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1. Introduction: the Clifford algebra

The theory of the Clifford algebra of a vector space with a given symmetric bilinear
form is rather well-understood: One of the basic properties of the Clifford algebra gives
an explicit basis for it in terms of a basis of the underlying vector space (Theorem
1 below), and another one provides a canonical vector space isomorphism between
the Clifford algebra and the exterior algebra of the same vector space (the so-called
Chevalley map, Theorem 2 below). While both of these properties appear in standard
literature such as [1] and [2], sadly I have never seen them proven in the generality they
deserve: first, the bilinear form needs not be symmetricﬂ Besides, the properties still
hold over arbitrary commutative rings rather than just fields of characteristic 0. The
proofs given in literature are usually not sufficient to cover these general cases. Here we
are going to present a computational proof of both of these properties, giving integral]
recursive formulas for the vector space isomorphismF_f] between the Clifford algebra and
the exterior algebra (in both directions).

Remark (added in 2016). As I now know, most of what is done in this
paper is not new. In particular, its main results already appear in §9 of
Chapter IX of [T} they also (essentially) appear in Chapter 2 of [8]f} the
main ideas also appear in (1.7) of Chapter IV of [Q]E Moreover, the proofs
given in [7], in [8] and in [9] are essentially the same as ours. (Moreover,
similar ideas and a variant of our map o have been used for different
purposes in [10].) The results in Sections 11-14 of this paper might still be
new.

First, let us define everything in maximal generality:

Definition 1. In this note, a ring will always mean a ring with 1. If k
is a ring, a k-algebra will mean a (not necessarily commutative) k-algebra
with 1. Sometimes we will use the word ”algebra” as an abbreviation for

!This is a version including all the proofs of the results given in [0]. While it is self-contained and
detailed, I would recommend any reader to read the (much shorter) summary [0] and consult this
detailed version only in case of unclarity.

2although this is not a substantial generalization as long as we are working over a field k with
characteristic # 2

3in the sense of: no division by k!

4or, respectively, module isomorphism if we are working over a commutative ring instead of a field

®More precisely: Our Theorem 33 is Proposition 3 in §9 of Chapter IX of [7] (and thus, our Theorem
1 is a consequence of said proposition); our Theorem 2 is a particular case (for L = {1,2,...,n}) of
Théoreme 1 in §9 of Chapter IX of [7].

SMore precisely, Theorem (2.16) in Chapter 2 of [8] includes both our Theorem 1 and our Theorem
2 in the case when the k-module L is finitely generated and projective. But the proof given in [8],
as far as it concerns our Theorem (2.16), does not require the “finitely generated and projective”
condition.

"Thanks to Rainer Schulze-Pillot for making me aware of [9].



" k-algebra”. If L is a k-algebra, then a left L-module is always supposed to
be a left L-module on which the unity of L acts as the identity. Whenever
we use the tensor product sign ® without an index, we mean ®y.

Definition 2. Let k& be a commutative ring. Let L be a k-module. A bilin-
ear form on L means a bilinear map f : LxX L — k. A bilinear form f on L is
said to be symmetric if it satisfies (f (z,y) = f (y,x) for any x € L and y € L).

Definition 3. Let k be a commutative ring. Let L be a k-module, and
f L xL — k be a bilinear form on L. For every ¢ € N, we define the
so-called i-th tensor power L®' of L to be the k-module LRL®..®L.

The tensor algebra QL of L over k is defined to be the algeiatrl;le?@L =
LY@ L @ L®? ¢ ..., where the multiplication is given by the tensor
product. Now, we define the Clifford algebra Cl1(L, f) to be the factor
algebra (®L) /If, where I is the two-sided ideal

(L) - (v®@v—f(v,v) | veL) (RL)
of the algebra @L. [
Remark. We denote by 0 the symmetric bilinear form on L defined by
(0(z,y) =0foreveryx € Land y € L) .

Then,

10:(®L)-<v®v—0(v,v) | UEL>-(®L)=(®L)-(U®U | ve L) - (®L),

=0

and thus C1(L,0) = (®L) /I = (®L) /((®L) - (v®@v | ve L) (®L)) is the exte-
rior algebra AL of the k-module L. Hence, the exterior algebra AL is a particular case
of the Clifford algebra - namely, it is the Clifford algebra CI1 (L, 0).

In general, the Clifford algebra Cl(L, f) is not isomorphic to the exterior algebra
AL as algebra. However, they are isomorphic as k-modules, as the following theorem
states:

Theorem 1 (Chevalley map theorem): Let k& be a commutative ring.
Let L be a k-module, and f : L x L. — k be a bilinear form on L. Then,
the k-modules AL and Cl(L, f) are isomorphic.

We are going to prove this theorem by explicitly constructing mutually inverse
homomorphisms in both directions. This proof substantially differs from the proofs
given in standard literature for the particular case of k being a field of characteristic
0 and L being a finite-dimensional k-vector space, which proceed by constructing the
isomorphism in one direction and showing either its injectivity or its surjectivity, or

8Here, whenever U is a set, and P : U — ®L is a map (not necessarily a linear map), we denote
by (P (v) | v € U) the k-submodule of ®L generated by the elements P (v) for all v € U.



proving both using the basis theorem (Theorem 2 below)ﬂ Using Theorem 1 we will
be able to construct a basis for C1(L, f) in the case when L has one:

Theorem 2 (Clifford basis theorem): Let k be a commutative ring. Let
L be a free k-module with a finite basis (ej, €9, ..., €,), and f : LXL — kbea
bilinear form on L. Let ¢y : L — CI(L, f) be the k-module homomorphism
defined by ¢y = proj;oinj, where inj : L = ®L is the canonical injection
of the k-module L into its tensor algebra ®L, and where proj, : ®L —
CIl(L, f) is the canonical projection of the tensor algebra ® L onto its factor
algebra (®L) /Iy = C1(L, f).

Then, (ﬁgaf (e2)

il >IeP({1,2,...,n})
P ({1,2,...,n}) denotes the power set of the set {1,2,...,n}.

is a basis of the k-module Cl (L, f), where

Here, we are using the following notation:

Definition 4. Let A be a ring, and let I be a finite subset of Z. Let a;
be an element of A for each ¢ € I. Then, we denote by ﬁai the element of

il
A defined as follows: We write the set I in the form I = {iy, s, ...,7,} with
i1 < iy < ... < iy (in other words, we let i1, is, ..., iy be the elements of

I, written down in ascending order). Then, we define []a; as the product
el
@, Qj,...a;,. This product ﬁai is called the ascending product of the elements

i€l
a; of A.

One more theorem that is often (silently) used and will follow from our considera-
tions:

Theorem 3. Let k be a commutative ring. Let L be a k-module, and
f: L xL — k be a bilinear form on L. Let ¢y : L — CI(L, f) be the
k-module homomorphism defined by ¢y = proj;oinj, where inj : L —
®L is the canonical injection of the k-module L into its tensor algebra
®L, and where proj, : ® L — CI(L, f) is the canonical projection of the
tensor algebra ®L onto its factor algebra (®L) /Iy = C1(L, f). Then, the
homomorphism ¢y is injective.

Theorem 2 is known in the case of k being a field and L being a finite-dimensional
k-vector space; in this case, it is often proved using orthogonal decomposition of L into
f-orthogonal subspaces - a tactic not available to us in the general case of k being an
arbitrary commutative ring. We will have to derive Theorem 2 from Theorem 1 to

9The proof of Theorem 1 in [2] (where Theorem 1 appears as Theorem 1.2, albeit only in the case
of k being a field) seems different, but I don’t completely understand it; to me it seems that it has a
flaw (it states that ”the r-homogeneous part of ¢ is then of the form ¢, = > a; ® v; ® v; @ b; (where
deg a; +degb; = r—2 for each 7)”, which I am not sure about, because theoretically one could imagine
that the representation of ¢ in the form ¢ = > a; ® (v; ® v; + ¢ (v;)) ® b; involves some a; and b; of
extremely huge degree which cancel out in the sum).



prove it in this generality. Most proofs of Theorem 1 rely on Theorem 2, and Theorem
3 is usually proven using either Theorem 1 or Theorem 2.

The nature of our proof will be computational - we are going to define some k-
module automorphisms of the tensor algebra ®L by recursive formulae. During the
course of the proof, we will show a lot of formulas, each of which has a more or less
straightforward inductive proofs. The inductive proofs will always use one and the
same tactic: a tactic I call tensor induction. Here is what it is about:

Definition 5. (a) Let k£ be a commutative ring, and L be a k-module. Let
p € N. An element of L®P is said to be left-induced if and only if it can be
written in the form « ® U for some u € L and some U € L®®~Y_ Then, for
every p € N, the k-module L®? is generated by its left-induced elements
(because L® = L @ L®®~Y and therefore the k-module L®? is generated
by its elements of the form u® U for some u € L and some U € L®®~Y: in
other words, the k-module L®? is generated by its left-induced elements).

(b) Let k be a commutative ring, and L be a k-module. Let p € N. An
element of L®P is said to be right-induced if and only if it can be written
in the form U ® u for some u € L and some U € L®®-Y_ Then, for
every p € N, the k-module L®? is generated by its right-induced elements
(because L® = L®P~1) @ [ and therefore the k-module L®? is generated
by its elements of the form U ® u for some u € L and some U € L®P~Y: in
other words, the k-module L#? is generated by its right-induced elements).

The left tensor induction tactic. Let p € N,. Let n and ¢ be two
k-linear maps from L®? to some other k-module. Then, in order to prove
that

(n(T)=¢e(T) for every T € L®?),

it is enough to prove that
(n(T)=¢(T) for every left-induced T' € L®)

(because the k-module L®P is generated by its left-induced elements).

In words: In order to prove that all elements of L®P satisfy some given
k-linear equation, it is enough to show that all left-induced elements of L®?
satisfy this equation.

The right tensor induction tactic. Let p € N,. Let n and ¢ be two
k-linear maps from L®? to some other k-module. Then, in order to prove
that

(n(T)=e(T) for every T' € L¥P),

it is enough to prove that
(n(T)=e(T) for every right-induced 7" € LP)

(because the k-module L®P is generated by its right-induced elements).

In words: In order to prove that all elements of L®P satisfy some given
k-linear equation, it is enough to show that all right-induced elements of
L®P satisfy this equation.



The tensor algebra induction tactic. Let n and € be two k-linear maps
from ®L to some other k-module. Then, in order to prove that

(n(T)=¢(T) for every T' € ®L),
it is enough to prove that
(n(T)=¢(T) for every p € N and every T € L*P)

(because the k-module ®L is the direct sum L0 & L' @ L®? & ..., and
therefore is generated by its submodules L®? for all p € N).

2. Left interior products on the tensor algebra

From now on, we fix a commutative ring k£, and a k-module L. Let f be some
bilinear form on L.

First, we define some operations of L on ®L - the so-called interior products. Our
definition will be rather dry - if you want a formula for these operations, scroll down
to Theorem 5 below.

Definition 6. Let f : L x L — k be a bilinear form. For every p € N and
every v € L, we define a k-linear map 6/ , : L*P — L2P=1 (where L&Y
means 0) by induction over p:

Induction base: For p =0, we define the map 67, : L%* — L® to be the

ZEero map.

Induction step: For each p € N, we define a k-linear map (55@ : LB —

LewP-1) by

<61’:p (ueU)=fwulU—-—u® 51{71)_1 (U) for every u € L and U € L®(p_1)> :

(1)
assuming that we have already defined a k-linear map 51{4,_1 LB
L®®=2) (This definition is justified, because in order to define a k-linear
map from L®P to some other k-module, it is enough to define how it acts
on tensors of the form u ® U for every v € L and U € L®®1 as long
as this action is bilinear with respect to u and U. This is because L% =

L® LeP-1)
This way we have defined a k-linear map &, : L¥” — L2@=1) for every

p € N. We can combine these maps 51{70, 57{’1, 5{;2, ... into one k-linear map
6/ ®L — ®L (since @L = L®° @ L®' @ L®? @ ...), and the formula
rewrites as

(6 (uaU) = fwulU-—uxd (U) for every u € L and U € L®(p_1)) :
(2)

It is easily seen (by induction over p € N) that the map 5{;13 depends linearly

st

on the vector v € L. Hence, the combination &/ of the maps 6570, 0515 ;.05

... must also depend linearly on v € L. In other words, the map

L x (®L) = ®L, (v,U) = 87 (U)



is k-bilinear. Hence, this map gives rise to a k-linear map
6 Le(®L) — &L, v U 0l (U).

We are going to denote 67 (U) by vl U for each v € L and U € ®L. Thus,
the equality takes the form

<v|]_c (uU)=fwul—-—u® (viU) for every w € L and U € L®(p_1))
(3)

The tensor vl U is called the left interior product of v and U with respect
to the bilinear form f.

Let us note that many authors omit the f in the notation 1]:; in other words, they

simply write L for . However, we are going to avoid this abbreviation, as we aim at
considering several bilinear forms at once, and omitting the name of the bilinear form
could lead to confusion.

The above inductive definition of I is not particularly vivid. Here is an explicit

formula for (albeit we are mostly going to avoid using it in proofs):

Theorem 5. Let f: L x L — k be a bilinear form.

(a) For every A € k and every v € L, we have v\ =0.
(b) For every u € L and v € L, we have vlu = f (v, u).
(c) Let uq, ug, ..., up be p elements of L. Let v € L. Then,

P
ol (W @ Uy ® ... ®up) = Z (=) f (0, 0) ) Qua® ... QU D... Quy. (4)

i=1

Here, the hat over the vector u; means that the vector u; is being omitted
from the tensor product; in other words, u1 @ us ® ... @ U; & ... @ u,, is just
another way to write u; ® us ® ... ® Uj—1 @ Ujy1 @ Ujy2 D ... @ Up.

Vv Vv
tensor product of the tensor product of the
first i—1 vectors uy last p—i vectors uy

Proof of Theorem 5. (a) We have X € k = L& and thus 6/ (\) = 6/, (\) =0 (\) =
ey
0. Thus, vl = 6/ (\) = 0, and Theorem 5 (a) is proven.
(b) Applying to U = 1, we see that

vi(u@l):f(v,u)l—u@) (vil) =f(v,u)l —u®0=f(v,u).

——
=0 (by Theorem 5 (a))

Since u ® 1 = u, this rewrites as viu = f (v,u). Thus, Theorem 5 (b) is proven.

10Here, A € k is considered as an element of ® L by means of the canonical inclusion k = L®° C ®L.
UHere, f (v,u) € k is considered as an element of ®L by means of the canonical inclusion k =
L¥ C QL.



(c) We are going to prove Theorem 5 (c) by induction over p:

The induction base is clear, since for p = 0, Theorem 5 (c) trivially follows from
Theorem 5 (a)™]

Now to the induction step: Let p € Ny. Let us prove Theorem 5 (c) for this p,
assuming that we have already verified Theorem 5 (c) applied to p — 1 instead of p.

In fact, we have assumed that we have already shown Theorem 5 (c) applied to
p — 1 instead of p. In other words, we have already shown the equality

p—1
ol (U QUs @ ... @ Up_1) = Z (—1)271 fou) uyQ@ue® .. QU ® ... 0 uy—1 (D)

i=1

for any p — 1 vectors g, ug, ..., up—1 in L. Now, our goal is to prove the equality
for any p vectors uy, ug, ..., u, in L.

In fact, substituting the vectors ug, ug, ..., u, instead of w;, uo, ..., up—; into the
(already proven) equality (f]), we get

p—1
ol (ug @ u3z ® ... ®u,) = Z (=) f (0, ui) U @us @ .. @ U1 @ ... D 1y
i=1
p .
= Z (1) fo,uw) uQ@us @ ... Ty @ ... @y,
P ——
:_(_1)7,71
(here, we have substituted i for ¢ + 1 in the sum)
P
=D (D)o, ) uRus ® ... QU D ... D Up. (6)
=2

P o
2because for p = 0, we have u; @ uz ® ... ® u, = (empty product) =1 € k and ) (—1)" WACRDE
i=1
U QU ® ... QU ® ... ®up = (empty sum) = 0



Now, applying (3)) to v = vy and U = us @ u3 ® ... ® u,, we get

ol (U1 @ us @ ug ® ... @ up)

=- i(—l)Flf(v,ui)'U2®U3®-..®ﬁ}®...®up
(by (@)

= f(vvul) 32®U3® ...(X)u]3
:(71)1_1f(v,u1) =u1QU2®...0UIR...Qup

p
+u ® (Z (D)7 o) w@us® .. Q0 Q... ® up>

1=2

4

~~

(*1)1._lf(v»ui)'U1®(u2®us®...®ﬁ}®...®up)

s

=2

(-1 f(v,wi) w1 Qua®... QW ®...Qup

)
i

= (_1)171 f,um)uy @us®...Q0 1 ® ... @ Uy,
p

Y DT ) Rw® . @60 . @,
=2
p .
= Z (_1)%1 Fo,u) u @us® ... QU ® ... @ Uy
=1

Thus, is proven for our p € N. In other words, Theorem 5 (c) is proven for our
p € N. This completes the induction step, and thus the proof of Theorem 5 (c) is
complete.

We are now going to prove some properties of the interior product. The most

important one is the bilinearity of 1{; this property states that the map
L x (®9L) = &L, (v,U) > olU

is k-bilinea, i. e. that (av + gv') U = alU + Bu'LU and that ol (U + pU’) =
avl U —i—ﬁv{U’ foranyv e L,v € L, U € ®L and U’ € QL.

Theorem 6. If ue L, U € ®L, and v € L, then

vi(u@;U):f(v,u)U—u@(viU). (7)

13This is because vl U = 8 (U), and because the map
Lx (®L) —» ®L, (v,U) = 6/ (U)

is k-bilinear.



Proof of @ If U is a homogeneous tensor (i. e. an element of L®" for some r € N),
then follows directly from (applied to p = r +1). Otherwise, we can write U as
a k-linear combination of homogeneous tensors of various degrees, and then apply
to each of these tensors; summing up, we obtain ([7)). Thus, is proven.

Theorem 7. If v € L and U € ®L, then
ol (v{U) =0. (8)

Proof of Theorem 7. Fix some v € L. First we will prove that for every p € N and
every U € L®P, the equation holds. In fact, we will show this by induction over p:

The induction base (p = 0) is clear (thanks to Theorem 5 (a), which yields WU =0
for every U € L®° = k). Now for the induction step: Fix some p € N,. Let us now
prove for all U € L®P, assuming that is already proven for all U € L®P~1),

We want to prove for all U € L®P. But in order to achieve this, it is enough
to prove for all left-induced U € L®P (because of the left tensor induction tactic,
since the equation is linear in U). So let us prove for all left-induced U € L®P.
In fact, let U € L®P be a left-induced tensor. Then, U can be written in the form

U=u®U for some v € L and U € LEP~V (since U is left-induced). Then, WU =

ol (u ® U) =fw,u)U—-u® (viU) (by , applied to U instead of U) yields

ol <UEU) — ol (f (0,0) U —u® (UEU)) = f(v,u) ol — ol (u ® (dU))
(by the bilinearity of i)
= f(v,u) ol — (f (v, u) <UEU> —u® (vi @iU)))
since vl (u ® (ﬁU)) = f(v,u) (UIU) —u® <vi (UEU))
(by (@), applied to v’ 1 instead of U)
—u® (ui (dU)) —0

(because ol (viU ) =0 by (applied to U instead of U ) . Thus, we have proven

that ol (vZU ) = 0 for all left-induced U € L®P. Consequently, by the left tensor

induction tactic (as we said above), we conclude that holds for all U € L®P. This
completes the induction step. Therefore we have now proven that for every p € N, and
every U € L®P_ the equation holds.

This yields that the equation (8)) holds for every U € ®L (since every element of ® L
is a k-linear combination of elements of L®P for various p € N, and since the equation
is linear in U). This proves Theorem 7.

Theorem 8. If ve L, w e L and U € ®L, then
ol <w|{U> S— (viU) : (9)

141n fact, we are allowed to apply to U instead of U, since U € L®®~1 and since we have
assumed that is already proven for all U € L®P—1),

9



First proof of Theorem 8. Theorem 7 yields ol (viU) = 0. Theorem 7, applied to
w instead of v, yields wi <w|]_cU ) = 0. Finally, Theorem 7, applied to v + w instead of
v, yields (v + w) ! ((U +w) EU) = 0. Thus,

0=( )i / ((v + w) \{U> (v+w)i <UI_U + w|_U> (by the bilinearity of i)

V4w
— ol ( lu + w|_U> + wi (ULU + wLU> <by the bilinearity of i)
= mj_c (viU) —HJ{ (U)IiU) + ’UJIJ_c (viU) + wi <w|J_cU>

=0 -0

<by the bilinearity of E)
— ol (wiU) + wl (viU) .

This yields @, and thus Theorem 8 is proven.

Second proof of Theorem 8. Fix some v € L and w € L. First we will prove that
for every p € N and every U € L®P, the equation @[) holds. In fact, we will show this
by induction over p: The induction base (p = 0) is clear (since Theorem 5 (a) yields

wlU = 0 and v{U = 0 in the case p = 0). Now for the induction step: Fix some
p € N,. Let us now prove @D for all U € L®P, assuming that @D is already proven for
all U € L2P—1),

We want to prove @D for all U € L®P. But in order to achieve this, it is enough
to prove @ for all left-induced U € L®P (because of the left tensor induction tactic,
since the equation @D is linear in U). So let us prove @D for all left-induced U € L®P.
In fact, let U € L®P be a left-induced tensor. Then, U can be written in the form
U =u ® U for some v € L and U € L®® (since U is left-induced). Therefore,

U = ol (u ® U) flo,uw)U—-—ue (mU) (by , applied to U instead of U) yields
wi (U.J_CU> = wi (f (v,u) U-—u® <U|]_CU)> = f(v,u) will — wi <u® (viU))
(by the bilinearity of /)
= f(v,u)wiU — (f (w,u) iU —u® (w{ (viU)))
since wi (u ® (UIJ_CU>) = f(w,u) ol —u ® <w|Jj (U{U>>

(by (7)), applied to w and vl U instead of v and U)
= f(v,u) wll — f(w,u) WU +ue (U)I]_c (viU)) : (10)

Applying this equality to w and v instead of v and w, we obtain

ol (wiU) = f(w,u)vlj_cU— f(v,u) wil +u® (v{ (wiU)) :

10



Adding this equality to (I0), we obtain
wl (vl + ol (wlU)

= (f ) wl0 - f w0 +ue (wl (WD)

+ (f(w,u)v[U—f(v,u)wiUJru@ (v (

—u® (wl (1)) +ue (of (wl0)) =ue (wl (vl0) +of (wll)) =0

(because wl <U|J_CU> ol (U)I}_CU) = 0, since ol <w|{U> — —wl (viU) by (@) (applied
to U instead of U) , and therefore v (wiU) = —wl (viU). Thus, we have

proven that @ holds for all left-induced U € L®P. Consequently, by the left tensor
induction tactic (as we said above), we conclude that @ holds for all U € L®P. This
completes the induction step. Therefore we have now proven that for every p € N, and
every U € L®P, the equation (9] holds.

This yields that the equation @D holds for every U € ®L (since every element of @ L
is a k-linear combination of elements of L®? for various p € N, and since the equation
(9) is linear in U). This proves Theorem 8.

Theorem 9. If pe N, ue€ L, U € L®P, and v € L, then
ol (U@ u) = (=17 f (v,u) U + (UKU) ® . (11)
Instead of proving this directly, we show something more general:
Theorem 10. If pe N, v € L, U € L®?, and V € ®L, then
f _ p I f
W Uev)=(-1YUs (w) + (ULU) QV. (12)

Proof of Theorem 10. We are going to prove by induction over p:

The induction base p = 0 is obviouﬂ. Now let us come to the induction step: Fix
some p € N, and some V' € ®L. Let us now prove for all U € L®P, assuming that
(12) is already proven for all U € L®®~1),

15In fact, we are allowed to apply @b to U instead of U, since U € L®®~1 and since we have
assumed that @ is already proven for all U € L®®—1),
16T fact, in the case p = 0, we have U € L® = L®0 = k and thus

Ul{ (U@V) :U'U\{V and
——
=UV
1 ve(lv)+ () ev=1wlviosv =y,
——
=(-1°=1 7 =0 (b \T?’_/ 5
—UiVv = y Theorem 5 (a),
(since U€k) since U€k)

and therefore is valid in the case p = 0.

11



We want to prove for all U € L®P. But in order to achieve this, it is enough to
prove for all left-induced U € L®? (by the left tensor induction tactic, because the
equation ([12)) is linear in U Thus, let us prove ((12)) for all left-induced U € L®P. In
other words, let us prove (12| for all tensors U € L®p of the form U = u®U with u € L
and U € L2 (because every left-induced tensor U € L& has the form U = u ® U
for some v € L and U € L®®=D) In other words, let us prove that

v{((mﬁ)@v) (— )(u®U) (viv)+(vi(u®ﬁ))®v (13)

for everyw € L, U € L®®1) y e L and V € ®L.
In fact, <u® U) RV =u® <U® V) yields

vi((u@U) ®V) — ol <u® (U@V)) = f(v,u) <U®V> —u® (vi <U®V>>.
(by (@), applied to U ® V instead of U). But since

! (U ® V) = (-1 U ® (viV) + (v{U) ?V
(this follows from applying (12) to p — 1 and U instead of p and U [7)), this becomes
ol ((u@ U) ® V) = £ (v,u) (U ® V) —u® ((—1)1”‘1 U (v[V) + (UZU) ® V)

— f(v,u) (U@ V) — (1) uele (viv) —u® (v{U) QV
——(—1)P

= (v, u) (U@V) +(-1)uele (viV) —u® (viU) ®V.
Comparing this to
(—1)° (u@ U) ® <v|]_cV> + ('Ulj_c (u@ U)) RV
= (-1)" <u®U> ® (viV) + (f () U —u® <’UI_U>)
because ([7)), applied to U 1nstead of U,
( yields ol <u®U> = fw,w)U—-u® <UI_U) )

= (-1 (web) e (lV) +fou eV -ue (W) eV
:f(v7u)U®V+(—1)p (u®U) ® (ULV) —u®(v{U) RV
= f(v,u) (U@V)+(—1)pu®0® (va) —u®(v[0> ®V,

we obtain . Hence, we have proven . As already explained above, this completes
the induction step. Thus, is proven for all p € N. In other words, the proof of
Theorem 10 is complete.

1"n fact, we are allowed to apply top—1 and U instead of p and U, because we have assumed
that is already proven for all U € L®®—1),

12



Proof of Theorem 9. Applying Theorem 10 to V' = u, we obtain
f _ p f f
W (U®u)=(-1)"'U® <U|_u> + (ULU) @ u.
Since vlu = f (v,u) (by Theorem 5 (b)), this becomes

ol Ueu)=(-1)"U® f(v,u)+ (viU) Qu=(-1)"f(v,u) U+ (viU) ® u,
=f(v,u)U

and therefore Theorem 9 is proven.
Note that we will often use a trivial generalization of Theorem 9 rather than The-
orem 9 itself:

1 .
Theorem 105. IlfpeNuelL Ue @ L% andwv € L, then
1€N;
i=pmod 2

Wl (U@ ) = (=1 f (v,u) U + (UZU) ® . (14)

1 .
Proof of Theorem 105. Since U € @ L%, we can write U in the form U =
1€N;
i=pmod 2

ST Ui, where U; € L for every i € N satisfying ¢ = pmod 2. Now, 1) (applied
1€N;
i=pmod 2

to ¢ and U; instead of p and U) yields
ol (U, @ u) = (=1) f (v, 1) Us + (UIJ_CUi> ®u
for every i € N satisfying i = pmod 2. Since (—1)" = (—1)” (because i = pmod 2), this

becomes

ol Ui @u) = (=1)"f (v,u) U; + (vlj_cUO ® u. (15)
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Now, U= > U, yields

1EN;

i=pmod 2
ol (U®u)= ol Z Ui®u | = Z ol (U; @ u) (by the bilinearity of {>
ieN; 1€N;
i=pmod 2 i=pmod 2
= > (Cwrew+(lu)ed) 0y (@)
1€N;
i=pmod 2
1€N; 1€N;
i=pmod 2 i=pmod 2
:’UJ: Z Ui
€N
i=pmod 2

(by the bilinearity of {)

:(_1>pf(v>u) Z U+ "Ulj_c Z Ui | ®@u

1€EN; 1€N;
i=pmod 2 i=pmod 2
N—— N ——
—U U

= (1" f U+ (vlU) o u.

1
This proves Theorem 105.
Finally, another straightforward fact:

3
Theorem 102. Let f: Lx L — kand g: L x L — k be two bilinear
forms. If w € L and U € ®L, then

wlU +wlU = w' U, (16)

This theorem is immediately trivial using Theorem 5 (c), but as we want to avoid

using Theorem 5 (c), here is a straightforward proof of Theorem 101 using tensor
induction: P

Proof of Theorem ]02. Fix some w € L. We will first show that for every p € N,
the equation holds for every U € L®P.

In fact, we will prove this by induction over p:
The induction base case p = 0 is obvious (because in this case, U € L® = L®° =k

and thus Theorem 5 (a) yields will = 0, wlU = 0 and WU = 0, making the

equation trivially true).
So let us now come to the induction step: Let p € N,. We must prove for
every U € L®P, assuming that has already been proven for every U € L®FP—1),

14



We want to prove that holds for every U € L®P. In order to do this, it is
enough to prove that holds for every left-induced U € L®P (by the left tensor
induction tactic, because the equation is linear in U). So, let us prove this. Let
U € L® be a left-induced tensor. Then, we can write U in the form U = u ® U for
some u € L and U € LEP~V (because U is left-induced). Thus,

wLU__wL(ueaU> f(u@u)U?—u§§<wiU> (17)

(by (@), applied to w and U instead of v and U). Also,

wll = g(w,u) U —ue (wl0)
(by (I7), applied to g instead of f) and

w0 = (f+ 9) (w,w) U — v (u20)

(by (17), applied to f + g instead of f). Hence,
wlU + wlU
= (fw i —uwe (wli)+ (g(w vl —ue (wll))
::(f(u)u)U?+g wu)) - (ue (wLU)-+u@§<w )

N

=(f(w, U)+g(w u)U . (wLU+wEU>

— (f (w, 1) + g (w, ) T —u (wiU+w3U)

= (f (w, U)+g(w u))U—u®<wfigU>

=( f+g )(w,u)

since (|16} D (applied to U instead of U) yields wl 0 +wlU = w0

(in fact, we are allowed to apply (16] . to U instead of U, since U € L&@=1)
and since . has already been proven for every U € L®P~1)

o) ()T —u® <wf igU> WU,

Hence, the equality . is proven for every left-induced tensor U € L®P. As we already
said above, this entails that (16 . must also hold for every tensor U € L®P, and thus the
induction step is complete. Hence, is proven for every p € N and every U € L®P.

Consequently, the equation holds for every U € ®L (since every U € ®L is a
k-linear combination of elements of L% for various p € N, and since the equation ([16])

3
is k-linear). In other words, Theorem 101 is proven.
3. Right interior products on the tensor algebra

We have proven a number of properties of the interior product [ We are now going
to introduce a very analogous construction !, which works ” from the right” almost the

same way as ! works ”from the left”:

15



Definition 7. Let f: L x L — k be a bilinear form. For every p € N and
every v € L, we define a k-linear map p{ip : L® — [P0~ (where L®(-1)
means 0) by induction over p:

Induction base: For p = 0, we define the map 5{;1) : L®Y — L2D to be the
Zero map.

Induction step: For each p € N, we define a k-linear map 5{;17 D L% —
L®(p71) by

<p£7p (U®u)=f(u,v)U — pfj,p_l (U)®u for every u € L and U € L®(”_1)> :
(18)

assuming that we have already defined a k-linear map pjj’p_l c LOP-D

L®®=2)  (This definition is justified, because in order to define a k-linear

map from L®P to some other k-module, it is enough to define how it acts

on tensors of the form U ® u for every v € L and U € L®®1 as long

as this action is bilinear with respect to u and U. This is because L% =

Ler-1) L.)

This way we have defined a k-linear map pf , : L — LEP=Y for every

p € N. We can combine these maps ,01{70, ,01{71, pfjg, ... into one k-linear map
pl ®L — QL (since L = L®° @ L®' & L®? @ ...), and the formula
rewrites as

(pl (uaU) = f(u,0)U—-pl(U)®u for every u € L and U € L®®7V).
(19)
It is easily seen (by induction over p € N) that the map p{ip depends linearly

on the vector v € L. Hence, the combination p/ of the maps pfio, pf:l, psz,
... must also depend linearly on v € L. In other words, the map

(®L) x L — ®L, (U,v) = p} (U)
is k-bilinear. Hence, this map gives rise to a k-linear map
pl i (®L)® L — L, U®ves pl (U).

We are going to denote p/ (U) by U for each v € L and U € &L. Thus,
the equality takes the form

<(U ® u) Ty = f(u,v)U — (Uﬁv) ® U for every u € L and U € L®(p_1)>
(20)

The tensor U is called the right interior product of v and U with respect

to the bilinear form f.

Again, many authors omit the f in the notation ﬁ; in other words, they simply write

| for However, we are going to avoid this abbreviation, as we aim at considering
several bilinear forms at once, and omitting the name of the bilinear form could lead
to confusion.
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Everything that we have proven for ! has an analogue for /. In fact, we can take any
identiticoncerning i, and "read it from right to left” to obtain an analogous property

of i |8 For instance, reading the property of { from right to left, we obtain 1)
because

e "reading the term ol (u® U) from right to left” means replacing it by (U ® u) ﬁv;

e "reading the term f (v, u) U from right to left” means replacing it by U f (u,v) =
f(u,v)U (since f (u,v) € k is a scalar);

e "reading the term u® (viU) from right to left” means replacing it by <Uﬁv> Xu.

If we take a theorem about the left interior product ! (for example, one of the
Theorems 5-10), and "read it from right to left”, we obtain a new theorem about the

right interior product ﬂ, and this new theorem is valid because we can read not only
the theorem, but also its proof from right to left. This way, we get the following new
theorems:

Theorem 11. Let f: L x L — k be a bilinear form.
(a) For every X € k and every v € L, we have M =o.

(b) For every u € L and v € L, we have wlv = f (u,v).
(c) Let uy, ug, ..., up be p elements of L. Let v € L. Then,
p

(U ®up ® ... @ up) v = Z (=17 f (13, 0) Uy @Us®... QT D... D, (21)

=1

Here, the hat over the vector u; means that the vector u; is being omitted
from the tensor product; in other words, u1 @ us ® ... @ U; ® ... @ u,, is just
another way to write u; ® ug ® ... ® Uj—1 D Ujp1 @ Ujr2 @ ... @ Up.

TV TV
tensor product of the tensor product of the
first 1—1 vectors uy last p—i vectors uy

187 Reading from right to left” means

e replacing every term of the form U by Ul (where v € L and U € ®L), and vice versa;
e reversing the order in every tensor product;
e replacing every f (u,v) by f (v, u).

However, some care must be taken here: when our identity is of the form
(sum of some terms involving vectors, tensors and ® and ]Lc signs) = (another sum of terms of this kind),

then we should not read each of the sums from right to left, but we should read every of their terms
from right to left. (Thus, reading a term like a ® b — el d from right to left, we get b® a — dfc, and

not dc — b ® a.)
19Here, A € k is considered as an element of ® L by means of the canonical inclusion k = L®° C ®L.
2OHere, f (u,v) € k is considered as an element of ® L by means of the canonical inclusion k =
L¥ C QL.
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Theorem 12. If ue L, U € ®L, and v € L, then
(U ®u) Ty = f(u,0)U — (Uﬁv) ® u. (22)
Theorem 13. If v € L and U € ®L, then
<Uﬂv> Tv=0. (23)
Theorem 14. If ve L, w € L and U € ®L, then
(Uﬂw) T = — (Ufm) . (24)
Theorem 15. If pe N, u € L, U € L®", and v € L, then
(weU) o= (=17 f (o) U +ue (V). (25)
Theorem 16. If pe N, v € L, U € L®?, and V € ®L, then

Veu) =1y (vi)ev+ve (vh). (26)

1 .
Theorem 165. lfpeNuelL Ue @ L% andwv € L, then
1€N;
i=pmod 2

(weU) o= (=17 f (o) U +ue (V). (27)

These Theorems 11-16 are simply the results of reading Theorems 5-10 from right
to left, so as we said, we don’t really need to give proofs for them (because one can
simply read the proofs of Theorems 5-10 from right to left, and thus obtain proofs of
Theorems 11-16). Yet, we are going to present the proof of Theorem 11 explicitlylﬂ,
and we will later reprove Theorems 12-16 in a different way.

Proof of Theorem 11. (a) We have A € k = L®° and thus p/ (\) = pfio (A) =

=0
0(A\) =0. Thus, Mo = 87 (\) = 0, and Theorem 11 (a) is proven.
(b) Applying to U = 1, we see that
(1®u){|v:f(u,v)1— (1&1) @u=f(u,v)l1 —0®@u=f(u,v).

——
=0 (by Theorem 11 (a))

Since 1 ® u = u, this rewrites as ulw = f (u,v). Thus, Theorem 11 (b) is proven.
(c) We are going to prove Theorem 11 (c) by induction over p:

21This is mainly because Theorem 11 does not result verbatim from reading Theorem 5 from right to
left, but instead requires some more changes (such as renaming u1 @ us ®...Q@up by up Qup_1®...Qui,
and renaming i — 1 by p — ).

18



The induction base is clear, since for p = 0, Theorem 11 (c) trivially follows from
Theorem 11 (a)P}

Now to the induction step: Let p € N;. Let us prove Theorem 11 (c) for this p,
assuming that we have already shown Theorem 11 (c) applied to p — 1 instead of p.

In fact, we have assumed that we have already shown Theorem 11 (c) applied to
p — 1 instead of p. In other words, we have already shown the equality

p—1
(U1 @ us @ ... @ Up—1) T = Z (=) f (g, 0)  y QUupy ® .. QU D .. Qup_y. (28)

=1

for any p — 1 vectors uy, us, ..., up—1 in L. Now, our goal is to prove the equality
for any p vectors uy, ug, ..., up, in L.

p ,
#hecause for p = 0, we have u; @ us ® ... @ u, = (empty product) =1 € k and > (=1)"" f (v,u;) -
=1

U QU ® ... DU ® ... ® up = (empty sum) = 0
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Applying tou=u, and U = u1 @ us ® ... @ up_1, we get

(U1 @ Uz ® ... @ Up—1 @ Up) T

= f(up, V) U @U@ ... @ Up—1 — (u1®u2®...®up_1)£v ® Uy
P

-~

p—1 )
=3 (—D)PTI 7 f (u,0) w1 Qua®... @ ®...@up 1
=1

(by @3))
= flupv) U Q@us® ... up 1
=(=1)""P f(up,v)
p—1
1> EDPYT S 0) m@une . @GR . Quy | S,
i=1 —

—(-DF T e

= (1) f () 1 @ 1y B s D g

p—1
- (Z <— (_1)p7i> f (Ui,’U) UM RQUR ..U R ... ® up_1> @ Uy

i=1
= (=177 f (up,v) U @ Uz @ ... D Upy

=u1QU2®...QUp®...Qup

=1

p—1
+ (Z (D7 f (uiv) mi Que® .. QU @ ... @ up_1> R up

~~

—~

p—1 )

=3 (—D)P7 f(ui,0) u1 Qua®...0W Q... Qup—1 Quyp
i=1

1

=3 (=17 f(u,0) w1 @ua®... QT ® ... Qup
i=1

= (=" f(up, ) u1 QU ® ... @ Up @ ... @
p—1

) ()P () Qup ® .. Q0 @ . D uy
=1

]
|

p
= Z (=D f(uip0) 41 Qua @ .. QUi @ ... @ Uy
i=1

Thus, is proven for our p € N. In other words, we have proven Theorem 11 (c)
for our p € N. This completes the induction step, and thus the proof of Theorem 11
(c) is complete.

Let us notice another property of ! the bilinearity of ! This property states that
the map

(®L) x L — ®L, (U,v) — Ul
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is k—bilinea, i. e. that U/ (av + po') = alU’v + BUL" and that (aU + pU’) e
aUlw + gUw for any v € L, v/ € L, U € ®L and U’ € QL.

As we said above, Theorems 12-16 don’t need to be proven in details, because simply
reading the proofs of Theorems 6-10 from right to left yields proofs of Theorems 12-16.
However, there also is a different way to prove these theorems, namely by defining an
automorphism of the k-module ®L:

Definition 8. For every p € N, we define an endomorphism ¢, : L% — L®P
of the k-module L®P by

(tp (U1 @Us ® ... ®Up) = Up @ Up—1 @ ... DUy for any vectors uy, ug, ..., u, in L).
(29)

@ These endomorphisms tg, t1, t2, ... can be combined together to an en-

domorphism ¢ : ® L — QL of the k-module ®L (since L = L= ¢ L®' ¢

L®? @ ).

This map t satisfies

g @ue ® ... @ Up) = Up @ Up—1 D ... ® Uy (30)
for any p € N and any vectors uy, us, ..., u, in L.

(due to (29))). This obviously yields ¢* = id ﬁ Hence, the map ¢ : L — QL is
bijective. Besides,

tUV)=t(V)et{U) for every U € ®@L and V € ®L. (31)

@ Also, obviously, t (u) = u for every u € L.
Our use for the map t is now to reduce the right interior product ! to the left

interior product ! For this we need yet another definition:

2This is because Uhv = pf (U), and because the map
(®L) x L — ®L, (U,v) = pl (U)

is k-bilinear.
24This definition is legitimate, because the map L x L x ... x L — L®P given by
—_———

p times
(U1, U2,y ey Up) > Up @ Up—1 @ ... @ Ug for any vectors uq, ua, ..., up in L

is k-multilinear, and thus yields a map ¢, : L& — L®P satisfying .
25In fact,

P @ua® .. @uy) =t [t @ua @ ... @up) | =t (up @uUp 1 @ .. Qup) = U Uz @ ... DUy

=UpRUp—1Q...Qu1
(due to )

due to (30)), applied to u,, u,_1, ..., u1 instead of uy, uo, ..., u
ps Up P

for any p € N and any vectors uy, usg, ..., u, in L. Thus, t* (U) = U for every U € ®L (because every
U € ®L is a k-linear combination of tensors of the form u; ® us ® ... ® u,, (for p € N and vectors uq,
U2, ..., up in L), and because the equation t* (U) = U is linear in U). In other words, t* = id, qed.

26 Proof of . We WLOG assume that U = u; ® uz ® ... ® u, for some ¢ € N and some vectors
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Definition 9. Let f : L x L — k be a bilinear form. Then, we define a
new bilinear form f': L x L — k by

(f* (w,v) = f(v,u) for every u € L and v € L) .
This bilinear form f* is called the transpose of the bilinear form f.

It is clear that (f*)" = f for any bilinear form f, and that a bilinear form f is
symmetric if and only if f = f*.

t
Now, here is a way to write ! in terms of {:

Theorem 17. Let v € L and U € ®L. Then,
; (Uﬁu) — ot (U) (32)

and

t(vﬁU) = t(U) . (33)

Proof of Theorem 17. Fix some v € L. We are first going to prove that ¢ (Uﬁv) =

t
ol t (U) for every p € N and every U € L®P. In fact, we will prove this by induction
over p: The induction base case p = 0 is trivialm. So let us come to the induction step:
Let p € N,. Assume that we have already proven

t (Uﬁv) —olt (U) for every Ue Ler-, (34)
Now we must prove ¢ (Uﬂv) = Ufl_tt (U) for every U € L®P. In order to do this, it is

clearly enough to prove ¢ (U ﬂv) — olt (U) for every right-induced U € L®P (by the

t
right tensor induction tactic, because the equation ¢ (U ﬁv) =it (U) is linear in U).

U1, U2, ..., Ug in L. (In fact, this assumption is legitimate, since every U € ®L can be written as a
k-linear combination of tensors of the form u; ® us ® ... ® u4 for ¢ € N and vectors uq, us, ..., uq in L,
and since the equation is linear in U.) We also WLOG assume that V = 141 Qugy2® ... Quy, for
some p € N and for some vectors ug41, Ug+2, ..., up in L. (In fact, this assumption is legitimate, since
every V € ®L can be written as a k-linear combination of tensors of the form ug41 ® Ugyo ® ... ® up
for p € N and vectors ug11, ug+2, ..., Up in L, and since the equation is linear in V.) Then,

UV =(uQu®..0uU) ® (Ug+1 QUgt2 @ ... QUp) = U1 QU @ ... ® Up, so that
tURV)=t(u1 Qua ® ... QUp) = Up QUp_1 Q... Uy
= (Up O Up—1 @ ... QUgs1) @ (Ug R Ug—1 ® ...Qu1) =t (V) @t (U),
=t(Ug+1®Ug+2®...Qup)=t(V)  =t(v1Qu2®...Quq)=t(U)

so that is proven.

2"In fact, in the case p = 0, we have U € L® = L®0 = k and thus Uhv = 0 (by Theorem 11
(a)) and vt (U) = 0 (by Theorem 5 (a), applied to f* instead of f), which makes the assertion
t (Uﬁv) — ol (U) obvious.
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But this is easy: If U € L®? is a right-induced tensor, then U = U ® u for some u € L
and U € L®®=1 and thus

t <U§v> =t <<U®u> ﬂv) =t (f (u,v) U — (Uﬁv) ®u>
< since <U®u> v = fu,v)U — (Uﬁv) ® u )
by (applied to U instead of U)
= f(u,v)t <U> - t ((Uﬁv) ® u) (since t is k-linear)

~

=t(w)@t( Tl

(by , applied
to U’ and u instead of U and V)

:f(u,v)t<0>— w ®t<Uﬁv>

—u (since u€l)
= fwo)t (0) —uet (Tlo) = f o)t (0) —ue <”{tt <U>)

(since U e L@ yields ¢ (Uﬁv) = 'U]St (U), according to 1} (applied to U instead
of U)) and

oLt (U) = ol tu) ®t (U)
=u (since u€L)

since U = U ® u yields t (U) :t(U®u> =t(u) @t <U) by
(applied to U and u instead of U and V)

ol (wot (0)) = £yt () s (oL (7))
=f(u)
(by , applied to f and ¢ (U) instead of f and U)

— o)t ()~ (o1 (1))
lead to t (U ﬁv) = U{_tt (U). This completes our induction step, and thus we have

t
proven that ¢ <U ﬂv) — ot (U) for every p € N and every U € L®. This immediately

yields that t(Uﬁv) = v{_tt(U) for every U € ®L (because every U € ®L is a k-
linear combination of elements of L®P for different p € N, and since the equation
t (U 51}) = v{_tt (U) is linear in U). Thus, 1) is proven. In order to prove Theorem
17, it now only remains to prove .
In fact, applying (32)) to t (U) instead of U, we obtain ¢ (t (U) ﬂv) — ol (t()) =
=t2(U)=U

(since t2=id)
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Ju Thus, t(t <t (U) ﬂv)) = t(UJSU) . Since t<t (t(U) ﬁ’u)) = t? (t(U) ﬁv) =
t(U) T (since t? = id), this becomes ¢ (U) Tv=t (v(jU), and thus is proven.

So we have now proven both and . Thus, Theorem 17 is proven.
Now, Theorem 17 enables us to prove Theorems 12-16 quickly:
Proof of Theorem 12. We have

t((Uﬁv)®u>: () ®t(Ufm)

=u (since u€L)

(by , applied to Uw and u instead of U and V)

—u®t (Uﬁv) —u® (v{tt (U)) (by (32)) (35)
and
t ((U ® u) ﬁv) —olt (U ®u) (by (32), applied to U @ u instead of U)

—ol | t)  et)
=u (since u€L)
(since (applied to V' = u) yields t (U @ u) =t (u) @ t (U))
— ol (e t)) = ft (0,0t (U) —u® (J&e (U))
—
:f(u,v)
(by (@), applied to f* and ¢ (U) instead of f and U)

= fu,0)t(U)— u® (vfft(U)) = f(wo)t @)~ t () @ u)

(. J

:t((U’jv);u> (by (35))
=1 (f(u,v)U— (Uﬁv) ®U>

(since the map t is k-linear). Since ¢ is injective (because ¢ is bijective), this yields
f f
(U®u)v=f(uv)U — (Uﬂ)) ® u.

This proves Theorem 12.
Proof of Theorem 13. The equation , applied to U v instead of U , yields

t <<Uﬁv) ﬂv) —olt (U{nv) _—y (v]ft (U)) (by (32))
=0

(by , applied to f* instead of f). This proves Theorem 13.
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Proof of Theorem 14. The equation , applied to U v and w instead of U and
v, yields

t ((Uﬂ)) ) —wlt <Uﬂv> = wl (v{_tt (U)) (by (32)).
Similarly, ¢ ((UJ’U)) ) — ol (w{_tt (U)> Together with the equality ol (w{tU) =

—wL (UI_U ) (which follows from {H}, applied to f* instead of f), this yields

() o) = oL (wle@n) == ol (o) = = ((00) o) =1 (= (%) fu).
= (vho) )

Since t is injective (because t is bijective), this results in <U4w> v o= (Uﬂv) ﬁw,

which proves Theorem 14.
Proof of Theorem 16. Applying to V ® U instead of U, we get

i ((v ® U) £v> —ltveu)=u c@) et V)
(due to (31), applied to V and U instead of U and V)
— (1Pt (V) @ (vf[z (V)) n (vft (U)) ®t(V) (36)

by (12), applied to f*, ¢ (U) and ¢ (V) instead of f, U and V). On the other hand,
1) (applied to Vﬁv and U instead of U and V') leads to

t((Vﬂv) ® U) — () ® t(Vﬁv) —t(U)® (vft (V)) .
A

¢
_—y t(V) (by (32), applied
to V instead of U)

Also, 1) (applied to V and U ' instead of U and V) leads to

t(V ® (Uﬁu)) —¢ (U%) ot (V) = (M[t(U)) (V).
A

Thus,
/ ((—1)1” <Vﬂv> QU+V® (Uw))
(o) oo ()
:t(U)®(vf\_ t(V)) (v 4 U)) Qt(V
=y (oLew) + (v tt<U>) )=t (Ve )
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(by (36)). Since ¢ is injective (because ¢ is bijective), this entails
(—1) (vﬁv) QU+V® (U%) = VeU)l

Thus, Theorem 16 is proven.
Proof of Theorem 15. Applying Theorem 16 to V' = u, we obtain

(u®U) Ty = (—=1)” (uw) QU+ u® <Ufm> :
Since ulv = f (u,v) (by Theorem 11 (b)), this becomes

weU) = (=1 f(1,0) ©U tu® (Uﬁv) — (1) f(u,0) U +u® (U%) ,
—f(u0)U

and therefore Theorem 15 is proven.

1
Proof of Theorem 165. Applying to u ® U instead of U, we get

t ((u@ U) ﬁv) = vft(u@ U) = ol (t(U)®@t(u))
(due to (31)), applied to u and U instead of U and V')

t

=l (t(U) @u) (since t (u) = u, because u € L)

= (1) f (v, u) t (U) + <vf£t (U)) ®u (37)

€N
i=pmod 2

(by (applied to f! and ¢ (U) instead of f and U), since U € @ L®* yields

) € L®" (because the map ¢ is composed of the maps ¢; : L% — L® for all
zGN
1Epmod2

i € N, and thus maps L% into L® for all 7 € N)). On the other hand, (applied to
w and Ul instead of U and V') leads to

t(us (b)) =t (th)e = (Lew) o

X =u (since u€L)

" U)
(by )

Since the map t is k-linear, we now have

t <(—1)”f (u,0)U +u® (Uﬂv)) = (-1 (w0)£(0) +1 (u ® (Uﬂv))




(by (7). Since ¢ is injective (because ¢ is bijective), this entails

(=1 f(u,v) U+ u® (Uﬂv) =(u®U) To.

1
Thus, Theorem 165 is proven.
1
(This proof of Theorem 165 yields a new proof of Theorem 15.)

3
Of course, Theorem 101—1 has its right counterpart as well:

3
Theorem 162. Let f: Lx L — kand g: L x L — k be two bilinear
forms. If w € L and U € ®L, then
Uhw + U%w = U

We won’t prove this theorem, since we won’t ever use it and since it should now be

3
absolutely clear how to derive it from Theorem 101 with the help of (or how to

prove it analogously to Theorem 101).
4. The two operations commute

Now that we know quite a lot about each of the operations ! and i let us show a
relation between them:

Theorem 18. Let v € L, w € L and U € ®L. Then

ol (Uﬂw) = (viU) . (38)
More generally, if f: L X L — k and g : L X L — k are two bilinear forms,
then

ol (UZw) = <U|{U> Sw. (39)

Proof of Theorem 18. In order to prove Theorem 18, it is enough to prove the
equality only (because the equality directly follows from the equality ,
applied to g = f). So let us prove the equality (39).

First, let us prove that for every p € N, every U € L®P satisfies the equation ([39).
In fact, we are going to prove this by induction: The base case of our induction - the
case p =0 - is eviden@. Now the induction step: Let p € N,. Assume that we have
proven that every U € L®P~1 satisfies the equation . Now, in order to complete
the induction step, we have to show that every U € L®P satisfies the equation . In
order to achieve this goal, it will be enough to show that every left-induced U € L®P

281n fact, in the case p = 0, every U € L®? is a scalar (since L& = L®° = k), and thus U%w = 0

(by Theorem 11 (a), applied to g instead of f) and WU =0 (by Theorem 5 (a)), so that the equation
trivially holds.
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satisfies the equation @ So let us prove this: For every left-induced U € Ler,
we can write U in the form U = u ® U for some v € L and some U € L®®=1  and
therefore U satisfies

ol (Uﬂw)
_— (<u ® U) Zw> (smce U=u® U)
— ol ((-1)?*1 g(u,w) U +ue (Uﬂw))
since (applied to p — 1, g, U and w instead of p, f, U and v) yields

( (u ® U) S = (=17 g (u,w) U +u @ (Uﬂw) (because U € L2P-1) )
= (-1 g (ww) ol U 4ol (we (%))
= (1P g (uyw) - olU + f(o,u) - Ul —u (v{ (Uﬂw))

since (7)), applied to Uw instead of U, yields

(1{<@@D(Uﬂw)>::fﬁgu)'Ugw——uQ§(vi(UﬂuO) )

= (-1 g (ww) ol T+ (v,0) - 0w = w e (o107 Sw) (40)

(because vi (U ﬂw) = (U\{U ) w, which follows from applying the equality to U
instead of U E[) and

(viU) Sw
(L wo i) (e U =u )
= (f w0 —ue (v[U)) dw
since (7)), applied to U instead of U, yields
< ol (u@U) = fv,w)U —u® (viU) )
= f(v,u) Ul — <u® (UfU)) Sw
— f(0,0) Uw — ((—1)”*2 g(u,w) -l +u® ((d(i) Zw))
since (25) (applied to p — 2, g, vl U and w instead of p, f, U and v)
yields (u ® (’UIJ_CU>> Sw = (1) g (u,w) - WU +ue <(U£U> ﬁw)
(because Wl e LeP=2))
— (1) 2 g (u,w) - 0l T + f (v,u) T — u @ ((UEU) ﬂw)
—(-1r!

= (—1)p_1g(u,w) 'U{U—l—f(v,u) Uw—u® ((UIJ_CU) ﬂw) — ol (Uﬂw)

29This follows from the left tensor induction tactic, because the equation is linear in U.
30In fact, we are allowed to apply the equality to U instead of U, since U € L®®~1) and since
we have proven that every U € L®®~1) satisfies the equation (by our assumption).
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(by ) Thus, we have proven the equality . Hence, every left-induced U € L®P
satisfies the equation . As we said above, this yields that every U € L®P satisfies
the equation (39). This completes our induction step, and thus we have shown that for
every p € N, every U € L®P satisfies the equation . Consequently, every U € ®L
satisfies the equation (because every U € ®L is a k-linear combination of elements
of L®P for various p € N, and because the equation is linear in U). This proves
Theorem 18.

5. The endomorphism o/

We are now going to define an endomorphism o/ : ® L — ®L which depends on
the bilinear form f:

Definition 10. Let f : L x L — k be a bilinear form. For every p € N, we
define a k-linear map ag : L®P — ®L by induction over p:

Induction base: For p = 0, we define the map CVIJ; . L®Y — ®L to be the
canonical inclusion of L®° into the tensor algebra ® L = L°@ LG Le% ...
(In other words, we define the map of : k — ®L by af (N) = X for every
A€k =L)

Induction step: For each p € N, we define a k-linear map ag LB — QL
by

<a£ (uU)=u® ozf;,l (U) — u{ag,l (U) for every u € L and U € L®(p’1)) )
(41)

assuming that we have already defined a k-linear map agfl D LB 5 L.

(This definition is justified, because in order to define a k-linear map from

L®? to some other k-module, it is enough to define how it acts on tensors

of the form u ® U for every u € L and U € L®®P1) as long as this action

is bilinear with respect to u and U. This is because L& = L @ L®P~1))

This way we have defined a k-linear map ag : L®P — QL for every p € N.

We can combine these maps aé , a{ , ag , ... into one k-linear map of : ®L —

®L (since ®L = L @ L% @ L®? @ ...), and the formula rewrites as

(O‘f (ueU)=u®al (U)- ulal (U) for every u € L and U € L®(p71)> _
(42)

We note that, in contrast to the map &/ (which maps every homogeneous tensor
from L® to L®®~Y) the map o/ can map homogeneous tensors to inhomogeneous
tensors.

This endomorphism o/ now turns out to have plenty of properties. But first let us
first evaluate it on pure tensors of low rank (0, 1, 2, 3, 4):

Action of o on tensors of rank 0: For any \ € k, we have o/ (\) = )\, where we
consider \ as an element of ®L through the canonical injection k = L®® — ®L. (In
fact, A € k = L yields af (\) = of (\) = X by the definition of o).

31Note that these evaluations will never be used in future (except of and (44)), which are pretty
much trivial), so there is no need to read them. But I think they provide a good intuition for what
the map af does to tensors of low degrees.
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Action of of on tensors of rank 1: For any u € L, we have

o (W)=l (uxl)=u® o (1) - ul of (1) (by (12), applied to U = 1)

=1 (since 1€k) =0 (by Theorem 5 (a),
since of (1)=1€k)

=u®l-0=u®l=u. (43)

Action of of on tensors of rank 2: For any u € L and v € L, we have

o (u®v)=u® ol (v) —ul ol (v) (by (42), applied to U = v)
S~—— S—~—
=v (by , applied to =v (by , applied to
v instead of u) v instead of u)
=URV — ulv =u®v— f(u,v). (44)

=f(u,v) (according to Theorem 5 (b),
applied to v and u instead of u and v)

Action of of on tensors of rank 3: For any w € L, v € L and w € L, we have

of (u@v@w)
:u®ozf(v®w)—u{ozf(v®w) (by (42), applied to U = v ® w)

—u®ow-f©w) - (vow - f(©w)
since (applied to v and w instead of u and v) yields
o (vew)=v@w— f(v,w)

=lu®@vew—-—u® f(v,w) | — ui(v@w) — wj_cf(v,w)
—_———— —_—— —_——
=f(v,w)u — Flu)w— ®( f ) =0 (by Theorem 5 (a),
=) W—v@| uLw since f(v,w)€k)
(by , applied
to u, v and w instead of v, u and U)
=u®@vew-—fwwu) —|f(u,r)w—ve (uiw) -0

——
=f(u,w) (by Theorem 5 (b),
applied to v and w instead of v and w)

=w®vew-— f(v,wu)—| f(u,v)w-—v& f(u,w) -0

—fww)o
=u®vew— f(v,w)u)— (f(u,v)w— f(u,w)v—0)
=u®vw—f(v,w)u+ f(u,w)v— f(u,v)w. (45)

Action of o on tensors of rank 4: For any u € L, v € L, w € L and = € L, we
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have

of (uRvRWw )

:u®ozf(v®w®x)—u{af(v®w®x)

(by , applied to U = v ®@ w ® x)
—u®@ewes— f(w,2)v+ f (0,5)w— f (v,0))

—ui(v@w@x—f(w,a:)v—i—f(v,x)w—f(v,w)x)

o (veuwer)=vwer— f(wz)v+ f(v,z)w— f(v,w)x
=uereuwer—fwr)uev+ fv,2)ukw— f(v,w)u® )

( since (45]) (applied to v, w and z instead of u, v and w) yields

— ui(v@w@x)
—_———

=fuv)wr—v® (u((w@x))

(by , applied to u, v and
w®z instead of v, u and U)

+f (v,2) ulw

:f(uvw) (by
Theorem 5 (b),
applied to v and w
instead of v and u)

_f (w7 SL’)
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~—
:f(uvv) (by
Theorem 5 (b),
applied to u and v
instead of v and u)

—f (v, w) ulz

~—
:f(uvx) (by
Theorem 5 (b),
applied to u and x
instead of v and u)

)



=uRvwer—f(wr)ukv+ f(v,2)uw— f(v,w)u® x)

— | fu,v)w@r—v® ui(w@x}
—_————

=f(u,w)r—w® (u’:z)

(by , applied

to u, w and z instead of v, u and U)

_f (wvx)f<u7v) —i—f(v,x)f(u,w) _f(vvw)f<u>x)>
=uRvwr— f(w,r)ukv+ f(v,r)uw— f(v,w)u® x)
— <f(u,v)w®:z:—v® (f(u,w)x—w@ (uim))

_f (w,x)f(u,v)—i—f(v,x)f(u,w) _f(v7w)f<u’x))
=uRuvuwr—f(w,r)ukv+ fv,z)ukw— f(v,w)u® ez

f
—Jfluy,v)wRr+ve U,W)T — W& uLx
f(u,v) [ (u, w) UL,
=f(u,z) (by Theorem 5 (b),
applied to v and z instead of v and w)

+ [ (w,x) f(u,0) = f(v,2) f (u,w) + [ (0,0) f (u, )
=uRuvuwr—f(w,r)ukv+ fv,z)ukw— f(v,w)u®z
—flu,v)wer+ve (f(v,w)r —we f(u,x))

+ S (w, ) f (u,0) = f (v, 2) f (u,w) + f (0, w) f(u, 7)
=uRuvwr—f(w,r)ukv+ fv,z)ukw— f(v,w)u®z

— fu,v)wz+ y®f(u,w)az—y®w®f(u,xz
= f(wwpee —f(uz)oew
+ f(w,x) f (u,0) = f(v,2) f(u,w) + f(0,0) f(u, ).
—uRuvwr—f(w,r)ukv+ fv,z)uw— f(v,w)u®z
—flu,v)wz+ fu,w)vr— f(u,x)v@w
+ [ (w,x) [ (u,0) = f(v,2) f(u,w) + [ (0,0) f(u, ).

These computations can be generalized to o (u; ® us ® ... ® u,) for general p € N.
As a result, we get the formula

of (U1 @ ug ® ... @ up)
_ Z (1) (oumber of all bad pairs) ¢ (iy, ) f (Wi, Wgy) oo f (Ui, U, ) Uy @ Upy @ o @ Uy,

for any p vectors uy, ug, ..., u, in L, where the sum is over all partitions of the
set {1,2,...,p} into three subsets {i1, 2, ..., 9}, {J1, J2, -, Ji } and {rq,ra, ..., 7p_ox } (for
various k) which satisfy i; < @9 < ... < dg, J1 < Jo < oo < Jp, 71 < T < . <
rp—2r and (i < jo for every £ € {1,2,...,k}). Here, a "bad pair” means a pair (¢,(') €
{1,2, ...k} satisfying ¢ > ¢ and i; < jp (so, in particular, for every ¢ € {1,2,....k},

32



the pair (¢,¢) is bad, since i, < 7jy). m Thus we have an explicit formula for
of (uy @ ug ® ... ® up), but it is extremely hard to deal with; this is the reason why I
defined o by induction rather than by a direct formula.

We remark that the formula can be slightly generalized, in the sense that U
doesn’t have to be a homogeneous tensor:

Theorem 19. Let u € L and U € ®L. Then,
of (W U)=u®al (U)—ula (U). (46)

Proof of Theorem 19. Fix u € L. We have to prove the equation for every
U € ®L. We can WLOG assume that U € L®? for some p € N (since every tensor
U € ®L is a k-linear combination of elements of L®? for various p € N, and since the
equation is linear in U). But then, follows from (42)) (applied to p+ 1 instead
of p). Thus, the equation is proven for every U € ®L, and therefore Theorem 19
is proven.

Another fact is, while o/ is not necessarily homogeneous, the degrees of all the
terms it spits out have the same parity as that of the original tensor:

Theorem 20. Let U € L®? for some p € N. Then,

oJU)e @ L (47)
1€N;
i=pmod 2

Even a stronger assertion holds:

oJdU)e Lo (48)

i=pmod 2

Proof of Theorem 20. We are going to prove by induction over p.

The induction base case p = 0 is obviou

So let us pass on to the induction step: Let p € N,. Assume that we have proven
for p — 1 instead of p; that is, we have shown that

of (U) € GB L® for every U € L®P~D, (49)

1€{0,1,...,p—1};
i=p—1mod 2

Now we have to establish for our value of p as well, i. e. we have to prove that

of (U) € @ L% for every U € L®P. (50)

i€{0717"'7p};
i=pmod 2

32T hope I haven’t made a mistake in the formula.
331n fact, in this case, U € L® = L®° =k, and thus of (U) =U € @ Lo

1€{0,1,...,p};
i=pmod 2
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So let us prove . First, we notice that every u € L and Ue L®rP-D satisf

of (u & U)
=u® ol (U) —u{ ol (U)
—— ——
€ L®i € L®?
1€{0,1,...,p—1}; 1€{0,1,...,p—1};
i=p—1mod 2 i=p—1mod 2

(by , applied to U

(by , applied to U/
instead of U)

instead of U)

cuo @ el P o
i=p—1mod2 i=p—1mod2
=u® E L% 4 ui E L%
i=p—1mod 2 i=p—1mod 2
= uL )
16{0,1,.‘.,]7—1}; CL®(i+1) (since ’LLEL) 26{0,1,..‘,})—1};
i=p—1lmod2 — i=p—1mod 2

(by , applied to U instead of U )

(since direct sums are sums)

U{L®i
——

CL®(=1) (since

f

L

PeL®(=1) for every

PeL®?)

(since both the tensor product and the operation [ are bilinear)

C Z Lo+ 4 Z 201 — Z L6+ Z ,®6-1)
i€{0,1,...,p—1}; i€{0,1,...,p—1}; i€{0,1,...,p—1}; i€{0,1,...,p—1};
i=p—1mod 2 i=p—1mod 2 i+1=pmod 2 i—1=pmod 2
since ¢ = p — 1 mod 2 is equivalent to 2 + 1 = pmod 2, and
since i = p — 1 mod 2 is equivalent to i — 1 = pmod 2 (the latter
is because 1 = p — 1 mod 2 is equivalent
to i + 1 = pmod 2, and because i + 1 =i — 1 mod 2)
= Z L® 4+ Z 1%
i€{1,2,....p}; i€{—=1,0,....p};
i=pmod 2 i=pmod 2
—_——
c X Lot Cret-u4 > L®i= 3 L®% (since LO(=1)=0)
1€{0,1,...,p}; 1€{0,1,...,p}; 1€{0,1,...,p};
i=pmod 2 i=pmod 2 i=pmod 2

(

here, we substituted ¢ for 7 4+ 1 in the first sum, and we
substituted ¢ for ¢ — 1 in the second sum

)

34In the following, whenever P is a k-submodule of ®L, we denote by w{P the k-submodule

{w{p | pe P} of ®L. This is indeed a submodule, since uip is k-linear in p (because of the bi-

linearity of Z)
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C Z L%+ Z L® C Z L since Z L®" is a k-module

i€{0,1,...,p}; i€{0,1,....p}; i€{0,1,....p}; i€{0,1,...,p};
i=pmod 2 i=pmod 2 i=pmod 2 i=pmod 2
- @ o o)
ie{0,1,....p};
i=pmod 2
(since the sum Y. L® is adirect sum). Consequently, (50]) is true for each tensor
i€{0,1,...p};
i=pmod 2

U € L®P (because every tensor U € L®P can be written in the form U = > a;u; ® U
il
for a finite set I, a family (a;),.; of scalars in k, a family (u;),.; of vectors in L and a

of tensors in L®®~1) , and thus it satisfies

family <U1>

iel
of (U) = of (Z o @ UZ> = Zai of <ul ® UZ>
i { ——
el el T
1€{0,1,....p};
i=pmod 2

(due to , applied
to u; and U; instead of w and U)

(since the map o is k—linear)

€ Z ; @ L® C @ L since @ L% is a k-module
el 1€{0,1,....p}; 1€{0,1,...,p}; 1€{0,1,...,p};
i=pmod 2 i=pmod 2 i=pmod 2
). Thus, the induction is complete, and is proven. Clearly, yields (since

P L»C @ L) Thus, Theorem 20 is proven.

1€{0,1,...,p}; 1€EN;
i=pmod 2 i=pmod 2

Now let us show some more interesting properties of af. The proofs will be again
by induction akin to the proofs of Theorems 6-10 and 12-16.

First, we notice that the definition of o/ had a bias towards left tensoring: we de-
fined the value of alff on a tensor of rank p by writing this tensor as a linear combination
of tensors of the form u® U with v € L and U € L®®~Y_and then by setting the value
of ozg on each such u ® U tensor according . But what if we would try to define a
"right analogue” a’ of o/, which would be (inductively) defined by

(&g U®u) = &gfl (U)®@u— &j;l (U) T for every u € L and U € L®(p’1)>

instead of ? It turns out that this wouldn’t give us anything new: This "right
analogue” &/ would be the same as of. This is explained by the following theorem:

Theorem 21. Let u € L and U € ®L. Then,

af(U®u):af(U)®u—af(U)ﬁu. (52)
35This is because U € L® = [ @ L®®-1),
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Proof of Theorem 21. Fix u € L. We have to prove the equation for every
U € ®L. In order to do this, it is enough to prove the equation for every U € L®P
for every p € N (since every tensor U € ®L is a k-linear combination of elements of
L®P for various p € N, and since the equation is linear in U). So let us prove
the equation for every U € L®P for every p € N. We are going to prove this by
induction over p:

The induction base case p = 0 is trivial (because in this case, U € L% = L% yields
of (U) = af (U) = U by the definition of o, and \({_/ ¥ € k® L = L yields

€L®0=f €L
of (U®u)=U®u due to (43)).

Hence, let us pass on to the induction step. Let p € N,. Assume that has
already been proven for every U € L®P~1), NOW we must prove for every U € L®P,
In order to do this, it is enough to prove for every left-induced U € L®P (by the
left tensor induction tactic, since the equatlon is linear in U). So, let U € L®? be
some left-induced tensor. Then, U = it ® U for some i € L and U € L@ (because
U is left-induced). Therefore,

o (Uu)=al (u®U®u> =i®al (U@u)—w_a (U@u)

(by , applied to i and U ® u instead of u and U). But since of <U®u> =
af (U) ®@u— ol <U) ) (this follows from , applied to U instead of U , this

rewrites as

= (u'®af U ®u—u®<af

— < —1)"7" f (i, u) of (U) + (dlj_caf (U)) ® u— il (af (U) ﬁu))
since ([14) (applied to p — 1, ii and o (U) instead of p, v and U) yields
il <af (U) ®u> = (=1)"" f (di,u) of U) + (i'uj_caf (U)) ® u
(because U € L2@®~1 yields af (U € igg. L&
i=p—1mod2
(by Theorem 20, applied to p — 1 instead of p))

= (ﬂ@af <U> Qu—u® <ozf <U> ﬂu))
_ ((—1)1’*1 £ (i, u) of (U) + (uiaf (U)) ®u— (uiaf (U)) ﬂu) (53)
since il (af (U) ﬁu> _ (uiaf <U>> T, according to (38)
(applied to of (U') , i and u instead of U, v and w)

36In fact, we are allowed to apply to U instead of U, because U e L®®=1) and because we
have assumed that has already been proven for every U € L&®—1),

36



On the other hand, U = it ® U yields
ol (U)=a’ (i’b@ U> =i®al (U) —iilal (U)
<by ([@6), applied to ii and U instead of u and U >

and therefore

— ( —1)P7 f (i1, u) o (U) +i® <af (U) fu) — <7l'u]_cozf <U>> ﬂu)
since (applied to p — 1, ii, u and of (U) instead of p, u, v and U)
yields (i@ af (1)) hu= (=1 f (w) ol (0) +i@ (of () u)
(because U € L2@P-1 yields of (U) e & L¥
ieN
(by Theorem 20, applied to p — 1 insztzé)z;& rg?d;))

—(iwa (U)@u-iw (ol (0)u))
— (=0 fawyal (0) + (ala! (0) @u— (la (T)) u).

Comparing this to , we obtain

@f(U®u):af(U)®u—04f(U)£u.

In other words, holds for our tensor U. Thus, we have proven for every
U € L®P. This completes the induction step, and therefore the proof of Theorem 21 is
completed.

Time for more invariancy properties of o/:

Theorem 22. Let u € L and U € QL. Let g : L x L — k be a bilinear
form. Then,

of (UZu) = ol (U) Y. (54)
Theorem 23. Let u € L and U € ®L. Let g : L x L — k be a bilinear
form. Then,

ol (uiU) = ulal (U). (55)

Theorem 24. We have af ot = to /.
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Proof of Theorem 22. Let u € L. We will now show that for every p € N, the
equality holds for every U € L®P.

In fact, we will prove this by induction:

The induction base case p = 0 is trivial’’}

So let us now move on to the induction step: Let p € N . Assume that the equality
(54)) is proven for every U € L®®=V. Our goal is now to prove the equality for
every U € L®P. In order to achieve this goal, it is enough to prove the equality for
every left-induced U € L®P (by the left tensor induction tactic, because the equality
is linear in U). However, this is easy, because every left-induced U € L®P can be
Wr1tten in the form U = i ® U for some i € L and U € LEP~V (by the definition of

"left induced”), and therefore satisfies o/ (U _I'U,) = af (U) % (since

of (Uﬂu)
=l ((i00) %) =af (-1 gli,0) U+ i (0%))

since ([25)) (applied to g, U, i, u and p — 1 instead of f, U, u, v and p) yields
(u ® U) Su= (=1 g (ii,u) U+ i ® <UJU>

(=1 g (ii, u) of <U> +af <u ® (UZu)) (since o/ is a k-linear map)
(=1 g (ii, u) of (U) +i®al <Uﬂu> —iila (U_IU)
since (applied to ii and U%u instead of u and U) yields
af (u ® (UZu)) =i ®al (Uﬂu) — il <UJU)
= (=1)" g (ii,u) o’ <U> + U ® (af (U) Zu) —al <af <U> ﬂu)
since , applied to U instead of U, yields of (Uﬂu) =af (U) S
(in fact, we are allowed to apply to U instead of U, because

U e L®@®Y and because we assumed that the equality is proven
for every U € L2P—1)

= (_1)p_1 g (ii,u) o (U) +u® (af (U) ﬂu) — <ii{ozf (U)) i
since (applied to i, of (U ) and u instead of v, U and w) yields
w]_c (af (U) Zu) = (dlj_caf (U)) S

37In fact, in this case, U € L& = L& = k yields U%u = 0 (by Theorem 11 (a) (applied to g, U

and u instead of f, A and v)) and af (U)%u = 0 (by Theorem 11 (a) (applied to g, o (U) and u
instead of f, A and v), since U € k yields of (U) = U € k), and therefore the equation (54) rewrites
as af (0) = 0, which is trivially true.
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and
of (U) Y
=aof (u@U) ) (sinceU:il@)U)

= (uemf (U) — u'{af (U)) S
( since ([46) (applied to i and U instead of u and U ) yields >

of (0 l) —iwal (0) ~ilal (0)

(ii ® af <U>) S — (ii{ozf (U)) i
(=1 g (i, u) of (U) +U® (af (U) ﬂu) — (ii{ozf (U)) S
since (applied to g, af <U) , i, u and p — 1 instead of f, U, u, v and p)

yields (ii@ ot (U)) = (=1 g (i, u) o (U) +u® <Ozf <U> ﬂu)
(because Theorem 20 (applied to p — 1 instead of p) yields
af (U) € @ L¥ (since U e L2@P D))

1€EN;
i=p—1mod 2

). Thus, we have proven the equality for every U € L®P. This completes the
induction step, and thus we have successfully shown that for every p € N, the equality
holds for every U € L®P. Hence, the equality holds for every U € ®L (because
every U € ®L is a k-linear combinations of elements of L®P for various p € N, and
because the equality is linear in U). This proves Theorem 22.

Now we could give a proof of Theorem 23 which is totally analogous to the above
proof of Theorem 22, but instead we prefer to go another way: First we show Theorem
24, and then we conclude Theorem 23 from Theorem 22 using Theorem 24.

Proof of Theorem 24. Let us first prove that for every p € N, we have

of (t(U)) =t (o (1) (56)

for every U € L®P.

In fact, we are going to prove this by induction over p:

The induction base case p = 0 is trivial™|

Now, we must perform the induction step: Let p € N,. Assume that holds for
every U € L®@®=1 Then, we must prove that also holds for every U € L®P. In
fact, in order to achieve this, it is enough to prove that holds for every left-induced
U € L® (due to the left tensor induction tactic, because the equality is linear
in U). Solet U € L®F be a left-induced tensor. Then, U can be written in the form
U=1i®U for some it € L and U € L®P~Y (since U is left-induced). Therefore,

t({U) =t (u'@ U) =1 (U) ®t (i) (by , applied to @ and U instead of U and V),

38In fact, in this case, we have (af ot) (U) =U = (t ° aft> (U), since all three maps o, ¢ and o

leave elements of L®P = L®0 = [ fixed.
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() e u —aof (t(0)@it) =af (¢(0)) @it —af (¢(11)) b
@)eee o)
since (56) (applied to U instead of U) yields o (t (U)) — ¢ (m“ <U)>

(in fact, we are allowed to apply to U instead of U, because

U € L®P=1D and because we have assumed that
(56) holds for every U € LeP—1))

(o (@) -e(alar (1)

=t(t) (since 4€L)

since (33) (applied to ¢ (aft (U)) and @ instead of U and v) yields
e (alar (1)) =t (o (7)) i which sewnites s
(o (0)) i =t (ff (U))
=t (0)) ot - (alar (1)) =t (amar (0)) ¢ (alar (1))
since (B1)) (applied to i and o/* (U) instead of U and V) yields

t(ii@ozft (U)) =t <ozft (U)) @t (i), so that
t(aft <U)) @t(i)=t (vj@oﬂ” (U))

=t (u ® ol <U) —ilal (U)) (since the map t is k-linear)

=t (e

RS
N———"

=t iU
——
=U
since (applied to f*, @ and U instead of f, u and U) yields
ol <u® U) =i®al <U> —iﬂfozft (U) , so that
iwal () —ilal (1) = (i 0)
=t <aft (U)) :

Thus, we have proven that holds for every left-induced U € L®P. As we said, this
is sufficient in order to complete the induction step, and therefore the induction step is
completed, and we have successfully proven that for every p € N, we have o (t (U)) =
t(ozft (U)) for every U € L®P. This immediately yields that of (¢t (U)) =t (ozft (0))
for every U € ®L (because the equation of (t (U)) = t (o' (U)) is linear in U, and
because every element of ®L is a k-linear combinations of elements of L®? for various
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p € N). Hence, for every U € ®L, we have
(of ot) (U) = of (t(U)) =t (ozft (U)) = (todd) (U).
Thus, o ot =t o af*. This proves Theorem 24.

Proof of Theorem 23. Applying to f%, ¢" and ¢ (U) instead of f, g and U, we
obtain

af’ (t (U) gju) =o' (¢ (U)) %
Thus,

But since

t(aft (t (U)%)) — ( toal ) (t (U)gju) = (of ot) (t (U)gju)

=afot (by Theorem 24)

(t(t )) of uﬁw

=t2(U)=U
(since t2=id)
since (32)) (applied to ¢*, ¢ (U) and u instead of f, U and v)
yields t gju) = U(gl_) t(t(U)) =ult(t(U)) (since (¢")" =g)
= uEU
and
! <aft (t(U)) gju)

_ ) t( s (t(U)))
(due to (32) (applied to ¢*, of (t(U)) and u instead of f, U and v))

= ult <aft (t (U))> <since (gt)t = g)
~———
=(toa"ot) (U)
= ul (toaft ot) (U) = ul (t\o’_t/ oo/) (U)

yields of ot =to o) =toaf (because (f)" =
=ulal (U),

( since Theorem 24 (applied to f* instead of f)
f)

this becomes of <u3U> = ula/ (U). Thus, Theorem 23 is proven.
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6. The endomorphism of and the ideals [}v)

In Definition 3, we have introduced the two-sided ideal I; of the algebra ®L. It
was defined as

(L) - (v®@v— f(v,v) | veL) - (RL).

We will now write this ideal I; as a sum (not a direct sum, however) of certain smaller
k-modules, which we denote by Ij(c”) and I](f”p ) (the I}U;p “) are an even finer subdivision
of the [JE”)). These ideals are not really necessary for our further goals, but they help
keeping our proof a bit more organized:

Definition 11. (a) For any vector v € L, let IJ(f}) be the k-submodule

(®L) - (v®v—f(v,0))- (VL)
of the k-module ®L.

(b) For any vector v € L, and any p € N and ¢ € N, let I}v;p;Q) be the
k-submodule
L - (v@v— f(v,v)) L

of the k-module ®L.

Note that the dot sign (the sign -) in this definition stands for multiplication in the
algebra ®L; in other words, it is synonymous to the tensor product sign (the sign ®).

We then have
=>"1 (57)

vEL
(where the ) sign means a sum of k-modules), since Definition 3 yields

Iy =(®L)-{vev—f(v,v) | veE L) (VL)
= 5 (v@v—f(v,0))k

veEL

= (®L) - (Z(U@U—f(u,u))-k) - (®L) :Z(®L)-£(v®v—f(v,v))-k)-(@LZ

= veL :(v®v—f(:)ryv))'k‘(®L)

= U v — v,v)) R = - \U v — v,v)) - = (U)
=Y (@L)- (v@v—f(v,0) k- (®L) = (®L)- (v@v—f(1,0)- (L) =) I

veL —®L veL veL

Besides, every v € L satisfies

[](cv) _ Z Z IJ(cv;p;q) (58)

peN geN

(where the > signs mean sums of k-modules), since Definition 11 (a) yields

o @ (v — f(0,0)) - @ :<2L®p>-(v®v—f(v,v))-<ZL®q)

=3 Ler =3 L® peEN qeN
peEN qeEN
=3 N1 wev— f(ov) LE =N,
peN ¢geN _I(‘U,;p;(D peN ¢geN
—f
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Consequently, [J(f;p 9 [JE”) for any p € N and ¢q € N.
On the other hand, note that every vector v € L, and any p € N and g € N satisfy

[](cv;p;q) = ((up @Uup 1 ®...0u) @ (V@ v — f(v,0) @ (W @wy X ... ¥ w,)

| (w1, ugy ooy up) , (W1, wa, ..oywy)) € LP x L7) (59)
because
(vipig) _ @p . _ ) ®q
[f - \L v (U@U f(U,'U)) \L v
=(up®@up-1®...Qu1 | (u1,u2,...,up)ELP) = (w1 Qw2®...Qwq | (w1,w2,...,wq)ELI)
= (Up QUp1 @ ... ®@uy | (Ur,ug,...,uy) € LP) - (v@v— f(v,0))
(w1 @wr ® ... @w, | (wy,ws,...,w,) € L)
=((Up Qup_1 ®...Qu1) - (Vv — f(v,0)) (W1 @Wwa ® ... A w,)
| (w1, ugy oy 1), (W1, W, ...y wy)) € LP x L)
= (U @Up_1 ®...0 U ) Q@ (VO V— f(v,0) ® (W ®wy ® ... VW)
| (w1, ug, ooy uy) , (w1, w2, ... wy)) € LP x L9)
E%

Our main goal in this section is to prove the following result:

Theorem 25. Let f: Lx L — k and g: L x L — k be two bilinear forms.
Then, af (]f) - [f—‘rg'

In order to prove this theorem, we first start with an easy fact:

Proposition 26. [f we L, U € ®L, and v € L, then
wi(v@v@U):v@)v@(wiU) (60)

and
o (vevel)=@wev—f(v,v) o (U) (61)

Proof of Proposition 26. The formula (applied to w, v and v ® U instead of v,
uw and U) yields

wi(v@v@U):f(w,v)v@)U—v@<w{(v®U)>

=fwv)veU—-v® (f(w,v)U—v@ (wiU))
since ([7) (applied to w and v instead of v and u)
yields wi (veU)=f(w)U—-v® <wZU>

=f(w,v)veU— v®f(w,v)U—v®v®(w{U) :v®v®<w|{U>.
—_—

=f(w,w)vRU

39Here, we have replaced the dot signs (the - signs) by tensor product signs (the ® signs), because
the multiplication in the algebra ®L is the tensor product.
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This proves . Besides, the formula (applied to v and v ® U instead of u and
U) yields

af(v®v®U):'U®af(v®U)—vZaf(v®U).

Since of (V@ U) = v ® ol (U) — vlal (U) (as follows from , applied to v instead
of u), this rewrites as

o (veveU)
=v® <v®af(U) —olaf (U)) — ol (v@a (U) —v{af(U))
= (U®v®ozf(U) v (m.a (U)>> — (vi (v®al (U)) — ol (vlj_cozf (U)))

<by the bilinearity of ® and the bilinearity of |]_c>

=v@vea (U)- v®<vL04f(U)>— vi(v@af(U)) + oL (UI_Oé )
A ~~ g
=f(v,v)af (U)—v® v]:af(U)) 0 (by (8), applied
to af( ) instead of U)

(by , applied
to v and af (U) instead of u and U)

—vRuved (U)-1v® <vl_a (U)) - <f (v,v)af (U) —v® <’UI_Oéf (U))) +0
—vRuvead (U)—-fv)dd (U)=@wev—f(v,v)ea (U),
=f(vw)@af(U)
which proves . Thus, both and are verified, and therefore, we have proved
Proposition 26.

Now we are going to prove that the ideal I; is stable under the map wt for any two
bilinear forms f and g and any vector w:

Theorem 27. Let w € L. Let f: Lx L — kand g: L x L — k be two
bilinear forms. Then, wil; C I;. (Here, whenever P is a k-submodule of

®L, we denote by w! P the k-submodule {wﬁp | pe P} of ® L. This is

indeed a k-submodule, as follows from the bilinearity of E.)
Proof of Theorem 27. Let us first show that
wlsj]](cv;p;q) C ]](cv) (62)

for every v € L, p € N and ¢ € N.

Proof of (@ In fact, we are going to prove by induction over p € N.

The induction base case - the case p = 0 - is trivial, because is easily seen to
hold for p=0 [

40 Proof. Let T € I;U;O;q). By the definition of I)(cv;pm, we have

Ij(fv;O;q) :@~(v®v—f(v,v))-L®q
=k
=k-(v®@v—f0,0) L% =@wev—f(v,v) k L? =(w®v— f(v,0))- L.

=(vQv—f(v,v))k —L®a
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Now to the induction step: Let p € N,. We must now prove for this p,
assuming that is already proven for p — 1 instead of p.

In fact, let us prove . Let T € I}v;p;Q). Then, p > 0 (because p € N, ) yields
L® = [ @ L®®=1 and thus

T e [J(cv;p;q) — &‘iﬁi ~(U QU — f(v,v)) . %4

=LRL®P-1)—[.19(E-1)
(since the tensor product is the
multiplication in the algebra ®L)

— 7, . [®@-1) _ . 7®q _ 7 . 7loip—La)
=L-L%7 (v®vvf(v,v)) L =L-1I; .
:I}v;p—l;q)

Hence, there exist a finite set I, a family (¢;),., of elements of L and a family (U;),., of
elements of [ J(f”p 19 guch that T = > 4;U;. Since the multiplication in the algebra ® L

iel
is the tensor product, this rewrites as T' = Y ¢;QU,;. Every i € I satisfies U; € fj(cv;p—uq)
i€l
and thus
wEUZ- S wi[}v;pil;q) C [](Cv) (63)

Thus, T € I](Cv;O;q) = (v®@v— f(v,v)) - L®9, so that there exists some U € L% such that T =
v®v— f(v,v))-U. Since the multiplication in the algebra ®L 1s the tensor product, we can rewrite

U. Si he multiplication in the algeb L is th d i
thisas T = (v®wv — f (v,v)) ® U. Thus,

wiT =w! | (vov—f,))eU | =w! [veaveU—-fr)oU | =uwl(veveU— f(v,v)U)
—_——

=vRvRU — f (v,0)QU =f(v,0)U
=wl (w@veU) - f(v,v)wlU (since ¢ is bilinear)
g 9 . .
= vRU® (UJI_U> —f (v,v) wWlU (by (60), applied to g instead of f)
—_——

=(v®v)~(wEU)
(since the tensor product
is the multiplication in the
algebra ®L)

=(v®v)- (wEU) — f(w,0)wlU = (vev— f(v,v))- (wEU)
=1 weuv-f(vv): (wiU) € (®L)-(v®v - f(v,v)) - (®L) = I1").

e®L N——
€E®L

Thus, we have shown that w!T € I)(cv) for every T € I}U;O;q). In other words, wf[}mo%q) C I](CU). This
proves for p = 0.
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(by , applied to p — 1 instead of p E[) On the other hand, every ¢ € I satisfies

(v) _ (v)
v
=(®L)-(v@v—f(v,v))(®L)

=L (@L)-(vev—f(vv)- (L)
——

since the tensor product is the
multiplication in the algebra ® L

C®L
C(®L)-(v@v—f(v,v) (®L) =1} (64)
NOW, T = Zél X Ul ylelds
i€l
wlT = w! (Z l; ® UZ-) = Z w! (4; @ Ujp) (by the bilinearity of E)
iel icl
=3 (ot (w1

i€l
since (applied to g, w, ¢; and U; instead of f, v, u and U)
vields w (6 @ Uy) = g (w, £) Ui — ; (w3U¢>

=Y gwt) U, =Y te (olv)

= (vip—Lio) - p(v) €L
er{vrhocy
f f ery” (by (63))

€Y gw, )1 - Ze eIV C Y g1 - S

il ZGI ) el el
g[ v N -~ >
(by (64)) Qlj(tv) (since IJ(,U) is a k-module) QI}U> (since I}v) is a k-module)
C I}U) — [J(cv) C I}v) (since I}v) is a k-module) .

Hence, we have proven that wlT € I ](c”) for every T € ]J(f”p ‘) In other words, we have

proven ((62)). Thus, the induction step is complete, and we have successfully shown that
holds for every v € L, p € N and ¢ € N.
Now, every v € L satisfies

’U)I_Iv (ZZIUM> (by )

peN ¢geN

— Z Z (wﬁlj(f”p;q» (by the bilinearity of 3)

pEN geEN e —r
<1 (vy @)

- Z Z Ij(cv) C Ij(cv) (since I}U) is a k—module) ) (65)

peN ¢eN

4Tn fact, we are allowed to apply to p — 1 instead of p, since we have assumed that is
already proven for p — 1 instead of p.
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Consequently, yields

g g (v) g r(v) .1 . g
wily = wi (Z Iy ) = Z wid; (by the bilinearity of L)
velL velL |
cry
<> =1 (by 7).
veEL

This proves Theorem 27.
As an analogue of Theorem 27, we can show:

Theorem 28. Let w e L. Let f: L XL — kand g: L x L — k be two
bilinear forms. Then, I fﬂw C Iy. (Here, whenever P is a k-submodule of

®L, we denote by Pw the k-submodule {pﬂw | pe P} of ®L. This is
indeed a k-submodule, as follows from the bilinearity of 4.)

We can either prove this in complete analogy to Theorem 27, or use Theorem 27
and the following fact:

Theorem 29. We have ¢ (I;) = I;.

Proof of Theorem 29. We will prove more: We will prove that every v € L, p € N
and ¢ € N satisfy ¢ (I}W;q)) = I](f”qm).
In fact, the definition of I ](cv;p D ields

1079 = 1% (@v— f (0,0)) L% = (U (v@ v~ f (0,0)) -V | (U,V) € L% x L°7)
=(U®@wev—f(v,v)eV | (UV)e L x L) (66)
(since the multiplication in ® L is the tensor product) .

But every (U, V) € L®P x L®9 satisfies

t(Ue@wev—f(v,v)eV)
=t(v®v—f(v,0)RV)®t(U)
(by (B1), applied to (v®@v — f(v,v)) @ V instead of V)
=t(V)®t(vev—f(vv)tU)
( since (applied to v ® v — f (v, v) instead of U) yields )
t(v@v—fw)V)=t(V)ot(vev— f(v,v))
= t(V) Rvev—f(v,v)® t(U)
—— ——

€L®4 (since VEL®9) €L®P (since UeL®P)

sincet(v®@v— f(v,v)) =t(v@v)—t(f(v,v)) =v®@v— f(v,0)
=v@v Fww)

€L @ (v — f(v,v) @ L% = [\"P
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(since the definition of I](cv;q; 2 [(”qp) L@ (v@v— f(v,v)) ® L¥). Now,
yields
t( qu) =t((Ueweuv—f(v,v)eV | (UV)e L x L))

={tUe@wev—f(v,v)eV) | (UV)e L x L)
(since t is a k-linear map)

(v;g;p)
[f

(since t (U@ (v@v— f(v,0)@V) € I}”;q;p) for every (U, V) € L® x L®9). Thus
we have proven that ¢ (I}v;p;q)> C ](U;q;p). Upon transposing p and ¢, this becomes

N

t([}mp;q)). Since t(t (I(U;q;p)>> = _t (I}”;q;p)> = va;q;p, this becomes I](cv;q;p) C

t ([}U;q;p)) C I (72 - Applying ¢ to both sides of this relation, we get ¢ < (]}U;q;p)>> C

t (I}U;p;q)) Combined with ¢ (I(qu)) g I}U;q;p), this yields ¢ ([}”;p;q)> = [}”;q;p).

Thus, every v € L satisfies

(1) =1 (Z ZI}W) (by E9))

pEN ¢eN

= Z Zt <[}v;p;q)> (since the map ¢ is linear)

PEN geEN N~ ——~

:Ij(lv;q;p)
_ (vigsp) _ (vigsp)
=D D =330
p€eN geN geN peN
= Z Z I ](f”p i) (here we renamed p and ¢ into ¢ and p in the sum)

peN ¢geN

=17 v @)
But now, yields

t(I;) =t (Z I}”’) =Yt (I}“)) =Y 1 =1 (by (57)).

veL VEL N o’ vEL
=1

This proves Theorem 29.
Proof of Theorem 28. Every U € Iy satisfies

t (Uﬂw) _— t(U) (by (2), applied to g and w instead of f and v)
~——
et(1y)=Iy

(by Theorem 29)
t
cwll FC Iy (by Theorem 27, applied to ¢* instead of g) .

Applying ¢ to both sides of this relation, we get

t(t <Uﬂw>> ct(ly).
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Since t(t (Uﬂw)) = t? <Uﬂw> = Uw and t(I;) = I; (by Theorem 29), this
=id
rewrites as Uw € I #. Since this holds for all U € I, we can conclude from this that
Ifﬂw C I¢. This proves Theorem 28.
Now, something more interesting: The map o doesn’t (in general) leave I; stable,
but instead maps it to Iy ,:

Theorem 30. Let we L. Let f: L xL — kand g: L x L — k be two
bilinear forms. Then, a9 (I5) C If4,.

Proof of Theorem 30. Let us first show that
(vsp3q) (v)
ot (1770) € 1Y, (67)

for every v € L, p € N and ¢ € N.

Proof of (@) In fact, we are going to prove @ by induction over p € N.

The induction base case - the case p = 0 - is trivial, because is easily seen to
hold for p =0 H

42 Proof. Let T € 1", By the definition of I}""*?, we have

100 = [0 (06— f (0,0)) L = k- (08 0=  (,0)) .L®"
=k =(v@v—f(v,v))k
—(w@v— f(0,0) L = (0@ v — f (0,0)) - LO.

=1®a

Thus, T € I}U;O;q) = (v®@v— f(v,v)) - L®, so that there exists some U € L% such that T =
(v®@wv — f(v,v))-U. Since the multiplication in the algebra ®L is the tensor product, we can rewrite
thisas T = (v®wv — f (v,v)) ® U. Thus,

o (T=a | (vev—Ff,v)QU | =0 |v@vU—f(0,v)U | =a?(v@veU — f(v,v)U)
[y —

=vRvQU — f(v,v)QU =f(v,0)U
= (veveU) - f(v,v)a? (U) (since of is linear)
=wev—g(v)ad (U)—f(v,v)a? (U) (by (61), applied to g instead of f)

—(v@v—g(v,0))-a? (U)
(since the tensor product
is the multiplication in the
algebra ®L)

=(®v—g(v,v))-a? )= f(v,v)a’ U)

= [v@v—g,v)—f(vo)| a?U)c(wev—(f+g)(v,v)- (DL)
——

=v@u—(f(v,v)+g(v,v)) €’L
=v@v—(f+g)(v,v)

=L (0ov—(f+9) () (®L) S (®L)- wev - (f +9) (1,0)) - (©L) = I},
€ERL

Thus, we have shown that o9 (T') € Ij(cj_)g for every T € I}U;O;Q). In other words, a9 (I}U;O;q)) C I)(fjr)g.
This proves for p = 0.
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Now to the induction step: Let p € N,. We must now prove for this p,
assuming that is already proven for p — 1 instead of p.

In fact, let us prove . Let T € I}v;p;Q). Then, p > 0 (because p € N, ) yields
L® = [ @ L®®=1 and thus

T e [J(cv;p;q) — &‘iﬁi ~(U QU — f(v,v)) . %4

=LRL®P-1)—[.19(E-1)
(since the tensor product is the
multiplication in the algebra ®L)

— 7, . [®@-1) _ . 7®q _ 7 . 7loip—La)
=L-L%7 (v®vvf(v,v)) L =L-1I; .
:I}v;p—l;q)

Hence, there exist a finite set I, a family (¢;),., of elements of L and a family (U;),., of
elements of [ J(f”p 19 guch that T = > 4;U;. Since the multiplication in the algebra ® L
i€l
is the tensor product, this rewrites as T' = Y ¢;QU,;. Every i € I satisfies U; € Ij(cv;p_l;q)
el
and thus
o? (U;) € of (I}v;pfl;tﬁ) C [](clﬁg

(by , applied to p — 1 instead of p E[) and

LRI =68 (@L)-(1ev—(f+9)(v,v) - (VL)
CRL
(since ]}?g = (®L)-(v@v—(f+g)(v,v))- (®L)>

C@L) - (vev—(f+g)(vv) (L) = I}?g'

431n fact, we are allowed to apply to p — 1 instead of p, since we have assumed that is
already proven for p — 1 instead of p.
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Now, T'=>"¢; @ U; yields

i€l

=af (Z 6 ® Ui) = Z a? (4 @ U;) (since o is a linear map)

icl icl

= E l; ® ag —0,L 0f (U))
——
e EI(“) ert®
f+g f+g

since (46]) (applied to g, ¢; and U; instead of f, u and U)
yields ad (&J &® Uz) = gz ® ad (Ul) - gig()ég (Uz)

§ : (v)
el v v
' gﬂ)g cr) (vy (@),

applied to f+g and ¢; instead of f and w)

(v) (v) (v (v)
< Z If+g B ]f+g Zlf+g < If+g
iel — iel

g}”jg (since I}I_)gg is a k-module)

(since Ij(fjr)g is a k—module) )

Hence, we have proven that of (T) € I g for every T € I, ("9 I other words, we
have proven . Thus, the induction step is complete, and We have successfully shown
that ( . ) holds for every v € L, p € N and ¢ € N.

Now, every v € L satisfies

a? ([](cv)) —af (Z ZI}v;p;q)> (by )

peN ¢eN

— Z Z a? (I}”;p ;q)) (by the linearity of o)

PEN gEN N —
12, v D)

C Z Z [fi)g - [fi)g (since I}:)g is a k-module) )

peN ¢geN

Consequently, yields

od (1) = a? <Z ]](cv)) = Z af (Ij(cv)> (by the linearity of o)
—_——’

veL veL
g;az
Z f+g =1Iry, (by (57)), applied to f + g instead of f).

veL
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This proves Theorem 30.
Actually a stronger fact holds:

Theorem 31. Let w € L. Let f: Lx L — kand g: L x L — k be two
bilinear forms. Then, a9 (Iy) = If4,.

We will prove this in the next section, using the inverse of a¥.
7. of oa? = aftY

Until now, each of our results involved o/ only for one bilinear form f. Though we
sometimes called it g instead of f, never did we consider the maps af for two different
forms f together in one and the same theorem. Let us change this now:

Theorem 32. (a) Let f: L x L — kand g : L x L — k be two bilinear
forms. Then, af o 9 = a9,

(b) The bilinear form 0 : Lx L — k defined by (0 (z,y) = 0 for every x € L and y € L)
satisfies a® = id.

(c) Let f: L x L — k be a bilinear form. Then, the map o/ is invertible,
and its inverse is o™/,

Proof of Theorem 32. (a) We will first show that for every p € N, we have
af (a9 (U)) = o’ (V) (68)

for every U € L®P.
In fact, we will prove by induction over p:
The induction base case p = 0 is obvious (because in this case, U € L® = L® = k

and thus of [ o/ (U) | = of (U) = U and o/*9 (U) = U, rending the equation (68))
—

trivially true).

So let us now come to the induction step: Let p € N,. We must prove ,
assuming that has already been proven for p — 1 instead of p.

We want to prove . In other words, we want to prove that holds for every
U € L®P. In order to do this, it is enough to prove that holds for every left-induced
U € L®P (by the left tensor induction tactic, because the equation is linear in U).
So, let us prove this. Let U € L®P be a left-induced tensor. Then, we can write U
in the form U = u ® U for some u € L and U € LEP~V (because U is left-induced).
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Thus,
ol (a2 (U))
=af (ag <u® U)) =af <u®ag (U) —ula? (U))
since (6] (applied to g and U instead of f and U)
( yields o (u@U) =u®al <U>—u3a9 <U> >

= o (wear (7)) - of (ula? (U))J

-~ -~

u®af<a9$))—u{af (a.g([j)) :ugaf(ag(l”])) (by (58)), applied

(by (46)), applied to to ag(U) instead of U)
ad (U instead of U)

= (oo (o7 (0) ke (o7 (0))) = (ke (o (0)))

—uwal (o (7)) - fLzaf (o (1)) + ulo’ (a7 (U)Z

g

i 0 a0(0))

(by (T6), applied to

w and af (ag(U)) instead of w and U)

o (oﬂ (U)) St (ag (U)) =u®alt’ (U) — ufigafig (U) "

because (68) (applied to U instead of U) yields o (oﬂ (U)) = aft9 (U)

(in fact, we are allowed to apply to U instead of U, because
U € L®®=1 and because has already been proven for p — 1
instead of p)

B} since (applied to f 4+ g and U instead of f and U)
=o' ueU . . ig .
g YieldSOéerg(u@U):u@ozf*g <U)—UI_C\4f+g (U)
=l (U).

Hence, the equality is proven for every left-induced tensor U € L®P. As we already
said above, this entails that must also hold for every tensor U € L®P, and thus the
induction step is complete. Hence, is proven for every p € N and every U € L®P.
Consequently, the equation holds for every U € ®L (since every U € ®L is a
k-linear combination of elements of L®P for various p € N, and since the equation
is k-linear). In other words, Theorem 32 (a) is proven.
(b) We will first show that for every p € N, we have

A (U)=U (69)

for every U € L®P.

In fact, we will prove by induction over p:

The induction base case p = 0 is obvious (because in this case, U € L® = L® =k
and thus o® (U) = U, and thus the equation holds in this case).
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So let us now come to the induction step: Let p € N,. We must prove ,
assuming that has already been proven for p — 1 instead of p.

We want to prove . In other words, we want to prove that holds for every
U € L®P. In order to do this, it is enough to prove that holds for every left-induced
U € L% (by the left tensor induction tactic, because the equation is linear in U).
So, let us prove this. Let U € L®P be a left-induced tensor. Then, we can write U
in the form U = u ® U for some u € L and U € LEP~V (because U is left-induced).
Thus,

a® (U)

=a’ (U®U> =u®a’ <U> — ula® (U)
since (applied to 0 and U instead of f and U)
( yields o <u®U> =u®a’l (U) —ulay (U) >
—u®U - wll
because (applied to U instead of U ) yields a® (U ) =U

(m fact, we are allowed to apply (69 . to U instead of U, because
U e L#®-1 and because . has already been proven for p — 1
instead of p)

20 —0 since (applied to u, U, 0 and 0 instead of w, U, f and g)
= U — .

ylelds Wl +ull = uOtOU = w_U so that ucl =0
=u@U=U.

Hence, the equality is proven for every left-induced tensor U € L®P. As we already
said above, this entails that must also hold for every tensor U € L®P, and thus the
induction step is complete. Hence, is proven for every p € N and every U € L®P.

Consequently, the equation holds for every U € ®L (since every U € ®L is a
k-linear combination of elements of L for various p € N, and since the equation
is k-linear). In other words, Theorem 32 (b) is proven.

(c) Applying Theorem 32 (a) to —f instead of g, we obtain af o a™f = o/*(=/) =

= id (by Theorem 32 (b)). On the other hand, applying Theorem 32 (a) to —f and
f instead of f and g, we obtain a=f o af = a7+ = a® = id (by Theorem 32 (b)).
Combining o/ o a™/ = id with =/ oo/ = id, we see that the map o/ is invertible, and
its inverse is a~/. This proves Theorem 32 (c).

Now, we can prove Theorem 31:

Proof of Theorem 81. Theorem 30 yields a9 (If) C If4,. On the other hand, Theo-
rem 30, applied to f+g and —g instead of f and g, yields a™9 (Ir4g) C I(f4g)+(—g) = I
Applying af to both sides of this relation, we obtain o (™9 (I44)) € a9 (Iy). But The-
orem 31 (c) (applied to g instead of f) yields that the map a¥ is invertible, and its in-
verse is a9 thus, afoa™ = id. So we have of (a9 (I144)) = (@ o a™9) (I11y) = 14,

T
and therefore a? (™9 (Iy4,)) C a9 (Iy) becomes Iy, C o (I;). When combined with
a? (1) C Ifyy, this leads to o (If) = I 744, and therefore Theorem 31 is proven.
Now we are able to give a proof of Theorem 1. First a definition:
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Definition 12. Let f : L X L — k and g : L x L — k be two bilinear
forms. Theorem 25 yields o9 (I5) C Iy.,. Therefore, the k-module homo-
morphism of : ® L — ®L induces a k-module homomorphism (®L) /Iy —
(®L) /Iy We denote this homomorphism by @%. Since (®L) /Iy =
CI(L, f) and (®L) /Iy = CI(L, f + g), this homomorphism @} is a ho-
momorphism @5 : CI(L, f) — CI(L, f + g).

Now consider two bilinear forms f and g. According to Theorem 32 (c¢) (applied to
g instead of f), the map o7 is invertible, and its inverse is & 9. Thus, afoa ™9 = id and
a 9oaf =id. Now, the homomorphism a;ﬁg is a homomorphism from Cl (L, f + g) to

ClL| L,(f +9) + (=g) | =CL(L, f), while the homomorphism @} is a homomorphism

N

=
from CIL(L, f) to C1(L, f + g). Therefore, af o ™9 = id becomes @} o @,{, = id, and
for the same reason a9 o a? = id becomes a;jg o 6“} = id. Thus, the homomorphism

@4 has an inverse - namely, the homomorphism @, ¢ . Therefore, @} and @,  are
isomorphisms. We have thus proven the following fact:

Theorem 33. Let f: L x L — k and g : L x L — k be two bilinear forms.
Then, the k-modules Cl(L, f) and Cl(L, f + g) are isomorphic, and the
maps a} : CI(L, f) — CI(L, f +g¢) and a;{, : CI(L, f +g) — CI(L, f)

are two mutually inverse isomorphisms between them.
In particular, this generalizes the following fact:

Theorem 34. Let f: L x L — k be a bilinear form. Then, the k-modules
Cl(L, f) and AL are isomorphic, and the maps a}f : C1(L, f) = AL and

@l : AL — CI(L, f) are two mutually inverse isomorphisms between them.

In fact, Theorem 34 follows from applying Theorem 33 to g = — f (because if we set

g=—f,then f+¢g=0,Cl|L, f+g =CI(L,0) = AL and —g = — (—f) = f).
—~—
=f+(=f)=0

Clearly, Theorem 34 immediately yields Theorem 1. Theorem 3 is a simple conse-
quence, as well:

Proof of Theorem 3. Let proj; : ® L — CI(L, f) denote the canonical projection
of the k-algebra ®L onto its factor algebra (®L), Iy = Cl(L, f), and let proj, :
®L — AL denote the canonical projection of the k-algebra ® L onto its factor algebra
(®L) /Iy = AL. The isomorphism agj is the map from AL to Cl(L, f) induced by the
homomorphism o/ : ® L — ®L; in other words, ag 0 Projo = proj; oal.

We identify any vector v € L with the 1-tensor inj (v) in the tensor algebra ®L. In
other words, we write inj (v) = v for every vector v € L. This makes L a subspace of
®L. It is known that the map proj, |r: L — AL (this is the canonical map from the k-
module L to the exterior algebra of L) is injective. Also, the map @{; AL — CI(L, f)is
injective (since it is an isomorphism, according to Theorem 34). Thus, the composition
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@l o (projg |1) is also an injective map (because the two maps proj, |, and @) are
injective). But every v € L satisfies

(@ o (projo 1)) (v) =@ [ proja |1 (v) | = (proja (v)) = (@ o projs ) (v)
. ——
=projo(v) =proj oat
_ : f — : f — ; —
= (projsoa’ ) (v) = pro a’ (v = proj; (v) = v
(projy oa’) (v) iy (v) ip (V) = ¢y (v)

=v (by ([@43))
(since we identify any vector v € L with its image inj (v) in the tensor algebra ®L,
and thus proj, (v) = proj; (inj(v)) = (projsoinj) (v) = ¢y (v)). In other words,
—_—

=y
@) o (projy |1) = @y Since the map @}, o (projo |1) is injective, this yields that the map
@y is injective, and Theorem 3 is proven.

8. A simple formula for o/ on special pure tensors

We record the following simple formula to compute af of certain kinds of pure

tensors. It doesn’t help us to compute a/ generally, but can be used to compute ag

——f
and @, .
Theorem 35. Let p € N. Let uy, ug, ..., u, be p elements of L such that
(f (us,u;) =0 for every i € {1,2,...,p} and j € {1,2,...,p} satisfying i < j).
(70)
Then,
o (U @uy ® ... @ Up) = U R Uy @ ... @ .

Before we prove this, a lemma about the right interior product:

Theorem 36. Let p € N. Let uy, ug, ..., u, be p elements of L, and let v
be another element of L such that

(f (ug,v) =0 for every i € {1,2,...,p}). (71)

Then,
(W @ us ® ... @ uyp) Tv=o0.

While this theorem is trivial using Theorem 5 (c), let us give here a proof avoiding
Theorem 5 (c) here:
Proof of Theorem 36. Let us prove that every i € {0, 1, ..., p} satisfies

(U1 @ Uy ® ... ® ;) Tv=o0. (72)

In fact, we are going to prove by induction over i.
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The induction base case i = 0 is obvioud™]
Now, let us come to the induction step: Let j € {1,2,...,p}. We assume that
holds for 7« = j — 1, and we want to prove that also holds for ¢ = j.

Since holds for ¢ = j—1, we have (u; ® uy ® ... ® u;_1) " = 0. In other words,

Uﬁv = 0, where we denote the tensor u; ®us ®...Q@u;—1 by U. Now, u1 Qus ®...Qu; =
(1 @u2 ® ... @ uj_1) ®u; = U ® u; and thus

=U

(W ®ur @ ... ® uy) T

— (U ®u;)

= f(uj,v) U— (Uﬁv) ®u; (by (applied to w; instead of u))
=0 M
=0 (by ) =0

=0U-0® U; = 0.

In other words, holds for ¢ = j. This completes the induction step. Hence,
is proved for every ¢ € {0,1,...,p}. In particular, we can therefore apply to i =p,

and thus obtain (u; ® us @ ... ® uy) ‘v =0. Thus, Theorem 36 is proven.
Proof of Theorem 35. Let us prove that every i € {0, 1, ..., p} satisfies

o (U @uy ® ... @ uy) = U DUy @ ... @ uy. (73)

In fact, we are going to prove by induction over %.

The induction base case i = 0 is obvioud®]

Now, let us come to the induction step: Let j € {1,2,...,p}. We assume that
holds for + = j — 1, and we want to prove that also holds for ¢ = j.

Since li holds for i = j—1, we have o/ (u; @ uy ® ... ® Uj—1) = U QU@ ... QU _1.
In other words, o/ (U) = U, where we denote the tensor u; ® us ® ... ®u;_1 by U. Now,
U QU ® ... Qu; = (U Uz ® ... ®uj_q1) ®u; = U ® u; and thus

- i

U
o (u ®@up ® ... ®uy)
= ol (U@ uy)
=al (U)®@u; —af (U) ﬂuj (by (applied to u; instead of u))
=U®u; — Uﬁuj (since o/ (U) =U) . (74)

But on the other hand, we have

(f (ui,uj) =0 for every i € {1,2,....,5 — 1})

4In fact, in the case i = 0, we have (u; @ us ® ... ® u;) Tw=1w=0 (by Theorem 11 (a),

=(empty tensor product)=1
applied to A = 1), and thus (72)) holds for i = 0.
#In fact, in the case 7 = 0, we have of (U @us®...®w;) = af (1) = 1 =

=(empty tensor product)=1

(empty tensor product) = (u1 ® up ® ... ® u;), and thus (73] holds for i = 0.
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(by (70), since i € {1,2,...,j — 1} yields ¢ < j), and therefore Theorem 36 (applied
to j — 1 and wu; instead of p and v) yields (41 @ us ® ... ® uj_1) ﬁuj = 0. Since U =
U @ up @ ... ® uj_1, this becomes Uﬁcuj = 0. Hence, 1' becomes

ozf(u1®u2®...®uj) =U®u —Uﬁuj =U®uj=u Qus® ... ®u,.
=0
In other words, holds for @ = j. This completes the induction step. Hence,

is proved for every i € {0,1,...,p}. In particular, we can therefore apply to 1 =p,
and thus obtain o/ (u; @ uy ® ... ® u,) = U ®uy®...Qu,. Thus, Theorem 35 is proven.

9. The Clifford basis theorem

We now come closer to proving Theorem 2 - the Clifford basis theorem. First let
us make Theorem 20 a bit more precise:

Theorem 37. Let U € L®? for some p € N. Then,
JU)-ve P L% (75)

1€{0,1,...,p—2};
i=pmod 2
Our proof of this fact will be more or less a copy of the proof of Theorem 20, with
the only difference that we take a closer look at the highest-degree terms:
Proof of Theorem 37. We are going to prove by induction over p.
The induction base case p = 0 is obviou

So let us pass on to the induction step: Let p € N,. Assume that we have proven
for p — 1 instead of p; that is, we have shown that

o (U)-U e @ L% for every U € L®P~1. (76)

7’6{071 »»»» (p71)72}7
i=p—1mod 2

Now we have to establish for our value of p as well, i. e. we have to prove that

of (U)-U e @ L% for every U € L*P. (77)
1€{0,1,...,p—2};
i=pmod 2
So let us prove . First, we notice that every v € L and U € L®®1) satisfy
af (u ® U )
—u® o (U) —ul ot (U) <by , applied to U instead of U>
—— ——
=(af (0)-U)+U =(af (U)-0)+0
/

-0 4000

~U) +uwl)~ (uf (of (0) = U) +ul0)

= (ue (of (0) = 0) —ul (/ (0) = 0) ~ulU) +uc T
46In fact, in this case, U € L& = L®0 =k, and thus of (U) = U, which yields of (U) —U =0 ¢

P Lo
i€{0,1,....p—2};
i=pmod 2
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and thereford™

of

cu

-

(v ) —uel

v (f(0)-0) i ((0)-0) -

-~
€ L®i € D L®i
i=p—1mod 2 i=p—1mod 2

(by , applied to U
instead of U)

(by , applied to U
instead of U)

f .
utU
~—~

€L®(P_2)

(since UeL®(P—1),

and since u{PeL@’(P*?)
for every PeL®(P—1)

p  rd P -
i=p—1mod 2 i=p—1mod 2
u® Z L®" 4 ul Z L& — [®(—-2)
i=p—1mod 2 i=p—1mod 2
(since direct sums are sums)
®i fr®i 71 o(p-2)
> u® L + > ul L L
iE{Q,l,...,(p—l)—2}; gL®<i+l) (Since ueL) iE{Q,L...,(p—l)—Q}; gL®(i71) (since

i=p—1mod2 i=p—1mod 2

f

uL

PeL®(-1) for every
PeL®Y)

(since both the tensor product and the operation { are bilinear)

> L2 4

i€{0,1,...,(p—1)—2};
i=p—1mod2

>

i+1=pmod 2

2.

i=p—1mod 2

2.

i—1=pmod 2

L®(i+1) +

since ¢ = p — 1 mod 2 is equivalent to ¢z + 1

Le=1) _ [@(p-2)

L®(i71) o L®(p72)

= pmod 2, and

since ¢ = p — 1 mod 2 is equivalent to ¢ — 1 = pmod 2

(the latter is because i = p — 1 mod 2 i
to 7+ 1= pmod2, and because 71 + 1 =

Z LO6+) Z 1201 _ [2(-2)
1€{0,1,...,p—3}; i€{0,1,...,p—3};
i+1=pmod 2 i—1=pmod 2

s equivalent
i — 1mod 2)

(since (p—1)—2=p—3)

47In the following, whenever P is a k-submodule of ®L, we denote by u\{P the k-submodule

{uip | pe P} of ® L. This is indeed a submodule, since uip is k-linear in p (because of the bi-

linearity of \J_c)
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- Y ey S ore o ee

1€{1,2,...,p—2}; i€{-1,0,...,p—4}; C > O
i=pmod 2 i=pmod 2 16{0,1, =2}
N ~~ J ~~ ' i=pmod 2
c D L®i cr®-14 > L®t (because p—2€{0,1,...,p—2}
16{0,1,.,.,1;72}; 1€{0,1,....p—2}; and p—2=pmod 2)
i=pmod 2 i=pmod 2
= > L®% (since LO(~1)=0)
i=pmod 2

here, we substituted ¢ for 7 + 1 in the first sum, and we
substituted ¢ for ¢ — 1 in the second sum

C Z L 4 Z L& 4+ Z 19

i€{0,1,...,p—2}; i€{0,1,....p—2}; i€{0,1,...,p—2};
i=pmod 2 i=pmod 2 i=pmod 2
C E L® since E L% is a k-module
i€{0,1,...,p—2}; i€{0,1,...,p—2};
i=pmod 2 i=pmod 2

= p ¥ (78)

1€{0,1,...,p—2};
i=pmod 2

(since the sum > L®" is a direct sum). Consequently, (77 is true for each
ie{o,l,...,p—2};
i=pmod 2

tensor U € L®P (because every tensor U € L®P can be written in the form U =
S agu; @ U; for a finite set I, a family (o), .y of scalars in k, a family (u;),., of vectors
iel

in L and a family <U2> of tensors in L®P~1) , and thus it satisfies

iel
ol (U)-U
Zaiui@?U ZozuZ@U Z% <ui®Ui>—Zaiui®Ui
el el el el

~
=3 aiaf(Ui®U¢)
iel
(since the map af is k-linear)

_Za’< <Ui®Ui>_Ui®U> Sa P Lo

iel ~~ iel i€{0,1,...,p—2}
€ D L&t i=pmod 2
i€{0,1,...,p—2}
1= pmod2
(due to , applied

to u; and U; 1nstead of u and U)

C @ L since @ L®" is a k-module
i€{0,1,....p—2}; 1€{0,1,...,p—2};
i=pmod 2 i=pmod 2

). Thus, the induction is complete, and is proven. Thus, Theorem 37 is proven.

48This is because U € L& = [ @ L1,
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Before we can finally prove Theorem 2, some preliminary work is needed. First, we
define some notations:

In Definition 4, we defined the ascending product ﬁaz of a finite family (a;),., of
iel
elements of a ring A. However, this notation can turn out to be ambiguous if a; are

elements of two different rings with different multiplications. For instance, we consider
every vector in L both as an element of the tensor algebra ®L and as an element of
the exterior algebra AL. So, if a; is a vector in L for each ¢ € I, then what exactly

does the product |[a; mean: does it mean the ascending product of the vectors a;
iel

seen as elements of ®L, or does it mean the ascending product of the vectors a; seen

as elements of AL 7 In order to avoid this ambiguity, we shall rename the ascending

product ﬁai in the algebra ®L as ®)a;, and we shall rename the ascending product
i€l iel
%
ﬁai in the algebra AL as Aa;. In other words, we declare the following notation:
i€l iel
Definition 13. (a) Let I be a finite subset of Z. Let a; be an element of

®L for each 7 € I. Then, we will denote by ®al the ascending product of
i€l
the elements a; of ® L (this product is built using the multiplication in the

ring ®L, i. e., using the tensor product multiplication).
(b) Let I be a finite subset of Z. Let a; be an element of AL for each

1 € I. Then, we will denote by /\aZ the ascending product of the elements
el
a; of AL (this product is built using the multiplication in the ring AL, i.

e., using the exterior product multiplication).
One more definition:

Definition 14. If N is a set, and ¢ € N, then we denote by P, (N) the set
of all /-element subsets of the set V.

It is known that if (e, e, ..., €,,) is a basis of the k-module L, then

%
(/\ei> is a basis of the k-module A‘ L. (79)
I€P({1,2,...,n})

i€l

(This is one of the many classical properties of the exterior algebra.)

Proof of Theorem 2. We want to prove that the family (ﬁgof (ei))
iel IeP({1,2,...,n})
a basis of the k-module CI (L, f). In order to prove this, we must show that this family
is linearly independent, and that it generates the k-module Cl (L, f). Let us first prove
that it is linearly independent:

Proof of the linear independence of the family (ﬁgof (e,-)) :
iel IeP({1,2,...,n})
Let (A1)ep((12,.ny) b€ a family of elements of k£ such that

__)
> xer(en) =0 (80)

1€P({1,2,...n}) iel

18
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We are now going to prove that this family ()\1)1673({172 _____ ny) Satisfies Ay = 0 for all I €
P ({1,2,...,n}). In order to prove this, we will show that for every j € {0,1,...,n + 1},
we have

(Ar=0forall I € P({1,2,...,n}) satistying |I| >n —j). (81)

In fact, we will prove by induction over j:

The induction base case j = 0 is trivia[™]

Now we begin with the induction step: Let i € {0,1,...,n}. Assume that has
already been proven for j = i. Now, we must prove for j =i+ 1.

We have assumed that has already been proven for 7 = i. In other words, we
have assumed that

(Ar=0forall I € P({1,2,...,n}) satisfying |I| >n —1i) (82)

has already been proven.

We consider the map a;f : CI(L, f) — AL. We have defined this map a;f as the
map from (®L) Iy = Cl(L, f) to (®L) /Iy = CI(L,0) = AL canonically induced by
the map a~/ : ® L — ®L. In other words, if we denote by proj; : @L — CI(L, f) the
canonical projection of the k-algebra ®L onto its factor algebra (®L) /Iy = Cl(L, f),
and if we denote by proj, : ® L — AL the canonical projection of the k-algebra ®L
onto its factor algebra (®L) /Iy = AL, then we have a}f o proj; = projg oo /. Note
that

A L = projg (L%) for every ¢ € N. (83)

Clearly, for every subset I of {1,2,...,n}, we have

@5 (ei) = || projs (e;) = proj; e
iel ooy el icl
=proj s (e;

: . =
(because ﬁ denotes an ascending product in the algebra Cl (L, f), whereas ) denotes
icl i€l
an ascending product in the algebra ® L, and because taking products commutes with
proj; since proj; is a k-algebra homomorphism). Therefore,

@’ (ﬁw <ei>> -’ (projf (@)) = (7 o) @)

i€l el S———— \ €]

=projg oa~f

= (projgoa™) <®>e)

b
- (a—f (@)) | 34

— —> —
a,’ > x]er e | =a;0)=o0.

[eP({12,m}) i€l

But yields

1n fact, is vacuously true in the case j = 0, since there is no I € P ({1,2,...,n}) satisfying
|I] > n — j in the case j = 0.
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This, in view of

—
a;f Z )\[ . H(pf (61)

1€P({1,2,....n}) iel
—
= Z A1 .a;f (Hgof (ei)> <since a;f is k-linear)
IeP({1,2,...,n}) iel
H
— Z A - Projg (a_f (®el>> (by ) ,
IeP({1,2,...,n}) iel

becomes

Z A - Projg <oz_f (®>€Z>> =0. (85)
n}) '

IeP({1,2,..., el

But we have

H
Z A7 - Projg (Oé_f <®61>>
IeP({1,2,...,n}) iel
o —
= Z Al - Projg (@f ®ei)> + Z A1 - Projo <af (®61>>
) ' 1eP( e

1€P({1,2,..., {120} —0 (by (52),

H[>n—i since |I|>n—1i)

- -
= Z Al - Projg a’ ®ei + Z 0 - projo af ®e,~
IeP({1,2,...,n}); iel IeP({1,2,...,n}); iel

\T|<n—i

[I<n—i [I|>n—i

-

=0

N
= Z Al - Projg (oz_f ®ei)> . (86)

I1eP({1,2,...,n});
[|<n—i
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%
Now, every I € P ({1,2,...,n}) satisfies ®e; € LZ and therefore
i€l

(8)-&

i€l el

c @ 1.9

i€{0,1,...,|I|-2};
i=|I| mod 2

—
(due to Theorem 37, applied to ®ei, |I| and — f instead of U, p and f)

el
[]-1
C @ L® C @ 19 — @ JAL
i€{0,1,...,[1|-2} i€{0,1,...,[ 1|1} i=0
[7]-1
= @ L%t (here, we renamed i into £ in the direct sum)
=0
[1]-1
= Z L%t (since direct sums are sums)
=0

and therefore

(@) s (B) | (8)

el el

- s
g

[I]—1
€ Lot
£=0

[]-1 [1]-1

€ projy Z L#] = Z projo (L)
=0 =0
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Since

—
Projo ®€z‘
iel
%
= /\ projo (€;)
iel
. % . . . %
since @) denotes the ascending product in the algebra ® L, while /\
i€l iel
denotes the ascending product in the algebra A L, and since the map
proj, commutes with taking products (because proj, is a k-algebra

homomorphism)
B Ke since proj, (e;) = e;, because we identify any
AN vector v € L with its images in ® L andin AL /)’

i€l
this rewrites as
— - [I]-1
projo a~/ ®ei — /\ei € Z AL
icl iel (=0
Thus, if [I| < n —1i, then

s N [7|—1 n—i—1
projg (a‘f <®el>> — /\ei € Z AL C Z AL
=0

iel el =0

(since |I| <n —iyields [I| =1 <n—1i—1). In other words, if |I| <n — i, then

— — n—i—1
projo (a‘f <®6Z>> = /\ei mod Z AL,

icl el =0
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Hence, becomes

%
S Aok (w (@))
IeP({1,2,...,n}) iel
— —
= Z AI - Projg (a‘f <®ez>) = Z AT /\€i

1eP({1,2,...,n}); il IeP({1,2,...,n}); i€l
|I|<n—i ~~ - |T|<n—i
n—i—1
= /\ e;mod > AfL
iel £=0
— —
= E AL /\62' + E AL /\ei
IeP({1.2,..,n}); il IeP({1,2,...,n}); iel
[I|<n—i ~ |I|=n—i
n—i—1
=0mod Y. AL

=0
(because for every I€P({1,2,...,n})
satisfying \I|<n—1 we have 0<\I|<n i—1

and thus /\e1 /\‘”LC Z /\ZL)

iel £=0
— —

= 2 M0+ 3> M Ae= > M

IeP({1,2,...,n}); IeP({1,2,...,n}); i€l IeP({1,2,...,n}); iel

[T|<n—i y [I|=n—i [I|l=n—i
-
n—i—1

= Z AT /\eZ mod Z AL

IeP,_i({1,2,...,n}) i€l

(since {I € P ({1,2,..,n}) | |I|=n—1i} =P, ({1,2,...,n})). Combined with (85),
this yields

n—i—1
Z AL /\eZ = Omod Z /\é
1€P,_i({1,2,...,n}) iel
which is equivalent to
n—i—1
Z )\[ /\Gi - Z /\ZL (88)
IeP,_i({1,2,...,n}) i€l /=0

But on the other hand,

_>
Z )\[ . /\Gi S /\n_iL

I€P_i({1,2,...n}) iel

— . .
(since every I € P,—;i ({1,2,...,n}) satisfies Ae; € A" 'L , and since A"7'L is a
iel

k-module). Combining this with (B8], we obtain

> Kei € > AL n(ATL).

I€P,_;({1,2,...n}) icl ¢€{0,1,....n—i—1}

Opecause I € Pp,_; ({1,2,...,n}) yields [I| =n —i
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n—i—1
But since ( > /\ZL) N (A"'L) =0 , this becomes
=0

%
Z )\['/\6i€0,

IeP,—i({1,2,...,n}) el

so that N
S A Ae=o0.

IeP,_i({1,2,...,n}) iel

%
But since ( N ei>

€l / rep, ({1,2,...,n})
applied to £ = n — i), this yields that

is a basis of the k-module A*L (this follows from ,

(Ar =0 for every I € P, ({1,2,...,n})) . (89)
Consequently,
(Ay=0forall I € P({1,2,...,n}) satisfying |[I| >n— (i+1))

EL In other words, is true for j =i+ 1. This completes the induction step, and
thus we have proven for every j € {0,1,...,n+ 1}.

Now, we conclude that A\; = 0 for all I € P({1,2,...,n}) (because every I €
P ({1,2,...,n}) satisfies |[I| > —1 = n — (n+ 1), and thus (applied to j =n + 1)
yields A; = 0). Hence, we have shown that if some family (Ar);cp(12,. .y of elements
of k satisfies (80), then A\; = 0 for all I € P ({1,2,...,n}). In other words, the family

ﬁgp 7 (e) is linearly independent.
iel IeP({1,2,...,n})
Proof that the family (ﬁgof (ei)> generates the whole k-module C1(L, f):
iel IeP({1,2,...,n})

Next we are going to prove that the family (ﬁgp I (ei)) generates the k-
i€l 1€P({1,2,...,n})

module Cl (L, f). In order to verify this, we denote by S the sub-k-module of Cl (L, f)

n
n fact, it is known that AL = @ AL, so that
=0

n n—i—1 n
N =EPNL= ( b /\ZL> e (AL @ < b A‘L)
=0 =0 t=n—i+1
n—i—1
/\ZL) N (A"7'L) = 0 (because

n—i—1
and therefore ( ) /\ZL) N (/\”_iL) = 0, which rewrites as (
=0 £=0

n—i—1 n—i—1
@ AL= Y AL, since every direct sum is a sum).
=0 =0
52 Proof. We have |I| € Z and |I| > n— (i + 1). Therefore, only the following two cases are possible:

Case 1: We have |I|=n—(i+1)+ 1.

Case 2: We have |I| >n— (i+1)+ 1.

In Case 1, we have |I| =n—(i4+1)+1=n—1i,so that I € P,,_; ({1,2,...,n}) and therefore A\; =0
according to .

In Case 2, we have |I| >n — (i+1) + 1 =n — i and therefore A; = 0 according to (82).

Thus, in both cases 1 and 2, we have \; = 0. Hence, A; = 0 is proven.
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generated by the family (ﬁgp f (ei)) . In other words, we denote by S the
el IeP({1,2,...,n})
sub-k-module
_+
<H<pf (e;) | I€ P({l,?,...,n})>
iel

of C1(L, f). Now we are going to prove that for any j € {0,1,...,n 4+ 1}, we have

]2_: NLCa,’(9). (90)
£=0

In fact, we are going to prove by induction over j:

The base case - the case j = 0 - is obviou

So let us now come to the induction step: Let p € {0,1,...,n}. Assume that
has already been proven for j = ¢. We must now show that also holds for 7 = p+1.

We have assumed that has already been proven for j = p. In other words, we
have assumed that

NL Ca,’(9). (91)

Now, we will show that A’L C @ S).

%
In fact, according to (79) (applied to p instead of ¢), the family ( A ei)

el IeP,({1,2,...,n})
is a basis of the k-module A?L. In particular, this yields that this family generates the

%
k-module A?L; in other words, A?L = </\ei | Ie€P,({L,2,.., n})> Hence, in order
iel
—f o © - _f
to prove that A?L C @’ (5), it will be enough to show that Ae; € a;’ (S) for each
icl
Ie€P,({L,2,...,n}) (because E;f (S) is a k-module).
%
Now, let I € P,({1,2,...,n}) be arbitrary. We are going to prove that Ae; €
il
a,’(9).
According to , we have

— — 17]-1 p—1
projg (a‘f (@e,)) — /\ei € Z ANL = Z/\KL
iel iel =0 (=0

(since I € P, ({1,2,...,n}) yields |I| = p)
Ca,’(9) (by @1)-

In other words,

— —
projo (a‘f <®el>> = /\e,; mod@}f (9).

i€l i€l
j—1
53In fact, in the case j = 0, the assertion 1@) is trivial (because j = 0 yields . NL =
=0

(empty sum) = 0).

68



%
But since yields proj, (a‘f (®el)) = a;f (ﬁgpf (ei)) = Omod&}f (S) ,
i€l il

— —
this rewrites as 0 = e, mod@}f (S). Hence, Ae; € a;f ().
iel i€l

%
So we have now proven that Ae; € E;f (S) for every I € P,({1,2,...,n}). Now,
iel

AL = < Kei | Ie Pp({l,Z,...,n})> ca,’(9) (92)

icl

ea, ' (9)

(since E;f (S) is a k-module). Now,

(p+1)—1 p p—1
Y OANL=) NL= (Z A%) + oL Cca (9 +at (9) =a,’ (9)
£=0

(=0 =0 ga;f(S)
- by (92
ca; ! (s) (by (92))

(by (1))

(since @;f (S) is a k-module). In other words, 1@) holds for j = p+ 1. This completes
the induction step, and thus we have proven (90) for every j € {0,1,...,n+ 1}.

Now, applying to g =n-+1, we get

(n+1)—1
> ALca;’(s).
/=0
Since
(n+1)— n n
Z /\‘L Z AL = AL (because Ne=EPNL=>" /\‘L) ,
=0 =0

this rewrites as AL C a;f (S). Thus, @) (AL) C aé( ff(S)>. But @) (AL) =
Cl(L, f) (because @, : AL — CI(L,f) is an isomorphism) and @, <a;f (S)> =
(a{; oa;f ) (S) = S (since the maps &;f and @é are mutually inverse). Hence,

al (AL) C @) (af (S)> becomes Cl (L, f) € S. Since S C CI(L, f) (because S is
a sub-k-module of Cl(L, f)), this yields S = CI(L, f). But since S is the sub-k-

module of Cl(L, f) generated by the family (ﬁgaf (ei)) , this yields that
el IeP({1,2,...,n})

the k-module CI (L, f) is generated by the family (ﬁgpf (ei)) :
el IeP({1,2,...,n})

%In fact, ﬁgof (e;) € S (since we defined S as the sub-k-module of Cl(L, f) generated by the

iel
family (ﬁgof (ei) ) vields o, (ﬁgof € ) € af (S) and thus &;f (ﬁcpf (ei)) =
i€l iel

i€l >1€7>({1,2 ----- n})
0 mod&}f (S).
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We have now proven that the family (ﬁgof (€;) is linearly indepen-

il >Ie7>({1,2,...,n})
dent, and that the k-module CI(L, f) is generated by this family. In other words,

the family (ﬁ(pf (el-)) is a basis of the k-module Cl (L, f). This proves
el IeP({1,2,...,n})
Theorem 2.

10. The antisymmetrizer formula

We have constructed the Chevalley map @, : AL — Cl(L, f) through a canonical,
inductively defined map of : ® L — ®L. This, however, is not the most common
definition of the Chevalley map. The purpose of this section is to prove a different
formula for ag (although the word ”formula” is not to be taken too seriously here,
since it gives a unique value for 65 only if k is a Q-algebra), at least in the case when
the form f is symmetric:

Theorem 38. Let f : L x L — k be a symmetric bilinear form. Let p € N,
and let uq, ug, ..., u, be p vectors in L. Then,

plap (ur Az Ao ) = D (=1)707 (o) @7 (o) -9 (o) -

0ES)

Here and in the following, we denote by S, the group of all permutations of the set
{1,2,...,p}, and we denote by (—1)7 the sign of the permutation o for every o € S,,.

Theorem 38 is often used as a definition of the map a{; in the case when k is a Q-
algebra (because in this case, we can divide by p!). However, it does not yield a unique
value of 65 (ur Aug A ... Auy) if the characteristic of k is too small, and therefore I
believe my definition of @g (through the map o/ introduced in Definition 10 above) to
be a better one.

Theorem 38 is an equality in the Clifford algebra Cl(L, f). However, it can be
"lifted” into ®L:

Theorem 39. Let f : L x L — k be a symmetric bilinear form. Let p € N,
and let uq, ug, ..., u, be p vectors in L. Then,

of Z (—1)U Ug(1) & Ug(2) @ ... QUg(p) | = Z (—1)U Ug (1) DUy (2) ... QUg () -

0ES) o€S)

We will prove this... you guessed right, by induction. In the induction step we will
use a lemma which is interesting for its own merit:

Theorem 40. Let f: L x L — k be a symmetric bilinear form. Let p € N,
and let uy, ug, ..., u, be p vectors in L. Then,

af Z (1) Uo(1) ® Ug(z) @ ... ® Ug(y)

oES)

= > (=170 (o) @ tio@) ® oo ® Ug(p-1)) @ s,

oES)
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This, in turn, will be concluded from the following result:

Theorem 41. Let f: L x L — k be a symmetric bilinear form. Let p € N,
and let uy, ug, ..., u, be p vectors in L. Then,

D (=17 (o) ® to(a) @ . © Ug(p1)) Sty = 0.

oSy

Proof of Theorem 41. Let o € S,. Applying Theorem 11 (c) to the p — 1 vectors
Ug(1); Ue(2), - Uo(p—1) iDstead of the p vectors uy, us, ..., u,, we obtain

f
(to(1) ® ta(z) @ ... @ Ug(p-1)) 20
p—1 ‘
=3 (D) (g, ) - o) @ Ug(2) @ e @ Uy @ v @ Ug(p)

i=1

ﬁ for any vector v € L. Applying this to v = u,), we get

f
(Uo(1) ® Up(2) ® .. @ Ug(p-1)) Tio(p)
p—1 A
=) (- (Uo(iys Uo(p)) * Uo(1) @ Us(2) @ - @ Ug(z) ® .o @ Ug(p—1)-
=1

Thus,

Z (—1)7 (uﬁ(l) ® Ug(2) @ ... @ uo(pfl)) ﬁUU(JD)

oES)
p—1 A
= > (D7D (o), o)) - o) ® Uo(a) @ - @ ) @ s @ Ug(p1)
0ESy i=1
p—1 ‘
=3 DT (DS (ol o) o) ® a(e) @ e © Tos) D v ® Un(py.
i=1 o€Sp
(93)
Now, fix some i € {1,2,...,p — 1}. Consider the transposition 7 € S, defined by
p, it j =1
7(j) = i,if 7 =p; for any j € {1,2,....,p} | . (94)
j, it j ¢ {p,i}

(This transposition 7 is usually denoted (p, ) or (pi) in the notation of group theorists.)
It is known that (—1)" = —1 and 77 = id m Let us consider the normal subgroup

A,={nesS,| (-1)"=1} of S,. Define a map Z : A, — S,\ 4, by
(Z (o) =0T for every 0 € A,) .

55Here, the hat over the vector Uy (;) means that the vector u,(;) is being omitted from the ten-
sor product; in other words, us(1) ® Ug2) @ ... ®@ @ ® ... ® Ug(p—1) 18 just another way to write
Ug (1) & Ug(2) @ - @ Ug(i—1) D Ug(it1) & Ug(i42) & oo @ Ug(p—1)-

tensor product of the tensor product of the
first i—1 vectors uy(g) last (p—1)—i vectors uq(p)y with £<p—1

56Here and in the following, whenever a and b are two elements of Sp, we denote by ab the product
of a and b in the group S, (in other words, the composition of the permutations a and b).
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(This map is indeed well-defined, since o7 € S,\ A, for every o € A, EL) Also,
define a map W : ;N\ A, — A, by

(W(o)=o0t for every o € S;\4,) .

(This map is indeed well-defined, since o7 € A, for every o € S,\ 4, @) The two
maps Z and W are mutually inverselﬂ. Thus, the map Z is a bijection.

Clearly, yields

p,iftp =1
T(p)={ Gifp=p =i
j, it p & {p,1}
(since p = p) and
p, if i =i
T(1) = i, ifi=p;, =p
j, it i ¢ {p,i}

(since i = ).
We note that every permutation o € .S, satisfies

Uor)(1) B U(or)(2) @ - @ U(or)(i-1) = Uo(1) & Ug(2) & .. @ Ug(i-1)

(since for every j € {1,2, ..., — 1}, the equation (94} yields 7 (j) = i,ifj=p, =
j,if j & {p.i}

J (since j € {1,2,...,i — 1} yields j ¢ {p,i}) and thus (o7) (j) = | 7(j) | = 0 ()))
~
and

U(or)(i+1) @ U(or)(i+2) @ v @ U(gr)(p—1) = Uo(i+1) @ Us(i+2) @ ... @ Ug(p—1)

(since for every j € {i +1,i+2,...,p — 1}, the equation yields

b, lfj =1
T(j) = i,if j=p; =j(sinceje{i+1,i+2,...,p—1}yields j ¢ {p,i}) and
g, it j ¢ {p, i}
°n fact, 0 € A, = {n € S, | (—1)" =1} yields (—1)7 =1 and thus (—1)7" = (=1)7 (-1)" = -1 #
=1 =—1

1, so that o7 ¢ {n € S, | (—1)" = 1} = A, and therefore o7 € S,\ 4,.
8In fact, 0 € S,\Ap yieldso ¢ A, = {n € S, | (—1)" = 1} and thus (—1)” # 1, so that (—1)7 = —1
(since the term (—1)7 can only take the values 1 and —1) and thus (—1)°" = (=1)7 (-1)" =1, so
—— ——
that ot € {n € S, | (-1)" =1} = A,.
1n fact, ZoW = id (since every o € A, satisfies (Zo W) (0) =Z (W (¢0)) =7W (0) = 77 0 = 0)
—id
and Wo Z = id (since every o € S,\ A4, satisfies (W o Z) (o) =W (Z(0)) =72 (;) =77 0=0).
=id

=T0
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thus (o7)(j) =0 | 7(j) | =0 (j)), and therefore
\.\/'-/
=J
Uor)(1) ® Uar)(2) ® - ® Uar)(@) @ - ® Ulor)(p-1)
= (Uon1) ® Uon@) ® - ® Uor)i-1) @ (U(or)(i+1) B Uor(i+2) D - @ Uior)(p-1))

(.

:ua(l)®ua(2\),®"'®uo(ifl) :uo(i+1)®ua(;:2)®“'®ua(pfl)
= (Uo(1) @ Ug(2) ® - @ Ug(i-1)) B (Uo(i+1) ® Us(i42) ® - ® Ug(p-1))
= Ug(1) ® Uo(2) @ - @ Ug(s) @ .. @ Ug(p-1)- (95)
Also, every permutation o satisfies
f (Won ey won®) = f (totys o) (96)

(since (o7) (i) =0 | 7(i) | =0 (p) and (o7)(p) =0 | 7(p) | = o (i) yield
— ——

=p =1

f (u(m)(i),u(m)(p)) =f (ug(p),ug(i)) =f (ug(i),ua(p)) (since f is symmetric)) and
(D)7 = (=17 (=1)" = = (=1)7. (97)
~——

=1

Now,

Y (U7 (o) o) * Uot) ® Uo(@) @ - @ Uol) ® e @ Ug(p)

0ESy
= > ()7 (to)s o) - Uo) @ Ug(z) @ e © Ugs) © vo. @ Ug(poy
o€A,
D (D)7 (ol o) - o) © o(z) @ - © Ugy) @ - © Ug(poy
oESp\Ap
(since the set S, is the union of the two disjoint sets A, and S,\ A,)
— ()’
since
D (D7 (ot o) * o) ® @) ® . @ lgl) @ ... @ Ug(p-1)
c€Sp\Ap
Z (o) —
= Z f(u U))@)) " UZe)) B UZ©@) @) @ - @ UZ(NE) @ - @ Uz(o)) (p-1)
oEAp

here, we substituted Z (o) for ¢ in the sum,
because the map Z : A, — S,\ A4, is a bijection

Z Ulor)(1)s Uor)(p))  Uor)(1) @ Uor)(2) @ - @ Uor)() @ - @ Ulor)(p-1)
A vV vV
:—(—1 =F(uu i)ty :u(,(l)®ug<2)®...®u;6>®...®u[,( -1)
(by ) ((by()(P)) (by ) P
(since Z( )=oT)
= — Z ug z),ug(p)) “Ug(1) D Ug(2) @ ... & @ & ... @ Ug(p—1)-
oEA,
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Hence, becomes

Z (=1)° (“0(1) ® Ug(2) @ ... @ uo(p71)> ﬁu,,(p)

0ES)
p—1
—1)—1 e —
= (DTN (=) S (Uotiy, o) - o(1) ® Uo(a) @ - @ gly) @ oo @ Ug(p1)
1=1 o€Sp
-0
p—1

(-1)® V0 = 0.
1

7

This proves Theorem 41.
Theorem 41 has a ”left” analogue:

Theorem 42. Let f : L x L — k be a symmetric bilinear form. Let p € N,
and let uq, ug, ..., u, be p vectors in L. Then,

(=1 ol (to(2) ® o) ® .. @ tg(y)) = 0.

o€Sp
Proof of Theorem 42. Let ¢ € S, be the permutation defined by

(C(]):p+1_j fOl“ everij{l,Q,...,p}).

Then, (¢ = id (since any j € {1,2,...,p} satisfies

COU)=¢| ¢U) | =¢Clp+1-§)=p+1—-(p+1—) (by the definition of ()
=p+1-j
=J

). Define a map U : S, = S, by
(U (0) =0 for every o € S,).

Then, U? = id (since every o € S, satisfies

U(0)=U|U(o) | =U () =0 ¢ (by the definition of U)
=0 =id

=0

), and thus the map U is a bijection.
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Now, Theorem 41 yields

0= Z (_1)0 (uo(l) ® U (2) ®..Q ua’(p_l)) {lug(p)

oES)
U(a f
=2 (- )1 B U (@)@) D -+ O UV (o)1) W () )
oES)
(here we substituted U (o) for o in the sum, since the map U is a bijection)
f
=D (D)7 (w00 ® teoe ® - ® teor-1) Teow)
oSy
(since U (o) = o( for every o € 5,)

f
= Z ua(p+1 1) © Ug(ps1-2) @ - @ Ug(ps1—(p-1))) Wa(p+1-p)
oES)

since every j € {1,2,...,p} satisfies (6{) (j) =0 | C(j) | =c(p+1—17)
~~
=p+1—j
f
=2 S (o) ® Uo(p-1) D - @ Ug(a)) ()
7 ey
o !
= (=1 Y (=1)7 (to(r) ® Us(p-1) @ .. @ Up(2)) Ty,
oSy
Dividing this equality by (—1)4, we obtain
I !
0= Z (—1) (ug(p) Q) Us(p—1) @ ... @ uo(z)) U (1)- (98)

o€Sy

Since the bilinear form f is symmetric, it satisfies f* = f (since any two z € L and
y € L satisty f*(z,y) = f (y,2) = f (z,y) because the form f is symmetric). Now, for
every o € S, the identity (applied to U = Ug(p) @ U (p—1) @ ... QUg(2) and v = Ug(1))
yields

! ft
(o) © totp-1) ® v & o) Bt ) = oy L # () @ top1) & - ® t012)

g (2) Bl (3) B BUs (p)

t

f
= Us()L (Uo(2) @ Uo(3) @ - ® Us(y))

/
= Us())l- (Uo(2) ® Uo(z) @ .. @ Un(y))
(since f' = f). Now,

o f
0=t(0) =t D> (=1)7 (Uop) ® to(p-1) ® - @ U(z)) Stio(r) (by (98))

oSy
= Z (=1)7t <(ug(p) ® Ug(p—1) @ ... ® ug(Q)) £u0(1)> (since the map t is linear)
UESP ~ D' -

;
:uau)L(uo<2)®uo<s)®-~-®ua(m)

= Z (—1)” ug(l)i (ug(2) D Us3) & ... ® ua(p)) :
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This proves Theorem 42.
Proof of Theorem 40. For every o € S, let us denote the tensor (1) @ Ug2) ® ... ®
Us(p—1) by Us. Then, every o € S, satisfies

of Ug(1) & Ug(2) @ ... @ Ug(p)

N J

-

= (1t (1) Bty (2) & Bl (1) ) B ()

=af \(ug(1) @ Ug(2) @ ... @ “J(p—l)) Do (p)

J/

-~

=U,

f
= ol (Us ® ug(p)) = ! (Uy) @ oy — o (Uy) Stigy)
(by , applied to U, and u,(, instead of U and u)

=af (Uy) ® Ug(p) — of <U0£ua(p)>

(since (applied to f, U, and u,(y,) instead of g, U and u) yields o/ (Ugfnug(p)> =

ol (Uy) ﬁua(p), so that of (U,) fjua(p) =al <Ugﬁug(p))). Thus,

(_1)0 U'U(l) ® uo’(2) X ... uo’(p)

Q&h
~
g

m
n

T&op

—1)7 of (ug(l) Q Ug2) ® ... @ ug(p)) (since the map of is hnear)

(. J

I
)

-~~~

:af(Ug)®ug(p)faf (Ugéuo-(p))

(=1)" (0! (Us) @ty — o (Us Doy ))

q
m
n

(]

q
m
g

(=17 ! (Us) @ oy — I (=17 0 (U o)

oE€Sy 0ES)
Since
Z (-1)7af (Uaﬁuo(p)> =aof Z (—=1)7 Ugfnug(p) (since of is a linear map)
o€Sp o€S)

o f
=af Z (—1)7 (Uo1) ® Uo@) ® ... @ Ug(p—1)) SUg(p)

oSy
A\

J/

=0 (by TTlgorem 41)
(because U, = Ug(1) & Ug(2) @ ... @ u(,(p_l))
= af (0) =0,
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this simplifies to

af Z (_1)0 Ug(1) & Ug(2) @ ... @ Ug(p)

c€Sp
ag g f ag
=Y (=17l (Uy) @ ugpy — Y (=1)7al (ano(m) =Y (=1)7a! (Uy) @ uopy
oES) 0ES) oES)
-0
= Z (—=1)7 of (ug(l) D Ug2) ® ... ® ug(pfl)) ® Uy (p)
o€Sp

(because Us = Us(1) @ Ug(2) @ ... ® ug(p_l)) )

This proves Theorem 40.
Proof of Theorem 39. We are going to prove Theorem 39 by induction over p.
The induction base case p = 0 is trivial™}
Now let us handle the induction step: Let ¢ € N,. Assume that Theorem 39 holds
for p = ¢ — 1. We are now going to show that Theorem 39 holds for p = ¢ as well.
We assumed that Theorem 39 holds for p = ¢ — 1. In other words, we assumed that

ol | () to() @ to) ® o Doy | = Y (—1) o) Do) ® . DUg(g1y
0€Sg-1 0€S;-1
(99)
for any ¢ — 1 vectors uy, ug, ..., u4—; in L.

Now, for every i € {1,2,...,q}, let us denote by S, ;) the set of all permutations
o € 8, satisfying o (¢) = i. Then, the sets Sy (1), Sq,(2)s ---» Sq,(g) ar€ Pairwise disjointﬂ.
Besides, the set S, is the union of these sets Sy (1), Sq2), -, Sq(q (since for every
o € S,, there exists one and only one 7 € {1,2, ..., ¢} such that o (¢) = 4, and thus this
i satisfies o € Sy ;).

60In fact, in the case p = 0, the sum > (—1)° Ug(1) @ Ug(2) ® ... ® Ug(p) equals 1 (since it consists
o€Sy

of one summand only, and this summand is 1). Hence, in the case p = 0, Theorem 39 claims that
af (1) = 1, which is trivial.

61n fact, if two elements i and j of {1,2,...,q} are distinct, then Sq.i) N Sq,jy = D (because if
the sets Sy (;y and S (;) had a common element o, then this element o would satisfy o (¢) = i (since
0 € 8,i)) and o (q) = j (since o € S (), and thus i = 0 (¢) = j in contradiction to i # j).
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Now, let w1, us, ..., uq be g vectors in L. Then,

D (LT ) ® o) ® . B Uo(q)

oES, v
! = (Uo (1) Bio(2)®--Btia(g—1) ) Blis(q)
=D (1) (o) ® Uo(2) ® - ® Ug(g-1)) ® Ug(y)
0ESy
q
= Z Z 1) D Us() © - DUg(q-1)) @ Us(g)
i1 oes, ~—

=u; (since o€S, (s
yields o(q)=1)

(since the set S, is the union of the pairwise disjoint sets Sy (1), Sy (2), -+ Sq7(q))

I
HagE

Y (1 (Ur() ® to(e) @ e © ttg(g-n)) @ s

=1 0€5,3i)
q
=D | D (D) o) o) ® - @ g1y | © s (100)
i=1 \o€S5q,s)

Now, for every i € {1,2,...,q}, let x; denote the (¢ — ¢+ 1)-cycle (i,i +1,...,q) € S,.
Then,

ki(j)=17 for all j € {1,2,...,q} satistying j < i; (101)
ki(j)=j+1 for all j € {1,2,...,q} satisfying i < j < ¢; (102)
i g) =i (103)

Now, we are going to prove that

D> (D) o) Do) @ e Dg(qety = 3 (—1)7 the,(0(1)) Dl (r(2)) @ - ® Ui, (0(-1))
oESy, (4) 0€Sy-1
(104)
for every i € {1,2,...,q}.
In fact, fix some i € {1,2,...,q}. Define a map P : S ;) = Sg,q by

(P (0) = k; "o for every o € Sy 1)) -

0% (This map is well-defined, since every o € S, ;) satisfies x; o € Sa.( ) Also,
define a map @Q : Sq,q) — Sq,) by

(Q (o) = ko for every o € Sq,(q)) :

62Here, whenever a and b are two elements of S,, we denote by ab the product of a and b in the
group S, (in other words, the composition of the permutations a and b).

%3In fact, o € S, () vields o (q) = i and thus (k;'0) (q) = &; " (0 (q)) = w; ' (i) = q (since
~—

ki (q) = 1), so that k; "o € S, (g
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(This map is well-defined, since every o € S () satisfies ko0 € Sy ﬁ) The two
maps P and () are mutually inverselﬂ. Thus, the map P is a bijection.

Now, define a map R : Sy gy — Sg—1 as follows: For every o € Sy (g, let R (0) € Sg—1
be the permutation of {1,2,...,¢ — 1} defined by

((R(0))(j) =0(y) forevery j €{1,2,....,q—1}).

(This map R (o) is indeed Well—deﬁnedm and is indeed a permutation of {1,2,...,q — 1}

)

On the other hand, let us define a map 17" : S,_1 — Sy (4 as follows: For every
0 € Sg_1, let T' (o) € Sy (g be the permutation of {1,2,..., ¢} defined by

((T () () = { o), if ]qeﬁiqq I for every j € {1,2, ...,q}) |

(This map 7T (o) is indeed a permutation of {1,2,...,q} ﬁ and indeed lies in S ()
(since (T' (o)) (q) = q).)

ki (g) = 14, so that

04In fact, 0 € Sy (g yields o(q) = ¢ and thus (ko) (q) = & | o (q)
~——

K;0 € Sq,(i)~
In fact, Po@ = id (since every o € S, (4 satisfies (P o Q) (¢) = P(Q (0)) = k; ' Q (0) = k] 'kijo =
~——
o) and Qo P =id (since every o € S (; satisfies (Q o P) (o) = Q (P (0)) = ki P (0) = Kk o = 0).
~——
*H;IU

66hecause o (5) € {1,2,...,q — 1} for every j € {1,2,...,q — 1} (since j € {1,2,...,q — 1} yields j # gq,
and thus o (j) # o () (since o is a permutation), so that o (j) # ¢ (since o (q) = ¢ because o € Sy (4))

and therefore o (5) € {1,2,...,¢}1\{q} ={1,2,...,¢ = 1})
67since any two distinct elements j; and js of {1,2,...,q — 1} satisfy

(R(0)) (41) = 0 (j1) # 0 (Jo2) (since j1 # jo and since o is a permutation)
# (R(0)) (j2)

and therefore the map R (o) is injective, so that it is a permutation of {1,2,...,q¢ — 1} (because any
injective map from a finite set to itself must be a permutation of this set)
%8hecause it is a surjective map from the set {1,2,...,¢q} to itself (since

(T (o)) {1,2,...,q}
———

={1,2,...,¢—1}U{q}

=(T(0) ({1,2,...¢ =1} U{q}) = (T'(0)) ({1,2,..., = 1}) U (T'(9)) {a})
—_———
=0({1,2,....,q—1}) ={(T(2))(9)}={4q}

(since (T'(0))(j)=j for every j€{1,2,...,¢q—1}) (since (T'(c))(q)=q)
= o({1,2,..,q—1}) U{q} ={1,2,....,¢ -1} U{¢} ={1,2,...,q}

={1,2,...,q—1} (since c€S,_1 is a
permutation of {1,2,...,¢—1})

), and because a surjective map from a finite set to itself must always be a permutation of this set
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The maps R and 7" are mutually inversdﬂ. Thus, R is a bijection.
Now,

Z (—1)° Ug(1) @ Ug(2) & ... & Ug(g—1)

= Z (=1)7 Uy (P(0)) (1)) © Uni (P(0))(2)) @ -+ @ Uy (P(0))(a—1))

o€, (i)
since every j € {1,2,...,q — 1} satisfies o (j) = k; (P (0)) (y)),
because k; [ (P (0)) () | = ri ((5;7'0) (4) = | kiri Lo | () =0 (j)
—1 =id
= D (1) Uyo1)) @ Uio(2)) @ +r @ Uigy(o(q1)
7€50,(q)

(here, we substituted o for P (o), since the map P : Sy ;) — Sg,(q) is a leeCtIOH)
= D (1) e (Ro) @) ® Ui (Re) @) @ - @ Uny((Rla))a-1)
UESq71

since every j € {1,2,...,q — 1} satisfies o (j) = (R (0)) (j) (because the map
R (o) was defined through the equation (R (o)) (j) =0 (j))

= D (D)7 thio(1) © Uny(o(2)) ® - ® Unyo(g-1))

0€Sq-1

(here, we substituted o for R (o), since the map R : Sy 4 — S,-1 is a bijection)

%1In fact, every o € S, satisfies (RoT) () = o (because for every j € {1,2,...,q — 1}, we have

(RoT)(a) | (4) = (R(T (0))) (4) = (T (0)) (4) (by the definition of R)
—_———
—R(T(o))
_J o), ifjef{l,2,.,q—1}; iy
= { G ifj—q (by the definition of T')
=0 (j) (since j € {1,2,...,q — 1})

). Thus, RoT = id. Also, every o € S, (4) satisfies (T o R) (¢0) = o (because for every j € {1,2,...,q},
we have

(ToR)(0) | ()
—_————

=T(R(7))
=(T(R(0)))(j) = { (@) (), ;f jlfej {:11]27 SSLAE (by the definition of T)
= { o) if Jquf{;,E,;,q - (since (R (0))(j) = o (j) by the definition of R)
o), ifje{l,2,...,q—1}; since 0 € Sy (4) yields o (q) = ¢, and thus
B o(j),ifj=q g=0(q) =0 (j) in the case j = ¢
=0 (j)

). Thus, T o R = id. Together with R oT = id, this yields that the maps R and T are mutually
inverse.
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and thus ((104)) is proven. But applying to the ¢ —1 vectors w1y, Uk, (2), ---» Un,(g—1)
instead of ui, ug, ..., u4—1, we obtain
o | Y (1) tito1)) @ (o) @ -+ © Uy ((g-1)
0ES -1
= D (1) (o) @ Uy (o(2) @ - @ Ufolg-1))- (105)
0€S;-1
But the k-linearity of the map o yields
> D70 (o) @ tio) ® .. ® Ua(g-1))
O’Equ(i)
=al [ Y (1) us) ® Us(z) ® e @ Ug(g-)
G’GSq’(i)
=l [ 37 (1) thro(1) ® Uni(o(2)) @ - © Uy (o(g1) (by (104))
0€Sq-1
= D (1) U (o(1)) @ Ui ((2)) © - D Uy (o(g-1)) (by (105))
0€S -1
= Z (—1)0 Ug(1) ® Up(2) @ ... @ Ug(g—1) (by (104) again). (106)
O'GS%(Z')
Now, Theorem 40 (applied to ¢ instead of p) yields
ol | Y (1) tg(t) @ tio() @ .. @ (g
0€Sy
=D (170 (1) @ to() ® . @ tio(g-1)) @ (g
UESq
= Z Z Ua—(l) X UO—(Q) ® ... ua(q 1)) & ua(q)
i=1 0€S, (3 —a \/'/
=u; (since 0€S, (4
yields o(q)=1)
(since the set S, is the union of the pairwise disjoint sets Sy (1), Sy (2), -+ qu(q))

Z Z (o) ® to@) ® . @ tg(g-1) Ous
i=1 o€S,,

= > (=17 a(;@ua(z)@)---@%(km

”Esq,(i)

(by (T06))
q
= Z (=17 (1) @ Ug(z) @ . @ Ug(g-1) | ® U

=1 O'Equ(i)

(=1)7 Uo(1) ® Uo(z) ® ... © Ua(q)

q
m
W

=)
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(by (100)). In other words, Theorem 39 is valid for p = ¢. This completes the induction
step, and thus Theorem 39 is proven.

Proof of Theorem 38. Let us denote by proj, : ®L — CI(L, f) the canonical
projection of the k-algebra ®L onto its factor algebra (®L) I; = CI(L, f). Let us
also denote by proj, : ® L — AL the canonical projection of the k-algebra ®L onto
its factor algebra (®L) /Iy = AL. Then, the homomorphism @}, was defined as the
homomorphism (®L) /Iy — (®L) /1I; induced by the homomorphism o/ : ® L — ®L;
in other words, proj; oo/ = @), o proj,. Thus,

(projgoa) [ D (=1)7 tor) @ tio(z) @ .. ® tig(y)

0ES)

— <a£ o pr0j0> Z (—1)0 Ug(1) X Ug(2) X...Q Ug(p)

oSy

= ag projo Z (—1)0 Ug(1) @ Ug(2) @ ... @ Ug(p) . (107)

o0ES)

Now, the multiplication in the algebra ®L is the tensor multiplication (denoted by
®), and the multiplication in the algebra AL is the exterior multiplication (denoted
by A). Since the map proj, commutes with multiplication (since proj, is an algebra
homomorphism), we thus have

Projo (to(1) ® Uo(z) @ - @ Uo(y))
= proj, (ug(l)) A Projg (ug(g)) A ... A\ pProjy (ug(p))

( since we identify the element proj, (v) € AL )

= Uo()) N Uo(2) N oo A Uo(p) with v for every vector v € L

= (=1)7u Aug A ... Ay,

(because if we interchange the factors in an exterior product of vectors, then the product
becomes multiplied with (—1)7 where o is the permutation we used to interchange the
factors) for every o € S,. Now, since proj, is a linear map, we have

prOjO Z (_1)0 Ug(1) ® Ug(2) X.. Q0 Ug (p)

oc€Sp

= Z prOJO ua(l) ® ug(z) ®...® uo(p))
o€ES)

7(—1)au1/\u2/\.../\up

:Z (=17 (1) wr AugA... Ay = Zul/\ug/\.../\up

oc€Sp 71)0)2:1

(since (=1)7€{1,~1})

= S, ur Aug Ao Ay = pl-ug Aug A Ay,
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and therefore ((107)) becomes

(projpoal) | Y (=1)7tto) @ tig(z) @ .. © tio(r

0ES)

=g | projo | Y (= 1) o) ® () ® .. @ Uo(y)

oSy
=p!-’u,1/\:tr2/\.../\’le
—al (p'-us Aug A Auy) = pl- T (uy Aug A A ) (108)

(since @} is a linear map).

On the other hand, the multiplication in the algebra ®L is the tensor multiplication
(denoted by ®), and the multiplication in the algebra Cl(L, f) is simply written as
product. Since the map proj, commutes with multiplication (since proj, is an algebra
homomorphism), we thus have

projs (Us(1) ® Ue(2) @ .. @ Ug(p)) = Projy (Uo(1)) Projy (to(2)) - Projy (to(p)
= ¢ (o)) #* (o) ¢ (o)

(because proj; (v) = ¢/ (v) for every v € L) for every o € S,,.
Comparing the equation

(projpoal) | Y (=1)7 tto(r) ® tta(z) ® .. @ Us(y)

o€Sy

= projf Oéf Z (—1)0 Ug(1) X Ug(2) ®...&Q Ug(p)

o€Sp
= projf Z (—1)0 Ug(1) & Ug(2) @ ... @ Ug(p) (by Theorem 39)
oES)
= Z prOJf ug( ) R Ug2) @ ... @ ug(p)) (since proj; is a linear rnap)

oES) g
=07 (1) ) 9! (to(2) )0 (to(p))

= > (070! (o) @ (o) 9" (o)

oSy

with (108]), we obtain

plag (w Aug A Aay) = Y (<1797 (ur1) 7 (o) 7 (o) -

0ES)
This proves Theorem 38.

11. Some more identities
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Let us prove some more curious properties of {, L and o for a symmetric bilinear
form f. The following theorems 43-45 bear a certain similarity to theorems 40-42 (and
can actually be used to give an alternative proof of Theorem 39, although we are not
going to elaborate on this proof).

Theorem 43. Let f : L x L — k be a symmetric bilinear form. Let p € N,

and let uq, ug, ..., u, be p vectors in L. Then,
p .
DT (1 @u® .. @6 © .. @ uy) @ uy)
=1
p .
= ()T (e .. ne .. ®u,) ®u.
=1

Here, the hat over the vector u; means that the vector u; is being omitted
from the tensor product; in other words, u1 @ us ® ... @ U; & ... @ u,, is just
another way to write u; ® us ® ... ® Uj—1 @ Ujy1 @ Ujza @ ... @ Up.

NV TV
tensor product of the tensor product of the
first i—1 vectors uy last p—i vectors uy

This, in turn, will be concluded from the following result:

Theorem 44. Let f: L x L — k be a symmetric bilinear form. Let p € N,
and let uy, ug, ..., u, be p vectors in L. Then,

(_1)i_1 (ul QU @ ... VU R ... ® ’u,p) ﬁul =0.

M-

=1

(For the meaning of the term 41 @ us ® ... @ U; & ... ® uy, see Theorem 43.)

Proof of Theorem /4. We are going to prove that every j € {0,1, ..., p} satisfies

(1) (1 ® s © . O Ty @ ... © ) Ty = 0. (109)
1

J
In fact, we will prove this by induction over j:

The base case j = 0 is trivial|

Now, let us come to the induction step: Let ¢ € {1,2,...,p}. Assume that we have
proven for j = ¢ — 1. Let us now prove for 7 = gq.

For any i € {1,2,...,q — 1}, let us denote the tensor u1 @ us @ ... @ U; @ ... @ Uy—1
by U;.

J )
"hecause in the case j = 0, we have > (1) (11 Quo @ ... @ 1 @ ... ® uj) éul = (empty sum) =
i=1

K3
0, and thus the equation (109) is trivially true in the case j = 0

84



We have

q
i—1 ~ !
E (D" (11 Qua ® ... QU ® ... @ Uuy) Iy
=1
q—1
i—1 ~ f
= (—1) U QU P ... QU @ ... Dy S
1 —
‘ = (u1 QU2 ®... 0T ®...Quq—1) Dug=U; Quq
(since u1@u2®...QUW;®...Quq—1=U;)
1 ~ f
+ (DT (1 Qus ® ... ® Uy @ ... @ uy) Iy
=u1 QuU2®...Quqg—1
q—1
i—1 f q—1 f
= (—1) (Ui @ ugq) Ju; +(—1) (U @ Uy @ ... ® Ug—1) Ty
i=1 - . ~
=f(uq,ui)Usi— (Uuuz)@uq =3 (=) f(uiyug) U1 Qua®.. QU R... Qug—1
. i=1
(by 7 applied to Us, (by (21), applied to g—1 and u, instead of p and v)
uq and u; instead of U, w and v
q—1
i—1 f
=1 :
=f(ui,uq) (since the form
f is symmetric)
q—1
q—1 q—1—1 ~
+(—1) (—1) f(ui,uq)-u1®u2®...®ui®...®uq,1/
i=1 :‘EZ
q—1 q—1

i=1 =1
g—1 qg—1
— (X0 ) U= Y ) () @ uq>
=1 i=1
g—1 .
+ (=D (=D (uiyug) Us.
=1
Since U; =1 @ ua @ ... @ U @ ... ® ug—q yields
q—1 . q—1 .
Z (_1)1—1 <U1£UZ> — Z (_1)2—1 <(u1 X U9 X ...R® ’I/L\Z & ... uqfl) ﬂul> =0
=1 i=1
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(according to (109), applied to j = ¢ —1 [7)), this simplifies to
q

DT mRuw® .. Qn® ... @ u,) o

i=1

= 3 )T ) U 3 ) ()T ) U
=S (D D ) £ ) U
Since
o A (R Y 0 N O
~——— ~- ~—_——

=—(-1)¢ =(—1)la=DHla=1-) _(_1y2(a=1)~i
:(_1)2(q717’L')+i:(_1)2(q7177l) (_1)7,

this simplifies to

q
DT Ruw® .. Qh® ... @ u,) o
=1
q—1 ) ‘ q—1
= ((—1)1_1 -+ (_1>q—1 (—1)(1_1_2) f (ui,uq) Ul = ZOf (u,-,uq) UZ =0.
i=1 N ~ i=1

=0

In other words, the equation (109 holds for j = ¢. Thus we have completed the
induction step. Consequently, we have proven (109)) for every j € {0,1,...,p}. Thus,
applying (109) to j = p, we obtain

p

Z DTN U ® ... R T ® ... ® up) —

i=1

“n fact, we are allowed to apply 1) to 7 = q¢ — 1, because we assumed that we have proven

forj:q—l.
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This proves Theorem 44.
Theorem 44 has a "left” analogue:

Theorem 45. Let f: L x L — k be a symmetric bilinear form. Let p € N,

and let uy, ug, ..., u, be p vectors in L. Then,
p
Z (_1)171 UZ‘{ (U QU R ... QU ® ... ® up) = 0.
i=1

(For the meaning of the term 1 @ us ® ... ® U; ® ... ® uy, see Theorem 43.)

Proof of Theorem 45. Applying Theorem 44 to the p vectors u,, u,_1, ..., u; instead
of uy, ug, ..., u,, we obtain

P
Z (1) (U @ Upt ® e @ U1 @ o @ Uy ﬁup_m = 0. (110)
i=1

Since the bilinear form f is symmetric, it satisfies f* = f (since any two z € L and

y € L satisfy f'(z,y) = f (y,z) = f (z,y) because the form f is symmetric). Now, for

every i € {1,2,...,p}, the identity (applied to U = 4, @ Up_1 @ ... @ U; @ ... @ Uy

and v = ;) yields

J/

t
t ((up Uyt ® .. @@ ... ® u) ﬁui> —ul t(uy®uy ® .. R0 ... O u)

=u1Qu2®...QU; ®...QUp
—ulf (U QU ® ... QU R ... D uy)
= uZ.’_c (U QU ® ... U @ ...  uy)
(since f' = f). Now, ((110] yields

p
0=> ()" (0@t ® ... ® i1 @ ... @ uy) Tty—i41

=1
—Z 1ty ® ey © e © B © oo @ ) Ty

(here we substituted i for p — ¢ + 1 in the sum),
so that

| |
~

p
(Z 1P (tp @ up @ ... @ @ . ®u1)ﬁui>

=1
p

(up®up 1. ®U1® ®U1 Uz)

1=1 ~~

:Ui{(u1®u2®---®@®---®up)

bS]

(-1 wl (W . e6 .. du,)
=(—1)P+tD+0E-1)

=(-1)r (1)
p
= (""" ()Tl (O ® . 0T ® .. B u,).

=1

=1
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Since t (0) = 0, this rewrites as

p
0= (1> (-1 wl (U @ U ® .. QT ® ... D uy) .
i=1
Dividing this equation by (—1)"™", we get

P
0= Z (—1)%1 Uzljj (U QU ® ... QU D ... D Uyp) .

i=1

This proves Theorem 45.

Proof of Theorem 43. For every i € {1,2,...,p}, denote the tensor u; ® us ® ... ®
U ® ... ®@u, by U;. Then,

(1 Ru® . 00 ® ... u,) Qu;
U,
= Ozf (UZ ® Uz) = Cl/f (Ul) & u; — Ozf (Ul) {lul
(by (52)), applied to U; and w; instead of U and w)
=aof (U;) @u; —af (Ulﬂul)
since (applied to f, U; and u; instead of g, U and u)
yields af (Uzﬁuz> = ol (U) {nui, so that o (U;) {nul =of (Ulﬂul)

and thus
p .
- (1 9w ® .. @6 ® ... @ uy) @ u,)
B : i—1 f
= (=) (of (U) @ uw; — o (Uil
5o ()
=S )T Uy eu - ()T (Uiﬂuz) .
i—1 i=1
Since
Z (—1)2_1 of (Ulﬂuz) =af <Z (—1)2_1 Ulﬂfzh) (since of is a linear map)
i—1 i=1

P
= | S ()TN w06 .. 0u,)

J/

=0 (by TTlZorem 44)
(since U; =u1 Qua @ ... @ U ® ... @ up)
=al (0) =0,
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this rewrites as

p

(=D (1 9w ® .. @0 ® ... ® uy) @ u,)

=1
p .

—Z )®ul—0—2(—1)1_1o¢f(Ui)®ui
=1

—Z Ty ®@ue ® .. U ® ... @ up) @ Uy

(since U; =u; Qua @ ... ® U; ® ... @ u,). This proves Theorem 43.
12. The invariant module of the o/ maps for all symmetric bilinear f

Let us consider a fixed commutative ring k, and a fixed k-module L. However,
in this section, we are not going to fix a bilinear form f on L, but we will consider
all bilinear forms f at once. Each bilinear form f gives rise to an endomorphism
af 1 ®L — ®L, and we are going to study the module Fix o*¥™™ of all tensors in ®L
that are fixed under o for all symmetric bilinear forms f.

Definition 15. Let k& be a commutative ring, and L be a k-module. We
denote by Fix ™™™ the subset

{U e ®L | every symmetric bilinear form f: L x L — k satisfies of (U) = U}

;

= N Uewol | o (U)=U
: i . . . .
symrgéfr;(cl/b_iii];ésaraform \ this e;];li‘ét}(zr[l])li?ilovalent
r
= N UeoL | of (U)-U=0
. ; N——
symn{.efrTCLb_iii]jlelsaraform L ( f —id)(U )
= N {UealL | (of —id) (U) =0}
FLxL—kisa ~- g
symmetric bilinear form :Ker<af—id>
= m Ker (af — id)
f:LxL—kis a

symmetric bilinear form

of ®L. Clearly, this subset Fix ™™™ is a sub-k-module of ®L (since

Fix o»mm = N Ker (af —id), and since Ker (af —id) is a
f:LXL—k is a
symmetric bilinear form

sub-k-module of ®L for each f).

It seems to be a nontrivial question to further characterize Fix a™™™. First we note
that antisymmetrizers always lie in Fix o®V™™:

72As for the space Fixa of all tensors in ®L that are fixed under of for all (not only symmetric)
bilinear forms f, we are planning to study this space later.
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Corollary 46. Let p € N, and let uy, ug, ..., u, be p vectors in L. Then,

Z (—1)0 Ug(1) & Ug(2) @ ... @ Ug(p) € Fix o®™™,

0ES)

Proof of Corollary 46. Every symmetric bilinear form f satisfies

ol [ D (1) o) ® o) ® . @ Us(p) | = Y (=1) tg() @ Ug(z) ® .. @ Us(y)

o€Sp o€Sp

(by Theorem 39). Thus,

D (1) ) @ (o) @ .. @ gy
oSy

€ {U € ®L | every symmetric bilinear form f : L x L — k satisfies of (U) = U}

= Fix ™™™,
This proves Corollary 46.

However, elements of the form > (—1)7 tup(1) ® Up2) ® ... ® Uy as in Corollary
oES)

46 are not the only inhabitants of Fix a®¥™™. There are more. I do not claim that I
know all of them, but here is a result that construct at least a part:

Theorem 47. Let k£ be a commutative ring. Let L be a k-module.

(a) We have k C Fixa®™™™ (where k is regarded as a sub-k-module of ®L
because k = L C L@ L' @ L% @ ... = ®L) and L C Fix ™™™ (where
L is regarded as a sub-k-module of ®@L because L = L®¥ C L®¥ ¢ L®' ¢
L?? @ ... =QL).

(b) Let m € N. Any two elements v € L and V € L®" N Fix a™™™ satisfy
u®V + (-1)"V ®@u € Fix ™™™,

The proof of Theorem 47 relies on the following result:

Lemma 48. Let m € N. Let k£ be a commutative ring. Let L be a k-
module. Let f : L x L — k be a symmetric bilinear form. Then, any
u € Land U € L®™ satisfy of (u@U + (-1)"U®u) = u® o (U) +
(=1)"af (U) ® u (where u is regarded as an element of ®L because u €
L=I[°"CI®pL®"pL*® .. =xL).

This lemma, in turn, will be proven using the following fact:

Lemma 49. Let m € N. Let k£ be a commutative ring. Let L be a k-
module. Let f : L x L — k be a bilinear form. Then, any v € L and

V e L®™ satisty WV = (-t Vi
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Proof of Lemma 49. Fix some u € L. We are now going to prove that for every
m e N,

(every V € L™ satisfies ulV = (-t iju) : (111)

In fact, let us prove this by induction over m:
The induction base case, m = 0, is trivial (because in the case m = 0, we have

Ve L®¥ = [®0 = [, so that ulV =0 (by Theorem 5 (a), applied to u and V' instead
t
of v and \) and Viu=0 (by Theorem 11 (a), applied to u, f* and V instead of v, f
t

and \), and therefore clearly WV = (=)™ VfJu, so that (111 is proven in the case
m = 0).

Now let us come to the induction step. Fix some positive p € N,.. Now, let us
prove ([111)) for m = u, assuming that (111 has already been proven for m = pu — 1.

In fact, we have assumed that (L11]) has already been proven for m = y — 1. In
other words, we have assumed that

t
(every V € LD gatisfies ulV = (—1)0t V]inu> . (112)

Now, our goal is to show ([111]) for m = pu. That is, our goal is to show that every
t
V € Lo satisfies ul V = (—1)* 17w, In order to achieve this goal, it is obviously
t
enough to show that every left-induced V' € L®* satisfies ulV = (=1t viu (by the

t
left tensor induction tactic, since the equation ulV = (=1 V5w is linear in V).
So, let V € L®" be some left-induced tensor. Then, V = v ® V for some v € L and

91



V e L8#=Y (because V is left-induced). Thus,

for T 5 i
utV = ul (v@V) fu,v)V—v® (ud/)

gt
=(-1)B=V=17 by (T12),
applied to V instead of V)

(by (@, applied to u, v and V instead of v, u and U)

—_——

~ ="

:(—1)(”71)711)@ (\7fju)

=f(u,v)V—-0® ((—1)(“_1)_1 ‘N/fju) = fu,0)V—(-D)" Ve (‘N/fju)

N

= f(u,0)V+(-1)""ve (\N/Jju)

~ ~ ft
o flu,v)V4+oue (Vﬁu)
——
=(—1)""1 (since
(D) =12 =,

because 2(u—1) is even)
= (=1 ((—1)“_1f(u, )V +u® (iju)). (113)

But V=2v®V also yields

Viu= (ve7) Su= (ot o 7 o (70)
—
:f(uvv)
(by , applied to v, 17, ft, wand p — 1 instead of u, U, f, v and p>
= (D" f(u0) V4o (Vﬁu) :

Thus, (113]) becomes

WV = (=) (=) Fu0)V + o (vfju) = )V

-~

:iju
t
Thus, we have proven that every left-induced V' € L®* satisfies WV = (—1)* 1y,

As we already said above, this yields that every V € L®" satisfies ulv = (—1)”_1 V{:u.
Therefore, is proved for m = pu, so that the induction step is complete. Con-
sequently, we have proven that holds for all m € N. In other words, we have
verified Lemma 49.

Here is a little strengthening of Lemma 49:
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Lemma 50. Let m € N. Let k£ be a commutative ring. Let L be a k-
module. Let f : L x L — k be a bilinear form. Then, any u € L and
Ve @ L% satisfy WV = (-1t v,

1€N;
i=m mod 2

Proof of Lemma 50. Let uw € L be fixed. Our goal is to show that every V &

. t
P L satisfies WV = (=)™t v,
o
izrizemon

Define a map ¢, : ® L — ®L by

(Cbu (V) = ulv — (-1t Vi for every V € ®L> :

This map ®,, is k-linear (because ! and fj are k-bilinear). Thus, Ker ®, is a sub-k-
module of ®L.

For every i € N satisfying ¢ = m mod 2, we have L®* C Ker ®,, (since every V € L&
satisfies

o f m—1+1,f" i—1 It m—1 1 f"
o, (V)= ulV —(-1) Viu= (—1) Viu—(—1) Viu
t v
=(=1)"vlu =(-nmt
(by Lemma 49, applied (since i=m mod 2 and
to i instead of m) thus i—1=m—1mod 2)

— )" Viu— (—1" V=0

). Thus, @ L*C @ Kerd, C Kerd, (since Ker ®, is a sub-k-module of

i€N; 1€N;
i=mmod 2 1=mmod 2
®L). Hence, every V. € @ L® satisfies ®, (V) = 0. Since ®, (V) = Wlv -

1€N;
i=mmod 2

(-t V}ju, this rewrites as ulV — (-1 ! Vi = 0, so that ulV = (-1t Vi,
This proves Lemma 50.
Proof of Lemma 48. Applying , we get

of (W U)=u®al (U)—ulal (U).
Applying , we get

ozf(U®u):af(U)®u—ozf(U)ﬁu.

1€EN;
i=mmod 2

On the other hand, (applied to m instead of p) yields o/ (U) € €  L®'. Hence,

we can apply Lemma 50 to V = of (U) and obtain ulal (U) = (=)™ " af (U) T

Since f = f' (because f is symmetrlc) we can replace f' by f in this equality, and
)

thus obtain ul o/ (U) = (-1)""af (U) Ju.
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Since o is linear, we have
o (u@U + (-1)"U ®u)
= dJdwel) +(=1)" oJUsu
—_—— —_——
:u®af(U)—u{af(U) :af(U)®u—af(U)fu

- (u ® of (U) - ul ot (U)) 4 (=" <af (U) @ u— o (U) ﬁu)

=u®al (U)— w}_caf(U) +(-D"d (U)@u— (-1)™ af(U)ﬂu
—— S——
—(—)"™ ot (U) =—(-n™!
—uwal (U) = (=) o (U) u+ (~1)" o/ )@ u— (= (-1)""Y) o/ (U) D
—u@ad (U)+ (1) (U)o u— ((—1)"“1 of (U) Ju+ (= (=)™ of (U) ﬁu)

=u@al (U)+ (1) (U)®u.

This proves Lemma 48.

Proof of Theorem 47. (a) For every A € k, we have A\ € Fixa™™™. [ Thus,
k C Fix ™™,

For every u € L, we have u € Fix o®™™. @ Thus, L C Fixa®™™.

Theorem 47 (a) is now proven.

(b) Let u € L and V € L¥™ N Fix a™™™ be arbitrary. Then, clearly, V' € L®™ and

V e Fix ™™™
={U € ®L | every symmetric bilinear form f : L x L — k satisfies o/ (U) =U} .

Thus, every symmetric bilinear form f : L x L — k satisfies of (V) = V.

Let f: L x L — k be a symmetric bilinear form. Then, Lemma 48 (applied to
U =1V) yields
duRV+(-1)"Veou=uza V)+(=1)"! Vou=uaV+(-1)"Veu

—— ~——
=V =V

Thus,

uV+(-D)"Veu
€ {U € ®L | every symmetric bilinear form f : L x L — k satisfies o/ (U) = U}

symm

= Fix o

™3 Proof. Every symmetric bilinear form f : L x L — k satisfies af (\) = A. Thus,
A€ {U e ®L | every symmetric bilinear form f : L x L — k satisfies ol (U) = U} = Fixa™™™.
™ Proof. Every symmetric bilinear form f : L x L — k satisfies af (u) = u (according to )

Thus,

ue {U€e®L | every symmetric bilinear form f : L x L — k satisfies o/ (U) = U} = Fixa™™™,
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This proves Theorem 47 (b).

Theorem 47 yields an inductive way to construct elements of Fix o™ beginning
from elements of L. For example, for any two vectors u € L and v € L, Theorem 47
shows that © ® v — v ® u € Fix a™™ (not surprisingly). For any three vectors u € L,
v € Land w € L, Theorem 47 shows that u@ (v @w —w @ v)+ (V@ W — W R V) Qu €
Fix ™™™ For any four vectors u € L, v € L, w € L and x € L, Theorem 47 shows
that

UV (WRer—rw)+(wRr—rQw) V)
—(vRwRr—zw)+(WRr—TRW)RV)du (114)

lies in Fix o®™™. And so on.
Do we get all elements of Fix o®™™ this way? No. For example, for any four vectors
aclL,belL,ce L and d € L, the tensor

aRb®(cd+d®c)— (c®d+dRc)®a®b

lies in Fix o™ (and is even fixed under o/ for all (not only symmetric) bilinear forms
f). In general, this tensor cannot be written as a linear combination of elements of the
form (114) (with w € L, v € L, w € L and = € L), even if the underlying ring k is a
field of characteristic 0. (This was computed by Andrew Rupinski in [4].)

13. Further remarks

As we said, instead of Fix ™™™ we could consider the subset Fix a0 of ® L defined
by

Fixa = {U € ®L | every bilinear form f : L x L — k satisfies o/ (U) = U}

;

= N UecolL | of (U)=U
e

fiLxXL—k is a

bilinear form this equation is equivalent

\ to of (U)—U=0

= [ UexL| o (U)-U=0
—_——

f:LXL—k is a

bilinear form | :(af*id)(U)

= [ {veeL| (/-id)(U)=0}= [] Ker(a/-id).
fiLxL—kisa ~~ ” fLxL—kisa
bilinear form :Ker(affid) bilinear form

We can then prove that any three vectors b € L, ¢ € L and d € L satisfy
bR (c®d+d®c)—(c®d+d®c)®0b € Fixa.
We can also show that any four vectors a € L, b € L, c € L and d € L satisty
aRbR(c®d+d®c)—(c®d+d®c)®a®b € Fixa

(as we have already seen). Does this have a reasonable generalization?
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Can invariant theory help us in understanding Fix o™ and Fixa 7 After all,
Theorem 32 shows that f +— af is a representation of the additive group of bilinear
forms on L (resp. symmetric bilinear forms on L) on ®L, and we are looking for the
invariant space of this representation.

Another interesting question would be to generalize o to super-vector spaces, thus
obtaining results about Weyl algebras rather than just Clifford algebras.

14. The o/ morphisms and direct sums

In this section we are going to deal with the behaviour of o/ morphisms when the
k-module L is a direct sum of two smaller k-modules.
First a relative triviality on submodules:

Lemma 60. Let k£ be a commutative ring. Let L be a k-module. Let
f: L x L — k be a bilinear form. Let M be a k-submodule of L such that
f(LxM)=0. Then:

(a) Every U € ®L and every m € M satisfy Ulm = 0.
(b) Every U € ®L and every m € M satisfy o (U @ m) = of (U) @ m.
(c) We have o ((®L) - M) = (®L) - M.

Proof of Lemma 60. (a) Let m € M be fixed.
First we will prove that for every p € N and every U € L®P, the equation

Ulm =0 (115)

holds. In fact, we will show this by induction over p: The induction base (p = 0) is

clear (since Theorem 11 (a) yields U 'm = 0 in the case p =0). Now for the induction
step: Fix some p € N,. Let us now prove for all U € L®P, assuming that
is already proven for all U € L®®—1),

We want to prove for all U € L®P. But in order to achieve this, it is enough to
prove for all right-induced U € L®? (because of the right tensor induction tactic,
since the equation is linear in U). So let us prove for all right-induced
U € L®P. In fact, let U € L®P be a right-induced tensor. Then, U can be written in
the form U = U ® u for some u € L and U € L®®~Y (since U is right-induced).

Since we have assumed that is already proven for all U € L#P=1 we can apply

115) to U instead of U. Thus we obtain {/%m = 0. On the other hand, (u,m) € Lx M
yields f (u,m) € f (L x M) =0, so that f (u,m) = 0.
Now, from U = U ® u we get

Ulm = <U®u> Tm = fu,m)U — <Uﬂm> ®u
<by , applied to U and m instead of U and v)
=0U —0®u=0.

Thus, we have proven that (115)) holds for all right-induced U € L®P. Consequently, by
the right tensor induction tactic (as we said above), we conclude that (115]) holds for
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all U € L®P. This completes the induction step. Therefore we have now proven that
for every p € N, and every U € L®P, the equation holds. Consequently, for every
U € ®L, the equation holds (because every U € ®L is a k-linear combination
of elements of L®? for various p € N, and because the equation is linear in U).
This proves Lemma 60 (a).

(b) Let U € ®L and m € M be arbitrary. Then, (52) (applied to m instead of )
yields

o (Uom)=aol (U)om— = ol (U) @ m.

of (U)Im
——
=0 (due to Lemma 60 (a),
applied to af (U) instead of U)

This proves Lemma 60 (b).

(c) We know that the map of : ® L — ®L is invertible (by Theorem 32), so that
the map o/ x id : (®L) x M — (®L) x M is invertible as well. In other words,
of xid: (®L) x M — (®L) x M is a bijection.

We have
(®L)-M:< U-m ] (U,m)E(@L)xM>
=U®m
(since the multiplication
in ®L is the tensor product)
=({U&m | (Um)e (L) x M),
so that

ol (®L)- M)
— o/ (Uem | (U,m) e (@) x M))
= < of (U ®m) | (U;m) e (®L) x M> (since o is a k-linear map)

f

=ad (U)@m

(by Lemma 60 (b),
since Ue®L and meM)

:< of (U)®m | (U,m)E(@L)xM>
=af (U)m

(since the multiplication
in ®L is the tensor product)

={(a/ (U)-m | (Um)e(®L)x M)={(V-m | (V,m)€ (®L) x M)
here, we substituted (V,m) for (af xid) (U,m) = (o (U),m),
because the map o x id is a bijection
= (®L)- M.

This proves Lemma 60 (c).

Note that we could also have derived Lemma 60 (a) from Theorem 11, but we
prefer the inductive approach.

Now we can prove:
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Theorem 61. Let k£ be a commutative ring. Let L be a k-module. Let
h:LxL — k be a bilinear form. Let M and N be two k-submodules of L
such that h (M x M) =0and L = M & N. Then:

(a) For every bilinear form ¢g : L x L — k, there exists a k-module iso-
morphism Cl (L, g) — Cl(L, h + g) which sends the k-submodule CI (L, g) -
g (M) of C1(L, g) to the k-submodule Cl (L, h + g)-p1q (M) of C1(L, h + g).

(b) There exists a k-module isomorphism AL — CI(L, h) which sends the
k-submodule (AL) - po (M) of AL to the k-submodule Cl1 (L, h) - ¢, (M) of
Cl(L, h). Therefore,

(CL(L, ) / (CL(L, h) - on (M) = (AL) / ((AL) - po (M) = A(L,/ M) = AN

as k-modules.

(c) Let proj,, be the projection from L on M with kernel N, and let proj,
be the projection from L on N with kernel M. (These two projections are
well-defined because L = M @ N). Define a map f: L x L — k by

(f (u,v) = h(proj,,; u,v) + h (projy v, u) for every (u,v) € L x L).
(116)
Then, f is a bilinear form satisfying f (L x M) = 0. Also,

f(v,v) = h(v,v) for every v € L. (117)

As a consequence, [y = Ij, and Cl (L, f) = CL(L, h). Moreover, Ir, = I},
and CI(L, f +g) = CI(L,h + g) for every bilinear form ¢g : L x L — k.
We also have o ((®L) - M) = (®L) - M. Finally, for every bilinear form
g : L x L — k, the isomorphism an‘ : Cl(L,g) = CI(L, g+ f) is a k-module
isomorphism from Cl (L, g) to C1(L, h + g) satisfying

al (CL(L,g) - ¢g (M)) = CL(L,hh + g) - png (M). (118)

Proof of Theorem 61. (c) Clearly, both projections proj,, and proj, are k-linear
maps, and h is bilinear (because h is a bilinear form). This yields that the map f is
bilinear (because f was defined by (116))).

Since proj,, is the projection from L on M with kernel N, we have N = Ker proj,,
and M = proj,, L.

Since projy is the projection from L on N with kernel M, we have M = Ker projy
and N = projy L.

Every (u,v) € L x M satisfies f (u,v) = 0. [?] In other words, f (L x M) = 0.
According to Lemma 60 (c), this yields o/ ((®L)- M) = (®L) - M.

™ Proof. Let (u,v) € L x M be arbitrary. Then, v € L and v € M. Now, u € L leads to
projy; u € projay, L = M, so that (proj,, u,v) € M x M and thus h (proj,,; u,v) € h (M x M) =0. In
other words, h (proj,,; u,v) = 0. Now,

f(u,v)h(projMu,v)+h< projy v ,u) =0+ h(0,u) =0+0=0,
—_— — —— ——
=0 =0 (since ve M=Ker proj ) =0 (since h is bilinear)

qed.
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Every v € L satisfies v = proj,,; v + projy v. m But every v € L satisfies

f (,0) = h (projy v,v) + h (projy v,0)  (by (TT0), applied to u = v)
= h | proj,; v + projy v, v (since h is bilinear)
= h(v,v).

This proves (117]).
Every bilinear form ¢ : L X L — k satisfies
(f+g)(w,o)=" flv,)  +g(v,0)=h(v,v)+g(v,v)=(h+g)(v,0)
—
=h(v,v) (due to )

for every v € L. Therefore, every bilinear form ¢ : L x L — k satisfies

Ipg = (L) - <v ®v—(f+g)(v,v) | ve L> -(®L) (by the definition of ;)
~—_——
~(h+9)(v.0)
=(®L) - (v®v—(h+g)(v,v) | veLlL) (L) = Ipyy,

since I, = (®L) - (v®@v—(h+g)(v,v) | veL) (L)
by the definition of I},

and

CI(L,f+g) = (®L) /f4y (by the definition of Cl(L, f + g))
= (®L) /ntg (since Ifig = Inig)
= CI(L,h + g)

(since C1(L,h+ g) = (®L) /I, by the definition of Cl(L,h+ g)).

Applying this to g = 0, we obtain that ;.o = I+ and Cl1(L, f +0) = Cl1(L,h + 0).
In other words, Iy = I, and Cl(L, f) = CL(L, h).

"6 Proof. Let v € L be arbitrary. Then, v € L = M @ N, so that there exist two elements m € M
and n € N such that v = m + n. Consider these m and n. We have proj,; m = m (since m € M,
while proj,, is a projection on M) and proj,; n = 0 (since n € N = Ker proj,,;). Thus,

projy; v = projy (m+n) = projy, m+projy n (since proj,, is k-linear)
=m-+n =m =0
=m.

Further, projyn = n (since n € N, while projy is a projection on N) and projym = 0 (since
m € M = Kerprojy). Thus,

projy v = projy (m+n) = projy m+ projy n (since projy is k-linear)
~~ —_——
=m-+n =0 =n
=n.
N = = j j d.
ow, v m_ + n projas v + projy v, qe
=projy v  =projyv
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Now let g : L x L — k be any bilinear form. We know from Theorem 33 (applied
to f and g instead of g and f) that Eg : CI(L,g) — CI(L,g+ f) is a k-module
isomorphism. Since C1(L,g+ f) = C1(L, f + g) = C1(L, h + g), this yields that ai; is
a k-module isomorphism from Cl(L, g) to C1(L,h + g). Now let us prove ([118).

By the definition of ¢,, we have ¢, = proj, oinj. Thus, ¢, (M) = (projg oinj) (M) =
proj, (inj M) = proj, M (since we identify M with inj M). On the other hand, Cl1(L, g) =
proj, (®L) (since proj, is the projection ®L — CI(L,g), and therefore surjective).
Thus,

CL(L, g) - ¢, (M) = (proj, (®L)) - (proj, M) = proj, (®L) - M)
——— ——
—proj,(®L) =proj, M
(since proj, is a k-algebra homomorphism) ,
so that

al (CU(L, g) -y (M)) =@ (prOJg((®L) M)
( o proj,) ((®L)- M). (119)

Now let us recall how the homomorphism ozi; was defined: It was defined as the
k-module homomorphism (®L) /1, — (®L) /1, induced by the k-module homo-
morphism o : ®L — ®L. Thus, @) o proj, = proj,, ; oa/. Hence, (119) becomes

@y (CL(L, g) - ¢y (M)) = (@] o proj,) (BL) - M) = (proj,,; oa’) (L) - M)
————

=proj, s oaf

= projy.y | & ((®L) - M) | = proj,, ((®L) - M)
—_—
=(®L)-M
- (projgﬂc (®L)) ' (projgﬂc M) (120)
(smce proj,, ¢ is a k-algebra homomorphism) .

By the definition of ¢y, we have ¢,y = proj,,;oinj. Thus, g (M) =
(projg+f omj) (M) = proj,, ; (inj M) = proj,, ; M (since we identify M with inj M).
On the other hand, CI(L,g+ f) = proj,,;(®L) (since proj,,, is the projection

®L — Cl(L,g + f), and therefore surjective).
But CI(L,g+ f) = C1(L, h + g). By the definition of ¢, ¢, we have

@g+r = | the canonical projection ® L — Cl(L, g+ f)
—_——
=CI(L,h+g)
= (the canonical projection ® L — Cl(L,h+ g)) = ©niq

(since @p4y was defined as the canonical projection ® L — C1(L, h + g)).
Thus, (120) becomes

55 (CH(L,g) -y (M)) = \(projg—i-f (®L))/ : (pro.jg—I—f M)/

—CU(Lg+/)=CI(Lh+g)  =pgr (M)
=Cl(L,h+g)- Pg+f (M) = Cl(L,h—l—g) : Soh-l-g(M)-
~
=%Ph+g
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This proves Theorem 61 (c).

(a) Let g : L x L — k be a bilinear form. Define a bilinear form f: L x L — k as
in Theorem 61 (c).

We know (from Theorem 61 (c)) that @/ is a k-module isomorphism Cl1(L,g) —
CI(L,h+ g) which sends the k-submodule Cl(L,g) - ¢, (M) of Cl(L,g) to the k-
submodule Cl(L,h+ g) - @nyg (M) of C1(L,h+g) (due to (118)). Thus, there ex-
ists a k-module isomorphism CIl(L,g) — CI(L,h + g) which sends the k-submodule
CI(L,g)-p, (M) of C1(L, g) to the k-submodule C1 (L, h + g)-pp+qy (M) of C1(L, h + g).
This proves Theorem 61 (a).

(b) Applying Theorem 61 (a) to g = 0, we conclude that there exists a k-module
isomorphism Cl (L, 0) — Cl(L, h 4+ 0) which sends the k-submodule C1(L,0) - ¢ (M)
of C1(L,0) to the k-submodule Cl (L, h+ 0) - ¢p10 (M) of C1(L, h + 0).

Since Cl(L,0) = AL and h + 0 = h, this rewrites as follows: There exists a k-
module isomorphism AL — CIl(L,h) which sends the k-submodule (AL) - o (M) of
Cl(L,0) to the k-submodule C1(L,h) - ¢, (M) of C1(L,h).

This isomorphism therefore induces an isomorphism between the factor module
(AL) / ((AL) - po (M)) and the factor module (C1(L,h)),/ (Cl(L,h) - @p (M)). We

thus have

(CL(L, h)) /(CL(L, h) - on (M)
(AL)/ ((AL) - po (M))

12

~ due to Corollary 80 (b) from [5] (applied to
=N (L/M) ( L and M instead of V and W)
= AN (since L =M & N yields L/M = N)

as k-modules. This proves Theorem 61 (b).

Note that Theorem 61 (b) was inspired by the results of the paper [6] by Calaque,
Caldararu and Tu. They considered, instead of a bilinear form h, a Lie bracket on L,
and instead of h (M x M) = 0 they required [M, M| C M. In this situation, analogues
of Theorem 61 (b) for the universal enveloping algebra instead of the Clifford algebra
were shown; however, these analogues are much harder and require some additional
conditions.
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