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Section 1

Shuffle-compatibility
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Permutations & permutation statistics: Definitions 1

This project spun off from a paper by Ira Gessel and Yan
Zhuang (arXiv:1706.00750).
We prove a conjecture (shuffle-compatibility of Epk) and
study a stronger version of shuffle-compatibility.

Let N = {0, 1, 2, . . .} and [n] = {1, 2, . . . , n}.
For n ∈ N, an n-permutation means an n-tuple of distinct
positive integers (“letters”).
Example: (3, 1, 7) is a 3-permutation, but (2, 1, 2) is not.

A permutation means an n-permutation for some n.
If π is an n-permutation, then |π| := n.
We say that π is nonempty if n > 0.

If π is an n-permutation and i ∈ {1, 2, . . . , n}, then πi denotes
the i-th entry of π.
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Permutations & permutation statistics: Definitions 2

Two n-permutations α and β (with the same n) are
order-equivalent if all i , j ∈ {1, 2, . . . , n} satisfy
(αi < αj)⇐⇒ (βi < βj).

Order-equivalence is an equivalence relation on permutations.
Its equivalence classes are called order-equivalence classes.

A permutation statistic (henceforth just statistic) is a map st
from the set of all permutations (to anywhere) that is
constant on each order-equivalence class.
Intuition: A statistic computes some “fingerprint” of a
permutation that only depends on the relative order of its
letters.

Note. A statistic need not be integer-valued! It can be
set-valued, or list-valued for example.
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Examples of permutation statistics, 1: descents et al

If π is an n-permutation, then a descent of π means an
i ∈ {1, 2, . . . , n − 1} such that πi > πi+1.

The descent set Desπ of a permutation π is the set of all
descents of π.
Thus, Des is a statistic.
Example: Des (3, 1, 5, 2, 4) = {1, 3}.

The descent number desπ of a permutation π is the number
of all descents of π: that is, desπ = |Desπ|.
Thus, des is a statistic.
Example: des (3, 1, 5, 2, 4) = 2.

The major index majπ of a permutation π is the sum of all
descents of π.
Thus, maj is a statistic.
Example: maj (3, 1, 5, 2, 4) = 1 + 3 = 4.

The Coxeter length inv (i.e., number of inversions) and the
set of inversions are statistics, too.
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Examples of permutation statistics, 2: peaks

If π is an n-permutation, then a peak of π means an
i ∈ {2, 3, . . . , n − 1} such that πi−1 < πi > πi+1.
(Thus, peaks can only exist if n ≥ 3.
The name refers to the plot of π, where peaks look like this:
/\.)
The peak set Pkπ of a permutation π is the set of all peaks
of π.
Thus, Pk is a statistic.
Examples:

Pk (3, 1, 5, 2, 4) = {3}.
Pk (1, 3, 2, 5, 4, 6) = {2, 4}.
Pk (3, 2) = {}.

The peak number pkπ of a permutation π is the number of
all peaks of π: that is, pkπ = |Pkπ|.
Thus, pk is a statistic.
Example: pk (3, 1, 5, 2, 4) = 1.
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Examples of permutation statistics, 3: left peaks

If π is an n-permutation, then a left peak of π means an
i ∈ {1, 2, . . . , n − 1} such that πi−1 < πi > πi+1, where we
set π0 = 0.
(Thus, left peaks are the same as peaks, except that 1 counts
as a left peak if π1 > π2.)
The left peak set Lpkπ of a permutation π is the set of all
left peaks of π.
Thus, Lpk is a statistic.
Examples:

Lpk (3, 1, 5, 2, 4) = {1, 3}.
Lpk (1, 3, 2, 5, 4, 6) = {2, 4}.
Lpk (3, 2) = {1}.

The left peak number lpkπ of a permutation π is the number
of all left peaks of π: that is, lpkπ = |Lpkπ|.
Thus, lpk is a statistic.
Example: lpk (3, 1, 5, 2, 4) = 2.
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Examples of permutation statistics, 4: right peaks

If π is an n-permutation, then a right peak of π means an
i ∈ {2, 3, . . . , n} such that πi−1 < πi > πi+1, where we set
πn+1 = 0.
(Thus, right peaks are the same as peaks, except that n
counts as a right peak if πn−1 < πn.)
The right peak set Rpkπ of a permutation π is the set of all
right peaks of π.
Thus, Rpk is a statistic.
Examples:

Rpk (3, 1, 5, 2, 4) = {3, 5}.
Rpk (1, 3, 2, 5, 4, 6) = {2, 4, 6}.
Rpk (3, 2) = {}.

The right peak number rpkπ of a permutation π is the
number of all right peaks of π: that is, rpkπ = |Rpkπ|.
Thus, rpk is a statistic.
Example: rpk (3, 1, 5, 2, 4) = 2.
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Examples of permutation statistics, 5: exterior peaks

If π is an n-permutation, then an exterior peak of π means an
i ∈ {1, 2, . . . , n} such that πi−1 < πi > πi+1, where we set
π0 = 0 and πn+1 = 0.
(Thus, exterior peaks are the same as peaks, except that 1
counts if π1 > π2, and n counts if πn−1 < πn.)
The exterior peak set Epkπ of a permutation π is the set of
all exterior peaks of π.
Thus, Epk is a statistic.
Examples:

Epk (3, 1, 5, 2, 4) = {1, 3, 5}.
Epk (1, 3, 2, 5, 4, 6) = {2, 4, 6}.
Epk (3, 2) = {1}.

Thus, Epkπ = Lpkπ ∪ Rpkπ if n ≥ 2.
The exterior peak number epkπ of a permutation π is the
number of all exterior peaks of π: that is, epkπ = |Epkπ|.
Thus, epk is a statistic.
Example: epk (3, 1, 5, 2, 4) = 3.
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Shuffles of permutations

Let π and σ be two permutations.

We say that π and σ are disjoint if they have no letter in
common.

Assume that π and σ are disjoint. Set m = |π| and n = |σ|.
An (m + n)-permutation τ is called a shuffle of π and σ if
both π and σ appear as subsequences of τ .
(And thus, no other letters can appear in τ .)

We let S (π, σ) be the set of all shuffles of π and σ.

Example:

S ((4, 1), (2, 5)) = {(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1)}.

Observe that π and σ have
(m+n

m

)
shuffles, in bijection with

m-element subsets of {1, 2, . . . ,m + n}.

10 / 41



Shuffles of permutations

Let π and σ be two permutations.

We say that π and σ are disjoint if they have no letter in
common.

Assume that π and σ are disjoint. Set m = |π| and n = |σ|.
An (m + n)-permutation τ is called a shuffle of π and σ if
both π and σ appear as subsequences of τ .
(And thus, no other letters can appear in τ .)

We let S (π, σ) be the set of all shuffles of π and σ.

Example:

S ((4, 1), (2, 5)) = {(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1)}.

Observe that π and σ have
(m+n

m

)
shuffles, in bijection with

m-element subsets of {1, 2, . . . ,m + n}.

10 / 41



Shuffles of permutations

Let π and σ be two permutations.

We say that π and σ are disjoint if they have no letter in
common.

Assume that π and σ are disjoint. Set m = |π| and n = |σ|.
An (m + n)-permutation τ is called a shuffle of π and σ if
both π and σ appear as subsequences of τ .
(And thus, no other letters can appear in τ .)

We let S (π, σ) be the set of all shuffles of π and σ.

Example:

S ((4, 1), (2, 5)) = {(4, 1, 2, 5) , (4, 2, 1, 5) , (4, 2, 5, 1) ,

(2, 4, 1, 5) , (2, 4, 5, 1) , (2, 5, 4, 1)}.

Observe that π and σ have
(m+n

m

)
shuffles, in bijection with

m-element subsets of {1, 2, . . . ,m + n}.

10 / 41



Shuffle-compatible statistics: definition

A statistic st is said to be shuffle-compatible if for any two
disjoint permutations π and σ, the multiset

{st τ | τ ∈ S (π, σ)}multiset

depends only on stπ, stσ, |π| and |σ|.
In other words, st is shuffle-compatible if and only the
distribution of st on the set S (π, σ) stays unchaged if π and
σ are replaced by two other disjoint permutations of the same
size and same st-values.

In particular, it has to stay unchanged if π and σ are replaced
by two permutations order-equivalent to them: e.g., st must
have the same distribution on the three sets

S ((4, 1), (2, 5)) , S ((2, 1), (3, 5)) , S ((9, 8), (2, 3)) .
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Shuffle-compatible statistics: results of Gessel and Zhuang

Gessel and Zhuang, in arXiv:1706.00750, prove that various
important statistics are shuffle-compatible (but some are not).

Statistics they show to be shuffle-compatible: Des, des, maj,
Pk, Lpk, Rpk, lpk, rpk, epk, and various others.

Statistics that are not shuffle-compatible: inv, des + maj,
maj2 (sending π to the sum of the squares of its descents),
(Pk, des) (sending π to (Pkπ, desπ)), and others.

Their proofs use a mixture of enumerative combinatorics
(including some known formulas of MacMahon, Stanley, ...),
quasisymmetric functions, Hopf algebra theory, P-partitions
(and variants by Stembridge and Petersen), Eulerian
polynomials (based on earlier work by Zhuang, and even
earlier work by Foata and Strehl).

Theorem (G.). The statistic Epk is shuffle-compatible (as
conjectured in Gessel/Zhuang).
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polynomials (based on earlier work by Zhuang, and even
earlier work by Foata and Strehl).

Theorem (G.). The statistic Epk is shuffle-compatible (as
conjectured in Gessel/Zhuang).
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LR-shuffle-compatibility

We further introduce a finer version of shuffle-compatibility:
“LR-shuffle-compatibility”.
Given two disjoint nonempty permutations π and σ,

a left shuffle of π and σ is a shuffle of π and σ that
starts with a letter of π;
a right shuffle of π and σ is a shuffle of π and σ that
starts with a letter of σ.

We let S≺ (π, σ) be the set of all left shuffles of π and σ.
We let S� (π, σ) be the set of all right shuffles of π and σ.
A statistic st is said to be LR-shuffle-compatible if for any two
disjoint nonempty permutations π and σ, the multisets

{st τ | τ ∈ S≺ (π, σ)}multiset and {st τ | τ ∈ S� (π, σ)}multiset

depend only on stπ, stσ, |π|, |σ| and the truth value of
π1 > σ1.
Theorem (G.). Des, des, Lpk and Epk are
LR-shuffle-compatible. (But not maj or Rpk or Pk.)
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LR-shuffle-compatibility: alternative definition

The “LR” in “LR-shuffle-compatibility” stands for “left and
right”. Indeed:

Proposition. A permutation statistic st is
LR-shuffle-compatible if and only if it is both
left-shuffle-compatible and right-shuffle-compatible.
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Section 2

Methods of proof
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Roadmap to Epk

Now to the general ideas of our proof that Epk is
shuffle-compatible.

Strategy: imitate the classical proofs for Des, Pk and Lpk,
using (yet) another version of enriched P-partitions.

More precisely, we define Z-enriched P-partitions: a
generalization of

P-partitions (Stanley 1972);
enriched P-partitions (Stembridge 1997);
left enriched P-partitions (Petersen 2007),

which are used in the proofs for Des, Pk and Lpk, respectively.

The idea is simple, but the proof takes work. Let me just
show the highlights without using P-partition language.
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The main identity

Let N be the totally ordered set {0 < 1 < 2 < · · · <∞}.

If n ∈ N and if Λ is any subset of [n], then we define a power
series KZn,Λ ∈ PowN by

KZn,Λ =
∑
g

2k(g)xg1xg2 · · · xgn , where

the sum is over all weakly increasing n-tuples
g = (0 ≤ g1 ≤ g2 ≤ · · · ≤ gn ≤ ∞) of elements of N
such that no i ∈ Λ satisfies gi−1 = gi = gi+1 (where we
set g0 = 0 and gn+1 =∞);
we let k (g) be the number of distinct entries of this
n-tuple g , not counting those that equal 0 or ∞.

Product formula. If π is an n-permutation and σ is an
m-permutation, then

KZn,Epkπ · KZm,Epkσ =
∑

τ∈S(π,σ)

KZn+m,Epk τ .

Proof idea: KZn,Epkπ is the generating function of Z-enriched
P-partitions for a certain totally ordered set P.
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Lacunar subsets and linear independence

A set S of integers is called lacunar if it contains no two
consecutive integers. (Some call this “sparse”.)

Well-known fact: The number of lacunar subsets of [n] is
the Fibonacci number fn+1.

Lemma. For each nonempty permutation π, the set Epkπ is
a nonempty lacunar subset of [n].
(And conversely – although we don’t need it –, any such
subset has the form Epkπ for some π.)

Lemma. The family(
KZn,Λ

)
n∈N; Λ⊆[n] is lacunar and nonempty

is Q-linearly independent.

These lemmas, and the above product formula, prove the
shuffle-compatibility of Epk.
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LR-shuffle-compatibility redux

Now to the proofs of LR-shuffle-compatibility.

Recall again the definitions:

We let S≺ (π, σ) be the set of all left shuffles of π and σ (=
the shuffles that start with π1).
We let S� (π, σ) be the set of all right shuffles of π and σ (=
the shuffles that start with σ1).

A statistic st is said to be LR-shuffle-compatible if for any two
disjoint nonempty permutations π and σ, the multisets

{st τ | τ ∈ S≺ (π, σ)}multiset and {st τ | τ ∈ S� (π, σ)}multiset

depend only on stπ, stσ, |π|, |σ| and the truth value of
π1 > σ1.

We claim that Des, des, Lpk and Epk are
LR-shuffle-compatible.
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Head-graft-compatibility

Crucial observation:

(LR-shuffle-compatible)

⇐⇒ (shuffle-compatible) ∧ (head-graft-compatible) .

A permutation statistic st is said to be head-graft-compatible
if for any nonempty permutation π and any letter a that does
not appear in π, the element st (a : π) depends only on st (π),
|π| and on the truth value of a > π1.
Here, a : π is the permutation obtained from π by appending
a at the front:

π = (π1, π2, . . . , πn) =⇒ a : π = (a, π1, π2, . . . , πn) .
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Here, a : π is the permutation obtained from π by appending
a at the front:

π = (π1, π2, . . . , πn) =⇒ a : π = (a, π1, π2, . . . , πn) .

For example, Epk is head-graft-compatible, since

Epk (a : π) =

{
Epkπ + 1, if not a > π1;

((Epkπ + 1) \ {2}) ∪ {1} , if a > π1.
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Likewise, Des, Lpk and des are head-graft-compatible.
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Theorem (G.). A statistic st is LR-shuffle-compatible if and
only if it is shuffle-compatible and head-graft-compatible.
Hence, Epk, Des, Lpk and des are LR-shuffle-compatible.
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Proof idea for ⇐=

Theorem. A statistic st is LR-shuffle-compatible if and only
if it is shuffle-compatible and head-graft-compatible.
Main idea of the proof of ⇐=:
If π is an n-permutation with n > 0, then let π∼1 be the
(n − 1)-permutation (π2, π3, . . . , πn).

If π and σ are two disjoint permutations, then

S≺ (π, σ) = S� (σ, π) ;

S≺ (π, σ) = S� (π∼1, π1 : σ) if π is nonempty;

S� (π, σ) = S≺ (σ1 : π, σ∼1) if σ is nonempty.

These allow for an inductive argument.
Note that the concept of LR-shuffle-compatibility is not
invariant under reversal: st can be LR-shuffle-compatible while
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Section 3

Section 3

The QSym connection

References:

Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation
statistics, arXiv:1706.00750.

Darij Grinberg, Victor Reiner, Hopf Algebras in
Combinatorics, arXiv:1409.8356, and various other texts on
combinatorial Hopf algebras.
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Descent statistics

Gessel and Zhuang prove most of their shuffle-compatibilities
algebraically. Their methods involve combinatorial Hopf
algebras (QSym and NSym).

These methods work for descent statistics only. What is a
descent statistic?

A descent statistic is a statistic st such that stπ depends only
on |π| and Desπ (in other words: if π and σ are two
n-permutations with Desπ = Desσ, then stπ = stσ).
Intuition: A descent statistic is a statistic which “factors
through Des in each size”.
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Compositions & descent compositions: definitions

A composition is a finite list of positive integers.
A composition of n ∈ N is a composition whose entries sum to
n.
For example, (1, 3, 2) is a composition of 6.

Let n ∈ N, and let [n − 1] = {1, 2, . . . , n − 1}.
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Then, there are mutually inverse bijections

Des : {compositions of n} → {subsets of [n − 1]} ,
(i1, i2, . . . , ik) 7→ {i1 + i2 + · · ·+ ij | 1 ≤ j ≤ k − 1}

and

Comp : {subsets of [n − 1]} → {compositions of n} ,
{s1 < s2 < · · · < sk} 7→ (s1 − s0, s2 − s1, . . . , sk+1 − sk)

(using the notations s0 = 0 and sk+1 = n).
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Then, there are mutually inverse bijections Des and Comp
between {subsets of [n − 1]} and {compositions of n}.
If π is an n-permutation, then Comp (Desπ) is called the
descent composition of π, and is written Compπ.
If st is a descent statistic, then we use the notation stα
(where α is a composition) for stπ, where π is any
permutation with Compπ = α.
Warning:

Des ((1, 5, 2) the composition) = {1, 6} ;

Des ((1, 5, 2) the permutation) = {2} .
Same for other statistics! Context must disambiguate.
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Descent statistics: examples

Almost all of our statistics so far are descent statistics.
Examples:
Des, des and maj are descent statistics.

Pk is a descent statistic: If π is an n-permutation, then

Pkπ = (Desπ) \ ((Desπ ∪ {0}) + 1) ,

where for any set K of integers and any integer a we set
K + a = {k + a | k ∈ K}.
Similarly, Lpk, Rpk and Epk are descent statistics.
Question (Gessel & Zhuang). Is every shuffle-compatible
statistic a descent statistic?
Answer (Ezgi Kantarcı Oğuz, arXiv:1807.01398v1): No.
However: Every LR-shuffle-compatible statistic is a descent
statistic.
(Better yet, every head-graft-compatible statistic is a descent
statistic.)
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Answer (Ezgi Kantarcı Oğuz, arXiv:1807.01398v1): No.
However: Every LR-shuffle-compatible statistic is a descent
statistic.
(Better yet, every head-graft-compatible statistic is a descent
statistic.)

25 / 41

http://www.arxiv.org/abs/1807.01398v1


Descent statistics: examples

Almost all of our statistics so far are descent statistics.
Examples:
Des, des and maj are descent statistics.
Pk is a descent statistic: If π is an n-permutation, then

Pkπ = (Desπ) \ ((Desπ ∪ {0}) + 1) ,

where for any set K of integers and any integer a we set
K + a = {k + a | k ∈ K}.
Similarly, Lpk, Rpk and Epk are descent statistics.
Question (Gessel & Zhuang). Is every shuffle-compatible
statistic a descent statistic?
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Quasisymmetric functions, part 1: definition

Consider the ring Q [[x1, x2, x3, . . .]] of formal power series in
countably many indeterminates.

A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.

A formal power series f ∈ Q [[x1, x2, x3, . . .]] is said to be
quasisymmetric if its coefficients in front of xa1

i1
xa2
i2
· · · xakik and

xa1
j1
xa2
j2
· · · xakjk are equal whenever i1 < i2 < · · · < ik and

j1 < j2 < · · · < jk .

For example:

Every symmetric power series is quasisymmetric.∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + x2
1x4 + · · · is

quasisymmetric, but not symmetric.

Let QSym be the set of all quasisymmetric bounded-degree
power series in Q [[x1, x2, x3, . . .]]. This is a Q-subalgebra,
called the ring of quasisymmetric functions over Q. (Gessel,
1980s.)
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Quasisymmetric functions, part 2: the monomial basis

For every composition α = (α1, α2, . . . , αk), define

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · · xαk

ik

= sum of all monomials whose nonzero exponents

are α1, α2, . . . , αk in this order.

This is a homogeneous power series of degree |α| (the size of
α, defined by |α| := α1 + α2 + · · ·+ αk).
Examples:

M() = 1.
M(1,1) =

∑
i<j

xixj = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + · · · .

M(2,1) =
∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + · · · .

M(3) =
∑
i
x3
i = x3

1 + x3
2 + x3

3 + · · · .
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This is a homogeneous power series of degree |α| (the size of
α, defined by |α| := α1 + α2 + · · ·+ αk).
The family (Mα)α is a composition is a basis of the Q-vector
space QSym, called the monomial basis (or M-basis).
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Quasisymmetric functions, part 3: the fundamental basis

For every composition α = (α1, α2, . . . , αk), define

Fα =
∑

i1≤i2≤···≤in;
ij<ij+1 for all j∈Desα

xi1xi2 · · · xin

=
∑

β is a composition of n;
Desβ⊇Desα

Mβ, where n = |α| .

This is a homogeneous power series of degree |α| again.
Examples:

F() = 1.
F(1,1) =

∑
i<j

xixj = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + · · · .

F(2,1) =
∑

i≤j<k

xixjxk .

F(3) =
∑

i≤j≤k
xixjxk .
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space QSym, called the fundamental basis (or F -basis).
Sometimes, Fα is also denoted Lα.
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For every composition α = (α1, α2, . . . , αk), define

Fα =
∑

i1≤i2≤···≤in;
ij<ij+1 for all j∈Desα

xi1xi2 · · · xin

=
∑

β is a composition of n;
Desβ⊇Desα

Mβ, where n = |α| .

This is a homogeneous power series of degree |α| again.
What connects QSym with shuffles of permutations is the
following fact:
Theorem. If π and σ are two disjoint permutations, then

FCompπ · FCompσ =
∑

τ∈S(π,σ)

FComp τ .
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The kernel criterion for shuffle-compatibility

If st is a descent statistic, then two compositions α and β are
said to be st-equivalent if |α| = |β| and stα = stβ.
(Remember: stα means stπ for any permutation π satisfying
Compπ = α.)

The kernel Kst of a descent statistic st is the Q-vector
subspace of QSym spanned by all differences of the form
Fα − Fβ, with α and β being two st-equivalent compositions:

Kst = 〈Fα − Fβ | |α| = |β| and stα = stβ〉Q .

Theorem. The descent statistic st is shuffle-compatible if and
only if Kst is an ideal of QSym.
(This is essentially due to Gessel & Zhuang.)

Since Epk is shuffle-compatible, its kernel KEpk is an ideal of
QSym. How can we describe it?

Two ways: using the F -basis and using the M-basis.
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The kernel KEpk in terms of the F -basis

If J = (j1, j2, . . . , jm) and K are two compositions, then we
write J → K if there exists an ` ∈ {2, 3, . . . ,m} such that
j` > 2 and K = (j1, j2, . . . , j`−1, 1, j` − 1, j`+1, j`+2, . . . , jm).
(In other words, we write J → K if K can be obtained from J
by “splitting” some non-initial entry j` > 2 into two
consecutive entries 1 and j` − 1.)

Example. Here are all instances of the → relation on
compositions of size ≤ 5:

(1, 3)→ (1, 1, 2) , (1, 4)→ (1, 1, 3) ,

(1, 3, 1)→ (1, 1, 2, 1) , (1, 1, 3)→ (1, 1, 1, 2) ,

(2, 3)→ (2, 1, 2) .

Proposition. The ideal KEpk of QSym is spanned (as a
Q-vector space) by all differences of the form FJ − FK , where
J and K are two compositions satisfying J → K .
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The kernel KEpk in terms of the M-basis

If J = (j1, j2, . . . , jm) and K are two compositions, then we
write J →

M
K if there exists an ` ∈ {2, 3, . . . ,m} such that

j` > 2 and K = (j1, j2, . . . , j`−1, 2, j` − 2, j`+1, j`+2, . . . , jm).
(In other words, we write J →

M
K if K can be obtained from J

by “splitting” some non-initial entry j` > 2 into two
consecutive entries 2 and j` − 2.)
Example. Here are all instances of the →

M
relation on

compositions of size ≤ 5:

(1, 3)→
M

(1, 2, 1) , (1, 4)→
M

(1, 2, 2) ,

(1, 3, 1)→
M

(1, 2, 1, 1) , (1, 1, 3)→
M

(1, 1, 2, 1) ,

(2, 3)→
M

(2, 2, 1) .

Proposition. The ideal KEpk of QSym is spanned (as a
Q-vector space) by all sums of the form MJ + MK , where J
and K are two compositions satisfying J →

M
K .
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What about other statistics?

Question. Do other descent statistics allow for similar
descriptions of Kst ?
(See the paper for some experimental results.)
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What does LR-shuffle-compatibility mean algebraically?

If shuffle-compatible descent statistics induce ideals of QSym,
then what do LR-shuffle-compatible descent statistics induce?

(shuffle-compatible des. statistics)↔ ((some) ideals of QSym) ;

(LR-shuffle-compatible des. statistics)↔ ??

We will answer this question using the dendriform algebra
structure on QSym.

This structure first appeared in:
Darij Grinberg, Dual immaculate creation operators and a
dendriform algebra structure on the quasisymmetric functions,
Canad. J. Math. 69 (2017), pp. 21–53.
But the ideas go back to:

Glânffrwd P. Thomas, Frames, Young tableaux, and
Baxter sequences, Advances in Mathematics, Volume 26,
Issue 3, December 1977, Pages 275–289.
Jean-Christophe Novelli, Jean-Yves Thibon, Construction
of dendriform trialgebras, arXiv:math/0510218.

Something similar also appeared in: Aristophanes Dimakis,
Folkert Müller-Hoissen, Quasi-symmetric functions and the
KP hierarchy, Journal of Pure and Applied Algebra, Volume
214, Issue 4, April 2010, Pages 449–460.
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Dendriform structure on QSym, part 1

For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.
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For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.

We define a binary operation ≺ on the Q-vector space
Q [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

m ≺ n =

{
m · n, if min (Suppm) < min (Supp n) ;

0, if min (Suppm) ≥ min (Supp n)

for any two monomials m and n.
It should be Q-bilinear.
It should be continuous (i.e., its Q-bilinearity also applies
to infinite Q-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
≺
(
x2

3x5

)
= x2

2x
2
3x4x5, but(

x2
2x4

)
≺
(
x2

2x5

)
= 0.
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For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.

We define a binary operation � on the Q-vector space
Q [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

m � n =

{
m · n, if min (Suppm) ≥ min (Supp n) ;

0, if min (Suppm) < min (Supp n)

for any two monomials m and n.
It should be Q-bilinear.
It should be continuous (i.e., its Q-bilinearity also applies
to infinite Q-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
�
(
x2

3x5

)
= 0, but(

x2
2x4

)
�
(
x2

2x5

)
= x4

2x4x5.
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Dendriform structure on QSym, part 2

We now have defined two binary operations ≺ and � on
Q [[x1, x2, x3, . . .]]. They satisfy:

a ≺ b + a � b = ab;

(a ≺ b) ≺ c = a ≺ (bc) ;

(a � b) ≺ c = a � (b ≺ c) ;

a � (b � c) = (ab) � c .

This says that (Q [[x1, x2, x3, . . .]] , ≺ , �) is a dendriform
algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).

QSym is closed under both operations ≺ and �. Thus, QSym
becomes a dendriform subalgebra of Q [[x1, x2, x3, . . .]].

35 / 41

http://arxiv.org/abs/1101.0267
http://arxiv.org/abs/1101.0267


Dendriform structure on QSym, part 2

We now have defined two binary operations ≺ and � on
Q [[x1, x2, x3, . . .]]. They satisfy:

a ≺ b + a � b = ab;

(a ≺ b) ≺ c = a ≺ (bc) ;

(a � b) ≺ c = a � (b ≺ c) ;

a � (b � c) = (ab) � c .

This says that (Q [[x1, x2, x3, . . .]] , ≺ , �) is a dendriform
algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).
QSym is closed under both operations ≺ and �. Thus, QSym
becomes a dendriform subalgebra of Q [[x1, x2, x3, . . .]].

35 / 41

http://arxiv.org/abs/1101.0267
http://arxiv.org/abs/1101.0267


Dendriform structure on QSym, part 2

We now have defined two binary operations ≺ and � on
Q [[x1, x2, x3, . . .]]. They satisfy:

a ≺ b + a � b = ab;

(a ≺ b) ≺ c = a ≺ (bc) ;

(a � b) ≺ c = a � (b ≺ c) ;

a � (b � c) = (ab) � c .

This says that (Q [[x1, x2, x3, . . .]] , ≺ , �) is a dendriform
algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).
QSym is closed under both operations ≺ and �. Thus, QSym
becomes a dendriform subalgebra of Q [[x1, x2, x3, . . .]].

35 / 41

http://arxiv.org/abs/1101.0267
http://arxiv.org/abs/1101.0267


The kernel criterion for LR-shuffle-compatibility

Recall the Theorem: The descent statistic st is
shuffle-compatible if and only if Kst is an ideal of QSym.
Similarly, Theorem: The descent statistic st is
LR-shuffle-compatible if and only if

QSym ≺ Kst ⊆ Kst and Kst ≺ QSym ⊆ Kst and

QSym � Kst ⊆ Kst and Kst � QSym ⊆ Kst

(that is, Kst is an ideal of the dendriform algebra QSym).

Thus, for example, KEpk is an ideal of the dendriform algebra
QSym, and the quotient QSym /KEpk is a dendriform algebra.
This actually inspired the (combinatorial) proof of
LR-shuffle-compatibility hinted at above.
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A few questions

Question. What mileage do we get out of Z-enriched
(P, γ)-partitions for other choices of N and Z than the ones
used in the known proofs?

Question. What ring do the KZn,Λ span?

Question. Hsiao and Petersen have generalized enriched
(P, γ)-partitions to “colored (P, γ)-partitions” (with {+,−}
replaced by an m-element set). Does this generalize our
results?

Question. How do the kernels Kst look like for
st = Pk, Lpk, . . .?

Question. Are the quotients QSym /Kst for
st = des, Lpk,Epk known dendriform algebras?
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Section 4

Section 4

Quadri-compatibility (work in progress)

References:

a forthcoming preprint.

Marcelo Aguiar, Jean-Louis Loday, Quadri-algebras, Journal of
Pure and Applied Algebra, Volume 191 (2004), Issue 3, Pages
205–221.

Löıc Foissy, Free quadri-algebras and dual quadri-algebras,
arXiv:1504.06056.
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WIP: Quadri-compatibility, 1: definition

We can refine LR-shuffle-compatibility even further.

Given two disjoint nonempty permutations
π = (π1, π2, . . . , πn) and σ = (σ1, σ2, . . . , σm), define sets
Si ,j (π, σ) for all i , j ∈ {1, 2} as follows:

S1,1 (π, σ) = {τ ∈ S (π, σ) | τ1 = π1 and τn+m = πn} ;

S1,2 (π, σ) = {τ ∈ S (π, σ) | τ1 = π1 and τn+m = σm} ;

S2,1 (π, σ) = {τ ∈ S (π, σ) | τ1 = σ1 and τn+m = πn} ;

S2,2 (π, σ) = {τ ∈ S (π, σ) | τ1 = σ1 and τn+m = σm} .

A statistic st is said to be quadri-compatible if for any two
disjoint nonempty permutations π and σ and any i , j ∈ {1, 2},
the multiset

{st τ | τ ∈ Si ,j (π, σ)}multiset

depends only on stπ, stσ, |π|, |σ|, i , j , the truth value of
π1 > σ1, and the truth value of πn > σm.
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WIP: Quadri-compatibility, 2: criterion

A permutation statistic st is said to be tail-graft-compatible if
for any nonempty permutation π = (π1, π2, . . . , πn) and any
letter a that does not appear in π, the element st (π : a)
depends only on st (π), |π| and on the truth value of a > πn.
Here, π : a is the permutation obtained from π by appending
a at the end:

π = (π1, π2, . . . , πn) =⇒ π : a = (a, π1, π2, . . . , πn, a) .

(Almost-)Theorem (G.) A statistic st is quadri-compatible if
and only if it is shuffle-compatible, head-graft-compatible
and tail-graft-compatible.
My proof uses both induction and QSym and still needs to be
written up. (Hopefully it survives the process.)

Hence, Des, des, and Epk are quadri-compatible. (But not
maj or Lpk or Rpk or Pk.)
The proof (so far) uses a refined version of dendriform
algebras: the quadri-algebras of Aguiar and Loday
(arXiv:math/0309171, arXiv:1504.06056).
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Thanks

Thanks to Ira Gessel and Yan Zhuang for initiating this direction
(and for helpful discussions).
Thank you for attending!

slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/

dartmouth18.pdf

paper: http:

//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf

project: https://github.com/darijgr/gzshuf
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