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0.1 Errata

e Page 2, before Definition 2.1: Your notion of a “path” in a graph does
not require the path to have no self-intersections (it may even traverse
the same edge twice). Since this is not the usual way how graph theorists
understand the word “path”, I'd explicitly define it if I were you. (As far
as I understand, your definition of a path is something like this: If v and
w are two vertices of a graph G, then a path starting at v and ending at
w means a sequence (e, eg, ..., €,,) of edges of G satisfying the following
two properties:

— Every i € {1,2,...,m — 1} satisfies head (e;) = tail (¢;41).
—If m > 1, then tail (e;) = v and head (e,,) = w.

Note that the path is allowed to be the empty sequence; this is why the
“m > 1" condition in the second property cannot be left out.

I believe that what graph theorists call a “path” is what you call a “self-
avoiding path”.)

e Page 3, Definition 2.3: You write: “path collections P = (P, ..., Py)”.
At this point it would be very good to point out that “collection” is being
used as a synonym for “set” here, and the notation “(P, ..., P)” is being
used as a synonym for the notation “{Py, P, ..., Py}”. (Otherwise, the
notation “(Py, ..., P)” looks like an ordered k-tuple, and since the word
“collection” can mean both a set and a family, the reader is misled into
thinking that path collections are ordered tuples.)

e Page 4, proof of Theorem 2.5: At the very beginning of this proof,
it would help to add some sentences like the following: “We write the set
A as A = {ay,aq,...,ax} with ay, as, ..., a; being pairwise distinct. We
write the set B as B = {by, by, ..., br} with by, by, ..., by being pairwise
distinct. We identify the set of vertices of G with {1,2,...,|V|} in such
a way that i = v; for every i € {1,2,...,|V|}".

e Page 4, proof of Theorem 2.5: Replace “ [[ M, " by “ [] mai7b7-r(i)”'
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e Page 5, proof of Theorem 2.5: You write: “Choose the smallest
q such that the vertex tail(e,) lies in C or in some Py with i > 4, or
tail(e,) = tail(e,) for some r > ¢.” In order for this definition to make
sense, the following convention should be made once and for all: If a
and b are two vertices of the graph G, and if (uq,us,...,us) is a path
in G, then tail (us41) will be understood to mean the vertex b (despite
the edge wu,y1 not being defined). This convention has the consequence
that, if (uy,us,...,u) is a path in G, the vertices lying along the path
(w1, us, ..., uy) are precisely the vertices of the form tail (e;) for some
ke {1,2,.. 041}

e Page 5, proof of Theorem 2.5: Replace “P} = (ey,...,e1hyhgyt1, ...

by “P’ = (e1,...,eq-1,hg, hgt1, ..., hm)” (there were commas missing).

e Page 6, proof of Theorem 2.5: You write: “It is easy to see that,
with this definition, the image (P*, C*) is again a pair of the required
kind, i.e. P* € Pagp(G), C* € C(G), and (P*,C*) ¢ Fap(G).” Here,

“Pa p(G)” should be replaced by “P4 p(G)”".

e Page 6, proof of Theorem 2.5: You prove that ¢ is an involution in
the second case. Your proof of this fact tacitly relies on the observation
that, in the second case, the path P;" begins with e, e, ..., e, (so, none of
the first ¢ edges of the path P; get removed when passing to P;). This is
a direct consequence of the following (easily proven) observation: In the
second case, the integer ¢ is smaller than each of ¢ and u, and if ¢t # oo,
it satisfies ¢ < s. In my opinion, both of these (arguably very obvious)
observations deserve to be explicitly stated.

e Page 7, proof of Theorem 2.5: Replace “its first cycles” by “its first
cycle”.

0.2 Comment on relation to [Tal08]

On page 1, you write: “The involution is adapted from the author’s work on
total positivity in Grassmannians [Tal08], in which planar graphs with directed
cycles play a key role, though the analogues of weighted path matrices are
rather different in the Grassmannian setting.”.

In case you aren’t already aware of this: I believe Theorem 3.2 of [Tal08]
can be deduced from Theorem 2.5; that is, [ have an argument that is complete
up to some combinatorial-geometric considerations about points on a circle
which, knowing that both theorems are valid, should be correct and not too
difficult to prove. Here is a sketch.

Label I as {iy, i, ..., }, and J as {J1, 2, ..., Jk }-

I don’t think you ever say in [Tal08] what ring you are working over, but
since you are proving identites between formal power series, we can WLOG



assume that the ground ring is Z. Hence, we can WLOG assume that the
ground ring is C. Assume the latter.

An edge will be called a boundary edge if it is incident to a boundary vertex.
By performing an isotopy, we can WLOG assume that every boundary edge is
normal to the circle. Assume this.

Since our graph G is perfectly oriented, we can WLOG assume that every
walk is a smooth curve (because at every point, either there is only one outgoing
edge and we need only to adjust the ends of all incoming edges, or there is
only one incoming edge and we need only to adjust the ends of all outgoing
edges). Assume this. (By the way, don’t you use such an assumption when
you define the winding index? Or, if a walk can fail to be smooth, how do you
tell apart a rotation by 50° from a rotation by 310° 7)

For every walk w, let AL (w) denote the angular increment of the direction
of the tangent vector to w at a point on w, as the point traverses w from its
beginning to its end. This is a well-defined angle in R, not just in R/ (27R),
due to the smoothness of w. Consider edges of G as 1l-edge walks. Then,
of course, AL (e, es,...,en) = AL (e1) + AL (e3) + ... + AL (e,,) whenever
(€1,€2,...,ey) is a walk. If a walk w is a cycle, then AL (w) = 2.

For any path p, denote the beginning and the end of p by head p and tail p,
respectively.

Assume the boundary circle to be the unit circle in C. WLOG assume that
11 = 1.

For any two points « and v on the unit circle, let «, ¢ be the length of the
counterclockwise arc from u to v on the circle; this length is an element of the
interval [0,27). Let arc (u,v) be this arc itself (including the endpoints). For
every point ¢ on the unit circle, let R (¢) be the complex number

1 1
exp (52 (1—,_% — W)) = —1exp (ﬁzl—,_%) = —iv—w

(where we are taking the square root that has argument < 7). Then, any two
points u and v on the unit circle satisfy

exp (%Z (m — 77-)) = _@'g EZ? . (_1)[1€arc(u,v)] ’ (AO)

1, if A is true; )
0, if A is false 7

Now, apply Theorem 2.5 of “Determinants of weighted path matrices” to
A =1 and B = J. This yields

where [A] denotes the truth value of an assertion A (that is,

> sgnF-wtF
—~ FeFr J(G)
I > sgnC-wtC
CeC(G)

(A1)
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where M is the same matrix as A (N) except with no (—1)*“7 factors and
no (—1)"™®) factors in its entries. Now, in this formula, for every edge e of

G, substitute exp (%AK (e)) x, for x.. As a consequence, the weight of any

path, any self-avoiding flow and any cycle collection gets multiplied by a scalar
factor. Let us see what the factors are. For a cycle collection C, the factor
by which wt C changes is precisely (—1)|C| = sgn C, whence the sgn C in the
denominator of the right hand side of (A1) disappears. So the denominator on
the right hand side becomes precisely the one in the formula in Theorem 3.2.

Let us see what happens to the left hand side of (A1). For a walk w from
one boundary vertex to another, the scalar factor by which wtw changes is
(unless I have made a mistake)

(—1)™9% L exp <%z (tailw, head w — 7T>> (A2)
_ (_1\windw . R (head w) __1)\[1€arc(tail w,head w)]
= (e (e (by (A0)).

Now, before the substitution, Ay ; (M ) was the determinant of a matrix whose

(o, B)-th entry is the weighted sum of all walks from i, to jz. So, after our
substitution, this («, 5)-th entry becomes

. (_1) [IEarc(ia,jg)]

times the weighted signed sum of all walks w from ¢, to jz, with the sign

being '(—1)Windw. The sum being signed is a good sign, because the same sign
(—1)V™ % appears in the (o, §)-th entry of A (N). But we have to still get rid

of the —@'R (i) (—1)[1earc(iavjﬂ)] factor, and get the (—1)*? factor of A (N).

R (js) . ol
Let us forget about the —i (Z,a) part of the —¢ (Z‘a) . (—1)[163“(%4@}
R (js) R (js)

factor, because this part has the form “something of a divided by something of

57 and thus just contributes scalar factors to the determinant. There remains

the (—1)[1€arc(i‘*’j5)] factor, which is not of this form.
For every point ¢ on the unit circle, let s (¢) be the number of elements of T

on arc (1,¢). Then, we have something like (—1)S(i“’jﬁ> = (—1)5(”’>_5(‘7")+[1€arc(i“’jﬁ)],
with perhaps a correction term in the case when jz € I (but this case is trivial

anyway, since the corresponding column of M has only one 1 and lots of 0’s).
This, of course, is (—1)*U) . (—1)505) : (—1)[16arc(i“’j5)], which has the form
“something of o multiplied by something of S multiplied by (—1)[1earc(io"j5 )]

7. So the (—1)[1earc(i“’jﬁ)] sign we couldn’t get rid of in the («, 8)-th entry of
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—

Arg <M) is precisely the (—1)S<i“’j5) sign in the (4, jg)-th entry of A (N), up
to a scalar factor that can be pulled out of the determinant. As a consequence,
Ay (M ) and A (N) differ at most by a rather manageable scalar factor. This

means that the left hand side of (A1) is more or less what we want.

Finally, we need to see what happens to the numerator of the right hand
side of (A1). For any self-avoiding path p from one boundary vertex to another,
the scalar factor by which wt p changes under our substitution is

. 1 —

(—1)vindp - exp (—i (taﬂp, headp — ﬂ)) (by (A2))

) P
(since p is:sellf—avoiding

and thus has winding number 0)

1. f(———
= exp (52 <tai1p, head p — 7T>) .

Thus, for a self-avoiding flow F', the scalar factor by which wt F changes is

k k
[ — L
(-1)'° -gexp (;‘ (702 3oty - w)) = sgn C- gexp (;‘ (702 3ot - w)) ,

=sgn C

where we write the self-avoiding flow F as (P, C) and where o is the permu-
tation of {1,2,...,k} corresponding to P (it would be a bad idea to call it 7
here...). So our substitution changed the sgn F on the right hand side of (A1)
into

2
1. /f—
. . _.<.7.U B )
sgn sgn C ”exp (22 e, Jo(e) ’/T)

=sgn P-sgn C =1

k
1 f—
=ggnP -sgnC - sgn C- Hexp (—i (ig,jg(g) — ’/T))
—— ——— 2

=sgno =1

k
1 f—
=sgno - Hexp (52 (Zg,jg(g) — 7T>) )

(=1

Now, with the hindsight of knowing that Theorem 3.2 is true, there is no other
option than this complex number being exactly the scalar factor we got on the
left hand side. Of course, the details of this are going to be ugly — but they
can, with sufficient will, be filled in; as far as [ am concerned, I am happy
knowing that yet another theorem about planar graphs factors into a theorem
about arbitrary graphs and a (messy, admittedly) argument about planarity.
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