §5.3: “It follows that both maps are isomorphisms.” → “Hence
the composite map in (5.2) is a surjective S-linear map between two free S-
modules of rank 1, and thus is an isomorphism. It follows that both maps
in (5.2) are isomorphisms (since they are surjective).”

• page 839, §5.3: I would replace “times ∆ or, equivalently, an anti-symmetric”
by “times ∆. Equivalently, an anti-symmetric”.

• page 840, §6.1: After “see [2, VI 6.5], [24, 2.1], [6], or [25]”, I would also
add a reference to [LakTho12, §1.3] (where Ar is denoted by Sr).

• page 840, §6.1: In the sentence that defines ∂1,...,r, replace “if hi = n− i for
i = 1, . . . , r” by “if hi = n − i for all i = 1, . . . , r” (to prevent misunder-
standing).

• page 840, §6.1: “we write ∂ = ∂1,...,n”→ “we write ∂ = ∂1,...,n−1”.

• page 840, §6.1: Replace “Ar [T]
[
[T−1]→ A [T]

[[
T−1]]” by “Ar [T]

[[
T−1]]→

A [T]
[[

T−1]]”.

• page 841, proof of Lemma 6.1: After “Now, p (T) is an A-linear combi-
nation of monomials Ti”, add “with i ≤ n, and in this combination the
monomial Tn has coefficient 1”.

• page 841, proof of Lemma 6.1: “we see, that”→ “we see that”.

• page 841, Proposition 6.2: This proposition is correct, but it is insufficient
for what you want to use it for (namely, proving Proposition 6.3). In order
to make it stronger, I suggest removing the words “of degree t” (so q can
have any degree). This necessitates a minor tweak in the proof (see below).

• page 842, (6.6): On the right hand side of (6.6), add a comma before “
gt

q
”.

• page 842, proof of Proposition 6.2: The last paragraph of this proof is
no longer correct now that I have generalized it. So let me suggest an
alternative to this last paragraph:

“Thus, we know that the left hand side of (6.6) vanishes if q divides some
gj, and is A-linear in each gj. Hence, the left hand side of (6.6) does not
change if we add a multiple of q to some gj. The same holds for the right
hand side (for the same reason). Thus, we can replace each polynomial
gj by its remainder modulo (q). Hence, we can WLOG assume that all
polynomials gj have degree < deg q. Assume this. Since both sides of (6.6)

9
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are A-linear in each gj, we can furthermore assume that each gj is a single
monomial: that is, there is a t-tuple (m1, m2, . . . , mt) ∈ {0, 1, . . . , deg q− 1}t

such that each j satisfies gj = Tmj . Assume this, too. Furthermore, both
sides of (6.6) vanish if two of the gj are equal; thus, we can WLOG assume
that m1, m2, . . . , mt are distinct. Assume this. Finally, both sides of (6.6) are
anti-symmetric in the gj; hence, we can WLOG assume that m1 ≥ m2 ≥
· · · ≥ mt (since otherwise, we can just permute m1, m2, . . . , mt so that this
holds). Assume this. Combining m1 ≥ m2 ≥ · · · ≥ mt with the fact that
m1, m2, . . . , mt are distinct, we obtain m1 > m2 > · · · > mt. Therefore,
m1 + 1 ≥ m2 + 2 ≥ · · · ≥ mt + t. Hence, each j ∈ {1, 2, . . . , t} satisfies

mj + j ≤ m1 + 1 ≤ deg q(
since (m1, m2, . . . , mt) ∈ {0, 1, . . . , deg q− 1}t

and thus m1 ∈ {0, 1, . . . , deg q− 1} , so that m1 ≤ deg q− 1

)
and thus

mj ≤ deg q− j.

Thus, for each j ∈ {1, 2, . . . , t}, the polynomial gj = Tmj is monic of degree
at most deg q− j (since mj ≤ deg q− j), and therefore can be written in the
form

gj = cjTdeg q−j + (lower order terms) , (3)

where “(lower order terms)” means an A-linear combination of monomi-
als Tu with u < deg q− j, and where cj ∈ A is either 0 or 1 (depending on
whether mj < deg q− j or mj = deg q− j). Consider these cj.

Thus, for each j ∈ {1, 2, . . . , t}, the Laurent series
gj

q
∈ A [T]

[[
T−1]] has

the form

gj

q
=

cjTdeg q−j + (lower order terms)
q

(by (3))

= cjT−j + (lower order terms) , (4)

where “(lower order terms)” means an A-linear combination of monomi-
als Tu with u < −j. (Here, we have used the fact that q is a monic polyno-
mials of degree deg q, and therefore division by q lowers the leading term
of any Laurent series by the degree q.)

From (4), we see that the matrix used in defining the residue Res
(

g1

q
, . . . ,

gt

q

)
is upper-triangular, with diagonal entries c1, c2, . . . , ct. Hence, its determi-
nant is given by

Res
(

g1

q
, . . . ,

gt

q

)
= c1c2 · · · ct. (5)

10
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Also, prq is a monic polynomial of degree r + deg q (since pr and q are
monic polynomials of degrees r and deg q, respectively). Now, for each

j ∈ {1, 2, . . . , t}, the Laurent series
gj

prq
∈ A [T]

[[
T−1]] has the form

gj

prq
=

cjTdeg q−j + (lower order terms)
prq

(by (3))

= cjT−r−j + (lower order terms) , (6)

where “(lower order terms)” means an A-linear combination of monomi-
als Tu with u < −r − j. (Here, we have used the fact that prq is a monic
polynomial of degree r + deg q, and therefore division by prq lowers the
leading term any Laurent series by the degree r + deg q.)

Furthermore, for each i ∈ {1, 2, . . . , r}, the Laurent series
1
pi
∈ A [T]

[[
T−1]]

has the form
1
pi

= T−i + (lower order terms) , (7)

where “(lower order terms)” means an A-linear combination of monomi-
als Tu with u < −i. (This is simply because pi is a monic polynomial of
degree i.)

From (7) and (6), we see that the matrix used in defining the residue

Res
(

1
p1

, . . . ,
1
pr

,
g1

prq
, . . . ,

gt

prq

)
is upper-triangular, with diagonal entries

1, 1, . . . , 1︸ ︷︷ ︸
r times

, c1, c2, . . . , ct. Hence, its determinant is given by

Res
(

1
p1

, . . . ,
1
pr

,
g1

prq
, . . . ,

gt

prq

)
= 1 · 1 · · · 1︸ ︷︷ ︸

r times

c1c2 · · · ct = c1c2 · · · ct.

Comparing this with (5), we obtain

Res
(

1
p1

, . . . ,
1
pr

,
g1

prq
, . . . ,

gt

prq

)
= Res

(
g1

q
, . . . ,

gt

q

)
.

This proves (6.6), and thus completes the proof of Proposition 6.2.”

• page 842, proof of Proposition 6.3: Replace “the corresponding composi-
tion ∂2,...,r” by “the corresponding composition ∂2,...,r := ∂2 ◦ · · · ◦ ∂r”, since
strictly speaking you have not defined ∂2,...,r yet (not that it isn’t very obvi-
ous).

• page 842, (6.8): On the right hand side of the first line of (6.8), replace
“ f (ξ1)” by “ f1 (ξ1)”.

11
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• page 842, proof of Proposition 6.3: “follows from equation (6.7) applied
with r := 1 and q := q1” → “follows from equation (6.3) applied with
A := A1, r := 1, a1 := ξ1, q := q1, t := r − 1 and gj := f j−1 (since
p1 = T − ξ1 and p = (T − ξ1) · q1 = p1q1)”.

Note that this relies on the generalized version of Proposition 6.2 suggested
above, since q1 has degree n− 1, not r− 1 (in general).

• page 843, §7.1: You write: “It is easy to check that the S-algebra A [X1, . . . , Xn]
satisfies the universal properties of the splitting algebra of the generic poly-
nomial P = (T − X1) · · · (T − Xn) = Tn − c1Tn−1 + · · ·+ (−1)n cn over S
with X1, . . . , Xn as universal roots”.

Let me spell out what this means and actually check that it is true.

First of all, the universal property of the splitting algebra of a polynomial
has been stated in [LakTho12] (more precisely, [LakTho12, §1.2] defines fac-
torization algebras through their universal property, and [LakTho12, §1.3]
defines splitting algebras as a particular case of factorization algebras). Ap-
plying this property to the S-algebra A [X1, . . . , Xn], we see that the claim
that “the S-algebra A [X1, . . . , Xn] satisfies the universal properties of the
splitting algebra of the generic polynomial P = (T − X1) · · · (T − Xn) =
Tn − c1Tn−1 + · · · + (−1)n cn over S with X1, . . . , Xn as universal roots”
boils down to the following statement:

Statement 1: Let B be any S-algebra. Let p = ϕ1ϕ2 · · · ϕn be
any factorization of p over B [T] into monic linear polynomials
ϕ1, ϕ2, . . . , ϕn ∈ B [T]. Then, there is a unique S-algebra homo-
morphism γ : A [X1, . . . , Xn] → B such that the induced map3

γ [T] : (A [X1, . . . , Xn]) [T] → B [T] maps T − Xi to ϕi for all
i ∈ {1, 2, . . . , n}.

Thus, it suffices to prove Statement 1.

We shall prove it by showing a slightly nicer version of it first:

Statement 2: Let B be any S-algebra. Let u1, u2, . . . , un ∈ B be any
elements such that

P = (T − u1) (T − u2) · · · (T − un) in B [T] . (8)
3Here and in the following, we are using the following notation: If P and Q are two rings, and

if α : P → Q is any ring homomorphism, then α [T] shall denote the ring homomorphism
from P [T] to Q [T] that is defined by

(α [T])

(
m

∑
i=0

piTi

)
=

m

∑
i=0

α (pi) Ti for all m ∈N and p0, p1, . . . , pm ∈ P.

(Thus, roughly speaking, α [T] is the map that transforms a polynomial p ∈ P [T] by applying
α to each coefficient of this polynomial.) This map α [T] is said to be induced by α.

If both rings P and Q are W-algebras for some commutative ring W, and if α : P → Q is a
W-algebra homomorphism, then the induced map α [T] is a W [T]-algebra homomorphism.

12
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Then, there is a unique S-algebra homomorphism γ : A [X1, . . . , Xn]→
B such that

(γ (Xi) = ui for all i ∈ {1, 2, . . . , n}) . (9)

[Proof of Statement 2: First of all, let us recall the universal property of the
polynomial ring A [X1, . . . , Xn]. This property shows that there is a unique
A-algebra homomorphism γ : A [X1, . . . , Xn] → B satisfying (9). Denote
this γ by η. Thus, η : A [X1, . . . , Xn] → B is an A-algebra homomorphism
and satisfies

(η (Xi) = ui for all i ∈ {1, 2, . . . , n}) . (10)

Next, we shall show that η is actually an S-algebra homomorphism. Let us
consider the A [T]-algebra homomorphism

η [T] : (A [X1, . . . , Xn]) [T]→ B [T]

induced by η. (This homomorphism η [T] simply applies η to each coeffi-
cient of the polynomial it acts upon.)

For each i ∈ {1, 2, . . . , n}, we have

(η [T]) (T − Xi) = T − η (Xi)︸ ︷︷ ︸
=ui

(by (10))

(by the definition of η [T])

= T − ui.

Multiplying these equalities for all i ∈ {1, 2, . . . , n}, we obtain

(η [T]) (T − X1) · (η [T]) (T − X2) · · · · · (η [T]) (T − Xn)

= (T − u1) (T − u2) · · · (T − un) . (11)

On the other hand, B is an S-algebra. Thus, the map

ι : S→ B, s 7→ s · 1B

is an S-algebra homomorphism, and therefore an A-algebra homomor-
phism. It thus induces an A [T]-algebra homomorphism ι [T] : S [T] →
B [T]. Note that the “P” on the left hand side of the equality (8) actually
stands not for the polynomial P ∈ S [T] itself, but rather for its image
(ι [T]) (P) under this homomorphism; thus, (8) rewrites as

(ι [T]) (P) = (T − u1) (T − u2) · · · (T − un) .

13
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Comparing this with (11), we find

(η [T]) (T − X1) · (η [T]) (T − X2) · · · · · (η [T]) (T − Xn)

= (ι [T]) (P) . (12)

From P = Tn − c1Tn−1 + · · ·+ (−1)n cn, we obtain

(η [T]) (P) = Tn − η (c1) Tn−1 + · · ·+ (−1)n η (cn)

(by the definition of η [T]). Hence,

Tn − η (c1) Tn−1 + · · ·+ (−1)n η (cn)

= (η [T]) (P) = (η [T]) ((T − X1) (T − X2) · · · (T − Xn))

(since P = (T − X1) (T − X2) · · · (T − Xn))

= (η [T]) (T − X1) · (η [T]) (T − X2) · · · · · (η [T]) (T − Xn)

(since η [T] is a ring homomorphism)

= (ι [T]) (P) (by (12))

= (ι [T])
(

Tn − c1Tn−1 + · · ·+ (−1)n cn

)
(

since P = Tn − c1Tn−1 + · · ·+ (−1)n cn

)
= Tn − ι (c1) Tn−1 + · · ·+ (−1)n ι (cn) (by the definition of ι [T]) .

This is an equality between two polynomials in B [T]. Comparing the coef-
ficients on both sides of this equality, we find that

(−1)i η (ci) = (−1)i ι (ci) for each i ∈ {1, 2, . . . , n} .

In other words,

η (ci) = ι (ci) for each i ∈ {1, 2, . . . , n} . (13)

Now, ι is an S-algebra homomorphism and thus an A-algebra homomor-
phism (since A is a subring of S). Hence, η and ι are two A-algebra ho-
momorphisms. These two homomorphisms η and ι are equal on the n
elements c1, c2, . . . , cn (by (13)); thus, they are equal on a generating set of
the A-algebra S (since the n elements c1, c2, . . . , cn form a generating set of
the A-algebra S 4). Therefore, these two homomorphisms must be identi-
cal5. In other words, η = ι. Hence, η is an S-algebra homomorphism (since
ι is an S-algebra homomorphism). Therefore, η is an an S-algebra homo-
morphism γ : A [X1, . . . , Xn] → B satisfying (9) (since η (Xi) = ui for all

4by the Fundamental Theorem on Symmetric Polynomials
5Here we are using the following fact: If two A-algebra homomorphisms have the same domain

and the same codomain, and are equal on a generating set of their domain, then they must
be identical.

14
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i ∈ {1, 2, . . . , n}). Thus, there exists at least one S-algebra homomorphism
γ : A [X1, . . . , Xn]→ B satisfying (9) (namely, γ = η).

On the other hand, it is easy to see that there exists at most one S-algebra
homomorphism γ : A [X1, . . . , Xn]→ B satisfying (9)6.

Combining the previous two sentences, we conclude that there is exactly
one S-algebra homomorphism γ : A [X1, . . . , Xn] → B satisfying (9). This
proves Statement 2.]

[Proof of Statement 1: For each i ∈ {1, 2, . . . , n}, we can write the polynomial
ϕi ∈ B [T] in the form ϕi = T − ui for some ui ∈ B (because ϕi is a monic
linear polynomial over B, and since every monic linear polynomial over B
can be written in this form). Consider this ui. Thus, u1, u2, . . . , un are n
elements of B. Now, in B [T], we have

p = ϕ1ϕ2 · · · ϕn = (T − u1) (T − u2) · · · (T − un)

(since ϕi = T− ui for each i ∈ {1, 2, . . . , n}). Hence, Statement 2 yields that
there is a unique S-algebra homomorphism γ : A [X1, . . . , Xn] → B such
that

(γ (Xi) = ui for all i ∈ {1, 2, . . . , n}) .

Now, for any S-algebra homomorphism γ : A [X1, . . . , Xn] → B, we have
the following chain of equivalences:

(the induced map γ [T] : (A [X1, . . . , Xn]) [T]→ B [T]
maps T − Xi to ϕi for all i ∈ {1, 2, . . . , n})

⇐⇒

 (γ [T]) (T − Xi)︸ ︷︷ ︸
=T−γ(Xi)

(by the definition of γ[T])

= ϕi︸︷︷︸
=T−ui

for all i ∈ {1, 2, . . . , n}


⇐⇒

T − γ (Xi) = T − ui︸ ︷︷ ︸
⇐⇒ (γ(Xi)=ui)

for all i ∈ {1, 2, . . . , n}


⇐⇒ (γ (Xi) = ui for all i ∈ {1, 2, . . . , n}) . (14)

Now, recall that there is a unique S-algebra homomorphism γ : A [X1, . . . , Xn]→
B such that

(γ (Xi) = ui for all i ∈ {1, 2, . . . , n}) .
6Proof. The universal property of the polynomial ring A [X1, . . . , Xn] shows that there ex-

ists exactly one A-algebra homomorphism γ : A [X1, . . . , Xn] → B satisfying (9). Hence,
a fortiori, there exists at most one such A-algebra homomorphism. Thus, there exists at
most one S-algebra homomorphism γ : A [X1, . . . , Xn] → B satisfying (9) (because any S-
algebra homomorphism γ : A [X1, . . . , Xn] → B is automatically an A-algebra homomor-
phism γ : A [X1, . . . , Xn]→ B). Qed.
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In view of the equivalence (14), we can restate this as follows: There is
a unique S-algebra homomorphism γ : A [X1, . . . , Xn] → B such that the
induced map γ [T] : (A [X1, . . . , Xn]) [T] → B [T] maps T − Xi to ϕi for all
i ∈ {1, 2, . . . , n}. This proves Statement 1.]

• page 843, Proposition 7.1: After “is an isomorphism”, add “sending Xn−1∧
· · · ∧ X0 to 1” (since you end up using this later, in §7.2).

• page 843, proof of Proposition 7.1: After “So the S-module
∧n

A A [X] is
generated by Xh1 ∧ · · · ∧Xhn for 0 ≤ hi ≤ n− i”, add “(since this S-module
is a quotient of

⊗n
A A [X] = A [X1, . . . , Xn])”.

• page 843, §7.2: Replace “ f1 (X1) ∧ · · · ∧ fn (Xn)” by “ f1 (X) ∧ · · · ∧ fn (X)”.

11. Appendix: Some alternative proofs

11.1. An alternative proof of Proposition 2.1
Alternative proof of Proposition 2.1. Let N = {0, 1, 2, . . .}, and let

Kh = {(j1, j2, . . . , jn) ∈Nn | (ji ≥ hi for all i ∈ {1, 2, . . . , n})
and j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h} .

If (j1, j2, . . . , jn) ∈ Kh, then we say that (j1, j2, . . . , jn) is interlacing if each k ∈ {2, 3, . . . , n}
satisfies hk−1 > jk. Thus

{(j1, j2, . . . , jn) ∈ Kh | (j1, j2, . . . , jn) is interlacing}
= {(j1, j2, . . . , jn) ∈ Kh | hk−1 > jk for all k ∈ {2, 3, . . . , n}}
= {(j1, j2, . . . , jn) ∈Nn | (hk−1 > jk for all k ∈ {2, 3, . . . , n})

and (ji ≥ hi for all i ∈ {1, 2, . . . , n})
and j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h} (by the definition of Kh)

= {(j1, j2, . . . , jn) ∈Nn | j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h

and (hk−1 > jk for all k ∈ {2, 3, . . . , n}) and (ji ≥ hi for all i ∈ {1, 2, . . . , n})︸ ︷︷ ︸
⇐⇒ (j1≥h1>j2≥h2>···>jn≥hn)


= {(j1, j2, . . . , jn) ∈Nn | j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h

and j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn}
= Jh

(by the definition of Jh). Hence,

∑
(j1,j2,...,jn)∈Kh
is interlacing

= ∑
(j1,j2,...,jn)∈Jh

(15)

(an equality of summation signs).
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Also, the map

Ih → Kh,
(i1, i2, . . . , in) 7→ (h1 + i1, h2 + i2, . . . , hn + in)

is well-defined and a bijection (this follows easily from the definitions of Ih and Kh).
Hence, we can substitute (j1, j2, . . . , jn) for (h1 + i1, h2 + i2, . . . , hn + in) in the sum

∑
(i1,i2,...,in)∈Ih

Xh1+i1 ∧ Xh2+i2 ∧ · · · ∧ Xhn+in . We thus obtain

∑
(i1,i2,...,in)∈Ih

Xh1+i1 ∧ Xh2+i2 ∧ · · · ∧ Xhn+in

= ∑
(j1,j2,...,jn)∈Kh

X j1 ∧ X j2 ∧ · · · ∧ X jn . (16)

If (j1, j2, . . . , jn) ∈ Kh, then we say that (j1, j2, . . . , jn) is non-interlacing if (j1, j2, . . . , jn)
is not interlacing.

Thus, if (j1, j2, . . . , jn) is non-interlacing, then there exists some k ∈ {2, 3, . . . , n} that
satisfies hk−1 ≤ jk (because otherwise, (j1, j2, . . . , jn) would be interlacing). The largest
such k will be called the violation of (j1, j2, . . . , jn).

If an n-tuple (j1, j2, . . . , jn) ∈ Kh is non-interlacing and has violation k, then:

• we say that (j1, j2, . . . , jn) is degenerate if jk = jk−1;

• we say that (j1, j2, . . . , jn) is non-degenerate if jk 6= jk−1.

Clearly, any non-interlacing n-tuple (j1, j2, . . . , jn) ∈ Kh is either degenerate or non-
degenerate (but not both).

If (j1, j2, . . . , jn) ∈ Kh is non-interlacing and degenerate, then

X j1 ∧ X j2 ∧ · · · ∧ X jn = 0

(because if we let k denote the violation of (j1, j2, . . . , jn), then the degenerateness of
(j1, j2, . . . , jn) yields jk = jk−1, and therefore there are two equal elements among
X j1 , X j2 , . . . , X jn ). Thus,

∑
(j1,j2,...,jn)∈Kh

is non-interlacing
and degenerate

X j1 ∧ X j2 ∧ · · · ∧ X jn︸ ︷︷ ︸
=0

= 0. (17)

If (j1, j2, . . . , jn) ∈ Kh is non-interlacing and non-degenerate, and if k is the vio-
lation of (j1, j2, . . . , jn), then we have jk ≥ hk−1 (since the definition of “violation”
yields hk−1 ≤ jk) and jk−1 ≥ hk (since jk−1 ≥ hk−1 ≥ hk). Hence, in this case, the n-
tuple (j1, j2, . . . , jk−2, jk, jk−1, jk+1, jk+2, . . . , jn) (obtained from (j1, j2, . . . , jn) by swapping
the (k− 1)-st and k-th entries) still belongs to Kh. Moreover, this n-tuple
(j1, j2, . . . , jk−2, jk, jk−1, jk+1, jk+2, . . . , jn) is non-interlacing (since k ∈ {2, 3, . . . , n} satisfies
hk−1 ≤ jk−1) and has violation k (because this k is still the largest such k; indeed, no i > k
satisfies hi−1 ≤ ji), and thus is non-degenerate (since jk 6= jk−1 yields jk−1 6= jk).
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Thus, we can define a map

Φ : {non-degenerate non-interlacing (j1, j2, . . . , jn) ∈ Kh}
→ {non-degenerate non-interlacing (j1, j2, . . . , jn) ∈ Kh}

as follows: If (j1, j2, . . . , jn) ∈ Kh is non-interlacing and non-degenerate, and if k is the
violation of (j1, j2, . . . , jn), then we set

Φ (j1, j2, . . . , jn) = (j1, j2, . . . , jk−2, jk, jk−1, jk+1, jk+2, . . . , jn)

(that is, Φ swaps the (k− 1)-st and k-th entries of (j1, j2, . . . , jn), while leaving all other
entries unchanged). The previous paragraph shows that this map Φ is well-defined (i.e.,
if (j1, j2, . . . , jn) ∈ Kh is non-interlacing and non-degenerate, then so is Φ (j1, j2, . . . , jn))
and preserves the violation (i.e., if (j1, j2, . . . , jn) ∈ Kh is non-interlacing and non-
degenerate, then the violation of (j1, j2, . . . , jn) is also the violation of Φ (j1, j2, . . . , jn)).
Thus Φ is an involution (that is, Φ ◦Φ = id), because applying Φ to Φ (j1, j2, . . . , jn) will
swap the same two entries that were swapped in the definition of Φ (j1, j2, . . . , jn) and
therefore recover the original n-tuple (j1, j2, . . . , jn). Moreover, if (j1, j2, . . . , jn) ∈ Kh is
non-interlacing and non-degenerate, then

Φ (j1, j2, . . . , jn) 6= (j1, j2, . . . , jn) .

7 In other words, the involution Φ has no fixed points. Finally, if (j1, j2, . . . , jn) ∈ Kh is
non-interlacing and non-degenerate, and if (j′1, j′2, . . . , j′n) = Φ (j1, j2, . . . , jn), then

X j′1 ∧ X j′2 ∧ · · · ∧ X j′n = −X j1 ∧ X j2 ∧ · · · ∧ X jn

(because the n-tuple
(

X j′1 , X j′2 , . . . , X j′n
)

is obtained from the n-tuple
(
X j1 , X j2 , . . . , X jn

)
by

swapping the (k− 1)-st and k-th entries). Thus, the fixed-point-free involution Φ pairs
up the addends of the sum

∑
(j1,j2,...,jn)∈Kh

is non-interlacing
and non-degenerate

X j1 ∧ X j2 ∧ · · · ∧ X jn

into pairs of mutually cancelling addends. Consequently, this sum is 0. In other words,
we have

∑
(j1,j2,...,jn)∈Kh

is non-interlacing
and non-degenerate

X j1 ∧ X j2 ∧ · · · ∧ X jn = 0. (18)

Now, every non-interlacing (j1, j2, . . . , jn) ∈ Kh is either degenerate or non-degenerate

7Proof. Let (j1, j2, . . . , jn) ∈ Kh be non-interlacing and non-degenerate. Let k be the violation
of (j1, j2, . . . , jn). Thus, jk 6= jk−1 (since (j1, j2, . . . , jn) is non-degenerate). Thus, the (k− 1)-st
entry of Φ (j1, j2, . . . , jn) is distinct from the (k− 1)-st entry of (j1, j2, . . . , jn) (since the former
entry is jk, while the latter entry is jk−1). Thus, Φ (j1, j2, . . . , jn) 6= (j1, j2, . . . , jn).
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(but not both). Hence,

∑
(j1,j2,...,jn)∈Kh

is non-interlacing

X j1 ∧ X j2 ∧ · · · ∧ X jn

= ∑
(j1,j2,...,jn)∈Kh

is non-interlacing
and degenerate

X j1 ∧ X j2 ∧ · · · ∧ X jn

︸ ︷︷ ︸
=0

(by (17))

+ ∑
(j1,j2,...,jn)∈Kh

is non-interlacing
and non-degenerate

X j1 ∧ X j2 ∧ · · · ∧ X jn

︸ ︷︷ ︸
=0

(by (18))

= 0. (19)

But each (j1, j2, . . . , jn) ∈ Kh is either interlacing or non-interlacing (but not both).
Hence,

∑
(j1,j2,...,jn)∈Kh

X j1 ∧ X j2 ∧ · · · ∧ X jn

= ∑
(j1,j2,...,jn)∈Kh
is interlacing

X j1 ∧ X j2 ∧ · · · ∧ X jn + ∑
(j1,j2,...,jn)∈Kh

is non-interlacing

X j1 ∧ X j2 ∧ · · · ∧ X jn

︸ ︷︷ ︸
=0

(by (19))

= ∑
(j1,j2,...,jn)∈Kh
is interlacing

X j1 ∧ X j2 ∧ · · · ∧ X jn = ∑
(j1,j2,...,jn)∈Jh

X j1 ∧ X j2 ∧ · · · ∧ X jn

(by (15)). Hence, the equality (2.1) becomes

sh

(
Xh1 ∧ Xh2 ∧ · · · ∧ Xhn

)
= ∑

(i1,i2,...,in)∈Ih

Xh1+i1 ∧ Xh2+i2 ∧ · · · ∧ Xhn+in

= ∑
(j1,j2,...,jn)∈Kh

X j1 ∧ X j2 ∧ · · · ∧ X jn (by (16))

= ∑
(j1,j2,...,jn)∈Jh

X j1 ∧ X j2 ∧ · · · ∧ X jn .

This proves Proposition 2.1.

11.2. An alternative proof of Corollary 2.2

The following proof of Corollary 2.2 is not substantially different from the one
in your paper, but it is a lot more explicit and requires less combinatorial skill to
understand.

I will break the proof up into several lemmas. First, some definitions are needed:

Definition 11.1. Let j = (j1, j2, . . . , jm) ∈ Nm be an m-tuple of nonnegative integers.
We say that j is nonincreasing if j1 ≥ j2 ≥ · · · ≥ jm.
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Definition 11.2. Fix n ∈N. We let NI denote the set of all nonincreasing n-tuples of
nonnegative integers.

Thus, NI ⊆ Nn (since each element of NI is an n-tuple of nonnegative integers,
thus belongs to Nn).

Definition 11.3. Let j = (j1, j2, . . . , jm) ∈ Nm be an m-tuple of nonnegative integers.
We define |j| to be the nonnegative integer j1 + j2 + · · ·+ jm.

Definition 11.4. Let j = (j1, j2, . . . , jn) ∈ Nn be an n-tuple of nonnegative integers.
We define Xj to be the n-vector X j1 ∧ X j2 ∧ · · · ∧ X jn ∈ ∧n

A A [X].

Definition 11.5. Let j = (j1, j2, . . . , jn) ∈ Nn and h = (h1, h2, . . . , hn) ∈ Nn be two
n-tuples of nonnegative integers. We write j� h if and only if we have j1 ≥ h1 > j2 ≥
h2 > · · · > jn ≥ hn (that is, if and only if we have ji ≥ hi for each i ∈ {1, 2, . . . , n} and
hi > ji+1 for each i ∈ {1, 2, . . . , n + 1}).

We can now rewrite Proposition 2.1 as follows:

Lemma 11.6. Let h ∈Nn be nonincreasing. Let h ∈ Z. Then,

shXh = ∑
j∈NI ;
j�h;

|j|=|h|+h

Xj.

(Here, we are following the convention that sh = 0 when h < 0.)

Proof of Lemma 11.6. Write the n-tuple h ∈ Nn in the form h = (h1, h2, . . . , hn). Hence,
|h| = h1 + h2 + · · ·+ hn (by the definition of |h|) and Xh = Xh1 ∧ Xh2 ∧ · · · ∧ Xhn (by the
definition of Xh). Also, (h1, h2, . . . , hn) = h is nonincreasing; in other words, h1 ≥ h2 ≥
· · · ≥ hn.

It is easy to see that Lemma 11.6 holds when h < 0 8. Hence, for the rest of this
proof, we WLOG assume that h ≥ 0.

8Proof. Assume that h < 0. Thus, sh = 0, so that shXh = 0.
On the other hand, we claim that there exists no j ∈ NI satisfying j� h and |j| = |h|+ h.
Indeed, let j ∈ NI be such that j� h and |j| = |h|+ h. Then, j is a nonincreasing n-tuple

of nonnegative integers (since j ∈ NI). Write this n-tuple j in the form j = (j1, j2, . . . , jn).
Recall that j � h; in other words, j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn (since this is

how “j � h” is defined). Hence, ji ≥ hi for each i ∈ {1, 2, . . . , n}. Adding up these n
inequalities, we obtain j1 + j2 + · · · + jn ≥ h1 + h2 + · · · + hn. The definition of |j| yields
|j| = j1 + j2 + · · ·+ jn ≥ h1 + h2 + · · ·+ hn = |h|. This contradicts |j| = |h|+ h︸︷︷︸

<0

< |h|.

Now, forget that we fixed j. We thus have found a contradiction for each j ∈ NI satisfying
j� h and |j| = |h|+ h. Hence, no such j exists. Thus, the sum ∑

j∈NI ;
j�h;

|j|=|h|+h

Xj is empty, and thus

equals 0. Comparing this with shXh = 0, we find shXh = ∑
j∈NI ;
j�h;

|j|=|h|+h

Xj. Thus, Lemma 11.6 is

proven (under the assumption that h < 0).
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Therefore, Proposition 2.1 yields

sh

(
Xh1 ∧ Xh2 ∧ · · · ∧ Xhn

)
= ∑

(j1,j2,...,jn)∈Jh

X j1 ∧ X j2 ∧ · · · ∧ X jn , (20)

where Jh is the set of all n-tuples (j1, j2, . . . , jn) ∈ Nn satisfying j1 + j2 + · · · + jn =
h1 + h2 + · · ·+ hn + h and j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn. Consider this set Jh.

For any n-tuple j ∈Nn, we have the logical equivalence

(j ∈ Jh) ⇐⇒ (j ∈ NI and j� h and |j| = |h|+ h) (21)

9.

9Proof of (21): Let j ∈ Nn be an n-tuple. Write j in the form j = (j1, j2, . . . , jn). Then, we have
|j| = j1 + j2 + · · ·+ jn (by the definition of |j|). Moreover, j = (j1, j2, . . . , jn) ∈ Nn; hence, we
have the chain of equivalences

(j ∈ NI) ⇐⇒ (j is nonincreasing) (by the definition of NI)
⇐⇒ (j1 ≥ j2 ≥ · · · ≥ jn) (by the definition of “nonincreasing”)

and the equivalence

(j� h) ⇐⇒ (j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn)

(by the definition of “j� h”), since j = (j1, j2, . . . , jn) and h = (h1, h2, . . . , hn).
On the other hand, we know that (j1, j2, . . . , jn) ∈Nn. Hence, we have the equivalence

((j1, j2, . . . , jn) ∈ Jh)

⇐⇒ (j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn and j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h) (22)

(by the definition of Jh).
Now, we have the following chain of equivalences:

(j ∈ NI and j� h and |j| = |h|+ h)

⇐⇒ (j ∈ NI)︸ ︷︷ ︸
⇐⇒ (j1≥j2≥···≥jn)

∧ (j� h)︸ ︷︷ ︸
⇐⇒ (j1≥h1>j2≥h2>···>jn≥hn)

∧

 |j|︸︷︷︸
=j1+j2+···+jn

= |h|︸︷︷︸
=h1+h2+···+hn

+h


⇐⇒ (j1 ≥ j2 ≥ · · · ≥ jn) ∧ (j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn)︸ ︷︷ ︸

⇐⇒ (j1≥h1>j2≥h2>···>jn≥hn)
(since the chain of inequalities (j1≥h1>j2≥h2>···>jn≥hn)

clearly implies (j1≥j2≥···≥jn))

∧ (j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h)
⇐⇒ (j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn) ∧ (j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h)
⇐⇒ (j1 ≥ h1 > j2 ≥ h2 > · · · > jn ≥ hn and j1 + j2 + · · ·+ jn = h1 + h2 + · · ·+ hn + h)
⇐⇒ ((j1, j2, . . . , jn) ∈ Jh) (by (22))
⇐⇒ (j ∈ Jh) (since (j1, j2, . . . , jn) = j) .

This proves (21).
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Now, recall that Jh ⊆Nn. Hence, we have the following equality of summation signs:

∑
j∈Jh

= ∑
j∈Nn;
j∈Jh

= ∑
j∈Nn;
j∈NI ;
j�h;

|j|=|h|+h

(
because for any j ∈Nn, we have the

logical equivalence (21)

)

= ∑
j∈NI ;
j�h;

|j|=|h|+h

(since NI ⊆Nn) .

Hence,
∑

j∈Jh

Xj = ∑
j∈NI ;
j�h;

|j|=|h|+h

Xj,

so that

∑
j∈NI ;
j�h;

|j|=|h|+h

Xj = ∑
j∈Jh

Xj = ∑
(j1,j2,...,jn)∈Jh

X(j1,j2,...,jn)︸ ︷︷ ︸
=X j1∧X j2∧···∧X jn

(by the definition of X(j1,j2,...,jn))

(here, we have renamed the summation index j as (j1, j2, . . . , jn))

= ∑
(j1,j2,...,jn)∈Jh

X j1 ∧ X j2 ∧ · · · ∧ X jn .

Comparing this with (20), we obtain

sh

(
Xh1 ∧ Xh2 ∧ · · · ∧ Xhn

)
= ∑

j∈NI ;
j�h;

|j|=|h|+h

Xj.

In view of Xh = Xh1 ∧ Xh2 ∧ · · · ∧ Xhn , this rewrites as

shXh = ∑
j∈NI ;
j�h;

|j|=|h|+h

Xj.

This proves Lemma 11.6.

Next, we introduce another notation:

Definition 11.7. Let h = (h1, h2, . . . , hm) ∈ Nm be an m-tuple of nonnegative
integers. Let i ∈ {1, 2, . . . , m}. Then, h∼i is defined to be the (m− 1)-tuple
(h1, h2, . . . , hi−1, hi+1, . . . , hm) ∈ Nm−1 of nonnegative integers. (This is obtained from
h by removing the i-th entry.)

Lemma 11.8. Let j ∈ Nn and h ∈ Nn+1 be two nonincreasing tuples such that |j| >
|h| − n. Then,

∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i = 0.
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Proof of Lemma 11.8. Write the n-tuple j ∈ Nn in the form j = (j1, j2, . . . , jn). We extend
the n-tuple (j1, j2, . . . , jn) ∈ Nn ⊆ Zn to an (n + 1)-tuple (j1, j2, . . . , jn+1) ∈ Zn+1 by
setting jn+1 = −1.

Write the (n + 1)-tuple h ∈ Nn+1 in the form h = (h1, h2, . . . , hn+1). Thus, h1 ≥ h2 ≥
· · · ≥ hn+1 (since h is nonincreasing).

Define the two sets

J =
{

i ∈ {1, 2, . . . , n + 1} | j� h∼i and ji ≥ hi

}
and (23)

H =
{

i ∈ {1, 2, . . . , n + 1} | j� h∼i and ji < hi

}
. (24)

Each i ∈ {1, 2, . . . , n + 1} satisfies either ji ≥ hi or ji < hi (but not both at the same
time). Hence, we can split the sum ∑

i∈{1,2,...,n+1};
j�h∼i

(−1)i as follows:

∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i = ∑
i∈{1,2,...,n+1};

j�h∼i ;
ji≥hi︸ ︷︷ ︸
=∑

i∈J
(by (23))

(−1)i + ∑
i∈{1,2,...,n+1};

j�h∼i ;
ji<hi︸ ︷︷ ︸
= ∑

i∈H
(by (24))

(−1)i

= ∑
i∈J

(−1)i + ∑
i∈H

(−1)i . (25)

Now, we claim that
u + 1 ∈ H for each u ∈ J. (26)

[Proof of (26): Let u ∈ J. We must prove that u + 1 ∈ H.
We have u ∈ J. In view of (23), this means that u is an element of {1, 2, . . . , n + 1} that

satisfies j� h∼u and ju ≥ hu.
Hence, ju ≥ hu ≥ 0 (since (h1, h2, . . . , hn+1) = h ∈ Nn+1). If we had u = n + 1,

then we would have ju = jn+1 = −1 < 0, which would contradict ju ≥ 0. Hence,
u 6= n + 1. Combining this with u ∈ {1, 2, . . . , n + 1}, we obtain u ∈ {1, 2, . . . , n}. Hence,
u + 1 ∈ {1, 2, . . . , n + 1}. Thus, the n-tuple h∼(u+1) is well-defined.

Recall that h = (h1, h2, . . . , hn+1). Hence, the definitions of h∼u and h∼(u+1) yield

h∼u = (h1, h2, . . . , hu−1, hu+1, . . . , hn+1) and

h∼(u+1) = (h1, h2, . . . , hu, hu+2, . . . , hn+1) .

We have j�h∼u. In view of j = (j1, j2, . . . , jn) and h∼u = (h1, h2, . . . , hu−1, hu+1, . . . , hn+1),
this rewrites as

j1 ≥ h1 > j2 ≥ h2 > · · · > ju−1 ≥ hu−1 > ju ≥ hu+1 > ju+1 ≥ hu+2 > · · · > jn ≥ hn+1

(by the definition of the notation “j� h∼u”). We can split this chain of inequalities into
three pieces as follows:

j1 ≥ h1 > j2 ≥ h2 > · · · > ju−1 ≥ hu−1 > ju; (27)
ju ≥ hu+1 > ju+1;

ju+1 ≥ hu+2 > ju+2 ≥ hu+3 > · · · > jn ≥ hn+1. (28)
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From h1 ≥ h2 ≥ · · · ≥ hn+1, we obtain hu ≥ hu+1, so that hu ≥ hu+1 > ju+1. Hence,

ju ≥ hu > ju+1. (29)

We can splice the three chains of inequalities (27), (29) and (28) together into one long
chain:

j1 ≥ h1 > j2 ≥ h2 > · · · > ju ≥ hu > ju+1 ≥ hu+2 > ju+2 ≥ hu+3 > · · · > jn ≥ hn+1.

This rewrites as j � h∼(u+1) (by the definition of the notation “j � h∼(u+1)”, since j =
(j1, j2, . . . , jn) and h∼(u+1) = (h1, h2, . . . , hu, hu+2, . . . , hn+1)).

Also, ju+1 < hu+1 (since hu+1 > ju+1). Now, we know that u + 1 is an element of
{1, 2, . . . , n + 1} and satisfies j� h∼(u+1) and ju+1 < hu+1. In view of (24), this rewrites
as u + 1 ∈ H. This proves (26).]

Next, we claim that
u− 1 ∈ J for each u ∈ H. (30)

[Proof of (30): Let u ∈ H. We must prove that u− 1 ∈ J.
We have u ∈ H. In view of (24), this means that u is an element of {1, 2, . . . , n + 1}

and satisfies j� h∼u and ju < hu.
It is not hard to see that u 6= 1 10. Combining this with u ∈ {1, 2, . . . , n + 1}, we

obtain u ∈ {2, 3, . . . , n + 1}, so that u− 1 ∈ {1, 2, . . . , n + 1}. Hence, the n-tuple h∼(u−1)

is well-defined.

10Proof. Assume the contrary. Thus, u = 1. Hence, h∼u = h∼1 = (h2, h3, . . . , hn+1) (by the
definition of h∼1, because h = (h1, h2, . . . , hn+1)). Also, ju < hu; this rewrites as j1 < h1 (since
u = 1). In other words, h1 > j1.

But recall that j � h∼u. In view of j = (j1, j2, . . . , jn) and h∼u = (h2, h3, . . . , hn+1), this
rewrites as

j1 ≥ h2 > j2 ≥ h3 > · · · > jn ≥ hn+1

(by the definition of the notation “j � h∼u”). Thus, in particular, we have hi > ji for each
i ∈ {2, 3, . . . , n}. This inequality also holds for i = 1 (since h1 > j1), and thus holds for all
i ∈ {1, 2, . . . , n}. Hence, for each i ∈ {1, 2, . . . , n}, we have hi ≥ ji + 1 (because hi > ji, but
both hi and ji are integers). Hence,

n

∑
i=1

hi ≥
n

∑
i=1

(ji + 1) =
n

∑
i=1

ji︸︷︷︸
=j1+j2+···+jn

+
n

∑
i=1

1︸︷︷︸
=n

= (j1 + j2 + · · ·+ jn) + n.

But j = (j1, j2, . . . , jn) and thus |j| = j1 + j2 + · · ·+ jn (by the definition of |j|). Hence,

n

∑
i=1

hi ≥ (j1 + j2 + · · ·+ jn)︸ ︷︷ ︸
=|j|>|h|−n

+n > |h| − n + n = |h| = h1 + h2 + · · ·+ hn+1

(by the definition of |h| , since h = (h1, h2, . . . , hn+1))

= (h1 + h2 + · · ·+ hn)︸ ︷︷ ︸
=

n
∑

i=1
hi

+ hn+1︸︷︷︸
≥0

(since (h1,h2,...,hn+1)=h∈Nn+1)

≥
n

∑
i=1

hi.

This is absurd. This contradiction shows that our assumption was false. Qed.
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Recall that h = (h1, h2, . . . , hn+1). Hence, the definitions of h∼u and h∼(u−1) yield

h∼u = (h1, h2, . . . , hu−1, hu+1, . . . , hn+1) and

h∼(u−1) = (h1, h2, . . . , hu−2, hu, . . . , hn+1) .

We have j�h∼u. In view of j = (j1, j2, . . . , jn) and h∼u = (h1, h2, . . . , hu−1, hu+1, . . . , hn+1),
this rewrites as

j1 ≥ h1 > j2 ≥ h2 > · · · > ju−1 ≥ hu−1 > ju ≥ hu+1 > ju+1 ≥ hu+2 > · · · > jn ≥ hn+1

(by the definition of the notation “j� h∼u”). We can split this chain of inequalities into
three pieces as follows:11

j1 ≥ h1 > j2 ≥ h2 > · · · > ju−2 ≥ hu−2 > ju−1; (31)
ju−1 ≥ hu−1 > ju;

ju ≥ hu+1 > ju+1 ≥ hu+2 > · · · > jn ≥ hn+1. (32)

From h1 ≥ h2 ≥ · · · ≥ hn+1, we obtain hu−1 ≥ hu, so that ju−1 ≥ hu−1 ≥ hu. Hence,

ju−1 ≥ hu > ju (since ju < hu) . (33)

We can splice the three chains of inequalities (31), (33) and (32) together into one long
chain:

j1 ≥ h1 > j2 ≥ h2 > · · · > ju−1 ≥ hu > ju ≥ hu+1 > ju+1 ≥ hu+2 > · · · > jn ≥ hn+1.

This rewrites as j � h∼(u−1) (by the definition of the notation “j � h∼(u−1)”, since j =
(j1, j2, . . . , jn) and h∼(u−1) = (h1, h2, . . . , hu−2, hu, . . . , hn+1)).

Also, ju−1 ≥ hu−1 (as we have seen). Now, we know that u − 1 is an element of
{1, 2, . . . , n + 1} and satisfies j� h∼(u−1) and ju−1 ≥ hu−1. In view of (23), this rewrites
as u− 1 ∈ J. This proves (30).]

Now, define a map
α : J → H, u 7→ u + 1.

(This map is well-defined, due to (26).)
Also, define a map

β : H → J, u 7→ u− 1.

(This map is well-defined, due to (30).)
Clearly, the maps α and β are mutually inverse. Thus, the map α is invertible, i.e., is

a bijection. Now, (25) becomes

∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i = ∑
i∈J

(−1)i + ∑
i∈H

(−1)i

︸ ︷︷ ︸
=∑

i∈J
(−1)α(i)

(here, we have
substituted α(i) for i
in the sum, since the

map α:J→H is a bijection)

= ∑
i∈J

(−1)i + ∑
i∈J

(−1)α(i)︸ ︷︷ ︸
=(−1)i+1

(since α(i)=i+1
(by the definition of α))

= ∑
i∈J

(−1)i + ∑
i∈J

(−1)i+1︸ ︷︷ ︸
=−(−1)i

= ∑
i∈J

(−1)i −∑
i∈J

(−1)i = 0.

This proves Lemma 11.8.
11We are using u ∈ {2, 3, . . . , n + 1} here.
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Lemma 11.9. Let h = (h1, h2, . . . , hn+1) ∈ Nn+1 be a nonincreasing tuple. Let q ∈ Z

be such that q < n. Then,
n+1

∑
i=1

(−1)i shi−qXh∼i
= 0.

Proof of Lemma 11.9. The (n + 1)-tuple (h1, h2, . . . , hn+1) is nonincreasing. In other words,
h1 ≥ h2 ≥ · · · ≥ hn+1.

Let i ∈ {1, 2, . . . , n + 1}. Then, from h1 ≥ h2 ≥ · · · ≥ hn+1, we obtain h1 ≥ h2 ≥ · · · ≥
hi−1 ≥ hi+1 ≥ · · · ≥ hn+1.

In other words, the n-tuple h∼i is nonincreasing (since
h∼i = (h1, h2, . . . , hi−1, hi+1, . . . , hn+1)). Moreover, it is easy to see that

∣∣h∼i
∣∣+ hi = |h|.

Thus, Lemma 11.6 (applied to h∼i and hi − q instead of h and h) yields

shi−qXh∼i
= ∑

j∈NI ;
j�h∼i ;

|j|=|h∼i|+hi−q

Xj = ∑
j∈NI ;
j�h∼i ;
|j|=|h|−q

Xj (34)

(since
∣∣h∼i

∣∣+ hi = |h|).
Now, forget that we fixed i. We thus have proven the equality (34) for each i ∈

{1, 2, . . . , n + 1}.
Recall that q < n; thus, |h| − q > |h| − n. Now,

n+1

∑
i=1︸︷︷︸

= ∑
i∈{1,2,...,n+1}

(−1)i shi−qXh∼i︸ ︷︷ ︸
= ∑

j∈NI ;
j�h∼i ;
|j|=|h|−q

Xj

(by (34))

= ∑
i∈{1,2,...,n+1}

(−1)i ∑
j∈NI ;
j�h∼i ;
|j|=|h|−q

Xj = ∑
i∈{1,2,...,n+1}

∑
j∈NI ;
j�h∼i ;
|j|=|h|−q︸ ︷︷ ︸

= ∑
j∈NI ;
|j|=|h|−q

∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i Xj

= ∑
j∈NI ;
|j|=|h|−q

∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i Xj = ∑
j∈NI ;
|j|=|h|−q

 ∑
i∈{1,2,...,n+1};

j�h∼i

(−1)i


︸ ︷︷ ︸

=0
(by Lemma 11.8

(since |j|=|h|−q>|h|−n))

Xj

= ∑
j∈NI ;
|j|=|h|−q

0Xj = 0.

This proves Lemma 11.9.
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Lemma 11.10. Let h = (h1, h2, . . . , hn+1) ∈ Nn+1 be any (n + 1)-tuple. Let q ∈ Z be
such that q < n. Then,

n+1

∑
i=1

(−1)i shi−qXh∼i
= 0.

Proof of Lemma 11.10. If we swap two adjacent entries of the (n + 1)-tuple h (say, the
r-th and the (r + 1)-st entry, where r is some element of {1, 2, . . . , n}), then the sum
n+1
∑

i=1
(−1)i shi−qXh∼i

flips its sign (indeed, all addends of this sum except for the r-th and

(r + 1)-st one flip their sign, whereas the r-th and the (r + 1)-th addends trade places

and also flip their signs). Therefore, the sum
n+1
∑

i=1
(−1)i shi−qXh∼i

is anti-symmetric in

the hi (since any permutation of the entries of the (n + 1)-tuple h can be achieved by
repeatedly swapping adjacent entries). Hence, in proving that this sum equals 0, we
can WLOG assume that h1 ≥ h2 ≥ · · · ≥ hn+1. Assume this. In other words, the
(n + 1)-tuple h is nonincreasing (since h = (h1, h2, . . . , hn+1)). Hence, Lemma 11.9 yields
n+1
∑

i=1
(−1)i shi−qXh∼i

= 0. This proves Lemma 11.10.

Alternative proof of Corollary 2.2. Let m ∈ {1, 2, . . . , n} and (h1, h2, . . . , hm) ∈ Nm. Let us
extend the m-tuple (h1, h2, . . . , hm) ∈Nm to an (n + 1)-tuple (h1, h2, . . . , hn+1) ∈ Zn+1 by
setting

(hi = n + 1− i for each i > m) . (35)

Thus,

(h1, h2, . . . , hn+1) = (h1, h2, . . . , hm, n−m, n−m− 1, . . . , 0) ∈Nn+1.

Denote this (n + 1)-tuple (h1, h2, . . . , hn+1) ∈ Nn+1 by h. Thus, h = (h1, h2, . . . , hn+1).
From (35), we also obtain

(hm+1, hm+2, . . . , hn+1) = (n−m, n−m− 1, . . . , 0) and thus
(hm+2, hm+3, . . . , hn+1) = (n−m− 1, n−m− 2, . . . , 0) .

We have m ≤ n ≤ n + 1. Furthermore, m − n ≤ 0 (since m ≤ n), so that 0 ∈
{m− n, m− n + 1, . . . , 0}.

Also, n−m < n (since m > 0). Hence, Lemma 11.10 (applied to q = n−m) yields

n+1

∑
i=1

(−1)i shi−(n−m)X
h∼i

= 0.

Hence,

0 =
n+1

∑
i=1

(−1)i shi−(n−m)X
h∼i

=
m

∑
i=1

(−1)i shi−(n−m)X
h∼i

+
n+1

∑
i=m+1

(−1)i shi−(n−m)X
h∼i

(here, we have split the sum at i = m + 1, since 0 ≤ m ≤ n + 1). Thus,

n+1

∑
i=m+1

(−1)i shi−(n−m)X
h∼i

= −
m

∑
i=1

(−1)i shi−(n−m)X
h∼i

. (36)
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But every i ∈ {m + 1, m + 2, . . . , n + 1} satisfies i > m and thus hi = n + 1− i (by (35))
and therefore

hi︸︷︷︸
=n+1−i

− (n−m) = (n + 1− i)− (n−m) = m + 1− i. (37)

Hence,

n+1

∑
i=m+1

(−1)i shi−(n−m)︸ ︷︷ ︸
=sm+1−i
(by (37))

Xh∼i

=
n+1

∑
i=m+1

(−1)i sm+1−iXh∼i
=

0

∑
i=m−n

(−1)m+1−i siXh∼(m+1−i)

(here, we have substituted m + 1− i for i in the sum)

= (−1)m+1−0︸ ︷︷ ︸
=(−1)m+1

s0︸︷︷︸
=1

Xh∼(m+1−0)
+

−1

∑
i=m−n

(−1)m+1−i si︸︷︷︸
=0

(since i≤−1<0)

Xh∼(m+1−i)

(
here, we have split off the addend for i = 0 from the sum,

since 0 ∈ {m− n, m− n + 1, . . . , 0}

)
= (−1)m+1 Xh∼(m+1−0)

+
−1

∑
i=m−n

(−1)m+1−i 0Xh∼(m+1−i)

︸ ︷︷ ︸
=0

= (−1)m+1 Xh∼(m+1−0)
.

Comparing this equality with (36), we find

(−1)m+1 Xh∼(m+1−0)
= −

m

∑
i=1

(−1)i shi−(n−m)X
h∼i

.

Multiplying both sides of this equality with (−1)m+1, we find

Xh∼(m+1−0)
= − (−1)m+1︸ ︷︷ ︸

=(−1)m

m

∑
i=1

(−1)i shi−(n−m)︸ ︷︷ ︸
=shi−n+m

Xh∼i
= (−1)m

m

∑
i=1

(−1)i shi−n+mXh∼i

=
m

∑
i=1

(−1)m+i shi−n+mXh∼i
. (38)

But
h∼(m+1−0) = h∼(m+1) = (h1, h2, . . . , hm, hm+2, hm+3, . . . , hn+1)

(since h = (h1, h2, . . . , hn+1)). Hence, the definition of Xh∼(m+1−0)
yields

Xh∼(m+1−0)
= Xh1 ∧ Xh2 ∧ · · · ∧ Xhm ∧ Xhm+2 ∧ Xhm+3 ∧ · · · ∧ Xhn+1︸ ︷︷ ︸

=Xn−m−1∧Xn−m−2∧···∧X0

(since (hm+2,hm+3,...,hn+1)=(n−m−1,n−m−2,...,0))

= Xh1 ∧ Xh2 ∧ · · · ∧ Xhm ∧ Xn−m−1 ∧ Xn−m−2 ∧ · · · ∧ X0.
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Comparing this with (38), we obtain

Xh1 ∧ Xh2 ∧ · · · ∧ Xhm ∧ Xn−m−1 ∧ Xn−m−2 ∧ · · · ∧ X0

=
m

∑
i=1

(−1)m+i shi−n+mXh∼i
. (39)

Also, every i ∈ {1, 2, . . . , m} satisfies

h∼i = (h1, h2, . . . , hi−1, hi+1, . . . , hn+1)

(since h = (h1, h2, . . . , hn+1)) and therefore

Xh∼i
= Xh1 ∧ Xh2 ∧ · · · ∧ Xhi−1 ∧ Xhi+1 ∧ · · · ∧ Xhn+1

= Xh1 ∧ Xh2 ∧ · · · ∧ Xhi−1 ∧ Xhi+1 ∧ · · · ∧ Xhm ∧ Xhm+1 ∧ Xhm+2 ∧ · · · ∧ Xhn+1︸ ︷︷ ︸
=Xn−m∧Xn−m−1∧···∧X0

(since (hm+1,hm+2,...,hn+1)=(n−m,n−m−1,...,0))

(since i ≤ m)

= Xh1 ∧ Xh2 ∧ · · · ∧ Xhi−1 ∧ Xhi+1 ∧ · · · ∧ Xhm ∧ Xn−m ∧ Xn−m−1 ∧ · · · ∧ X0.

Hence, (39) rewrites as

Xh1 ∧ Xh2 ∧ · · · ∧ Xhm ∧ Xn−m−1 ∧ Xn−m−2 ∧ · · · ∧ X0

=
m

∑
i=1

(−1)m+i shi−n+m

·
(

Xh1 ∧ Xh2 ∧ · · · ∧ Xhi−1 ∧ Xhi+1 ∧ · · · ∧ Xhm ∧ Xn−m ∧ Xn−m−1 ∧ · · · ∧ X0
)

.

This proves Corollary 2.2.

11.3. An alternative proof of Lemma 2.3
Alternative proof of Lemma 2.3. We must prove that each f ∈ S satisfying
f ·
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) = 0 satisfies f = 0. So let f ∈ S be such that

f ·
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) = 0. We must prove that f = 0.

Consider the alternator map alt :
∧n

A A [X] → A [X1, X2, . . . , Xn]. This map alt is
S-linear (by Proposition 1.3). Hence,

f · alt
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)
= alt

 f ·
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)

︸ ︷︷ ︸
=0


= alt 0 = 0. (40)

But the definition of alt yields12

alt
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)

= ∑
σ∈Sn

(−1)σ Xn−1
σ(1)X

n−2
σ(2) · · ·X

n−n
σ(n). (41)

12Here, we are using the notation (−1)σ for the sign of a permutation σ.
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Now, we claim that this element alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) of A [X1, X2, . . . , Xn] is reg-

ular (i.e., not a zero-divisor). Here are two ways to prove this:
[First proof of the fact that alt

(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) is regular: Equip the set Nn with

the lexicographic order; this is the total order in which

(h1, h2, . . . , hn) > (k1, k2, . . . , kn) if and only if
the first non-zero term in the sequence h1 − k1, h2 − k2, . . . , hn − kn is positive.

Now, (41) yields

alt
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)

= ∑
σ∈Sn

(−1)σ Xn−1
σ(1)X

n−2
σ(2) · · ·X

n−n
σ(n)

= Xn−1
1 Xn−2

2 · · ·Xn−n
n + (lower order terms) , (42)

where “(lower order terms)” means an A-linear combination of monomials Xv1
1 Xv2

2 · · ·X
vn
n

with (v1, v2, . . . , vn) < (n− 1, n− 2, . . . , n− n). (Of course, the “<” sign here refers to
the lexicographic order on Nn.)

On the other hand, let g ∈ A [X1, X2, . . . , Xn] be nonzero. Then, g has at least one
nonzero coefficient. Hence, we can find some nonzero c ∈ A and some (g1, g2, . . . , gn) ∈
Nn such that

g = cXg1
1 Xg2

2 · · ·X
gn
n + (lower order terms) , (43)

where “(lower order terms)” means an A-linear combination of monomials Xu1
1 Xu2

2 · · ·X
un
n

with (u1, u2, . . . , un) < (g1, g2, . . . , gn). Consider this c and this (g1, g2, . . . , gn).
But it is easy to see that the lexicographic order on Nn respects entrywise addition

of n-tuples in Nn (which, of course, corresponds to multiplication of monomials in
A [X1, X2, . . . , Xn]). To be more precise: If four n-tuples

(u1, u2, . . . , un) , (p1, p2, . . . , pn) , (v1, v2, . . . , vn) and (q1, q2, . . . , qn)

in Nn satisfy

(u1, u2, . . . , un) ≤ (p1, p2, . . . , pn) and (44)
(v1, v2, . . . , vn) ≤ (q1, q2, . . . , qn) , (45)

then we have

(u1, u2, . . . , un) + (v1, v2, . . . , vn) ≤ (p1, p2, . . . , pn) + (q1, q2, . . . , qn)

(where the addition of n-tuples is entrywise), and this inequality becomes an equality
only when both (44) and (45) become equalities.

Hence, if we multiply the equalities (43) and (42), then we find

g · alt
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)

= cXg1+(n−1)
1 Xg2+(n−2)

2 · · ·Xgn+(n−n)
n + (lower order terms) ,
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where “(lower order terms)” means an A-linear combination of monomials Xu1
1 Xu2

2 · · ·X
un
n

with (u1, u2, . . . , un) < (g1 + (n− 1) , g2 + (n− 2) , . . . , gn + (n− 2)). Thus, the coeffi-
cient of the monomial Xg1+(n−1)

1 Xg2+(n−2)
2 · · ·Xgn+(n−n)

n in the polynomial
g · alt

(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) is c, which is nonzero. Hence, the polynomial

g · alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) has at least one nonzero coefficient. Thus, this polyno-

mial g · alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) is nonzero.

Now, forget that we fixed g. We thus have proven that g · alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0)

is nonzero whenever g ∈ A [X1, X2, . . . , Xn] is nonzero. In other words, the element
alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) of A [X1, X2, . . . , Xn] is regular. Qed.]

[Second proof of the fact that alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) is regular: From (41), we obtain

alt
(

Xn−1 ∧ Xn−2 ∧ · · · ∧ X0
)

= ∑
σ∈Sn

(−1)σ Xn−1
σ(1)X

n−2
σ(2) · · ·X

n−n
σ(n)

= det
((

Xn−i
j

)
1≤i≤n, 1≤j≤n

)
(by the definition of a determinant)

= ∏
1≤i<j≤n

(
Xi − Xj

)
(46)

(by the well-known formula for the Vandermonde determinant). But the polynomial
∏

1≤i<j≤n

(
Xi − Xj

)
is a regular element of A [X1, X2, . . . , Xn] (this is well-known; see, e.g.,

[Grinbe19, Corollary 4.4]). In view of (46), this rewrites as follows: The polynomial
alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) is a regular element of A [X1, X2, . . . , Xn]. Qed.]

Either way, we have now shown that the element alt
(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) of

A [X1, X2, . . . , Xn] is regular. Hence, from (40), we obtain f = 0 (since f ∈ S ⊆
A [X1, X2, . . . , Xn]).

Now, forget that we fixed f . We thus have shown that each f ∈ S satisfying f ·(
Xn−1 ∧ Xn−2 ∧ · · · ∧ X0) = 0 satisfies f = 0. In other words, the annihilator of Xn−1 ∧

Xn−2 ∧ · · · ∧ X0 in S is zero. In other words, the annihilator of Xn−1 ∧ Xn−2 ∧ · · · ∧ X0

in A [X1, X2, . . . , Xn]
sym is zero (since S = A [X1, X2, . . . , Xn]

sym). This proves Lemma
2.3.
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