
Combinatorial Markov chains on linear extensions
Arvind Ayyer, Steven Klee, Anne Schilling

version 3, arXiv:1205.7074v3
http://arxiv.org/abs/1205.7074v3

Errata and comments - I

• Page 3, §2.1: In ”are labeled by integers in [n] := {1, 2, ..., n}”, replace
”integers” by ”the integers”, since otherwise it sounds as if one has the freedom
to skip some of the integers or use them twice.

• Page 3, §2.1: In my opinion, the idea to label the vertices of P by the integers
in [n] is a fundamentally bad one. In the few parts of the paper where it is
used (like Lemma 5.5 and all statements about poset derangements), it can be
introduced locally. In all the rest of the paper, it is fully expendable and only
confuses the reader by giving the integers 1, 2, ..., n a double role (once as the
labels of the vertices of P , and again as the ordinal numbers of these vertices
in a linear extension). Here are two examples of places where this leads to
ambiguity:

– In part (2) of the definition of promotion on page 4, does ”labels covering i”
mean ”labels covering the vertex i” or ”labels covering the vertex labelled i” ?
I know it means the latter, but this is not really obvious from the wording. If
you wouldn’t label the vertices of P by 1, 2, ..., n by default, there would only
be one possible meaning (namely, the correct one).

– In the definition of Pj, I think you got yourself confused, because the defi-
nition that you give does not make (2.3) valid (I think). See below for how to
correct this.

As I said, in my opinion there is no reason to assume globally that the elements
of P are labeled by the integers in [n]. I think the paper would become way
more readable if you remove this assumption. Of course, with this change,
linear extensions of P are no longer elements of Sn but are now bijections
[n]→ P 1. ”One-line notation” for elements π of Sn now means the obvious
thing (just writing the images of 1, 2, ..., n under π in one line). The maps ∂j
and τj are still indexed by elements of [n], but the maps ∂̂j are now indexed
by elements of P (I believe this makes the difference between them clearer).
The uniform transposition and the uniform promotion Markov chains still
have their edge weights defined in the polynomial ring Q [x1, x2, ..., xn], but
the transposition and promotion Markov chains now have their edge weights
defined in the polynomial ring Q [xp | p ∈ P ]. In Theorem 4.5, the product
n∏
i=1

x1 + · · ·+ xi
xπ1 + · · ·+ xπi

no longer makes sense because x1+· · ·+xi is not defined; but

1But this is okay, since you never multiply or invert them. And if you ask me, it is a good thing
as it saves me the hassle of remembering whether the label of a vertex i is πi or π−1

i : when the
vertices of P are not identified with integers, only one of these two possibilities makes any sense.
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you can just replace it by the simpler product
n∏
i=1

1

xπ1 + · · ·+ xπi
, which differs

from it just by a factor independent on π (of course, you lose the w (e) = 1
property this way, but this is expected since you don’t have a distinguished
linear extension e anymore). Funnily, this simplifies both the proof of Theorem

4.5 (because the normalization you use there is precisely
n∏
i=1

1

xπ1 + · · ·+ xπi
)

and the formulation of Theorem 5.1 (because now (5.1) gets replaced by the
simple equality ZP =

∏
i∈P

x�i). Also, Theorem 4.7 needs to be adjusted (terms

like xi−πiπi
make no sense anymore no matter if i is an element of P or of [n]),

but again this adjustment actually makes it simpler (you can replace (4.7) by

w (π) =
n∏
i=1

xiπi , forgetting about w (e) = 1 since there is no e anymore).

• Page 4: You define Pj as ”the natural (induced) subposet of P consisting of
elements k such that j � k”. First of all, I don’t think this is the definition you
want to make. In order to make (2.3) true, it should be ”the natural (induced)
subposet of P consisting of elements k such that the element of P labelled j
in π is � k” (note that this depends on the choice of a linear extension π of
P ). But anyway, I don’t see why you define Pj at all. You only ever use Pj
in the definition of extended promotion ∂j, where it is almost a red hering.
I think that extended promotion is best defined along these lines: ”Given a
linear extension π = π1π2...πn of P , apply promotion to the linear extension
πjπj+1...πn of the subposet {πj, πj+1, ..., πn} of P . Denoting the resulting linear
extension by σjσj+1...σn, we then see that π1π2...πj−1σjσj+1...σn is a new linear
extension of P , which we denote by π∂j.”

• Page 4, Example 2.1: In my opinion, ”namely 3 is in position 5 in π′ ” is
a bit ambiguous, because π′ can mean both a labelling of vertices of P and a
word. It is best to say ”namely 3 is in position 5 in the word π′ ”.

• Page 5: I know that you refer to Stanley’s papers for notations, but I am not
sure if every reader will follow the reference. For those who don’t, it would
help to point out that all maps of the form τj, ∂j, ∂̂j and ∂ act on the right, and
consequently their composition (as in (2.3)) is to be understood as ”perform
the leftmost map first, then the next one etc.”.

(It probably wouldn’t harm to have an example for ∂j, too.)

• Page 6, Figure 2: Replace ”∂π” by ”π∂” (one of you apparently doesn’t like
Stanley’s notations very much – my sympathies).

• Page 6, Lemma 2.3: ”each operator” → ”the operator” (since j is already
fixed).

• Page 7: Remove the comma before ”define a directed graph”.
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• Page 12, proof of Proposition 4.1: I think the words ”and label 1 is at
position k of P” can be just removed, since you never use k.

• Page 12, proof of Proposition 4.1: At the very end, I believe ”from Lemma
2.3” should be ”from (2.3)”.

• Page 15, proof of Theorem 4.5: Replace ”hence (4.3) yields” by ”hence
the right hand side of (4.3) becomes”.

• Page 15, proof of Theorem 4.5: Remove the word ”set” from ”In the first
case, set π̃ = π”.

• Page 16, §5.1: This is one of my trademark nitpicks: Add ”disjoint” before
”union” in ”A rooted forest is a union of rooted trees.”

• Page 17, proof of Theorem 5.1: Replace ”of the sums over i” by ”of the
addends of the sum over i”.

• Page 19, Lemma 5.5: It might be useful to point out explicitly that P is to
be labeled consecutively within chains (as in Theorem 5.3).

• Page 19, proof of Lemma 5.5: In ”define Ni = n1 + · · · + ni−1 for all
2 ≤ i ≤ k”, replace the ”k” by ”k+ 1” (since you do use Nk+1 in the very next
sentence).

• Page 21, proof of Lemma 5.5: Replace ”w′Ni+j
” by ”w′N ′i+j

” on the first

line of this page.

• Page 23, Lemma 6.5: It might help to point out that ”reordering” means
”reordering in such a way that the result is a linear extension”.

• Page 23, proof of Lemma 6.5: I think the ”∂̂π−1
i

” and the ”∂̂k” on the
second line of this proof should be ”∂π−1

i
” and ”∂k”, respectively.

• Page 23, Example 6.6: The ”12345” at the very end should be in mathmode,
not in textmode.

• Page 24, proof of Lemma 6.7: You write: ”we hence must have ∂̂αj
x = x

for all 1 ≤ j ≤ m”. Why?

• Page 24, proof of Lemma 6.7: I don’t see why ”we have Rfactor (x) (
Rfactor

(
x∂̂αj

)
” either...

• Have you ever tried considering eigenvalues of the promotion and transposition
chains for a Young diagram poset? I think an analogue of Theorem 5.2 has
chances to hold in this case, and would be a very interesting result if it does.

Let me explain what I mean by ”analogue” first. It is not true that det (M − λ)
factors into linear terms if P is the [2] × [2]-rectangle poset and M is the
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transition matrix of the promotion graph of Section 3.4. Hence, Theorem 5.2
doesn’t directly hold for Young tableaux. But I conjecture the following:

Conjecture. Let · · · , y−2, y−1, y0, y1, y2, · · · be a set of commuting indeter-
minates. If P is the northwest-oriented poset of a Young diagram λ (that
is, the poset whose elements are the cells of λ and whose order is given by

(c ≤ d) ⇐⇒ (d lies weakly north and weakly west of c)), then det
(
M̃ − λ

)
factors into linear terms, where M̃ is the result of substituting ycont c for each
xc in the transition matrix of the promotion graph of Section 3.4. Here, cont p
denotes the content of the cell p (that is, its row coordinate minus its column
coordinate). Note that (as explained above) I am not identifying the elements
of P with positive integers, so the variables xc in the transition matrix of the
promotion graph are indexed by cells of the Young diagram; thus, substituting
ycont c for xc makes sense.

I have done some computations in Sage, checking that this conjecture holds
whenever |λ| ≤ 6. For example, when λ = (3, 3), the eigenvalues are y0, 0, y0 +
y1, y0 + y−1, 2y0 + 2y1 + y2 + y−1 if this tells you anything. There are coun-
terexamples if λ is allowed to be a skew partition (for λ = (3, 3)� (2), for
instance). I can send you the code, but it is very hacky (the nice part is in
patch #15428) and I don’t have any hopes of running it for |λ| = 7 in reason-
able time (multivariate polynomial factorization in high degrees isn’t fun). It
is not true that specializing one yi to 1 and all the other yi’s to 0 yields ma-
trices which pairwise commute, so at least from this viewpoint the conjecture
is not trivial.

The idea that a polynomial identity depending on a forest can be made into
a polynomial identity depending on a Young diagram by substituting ycont c
for xc might appear mysterious at first sight, and I think it is mysterious.
All I can say is that I have got this idea from a hook-length formula by Alex
Postnikov which is very similar to your Theorem 5.1 in the same way as my
above conjecture is to your Theorem 5.2. In some more detail:

Theorem 5.1 in your paper can be rewritten as follows: If P is a rooted forest,
and xp is a variable for every p ∈ P (these variables should all commute), then

∑
π∈L(P )

|P |∏
i=1

1

xπ1 + xπ2 + · · ·+ xπi
=
∏
p∈P

1∑
q∈P ; q�p

xq
.

This formula can be regarded as a kind of hook-length formula if you con-
sider {q ∈ P | q � p} to be a ”hook” of p in the forest (and setting all xp
to 1 actually yields the well-known hook-length formula for forests). There
is a little-known analogue of this formula which was told to me by Alexan-
der Postnikov: If λ is a Young diagram (not skew this time) and P is the
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northwest-oriented poset of λ, then

∑
π∈L(P )

|P |∏
i=1

1

ycont(π1) + ycont(π2) + · · ·+ ycont(πi)
=
∏
p∈P

1∑
q∈hook p

ycont q
.

Postnikov proved this using polyhedral combinatorics (I am trying to convince
him to write up his proof); it specializes to the classical hook-length formula
again by specializing all yi to 1. It seems, however, that none of the proofs of
the classical hook-length formula easily extend to this generalization (as far
as I can tell). I have been told that this formula follows from Corollary 7.2 in
Kento Nakada, Colored hook formula for a generalized Young diagram, Osaka
J. Math. 45 (2008), but I don’t understand root systems well enough to tell
whether it does or just looks similar.

I don’t know in how far R-trivial monoids (or maybe a variant of them where
R-classes are somehow bounded rather than having cardinality 1) are useful
to handle the conjecture. But there are weird things going on. The conjecture
involves a matrix labelled by linear extensions of a Young diagram poset (i. e.,
by standard Young tableaux) whose eigenvalues are conjectured to be integer
combinations of yi’s. This is reminiscent of the Reiner-Saliola-Welker conjec-
ture (Conjecture 1.2 in arXiv:1102.2460v2) which involves certain operators
on Q [Sn] which are suspected to have integer eigenvalues, but these opera-
tors break down into operators acting on every irreducible representation of
Sn, and this means matrices labelled by standard Young tableaux. Of course,
there is no guarantee of a connection, but I suspect at least some of the same
methods can be used.
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