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Symmetric functions and Witt vectors

@ The connection between symmetric functions and (big) Witt
vectors is due to Cartier around 1970 (vaguely; made explicit
by Reutenauer in 1995), and can be used to the benefit of
either.

@ Modern references: e.g., Hazewinkel's Witt vectors, part 1
(arXiv:0804.3888v1, see also errata), and works of James
Borger (mainly arXiv:0801.1691v6, as well as
arXiv:math/0407227v1 joint with Wieland).


http://www.arxiv.org/abs/0804.3888v1
http://www.cip.ifi.lmu.de/~grinberg/algebra/typos1short.pdf
http://www.arxiv.org/abs/0801.1691v6
http://www.arxiv.org/abs/math/0407227v1

Symmetric functions and Witt vectors

The connection between symmetric functions and (big) Witt
vectors is due to Cartier around 1970 (vaguely; made explicit
by Reutenauer in 1995), and can be used to the benefit of
either.

Modern references: e.g., Hazewinkel's Witt vectors, part 1
(arXiv:0804.3888v1, see also errata), and works of James
Borger (mainly arXiv:0801.1691v6, as well as
arXiv:math/0407227v1 joint with Wieland).

Let Ny ={1,2,3,...}. The (big) Witt vector functor is a
functor W : CRing — CRing, sending any commutative ring
A to a new commutative ring W(A) with some extra
structure.

Note that W/(A) is a ring, not an A-algebra.
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Definition of Witt vectors, 1: ghost maps

@ Let A be a commutative ring.
We abbreviate a family (ax) ey, € AN+ as a. Similarly for
other letters.

@ For each n € N, define a map w, : AN+ — A by

Wn (a) == Z dag/d.
d|n

The map wy, is called the n-th ghost projection.
e Examples:
e Wi = ax.
o If pis a prime, then w, = af + pap.
o wg = a% +2a3 + 3a3 + 6ag.
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@ Let A be a commutative ring.
We abbreviate a family (ax),cy, € AN+ as a. Similarly for
other letters.

@ For each n € N, define a map w, : AN+ — A by

wy(a) = Y dal/?.
din
The map wy, is called the n-th ghost projection.

o Let w: AN+ — AN+ be the map given by

w(a) = (Wn (a)) pen, -

We call w the ghost map.



Definition of Witt vectors, 1: ghost maps

@ Let A be a commutative ring.
We abbreviate a family (ax),cy, € AN+ as a. Similarly for
other letters.

@ For each n € N, define a map w, : AN+ — A by

wa(a) = daf/°.
din

The map wy, is called the n-th ghost projection.
o Let w: AN+ — AN+ be the map given by

w(a) = (Wn (a)) pen, -

We call w the ghost map.

@ This ghost map w is not linear and in general not injective or
surjective. However, its image turns out to be a subring of
AN+ 1t is called the ring of ghost-Witt vectors.



Definition of Witt vectors, 2: addition

@ For example, for any a,b € AN+, we have
w (a) + w (b) = w (c) for some c € AN+, How to compute
this ¢ ?
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o w is bijective if A is a Q-vector space.



Definition of Witt vectors, 2: addition

@ For example, for any a,b € AN+, we have
w (a) + w (b) = w (c) for some c € AN+, How to compute
this ¢ ?

@ Good news:

o w is injective if A is torsionfree (as Z-module).
o w is bijective if A is a Q-vector space.

@ Hence, we can compute ¢ back from w (c) by recursion
(coordinate by coordinate). Miraculously, the denominators
vanish.

Examples:
o wi(c) =wi(a)+wi(b) <= c1 = a1 + b1.
° W2(C) = Wz(a) + Wg(b) <~
ct 4+ 2c = (a? + 2ap) + (b} + 2b,
1
o= a2+b2+§ (a%+bf — (a1 + b1) ) and the RHS is

indeed a Z-polynomial.

) naturallty



Definition of Witt vectors, 3: W(A)

@ Let’s make a new ring out of this: We define W(A) to be the
ring that equals AN+ as a set, but whose ring structure is such
that W : CRing — CRing is a functor, and w is a natural (in
A) ring homomorphism from W(A) to AN+.
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@ Let’s make a new ring out of this: We define W(A) to be the
ring that equals AN+ as a set, but whose ring structure is such
that W : CRing — CRing is a functor, and w is a natural (in
A) ring homomorphism from W(A) to AN+,

@ This looks abstract and confusing, but the underlying idea is
simple: Define addition on W/(A) so that
w, (a + b) = wp(a) + wy(b) for all n.

Thus, a+ b is the c from last page.

@ Functoriality is needed, because there might be several choices
for a given A (if A is not torsionfree), but only one consistent
choice for all rings A. Functoriality forces us to pick the
consistent choice.



Definition of Witt vectors, 3: W(A)

@ Let’s make a new ring out of this: We define W(A) to be the
ring that equals AN+ as a set, but whose ring structure is such
that W : CRing — CRing is a functor, and w is a natural (in
A) ring homomorphism from W(A) to AN+,

@ This looks abstract and confusing, but the underlying idea is
simple: Define addition on W/(A) so that
w, (a + b) = wp(a) + wy(b) for all n.

Thus, a+ b is the c from last page.

@ Functoriality is needed, because there might be several choices
for a given A (if A is not torsionfree), but only one consistent
choice for all rings A. Functoriality forces us to pick the
consistent choice.

e If a € W(A), then the a, are called the Witt coordinates of a,
while the wy(a) are called the ghost coordinates of a.



Definition of Witt vectors, 4: coda

@ The ring W(A) is called the ring of (big) Witt vectors over A.

@ The functor CRing — CRing, A+— W(A) is called the (big)
Witt vector functor.



Definition of Witt vectors, 4: coda

@ The ring W(A) is called the ring of (big) Witt vectors over A.

@ The functor CRing — CRing, A+— W(A) is called the (big)
Witt vector functor.

@ For any given prime p, there is a canonical quotient W, (A) of
W (A) called the ring of p-typical Witt vectors of A. Number
theorists usually care about the latter ring. For example,

W, (Fp) = Z,, (the p-adics). We have nothing to say about it
here.

@ W/(A) comes with more structure: Frobenius and
Verschiebung endomorphisms, a comonad comultiplication
map W(A) — W(W(A)), etc.



Avatars of Witt vectors, 1: Power series

@ There are some equivalent ways to define W/(A). Let me show
two.
@ One is the Grothendieck construction using power series (see,
again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
@ Let A(A) be the topological ring defined as follows:
o As topological spaces, A(A) =1+ tA[[t]] =
{power series with constant term 1}.
o Addition F in A(A) is multiplication of power series.
o Multiplication = in A(A) is given by

(1—at)~(1—bt)=1-—abt

(and distributivity and continuity, and naturality in A).
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@ There are some equivalent ways to define W/(A). Let me show
two.
@ One is the Grothendieck construction using power series (see,
again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
@ Let A(A) be the topological ring defined as follows:
o As topological spaces, A(A) =1+ tA[[t]] =
{power series with constant term 1}.
o Addition F in A(A) is multiplication of power series.
o Multiplication = in A(A) is given by

(1—at)~(1—bt)=1-—abt
(and distributivity and continuity, and naturality in A).

@ Canonical ring isomorphism

W(A) = A(A), ar ﬁ (1— ant").
n=1


http://www.arxiv.org/abs/1409.7445

Avatars of Witt vectors, 2: Characters of A (virtual alphabets)

@ Here is another: Let A be the Hopf algebra of symmetric
functions over Z. (No direct relation to A(A); just traditional
notations clashing.)

@ Define ring Alg(A, A) as follows:

o As set, Alg(A, A) = {algebra homomorphisms A — A}.

e Addition = convolution.

e Multiplication = convolution using the second
comultiplication on A (= Kronecker comultiplication =
Hall dual of Kronecker multiplication).


http://www.math.cornell.edu/~maguiar/CHalgebra.pdf

Avatars of Witt vectors, 2: Characters of A (virtual alphabets)

@ Here is another: Let A be the Hopf algebra of symmetric
functions over Z. (No direct relation to A(A); just traditional
notations clashing.)

@ Define ring Alg(A, A) as follows:

o As set, Alg(A, A) = {algebra homomorphisms A — A}.

e Addition = convolution.

e Multiplication = convolution using the second
comultiplication on A (= Kronecker comultiplication =
Hall dual of Kronecker multiplication).

@ The elements of Alg(A, A) are known as characters of A (as in
Aguiar-Bergeron-Sottile) or virtual alphabets (to the Lascoux
school) or as specializations of symmetric functions (as in
Stanley's EC2).
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Avatars of Witt vectors, 2: Characters of A (virtual alphabets)

@ Here is another: Let A be the Hopf algebra of symmetric
functions over Z. (No direct relation to A(A); just traditional
notations clashing.)

@ Define ring Alg(A, A) as follows:

o As set, Alg(A, A) = {algebra homomorphisms A — A}.

e Addition = convolution.

e Multiplication = convolution using the second
comultiplication on A (= Kronecker comultiplication =
Hall dual of Kronecker multiplication).

@ There is a unique family (W,,)n€N+ of symmetric functions
satisfying p, = Zd|n dwg/d for all n € N1. (Equivalently, it is
determined by h, = >, , wx, where wy = wy, wy, - --.)
These are called the Witt coordinates.

@ We have a ring isomorphism

Alg(A, A) — W(A), f = (f (wn))

neN, -



Avatars of Witt vectors, 2: Characters of A, cont’d

® There is a unique family (wy),cy, of symmetric functions

satisfying p, = Zd|n dwg/d for all n € N1. (Equivalently, it is
determined by h, = >, , wx, where wy = wy, wy, - --.)
These generate A as a ring, are called the Witt coordinates,
and were first introduced in 1995 by Reutenauer.

@ We have a ring isomorphism

Alg(N, A) — W(A), fi— (f(wn))

neNy -


http://dx.doi.org/10.1006/aima.1995.1009

Avatars of Witt vectors, 2: Characters of A, cont’d

® There is a unique family (wy),cy, of symmetric functions

satisfying p, = Zd|n dwg/d for all n € N1. (Equivalently, it is
determined by h, = >, , wx, where wy = wy, wy, - --.)
These generate A as a ring, are called the Witt coordinates,
and were first introduced in 1995 by Reutenauer.

@ We have a ring isomorphism

Alg(N, A) — W(A), fi— (f(wn))
@ We also have a ring homomorphism (isomorphism when A is a
Q-algebra)
Alg(A, A) — AN+, f = (F (Pn)) pen, -

These form a commutative diagram

neNy -

Alg(A, A) —= W(A)

Ny

AN+


http://dx.doi.org/10.1006/aima.1995.1009

Reconstructing A from W = Alg(A, —)

@ This also works in reverse: We can reconstruct A from the
functor W, as its representing object. Namely:

o The functor ForgetoW : CRing — Set determines A as
a ring (by Yoneda).

o The functor Forget oW : CRing — Ab (additive group of
W(A)) determines A as a Hopf algebra.

o The functor W : CRing — CRing determines A as a
Hopf algebra equipped with a second comultiplication.

e The comonad structure on W additionally determines
plethysm on A.

10/33



Reconstructing A from W = Alg(A, —)

@ This also works in reverse: We can reconstruct A from the
functor W, as its representing object. Namely:

o The functor ForgetoW : CRing — Set determines A as
a ring (by Yoneda).

o The functor Forget oW : CRing — Ab (additive group of
W(A)) determines A as a Hopf algebra.

o The functor W : CRing — CRing determines A as a
Hopf algebra equipped with a second comultiplication.

e The comonad structure on W additionally determines
plethysm on A.

@ Thus, if symmetric functions hadn’t been around, Witt vectors
would have let us rediscover them.
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The ghost-Witt integrality theorem (aka Dwork lemma), 1
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about proving that the Witt vector functor W exists?
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The ghost-Witt integrality theorem (aka Dwork lemma), 1

@ Assume you don't know about A(A) or A. How would you go
about proving that the Witt vector functor W exists?

In other words, why do the denominators (e.g., in the
computation of c satisfying w(a) + w(b) = w(c))
“miraculously” vanish?

@ This is a consequence of the ghost-Witt integrality theorem,
also known (in parts) as Dwork’s lemma. | shall state a (more
or less) maximalist version of it; only the C <= & part is
actually needed.

11/33



The ghost-Witt integrality theorem (aka Dwork lemma), 2

@ Ghost-Witt integrality theorem.
Let A be a commutative ring. For every n € N, let
©n : A— A be an endomorphism of the ring A. Assume that:

o We have ¢, (a) = aP mod pA for every a € A and every
prime p.

o We have 3 = id, and we have ¢, 0 oy = @pm for every
n,m € N,. (Thus, n— ¢, is an action of the
multiplicative monoid N on A by ring endomorphisms.)

12/33
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be a polynomial ring over Z, and let ¢, send each
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The ghost-Witt integrality theorem (aka Dwork lemma), 2

@ Ghost-Witt integrality theorem.
Let A be a commutative ring. For every n € N, let
©n : A— A be an endomorphism of the ring A. Assume that:

o We have ¢, (a) = aP mod pA for every a € A and every
prime p.

o We have 3 = id, and we have ¢, 0 oy = @pm for every
n,m € N,. (Thus, n— ¢, is an action of the
multiplicative monoid N on A by ring endomorphisms.)

[For a stupid example, let A =7 and ¢, = id.

For an example that is actually useful to Witt vectors, let A
be a polynomial ring over Z, and let ¢, send each
indeterminate to its n-th power.]

Let b = (by) oy, € A+ be a sequence of elements of A.
Then, the following assertions are equivalent: [continued on
next page]
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The ghost-Witt integrality theorem (aka Dwork lemma), 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every n € N, and every prime divisor p of n satisfy

©p (bn/p) = b, mod p"?(MA

(where vp(n) is the multiplicity of p in the factorization
of n).
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The ghost-Witt integrality theorem (aka Dwork lemma), 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every n € N, and every prime divisor p of n satisfy
©p (bn/p) = b, mod p"?(MA

(where vp(n) is the multiplicity of p in the factorization
of n).

D: There exists a sequence x = (X")nEN+ € AN+ of elements
of A such that

b, = Z dxg/d = wy, (x) for every n € N;.
d|n

In other words, x belongs to the image of the ghost map
w.
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The ghost-Witt integrality theorem (aka Dwork lemma), 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every n € N, and every prime divisor p of n satisfy

©p (bn/p) = b, mod p"?(MA
(where vp(n) is the multiplicity of p in the factorization
of n).
D: There exists a sequence x = (X")nEN+ € AN+ of elements
of A such that

b, = Z dxg/d = wy, (x) for every n € N;.
d|n

In other words, x belongs to the image of the ghost map
w.

&: There exists a sequence Y = (¥n),cn, € AN+ of elements
of A such that

b, = Z denq(yd) for every ne€ N,.

dln 13/33



The ghost-Witt integrality theorem (aka Dwork lemma), 4

@ Ghost-Witt integrality theorem, continued.
F: Every n € N satisfies

Z,LL n/d) € nA.
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The ghost-Witt integrality theorem (aka Dwork lemma), 4

@ Ghost-Witt integrality theorem, continued.
F: Every n € N satisfies

Z,LL n/d) € nA.

G: Every n € N satisfies
Z¢ n/d) € nA.
d|n

J: There exists a ring homomorphism from the ring A to A
which sends p, (the n-th power sum symmetric function)
to b, for every n € N.
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The ghost-Witt integrality theorem (aka Dwork lemma), 4

@ Ghost-Witt integrality theorem, continued.
F: Every n € N satisfies

Z,LL n/d) € nA.

G: Every n € N satisfies

Z¢ n/d) € nA.

d|n

J: There exists a ring homomorphism from the ring A to A
which sends p, (the n-th power sum symmetric function)
to b, for every n € N.

@ Note that this theorem has various neat consequences, like the

famous necklace divisibility n | 3" u(d)q™/? for n € N, and
d|n
q € Z. (And various generalizations.)

14 /33



Z and Fg [T]: a tale of two rings

Now to something completely different...

@ Fix a prime power q.

@ There is a famous analogy between the elements of Z and the
elements of Fy [T]. (This is related to g-enumeration, the lore
of the field with 1 element, etc.)

All that matters to us is that
e positive integers in Z correspond to monic polynomials
inFg [T];
e primes in Z correspond to irreducible monic polynomials
inFg [T].
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Z and Fg [T]: a tale of two rings

Now to something completely different...

@ Fix a prime power q.

@ There is a famous analogy between the elements of Z and the
elements of Fy [T]. (This is related to g-enumeration, the lore
of the field with 1 element, etc.)

All that matters to us is that
e positive integers in Z correspond to monic polynomials
inFg [T];
e primes in Z correspond to irreducible monic polynomials
inFg [T].
o Let Fy[T], be the set of all monic polynomials in Fy [T].

@ Let's define an analogue of (big) Witt vectors for Fg [T]
instead of Z.

15/33



Definition of F, [ T]-Witt vectors, 1: ghost maps

@ Let A be a commutative F, [T]-algebra.
We abbreviate a family (an)yer,(7), € AFalTly 35 a.

o Foreach N € Fy[T] ., define a map wy : AFalTL 5 A by

deg(N /D)
wy(a) =Y Daf™ ",

D|N

where the sum is over all monic divisors D of N.
o Let w: ATalTli — AFalTlL pe the map given by

w(a) = (wy (a))Nqu[TLr :
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Definition of F, [ T]-Witt vectors, 1: ghost maps

@ Let A be a commutative F, [T]-algebra.
We abbreviate a family (an)yer,(7), € AFalTly 35 a.

@ For each N € Fy [T],, define a map wy : ATl — A by
gllly

deg(N /D)
wy(a) =Y Daf™ ",

D|N

where the sum is over all monic divisors D of N.
o Let w: ATalTli — AFalTlL pe the map given by

w(a) = (wy (a))Nqu[TLr :

@ This “ghost map" w is Fg-linear, but not Fg [T]-linear.

16 /33



Definition of F, [ T]-Witt vectors, 2: W,(A)

@ Let's make a new [ [ T]-algebra out of this: We define
W, (A) to be the Fq [T]-algebra
e that equals AFalTl. 35 a set, but
o which is functorial in A (that is, we are really defining a
functor Wy : CRingp 7] — CRingp, [}, where CRingp
is the category of commutative R-algebras), and
o whose [ [T]-algebra structure is such that w is a natural

(in A) homomorphism of Fg [ T]-algebras from W,(A) to
AFQ[T]+_

17/33



Definition of F [ T]-Witt vectors, 2: W,(A), cont’d

o Example: The addition in W,(A) is the same as in A%l
(since w is Fg-linear, and so W, (A) = AFalTl+ as
Fq—modules), so this would be boring.
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Definition of F [ T]-Witt vectors, 2: W,(A), cont’d

o Example: The addition in W,(A) is the same as in A%l
(since w is Fg-linear, and so W, (A) = AFalTl+ as
Fq—modules), so this would be boring. Instead, let's set
c= Tain Wy(A), and compute w,(c) for an irreducible 7.
Start with ¢; = Ta;, which is easy to check.
wr(c) = Twr(a)

— ¢f .y 7Tc7r = Ta "4 Tra,
a=Ia (Ta 1)‘7 "t re, = Tai’degTr + Tra,
— 7y = Tmag — <que“ T) aj’degﬂ

deg 7

naturality ¢ = Taﬂ _ Ta — Taildegﬂ-

The fraction on the RHS E a polynomial due to a known fact

from Galois theory (namely:

K
T —-T= I1 7)-
vEFG[T], irreducible; deg~|k

18/33



Definition of I, [ T]-Witt vectors, 3: coda

@ There is also a second construction of W;(A), using Carlitz
polynomials, yielding an isomorphic F, [ T]-algebra. (See the
preprint.)
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Avatars of [, [ T]-Witt vectors?

@ Can we find anything similar to the two avatars of W/(A) ?
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where the exponents are polynomials in Fq [T]. Product
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to wish...
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Avatars of [, [ T]-Witt vectors?

@ Can we find anything similar to the two avatars of W(A) ?

@ Power series? This appears to require a notion of power series
where the exponents are polynomials in Fq [T]. Product
ill-defined due to lack of actual “positivity”. Seems too much
to wish...

e Alg(A, A)? Well, we can try brute force: Remember how A
was reconstructed from W, and do something similar to
“reconstruct” a representing object from W,. We'll come
back to this shortly.

20/33



Surprise: F-modules, 1

o First, a surprise...
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Surprise: F-modules, 1

@ First, a surprise...

@ We aren't using the whole F [T]-algebra structure on A !
(This is unlike the Z-case, where it seems that we use the
commutative ring A in full.)

21/33



Surprise: F-modules, 2

@ Let F be the noncommutative ring
Fo(F, T|FT =T9F).

This is an Fg-vector space with basis (TiFj)(ij)eNQ, and is an
Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).
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Surprise: F-modules, 2

@ Let F be the noncommutative ring
Fo(F, T|FT =T9F).

This is an Fg-vector space with basis (TiFj)(ij)eNQ, and is an

Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).
@ Actually,
F 2 (R [T1X]g s +:0)

where Fq [T][X];_jin
where X occurs only with exponents g¥, and where o is
composition of polynomials.

are the polynomials in X over Fy [T]
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Surprise: F-modules, 2

@ Let F be the noncommutative ring
Fo(F, T|FT =T9F).

This is an Fg-vector space with basis (TiFj)(ij)eNz, and is an

Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).

@ What matters to us:
Each commutative F, [T]-algebra canonically becomes a (left)
F-module by having

o T act as multiplication by T, and
o F act as the Frobenius (i.e., taking g-th powers).

Thus, we have a functor CRingy 7] — Modr.
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Surprise: F-modules, 2

@ Let F be the noncommutative ring
Fo(F, T|FT =T9F).

This is an F4-vector space with basis (TiFf)( ) and is an

ij)eN2’
Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).

@ What matters to us:
Each commutative F [ T]-algebra canonically becomes a (left)
F-module by having

e T act as multiplication by T, and
o F act as the Frobenius (i.e., taking g-th powers).

Thus, we have a functor CRingp 7] — Modr.

@ There are other sources of F-modules too (cf. Jacobson on
“commutative restricted Lie algebras”).
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F, [T]-Witt vectors of an 7-module

@ Let A be a (left) F-module.
We abbreviate a family (an)yer,(7), € AFalTlL 35 a.

@ For each N € Fq[T],, define a map wy : A¥[7l — A by
wy (a) = > _ DFE/Plap,
D|N

where the sum is over all monic divisors D of N.
o Let w: AMalTli 5 AFalTlL pe the map given by

w(a) = (wy (a))Ne]Fq[T]Jr :
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F, [T]-Witt vectors of an 7-module

@ Let A be a (left) F-module.
We abbreviate a family (an)yer,(7), € AFalTl 55 a.

o Foreach N € Fg[T] ., define a map wy : AFalTlL 5 A by
wy (a) = > _ DFE/Plap,
DIN

where the sum is over all monic divisors D of N.
o Let w: AMalTli 5 AFalTlL pe the map given by

w(a) = (wy (5‘))Ne]Fq[T]Jr :

o We define Wg(A) to be the F-module
e that equals AFalT]L 35 3 set, but
o which is functorial in A (that is, we are really defining a
functor W, : Modr — Mody), and
o whose F-module structure is such that w is a natural (in
A) homomorphism of F-modules from W, (A) to AFalTl:.
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An F-ghost-Witt integrality theorem, 1

@ Again, there is a “ghost-Witt integrality theorem” that helps
prove the existence of the W, functors.
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An F-ghost-Witt integrality theorem, 2

o F-ghost-Witt integrality theorem.
Let A be a (left) F-module. For every P € Fq[T],, let

wp : A— A be an endomorphism of the F-module A.
Assume that:

o We have ¢, (a) = F8"amod 1A for every a € A and
every monic irreducible 7 € Fq [T] .

o We have ¢1 = id, and we have ¢y o op = oy for every
N,M € Fq[T],. (Thus, N — oy is an action of the
multiplicative monoid Fq [T], on A by F-module
endomorphisms.)
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An F-ghost-Witt integrality theorem, 2

o F-ghost-Witt integrality theorem.
Let A be a (left) F-module. For every P € Fq[T],, let
wp : A— A be an endomorphism of the F-module A.
Assume that:

o We have ¢, (a) = F8"amod 1A for every a € A and
every monic irreducible 7 € Fq [T] .

o We have ¢1 = id, and we have ¢y o op = oy for every
N,M € Fq[T],. (Thus, N — oy is an action of the
multiplicative monoid Fq [T], on A by F-module
endomorphisms.)

o Let b= (bn),en, € A¥alT]: be a family of elements of A.
Then, the following assertions are equivalent: [continued on
next page]
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An F-ghost-Witt integrality theorem, 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every N € Fg[T], and every monic irreducible divisor m
of N satisfy

¢r (by/r) = by mod (M A,
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An F-ghost-Witt integrality theorem, 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every N € Fg[T], and every monic irreducible divisor m
of N satisfy

¢r (by/r) = by mod (M A,

Ds: There exists a family x = (XN)Ne]Fq[Th e ATl of
elements of A such that
by = Z DFee(N/D)y s — wy (x) for every N € Fq[T],.
DI|N
In other words, x belongs to the image of the ghost map
w.
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An F-ghost-Witt integrality theorem, 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every N € Fg[T], and every monic irreducible divisor m
of N satisfy

¢r (by/r) = by mod (M A,
Dy: There exists a family x = (XN)Ne]Fq[Th e ATl of
elements of A such that
N
bN:ZDE[T+F]xD for every N € Fq [T], .
D|N

[This is mainly interesting due to the connection to
Carlitz polynomials.]
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An F-ghost-Witt integrality theorem, 3

@ Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every N € Fg[T], and every monic irreducible divisor m
of N satisfy

¢r (by/r) = by mod (M A,

Ds: There exists a family x = (XN)Ne]Fq[Th e ATl of
elements of A such that
by = Z DFee(N/D)y s — wy (x) for every N € Fq[T],.
DIN
In other words, x belongs to the image of the ghost map
w.
E: There exists a family y = (yN)NGFq[Th e AFalTl of
elements of A such that
by = Z Donyp (yp) for every N € Fo[T], .

DIN
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An F-ghost-Witt integrality theorem, 4

@ Ghost-Witt integrality theorem, continued.
F: Every N € Fg[T], satisfies
> (D)o (byyp) € NA.
D|N

Here, it is an Fq [T]-version of the Mobius function,
defined as the usual one (i.e., squarefree — number of
distinct irreducible factors; non-squarefree — 0).
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@ Ghost-Witt integrality theorem, continued.
F: Every N € Fg[T], satisfies
> (D)o (byyp) € NA.
D|N

Here, it is an Fq [T]-version of the Mobius function,
defined as the usual one (i.e., squarefree — number of
distinct irreducible factors; non-squarefree — 0).

G: Bvery N € Fq[T], satisfies

> (D) ep (bujp) € NA,
D|N

where ¢ is one of two reasonable F [ T]-versions of the
Euler totient function.
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An F-ghost-Witt integrality theorem, 4

@ Ghost-Witt integrality theorem, continued.
F: Every N € Fg[T], satisfies
> (D)o (byyp) € NA.
D|N

Here, it is an Fq [T]-version of the Mobius function,
defined as the usual one (i.e., squarefree — number of
distinct irreducible factors; non-squarefree — 0).

G: Bvery N € Fq[T], satisfies

> (D) ep (bujp) € NA,
DIN
where ¢ is one of two reasonable F [ T]-versions of the

Euler totient function.

T 1

27 /33



An F-ghost-Witt integrality theorem, 4

@ Ghost-Witt integrality theorem, continued.
F: Every N € Fg[T], satisfies

> (D)o (byyp) € NA.
DIN
Here, it is an Fq [T]-version of the Mobius function,
defined as the usual one (i.e., squarefree — number of
distinct irreducible factors; non-squarefree — 0).
G: Bvery N € Fq[T], satisfies

> (D) ep (bujp) € NA,
D|N
where ¢ is one of two reasonable F [ T]-versions of the
Euler totient function.
T
@ To state J, we need an [, [T]-analogue of the symmetric

functions.
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Tinfoil, 1: What is Ar ?

@ Now, back to the question: We have found two functors

Wq : CRingg 7] — CRingp, (1] and
Wq : Modr — Modyr.

What are their representing objects? Call them A’z and Az.
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Tinfoil, 1: What is Ar ?

@ Now, back to the question: We have found two functors
Wq : CRingg 7] — CRingp, (1] and
Wy : Modr — Modr.

What are their representing objects? Call them A’z and Az.

@ Both objects (they are distinct) have good claims on the
name "Fgq [T]-symmetric functions”.
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Tinfoil, 1: What is Ar ?

@ Now, back to the question: We have found two functors

Wq : CRingg 7] — CRingp, (1] and
Wq : Modr — Modyr.

What are their representing objects? Call them A’z and Az.

@ Both objects (they are distinct) have good claims on the
name "Fgq [T]-symmetric functions”.

@ | shall focus on Ax, since it is smaller.
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Tinfoil, 2: “Re” constructing Ar

@ Proceed in the same way as when we reconstructed A from
the functor W, but now reconstruct the representing object
Ar of the functor W, : Modr — Modr:

o The functor Forget oW, : Modr — Set determines Ax
as an F-module (by Yoneda).

o The functor W : Modr — Modz determines Ax as an
F-F-bimodule.

o There is an additional comonad structure on W, which
determines a “plethysm” on Az, but | know nothing
about it.
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@ Proceed in the same way as when we reconstructed A from
the functor W, but now reconstruct the representing object
Ar of the functor W, : Modr — Modr:

o The functor Forget oW, : Modr — Set determines Ax
as an F-module (by Yoneda).

o The functor W : Modr — Modz determines Ax as an
F-F-bimodule.
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@ So what is this Ag ?
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Tinfoil, 2: “Re” constructing Ar

@ Proceed in the same way as when we reconstructed A from
the functor W, but now reconstruct the representing object
Ar of the functor W, : Modr — Modr:

o The functor Forget oW, : Modr — Set determines Ax
as an F-module (by Yoneda).

o The functor W : Modr — Modz determines Ax as an
F-F-bimodule.

o There is an additional comonad structure on W, which
determines a “plethysm” on Az, but | know nothing
about it.

@ So what is this Ag ?

@ | don't really know.
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Tinfoil, 3: Some computations inside Ax

@ At least, we can compute in Az (in theory):

@ The left F-module Ar has a basis (WN)Nqu[T]+, similarly to
the generating set (wy),cy, of the commutative ring A.

° 'Ijhe. left F-module Ax has an “.almost—basis” (PN) nerq[T].
similarly t(? the_ almost-generating set” (pp),cy, of the
commutative ring A.

Here, “almost-basis” means “basis after localizing so that
elements of Fq [T], become invertible”. (Noncommutative
localization, but a harmless case thereof.)
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Tinfoil, 3: Some computations inside Ax

At least, we can compute in Ax (in theory):
The left F-module Ax has a basis (WN)Nqu[T]+, similarly to

the generating set (wy),cy, of the commutative ring A.
The left F-module Az has an “almost-basis” (pN)Nqu[T]+'

similarly to the “almost-generating set” (pn),cy, of the
commutative ring A.
Here, “almost-basis” means “basis after localizing so that
elements of Fq [T], become invertible”. (Noncommutative
localization, but a harmless case thereof.)
The right F-module structure is easily expressed on the py's
(just as the second comultiplication of A is easily expressed on
the p,'s):

pnf = fpy for all f € F and N € Fq [T], .
You can thus express gf for each f € F and g € Ar by
recursion (all fractions will turn out polynomial at the end),
but nothing really explicit.
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Tinfoil, 4: Examples

@ Here are some of these expressions:

deg 7
Ta - T

we T = Tw, — 7Fdeg7rwl;

T

wrF = 7971 Fu,

for any irreducible m € Ty [T], .
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

@ This is not Fq [T]-related, but | find it curious.
@ Remember how the ghost-Witt equivalence theorem

generalizes the divisibility n | S u(d)g™9 for n € N, and
d|n
q € Z:
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

@ This is not Fq [T]-related, but | find it curious.

@ Remember how the ghost-Witt equivalence theorem

generalizes the divisibility n | S u(d)g™9 for n € N, and
d|n
q € Z:

@ Ghost-Witt: The following (among others) are equivalent:
C: Every n € Ny and every prime divisor p of n satisfy

¢p (bn/p) = bymod p*(MA

(where v,(n) is the multiplicity of p in the factorization
of n).
G: Every n € N, satisfies

qu n/d) € nA.

[Remember that you can pick ¢, = id when A =Z.]
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

@ This is not Fg [T]-related, but | find it curious.

@ The following strange equivalence also generalizes the
divisibility n | 3= u(d)g™'? for n € Ny and q € Z:
d|n
@ Ghost-Burnside: The following are equivalent:
R: Every n € Ny, every d | n and every prime divisor p of d
satisfy

6 (d) by = ¢ (d) b \P mod p")A

(where v,(n) is the multiplicity of p in the factorization

of n).
S: Every n € Ny satisfies
S o(d) by € nA.
d|n
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

@ This is not Fg [T]-related, but | find it curious.

@ The following strange equivalence also generalizes the
divisibility n | 3° u(d)g"? for n € Ny and q € Z:
d|n

@ Ghost-Burnside: The following are equivalent:
R: When A is “nice” (viz., px € pKA = x € p*~1A, and
the quotient ring A/pA is reduced), this simplifies to:
Every d € N, and every prime divisor p of d satisfy

bs/p = by mod pA.
S: Every n € N, satisfies

S "o (d) by ? € nA.

d|n
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

@ This is not Fg [T]-related, but | find it curious.

@ The following strange equivalence also generalizes the
divisibility n | 3= u(d)g™'? for n € Ny and q € Z:
d|n
@ Ghost-Burnside: The following are equivalent:
R: Every n € Ny, every d | n and every prime divisor p of d
satisfy

6 (d) by = ¢ (d) b \P mod p")A

(where v,(n) is the multiplicity of p in the factorization

of n).
S: Every n € Ny satisfies
S o(d) by € nA.
d|n

@ This leads to a notion of “ghost-Burnside vectors”, which also
form a subring of AN+, Not sure yet what they are good for...
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Thanks to James Borger for some inspiring discussions. Thanks to
Christophe Reutenauer for historiographical comments.
And thank you!
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