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1. On coprime characteristic polynomials over finite
fields

The following is a fragment of the paper “Additive Cellular Automata
Over Finite Abelian Groups: Topological and Measure Theoretic Prop-
erties” in which we prove some purely algebraic properties of matrices
and their characteristic polynomials. The fragment has been somewhat
rewritten to make it self-contained.
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1.1. The main theorem

We shall use the following notations:

• The symbol N shall mean the set {0, 1, 2, . . .}.

• If n ∈ N, then the notation In shall always stand for an n× n identity matrix
(over whatever ring we are using).

• If K is a commutative ring, and if n ∈N, and if A ∈ Kn×n is an n× n-matrix
over K, then χA shall denote the characteristic polynomial det (tIn − A) ∈
K [t] of A.

• If f and g are two univariate polynomials over a field K, then “ f ⊥ g” will
mean that the polynomials f and g are coprime. (This makes sense, since the
polynomial ring K [t] is a Euclidean domain.)

We are now ready to state the main result of this section:

Theorem 1.1. We fix a prime power q and consider the corresponding finite field
Fq. Let F be a field such that F/Fq is a purely transcendental field extension.
(For example, F can be the field of all rational functions in a single variable over
Fq.)

Let n ∈N. Let N ∈ Fn×n be a matrix. Then, the following three assertions are
equivalent:

• Assertion X : We have det
(

Nk − In
)
6= 0 for all positive integers k.

• Assertion Y : We have χN ⊥ tk − 1 for all positive integers k.

• Assertion Z : We have χN ⊥ tqi−1 − 1 for all i ∈ {1, 2, . . . , n}.

1.2. Proof of the main theorem

Our proof of this theorem will rely on the following two lemmas:

Lemma 1.2. Let q, Fq and F be as in Theorem 1.1.
Let n ∈ N. Let f ∈ F [t] be a polynomial such that deg f ≤ n. Assume that

f ⊥ tqi−1 − 1 for all i ∈ {1, 2, . . . , n}. Then, f ⊥ tk − 1 for all positive integers k.

Proof of Lemma 1.2. Let k be a positive integer. We must show that f ⊥ tk − 1.
Indeed, assume the contrary. Then, the polynomials f and tk − 1 have a non-

constant common divisor g ∈ F [t]. Consider this g. Then, g | f and g | tk − 1.
Hence, the polynomial g is a divisor of tk − 1; thus, its roots are k-th roots of

unity, and therefore are algebraic over the field Fq. Hence, the coefficients of g are
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algebraic over the field Fq as well (since these coefficients are symmetric polyno-
mials in these roots with integer coefficients). On the other hand, these coefficients
belong to F. But F/Fq is a purely transcendental field extension. Thus, every el-
ement of F that is algebraic over Fq must belong to Fq

1. Thus, the coefficients
of g must belong to Fq (since they are elements of F that are algebraic over Fq). In
other words, g ∈ Fq [t].

Since this polynomial g ∈ Fq [t] is non-constant, it must have a monic irreducible
divisor in Fq [t]. In other words, there exists a monic irreducible π ∈ Fq [t] such
that π | g. Consider this π. Let j = deg π. Then, j ≥ 1 (since π is irreducible) and

j = deg π ≤ deg f (since π | g | f )
≤ n.

Hence, j ∈ {1, 2, . . . , n}. Thus, f ⊥ tqj−1 − 1 (since we assumed that f ⊥ tqi−1 − 1
for all i ∈ {1, 2, . . . , n}). Hence, every common divisor of f and tqj−1 − 1 in F [t]
must be constant.

From π | g | tk− 1, we conclude that tk ≡ 1 mod π in F [t]. If we had π | t in F [t],
then we would have t ≡ 0 mod π in F [t], which would entail tk ≡ 0k = 0 mod π
and thus 0 ≡ tk ≡ 1 mod π, which would lead to π | 1, which would be absurd
(since deg π = j ≥ 1). Thus, we cannot have π | t in F [t]. Thus, we cannot have
π | t in Fq [t] either. Hence, π - t in Fq [t]. Therefore, π | tqj−1 − 1 2.

Combining π | g | f with π | tqj−1 − 1, we conclude that π is a common divisor
of f and tqj−1 − 1 in F [t]. Hence, π is constant (since every common divisor of
f and tqj−1 − 1 in F [t] must be constant). This contradicts the irreducibility of
π. This contradiction shows that our assumption was false. Hence, Lemma 1.2 is
proven.

1Here we are using one of the basic properties of purely transcendental field extensions: If L/K
is a purely transcendental field extension, then every element of L that is algebraic over K must
belong to K. (Equivalently: If L/K is a purely transcendental field extension, then every element
x ∈ L \ K is transcendental over K.) This is proven in [Bosch18, §7.1, Remark 10], for example.

2Proof. This is a well-known fact about irreducible polynomials in Fq [t] distinct from t, but for the
sake of completeness let us give a proof:

For each u ∈ Fq [t], we let u denote the projection of u onto Fq [t] / (π).
We have π - t in Fq [t]. In other words, t 6= 0 in Fq [t] / (π). In other words, the element t of

Fq [t] / (π) is nonzero.
The polynomial π has degree deg π = j. Hence, the quotient ring Fq [t] / (π) is an Fq-vector

space of dimension j (indeed, it has a basis consisting of t0, t1, . . . , tj−1). Hence, it has size∣∣Fq [t] / (π)
∣∣ = ∣∣Fq

∣∣j = qj (since
∣∣Fq
∣∣ = q). Moreover, this quotient ring Fq [t] / (π) is a field

(since π is irreducible). Thus, Fq [t] / (π) is a finite field of size qj. As a consequence, its group
of units is a finite group of size qj − 1. Thus, Lagrange’s theorem shows that uqj−1 = 1 for every

nonzero element u ∈ Fq [t] / (π). Applying this to u = t, we conclude that tqj−1
= 1 (since the

element t of Fq [t] / (π) is nonzero). Hence, tqj−1 = tqj−1
= 1 = 1, so that tqj−1 ≡ 1 mod π in

Fq [t]. In other words, π | tqj−1 − 1, qed.
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Lemma 1.3. Let n ∈ N. Let K be any field. Let N ∈ Kn×n be a matrix. Let
f ∈ K [t] be any polynomial. Then, det ( f (N)) 6= 0 if and only if χN ⊥ f .

First proof of Lemma 1.3. Pick a splitting field L of f over K. Then, we can factor f
in the polynomial ring L [t] as follows:

f = λ (t− a1) (t− a2) · · · (t− ak) for some λ ∈ L \ {0} and some a1, a2, . . . , ak ∈ L.

Consider these λ and a1, a2, . . . , ak. Note that these k elements a1, a2, . . . , ak of
L are precisely the roots of f in L. Evaluating both sides of the equality f =
λ (t− a1) (t− a2) · · · (t− ak) at N, we obtain the equality

f (N) = λ (N − a1 In) (N − a2 In) · · · (N − ak In)

in the matrix ring Ln×n. Hence,

det ( f (N)) = det (λ (N − a1 In) (N − a2 In) · · · (N − ak In))

= λn · det (N − a1 In) · det (N − a2 In) · · · · · det (N − ak In) .

Thus, we have the following chain of equivalences:

(det ( f (N)) 6= 0)
⇐⇒ (λn · det (N − a1 In) · det (N − a2 In) · · · · · det (N − ak In) 6= 0)
⇐⇒ (det (N − a1 In) · det (N − a2 In) · · · · · det (N − ak In) 6= 0)

(since λ 6= 0)
⇐⇒ (det (N − ai In) 6= 0 for each i ∈ {1, 2, . . . , k})
⇐⇒ ((ai is not an eigenvalue of N) for each i ∈ {1, 2, . . . , k})(

since the statement “ det (N − ai In) 6= 0” for any given i ∈ {1, 2, . . . , k}
is equivalent to “ai is not an eigenvalue of N”

)
⇐⇒ ((ai is not a root of χN) for each i ∈ {1, 2, . . . , k})

(since the eigenvalues of N are the roots of χN)

⇐⇒ (none of the k elements a1, a2, . . . , ak is a root of χN)

⇐⇒ (none of the roots of f in L is a root of χN)

(since the k elements a1, a2, . . . , ak are precisely the roots of f in L)
⇐⇒ ( f ⊥ χN) .

Here, the last equivalence sign is due to a standard argument about polynomials3.
This chain of equivalences entails (det ( f (N)) 6= 0) ⇐⇒ ( f ⊥ χN). Thus,

Lemma 1.3 is proven.

3Here is a detailed proof: We must show the equivalence

(none of the roots of f in L is a root of χN) ⇐⇒ ( f ⊥ χN) . (1)

We shall show its “=⇒” and “⇐=” directions separately:
=⇒: Assume that none of the roots of f in L is a root of χN . We must prove that f ⊥ χN .
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We will soon give a second proof of Lemma 1.3, which generalizes it to arbitrary
commutative rings (see Lemma 1.7 below).

Proof of Theorem 1.1. Let k be a positive integer. Then, Lemma 1.3 (applied to K = F
and f = tk − 1) shows that det

(
Nk − In

)
6= 0 if and only if χN ⊥ tk − 1.

Now, forget that we fixed k. We thus have proven the equivalence(
det

(
Nk − In

)
6= 0

)
⇐⇒

(
χN ⊥ tk − 1

)
for each positive integer k. Hence, Asser-

tion X is equivalent to Assertion Y .
On the other hand, χN ∈ F [t] is a polynomial with deg (χN) = n. Thus, Lemma

1.2 (applied to f = χN) shows that if we have χN ⊥ tqi−1− 1 for all i ∈ {1, 2, . . . , n},
then we have χN ⊥ tk − 1 for all positive integers k. In other words, Assertion Z
implies Assertion Y . Conversely, Assertion Y implies Assertion Z (since each
qi − 1 with i ∈ {1, 2, . . . , n} is a positive integer). Combining these two sentences,
we conclude that Assertion Y is equivalent to Assertion Z . Since we have also
shown that Assertion X is equivalent to Assertion Y , we thus conclude that all
three Assertions X , Y and Z are equivalent. Theorem 1.1 is thus proven.

Indeed, assume the contrary. Thus, the polynomials f and χN have a non-constant common
divisor g ∈ K [t]. Consider this g. Thus, g | f and g | χN in K [t]. We WLOG assume that g is
monic (since we can always achieve this by scaling g). We have g | f in K [t], thus also in L [t].
Hence, g | f = λ (t− a1) (t− a2) · · · (t− ak) in L [t]. Hence, g must be a product of some of the
linear polynomials t− a1, t− a2, . . . , t− ak (since L [t] is a unique factorization domain, and g is
monic). In other words, g = ∏

i∈I
(t− ai) for some subset I of {1, 2, . . . , k}. Consider this I. If I

was empty, then we would have

g = ∏
i∈I

(t− ai) = (empty product) (since I is empty)

= 1,

which would contradict the fact that g is non-constant. Hence, I is nonempty. Thus, there exists
some j ∈ I. Consider this j. Now, aj is a root of f in L (since a1, a2, . . . , ak are the roots of f in
L), and thus is not a root of χN (since none of the roots of f in L is a root of χN). Hence, aj is
not a root of g either (since g | χN). On the other hand, g = ∏

i∈I
(t− ai) is a multiple of t− aj

(since j ∈ I), and thus aj is a root of g. This contradicts the fact that aj is not a root of g. This
contradiction shows that our assumption was false. Hence, the “=⇒” direction of (1) is proven.
⇐=: Assume that f ⊥ χN . We must prove that none of the roots of f in L is a root of χN .
Indeed, assume the contrary. Thus, some root α of f in L is a root of χN . Consider this α.
But f ⊥ χN . Hence, Bezout’s theorem shows that there exist two polynomials a, b ∈ K [t] such

that a f + bχN = 1. Consider these a, b. Now, evaluating both sides of the equality a f + bχN = 1
at α, we obtain a (α) f (α) + b (α) χN (α) = 1. Hence,

1 = a (α) f (α)︸ ︷︷ ︸
=0

(since α is a root of f )

+b (α) χN (α)︸ ︷︷ ︸
=0

(since α is a root of χN )

= 0 + 0 = 0.

This is absurd. This contradiction shows that our assumption was false. Hence, the “⇐=”
direction of (1) is proven.

Thus, the proof of (1) is complete.
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1.3. Extending Lemma 1.3 to rings

As promised, we shall now extend Lemma 1.3 to arbitrary commutative rings and
re-prove it in that generality. First, we need some more lemmas:

Lemma 1.4. Let K be any commutative ring. Let f ∈ K [t] be any polynomial.
Let L be any commutative K-algebra. Let u and v be two elements of L. Then,
u− v | f (u)− f (v) in L.

Proof of Lemma 1.4. This is well-known in the case when K = Z and L = Z; but the
same proof applies in the general case.4 Note that commutativity of L is crucial.

Lemma 1.5. Let n ∈ N. Let L be any commutative ring. Let A ∈ Ln×n be any
n× n-matrix. Let λ ∈ L. Then,

det (λIn + A) ≡ det A mod λL.

Proof of Lemma 1.5. This can be proven using the explicit formula for det (λIn + A)
in terms of principal minors of A, or using the fact that the characteristic poly-
nomial of A has constant term (−1)n det A. Here is another argument: For each
u ∈ L, we let u be the projection of u onto the quotient ring L/λL; furthermore,
for each matrix B ∈ Ln×n, we let B ∈ (L/λL)n×n be the result of projecting each
entry of the matrix B onto the quotient ring L/λL. Then, λ ∈ λL and thus λ = 0.
Hence, λIn + A = λIn︸︷︷︸

=0
(since λ=0)

+A = A. But the determinant of a matrix is a polyno-

mial in the entries of the matrix, and thus is respected by the canonical projection
L→ L/λL; hence,

det
(
λIn + A

)
= det (λIn + A) and det A = det A.

4Here is this proof:

Write the polynomial f ∈ K [t] in the form f =
n
∑

i=0
aiti for some n ∈ N and some

a0, a1, . . . , an ∈ K. Then, f (u) =
n
∑

i=0
aiui and f (v) =

n
∑

i=0
aivi. Subtracting these two equali-

ties from each other, we obtain

f (u)− f (v) =
n

∑
i=0

aiui −
n

∑
i=0

aivi =
n

∑
i=0

ai

(
ui − vi

)
︸ ︷︷ ︸

=(u−v)
i−1
∑

k=0
ukvi−1−k

=
n

∑
i=0

ai (u− v)
i−1

∑
k=0

ukvi−1−k = (u− v)
n

∑
i=0

ai

i−1

∑
k=0

ukvi−1−k.

The right hand side of this equality is clearly divisible by u− v. Thus, so is the left hand side.
In other words, we have u− v | f (u)− f (v) in L.
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The left hand sides of these two equalities are equal (since λIn + A = A). Thus, the
right hand sides are equal as well. In other words, det (λIn + A) = det A. In other
words, det (λIn + A) ≡ det A mod λL. This proves Lemma 1.5.

Lemma 1.6. Let n ∈ N. Let K be any commutative ring. Let f ∈ K [t] be
any polynomial. Let N ∈ Kn×n be any n × n-matrix. Then, there exist two
polynomials a, b ∈ K [t] such that

det ( f (N)) = f a + χNb in K [t] .

(Note that the left hand side of this equality is a constant polynomial, since
f (N) ∈ Kn×n.)

Proof of Lemma 1.6. Consider N as a matrix over the polynomial ring K [t] (via
the standard embedding Kn×n → (K [t])n×n). The K-subalgebra (K [t]) [N] of
(K [t])n×n is commutative (since it is generated by the single element N over the
commutative ring K [t]).

Hence, Lemma 1.4 (applied to L = (K [t]) [N] and u = tIn and v = N) shows
that tIn − N | f (tIn) − f (N) in (K [t]) [N]. In other words, there exists some
U ∈ (K [t]) [N] such that

f (tIn)− f (N) = (tIn − N) ·U. (2)

Consider this U. Taking determinants on both sides of the equality (2), we find

det ( f (tIn)− f (N)) = det ((tIn − N) ·U) = det (tIn − N)︸ ︷︷ ︸
=χN

(by the definition of χN)

·det U

= χN · det U.

In view of f (tIn) = f (t) · In, this rewrites as

det ( f (t) · In − f (N)) = χN · det U.

Hence,

χN · det U
= det ( f (t) · In − f (N))︸ ︷︷ ︸

= f (t)·In+(− f (N))

= det ( f (t) · In + (− f (N)))

≡ det (− f (N))

(
by Lemma 1.5, applied to L = K [t] , λ = f (t)

and A = − f (N)

)
= (−1)n det ( f (N))mod f (t)K [t] .

Multiplying this congruence by (−1)n, we obtain

(−1)n χN · det U ≡ (−1)n (−1)n︸ ︷︷ ︸
=1

det ( f (N)) = det ( f (N))mod f (t)K [t] .
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In other words, (−1)n χN · det U − det ( f (N)) ∈ f (t)K [t]. In other words, there
exists a polynomial c ∈ K [t] such that

(−1)n χN · det U − det ( f (N)) = f (t) c. (3)

Consider this c. Solving the equality (3) for det ( f (N)), we find

det ( f (N)) = (−1)n χN · det U − f (t)︸︷︷︸
= f

c = (−1)n χN · det U − f c

= f · (−c) + χN · (−1)n det U.

Hence, there exist two polynomials a, b ∈ K [t] such that det ( f (N)) = f a + χNb in
K [t] (namely, a = −c and b = (−1)n det U). This proves Lemma 1.6.

We can now generalize Lemma 1.3 to arbitrary rings:

Lemma 1.7. Let n ∈ N. Let K be any commutative ring. Let N ∈ Kn×n be a
matrix. Let f ∈ K [t] be any polynomial. Then, det ( f (N)) ∈ K is invertible if
and only if there exist polynomials a, b ∈ K [t] such that f a + χNb = 1.

Proof of Lemma 1.7. =⇒: Assume that det ( f (N)) ∈ K is invertible. Thus, there
exists some c ∈ K such that det ( f (N)) · c = 1. Consider this c.

Lemma 1.6 shows that there exist two polynomials a, b ∈ K [t] such that
det ( f (N)) = f a+ χNb in K [t]. Consider these a and b, and denote them by a0 and
b0. Thus, a0 and b0 are two polynomials in K [t] such that det ( f (N)) = f a0 + χNb0.
Now, comparing det ( f (N)) · c = 1 with

det ( f (N))︸ ︷︷ ︸
= f a0+χNb0

·c = ( f a0 + χNb0) · c = f a0c + χNb0c,

we obtain f a0c + χNb0c = 1. Thus, there exist polynomials a, b ∈ K [t] such that
f a + χNb = 1 (namely, a = a0c and b = b0c). This proves the “=⇒” direction of
Lemma 1.7.
⇐=: Assume that there exist polynomials a, b ∈ K [t] such that f a + χNb = 1.

Consider these a and b. Now, evaluating both sides of the equality f a + χNb = 1 at
N, we obtain

f (N) a (N) + χN (N) b (N) = In.

Hence,
In = f (N) a (N) + χN (N)︸ ︷︷ ︸

=0
(by the Cayley–Hamilton

theorem)

b (N) = f (N) a (N) .

Taking determinants on both sides of this equality, we find

det (In) = det ( f (N) a (N)) = det ( f (N)) · det (a (N)) .
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Thus,
det ( f (N)) · det (a (N)) = det (In) = 1.

Hence, det ( f (N)) ∈ K is invertible (and its inverse is det (a (N))). This proves the
“⇐=” direction of Lemma 1.7.

Second proof of Lemma 1.3. Lemma 1.7 (applied to K = K) shows that det ( f (N)) ∈
K is invertible if and only if there exist polynomials a, b ∈ K [t] such that f a+χNb =
1. But this is precisely the statement of Lemma 1.3, because:

• the element det ( f (N)) ∈ K is invertible if and only if det ( f (N)) 6= 0 (be-
cause K is a field), and

• there exist polynomials a, b ∈ K [t] such that f a + χNb = 1 if and only if
χN ⊥ f (by Bezout’s theorem).

Thus, Lemma 1.3 is proven again.
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