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Section 1

Shuffle-compatibility

Reference:

@ Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation
statistics, arXiv:1706.00750, Adv. in Math. 332 (2018), pp.
85-141.
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Permutations & permutation statistics: Definitions 1

@ This project spun off from a paper by Ira Gessel and Yan
Zhuang (arXiv:1706.00750).
We prove a conjecture (shuffle-compatibility of Epk) and
study a stronger version of shuffle-compatibility.
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This project spun off from a paper by Ira Gessel and Yan
Zhuang (arXiv:1706.00750).

We prove a conjecture (shuffle-compatibility of Epk) and
study a stronger version of shuffle-compatibility.

Let N={0,1,2,...} and [n] ={1,2,...,n}.

For n € N, an n-permutation means an n-tuple of distinct
positive integers (“letters”).

Example: (3,1,7) is a 3-permutation, but (2,1, 2) is not.
A permutation means an n-permutation for some n.

If v is an n-permutation, then |7| := n.

We say that 7 is nonempty if n > 0.

If 7 is an n-permutation and i € {1,2,...,n}, then 7; denotes
the i-th entry of 7.
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Permutations & permutation statistics: Definitions 2

@ Two n-permutations « and (3 (with the same n) are
order-equivalent if all i,j € {1,2,...,n} satisfy
(Oé,‘ < aj) <~ (5, < 51)

@ Order-equivalence is an equivalence relation on permutations.
Its equivalence classes are called order-equivalence classes.
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permutation that only depends on the relative order of its
letters.
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@ Two n-permutations « and (3 (with the same n) are
order-equivalent if all i,j € {1,2,...,n} satisfy

(Oé,‘ < ij) <~ (5, < 51)

Order-equivalence is an equivalence relation on permutations.
Its equivalence classes are called order-equivalence classes.

A permutation statistic (henceforth just statistic) is a map st
from the set of all permutations (to anywhere) that is
constant on each order-equivalence class.

Intuition: A statistic computes some “fingerprint” of a
permutation that only depends on the relative order of its
letters.

Note. A statistic need not be integer-valued! It can be
set-valued, or list-valued for example.
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Example: Des(3,1,5,2,4) = {1,3}.
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@ If 7 is an n-permutation, then a descent of m means an
i€{1,2,...,n—1} such that 7; > mj41.

@ The descent set Des 7 of a permutation 7 is the set of all
descents of .
Thus, Des is a statistic.
Example: Des(3,1,5,2,4) = {1,3}.

@ The descent number des 7 of a permutation 7 is the number
of all descents of 7: that is, desm = |Des]|.
Thus, des is a statistic.
Example: des(3,1,5,2,4) = 2.

@ The major index majm of a permutation 7 is the sum of all
descents of 7.
Thus, maj is a statistic.
Example: maj(3,1,5,2,4) =1+ 3 =4,

@ The Coxeter length inv (i.e., number of inversions) and the
set of inversions are statistics, too.



Examples of permutation statistics, 2: peaks

o If 7 is an n-permutation, then a peak of m means an
i€{2,3,...,n—1} such that m;_1 < 7; > 7i41.
(Thus, peaks can only exist if n > 3.
The name refers to the plot of 7, where peaks look like this:
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of .
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o Pk(3,1,5,2,4) = {3}.
o Pk(1,3,2,5,4,6) = {2,4}.
o Pk(3,2) ={}.
@ The peak number pkm of a permutation 7 is the number of
all peaks of m: that is, pkm = |Pk|.
Thus, pk is a statistic.
Example: pk(3,1,5,2,4) = 1.



Examples of permutation statistics, 3: left peaks

o If 7 is an n-permutation, then a left peak of ™ means an
i€{1,2,...,n—1} such that w;_1 < 7; > 741, where we
set mp = 0.

(Thus, left peaks are the same as peaks, except that 1 counts
as a left peak if 71 > m2.)

@ The left peak set Lpk 7 of a permutation  is the set of all
left peaks of 7.

Thus, Lpk is a statistic.
Examples:
o Lpk(3,1,5,2,4) = {1,3}.
o Lpk(1,3,2,5,4,6) = {2,4}.
o Lpk(3,2) ={1}.

@ The left peak number Ipk m of a permutation 7 is the number
of all left peaks of 7: that is, Ipk 7 = |Lpk .

Thus, Ipk is a statistic.
Example: Ipk(3,1,5,2,4) = 2.



Examples of permutation statistics, 4: right peaks

o If 7 is an n-permutation, then a right peak of m means an
i€42,3,...,n} such that m;_1 < 7; > m;j;1, where we set
Tpt1 = 0.

(Thus, right peaks are the same as peaks, except that n
counts as a right peak if m,_1 < 7,.)

@ The right peak set Rpk 7 of a permutation 7 is the set of all

right peaks of 7.
Thus, Rpk is a statistic.
Examples:
o Rpk(3,1,5,2,4) = {3,5}.
o Rpk(1,3,2,5,4,6) = {2,4,6}.
o Rpk(3,2) ={}.

@ The right peak number rpk w of a permutation 7 is the
number of all right peaks of 7: that is, rpk ™ = |Rpk 7|.
Thus, rpk is a statistic.

Example: rpk(3,1,5,2,4) = 2.



Examples of permutation statistics, 5: exterior peaks

o If 7w is an n-permutation, then an exterior peak of m means an
i€{1,2,...,n} such that m;_1; < 7; > m;j;1, where we set
T = 0 and Th4+1 — 0.

(Thus, exterior peaks are the same as peaks, except that 1
counts if 1 > mp, and n counts if Tp_1 < T,.)

@ The exterior peak set Epk 7 of a permutation 7 is the set of

all exterior peaks of .
Thus, Epk is a statistic.
Examples:
o Epk(3,1,5,2,4) ={1,3,5}.
o Epk(1,3,2,5,4,6) = {2,4,6}.
o Epk(3,2) ={1}.

@ Thus, Epk7m = Lpkm URpk if n > 2.

@ The exterior peak number epk  of a permutation 7 is the
number of all exterior peaks of 7: that is, epk m = |Epk 7]|.
Thus, epk is a statistic.

Example: epk(3,1,5,2,4) = 3.
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An (m + n)-permutation 7 is called a shuffle of 7 and o if
both 7 and o appear as subsequences of 7.

(And thus, no other letters can appear in 7.)

@ We let S(m,0) be the set of all shuffles of 7 and o.

o Example:
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Shuffles of permutations

@ Let m and o be two permutations.

@ We say that w and o are disjoint if they have no letter in
common.

@ Assume that 7w and o are disjoint. Set m = || and n = |o|.
An (m + n)-permutation 7 is called a shuffle of 7 and o if
both 7 and o appear as subsequences of 7.

(And thus, no other letters can appear in 7.)
@ We let S(m,0) be the set of all shuffles of 7 and o.

o Example:
5((4,1),(2,5)) =4{(4,1,2,5),(4,2,1,5),(4,2,5,1),

(2,4,1,5),(2,4,5,1),(2,5,4,1)}.

m—l—n)

@ Observe that 7 and o have ("'") shuffles, in bijection with
m-element subsets of {1,2,...,m+ n}.
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@ A statistic st is said to be shuffle-compatible if for any two
disjoint permutations 7 and o, the multiset

{st7 | 7€ S(mo0)}

multiset

depends only on stm, sto, || and |o].

@ In other words, st is shuffle-compatible if and only the
distribution of st on the set S (m, o) stays unchaged if 7 and
o are replaced by two other disjoint permutations of the same
size and same st-values.
In particular, it has to stay unchanged if 7 and o are replaced
by two permutations order-equivalent to them: e.g., st must
have the same distribution on the three sets

S((4.1),(2,5),  S((2,1),(3,5),  5((9:8),(2,3)).
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Shuffle-compatible statistics: results of Gessel and Zhuang

@ Gessel and Zhuang, in arXiv:1706.00750, prove that various
important statistics are shuffle-compatible (but some are not).

@ Statistics they show to be shuffle-compatible: Des, des, maj,
Pk, Lpk, Rpk, Ipk, rpk, epk, and various others.

@ Statistics that are not shuffle-compatible: inv, des+ maj,
maj, (sending 7 to the sum of the squares of its descents),
(Pk, des) (sending 7w to (Pkm,des7)), and others.

@ Their proofs use a mixture of enumerative combinatorics
(including some known formulas of MacMahon, Stanley, ...),
quasisymmetric functions, Hopf algebra theory, P-partitions
(and variants by Stembridge and Petersen), Eulerian
polynomials (based on earlier work by Zhuang, and even
earlier work by Foata and Strehl).

@ Theorem (G.). The statistic Epk is shuffle-compatible (as
conjectured in Gessel/Zhuang).
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o a left shuffle of m and o is a shuffle of m and o that
starts with a letter of 7;
e a right shuffle of w and o is a shuffle of 7 and o that
starts with a letter of o.
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LR-shuffle-compatibility

@ We further introduce a finer version of shuffle-compatibility:
“LR-shuffle-compatibility” .
@ Given two disjoint nonempty permutations 7 and o,
o a left shuffle of m and o is a shuffle of m and ¢ that
starts with 7q;
e a right shuffle of w and o is a shuffle of 7 and o that
starts with o;.
@ We let S (m,0) be the set of all left shuffles of 7 and o.
We let S. (m,0) be the set of all right shuffles of 7 and o.
@ A statistic st is said to be LR-shuffle-compatible if for any two
disjoint nonempty permutations 7 and o, the multisets

{StT ‘ TE S< (ﬂ—? U)}multiset and {StT ‘ TE 5>‘ (ﬂ—?O—)}muItiset

depend only on st, sto, ||, |o] and the truth value of
T > 01.

@ Theorem (G.). Des, des, Lpk and Epk are
LR-shuffle-compatible. (But not maj or Rpk or Pk.)
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@ The "LR" in “LR-shuffle-compatibility” stands for “left and
right”. Indeed:

@ A statistic st is said to be left-shuffle-compatible if for any two
disjoint nonempty permutations m and ¢ such that

m > 01,

the multiset
{stT|17€Ss(m o)}

depends only on stm, sto, |7| and |o].

multiset



LR-shuffle-compatibility: alternative definition

@ The "LR" in “LR-shuffle-compatibility” stands for “left and
right”. Indeed:

@ A statistic st is said to be right-shuffle-compatible if for any
two disjoint nonempty permutations 7 and ¢ such that

m > 01,
the multiset

{stT| 7€ S (m o)}

multiset

depends only on stm, sto, |7| and |o].



LR-shuffle-compatibility: alternative definition

@ The "LR" in “LR-shuffle-compatibility” stands for “left and
right”. Indeed:

@ A statistic st is said to be right-shuffle-compatible if for any
two disjoint nonempty permutations 7 and ¢ such that

m > 01,
the multiset
{stT| 7€ S (m o)}
depends only on stm, sto, |7| and |o].
@ Proposition. A permutation statistic st is

LR-shuffle-compatible if and only if it is both
left-shuffle-compatible and right-shuffle-compatible.

multiset
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Roadmap to Epk

@ Now to the general ideas of our proof that Epk is
shuffle-compatible.
@ Strategy: imitate the classical proofs for Des, Pk and Lpk,
using (yet) another version of enriched P-partitions.
@ More precisely, we define Z-enriched P-partitions: a
generalization of
o P-partitions (Stanley 1972);
o enriched P-partitions (Stembridge 1997);
o left enriched P-partitions (Petersen 2007),
which are used in the proofs for Des, Pk and Lpk, respectively.

@ The idea is simple, but the proof takes work. Let me just
show the highlights without using P-partition language.
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@ Let \V be the totally ordered set {0 <1 <2 < - < c0}.
@ Let Pow N be the ring of power series over Q in the
indeterminates xp, X1, X2, - - . , Xoo-



The main identity

o If n € N and if A is any subset of [n], then we define a power
series Kf,\ € Pow N by

n,\ = E 2k xglxg2 S Xgys where

e the sum is over aII weakly increasing n-tuples
=0<g <g << gy <o) of elements of N/
such that no i € A satisfies gi_1 = gi = gi+1 (where we
set gop = 0 and gpy1 = 0);
o we let k (g) be the number of distinct entries of this
n-tuple g, not counting those that equal 0 or cc.



The main identity

o If n € N and if A is any subset of [n], then we define a power
series Kf,\ € Pow N by

n,\ = E 2k xglxg2 S Xgys where

e the sum is over aII weakly increasing n-tuples
=0<g <g << gy <o) of elements of N/

such that no i € A satisfies gi_1 = gi = gi+1 (where we
set gop = 0 and gpy1 = 0);

o we let k (g) be the number of distinct entries of this
n-tuple g, not counting those that equal 0 or cc.

@ Product formula. If 7 is an n-permutation and o is an
m-permutation, then

zZ _
Kn7Epk7r : m JEpko — Z Kn+m EpkT*

T€S(m,0)



The main identity

o If n € N and if A is any subset of [n], then we define a power
series Kf,\ € Pow N by

n,\ = E 2k xglxg2 S Xgys where

e the sum is over aII weakly increasing n-tuples
=0<g <g << gy <o) of elements of N/

such that no i € A satisfies gi_1 = gi = gi+1 (where we
set gop = 0 and gpy1 = 0);

o we let k (g) be the number of distinct entries of this
n-tuple g, not counting those that equal 0 or cc.

@ Product formula. If 7 is an n-permutation and o is an
m-permutation, then

zZ _
Kn7Epk7r : m JEpko — Z Kn+m EpkT*

T€S(m,0)

@ Proof idea: K Epkr 1S the generating function of Z-enriched
P-partitions for a certain totally ordered set P.
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Lacunar subsets and linear independence

@ A set S of integers is called /acunar if it contains no two
consecutive integers. (Some call this “sparse”.)

@ Well-known fact: The number of lacunar subsets of [n] is
the Fibonacci number f,41.

@ Lemma. For each nonempty permutation m, the set Epk 7 is
a nonempty lacunar subset of [n].
(And conversely — although we don't need it —, any such
subset has the form Epk w for some 7.)

@ Lemma. The family

(KZn) .
n,AJ neN; AC[n] is lacunar and nonempty

is Q-linearly independent.

@ These lemmas, and the above product formula, prove the
shuffle-compatibility of Epk.
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LR-shuffle-compatibility redux

Now to the proofs of LR-shuffle-compatibility.
Recall again the definitions:

We let S- (7, 0) be the set of all left shuffles of 7 and o (=
the shuffles that start with 7q).

We let S, (7, 0) be the set of all right shuffles of 7 and o (=
the shuffles that start with o7).

A statistic st is said to be LR-shuffle-compatible if for any two
disjoint nonempty permutations m and o, the multisets

{stT| 7€ S5(mo)} and {st7|7€S. (mo0)}

multiset multiset

depend only on stm, sto, ||, |o| and the truth value of
m > 01.

We claim that Des, des, Lpk and Epk are
LR-shuffle-compatible.
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@ A permutation statistic st is said to be head-graft-compatible
if for any nonempty permutation 7 and any letter a that does
not appear in , the element st(a : 7) depends only on st (),
|| and on the truth value of a > 7.

Here, a : 7 is the permutation obtained from 7 by appending
a at the front:

m = (71,72,...,7p) — a:m=(a,m1,m2,...,Tn).
@ For example, Epk is head-graft-compatible, since

Epk(a:w)—{

Epkm + 1, if not a > my;
((Epkm+ 1)\ {2})u{l}, ifa>m.
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(LR-shuffle-compatible)
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easy-to-check property

@ A permutation statistic st is said to be head-graft-compatible
if for any nonempty permutation 7 and any letter a that does
not appear in , the element st(a : 7) depends only on st (),
|| and on the truth value of a > 7.

Here, a : 7 is the permutation obtained from 7 by appending
a at the front:

m = (71,72,...,7p) — a:m=(a,m1,m2,...,Tn).

@ Likewise, Des, Lpk and des are head-graft-compatible.
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Head-graft-compatibility

@ Crucial observation:

(LR-shuffle-compatible)
<= (shuffle-compatible) A (head-graft-compatible) .

easy-to-check property

@ A permutation statistic st is said to be head-graft-compatible
if for any nonempty permutation 7 and any letter a that does
not appear in , the element st(a : 7) depends only on st (),
|| and on the truth value of a > 7.

Here, a : 7 is the permutation obtained from 7 by appending
a at the front:

m = (71,72,...,7p) — a:m=(a,m1,m2,...,Tn).

@ Theorem (G.). A statistic st is LR-shuffle-compatible if and
only if it is shuffle-compatible and head-graft-compatible.
@ Hence, Epk, Des, Lpk and des are LR-shuffle-compatible.
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@ Theorem. A statistic st is LR-shuffle-compatible if and only
if it is shuffle-compatible and head-graft-compatible.
@ Main idea of the proof of «—:
If 7 is an n-permutation with n > 0, then let 7; be the
(n — 1)-permutation (72,73, ...,mTp).
If 7 and o are two disjoint permutations, then
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Proof idea for —

@ Theorem. A statistic st is LR-shuffle-compatible if and only
if it is shuffle-compatible and head-graft-compatible.

@ Main idea of the proof of «—:

If 7 is an n-permutation with n > 0, then let 7; be the
(n — 1)-permutation (72,73, ...,mTp).
If 7 and o are two disjoint permutations, then
S (71', U) =S, (07 7T) :
Ss(my0) =S5 (me1,m1 :0) if 7 is nonempty;
Sy (m,0) =S<(01:7,0.1) if o is nonempty.
These allow for an inductive argument.

@ Note that the concept of LR-shuffle-compatibility is not
invariant under reversal: st can be LR-shuffle-compatible while
storev is not, where

rev (71, m2, ..., Tn) = (Tny Tn—1, ..., 1)

For example, Lpk is LR-shuffle-compatible, but Rpk is not.



Section 3

The QSym connection

References:
@ Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation
statistics, arXiv:1706.00750.
@ Darij Grinberg, Victor Reiner, Hopf Algebras in
Combinatorics, arXiv:1409.8356, and various other texts on
combinatorial Hopf algebras.
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@ Gessel and Zhuang prove most of their shuffle-compatibilities
algebraically. Their methods involve combinatorial Hopf
algebras (QSym and NSym).

@ These methods work for descent statistics only. What is a
descent statistic?

@ A descent statistic is a statistic st such that st depends only
on |7| and Des7 (in other words: if 7 and o are two
n-permutations with Des7 = Des o, then stm = sto).
Intuition: A descent statistic is a statistic which “factors
through Des in each size".
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A composition of n € N is a composition whose entries sum to
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@ A composition is a finite list of positive integers.
A composition of n € N is a composition whose entries sum to
n.

@ For example, (1,3,2) is a composition of 6.
o LetneN, and let [n—1] ={1,2,...,n—1}.
Then, there are mutually inverse bijections
Des : {compositions of n} — {subsets of [n— 1]},
(i, iy i) = {ti+-+i[1<j<k—1}
and
Comp : {subsets of [n— 1]} — {compositions of n},
{51 S < - <Sk} — (51—50,52—51,...,5k+1 —Sk)

(using the notations sy = 0 and sx+1 = n).
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Compositions & descent compositions: definitions

@ A composition is a finite list of positive integers.

A composition of n € N is a composition whose entries sum to
n.

For example, (1,3,2) is a composition of 6.

Let n€N, and let [n —1] ={1,2,...,n—1}.

Then, there are mutually inverse bijections Des and Comp
between {subsets of [n— 1]} and {compositions of n}.

If 7w is an n-permutation, then Comp (Des ) is called the
descent composition of 7, and is written Comp 7.

If st is a descent statistic, then we use the notation st «
(where « is a composition) for st 7, where 7 is any
permutation with Comp 7 = a.

e Warning:

Des((1,5,2) the composition) = {1,6};
Des ((1,5,2) the permutation) = {2}.

Same for other statistics! Context must disambiguate.
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@ Des, des and maj are descent statistics.

@ Pk is a descent statistic: If 7w is an n-permutation, then

Pkm = (Desw) \ ((DeswmU{0}) + 1),

where for any set K of integers and any integer a we set
K+a={k+al|keK}.
o Similarly, Lpk, Rpk and Epk are descent statistics.
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Examples:

Des, des and maj are descent statistics.

Pk is a descent statistic: If 7 is an n-permutation, then

Pkm = (Desw) \ ((DeswmU{0}) + 1),

where for any set K of integers and any integer a we set
K+a={k+al|keK}

Similarly, Lpk, Rpk and Epk are descent statistics.

inv is not a descent statistic: The permutations (2,1, 3) and
(3,1,2) have the same descents, but different numbers of
inversions.
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Descent statistics: examples

@ Almost all of our statistics so far are descent statistics.
Examples:

@ Des, des and maj are descent statistics.

@ Pk is a descent statistic: If 7w is an n-permutation, then

Pkm = (Desw) \ ((DeswmU{0}) + 1),

where for any set K of integers and any integer a we set
K+a={k+al|keK}
o Similarly, Lpk, Rpk and Epk are descent statistics.
@ Question (Gessel & Zhuang). Is every shuffle-compatible
statistic a descent statistic?
Answer (Ezgi Kantarcr Oguz, arXiv:1807.01398v1): No.
@ However: Every LR-shuffle-compatible statistic is a descent
statistic.
(Better yet, every head-graft-compatible statistic is a descent
statistic.)


http://www.arxiv.org/abs/1807.01398v1
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Quasisymmetric functions, part 1: definition

o Consider the ring Q [[x1, X2, X3, . . .]] of formal power series in
countably many indeterminates.

@ A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.

@ A formal power series f € Q[[x1, x2, x3,...]] is said to be

quasisymmetric if its coefficients in front of x,fi'lx;2 o ‘xlik and
X7 -xjik are equal whenever i; < i» < --- < ii and

A <jo < <k
@ For example:
o Every symmetric power series is quasisymmetric.
° Z XI-2XJ' = xZxp + x2x3 + X3x3 + xBxq + -+ is
1<J
quasisymmetric, but not symmetric.

@ Let QSym be the set of all quasisymmetric bounded-degree
power series in Q [[x1, x2, x3,...]]. This is a Q-subalgebra,
called the ring of quasisymmetric functions over Q. (Gessel,
1980s.)



Quasisymmetric functions, part 2: the monomial basis

@ For every composition o = (a1, g, . . ., k), define
_ oy 00
M, = g X ' X, X,
N<ip<-<iy

= sum of all monomials whose nonzero exponents
are ai,ap,...,qx in this order.
This is a homogeneous power series of degree || (the size of

«, defined by |a] := a3 + ax + -+ - + ax).
@ Examples:

o My=1.

o M1y = > xiXj = x1x2 + Xx1X3 + X2X3 + X1X4 4+ XoXg + - - -
i<j

o My = ;%-X’?Xj = x2x0 + x2x3 + 3x3 + .

° M(3):Zx?:X13+x§+X§’+---.
1



Quasisymmetric functions, part 2: the monomial basis

@ For every composition o = (a1, g, . . ., k), define
_ oy 00
M, = g X ' X, X,
N<ip<-<iy

= sum of all monomials whose nonzero exponents
are a1, o, ...,a in this order.
This is a homogeneous power series of degree || (the size of
«, defined by |a] := a3 + ax + -+ - + ax).
@ The family (Ma),, is 2 composition 1S @ basis of the Q-vector
space QSym, called the monomial basis (or M-basis).



Quasisymmetric functions, part 3: the fundamental basis

@ For every composition o = (a1, g, . . ., k), define

Fa = E X,'IX,'2 s X

Il<l2< <I,,,
ij<ijy1 for all jeDesa

= E Mg, where n = |af .
3 is a composition of n;
Des 3ODes o

This is a homogeneous power series of degree || again.
e Examples:

A F(1 1) = ZX:XJ = X1X2 + X1X3 + X2x3 + X1 X4 + Xoxq + - - -
i<j
° F(271) = i—%kx,-xjxk.

Fiy = Z XiXj X
<j<k



Quasisymmetric functions, part 3: the fundamental basis

@ For every composition o = (a1, g, . . ., k), define

Fa = E X,'IX,'2 s X

i1<ip<--+<ip;
ij<ijy1 for all jeDesa
= E Mg, where n = |a].

3 is a composition of n;
Des 3ODes o

This is a homogeneous power series of degree || again.
® The family (Fa), is a composition 1 @ basis of the Q-vector
space QSym, called the fundamental basis (or F-basis).

Sometimes, F, is also denoted L,,.



Quasisymmetric functions, part 3: the fundamental basis

@ For every composition o = (a1, g, . . ., k), define

Fa = E X,'IX,'2 s X

i1<ip<--+<ip;
ij<ijy1 for all jeDesa
= E Mg, where n = |a].

3 is a composition of n;
Des 3ODes o

This is a homogeneous power series of degree || again.
@ What connects QSym with shuffles of permutations is the

following fact:

Theorem. If 7 and o are two disjoint permutations, then

FComp7r ' FCompa = Z FCompT'
T€S(m,0)
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Comprm = a.)
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The kernel criterion for shuffle-compatibility

o If st is a descent statistic, then two compositions o and (3 are
said to be st-equivalent if |a| = |B] and st = st 5.
(Remember: st a means st7 for any permutation 7 satisfying
Comprm = a.)

@ The kernel Kg of a descent statistic st is the Q-vector
subspace of QSym spanned by all differences of the form
Fo — Fg, with a and 3 being two st-equivalent compositions:

Kse = (Fa— Fp | |a|=15] and sta=stf)g .

@ Theorem. The descent statistic st is shuffle-compatible if and
only if Ks is an ideal of QSym.
(This is essentially due to Gessel & Zhuang.)

@ Since Epk is shuffle-compatible, its kernel Kgpy is an ideal of
QSym. How can we describe it?

@ Two ways: using the F-basis and using the M-basis.



The kernel Kgp in terms of the F-basis

o If J=(j1,/2,-..,jm) and K are two compositions, then we
write J — K if there exists an ¢ € {2,3,..., m} such that
Je>2and K = (j1,)2, -5 je—1, L Je — L jes1sdet2s - - - 5 Jm)-
(In other words, we write J — K if K can be obtained from J
by “splitting” some non-initial entry j, > 2 into two
consecutive entries 1 and jy — 1.)

o Example. Here are all instances of the — relation on
compositions of size < b:

(1,3) —» (1,1,2), (1,4) — (1,1,3),
(1,3,1) = (1,1,2,1),  (1,1,3) > (1,1,1,2),
(2,3) = (2,1,2).
@ Proposition. The ideal gy of QSym is spanned (as a

Q-vector space) by all differences of the form F; — Fy, where
J and K are two compositions satisfying J — K.



The kernel Kgp in terms of the M-basis

o If J=(j1,/2,-..,jm) and K are two compositions, then we
write J % K if there exists an £ € {2,3,..., m} such that

JE > 2 and K= (.]1 ./27 CIEa 7./@*17 27./@ - 27J€+17j€+27 o 7jm)'
(In other words, we write J /\7 K if K can be obtained from J

by “splitting” some non-initial entry j; > 2 into two
consecutive entries 2 and jy — 2.)
@ Example. Here are all instances of the 7 relation on

compositions of size < 5:
(1,3) —> (1,2,1), (1,4) A—/’> (1,2,2),
(13,1) = (L2L1),  (L1,3) = (1,1,21),
2 2,2,1).
(2,3) M(, )

@ Proposition. The ideal Kgpk of QSym is spanned (as a
Q-vector space) by all sums of the form M, + My, where J
and K are two compositions satisfying J A—/I> K.



What about other statistics?

@ Question. Do other descent statistics allow for similar
descriptions of g ?
(See the paper for some experimental results.)



What does LR-shuffle-compatibility mean algebraically?

o If shuffle-compatible descent statistics induce ideals of QSym,
then what do LR-shuffle-compatible descent statistics induce?

(shuffle-compatible des. statistics) <+ ((some) ideals of QSym);
(LR-shuffle-compatible des. statistics) <> 77
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What does LR-shuffle-compatibility mean algebraically?

@ We will answer this question using the dendriform algebra
structure on QSym.
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What does LR-shuffle-compatibility mean algebraically?

@ We will answer this question using the dendriform algebra
structure on QSym.

This structure first appeared in:

Darij Grinberg, Dual immaculate creation operators and a
dendriform algebra structure on the quasisymmetric functions,
Canad. J. Math. 69 (2017), pp. 21-53.

But the ideas go back to:

e Glanffrwd P. Thomas, Frames, Young tableaux, and
Baxter sequences, Advances in Mathematics, Volume 26,
Issue 3, December 1977, Pages 275-289.

e Jean-Christophe Novelli, Jean-Yves Thibon, Construction
of dendriform trialgebras, arXiv:math/0510218.

Something similar also appeared in: Aristophanes Dimakis,

Folkert Miiller-Hoissen, Quasi-symmetric functions and the

KP hierarchy, Journal of Pure and Applied Algebra, Volume
214, Issue 4, April 2010, Pages 449-460.
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Dendriform structure on QSym, part 1

@ For any monomial m, let Supp m denote the set
{i'| x; appears in m}.
e Example. Supp (x3x6xs) = {3,6,8}.



Dendriform structure on QSym, part 1

@ For any monomial m, let Supp m denote the set
{i'| x; appears in m}.

e Example. Supp (x3x6xs) = {3,6,8}.

@ We define a binary operation < on the Q-vector space
Q[[x1, x2, x3, . . .]] as follows:

e On monomials, it should be given by

< { m-n, if min (Suppm) < min (Suppn);
0, if min (Suppm) > min (Suppn)
for any two monomials m and n.
o It should be Q-bilinear.
o It should be continuous (i.e., its Q-bilinearity also applies
to infinite Q-linear combinations).
@ Well-definedness is pretty clear.

o Example. (X22X4) =< (X3ZX5) = X22X§X4X5, but
(X22X4) =< (x22X5) =0.



Dendriform structure on QSym, part 1

@ For any monomial m, let Supp m denote the set
{i'| x; appears in m}.

e Example. Supp (x3x6xs) = {3,6,8}.

@ We define a binary operation > on the QQ-vector space
Q[[x1, x2, x3, . . .]] as follows:

e On monomials, it should be given by

m-n, if min (Suppm) > min (Suppn);
m=n= e .
0, if min (Suppm) < min (Suppn)

for any two monomials m and n.

o It should be Q-bilinear.

o It should be continuous (i.e., its Q-bilinearity also applies
to infinite Q-linear combinations).

@ Well-definedness is pretty clear.

o Example. (X22X4) > (X3ZX5) =0, but
(X22X4) >~ (x22X5) = X§X4X5.



Dendriform structure on QSym, part 2

@ We now have defined two binary operations < and > on
Q[[x1, x2, x3, . . .]]. They satisfy:
a<b+arxb=ab;
(a<b)<c=a=<(bc);
(a=b)<c=ar(b=<c);
ar(bxc)=(ab) = c.
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@ We now have defined two binary operations < and > on
Q[[x1, x2, x3, . . .]]. They satisfy:
a<b+arxb=ab;
(a<b)<c=a=<(bc);
(a=b)<c=ar(b=<c);
ar(bxc)=(ab) = c.
@ This says that (Q[[x1,x2,x3,...]], <, =) is a dendriform

algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).
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Dendriform structure on QSym, part 2

@ We now have defined two binary operations < and > on
Q[[x1, x2, x3, . . .]]. They satisfy:
a<b+axb=ab;
(a<b)<c=a=<(bc);
(a=b)<c=ax=(b=<c);
ar(bxc)=(ab) = c.
@ This says that (Q[[x1,x2,x3,...]], <, =) is a dendriform
algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).

@ QSym is closed under both operations < and >=. Thus, QSym
becomes a dendriform subalgebra of Q [[x1, x2, X3, . . .]].
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The kernel criterion for LR-shuffle-compatibility

@ Recall the Theorem: The descent statistic st is
shuffle-compatible if and only if Kg; is an ideal of QSym.



The kernel criterion for LR-shuffle-compatibility

@ Recall the Theorem: The descent statistic st is
shuffle-compatible if and only if Kg; is an ideal of QSym.

@ Similarly, Theorem: The descent statistic st is
LR-shuffle-compatible if and only if
QSym < Kg C Kst and Kst < QSym C Kqt and
QSym = Ky C Kt and Kst = QSym C Kyt

(that is, KCst is an ideal of the dendriform algebra QSym).



The kernel criterion for LR-shuffle-compatibility

@ Recall the Theorem: The descent statistic st is
shuffle-compatible if and only if Kg; is an ideal of QSym.

@ Similarly, Theorem: The descent statistic st is
LR-shuffle-compatible if and only if

QSym < Kg C Kot and Kst < QSym C K and
stm > Kt € Kst and Kst = QSym C Kt
(that is, KCst is an ideal of the dendriform algebra QSym).

@ Thus, for example, Kgp is an ideal of the dendriform algebra
QSym, and the quotient QSym /gy is a dendriform algebra.



The kernel criterion for LR-shuffle-compatibility

@ Recall the Theorem: The descent statistic st is
shuffle-compatible if and only if Kg; is an ideal of QSym.

@ Similarly, Theorem: The descent statistic st is
LR-shuffle-compatible if and only if

QSym < Kg C Kst and Kst < QSym C Kqt and
stm = Kst C Kgt and Kst = QSym C Kt
(that is, KCst is an ideal of the dendriform algebra QSym).

@ Thus, for example, Kgp is an ideal of the dendriform algebra
QSym, and the quotient QSym /gy is a dendriform algebra.

@ This actually inspired the (combinatorial) proof of
LR-shuffle-compatibility hinted at above.



A few questions

@ Question. What mileage do we get out of Z-enriched
(P, ~)-partitions for other choices of A/ and Z than the ones
used in the known proofs?

@ Question. What ring do the KZ, span?

@ Question. Hsiao and Petersen have generalized enriched
(P, ~y)-partitions to “colored (P,y)-partitions” (with {+, —}
replaced by an m-element set). Does this generalize our
results?

@ Question. How do the kernels K look like for
st = Pk, Lpk,...?

@ Question. Are the quotients QSym /K for
st = des, Lpk, Epk known dendriform algebras?



Section 4

Quadri-compatibility (work in progress)

References:
@ a forthcoming preprint.

@ Marcelo Aguiar, Jean-Louis Loday, Quadri-algebras, Journal of
Pure and Applied Algebra, Volume 191 (2004), Issue 3, Pages
205-221.

@ Loic Foissy, Free quadri-algebras and dual quadri-algebras,
arXiv:1504.06056.
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WIP: Quadri-compatibility, 1: definition

@ We can refine LR-shuffle-compatibility even further.

@ Given two disjoint nonempty permutations
m = (m1,72,...,m,) and 0 = (01,02, ...,0m), define sets
Sij(m o) foralli,j € {1,2} as follows:

Si1(myo)={r€S(m,0) | m=m1and Tpym =7n};
Sio(mo)={reS(m,0) | m=m1and Thim =0m};
So1(mo)={re€S(m0) | m=o01and Thim =7n};
Soo(mo)={re€S(m,0) | m=o01and Thym =0m}.



WIP: Quadri-compatibility, 1: definition

@ We can refine LR-shuffle-compatibility even further.

@ Given two disjoint nonempty permutations
m = (m1,72,...,m,) and 0 = (01,02, ...,0m), define sets
Sij(m o) foralli,j € {1,2} as follows:

Si1(myo)={r€S(m,0) | m=m1and Tpym =7n};
Sio(mo)={reS(m,0) | m=m1and Thim =0m};
So1(mo)={re€S(m0) | m=o01and Thim =7n};
Soo(mo)={re€S(m,0) | m=o01and Thym =0m}.

@ A statistic st is said to be quadri-compatible if for any two
disjoint nonempty permutations 7w and ¢ and any i, € {1,2},
the multiset

{stt |7 €Sjj(m o)}

multiset

depends only on stm, sto, |7|, |o|, i, j, the truth value of
71 > o1, and the truth value of w, > on.



WIP: Quadri-compatibility, 2: criterion

@ A permutation statistic st is said to be tail-graft-compatible if
for any nonempty permutation 7 = (71, m2,...,7,) and any
letter a that does not appear in 7, the element st (7 : a)
depends only on st (), |7| and on the truth value of a > m,.
Here, 7 : a is the permutation obtained from 7 by appending
a at the end:

m = (71,72,...,7p) — m:a=(a,m,m2,...,Tpa).
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@ A permutation statistic st is said to be tail-graft-compatible if
for any nonempty permutation 7 = (71, m2,...,7,) and any
letter a that does not appear in 7, the element st (7 : a)
depends only on st (), |7| and on the truth value of a > m,.
Here, 7 : a is the permutation obtained from 7 by appending
a at the end:

m = (71,72,...,7p) — m:a=(a,m,m2,...,Tpa).

(Almost-)Theorem (G.) A statistic st is quadri-compatible if
and only if it is shuffle-compatible, head-graft-compatible
and tail-graft-compatible.

My proof uses both induction and QSym and still needs to be
written up. (Hopefully it survives the process.)
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a at the end:
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and only if it is shuffle-compatible, head-graft-compatible
and tail-graft-compatible.

My proof uses both induction and QSym and still needs to be
written up. (Hopefully it survives the process.)

Hence, Des, des, and Epk are quadri-compatible.
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for any nonempty permutation 7 = (71, m2,...,7,) and any
letter a that does not appear in 7, the element st (7 : a)
depends only on st (), |7| and on the truth value of a > m,.
Here, 7 : a is the permutation obtained from 7 by appending
a at the end:

m = (71,72,...,7p) — m:a=(a,m,m2,...,Tpa).

@ (Almost-)Theorem (G.) A statistic st is quadri-compatible if
and only if it is shuffle-compatible, head-graft-compatible
and tail-graft-compatible.

@ My proof uses both induction and QSym and still needs to be
written up. (Hopefully it survives the process.)

@ Hence, Des, des, and Epk are quadri-compatible. (But not
maj or Lpk or Rpk or Pk.)
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WIP: Quadri-compatibility, 2: criterion

@ A permutation statistic st is said to be tail-graft-compatible if
for any nonempty permutation 7 = (71, m2,...,7,) and any
letter a that does not appear in 7, the element st (7 : a)
depends only on st (), |7| and on the truth value of a > m,.
Here, 7 : a is the permutation obtained from 7 by appending
a at the end:

m = (71,72,...,7p) = m:a=(a,m,m2,...,Tpa).

@ (Almost-)Theorem (G.) A statistic st is quadri-compatible if
and only if it is shuffle-compatible, head-graft-compatible
and tail-graft-compatible.

@ My proof uses both induction and QSym and still needs to be
written up. (Hopefully it survives the process.)

@ Hence, Des, des, and Epk are quadri-compatible. (But not
maj or Lpk or Rpk or Pk.)

@ The proof (so far) uses a refined version of dendriform
algebras: the quadri-algebras of Aguiar and Loday
(arXiv:math/0309171, arXiv:1504.06056).
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Thanks to Ira Gessel and Yan Zhuang for initiating this direction
(and for helpful discussions).
Thank you for attending!
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project: https://github.com/darijgr/gzshuf
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