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1. Introduction: the Clifford algebra

The theory of the Clifford algebra of a vector space with a given symmetric bilinear
form is rather well-understood: One of the basic properties of the Clifford algebra gives
an explicit basis for it in terms of a basis of the underlying vector space (Theorem
1 below), and another one provides a canonical vector space isomorphism between
the Clifford algebra and the exterior algebra of the same vector space (the so-called
Chevalley map, Theorem 2 below). While both of these properties appear in standard
literature such as [1] and [2], sadly I have never seen them proven in the generality they
deserve: first, the bilinear form needs not be symmetric2. Besides, the properties still
hold over arbitrary commutative rings rather than just fields of characteristic 0. The
proofs given in literature are usually not sufficient to cover these general cases. Here we
are going to present a computational proof of both of these properties, giving integral3

recursive formulas for the vector space isomorphism4 between the Clifford algebra and
the exterior algebra (in both directions).

Remark (added in 2016). As I now know, most of what is done in this
paper is not new. In particular, its main results already appear in §9 of
Chapter IX of [7]5; they also (essentially) appear in Chapter 2 of [8]6; the
main ideas also appear in (1.7) of Chapter IV of [9]7. Moreover, the proofs
given in [7], in [8] and in [9] are essentially the same as ours. (Moreover,
similar ideas and a variant of our map αf have been used for different
purposes in [10].) The results in Sections 11–14 of this paper might still be
new.

First, let us define everything in maximal generality:

Definition 1. In this note, a ring will always mean a ring with 1. If k
is a ring, a k-algebra will mean a (not necessarily commutative) k-algebra
with 1. Sometimes we will use the word ”algebra” as an abbreviation for

1This is a version including all the proofs of the results given in [0]. While it is self-contained and
detailed, I would recommend any reader to read the (much shorter) summary [0] and consult this
detailed version only in case of unclarity.

2although this is not a substantial generalization as long as we are working over a field k with
characteristic 6= 2

3in the sense of: no division by k!
4or, respectively, module isomorphism if we are working over a commutative ring instead of a field
5More precisely: Our Theorem 33 is Proposition 3 in §9 of Chapter IX of [7] (and thus, our Theorem

1 is a consequence of said proposition); our Theorem 2 is a particular case (for L = {1, 2, . . . , n}) of
Théorème 1 in §9 of Chapter IX of [7].

6More precisely, Theorem (2.16) in Chapter 2 of [8] includes both our Theorem 1 and our Theorem
2 in the case when the k-module L is finitely generated and projective. But the proof given in [8],
as far as it concerns our Theorem (2.16), does not require the “finitely generated and projective”
condition.

7Thanks to Rainer Schulze-Pillot for making me aware of [9].
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”k-algebra”. If L is a k-algebra, then a left L-module is always supposed to
be a left L-module on which the unity of L acts as the identity. Whenever
we use the tensor product sign ⊗ without an index, we mean ⊗k.
Definition 2. Let k be a commutative ring. Let L be a k-module. A bilin-
ear form on L means a bilinear map f : L×L→ k. A bilinear form f on L is
said to be symmetric if it satisfies (f (x, y) = f (y, x) for any x ∈ L and y ∈ L).

Definition 3. Let k be a commutative ring. Let L be a k-module, and
f : L × L → k be a bilinear form on L. For every i ∈ N, we define the
so-called i-th tensor power L⊗i of L to be the k-module L⊗ L⊗ ...⊗ L︸ ︷︷ ︸

i times

.

The tensor algebra ⊗L of L over k is defined to be the algebra ⊗L =
L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ..., where the multiplication is given by the tensor
product. Now, we define the Clifford algebra Cl (L, f) to be the factor
algebra (⊗L)�If , where If is the two-sided ideal

(⊗L) · 〈v ⊗ v − f (v, v) | v ∈ L〉 · (⊗L)

of the algebra ⊗L. 8

Remark. We denote by 0 the symmetric bilinear form on L defined by

(0 (x, y) = 0 for every x ∈ L and y ∈ L) .

Then,

I0 = (⊗L) ·

〈
v ⊗ v − 0 (v, v)︸ ︷︷ ︸

=0

| v ∈ L

〉
· (⊗L) = (⊗L) · 〈v ⊗ v | v ∈ L〉 · (⊗L) ,

and thus Cl (L,0) = (⊗L)�I0 = (⊗L)� ((⊗L) · 〈v ⊗ v | v ∈ L〉 · (⊗L)) is the exte-
rior algebra ∧L of the k-module L. Hence, the exterior algebra ∧L is a particular case
of the Clifford algebra - namely, it is the Clifford algebra Cl (L,0).

In general, the Clifford algebra Cl (L, f) is not isomorphic to the exterior algebra
∧L as algebra. However, they are isomorphic as k-modules, as the following theorem
states:

Theorem 1 (Chevalley map theorem): Let k be a commutative ring.
Let L be a k-module, and f : L × L → k be a bilinear form on L. Then,
the k-modules ∧L and Cl (L, f) are isomorphic.

We are going to prove this theorem by explicitly constructing mutually inverse
homomorphisms in both directions. This proof substantially differs from the proofs
given in standard literature for the particular case of k being a field of characteristic
0 and L being a finite-dimensional k-vector space, which proceed by constructing the
isomorphism in one direction and showing either its injectivity or its surjectivity, or

8Here, whenever U is a set, and P : U → ⊗L is a map (not necessarily a linear map), we denote
by 〈P (v) | v ∈ U〉 the k-submodule of ⊗L generated by the elements P (v) for all v ∈ U .
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proving both using the basis theorem (Theorem 2 below).9 Using Theorem 1 we will
be able to construct a basis for Cl (L, f) in the case when L has one:

Theorem 2 (Clifford basis theorem): Let k be a commutative ring. Let
L be a free k-module with a finite basis (e1, e2, ..., en), and f : L×L→ k be a
bilinear form on L. Let ϕf : L→ Cl (L, f) be the k-module homomorphism
defined by ϕf = projf ◦ inj, where inj : L → ⊗L is the canonical injection
of the k-module L into its tensor algebra ⊗L, and where projf : ⊗L →
Cl (L, f) is the canonical projection of the tensor algebra ⊗L onto its factor
algebra (⊗L)�If = Cl (L, f).

Then,

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is a basis of the k-module Cl (L, f), where

P ({1, 2, ..., n}) denotes the power set of the set {1, 2, ..., n}.

Here, we are using the following notation:

Definition 4. Let A be a ring, and let I be a finite subset of Z. Let ai
be an element of A for each i ∈ I. Then, we denote by

−→∏
i∈I
ai the element of

A defined as follows: We write the set I in the form I = {i1, i2, ..., i`} with
i1 < i2 < ... < i` (in other words, we let i1, i2, ..., i` be the elements of

I, written down in ascending order). Then, we define
−→∏
i∈I
ai as the product

ai1ai2 ...ai` . This product
−→∏
i∈I
ai is called the ascending product of the elements

ai of A.

One more theorem that is often (silently) used and will follow from our considera-
tions:

Theorem 3. Let k be a commutative ring. Let L be a k-module, and
f : L × L → k be a bilinear form on L. Let ϕf : L → Cl (L, f) be the
k-module homomorphism defined by ϕf = projf ◦ inj, where inj : L →
⊗L is the canonical injection of the k-module L into its tensor algebra
⊗L, and where projf : ⊗L → Cl (L, f) is the canonical projection of the
tensor algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f). Then, the
homomorphism ϕf is injective.

Theorem 2 is known in the case of k being a field and L being a finite-dimensional
k-vector space; in this case, it is often proved using orthogonal decomposition of L into
f -orthogonal subspaces - a tactic not available to us in the general case of k being an
arbitrary commutative ring. We will have to derive Theorem 2 from Theorem 1 to

9The proof of Theorem 1 in [2] (where Theorem 1 appears as Theorem 1.2, albeit only in the case
of k being a field) seems different, but I don’t completely understand it; to me it seems that it has a
flaw (it states that ”the r-homogeneous part of ϕ is then of the form ϕr =

∑
ai ⊗ vi ⊗ vi ⊗ bi (where

deg ai+deg bi = r−2 for each i)”, which I am not sure about, because theoretically one could imagine
that the representation of ϕ in the form ϕ =

∑
ai ⊗ (vi ⊗ vi + q (vi))⊗ bi involves some ai and bi of

extremely huge degree which cancel out in the sum).
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prove it in this generality. Most proofs of Theorem 1 rely on Theorem 2, and Theorem
3 is usually proven using either Theorem 1 or Theorem 2.

The nature of our proof will be computational - we are going to define some k-
module automorphisms of the tensor algebra ⊗L by recursive formulae. During the
course of the proof, we will show a lot of formulas, each of which has a more or less
straightforward inductive proofs. The inductive proofs will always use one and the
same tactic: a tactic I call tensor induction. Here is what it is about:

Definition 5. (a) Let k be a commutative ring, and L be a k-module. Let
p ∈ N. An element of L⊗p is said to be left-induced if and only if it can be
written in the form u⊗U for some u ∈ L and some U ∈ L⊗(p−1). Then, for
every p ∈ N+, the k-module L⊗p is generated by its left-induced elements
(because L⊗p = L ⊗ L⊗(p−1), and therefore the k-module L⊗p is generated
by its elements of the form u⊗U for some u ∈ L and some U ∈ L⊗(p−1); in
other words, the k-module L⊗p is generated by its left-induced elements).

(b) Let k be a commutative ring, and L be a k-module. Let p ∈ N. An
element of L⊗p is said to be right-induced if and only if it can be written
in the form U ⊗ u for some u ∈ L and some U ∈ L⊗(p−1). Then, for
every p ∈ N+, the k-module L⊗p is generated by its right-induced elements
(because L⊗p = L⊗(p−1) ⊗ L, and therefore the k-module L⊗p is generated
by its elements of the form U ⊗ u for some u ∈ L and some U ∈ L⊗(p−1); in
other words, the k-module L⊗p is generated by its right-induced elements).

The left tensor induction tactic. Let p ∈ N+. Let η and ε be two
k-linear maps from L⊗p to some other k-module. Then, in order to prove
that (

η (T ) = ε (T ) for every T ∈ L⊗p
)
,

it is enough to prove that(
η (T ) = ε (T ) for every left-induced T ∈ L⊗p

)
(because the k-module L⊗p is generated by its left-induced elements).

In words: In order to prove that all elements of L⊗p satisfy some given
k-linear equation, it is enough to show that all left-induced elements of L⊗p

satisfy this equation.

The right tensor induction tactic. Let p ∈ N+. Let η and ε be two
k-linear maps from L⊗p to some other k-module. Then, in order to prove
that (

η (T ) = ε (T ) for every T ∈ L⊗p
)
,

it is enough to prove that(
η (T ) = ε (T ) for every right-induced T ∈ L⊗p

)
(because the k-module L⊗p is generated by its right-induced elements).

In words: In order to prove that all elements of L⊗p satisfy some given
k-linear equation, it is enough to show that all right-induced elements of
L⊗p satisfy this equation.
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The tensor algebra induction tactic. Let η and ε be two k-linear maps
from ⊗L to some other k-module. Then, in order to prove that

(η (T ) = ε (T ) for every T ∈ ⊗L) ,

it is enough to prove that(
η (T ) = ε (T ) for every p ∈ N and every T ∈ L⊗p

)
(because the k-module ⊗L is the direct sum L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ..., and
therefore is generated by its submodules L⊗p for all p ∈ N).

2. Left interior products on the tensor algebra

From now on, we fix a commutative ring k, and a k-module L. Let f be some
bilinear form on L.

First, we define some operations of L on ⊗L - the so-called interior products. Our
definition will be rather dry - if you want a formula for these operations, scroll down
to Theorem 5 below.

Definition 6. Let f : L× L→ k be a bilinear form. For every p ∈ N and
every v ∈ L, we define a k-linear map δfv,p : L⊗p → L⊗(p−1) (where L⊗(−1)

means 0) by induction over p:

Induction base: For p = 0, we define the map δfv,p : L⊗0 → L⊗(−1) to be the
zero map.

Induction step: For each p ∈ N+, we define a k-linear map δfv,p : L⊗p →
L⊗(p−1) by(
δfv,p (u⊗ U) = f (v, u)U − u⊗ δfv,p−1 (U) for every u ∈ L and U ∈ L⊗(p−1)

)
,

(1)
assuming that we have already defined a k-linear map δfv,p−1 : L⊗(p−1) →
L⊗(p−2). (This definition is justified, because in order to define a k-linear
map from L⊗p to some other k-module, it is enough to define how it acts
on tensors of the form u ⊗ U for every u ∈ L and U ∈ L⊗(p−1), as long
as this action is bilinear with respect to u and U . This is because L⊗p =
L⊗ L⊗(p−1).)

This way we have defined a k-linear map δfv,p : L⊗p → L⊗(p−1) for every

p ∈ N. We can combine these maps δfv,0, δfv,1, δfv,2, ... into one k-linear map
δfv : ⊗L → ⊗L (since ⊗L = L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ...), and the formula (1)
rewrites as(
δfv (u⊗ U) = f (v, u)U − u⊗ δfv (U) for every u ∈ L and U ∈ L⊗(p−1)

)
.

(2)

It is easily seen (by induction over p ∈ N) that the map δfv,p depends linearly

on the vector v ∈ L. Hence, the combination δfv of the maps δfv,0, δfv,1, δfv,2,
... must also depend linearly on v ∈ L. In other words, the map

L× (⊗L)→ ⊗L, (v, U) 7→ δfv (U)
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is k-bilinear. Hence, this map gives rise to a k-linear map

δf : L⊗ (⊗L)→ ⊗L, v ⊗ U 7→ δfv (U) .

We are going to denote δfv (U) by v
f
xU for each v ∈ L and U ∈ ⊗L. Thus,

the equality (2) takes the form(
v
f
x (u⊗ U) = f (v, u)U − u⊗

(
v
f
xU
)

for every u ∈ L and U ∈ L⊗(p−1)
)
.

(3)

The tensor v
f
xU is called the left interior product of v and U with respect

to the bilinear form f .

Let us note that many authors omit the f in the notation
f
x; in other words, they

simply write x for
f
x. However, we are going to avoid this abbreviation, as we aim at

considering several bilinear forms at once, and omitting the name of the bilinear form
could lead to confusion.

The above inductive definition of
f
x is not particularly vivid. Here is an explicit

formula for
f
x (albeit we are mostly going to avoid using it in proofs):

Theorem 5. Let f : L× L→ k be a bilinear form.

(a) For every λ ∈ k and every v ∈ L, we have v
f
xλ = 0. 10

(b) For every u ∈ L and v ∈ L, we have v
f
xu = f (v, u). 11

(c) Let u1, u2, ..., up be p elements of L. Let v ∈ L. Then,

v
f
x (u1 ⊗ u2 ⊗ ...⊗ up) =

p∑
i=1

(−1)i−1 f (v, ui)·u1⊗u2⊗...⊗ûi⊗...⊗up. (4)

Here, the hat over the vector ui means that the vector ui is being omitted
from the tensor product; in other words, u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up is just
another way to write u1 ⊗ u2 ⊗ ...⊗ ui−1︸ ︷︷ ︸

tensor product of the
first i−1 vectors u`

⊗ui+1 ⊗ ui+2 ⊗ ...⊗ up︸ ︷︷ ︸
tensor product of the
last p−i vectors u`

.

Proof of Theorem 5. (a) We have λ ∈ k = L⊗0 and thus δfv (λ) = δfv,0︸︷︷︸
=0

(λ) = 0 (λ) =

0. Thus, v
f
xλ = δfv (λ) = 0, and Theorem 5 (a) is proven.

(b) Applying (3) to U = 1, we see that

v
f
x (u⊗ 1) = f (v, u) 1− u⊗

(
v
f
x1
)

︸ ︷︷ ︸
=0 (by Theorem 5 (a))

= f (v, u) 1− u⊗ 0 = f (v, u) .

Since u⊗ 1 = u, this rewrites as v
f
xu = f (v, u). Thus, Theorem 5 (b) is proven.

10Here, λ ∈ k is considered as an element of ⊗L by means of the canonical inclusion k = L⊗0 ⊆ ⊗L.
11Here, f (v, u) ∈ k is considered as an element of ⊗L by means of the canonical inclusion k =

L⊗0 ⊆ ⊗L.
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(c) We are going to prove Theorem 5 (c) by induction over p:
The induction base is clear, since for p = 0, Theorem 5 (c) trivially follows from

Theorem 5 (a)12.
Now to the induction step: Let p ∈ N+. Let us prove Theorem 5 (c) for this p,

assuming that we have already verified Theorem 5 (c) applied to p− 1 instead of p.
In fact, we have assumed that we have already shown Theorem 5 (c) applied to

p− 1 instead of p. In other words, we have already shown the equality

v
f
x (u1 ⊗ u2 ⊗ ...⊗ up−1) =

p−1∑
i=1

(−1)i−1 f (v, ui) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up−1 (5)

for any p − 1 vectors u1, u2, ..., up−1 in L. Now, our goal is to prove the equality (4)
for any p vectors u1, u2, ..., up in L.

In fact, substituting the vectors u2, u3, ..., up instead of u1, u2, ..., up−1 into the
(already proven) equality (5), we get

v
f
x (u2 ⊗ u3 ⊗ ...⊗ up) =

p−1∑
i=1

(−1)i−1 f (v, ui+1) · u2 ⊗ u3 ⊗ ...⊗ ûi+1 ⊗ ...⊗ up

=

p∑
i=2

(−1)i−2︸ ︷︷ ︸
=−(−1)i−1

f (v, ui) · u2 ⊗ u3 ⊗ ...⊗ ûi ⊗ ...⊗ up

(here, we have substituted i for i+ 1 in the sum)

= −
p∑
i=2

(−1)i−1 f (v, ui) · u2 ⊗ u3 ⊗ ...⊗ ûi ⊗ ...⊗ up. (6)

12because for p = 0, we have u1⊗u2⊗ ...⊗up = (empty product) = 1 ∈ k and
p∑
i=1

(−1)
i−1

f (v, ui) ·

u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up = (empty sum) = 0

7



Now, applying (3) to u = u1 and U = u2 ⊗ u3 ⊗ ...⊗ up, we get

v
f
x (u1 ⊗ u2 ⊗ u3 ⊗ ...⊗ up)

= f (v, u1)u2 ⊗ u3 ⊗ ...⊗ up − u1 ⊗


v
f
x (u2 ⊗ u3 ⊗ ...⊗ up)︸ ︷︷ ︸

=−
p∑
i=2

(−1)i−1f(v,ui)·u2⊗u3⊗...⊗ûi⊗...⊗up

(by (6))


= f (v, u1)︸ ︷︷ ︸

=(−1)1−1f(v,u1)

u2 ⊗ u3 ⊗ ...⊗ up︸ ︷︷ ︸
=u1⊗u2⊗...⊗û1⊗...⊗up

+ u1 ⊗

(
p∑
i=2

(−1)i−1 f (v, ui) · u2 ⊗ u3 ⊗ ...⊗ ûi ⊗ ...⊗ up

)
︸ ︷︷ ︸

=
p∑
i=2

(−1)i−1f(v,ui)·u1⊗(u2⊗u3⊗...⊗ûi⊗...⊗up)

=
p∑
i=2

(−1)i−1f(v,ui)·u1⊗u2⊗...⊗ûi⊗...⊗up

= (−1)1−1 f (v, u1)u1 ⊗ u2 ⊗ ...⊗ û1 ⊗ ...⊗ up

+

p∑
i=2

(−1)i−1 f (v, ui) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up

=

p∑
i=1

(−1)i−1 f (v, ui) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up.

Thus, (4) is proven for our p ∈ N. In other words, Theorem 5 (c) is proven for our
p ∈ N. This completes the induction step, and thus the proof of Theorem 5 (c) is
complete.

We are now going to prove some properties of the interior product. The most

important one is the bilinearity of
f
x; this property states that the map

L× (⊗L)→ ⊗L, (v, U) 7→ v
f
xU

is k-bilinear13, i. e. that (αv + βv′)
f
xU = αv

f
xU + βv′

f
xU and that v

f
x (αU + βU ′) =

αv
f
xU + βv

f
xU ′ for any v ∈ L, v′ ∈ L, U ∈ ⊗L and U ′ ∈ ⊗L.

Theorem 6. If u ∈ L, U ∈ ⊗L, and v ∈ L, then

v
f
x (u⊗ U) = f (v, u)U − u⊗

(
v
f
xU
)
. (7)

13This is because v
f
xU = δfv (U), and because the map

L× (⊗L)→ ⊗L, (v, U) 7→ δfv (U)

is k-bilinear.
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Proof of (7). If U is a homogeneous tensor (i. e. an element of L⊗r for some r ∈ N),
then (7) follows directly from (3) (applied to p = r+ 1). Otherwise, we can write U as
a k-linear combination of homogeneous tensors of various degrees, and then apply (3)
to each of these tensors; summing up, we obtain (7). Thus, (7) is proven.

Theorem 7. If v ∈ L and U ∈ ⊗L, then

v
f
x
(
v
f
xU
)

= 0. (8)

Proof of Theorem 7. Fix some v ∈ L. First we will prove that for every p ∈ N and
every U ∈ L⊗p, the equation (8) holds. In fact, we will show this by induction over p:

The induction base (p = 0) is clear (thanks to Theorem 5 (a), which yields v
f
xU = 0

for every U ∈ L⊗0 = k). Now for the induction step: Fix some p ∈ N+. Let us now
prove (8) for all U ∈ L⊗p, assuming that (8) is already proven for all U ∈ L⊗(p−1).

We want to prove (8) for all U ∈ L⊗p. But in order to achieve this, it is enough
to prove (8) for all left-induced U ∈ L⊗p (because of the left tensor induction tactic,
since the equation (8) is linear in U). So let us prove (8) for all left-induced U ∈ L⊗p.
In fact, let U ∈ L⊗p be a left-induced tensor. Then, U can be written in the form

U = u ⊗ Ü for some u ∈ L and Ü ∈ L⊗(p−1) (since U is left-induced). Then, v
f
xU =

v
f
x
(
u⊗ Ü

)
= f (v, u) Ü − u⊗

(
v
f
xÜ
)

(by (7), applied to Ü instead of U) yields

v
f
x
(
v
f
xU
)

= v
f
x
(
f (v, u) Ü − u⊗

(
v
f
xÜ
))

= f (v, u) v
f
xÜ − vfx

(
u⊗

(
v
f
xÜ
))

(
by the bilinearity of

f
x
)

= f (v, u) v
f
xÜ −

(
f (v, u)

(
v
f
xÜ
)
− u⊗

(
v
f
x
(
v
f
xÜ
)))

 since v
f
x
(
u⊗

(
v
f
xÜ
))

= f (v, u)
(
v
f
xÜ
)
− u⊗

(
v
f
x
(
v
f
xÜ
))

(by (7), applied to v
f
xÜ instead of U)


= u⊗

(
v
f
x
(
v
f
xÜ
))

= 0

(because v
f
x
(
v
f
xÜ
)

= 0 by (8) (applied to Ü instead of U) 14). Thus, we have proven

that v
f
x
(
v
f
xU
)

= 0 for all left-induced U ∈ L⊗p. Consequently, by the left tensor

induction tactic (as we said above), we conclude that (8) holds for all U ∈ L⊗p. This
completes the induction step. Therefore we have now proven that for every p ∈ N, and
every U ∈ L⊗p, the equation (8) holds.

This yields that the equation (8) holds for every U ∈ ⊗L (since every element of ⊗L
is a k-linear combination of elements of L⊗p for various p ∈ N, and since the equation
(8) is linear in U). This proves Theorem 7.

Theorem 8. If v ∈ L, w ∈ L and U ∈ ⊗L, then

v
f
x
(
w
f
xU
)

= −wf
x
(
v
f
xU
)
. (9)

14In fact, we are allowed to apply (8) to Ü instead of U , since Ü ∈ L⊗(p−1) and since we have
assumed that (8) is already proven for all U ∈ L⊗(p−1).
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First proof of Theorem 8. Theorem 7 yields v
f
x
(
v
f
xU
)

= 0. Theorem 7, applied to

w instead of v, yields w
f
x
(
w
f
xU
)

= 0. Finally, Theorem 7, applied to v + w instead of

v, yields (v + w)
f
x
(

(v + w)
f
xU
)

= 0. Thus,

0 = (v + w)
f
x
(

(v + w)
f
xU
)

= (v + w)
f
x
(
v
f
xU + w

f
xU
) (

by the bilinearity of
f
x
)

= v
f
x
(
v
f
xU + w

f
xU
)

+ w
f
x
(
v
f
xU + w

f
xU
) (

by the bilinearity of
f
x
)

=

vfx(vfxU)︸ ︷︷ ︸
=0

+v
f
x
(
w
f
xU
)+

wf
x
(
v
f
xU
)

+ w
f
x
(
w
f
xU
)

︸ ︷︷ ︸
=0


(

by the bilinearity of
f
x
)

= v
f
x
(
w
f
xU
)

+ w
f
x
(
v
f
xU
)
.

This yields (9), and thus Theorem 8 is proven.
Second proof of Theorem 8. Fix some v ∈ L and w ∈ L. First we will prove that

for every p ∈ N and every U ∈ L⊗p, the equation (9) holds. In fact, we will show this
by induction over p: The induction base (p = 0) is clear (since Theorem 5 (a) yields

w
f
xU = 0 and v

f
xU = 0 in the case p = 0). Now for the induction step: Fix some

p ∈ N+. Let us now prove (9) for all U ∈ L⊗p, assuming that (9) is already proven for
all U ∈ L⊗(p−1).

We want to prove (9) for all U ∈ L⊗p. But in order to achieve this, it is enough
to prove (9) for all left-induced U ∈ L⊗p (because of the left tensor induction tactic,
since the equation (9) is linear in U). So let us prove (9) for all left-induced U ∈ L⊗p.
In fact, let U ∈ L⊗p be a left-induced tensor. Then, U can be written in the form
U = u ⊗ Ü for some u ∈ L and Ü ∈ L⊗(p−1) (since U is left-induced). Therefore,

v
f
xU = v

f
x
(
u⊗ Ü

)
= f (v, u) Ü −u⊗

(
v
f
xÜ
)

(by (7), applied to Ü instead of U) yields

w
f
x
(
v
f
xU
)

= w
f
x
(
f (v, u) Ü − u⊗

(
v
f
xÜ
))

= f (v, u)w
f
xÜ − wf

x
(
u⊗

(
v
f
xÜ
))

(
by the bilinearity of

f
x
)

= f (v, u)w
f
xÜ −

(
f (w, u) v

f
xÜ − u⊗

(
w
f
x
(
v
f
xÜ
)))

 since w
f
x
(
u⊗

(
v
f
xÜ
))

= f (w, u) v
f
xÜ − u⊗

(
w
f
x
(
v
f
xÜ
))

(by (7), applied to w and v
f
xÜ instead of v and U)


= f (v, u)w

f
xÜ − f (w, u) v

f
xÜ + u⊗

(
w
f
x
(
v
f
xÜ
))

. (10)

Applying this equality (10) to w and v instead of v and w, we obtain

v
f
x
(
w
f
xU
)

= f (w, u) v
f
xÜ − f (v, u)w

f
xÜ + u⊗

(
v
f
x
(
w
f
xÜ
))

.
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Adding this equality to (10), we obtain

w
f
x
(
v
f
xU
)

+ v
f
x
(
w
f
xU
)

=
(
f (v, u)w

f
xÜ − f (w, u) v

f
xÜ + u⊗

(
w
f
x
(
v
f
xÜ
)))

+
(
f (w, u) v

f
xÜ − f (v, u)w

f
xÜ + u⊗

(
v
f
x
(
w
f
xÜ
)))

= u⊗
(
w
f
x
(
v
f
xÜ
))

+ u⊗
(
v
f
x
(
w
f
xÜ
))

= u⊗
(
w
f
x
(
v
f
xÜ
)

+ v
f
x
(
w
f
xÜ
))

= 0

(because w
f
x
(
v
f
xÜ
)

+ v
f
x
(
w
f
xÜ
)

= 0, since v
f
x
(
w
f
xÜ
)

= −wf
x
(
v
f
xÜ
)

by (9) (applied

to Ü instead of U) 15), and therefore v
f
x
(
w
f
xU
)

= −wf
x
(
v
f
xU
)

. Thus, we have

proven that (9) holds for all left-induced U ∈ L⊗p. Consequently, by the left tensor
induction tactic (as we said above), we conclude that (9) holds for all U ∈ L⊗p. This
completes the induction step. Therefore we have now proven that for every p ∈ N, and
every U ∈ L⊗p, the equation (9) holds.

This yields that the equation (9) holds for every U ∈ ⊗L (since every element of ⊗L
is a k-linear combination of elements of L⊗p for various p ∈ N, and since the equation
(9) is linear in U). This proves Theorem 8.

Theorem 9. If p ∈ N, u ∈ L, U ∈ L⊗p, and v ∈ L, then

v
f
x (U ⊗ u) = (−1)p f (v, u)U +

(
v
f
xU
)
⊗ u. (11)

Instead of proving this directly, we show something more general:

Theorem 10. If p ∈ N, v ∈ L, U ∈ L⊗p, and V ∈ ⊗L, then

v
f
x (U ⊗ V ) = (−1)p U ⊗

(
v
f
xV
)

+
(
v
f
xU
)
⊗ V. (12)

Proof of Theorem 10. We are going to prove (12) by induction over p:
The induction base p = 0 is obvious16. Now let us come to the induction step: Fix

some p ∈ N+ and some V ∈ ⊗L. Let us now prove (12) for all U ∈ L⊗p, assuming that
(12) is already proven for all U ∈ L⊗(p−1).

15In fact, we are allowed to apply (9) to Ü instead of U , since Ü ∈ L⊗(p−1) and since we have
assumed that (9) is already proven for all U ∈ L⊗(p−1).

16In fact, in the case p = 0, we have U ∈ L⊗p = L⊗0 = k and thus

v
f
x

U ⊗ V︸ ︷︷ ︸
=UV

 = U · vfxV and

(−1)
p︸ ︷︷ ︸

=(−1)0=1

U ⊗
(
v
f
xV
)

︸ ︷︷ ︸
=U ·vfxV

(since U∈k)

+
(
v
f
xU
)

︸ ︷︷ ︸
=0 (by Theorem 5 (a),

since U∈k)

⊗V = 1U · vfxV + 0⊗ V = U · vfxV,

and therefore (12) is valid in the case p = 0.
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We want to prove (12) for all U ∈ L⊗p. But in order to achieve this, it is enough to
prove (12) for all left-induced U ∈ L⊗p (by the left tensor induction tactic, because the
equation (12) is linear in U). Thus, let us prove (12) for all left-induced U ∈ L⊗p. In
other words, let us prove (12) for all tensors U ∈ L⊗p of the form U = u⊗ Ü with u ∈ L
and Ü ∈ L⊗(p−1) (because every left-induced tensor U ∈ L⊗p has the form U = u⊗ Ü
for some u ∈ L and Ü ∈ L⊗(p−1)). In other words, let us prove that

v
f
x
((
u⊗ Ü

)
⊗ V

)
= (−1)p

(
u⊗ Ü

)
⊗
(
v
f
xV
)

+
(
v
f
x
(
u⊗ Ü

))
⊗ V (13)

for every u ∈ L, Ü ∈ L⊗(p−1), v ∈ L and V ∈ ⊗L.

In fact,
(
u⊗ Ü

)
⊗ V = u⊗

(
Ü ⊗ V

)
yields

v
f
x
((
u⊗ Ü

)
⊗ V

)
= v

f
x
(
u⊗

(
Ü ⊗ V

))
= f (v, u)

(
Ü ⊗ V

)
− u⊗

(
v
f
x
(
Ü ⊗ V

))
.

(by (7), applied to Ü ⊗ V instead of U). But since

v
f
x
(
Ü ⊗ V

)
= (−1)p−1 Ü ⊗

(
v
f
xV
)

+
(
v
f
xÜ
)
⊗ V

(this follows from applying (12) to p− 1 and Ü instead of p and U 17), this becomes

v
f
x
((
u⊗ Ü

)
⊗ V

)
= f (v, u)

(
Ü ⊗ V

)
− u⊗

(
(−1)p−1 Ü ⊗

(
v
f
xV
)

+
(
v
f
xÜ
)
⊗ V

)
= f (v, u)

(
Ü ⊗ V

)
− (−1)p−1︸ ︷︷ ︸

=−(−1)p

u⊗ Ü ⊗
(
v
f
xV
)
− u⊗

(
v
f
xÜ
)
⊗ V

= f (v, u)
(
Ü ⊗ V

)
+ (−1)p u⊗ Ü ⊗

(
v
f
xV
)
− u⊗

(
v
f
xÜ
)
⊗ V.

Comparing this to

(−1)p
(
u⊗ Ü

)
⊗
(
v
f
xV
)

+
(
v
f
x
(
u⊗ Ü

))
⊗ V

= (−1)p
(
u⊗ Ü

)
⊗
(
v
f
xV
)

+
(
f (v, u) Ü − u⊗

(
v
f
xÜ
))
⊗ V(

because (7), applied to Ü instead of U ,

yields v
f
x
(
u⊗ Ü

)
= f (v, u) Ü − u⊗

(
v
f
xÜ
) )

= (−1)p
(
u⊗ Ü

)
⊗
(
v
f
xV
)

+ f (v, u) Ü ⊗ V − u⊗
(
v
f
xÜ
)
⊗ V

= f (v, u) Ü ⊗ V + (−1)p
(
u⊗ Ü

)
⊗
(
v
f
xV
)
− u⊗

(
v
f
xÜ
)
⊗ V

= f (v, u)
(
Ü ⊗ V

)
+ (−1)p u⊗ Ü ⊗

(
v
f
xV
)
− u⊗

(
v
f
xÜ
)
⊗ V,

we obtain (13). Hence, we have proven (13). As already explained above, this completes
the induction step. Thus, (12) is proven for all p ∈ N. In other words, the proof of
Theorem 10 is complete.

17In fact, we are allowed to apply (12) to p− 1 and Ü instead of p and U , because we have assumed
that (12) is already proven for all U ∈ L⊗(p−1).

12



Proof of Theorem 9. Applying Theorem 10 to V = u, we obtain

v
f
x (U ⊗ u) = (−1)p U ⊗

(
v
f
xu
)

+
(
v
f
xU
)
⊗ u.

Since v
f
xu = f (v, u) (by Theorem 5 (b)), this becomes

v
f
x (U ⊗ u) = (−1)p U ⊗ f (v, u)︸ ︷︷ ︸

=f(v,u)U

+
(
v
f
xU
)
⊗ u = (−1)p f (v, u)U +

(
v
f
xU
)
⊗ u,

and therefore Theorem 9 is proven.
Note that we will often use a trivial generalization of Theorem 9 rather than The-

orem 9 itself:

Theorem 10
1

2
. If p ∈ N, u ∈ L, U ∈

⊕
i∈N;

i≡pmod 2

L⊗i, and v ∈ L, then

v
f
x (U ⊗ u) = (−1)p f (v, u)U +

(
v
f
xU
)
⊗ u. (14)

Proof of Theorem 10
1

2
. Since U ∈

⊕
i∈N;

i≡pmod 2

L⊗i, we can write U in the form U =

∑
i∈N;

i≡pmod 2

Ui, where Ui ∈ L⊗i for every i ∈ N satisfying i ≡ pmod 2. Now, (11) (applied

to i and Ui instead of p and U) yields

v
f
x (Ui ⊗ u) = (−1)i f (v, u)Ui +

(
v
f
xUi
)
⊗ u

for every i ∈ N satisfying i ≡ pmod 2. Since (−1)i = (−1)p (because i ≡ pmod 2), this
becomes

v
f
x (Ui ⊗ u) = (−1)p f (v, u)Ui +

(
v
f
xUi
)
⊗ u. (15)
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Now, U =
∑
i∈N;

i≡pmod 2

Ui yields

v
f
x (U ⊗ u) = v

f
x

 ∑
i∈N;

i≡pmod 2

Ui ⊗ u

 =
∑
i∈N;

i≡pmod 2

v
f
x (Ui ⊗ u)

(
by the bilinearity of

f
x
)

=
∑
i∈N;

i≡pmod 2

(
(−1)p f (v, u)Ui +

(
v
f
xUi
)
⊗ u
)

(by (15))

= (−1)p f (v, u)
∑
i∈N;

i≡pmod 2

Ui +
∑
i∈N;

i≡pmod 2

(
v
f
xUi
)

︸ ︷︷ ︸
=v

f
x

∑
i∈N;

i≡pmod 2

Ui

(by the bilinearity of
f
x)

⊗u

= (−1)p f (v, u)
∑
i∈N;

i≡pmod 2

Ui

︸ ︷︷ ︸
=U

+

v
f
x
∑
i∈N;

i≡pmod 2

Ui

︸ ︷︷ ︸
=U

⊗ u

= (−1)p f (v, u)U +
(
v
f
xU
)
⊗ u.

This proves Theorem 10
1

2
.

Finally, another straightforward fact:

Theorem 10
3

4
. Let f : L × L → k and g : L × L → k be two bilinear

forms. If w ∈ L and U ∈ ⊗L, then

w
f
xU + w

g
xU = w

f+g
x U. (16)

This theorem is immediately trivial using Theorem 5 (c), but as we want to avoid

using Theorem 5 (c), here is a straightforward proof of Theorem 10
3

4
using tensor

induction:

Proof of Theorem 10
3

4
. Fix some w ∈ L. We will first show that for every p ∈ N,

the equation (16) holds for every U ∈ L⊗p.
In fact, we will prove this by induction over p:
The induction base case p = 0 is obvious (because in this case, U ∈ L⊗p = L⊗0 = k

and thus Theorem 5 (a) yields w
f
xU = 0, w

g
xU = 0 and w

f+g
x U = 0, making the

equation (16) trivially true).
So let us now come to the induction step: Let p ∈ N+. We must prove (16) for

every U ∈ L⊗p, assuming that (16) has already been proven for every U ∈ L⊗(p−1).
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We want to prove that (16) holds for every U ∈ L⊗p. In order to do this, it is
enough to prove that (16) holds for every left-induced U ∈ L⊗p (by the left tensor
induction tactic, because the equation (16) is linear in U). So, let us prove this. Let
U ∈ L⊗p be a left-induced tensor. Then, we can write U in the form U = u ⊗ Ü for
some u ∈ L and Ü ∈ L⊗(p−1) (because U is left-induced). Thus,

w
f
xU = w

f
x
(
u⊗ Ü

)
= f (w, u) Ü − u⊗

(
w
f
xÜ
)

(17)

(by (7), applied to w and Ü instead of v and U). Also,

w
g
xU = g (w, u) Ü − u⊗

(
w
g
xÜ
)

(by (17), applied to g instead of f) and

w
f+g
x U = (f + g) (w, u) Ü − u⊗

(
w
f+g
x Ü

)
(by (17), applied to f + g instead of f). Hence,

w
f
xU + w

g
xU

=
(
f (w, u) Ü − u⊗

(
w
f
xÜ
))

+
(
g (w, u) Ü − u⊗

(
w
g
xÜ
))

=
(
f (w, u) Ü + g (w, u) Ü

)
︸ ︷︷ ︸

=(f(w,u)+g(w,u))Ü

−
(
u⊗

(
w
f
xÜ
)

+ u⊗
(
w
g
xÜ
))

︸ ︷︷ ︸
=u⊗

(
w
f
xÜ+w

g
xÜ

)

= (f (w, u) + g (w, u)) Ü − u⊗
(
w
f
xÜ + w

g
xÜ
)

= (f (w, u) + g (w, u))︸ ︷︷ ︸
=(f+g)(w,u)

Ü − u⊗
(
w
f+g
x Ü

)
 since (16) (applied to Ü instead of U) yields w

f
xÜ + w

g
xÜ = w

f+g
x Ü

(in fact, we are allowed to apply (16) to Ü instead of U , since Ü ∈ L⊗(p−1)

and since (16) has already been proven for every U ∈ L⊗(p−1))


= (f + g) (w, u) Ü − u⊗

(
w
f+g
x Ü

)
= w

f+g
x U.

Hence, the equality (16) is proven for every left-induced tensor U ∈ L⊗p. As we already
said above, this entails that (16) must also hold for every tensor U ∈ L⊗p, and thus the
induction step is complete. Hence, (16) is proven for every p ∈ N and every U ∈ L⊗p.

Consequently, the equation (16) holds for every U ∈ ⊗L (since every U ∈ ⊗L is a
k-linear combination of elements of L⊗p for various p ∈ N, and since the equation (16)

is k-linear). In other words, Theorem 10
3

4
is proven.

3. Right interior products on the tensor algebra

We have proven a number of properties of the interior product
f
x. We are now going

to introduce a very analogous construction
f
y which works ”from the right” almost the

same way as
f
x works ”from the left”:
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Definition 7. Let f : L× L→ k be a bilinear form. For every p ∈ N and
every v ∈ L, we define a k-linear map ρfv,p : L⊗p → L⊗(p−1) (where L⊗(−1)

means 0) by induction over p:

Induction base: For p = 0, we define the map δfv,p : L⊗0 → L⊗(−1) to be the
zero map.

Induction step: For each p ∈ N+, we define a k-linear map δfv,p : L⊗p →
L⊗(p−1) by(
ρfv,p (U ⊗ u) = f (u, v)U − ρfv,p−1 (U)⊗ u for every u ∈ L and U ∈ L⊗(p−1)

)
,

(18)
assuming that we have already defined a k-linear map ρfv,p−1 : L⊗(p−1) →
L⊗(p−2). (This definition is justified, because in order to define a k-linear
map from L⊗p to some other k-module, it is enough to define how it acts
on tensors of the form U ⊗ u for every u ∈ L and U ∈ L⊗(p−1), as long
as this action is bilinear with respect to u and U . This is because L⊗p =
L⊗(p−1) ⊗ L.)

This way we have defined a k-linear map ρfv,p : L⊗p → L⊗(p−1) for every

p ∈ N. We can combine these maps ρfv,0, ρfv,1, ρfv,2, ... into one k-linear map
ρfv : ⊗L → ⊗L (since ⊗L = L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ...), and the formula (1)
rewrites as(
ρfv (u⊗ U) = f (u, v)U − ρfv (U)⊗ u for every u ∈ L and U ∈ L⊗(p−1)

)
.

(19)

It is easily seen (by induction over p ∈ N) that the map ρfv,p depends linearly

on the vector v ∈ L. Hence, the combination ρfv of the maps ρfv,0, ρfv,1, ρfv,2,
... must also depend linearly on v ∈ L. In other words, the map

(⊗L)× L→ ⊗L, (U, v) 7→ ρfv (U)

is k-bilinear. Hence, this map gives rise to a k-linear map

ρf : (⊗L)⊗ L→ ⊗L, U ⊗ v 7→ ρfv (U) .

We are going to denote ρfv (U) by U
f
yv for each v ∈ L and U ∈ ⊗L. Thus,

the equality (2) takes the form(
(U ⊗ u)

f
yv = f (u, v)U −

(
U
f
yv
)
⊗ u for every u ∈ L and U ∈ L⊗(p−1)

)
.

(20)

The tensor U
f
yv is called the right interior product of v and U with respect

to the bilinear form f .

Again, many authors omit the f in the notation
f
y; in other words, they simply write

y for
f
y. However, we are going to avoid this abbreviation, as we aim at considering

several bilinear forms at once, and omitting the name of the bilinear form could lead
to confusion.
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Everything that we have proven for
f
x has an analogue for

f
y. In fact, we can take any

identity concerning
f
x, and ”read it from right to left” to obtain an analogous property

of
f
y 18 For instance, reading the property (3) of

f
x from right to left, we obtain (20),

because

• ”reading the term v
f
x (u⊗ U) from right to left” means replacing it by (U ⊗ u)

f
yv;

• ”reading the term f (v, u)U from right to left” means replacing it by Uf (u, v) =
f (u, v)U (since f (u, v) ∈ k is a scalar);

• ”reading the term u⊗
(
v
f
xU
)

from right to left” means replacing it by
(
U
f
yv
)
⊗u.

If we take a theorem about the left interior product
f
x (for example, one of the

Theorems 5-10), and ”read it from right to left”, we obtain a new theorem about the

right interior product
f
y, and this new theorem is valid because we can read not only

the theorem, but also its proof from right to left. This way, we get the following new
theorems:

Theorem 11. Let f : L× L→ k be a bilinear form.

(a) For every λ ∈ k and every v ∈ L, we have λ
f
yv = 0. 19

(b) For every u ∈ L and v ∈ L, we have u
f
yv = f (u, v). 20

(c) Let u1, u2, ..., up be p elements of L. Let v ∈ L. Then,

(u1 ⊗ u2 ⊗ ...⊗ up)
f
yv =

p∑
i=1

(−1)p−i f (ui, v)·u1⊗u2⊗...⊗ûi⊗...⊗up. (21)

Here, the hat over the vector ui means that the vector ui is being omitted
from the tensor product; in other words, u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up is just
another way to write u1 ⊗ u2 ⊗ ...⊗ ui−1︸ ︷︷ ︸

tensor product of the
first i−1 vectors u`

⊗ui+1 ⊗ ui+2 ⊗ ...⊗ up︸ ︷︷ ︸
tensor product of the
last p−i vectors u`

.

18”Reading from right to left” means

• replacing every term of the form v
f
xU by U

f
yv (where v ∈ L and U ∈ ⊗L), and vice versa;

• reversing the order in every tensor product;

• replacing every f (u, v) by f (v, u).

However, some care must be taken here: when our identity is of the form(
sum of some terms involving vectors, tensors and ⊗ and

f
x signs

)
= (another sum of terms of this kind) ,

then we should not read each of the sums from right to left, but we should read every of their terms

from right to left. (Thus, reading a term like a ⊗ b − cfxd from right to left, we get b ⊗ a − dfyc, and

not d
f
yc− b⊗ a.)

19Here, λ ∈ k is considered as an element of ⊗L by means of the canonical inclusion k = L⊗0 ⊆ ⊗L.
20Here, f (u, v) ∈ k is considered as an element of ⊗L by means of the canonical inclusion k =

L⊗0 ⊆ ⊗L.
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Theorem 12. If u ∈ L, U ∈ ⊗L, and v ∈ L, then

(U ⊗ u)
f
yv = f (u, v)U −

(
U
f
yv
)
⊗ u. (22)

Theorem 13. If v ∈ L and U ∈ ⊗L, then(
U
f
yv
)
f
yv = 0. (23)

Theorem 14. If v ∈ L, w ∈ L and U ∈ ⊗L, then(
U
f
yw
)
f
yv = −

(
U
f
yv
)
f
yw. (24)

Theorem 15. If p ∈ N, u ∈ L, U ∈ L⊗p, and v ∈ L, then

(u⊗ U)
f
yv = (−1)p f (u, v)U + u⊗

(
U
f
yv
)
. (25)

Theorem 16. If p ∈ N, v ∈ L, U ∈ L⊗p, and V ∈ ⊗L, then

(V ⊗ U)
f
yv = (−1)p

(
V
f
yv
)
⊗ U + V ⊗

(
U
f
yv
)
. (26)

Theorem 16
1

2
. If p ∈ N, u ∈ L, U ∈

⊕
i∈N;

i≡pmod 2

L⊗i, and v ∈ L, then

(u⊗ U)
f
yv = (−1)p f (u, v)U + u⊗

(
U
f
yv
)
. (27)

These Theorems 11-16 are simply the results of reading Theorems 5-10 from right
to left, so as we said, we don’t really need to give proofs for them (because one can
simply read the proofs of Theorems 5-10 from right to left, and thus obtain proofs of
Theorems 11-16). Yet, we are going to present the proof of Theorem 11 explicitly21,
and we will later reprove Theorems 12-16 in a different way.

Proof of Theorem 11. (a) We have λ ∈ k = L⊗0 and thus ρfv (λ) = ρfv,0︸︷︷︸
=0

(λ) =

0 (λ) = 0. Thus, λ
f
yv = δfv (λ) = 0, and Theorem 11 (a) is proven.

(b) Applying (20) to U = 1, we see that

(1⊗ u)
f
yv = f (u, v) 1−

(
1
f
yv
)

︸ ︷︷ ︸
=0 (by Theorem 11 (a))

⊗u = f (u, v) 1− 0⊗ u = f (u, v) .

Since 1⊗ u = u, this rewrites as u
f
yv = f (u, v). Thus, Theorem 11 (b) is proven.

(c) We are going to prove Theorem 11 (c) by induction over p:

21This is mainly because Theorem 11 does not result verbatim from reading Theorem 5 from right to
left, but instead requires some more changes (such as renaming u1⊗u2⊗ ...⊗up by up⊗up−1⊗ ...⊗u1,
and renaming i− 1 by p− i).

18



The induction base is clear, since for p = 0, Theorem 11 (c) trivially follows from
Theorem 11 (a)22.

Now to the induction step: Let p ∈ N+. Let us prove Theorem 11 (c) for this p,
assuming that we have already shown Theorem 11 (c) applied to p− 1 instead of p.

In fact, we have assumed that we have already shown Theorem 11 (c) applied to
p− 1 instead of p. In other words, we have already shown the equality

(u1 ⊗ u2 ⊗ ...⊗ up−1)
f
yv =

p−1∑
i=1

(−1)(p−1)−i f (ui, v) ·u1⊗u2⊗ ...⊗ ûi⊗ ...⊗up−1. (28)

for any p− 1 vectors u1, u2, ..., up−1 in L. Now, our goal is to prove the equality (21)
for any p vectors u1, u2, ..., up in L.

22because for p = 0, we have u1⊗u2⊗ ...⊗up = (empty product) = 1 ∈ k and
p∑
i=1

(−1)
p−i

f (v, ui) ·

u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up = (empty sum) = 0

19



Applying (20) to u = up and U = u1 ⊗ u2 ⊗ ...⊗ up−1, we get

(u1 ⊗ u2 ⊗ ...⊗ up−1 ⊗ up)
f
yv

= f (up, v)u1 ⊗ u2 ⊗ ...⊗ up−1 −


(u1 ⊗ u2 ⊗ ...⊗ up−1)

f
yv︸ ︷︷ ︸

=
p−1∑
i=1

(−1)(p−1)−if(ui,v)·u1⊗u2⊗...⊗ûi⊗...⊗up−1

(by (28))


⊗ up

= f (up, v)︸ ︷︷ ︸
=(−1)p−pf(up,v)

u1 ⊗ u2 ⊗ ...⊗ up−1

−

p−1∑
i=1

(−1)(p−1)−i︸ ︷︷ ︸
=(−1)p−i−1=−(−1)p−i

f (ui, v) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up−1

⊗ up
= (−1)p−p f (up, v)u1 ⊗ u2 ⊗ ...⊗ up−1

−

(
p−1∑
i=1

(
− (−1)p−i

)
f (ui, v) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up−1

)
⊗ up

= (−1)p−p f (up, v)u1 ⊗ u2 ⊗ ...⊗ up−1︸ ︷︷ ︸
=u1⊗u2⊗...⊗ûp⊗...⊗up

+

(
p−1∑
i=1

(−1)p−i f (ui, v) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up−1

)
⊗ up︸ ︷︷ ︸

=
p−1∑
i=1

(−1)p−if(ui,v)·u1⊗u2⊗...⊗ûi⊗...⊗up−1⊗up

=
p−1∑
i=1

(−1)p−if(ui,v)·u1⊗u2⊗...⊗ûi⊗...⊗up

= (−1)p−p f (up, v)u1 ⊗ u2 ⊗ ...⊗ ûp ⊗ ...⊗ up

+

p−1∑
i=1

(−1)p−i f (ui, v) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up

=

p∑
i=1

(−1)p−i f (ui, v) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up.

Thus, (21) is proven for our p ∈ N. In other words, we have proven Theorem 11 (c)
for our p ∈ N. This completes the induction step, and thus the proof of Theorem 11
(c) is complete.

Let us notice another property of
f
y: the bilinearity of

f
y. This property states that

the map

(⊗L)× L→ ⊗L, (U, v) 7→ U
f
yv
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is k-bilinear23, i. e. that U
f
y (αv + βv′) = αU

f
yv + βU

f
yv′ and that (αU + βU ′)

f
yv =

αU
f
yv + βU ′

f
yv for any v ∈ L, v′ ∈ L, U ∈ ⊗L and U ′ ∈ ⊗L.

As we said above, Theorems 12-16 don’t need to be proven in details, because simply
reading the proofs of Theorems 6-10 from right to left yields proofs of Theorems 12-16.
However, there also is a different way to prove these theorems, namely by defining an
automorphism of the k-module ⊗L:

Definition 8. For every p ∈ N, we define an endomorphism tp : L⊗p → L⊗p

of the k-module L⊗p by

(tp (u1 ⊗ u2 ⊗ ...⊗ up) = up ⊗ up−1 ⊗ ...⊗ u1 for any vectors u1, u2, ..., up in L) .
(29)

24 These endomorphisms t0, t1, t2, ... can be combined together to an en-
domorphism t : ⊗L → ⊗L of the k-module ⊗L (since ⊗L = L⊗0 ⊕ L⊗1 ⊕
L⊗2 ⊕ ...).

This map t satisfies

t (u1 ⊗ u2 ⊗ ...⊗ up) = up ⊗ up−1 ⊗ ...⊗ u1 (30)

for any p ∈ N and any vectors u1, u2, ..., up in L.

(due to (29)). This obviously yields t2 = id 25. Hence, the map t : ⊗L → ⊗L is
bijective. Besides,

t (U ⊗ V ) = t (V )⊗ t (U) for every U ∈ ⊗L and V ∈ ⊗L. (31)

26 Also, obviously, t (u) = u for every u ∈ L.

Our use for the map t is now to reduce the right interior product
f
y to the left

interior product
f
x. For this we need yet another definition:

23This is because U
f
yv = ρfv (U), and because the map

(⊗L)× L→ ⊗L, (U, v) 7→ ρfv (U)

is k-bilinear.
24This definition is legitimate, because the map L× L× ...× L︸ ︷︷ ︸

p times

→ L⊗p given by

(u1, u2, ..., up) 7→ up ⊗ up−1 ⊗ ...⊗ u1 for any vectors u1, u2, ..., up in L

is k-multilinear, and thus yields a map tp : L⊗p → L⊗p satisfying (29).
25In fact,

t2 (u1 ⊗ u2 ⊗ ...⊗ up) = t

t (u1 ⊗ u2 ⊗ ...⊗ up)︸ ︷︷ ︸
=up⊗up−1⊗...⊗u1

(due to (30))

 = t (up ⊗ up−1 ⊗ ...⊗ u1) = u1 ⊗ u2 ⊗ ...⊗ up

(due to (30), applied to up, up−1, ..., u1 instead of u1, u2, ..., up)

for any p ∈ N and any vectors u1, u2, ..., up in L. Thus, t2 (U) = U for every U ∈ ⊗L (because every
U ∈ ⊗L is a k-linear combination of tensors of the form u1 ⊗ u2 ⊗ ...⊗ up (for p ∈ N and vectors u1,
u2, ..., up in L), and because the equation t2 (U) = U is linear in U). In other words, t2 = id, qed.

26Proof of (31). We WLOG assume that U = u1 ⊗ u2 ⊗ ... ⊗ uq for some q ∈ N and some vectors
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Definition 9. Let f : L × L → k be a bilinear form. Then, we define a
new bilinear form f t : L× L→ k by(

f t (u, v) = f (v, u) for every u ∈ L and v ∈ L
)
.

This bilinear form f t is called the transpose of the bilinear form f .

It is clear that (f t)
t

= f for any bilinear form f , and that a bilinear form f is
symmetric if and only if f = f t.

Now, here is a way to write
f
y in terms of

f t

x :

Theorem 17. Let v ∈ L and U ∈ ⊗L. Then,

t
(
U
f
yv
)

= v
f t

xt (U) (32)

and

t

(
v
f t

xU

)
= t (U)

f
yv. (33)

Proof of Theorem 17. Fix some v ∈ L. We are first going to prove that t
(
U
f
yv
)

=

v
f t

xt (U) for every p ∈ N and every U ∈ L⊗p. In fact, we will prove this by induction
over p: The induction base case p = 0 is trivial27. So let us come to the induction step:
Let p ∈ N+. Assume that we have already proven

t
(
U
f
yv
)

= v
f t

xt (U) for every U ∈ L⊗(p−1). (34)

Now we must prove t
(
U
f
yv
)

= v
f t

xt (U) for every U ∈ L⊗p. In order to do this, it is

clearly enough to prove t
(
U
f
yv
)

= v
f t

xt (U) for every right-induced U ∈ L⊗p (by the

right tensor induction tactic, because the equation t
(
U
f
yv
)

= v
f t

xt (U) is linear in U).

u1, u2, ..., uq in L. (In fact, this assumption is legitimate, since every U ∈ ⊗L can be written as a
k-linear combination of tensors of the form u1⊗u2⊗ ...⊗uq for q ∈ N and vectors u1, u2, ..., uq in L,
and since the equation (31) is linear in U .) We also WLOG assume that V = uq+1⊗uq+2⊗ ...⊗up for
some p ∈ N and for some vectors uq+1, uq+2, ..., up in L. (In fact, this assumption is legitimate, since
every V ∈ ⊗L can be written as a k-linear combination of tensors of the form uq+1 ⊗ uq+2 ⊗ ...⊗ up
for p ∈ N and vectors uq+1, uq+2, ..., up in L, and since the equation (31) is linear in V .) Then,

U ⊗ V = (u1 ⊗ u2 ⊗ ...⊗ uq)⊗ (uq+1 ⊗ uq+2 ⊗ ...⊗ up) = u1 ⊗ u2 ⊗ ...⊗ up, so that

t (U ⊗ V ) = t (u1 ⊗ u2 ⊗ ...⊗ up) = up ⊗ up−1 ⊗ ...⊗ u1

= (up ⊗ up−1 ⊗ ...⊗ uq+1)︸ ︷︷ ︸
=t(uq+1⊗uq+2⊗...⊗up)=t(V )

⊗ (uq ⊗ uq−1 ⊗ ...⊗ u1)︸ ︷︷ ︸
=t(u1⊗u2⊗...⊗uq)=t(U)

= t (V )⊗ t (U) ,

so that (31) is proven.
27In fact, in the case p = 0, we have U ∈ L⊗p = L⊗0 = k and thus U

f
yv = 0 (by Theorem 11

(a)) and v
ft

x t (U) = 0 (by Theorem 5 (a), applied to f t instead of f), which makes the assertion

t
(
U
f
yv
)

= v
ft

x t (U) obvious.
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But this is easy: If U ∈ L⊗p is a right-induced tensor, then U = Ü ⊗ u for some u ∈ L
and Ü ∈ L⊗(p−1), and thus

t
(
U
f
yv
)

= t
((
Ü ⊗ u

)
f
yv
)

= t
(
f (u, v) Ü −

(
Ü
f
yv
)
⊗ u
)

(
since

(
Ü ⊗ u

)
f
yv = f (u, v) Ü −

(
Ü
f
yv
)
⊗ u

by (20) (applied to Ü instead of U)

)
= f (u, v) t

(
Ü
)
− t

((
Ü
f
yv
)
⊗ u
)

︸ ︷︷ ︸
=t(u)⊗t

(
Ü
f
yv

)
(by (31), applied

to Ü
f
yv and u instead of U and V )

(since t is k-linear)

= f (u, v) t
(
Ü
)
− t (u)︸︷︷︸

=u (since u∈L)

⊗t
(
Ü
f
yv
)

= f (u, v) t
(
Ü
)
− u⊗ t

(
Ü
f
yv
)

= f (u, v) t
(
Ü
)
− u⊗

(
v
f t

xt
(
Ü
))

(since Ü ∈ L⊗(p−1) yields t
(
Ü
f
yv
)

= v
f t

xt
(
Ü
)

, according to (34) (applied to Ü instead

of U)) and

v
f t

xt (U) = v
f t

x

 t (u)︸︷︷︸
=u (since u∈L)

⊗t
(
Ü
)

(
since U = Ü ⊗ u yields t (U) = t

(
Ü ⊗ u

)
= t (u)⊗ t

(
Ü
)

by (31)

(applied to Ü and u instead of U and V )

)

= v
f t

x
(
u⊗ t

(
Ü
))

= f t (v, u)︸ ︷︷ ︸
=f(u,v)

t
(
Ü
)
− u⊗

(
v
f t

xf
(
Ü
))

(
by (3), applied to f t and t

(
Ü
)

instead of f and U
)

= f (u, v) t
(
Ü
)
− u⊗

(
v
f t

xf
(
Ü
))

lead to t
(
U
f
yv
)

= v
f t

xt (U). This completes our induction step, and thus we have

proven that t
(
U
f
yv
)

= v
f t

xt (U) for every p ∈ N and every U ∈ L⊗p. This immediately

yields that t
(
U
f
yv
)

= v
f t

xt (U) for every U ∈ ⊗L (because every U ∈ ⊗L is a k-

linear combination of elements of L⊗p for different p ∈ N, and since the equation

t
(
U
f
yv
)

= v
f t

xt (U) is linear in U). Thus, (32) is proven. In order to prove Theorem

17, it now only remains to prove (33).

In fact, applying (32) to t (U) instead of U , we obtain t
(
t (U)

f
yv
)

= v
f t

x t (t (U))︸ ︷︷ ︸
=t2(U)=U

(since t2=id )

=
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v
f t

xU. Thus, t
(
t
(
t (U)

f
yv
))

= t

(
v
f t

xU

)
. Since t

(
t
(
t (U)

f
yv
))

= t2
(
t (U)

f
yv
)

=

t (U)
f
yv (since t2 = id), this becomes t (U)

f
yv = t

(
v
f t

xU

)
, and thus (33) is proven.

So we have now proven both (32) and (33). Thus, Theorem 17 is proven.
Now, Theorem 17 enables us to prove Theorems 12-16 quickly:
Proof of Theorem 12. We have

t
((
U
f
yv
)
⊗ u
)

= t (u)︸︷︷︸
=u (since u∈L)

⊗t
(
U
f
yv
)

(
by (31), applied to U

f
yv and u instead of U and V

)
= u⊗ t

(
U
f
yv
)

= u⊗
(
v
f t

xt (U)

)
(by (32)) (35)

and

t
(

(U ⊗ u)
f
yv
)

= v
f t

xt (U ⊗ u) (by (32), applied to U ⊗ u instead of U)

= v
f t

x

 t (u)︸︷︷︸
=u (since u∈L)

⊗t (U)


(since (31) (applied to V = u) yields t (U ⊗ u) = t (u)⊗ t (U))

= v
f t

x (u⊗ t (U)) = f t (v, u)︸ ︷︷ ︸
=f(u,v)

t (U)− u⊗
(
v
f t

xt (U)

)
(
by (7), applied to f t and t (U) instead of f and U

)
= f (u, v) t (U)− u⊗

(
v
f t

xt (U)

)
︸ ︷︷ ︸

=t

((
U
f
yv

)
⊗u
)

(by (35))

= f (u, v) t (U)− t
((
U
f
yv
)
⊗ u
)

= t
(
f (u, v)U −

(
U
f
yv
)
⊗ u
)

(since the map t is k-linear). Since t is injective (because t is bijective), this yields

(U ⊗ u)
f
yv = f (u, v)U −

(
U
f
yv
)
⊗ u.

This proves Theorem 12.

Proof of Theorem 13. The equation (32), applied to U
f
yv instead of U , yields

t
((
U
f
yv
)
f
yv
)

= v
f t

xt
(
U
f
yv
)

= v
f t

x

(
v
f t

xt (U)

)
(by (32))

= 0

(by (8), applied to f t instead of f). This proves Theorem 13.
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Proof of Theorem 14. The equation (32), applied to U
f
yv and w instead of U and

v, yields

t
((
U
f
yv
)
f
yw
)

= w
f t

xt
(
U
f
yv
)

= w
f t

x

(
v
f t

xt (U)

)
(by (32)) .

Similarly, t
((
U
f
yw
)
f
yv
)

= v
f t

x

(
w
f t

xt (U)

)
. Together with the equality v

f t

x

(
w
f t

xU

)
=

−wf
t

x

(
v
f t

xU

)
(which follows from (9), applied to f t instead of f), this yields

t
((
U
f
yw
)
f
yv
)

= v
f t

x

(
w
f t

xt (U)

)
= −wf

t

x

(
v
f t

xU

)
︸ ︷︷ ︸
=t

((
U
f
yv

)
f
yw

)
= −t

((
U
f
yv
)
f
yw
)

= t
(
−
(
U
f
yv
)
f
yw
)
.

Since t is injective (because t is bijective), this results in
(
U
f
yw
)
f
yv = −

(
U
f
yv
)
f
yw,

which proves Theorem 14.
Proof of Theorem 16. Applying (32) to V ⊗ U instead of U , we get

t
(

(V ⊗ U)
f
yv
)

= v
f t

xt (V ⊗ U) = v
f t

x (t (U)⊗ t (V ))

(due to (31), applied to V and U instead of U and V )

= (−1)p t (U)⊗
(
v
f t

xt (V )

)
+

(
v
f t

xt (U)

)
⊗ t (V ) (36)

(by (12), applied to f t, t (U) and t (V ) instead of f , U and V ). On the other hand,

(31) (applied to V
f
yv and U instead of U and V ) leads to

t
((
V
f
yv
)
⊗ U

)
= t (U)⊗ t

(
V
f
yv
)

︸ ︷︷ ︸
=v

ft

x t(V ) (by (32), applied
to V instead of U)

= t (U)⊗
(
v
f t

xt (V )

)
.

Also, (31) (applied to V and U
f
yv instead of U and V ) leads to

t
(
V ⊗

(
U
f
yv
))

= t
(
U
f
yv
)

︸ ︷︷ ︸
=v

ft

x t(U)
(by (32))

⊗t (V ) =

(
v
f t

xt (U)

)
⊗ t (V ) .

Thus,

t
(

(−1)p
(
V
f
yv
)
⊗ U + V ⊗

(
U
f
yv
))

= (−1)p t
((
V
f
yv
)
⊗ U

)
︸ ︷︷ ︸

=t(U)⊗
(
v
ft
x t(V )

)
+ t
(
V ⊗

(
U
f
yv
))

︸ ︷︷ ︸
=

(
v
ft
x t(U)

)
⊗t(V )

= (−1)p t (U)⊗
(
v
f t

xt (V )

)
+

(
v
f t

xt (U)

)
⊗ t (V ) = t

(
(V ⊗ U)

f
yv
)
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(by (36)). Since t is injective (because t is bijective), this entails

(−1)p
(
V
f
yv
)
⊗ U + V ⊗

(
U
f
yv
)

= (V ⊗ U)
f
yv.

Thus, Theorem 16 is proven.
Proof of Theorem 15. Applying Theorem 16 to V = u, we obtain

(u⊗ U)
f
yv = (−1)p

(
u
f
yv
)
⊗ U + u⊗

(
U
f
yv
)
.

Since u
f
yv = f (u, v) (by Theorem 11 (b)), this becomes

(u⊗ U)
f
yv = (−1)p f (u, v)⊗ U︸ ︷︷ ︸

=f(u,v)U

+u⊗
(
U
f
yv
)

= (−1)p f (u, v)U + u⊗
(
U
f
yv
)
,

and therefore Theorem 15 is proven.

Proof of Theorem 16
1

2
. Applying (32) to u⊗ U instead of U , we get

t
(

(u⊗ U)
f
yv
)

= v
f t

xt (u⊗ U) = v
f t

x (t (U)⊗ t (u))

(due to (31), applied to u and U instead of U and V )

= v
f t

x (t (U)⊗ u) (since t (u) = u, because u ∈ L)

= (−1)p f t (v, u) t (U) +

(
v
f t

xt (U)

)
⊗ u (37)

(by (14) (applied to f t and t (U) instead of f and U), since U ∈
⊕
i∈N;

i≡pmod 2

L⊗i yields

t (U) ∈
⊕
i∈N;

i≡pmod 2

L⊗i (because the map t is composed of the maps ti : L⊗i → L⊗i for all

i ∈ N, and thus maps L⊗i into L⊗i for all i ∈ N)). On the other hand, (31) (applied to

u and U
f
yv instead of U and V ) leads to

t
(
u⊗

(
U
f
yv
))

= t
(
U
f
yv
)

︸ ︷︷ ︸
=v

ft

x t(U)
(by (32))

⊗ t (u)︸︷︷︸
=u (since u∈L)

=

(
v
f t

xt (U)

)
⊗ u.

Since the map t is k-linear, we now have

t
(

(−1)p f (u, v)U + u⊗
(
U
f
yv
))

= (−1)p f (u, v)︸ ︷︷ ︸
=f t(v,u)

t (U) + t
(
u⊗

(
U
f
yv
))

︸ ︷︷ ︸
=

(
v
ft
x t(U)

)
⊗u

= (−1)p f t (v, u) t (U) +

(
v
f t

xt (U)

)
⊗ u

= t
(

(u⊗ U)
f
yv
)
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(by (37)). Since t is injective (because t is bijective), this entails

(−1)p f (u, v)U + u⊗
(
U
f
yv
)

= (u⊗ U)
f
yv.

Thus, Theorem 16
1

2
is proven.

(This proof of Theorem 16
1

2
yields a new proof of Theorem 15.)

Of course, Theorem 10
3

4
has its right counterpart as well:

Theorem 16
3

4
. Let f : L × L → k and g : L × L → k be two bilinear

forms. If w ∈ L and U ∈ ⊗L, then

U
f
yw + U

g
yw = U

f+g
y w.

We won’t prove this theorem, since we won’t ever use it and since it should now be

absolutely clear how to derive it from Theorem 10
3

4
with the help of (32) (or how to

prove it analogously to Theorem 10
3

4
).

4. The two operations commute

Now that we know quite a lot about each of the operations
f
x and

f
y, let us show a

relation between them:

Theorem 18. Let v ∈ L, w ∈ L and U ∈ ⊗L. Then

v
f
x
(
U
f
yw
)

=
(
v
f
xU
)
f
yw. (38)

More generally, if f : L×L→ k and g : L×L→ k are two bilinear forms,
then

v
f
x
(
U
g
yw
)

=
(
v
f
xU
)
g
yw. (39)

Proof of Theorem 18. In order to prove Theorem 18, it is enough to prove the
equality (39) only (because the equality (38) directly follows from the equality (39),
applied to g = f). So let us prove the equality (39).

First, let us prove that for every p ∈ N, every U ∈ L⊗p satisfies the equation (39).
In fact, we are going to prove this by induction: The base case of our induction - the
case p = 0 - is evident28. Now the induction step: Let p ∈ N+. Assume that we have
proven that every U ∈ L⊗(p−1) satisfies the equation (39). Now, in order to complete
the induction step, we have to show that every U ∈ L⊗p satisfies the equation (39). In
order to achieve this goal, it will be enough to show that every left-induced U ∈ L⊗p

28In fact, in the case p = 0, every U ∈ L⊗p is a scalar (since L⊗p = L⊗0 = k), and thus U
g
yw = 0

(by Theorem 11 (a), applied to g instead of f) and v
f
xU = 0 (by Theorem 5 (a)), so that the equation

(39) trivially holds.
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satisfies the equation (39).29 So let us prove this: For every left-induced U ∈ L⊗p,
we can write U in the form U = u ⊗ Ü for some u ∈ L and some Ü ∈ L⊗(p−1), and
therefore U satisfies

v
f
x
(
U
g
yw
)

= v
f
x
((
u⊗ Ü

)
g
yw
) (

since U = u⊗ Ü
)

= v
f
x
(

(−1)p−1 g (u,w) Ü + u⊗
(
Ü
g
yw
))

(
since (25) (applied to p− 1, g, Ü and w instead of p, f , U and v) yields(
u⊗ Ü

)
g
yw = (−1)p−1 g (u,w) Ü + u⊗

(
Ü
g
yw
)

(because Ü ∈ L⊗(p−1))

)
= (−1)p−1 g (u,w) · vfxÜ + v

f
x
(
u⊗

(
Ü
g
yw
))

= (−1)p−1 g (u,w) · vfxÜ + f (v, u) · Ü g
yw − u⊗

(
v
f
x
(
Ü
g
yw
))

(
since (7), applied to Ü

g
yw instead of U , yields

v
f
x
(
u⊗

(
Ü
g
yw
))

= f (v, u) · Ü g
yw − u⊗

(
v
f
x
(
Ü
g
yw
)) )

= (−1)p−1 g (u,w) · vfxÜ + f (v, u) · Ü g
yw − u⊗

((
v
f
xÜ
)
g
yw
)

(40)

(because v
f
x
(
Ü
g
yw
)

=
(
v
f
xÜ
)
g
yw, which follows from applying the equality (39) to Ü

instead of U 30) and(
v
f
xU
)
g
yw

=
(
v
f
x
(
u⊗ Ü

))
g
yw

(
since U = u⊗ Ü

)
=
(
f (v, u) Ü − u⊗

(
v
f
xÜ
))

g
yw(

since (7), applied to Ü instead of U , yields

v
f
x
(
u⊗ Ü

)
= f (v, u) Ü − u⊗

(
v
f
xÜ
) )

= f (v, u) Ü
g
yw −

(
u⊗

(
v
f
xÜ
))

g
yw

= f (v, u) Ü
g
yw −

(
(−1)p−2 g (u,w) · vfxÜ + u⊗

((
v
f
xÜ
)
g
yw
))


since (25) (applied to p− 2, g, v

f
xÜ and w instead of p, f , U and v)

yields
(
u⊗

(
v
f
xÜ
))

g
yw = (−1)p−2 g (u,w) · vfxÜ + u⊗

((
v
f
xÜ
)
g
yw
)

(because v
f
xÜ ∈ L⊗(p−2))


= − (−1)p−2︸ ︷︷ ︸

=(−1)p−1

g (u,w) · vfxÜ + f (v, u) Ü
g
yw − u⊗

((
v
f
xÜ
)
g
yw
)

= (−1)p−1 g (u,w) · vfxÜ + f (v, u) · Ü g
yw − u⊗

((
v
f
xÜ
)
g
yw
)

= v
f
x
(
U
g
yw
)

29This follows from the left tensor induction tactic, because the equation (39) is linear in U .
30In fact, we are allowed to apply the equality (39) to Ü instead of U , since Ü ∈ L⊗(p−1) and since

we have proven that every U ∈ L⊗(p−1) satisfies the equation (39) (by our assumption).
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(by (40)). Thus, we have proven the equality (39). Hence, every left-induced U ∈ L⊗p
satisfies the equation (39). As we said above, this yields that every U ∈ L⊗p satisfies
the equation (39). This completes our induction step, and thus we have shown that for
every p ∈ N, every U ∈ L⊗p satisfies the equation (39). Consequently, every U ∈ ⊗L
satisfies the equation (39) (because every U ∈ ⊗L is a k-linear combination of elements
of L⊗p for various p ∈ N, and because the equation (39) is linear in U). This proves
Theorem 18.

5. The endomorphism αf

We are now going to define an endomorphism αf : ⊗L → ⊗L which depends on
the bilinear form f :

Definition 10. Let f : L×L→ k be a bilinear form. For every p ∈ N, we
define a k-linear map αfp : L⊗p → ⊗L by induction over p:

Induction base: For p = 0, we define the map αfp : L⊗0 → ⊗L to be the
canonical inclusion of L⊗0 into the tensor algebra⊗L = L⊗0⊕L⊗1⊕L⊗2⊕....
(In other words, we define the map αf0 : k → ⊗L by αfp (λ) = λ for every
λ ∈ k = L⊗0.)

Induction step: For each p ∈ N+, we define a k-linear map αfp : L⊗p → ⊗L
by(
αfp (u⊗ U) = u⊗ αfp−1 (U)− ufxαfp−1 (U) for every u ∈ L and U ∈ L⊗(p−1)

)
,

(41)
assuming that we have already defined a k-linear map αfp−1 : L⊗(p−1) → ⊗L.
(This definition is justified, because in order to define a k-linear map from
L⊗p to some other k-module, it is enough to define how it acts on tensors
of the form u ⊗ U for every u ∈ L and U ∈ L⊗(p−1), as long as this action
is bilinear with respect to u and U . This is because L⊗p = L⊗ L⊗(p−1).)

This way we have defined a k-linear map αfp : L⊗p → ⊗L for every p ∈ N.

We can combine these maps αf0 , αf1 , αf2 , ... into one k-linear map αf : ⊗L→
⊗L (since ⊗L = L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ...), and the formula (41) rewrites as(
αf (u⊗ U) = u⊗ αf (U)− ufxαf (U) for every u ∈ L and U ∈ L⊗(p−1)

)
.

(42)

We note that, in contrast to the map δfv (which maps every homogeneous tensor
from L⊗p to L⊗(p−1)), the map αf can map homogeneous tensors to inhomogeneous
tensors.

This endomorphism αf now turns out to have plenty of properties. But first let us
first evaluate it on pure tensors of low rank (0, 1, 2, 3, 4): 31

Action of αf on tensors of rank 0: For any λ ∈ k, we have αf (λ) = λ, where we
consider λ as an element of ⊗L through the canonical injection k = L⊗0 → ⊗L. (In
fact, λ ∈ k = L⊗0 yields αf (λ) = αf0 (λ) = λ by the definition of αf0).

31Note that these evaluations will never be used in future (except of (43) and (44), which are pretty
much trivial), so there is no need to read them. But I think they provide a good intuition for what
the map αf does to tensors of low degrees.
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Action of αf on tensors of rank 1: For any u ∈ L, we have

αf (u) = αf (u⊗ 1) = u⊗ αf (1)︸ ︷︷ ︸
=1 (since 1∈k)

− u
f
xαf (1)︸ ︷︷ ︸

=0 (by Theorem 5 (a),

since αf (1)=1∈k)

(by (42), applied to U = 1)

= u⊗ 1− 0 = u⊗ 1 = u. (43)

Action of αf on tensors of rank 2: For any u ∈ L and v ∈ L, we have

αf (u⊗ v) = u⊗ αf (v)︸ ︷︷ ︸
=v (by (43), applied to

v instead of u)

−ufx αf (v)︸ ︷︷ ︸
=v (by (43), applied to

v instead of u)

(by (42), applied to U = v)

= u⊗ v − u
f
xv︸︷︷︸

=f(u,v) (according to Theorem 5 (b),
applied to v and u instead of u and v)

= u⊗ v − f (u, v) . (44)

Action of αf on tensors of rank 3: For any u ∈ L, v ∈ L and w ∈ L, we have

αf (u⊗ v ⊗ w)

= u⊗ αf (v ⊗ w)− ufxαf (v ⊗ w) (by (42), applied to U = v ⊗ w)

= u⊗ (v ⊗ w − f (v, w))− ufx (v ⊗ w − f (v, w))(
since (44) (applied to v and w instead of u and v) yields

αf (v ⊗ w) = v ⊗ w − f (v, w)

)

=

u⊗ v ⊗ w − u⊗ f (v, w)︸ ︷︷ ︸
=f(v,w)u

−


u
f
x (v ⊗ w)︸ ︷︷ ︸

=f(u,v)w−v⊗
(
u
f
xw

)
(by (7), applied

to u, v and w instead of v, u and U)

− u
f
xf (v, w)︸ ︷︷ ︸

=0 (by Theorem 5 (a),
since f(v,w)∈k)



= (u⊗ v ⊗ w − f (v, w)u)−

f (u, v)w − v ⊗
(
u
f
xw
)

︸ ︷︷ ︸
=f(u,w) (by Theorem 5 (b),

applied to u and w instead of v and u)

−0


= (u⊗ v ⊗ w − f (v, w)u)−

f (u, v)w − v ⊗ f (u,w)︸ ︷︷ ︸
=f(u,w)v

−0


= (u⊗ v ⊗ w − f (v, w)u)− (f (u, v)w − f (u,w) v − 0)

= u⊗ v ⊗ w − f (v, w)u+ f (u,w) v − f (u, v)w. (45)

Action of αf on tensors of rank 4: For any u ∈ L, v ∈ L, w ∈ L and x ∈ L, we
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have

αf (u⊗ v ⊗ w ⊗ x)

= u⊗ αf (v ⊗ w ⊗ x)− ufxαf (v ⊗ w ⊗ x) (by (42), applied to U = v ⊗ w ⊗ x)

= u⊗ (v ⊗ w ⊗ x− f (w, x) v + f (v, x)w − f (v, w)x)

− ufx (v ⊗ w ⊗ x− f (w, x) v + f (v, x)w − f (v, w)x)(
since (45) (applied to v, w and x instead of u, v and w) yields
αf (v ⊗ w ⊗ x) = v ⊗ w ⊗ x− f (w, x) v + f (v, x)w − f (v, w)x

)
= (u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x)

−


u
f
x (v ⊗ w ⊗ x)︸ ︷︷ ︸

=f(u,v)w⊗x−v⊗
(
u
f
x(w⊗x)

)
(by (7), applied to u, v and
w⊗x instead of v, u and U)

−f (w, x) u
f
xv︸︷︷︸

=f(u,v) (by
Theorem 5 (b),

applied to u and v
instead of v and u)

+f (v, x) u
f
xw︸︷︷︸

=f(u,w) (by
Theorem 5 (b),

applied to u and w
instead of v and u)

−f (v, w) u
f
xx︸︷︷︸

=f(u,x) (by
Theorem 5 (b),

applied to u and x
instead of v and u)


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= (u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x)

−


f (u, v)w ⊗ x− v ⊗


u
f
x (w ⊗ x)︸ ︷︷ ︸

=f(u,w)x−w⊗
(
u
f
xx

)
(by (7), applied

to u, w and x instead of v, u and U)


−f (w, x) f (u, v) + f (v, x) f (u,w)− f (v, w) f (u, x))

= (u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x)

−
(
f (u, v)w ⊗ x− v ⊗

(
f (u,w)x− w ⊗

(
u
f
xx
))

−f (w, x) f (u, v) + f (v, x) f (u,w)− f (v, w) f (u, x))

= u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x

− f (u, v)w ⊗ x+ v ⊗

f (u,w)x− w ⊗

 u
f
xx︸︷︷︸

=f(u,x) (by Theorem 5 (b),
applied to u and x instead of v and u)




+ f (w, x) f (u, v)− f (v, x) f (u,w) + f (v, w) f (u, x)

= u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x
− f (u, v)w ⊗ x+ v ⊗ (f (u,w)x− w ⊗ f (u, x))

+ f (w, x) f (u, v)− f (v, x) f (u,w) + f (v, w) f (u, x)

= u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x

− f (u, v)w ⊗ x+

v ⊗ f (u,w)x︸ ︷︷ ︸
=f(u,w)v⊗x

− v ⊗ w ⊗ f (u, x)︸ ︷︷ ︸
=f(u,x)v⊗w


+ f (w, x) f (u, v)− f (v, x) f (u,w) + f (v, w) f (u, x) .

= u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x
− f (u, v)w ⊗ x+ f (u,w) v ⊗ x− f (u, x) v ⊗ w
+ f (w, x) f (u, v)− f (v, x) f (u,w) + f (v, w) f (u, x) .

These computations can be generalized to αf (u1 ⊗ u2 ⊗ ...⊗ up) for general p ∈ N.
As a result, we get the formula

αf (u1 ⊗ u2 ⊗ ...⊗ up)

=
∑

(−1)(number of all bad pairs) f (ui1 , uj1) f (ui2 , uj2) ...f (uik , ujk)ur1 ⊗ ur2 ⊗ ...⊗ urp−2k

for any p vectors u1, u2, ..., up in L, where the sum is over all partitions of the
set {1, 2, ..., p} into three subsets {i1, i2, ..., ik}, {j1, j2, ..., jk} and {r1, r2, ..., rp−2k} (for
various k) which satisfy i1 < i2 < ... < ik, j1 < j2 < ... < jk, r1 < r2 < ... <
rp−2k and (i` < j` for every ` ∈ {1, 2, ..., k}). Here, a ”bad pair” means a pair (`, `′) ∈
{1, 2, ..., k}2 satisfying ` ≥ `′ and i` < j`′ (so, in particular, for every ` ∈ {1, 2, ..., k},
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the pair (`, `) is bad, since i` < j`).
32 Thus we have an explicit formula for

αf (u1 ⊗ u2 ⊗ ...⊗ up), but it is extremely hard to deal with; this is the reason why I
defined αf by induction rather than by a direct formula.

We remark that the formula (42) can be slightly generalized, in the sense that U
doesn’t have to be a homogeneous tensor:

Theorem 19. Let u ∈ L and U ∈ ⊗L. Then,

αf (u⊗ U) = u⊗ αf (U)− ufxαf (U) . (46)

Proof of Theorem 19. Fix u ∈ L. We have to prove the equation (46) for every
U ∈ ⊗L. We can WLOG assume that U ∈ L⊗p for some p ∈ N (since every tensor
U ∈ ⊗L is a k-linear combination of elements of L⊗p for various p ∈ N, and since the
equation (46) is linear in U). But then, (46) follows from (42) (applied to p+ 1 instead
of p). Thus, the equation (46) is proven for every U ∈ ⊗L, and therefore Theorem 19
is proven.

Another fact is, while αf is not necessarily homogeneous, the degrees of all the
terms it spits out have the same parity as that of the original tensor:

Theorem 20. Let U ∈ L⊗p for some p ∈ N. Then,

αf (U) ∈
⊕
i∈N;

i≡pmod 2

L⊗i. (47)

Even a stronger assertion holds:

αf (U) ∈
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i. (48)

Proof of Theorem 20. We are going to prove (48) by induction over p.
The induction base case p = 0 is obvious33.
So let us pass on to the induction step: Let p ∈ N+. Assume that we have proven

(48) for p− 1 instead of p; that is, we have shown that

αf (U) ∈
⊕

i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i for every U ∈ L⊗(p−1). (49)

Now we have to establish (48) for our value of p as well, i. e. we have to prove that

αf (U) ∈
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i for every U ∈ L⊗p. (50)

32I hope I haven’t made a mistake in the formula.
33In fact, in this case, U ∈ L⊗p = L⊗0 = k, and thus αf (U) = U ∈

⊕
i∈{0,1,...,p};
i≡pmod 2

L⊗i.
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So let us prove (50). First, we notice that every u ∈ L and Ü ∈ L⊗(p−1) satisfy34

αf
(
u⊗ Ü

)
= u⊗ αf

(
Ü
)

︸ ︷︷ ︸
∈

⊕
i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i

(by (49), applied to Ü
instead of U)

−ufx αf
(
Ü
)

︸ ︷︷ ︸
∈

⊕
i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i

(by (49), applied to Ü
instead of U)

(
by (46), applied to Ü instead of U

)

∈ u⊗
⊕

i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i + u
f
x

⊕
i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i

= u⊗
∑

i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i + u
f
x

∑
i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗i (since direct sums are sums)

=
∑

i∈{0,1,...,p−1};
i≡p−1 mod 2

u⊗ L⊗i︸ ︷︷ ︸
⊆L⊗(i+1) (since u∈L)

+
∑

i∈{0,1,...,p−1};
i≡p−1 mod 2

u
f
xL⊗i︸ ︷︷ ︸

⊆L⊗(i−1) (since

u
f
xP∈L⊗(i−1) for every

P∈L⊗i)(
since both the tensor product and the operation

f
x are bilinear

)
⊆

∑
i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗(i+1) +
∑

i∈{0,1,...,p−1};
i≡p−1 mod 2

L⊗(i−1) =
∑

i∈{0,1,...,p−1};
i+1≡pmod 2

L⊗(i+1) +
∑

i∈{0,1,...,p−1};
i−1≡pmod 2

L⊗(i−1)


since i ≡ p− 1 mod 2 is equivalent to i+ 1 ≡ pmod 2, and

since i ≡ p− 1 mod 2 is equivalent to i− 1 ≡ pmod 2 (the latter
is because i ≡ p− 1 mod 2 is equivalent

to i+ 1 ≡ pmod 2, and because i+ 1 ≡ i− 1 mod 2)


=

∑
i∈{1,2,...,p};
i≡pmod 2

L⊗i

︸ ︷︷ ︸
⊆

∑
i∈{0,1,...,p};
i≡pmod 2

L⊗i

+
∑

i∈{−1,0,...,p};
i≡pmod 2

L⊗i

︸ ︷︷ ︸
⊆L⊗(−1)+

∑
i∈{0,1,...,p};
i≡pmod 2

L⊗i=
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i (since L⊗(−1)=0)

(
here, we substituted i for i+ 1 in the first sum, and we

substituted i for i− 1 in the second sum

)
34In the following, whenever P is a k-submodule of ⊗L, we denote by u

f
xP the k-submodule{

u
f
xp | p ∈ P

}
of ⊗L. This is indeed a submodule, since u

f
xp is k-linear in p (because of the bi-

linearity of
f
x).
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⊆
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i +
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i ⊆
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i

since
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i is a k-module


=

⊕
i∈{0,1,...,p};
i≡pmod 2

L⊗i (51)

(since the sum
∑

i∈{0,1,...,p};
i≡pmod 2

L⊗i is a direct sum). Consequently, (50) is true for each tensor

U ∈ L⊗p (because every tensor U ∈ L⊗p can be written in the form U =
∑
i∈I
αiui ⊗ Üi

for a finite set I, a family (αi)i∈I of scalars in k, a family (ui)i∈I of vectors in L and a

family
(
Üi

)
i∈I

of tensors in L⊗(p−1) 35, and thus it satisfies

αf (U) = αf

(∑
i∈I

αiui ⊗ Üi

)
=
∑
i∈I

αi αf
(
ui ⊗ Üi

)
︸ ︷︷ ︸
∈

⊕
i∈{0,1,...,p};
i≡pmod 2

L⊗i

(due to (51), applied

to ui and Üi instead of u and Ü)(
since the map αf is k-linear

)
∈
∑
i∈I

αi
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i ⊆
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i

since
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i is a k-module


). Thus, the induction is complete, and (48) is proven. Clearly, (48) yields (47) (since⊕
i∈{0,1,...,p};
i≡pmod 2

L⊗i ⊆
⊕
i∈N;

i≡pmod 2

L⊗i). Thus, Theorem 20 is proven.

Now let us show some more interesting properties of αf . The proofs will be again
by induction akin to the proofs of Theorems 6-10 and 12-16.

First, we notice that the definition of αf had a bias towards left tensoring: we de-
fined the value of αfp on a tensor of rank p by writing this tensor as a linear combination

of tensors of the form u⊗U with u ∈ L and U ∈ L⊗(p−1), and then by setting the value
of αfp on each such u⊗ U tensor according (41). But what if we would try to define a
”right analogue” α̃f of αf , which would be (inductively) defined by(
α̃fp (U ⊗ u) = α̃fp−1 (U)⊗ u− α̃fp−1 (U)

f
yu for every u ∈ L and U ∈ L⊗(p−1)

)
instead of (41) ? It turns out that this wouldn’t give us anything new: This ”right
analogue” α̃f would be the same as αf . This is explained by the following theorem:

Theorem 21. Let u ∈ L and U ∈ ⊗L. Then,

αf (U ⊗ u) = αf (U)⊗ u− αf (U)
f
yu. (52)

35This is because U ∈ L⊗p = L⊗ L⊗(p−1).
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Proof of Theorem 21. Fix u ∈ L. We have to prove the equation (46) for every
U ∈ ⊗L. In order to do this, it is enough to prove the equation (46) for every U ∈ L⊗p
for every p ∈ N (since every tensor U ∈ ⊗L is a k-linear combination of elements of
L⊗p for various p ∈ N, and since the equation (46) is linear in U). So let us prove
the equation (46) for every U ∈ L⊗p for every p ∈ N. We are going to prove this by
induction over p:

The induction base case p = 0 is trivial (because in this case, U ∈ L⊗p = L⊗0 yields
αf (U) = αf0 (U) = U by the definition of αf0 , and U︸︷︷︸

∈L⊗0=k

⊗ u︸︷︷︸
∈L

∈ k ⊗ L = L yields

αf (U ⊗ u) = U ⊗ u due to (43)).
Hence, let us pass on to the induction step. Let p ∈ N+. Assume that (52) has

already been proven for every U ∈ L⊗(p−1). Now we must prove (52) for every U ∈ L⊗p.
In order to do this, it is enough to prove (52) for every left-induced U ∈ L⊗p (by the
left tensor induction tactic, since the equation (52) is linear in U). So, let U ∈ L⊗p be
some left-induced tensor. Then, U = ü⊗ Ü for some ü ∈ L and Ü ∈ L⊗(p−1) (because
U is left-induced). Therefore,

αf (U ⊗ u) = αf
(
ü⊗ Ü ⊗ u

)
= ü⊗ αf

(
Ü ⊗ u

)
− üfxαf

(
Ü ⊗ u

)
(by (46), applied to ü and Ü ⊗ u instead of u and U). But since αf

(
Ü ⊗ u

)
=

αf
(
Ü
)
⊗ u− αf

(
Ü
)
f
yu (this follows from (52), applied to Ü instead of U 36), this

rewrites as

αf (U ⊗ u)

= ü⊗
(
αf
(
Ü
)
⊗ u− αf

(
Ü
)
f
yu
)
− üfx

(
αf
(
Ü
)
⊗ u− αf

(
Ü
)
f
yu
)

=
(
ü⊗ αf

(
Ü
)
⊗ u− ü⊗

(
αf
(
Ü
)
f
yu
))
−
(
ü
f
x
(
αf
(
Ü
)
⊗ u
)
− üfx

(
αf
(
Ü
)
f
yu
))

=
(
ü⊗ αf

(
Ü
)
⊗ u− ü⊗

(
αf
(
Ü
)
f
yu
))

−
(

(−1)p−1 f (ü, u)αf
(
Ü
)

+
(
ü
f
xαf

(
Ü
))
⊗ u− üfx

(
αf
(
Ü
)
f
yu
))



since (14) (applied to p− 1, ü and αf
(
Ü
)

instead of p, v and U) yields

ü
f
x
(
αf
(
Ü
)
⊗ u
)

= (−1)p−1 f (ü, u)αf
(
Ü
)

+
(
ü
f
xαf

(
Ü
))
⊗ u

(because Ü ∈ L⊗(p−1) yields αf
(
Ü
)
∈

⊕
i∈N;

i≡p−1 mod 2

L⊗i

(by Theorem 20, applied to p− 1 instead of p))


=
(
ü⊗ αf

(
Ü
)
⊗ u− ü⊗

(
αf
(
Ü
)
f
yu
))

−
(

(−1)p−1 f (ü, u)αf
(
Ü
)

+
(
ü
f
xαf

(
Ü
))
⊗ u−

(
ü
f
xαf

(
Ü
))

f
yu
)

(53) since ü
f
x
(
αf
(
Ü
)
f
yu
)

=
(
ü
f
xαf

(
Ü
))

f
yu, according to (38)

(applied to αf
(
Ü
)

, ü and u instead of U , v and w)

 .

36In fact, we are allowed to apply (52) to Ü instead of U , because Ü ∈ L⊗(p−1) and because we
have assumed that (52) has already been proven for every U ∈ L⊗(p−1).
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On the other hand, U = ü⊗ Ü yields

αf (U) = αf
(
ü⊗ Ü

)
= ü⊗ αf

(
Ü
)
− üfxαf

(
Ü
)

(
by (46), applied to ü and Ü instead of u and U

)
and therefore

αf (U)⊗ u− αf (U)
f
yu

=
(
ü⊗ αf

(
Ü
)
− üfxαf

(
Ü
))
⊗ u−

(
ü⊗ αf

(
Ü
)
− üfxαf

(
Ü
))

f
yu

=
(
ü⊗ αf

(
Ü
)
⊗ u−

(
ü
f
xαf

(
Ü
))
⊗ u
)
−
((
ü⊗ αf

(
Ü
))

f
yu−

(
ü
f
xαf

(
Ü
))

f
yu
)

=
(
ü⊗ αf

(
Ü
)
⊗ u−

(
ü
f
xαf

(
Ü
))
⊗ u
)

−
(

(−1)p−1 f (ü, u)αf
(
Ü
)

+ ü⊗
(
αf
(
Ü
)
f
yu
)
−
(
ü
f
xαf

(
Ü
))

f
yu
)



since (27) (applied to p− 1, ü, u and αf
(
Ü
)

instead of p, u, v and U)

yields
(
ü⊗ αf

(
Ü
))

f
yu = (−1)p−1 f (ü, u)αf

(
Ü
)

+ ü⊗
(
αf
(
Ü
)
f
yu
)

(because Ü ∈ L⊗(p−1) yields αf
(
Ü
)
∈

⊕
i∈N;

i≡p−1 mod 2

L⊗i

(by Theorem 20, applied to p− 1 instead of p))


=
(
ü⊗ αf

(
Ü
)
⊗ u− ü⊗

(
αf
(
Ü
)
f
yu
))

−
(

(−1)p−1 f (ü, u)αf
(
Ü
)

+
(
ü
f
xαf

(
Ü
))
⊗ u−

(
ü
f
xαf

(
Ü
))

f
yu
)
.

Comparing this to (53), we obtain

αf (U ⊗ u) = αf (U)⊗ u− αf (U)
f
yu.

In other words, (52) holds for our tensor U . Thus, we have proven (52) for every
U ∈ L⊗p. This completes the induction step, and therefore the proof of Theorem 21 is
completed.

Time for more invariancy properties of αf :

Theorem 22. Let u ∈ L and U ∈ ⊗L. Let g : L × L → k be a bilinear
form. Then,

αf
(
U
g
yu
)

= αf (U)
g
yu. (54)

Theorem 23. Let u ∈ L and U ∈ ⊗L. Let g : L × L → k be a bilinear
form. Then,

αf
(
u
g
xU
)

= u
g
xαf (U) . (55)

Theorem 24. We have αf ◦ t = t ◦ αf t .
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Proof of Theorem 22. Let u ∈ L. We will now show that for every p ∈ N, the
equality (54) holds for every U ∈ L⊗p.

In fact, we will prove this by induction:
The induction base case p = 0 is trivial37.
So let us now move on to the induction step: Let p ∈ N+. Assume that the equality

(54) is proven for every U ∈ L⊗(p−1). Our goal is now to prove the equality (54) for
every U ∈ L⊗p. In order to achieve this goal, it is enough to prove the equality (54) for
every left-induced U ∈ L⊗p (by the left tensor induction tactic, because the equality
(54) is linear in U). However, this is easy, because every left-induced U ∈ L⊗p can be
written in the form U = ü ⊗ Ü for some ü ∈ L and Ü ∈ L⊗(p−1) (by the definition of

”left induced”), and therefore satisfies αf
(
U
g
yu
)

= αf (U)
g
yu (since

αf
(
U
g
yu
)

= αf
((
ü⊗ Ü

)
g
yu
)

= αf
(

(−1)p−1 g (ü, u) Ü + ü⊗
(
Ü
g
yu
))

(
since (25) (applied to g, Ü , ü, u and p− 1 instead of f , U , u, v and p) yields(

ü⊗ Ü
)
g
yu = (−1)p−1 g (ü, u) Ü + ü⊗

(
Ü
g
yu
) )

= (−1)p−1 g (ü, u)αf
(
Ü
)

+ αf
(
ü⊗

(
Ü
g
yu
)) (

since αf is a k-linear map
)

= (−1)p−1 g (ü, u)αf
(
Ü
)

+ ü⊗ αf
(
Ü
g
yu
)
− üfxαf

(
Ü
g
yu
)

(
since (46) (applied to ü and Ü

g
yu instead of u and U) yields

αf
(
ü⊗

(
Ü
g
yu
))

= ü⊗ αf
(
Ü
g
yu
)
− üfxαf

(
Ü
g
yu
) )

= (−1)p−1 g (ü, u)αf
(
Ü
)

+ ü⊗
(
αf
(
Ü
)
g
yu
)
− üfx

(
αf
(
Ü
)
g
yu
)


since (54), applied to Ü instead of U , yields αf

(
Ü
g
yu
)

= αf
(
Ü
)
g
yu

(in fact, we are allowed to apply (54) to Ü instead of U , because

Ü ∈ L⊗(p−1) and because we assumed that the equality (54) is proven
for every U ∈ L⊗(p−1))


= (−1)p−1 g (ü, u)αf

(
Ü
)

+ ü⊗
(
αf
(
Ü
)
g
yu
)
−
(
ü
f
xαf

(
Ü
))

g
yu since (39) (applied to ü, αf

(
Ü
)

and u instead of v, U and w) yields

ü
f
x
(
αf
(
Ü
)
g
yu
)

=
(
ü
f
xαf

(
Ü
))

g
yu


37In fact, in this case, U ∈ L⊗p = L⊗0 = k yields U

g
yu = 0 (by Theorem 11 (a) (applied to g, U

and u instead of f , λ and v)) and αf (U)
g
yu = 0 (by Theorem 11 (a) (applied to g, αf (U) and u

instead of f , λ and v), since U ∈ k yields αf (U) = U ∈ k), and therefore the equation (54) rewrites
as αf (0) = 0, which is trivially true.
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and

αf (U)
g
yu

= αf
(
ü⊗ Ü

)
g
yu

(
since U = ü⊗ Ü

)
=
(
ü⊗ αf

(
Ü
)
− üfxαf

(
Ü
))

g
yu(

since (46) (applied to ü and Ü instead of u and U) yields

αf
(
ü⊗ Ü

)
= ü⊗ αf

(
Ü
)
− üfxαf

(
Ü
) )

=
(
ü⊗ αf

(
Ü
))

g
yu−

(
ü
f
xαf

(
Ü
))

g
yu

= (−1)p−1 g (ü, u)αf
(
Ü
)

+ ü⊗
(
αf
(
Ü
)
g
yu
)
−
(
ü
f
xαf

(
Ü
))

g
yu

since (27) (applied to g, αf
(
Ü
)

, ü, u and p− 1 instead of f , U , u, v and p)

yields
(
ü⊗ αf

(
Ü
))

g
yu = (−1)p−1 g (ü, u)αf

(
Ü
)

+ ü⊗
(
αf
(
Ü
)
g
yu
)

(because Theorem 20 (applied to p− 1 instead of p) yields

αf
(
Ü
)
∈

⊕
i∈N;

i≡p−1 mod 2

L⊗i (since Ü ∈ L⊗(p−1)))


). Thus, we have proven the equality (54) for every U ∈ L⊗p. This completes the
induction step, and thus we have successfully shown that for every p ∈ N, the equality
(54) holds for every U ∈ L⊗p. Hence, the equality (54) holds for every U ∈ ⊗L (because
every U ∈ ⊗L is a k-linear combinations of elements of L⊗p for various p ∈ N, and
because the equality (54) is linear in U). This proves Theorem 22.

Now we could give a proof of Theorem 23 which is totally analogous to the above
proof of Theorem 22, but instead we prefer to go another way: First we show Theorem
24, and then we conclude Theorem 23 from Theorem 22 using Theorem 24.

Proof of Theorem 24. Let us first prove that for every p ∈ N, we have

αf (t (U)) = t
(
αf

t

(U)
)

(56)

for every U ∈ L⊗p.
In fact, we are going to prove this by induction over p:
The induction base case p = 0 is trivial38.
Now, we must perform the induction step: Let p ∈ N+. Assume that (56) holds for

every U ∈ L⊗(p−1). Then, we must prove that (56) also holds for every U ∈ L⊗p. In
fact, in order to achieve this, it is enough to prove that (56) holds for every left-induced
U ∈ L⊗p (due to the left tensor induction tactic, because the equality (56) is linear
in U). So let U ∈ L⊗p be a left-induced tensor. Then, U can be written in the form
U = ü ⊗ Ü for some ü ∈ L and Ü ∈ L⊗(p−1) (since U is left-induced). Therefore,

t (U) = t
(
ü⊗ Ü

)
= t

(
Ü
)
⊗ t (ü) (by (31), applied to ü and Ü instead of U and V ),

38In fact, in this case, we have
(
αf ◦ t

)
(U) = U =

(
t ◦ αft

)
(U), since all three maps αf , t and αf

t

leave elements of L⊗p = L⊗0 = k fixed.
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and thus

αf (t (U))

= αf

t(Ü)⊗ t (ü)︸︷︷︸
=ü (since ü∈L)

 = αf
(
t
(
Ü
)
⊗ ü
)

= αf
(
t
(
Ü
))
⊗ ü− αf

(
t
(
Ü
))

f
yü

= t
(
αf

t
(
Ü
))
⊗ ü− t

(
αf

t
(
Ü
))

f
yü

since (56) (applied to Ü instead of U) yields αf
(
t
(
Ü
))

= t
(
αf

t
(
Ü
))

(in fact, we are allowed to apply (56) to Ü instead of U , because

Ü ∈ L⊗(p−1) and because we have assumed that
(56) holds for every U ∈ L⊗(p−1))


= t
(
αf

t
(
Ü
))
⊗ ü︸︷︷︸

=t(ü) (since ü∈L)

−t
(
ü
f t

xαf
t
(
Ü
))


since (33) (applied to t

(
αf

t
(
Ü
))

and ü instead of U and v) yields

t

(
ü
f t

xαf
t
(
Ü
))

= t
(
αf

t
(
Ü
))

f
yü, which rewrites as

t
(
αf

t
(
Ü
))

f
yü = t

(
ü
f t

xαf
t
(
Ü
))


= t
(
αf

t
(
Ü
))
⊗ t (ü)− t

(
ü
f t

xαf
t
(
Ü
))

= t
(
ü⊗ αf t

(
Ü
))
− t
(
ü
f t

xαf
t
(
Ü
))


since (31) (applied to ü and αf

t
(
Ü
)

instead of U and V ) yields

t
(
ü⊗ αf t

(
Ü
))

= t
(
αf

t
(
Ü
))
⊗ t (ü) , so that

t
(
αf

t
(
Ü
))
⊗ t (ü) = t

(
ü⊗ αf t

(
Ü
))


= t

(
ü⊗ αf t

(
Ü
)
− üf

t

xαf
t
(
Ü
))

(since the map t is k-linear)

= t

αf t
ü⊗ Ü︸ ︷︷ ︸

=U




since (46) (applied to f t, ü and Ü instead of f , u and U) yields

αf
t
(
ü⊗ Ü

)
= ü⊗ αf t

(
Ü
)
− üf

t

xαf
t
(
Ü
)

, so that

ü⊗ αf t
(
Ü
)
− üf

t

xαf
t
(
Ü
)

= αf
t
(
ü⊗ Ü

)


= t
(
αf

t

(U)
)
.

Thus, we have proven that (56) holds for every left-induced U ∈ L⊗p. As we said, this
is sufficient in order to complete the induction step, and therefore the induction step is
completed, and we have successfully proven that for every p ∈ N, we have αf (t (U)) =
t
(
αf

t
(U)
)

for every U ∈ L⊗p. This immediately yields that αf (t (U)) = t
(
αf

t
(U)
)

for every U ∈ ⊗L (because the equation αf (t (U)) = t
(
αf

t
(U)
)

is linear in U , and
because every element of ⊗L is a k-linear combinations of elements of L⊗p for various
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p ∈ N). Hence, for every U ∈ ⊗L, we have(
αf ◦ t

)
(U) = αf (t (U)) = t

(
αf

t

(U)
)

=
(
t ◦ αf

)
(U) .

Thus, αf ◦ t = t ◦ αf t . This proves Theorem 24.
Proof of Theorem 23. Applying (54) to f t, gt and t (U) instead of f , g and U , we

obtain

αf
t

(
t (U)

gt

yu

)
= αf

t

(t (U))
gt

yu.

Thus,

t

(
αf

t

(
t (U)

gt

yu

))
= t

(
αf

t

(t (U))
gt

yu

)
.

But since

t

(
αf

t

(
t (U)

gt

yu

))
=

 t ◦ αf t︸ ︷︷ ︸
=αf◦t (by Theorem 24)

(t (U)
gt

yu

)
=
(
αf ◦ t

)(
t (U)

gt

yu

)

= αf
(
t

(
t (U)

gt

yu

))
= αf

ugx t (t (U))︸ ︷︷ ︸
=t2(U)=U

(since t2=id )


 since (32) (applied to gt, t (U) and u instead of f , U and v)

yields t

(
t (U)

gt

yu

)
= u

(gt)
t

x t (t (U)) = u
g
xt (t (U)) (since (gt)

t
= g)


= αf

(
u
g
xU
)

and

t

(
αf

t

(t (U))
gt

yu

)
= u

(gt)
t

x t
(
αf

t

(t (U))
)

(
due to (32) (applied to gt, αf (t (U)) and u instead of f , U and v)

)
= u

g
x t
(
αf

t

(t (U))
)

︸ ︷︷ ︸
=(t◦αft◦t)(U)

(
since

(
gt
)t

= g
)

= u
g
x
(
t ◦ αf t ◦ t

)
(U) = u

g
x

(
t ◦ t︸︷︷︸

=t2=id

◦αf
)

(U)(
since Theorem 24 (applied to f t instead of f)

yields αf
t ◦ t = t ◦ α(f t)

t

= t ◦ αf (because (f t)
t

= f)

)
= u

g
xαf (U) ,

this becomes αf
(
u
g
xU
)

= u
g
xαf (U). Thus, Theorem 23 is proven.
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6. The endomorphism αg and the ideals I
(v)
f

In Definition 3, we have introduced the two-sided ideal If of the algebra ⊗L. It
was defined as

(⊗L) · 〈v ⊗ v − f (v, v) | v ∈ L〉 · (⊗L) .

We will now write this ideal If as a sum (not a direct sum, however) of certain smaller

k-modules, which we denote by I
(v)
f and I

(v;p;q)
f (the I

(v;p;q)
f are an even finer subdivision

of the I
(v)
f ). These ideals are not really necessary for our further goals, but they help

keeping our proof a bit more organized:

Definition 11. (a) For any vector v ∈ L, let I
(v)
f be the k-submodule

(⊗L) · (v ⊗ v − f (v, v)) · (⊗L)

of the k-module ⊗L.

(b) For any vector v ∈ L, and any p ∈ N and q ∈ N, let I
(v;p;q)
f be the

k-submodule
L⊗p · (v ⊗ v − f (v, v)) · L⊗q

of the k-module ⊗L.

Note that the dot sign (the sign ·) in this definition stands for multiplication in the
algebra ⊗L; in other words, it is synonymous to the tensor product sign (the sign ⊗).

We then have
If =

∑
v∈L

I
(v)
f (57)

(where the
∑

sign means a sum of k-modules), since Definition 3 yields

If = (⊗L) · 〈v ⊗ v − f (v, v) | v ∈ L〉︸ ︷︷ ︸
=
∑
v∈L

(v⊗v−f(v,v))·k

· (⊗L)

= (⊗L) ·

(∑
v∈L

(v ⊗ v − f (v, v)) · k

)
· (⊗L) =

∑
v∈L

(⊗L) · ((v ⊗ v − f (v, v)) · k) · (⊗L)︸ ︷︷ ︸
=(v⊗v−f(v,v))·k·(⊗L)

=
∑
v∈L

(⊗L) · (v ⊗ v − f (v, v)) · k · (⊗L)︸ ︷︷ ︸
=⊗L

=
∑
v∈L

(⊗L) · (v ⊗ v − f (v, v)) · (⊗L)︸ ︷︷ ︸
=I

(v)
f

=
∑
v∈L

I
(v)
f .

Besides, every v ∈ L satisfies

I
(v)
f =

∑
p∈N

∑
q∈N

I
(v;p;q)
f (58)

(where the
∑

signs mean sums of k-modules), since Definition 11 (a) yields

I
(v)
f = (⊗L)︸ ︷︷ ︸

=
∑
p∈N

L⊗p

· (v ⊗ v − f (v, v)) · (⊗L)︸ ︷︷ ︸
=
∑
q∈N

L⊗q

=

(∑
p∈N

L⊗p

)
· (v ⊗ v − f (v, v)) ·

(∑
q∈N

L⊗q

)

=
∑
p∈N

∑
q∈N

L⊗p · (v ⊗ v − f (v, v)) · L⊗q︸ ︷︷ ︸
=I

(v;p;q)
f

=
∑
p∈N

∑
q∈N

I
(v;p;q)
f .
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Consequently, I
(v;p;q)
f ⊆ I

(v)
f for any p ∈ N and q ∈ N.

On the other hand, note that every vector v ∈ L, and any p ∈ N and q ∈ N satisfy

I
(v;p;q)
f = 〈(up ⊗ up−1 ⊗ ...⊗ u1)⊗ (v ⊗ v − f (v, v))⊗ (w1 ⊗ w2 ⊗ ...⊗ wq)

| ((u1, u2, ..., up) , (w1, w2, ..., wq)) ∈ Lp × Lq〉 , (59)

because

I
(v;p;q)
f = L⊗p︸︷︷︸

=〈up⊗up−1⊗...⊗u1 | (u1,u2,...,up)∈Lp〉

· (v ⊗ v − f (v, v)) · L⊗q︸︷︷︸
=〈w1⊗w2⊗...⊗wq | (w1,w2,...,wq)∈Lq〉

= 〈up ⊗ up−1 ⊗ ...⊗ u1 | (u1, u2, ..., up) ∈ Lp〉 · (v ⊗ v − f (v, v))

· 〈w1 ⊗ w2 ⊗ ...⊗ wq | (w1, w2, ..., wq) ∈ Lq〉
= 〈(up ⊗ up−1 ⊗ ...⊗ u1) · (v ⊗ v − f (v, v)) · (w1 ⊗ w2 ⊗ ...⊗ wq)

| ((u1, u2, ..., up) , (w1, w2, ..., wq)) ∈ Lp × Lq〉
= 〈(up ⊗ up−1 ⊗ ...⊗ u1)⊗ (v ⊗ v − f (v, v))⊗ (w1 ⊗ w2 ⊗ ...⊗ wq)

| ((u1, u2, ..., up) , (w1, w2, ..., wq)) ∈ Lp × Lq〉

39.
Our main goal in this section is to prove the following result:

Theorem 25. Let f : L×L→ k and g : L×L→ k be two bilinear forms.
Then, αg (If ) ⊆ If+g.

In order to prove this theorem, we first start with an easy fact:

Proposition 26. If w ∈ L, U ∈ ⊗L, and v ∈ L, then

w
f
x (v ⊗ v ⊗ U) = v ⊗ v ⊗

(
w
f
xU
)

(60)

and
αf (v ⊗ v ⊗ U) = (v ⊗ v − f (v, v))⊗ αf (U) (61)

Proof of Proposition 26. The formula (7) (applied to w, v and v ⊗ U instead of v,
u and U) yields

w
f
x (v ⊗ v ⊗ U) = f (w, v) v ⊗ U − v ⊗

(
w
f
x (v ⊗ U)

)
= f (w, v) v ⊗ U − v ⊗

(
f (w, v)U − v ⊗

(
w
f
xU
))

(
since (7) (applied to w and v instead of v and u)

yields w
f
x (v ⊗ U) = f (w, v)U − v ⊗

(
w
f
xU
) )

= f (w, v) v ⊗ U −

v ⊗ f (w, v)U︸ ︷︷ ︸
=f(w,v)v⊗U

−v ⊗ v ⊗
(
w
f
xU
) = v ⊗ v ⊗

(
w
f
xU
)
.

39Here, we have replaced the dot signs (the · signs) by tensor product signs (the ⊗ signs), because
the multiplication in the algebra ⊗L is the tensor product.
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This proves (60). Besides, the formula (46) (applied to v and v ⊗ U instead of u and
U) yields

αf (v ⊗ v ⊗ U) = v ⊗ αf (v ⊗ U)− vfxαf (v ⊗ U) .

Since αf (v ⊗ U) = v ⊗ αf (U) − vfxαf (U) (as follows from (46), applied to v instead
of u), this rewrites as

αf (v ⊗ v ⊗ U)

= v ⊗
(
v ⊗ αf (U)− vfxαf (U)

)
− vfx

(
v ⊗ αf (U)− vfxαf (U)

)
=
(
v ⊗ v ⊗ αf (U)− v ⊗

(
v
f
xαf (U)

))
−
(
v
f
x
(
v ⊗ αf (U)

)
− vfx

(
v
f
xαf (U)

))
(

by the bilinearity of ⊗ and the bilinearity of
f
x
)

= v ⊗ v ⊗ αf (U)− v ⊗
(
v
f
xαf (U)

)
− v

f
x
(
v ⊗ αf (U)

)︸ ︷︷ ︸
=f(v,v)αf (U)−v⊗

(
v
f
xαf (U)

)
(by (7), applied

to v and αf (U) instead of u and U)

+ v
f
x
(
v
f
xαf (U)

)
︸ ︷︷ ︸
=0 (by (8), applied

to αf (U) instead of U)

= v ⊗ v ⊗ αf (U)− v ⊗
(
v
f
xαf (U)

)
−
(
f (v, v)αf (U)− v ⊗

(
v
f
xαf (U)

))
+ 0

= v ⊗ v ⊗ αf (U)− f (v, v)αf (U)︸ ︷︷ ︸
=f(v,v)⊗αf (U)

= (v ⊗ v − f (v, v))⊗ αf (U) ,

which proves (61). Thus, both (60) and (61) are verified, and therefore, we have proved
Proposition 26.

Now we are going to prove that the ideal If is stable under the map w
g
x for any two

bilinear forms f and g and any vector w:

Theorem 27. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, w

g
xIf ⊆ If . (Here, whenever P is a k-submodule of

⊗L, we denote by w
g
xP the k-submodule

{
w
g
xp | p ∈ P

}
of ⊗L. This is

indeed a k-submodule, as follows from the bilinearity of
g
x.)

Proof of Theorem 27. Let us first show that

w
g
xI(v;p;q)

f ⊆ I
(v)
f (62)

for every v ∈ L, p ∈ N and q ∈ N.
Proof of (62). In fact, we are going to prove (62) by induction over p ∈ N.
The induction base case - the case p = 0 - is trivial, because (62) is easily seen to

hold for p = 0 40.

40Proof. Let T ∈ I(v;0;q)
f . By the definition of I

(v;p;q)
f , we have

I
(v;0;q)
f = L⊗0︸︷︷︸

=k

· (v ⊗ v − f (v, v)) · L⊗q

= k · (v ⊗ v − f (v, v))︸ ︷︷ ︸
=(v⊗v−f(v,v))·k

·L⊗q = (v ⊗ v − f (v, v)) · k · L⊗q︸ ︷︷ ︸
=L⊗q

= (v ⊗ v − f (v, v)) · L⊗q.
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Now to the induction step: Let p ∈ N+. We must now prove (62) for this p,
assuming that (62) is already proven for p− 1 instead of p.

In fact, let us prove (62). Let T ∈ I(v;p;q)
f . Then, p > 0 (because p ∈ N+) yields

L⊗p = L⊗ L⊗(p−1), and thus

T ∈ I(v;p;q)
f = L⊗p︸︷︷︸

=L⊗L⊗(p−1)=L·L⊗(p−1)

(since the tensor product is the
multiplication in the algebra ⊗L)

· (v ⊗ v − f (v, v)) · L⊗q

= L · L⊗(p−1) · (v ⊗ v − f (v, v)) · L⊗q︸ ︷︷ ︸
=I

(v;p−1;q)
f

= L · I(v;p−1;q)
f .

Hence, there exist a finite set I, a family (`i)i∈I of elements of L and a family (Ui)i∈I of

elements of I
(v;p−1;q)
f such that T =

∑
i∈I
`iUi. Since the multiplication in the algebra ⊗L

is the tensor product, this rewrites as T =
∑
i∈I
`i⊗Ui. Every i ∈ I satisfies Ui ∈ I(v;p−1;q)

f

and thus
w
g
xUi ∈ w

g
xI(v;p−1;q)

f ⊆ I
(v)
f (63)

Thus, T ∈ I
(v;0;q)
f = (v ⊗ v − f (v, v)) · L⊗q, so that there exists some U ∈ L⊗q such that T =

(v ⊗ v − f (v, v)) ·U . Since the multiplication in the algebra ⊗L is the tensor product, we can rewrite
this as T = (v ⊗ v − f (v, v))⊗ U . Thus,

w
g
xT = w

g
x

(v ⊗ v − f (v, v))⊗ U︸ ︷︷ ︸
=v⊗v⊗U−f(v,v)⊗U

 = w
g
x

v ⊗ v ⊗ U − f (v, v)⊗ U︸ ︷︷ ︸
=f(v,v)U

 = w
g
x (v ⊗ v ⊗ U − f (v, v)U)

= w
g
x (v ⊗ v ⊗ U)− f (v, v)w

g
xU

(
since

g
x is bilinear

)
= v ⊗ v ⊗

(
w
g
xU
)

︸ ︷︷ ︸
=(v⊗v)·

(
w
g
xU

)
(since the tensor product

is the multiplication in the
algebra ⊗L)

−f (v, v)w
g
xU (by (60), applied to g instead of f)

= (v ⊗ v) ·
(
w
g
xU
)
− f (v, v)w

g
xU = (v ⊗ v − f (v, v)) ·

(
w
g
xU
)

= 1︸︷︷︸
∈⊗L

· (v ⊗ v − f (v, v)) ·
(
w
g
xU
)

︸ ︷︷ ︸
∈⊗L

∈ (⊗L) · (v ⊗ v − f (v, v)) · (⊗L) = I
(v)
f .

Thus, we have shown that w
g
xT ∈ I(v)

f for every T ∈ I(v;0;q)
f . In other words, w

g
xI(v;0;q)
f ⊆ I

(v)
f . This

proves (62) for p = 0.
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(by (62), applied to p− 1 instead of p 41). On the other hand, every i ∈ I satisfies

`i ⊗ I(v)
f = `i · I

(v)
f︸︷︷︸

=(⊗L)·(v⊗v−f(v,v))·(⊗L)

(
since the tensor product is the

multiplication in the algebra ⊗ L

)
= `i · (⊗L)︸ ︷︷ ︸

⊆⊗L

· (v ⊗ v − f (v, v)) · (⊗L)

⊆ (⊗L) · (v ⊗ v − f (v, v)) · (⊗L) = I
(v)
f . (64)

Now, T =
∑
i∈I
`i ⊗ Ui yields

w
g
xT = w

g
x

(∑
i∈I

`i ⊗ Ui

)
=
∑
i∈I

w
g
x (`i ⊗ Ui)

(
by the bilinearity of

g
x
)

=
∑
i∈I

(
g (w, `i)Ui − `i ⊗

(
w
g
xUi
))

(
since (7) (applied to g, w, `i and Ui instead of f , v, u and U)

yields w
g
x (`i ⊗ Ui) = g (w, `i)Ui − `i ⊗

(
w
g
xUi
) )

=
∑
i∈I

g (w, `i) Ui︸︷︷︸
∈I(v;p−1;q)
f ⊆I(v)f

−
∑
i∈I

`i ⊗
(
w
g
xUi
)

︸ ︷︷ ︸
∈I(v)f (by (63))

∈
∑
i∈I

g (w, `i) I
(v)
f −

∑
i∈I

`i ⊗ I(v)
f︸ ︷︷ ︸

⊆I(v)f

(by (64))

⊆
∑
i∈I

g (w, `i) I
(v)
f︸ ︷︷ ︸

⊆I(v)f (since I
(v)
f is a k-module)

−
∑
i∈I

I
(v)
f︸ ︷︷ ︸

⊆I(v)f (since I
(v)
f is a k-module)

⊆ I
(v)
f − I

(v)
f ⊆ I

(v)
f

(
since I

(v)
f is a k-module

)
.

Hence, we have proven that w
g
xT ∈ I(v)

f for every T ∈ I(v;p;q)
f . In other words, we have

proven (62). Thus, the induction step is complete, and we have successfully shown that
(62) holds for every v ∈ L, p ∈ N and q ∈ N.

Now, every v ∈ L satisfies

w
g
xI(v)

f = w
g
x

(∑
p∈N

∑
q∈N

I
(v;p;q)
f

)
(by (58))

=
∑
p∈N

∑
q∈N

(
w
g
xI(v;p;q)

f

)
︸ ︷︷ ︸
⊆I(v)f (by (62))

(
by the bilinearity of

g
x
)

⊆
∑
p∈N

∑
q∈N

I
(v)
f ⊆ I

(v)
f

(
since I

(v)
f is a k-module

)
. (65)

41In fact, we are allowed to apply (62) to p − 1 instead of p, since we have assumed that (62) is
already proven for p− 1 instead of p.
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Consequently, (57) yields

w
g
xIf = w

g
x

(∑
v∈L

I
(v)
f

)
=
∑
v∈L

wg
xI(v)

f︸ ︷︷ ︸
⊆I(v)f

 (
by the bilinearity of

g
x
)

⊆
∑
v∈L

I
(v)
f = If (by (57)) .

This proves Theorem 27.
As an analogue of Theorem 27, we can show:

Theorem 28. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, If

g
yw ⊆ If . (Here, whenever P is a k-submodule of

⊗L, we denote by P
g
yw the k-submodule

{
p
g
yw | p ∈ P

}
of ⊗L. This is

indeed a k-submodule, as follows from the bilinearity of
g
y.)

We can either prove this in complete analogy to Theorem 27, or use Theorem 27
and the following fact:

Theorem 29. We have t (If ) = If .

Proof of Theorem 29. We will prove more: We will prove that every v ∈ L, p ∈ N
and q ∈ N satisfy t

(
I

(v;p;q)
f

)
= I

(v;q;p)
f .

In fact, the definition of I
(v;p;q)
f yields

I
(v;p;q)
f = L⊗p · (v ⊗ v − f (v, v)) · L⊗q =

〈
U · (v ⊗ v − f (v, v)) · V | (U, V ) ∈ L⊗p × L⊗q

〉
=
〈
U ⊗ (v ⊗ v − f (v, v))⊗ V | (U, V ) ∈ L⊗p × L⊗q

〉
(66)

(since the multiplication in ⊗ L is the tensor product) .

But every (U, V ) ∈ L⊗p × L⊗q satisfies

t (U ⊗ (v ⊗ v − f (v, v))⊗ V )

= t ((v ⊗ v − f (v, v))⊗ V )⊗ t (U)

(by (31), applied to (v ⊗ v − f (v, v))⊗ V instead of V )

= t (V )⊗ t (v ⊗ v − f (v, v))⊗ t (U)(
since (31) (applied to v ⊗ v − f (v, v) instead of U) yields
t ((v ⊗ v − f (v, v))⊗ V ) = t (V )⊗ t (v ⊗ v − f (v, v))

)
= t (V )︸ ︷︷ ︸
∈L⊗q (since V ∈L⊗q)

⊗ (v ⊗ v − f (v, v))⊗ t (U)︸︷︷︸
∈L⊗p (since U∈L⊗p)since t (v ⊗ v − f (v, v)) = t (v ⊗ v)︸ ︷︷ ︸

=v⊗v

− t (f (v, v))︸ ︷︷ ︸
f(v,v)

= v ⊗ v − f (v, v)


∈ L⊗q ⊗ (v ⊗ v − f (v, v))⊗ L⊗p = I

(v;q;p)
f
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(since the definition of I
(v;q;p)
f is I

(v;q;p)
f = L⊗q ⊗ (v ⊗ v − f (v, v)) ⊗ L⊗p). Now, (66)

yields

t
(
I

(v;p;q)
f

)
= t
(〈
U ⊗ (v ⊗ v − f (v, v))⊗ V | (U, V ) ∈ L⊗p × L⊗q

〉)
=
〈
t (U ⊗ (v ⊗ v − f (v, v))⊗ V ) | (U, V ) ∈ L⊗p × L⊗q

〉
(since t is a k-linear map)

⊆ I
(v;q;p)
f

(since t (U ⊗ (v ⊗ v − f (v, v))⊗ V ) ∈ I
(v;q;p)
f for every (U, V ) ∈ L⊗p × L⊗q). Thus

we have proven that t
(
I

(v;p;q)
f

)
⊆ I

(v;q;p)
f . Upon transposing p and q, this becomes

t
(
I

(v;q;p)
f

)
⊆ I

(v;p;q)
f . Applying t to both sides of this relation, we get t

(
t
(
I

(v;q;p)
f

))
⊆

t
(
I

(v;p;q)
f

)
. Since t

(
t
(
I

(v;q;p)
f

))
= t2︸︷︷︸

=id

(
I

(v;q;p)
f

)
= I

(v;q;p)
f , this becomes I

(v;q;p)
f ⊆

t
(
I

(v;p;q)
f

)
. Combined with t

(
I

(v;p;q)
f

)
⊆ I

(v;q;p)
f , this yields t

(
I

(v;p;q)
f

)
= I

(v;q;p)
f .

Thus, every v ∈ L satisfies

t
(
I

(v)
f

)
= t

(∑
p∈N

∑
q∈N

I
(v;p;q)
f

)
(by (58))

=
∑
p∈N

∑
q∈N

t
(
I

(v;p;q)
f

)
︸ ︷︷ ︸

=I
(v;q;p)
f

(since the map t is linear)

=
∑
p∈N

∑
q∈N

I
(v;q;p)
f =

∑
q∈N

∑
p∈N

I
(v;q;p)
f

=
∑
p∈N

∑
q∈N

I
(v;p;q)
f (here we renamed p and q into q and p in the sum)

= I
(v)
f (by (58)) .

But now, (57) yields

t (If ) = t

(∑
v∈L

I
(v)
f

)
=
∑
v∈L

t
(
I

(v)
f

)
︸ ︷︷ ︸

=I
(v)
f

=
∑
v∈L

I
(v)
f = If (by (57)) .

This proves Theorem 29.
Proof of Theorem 28. Every U ∈ If satisfies

t
(
U
g
yw
)

= w
gt

x t (U)︸︷︷︸
∈t(If)=If

(by Theorem 29)

(by (32), applied to g and w instead of f and v)

∈ wg
t

xIf ⊆ If
(
by Theorem 27, applied to gt instead of g

)
.

Applying t to both sides of this relation, we get

t
(
t
(
U
g
yw
))
∈ t (If ) .
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Since t
(
t
(
U
g
yw
))

= t2︸︷︷︸
=id

(
U
g
yw
)

= U
g
yw and t (If ) = If (by Theorem 29), this

rewrites as U
g
yw ∈ If . Since this holds for all U ∈ If , we can conclude from this that

If
g
yw ⊆ If . This proves Theorem 28.

Now, something more interesting: The map αg doesn’t (in general) leave If stable,
but instead maps it to If+g:

Theorem 30. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, αg (If ) ⊆ If+g.

Proof of Theorem 30. Let us first show that

αg
(
I

(v;p;q)
f

)
⊆ I

(v)
f+g (67)

for every v ∈ L, p ∈ N and q ∈ N.
Proof of (67). In fact, we are going to prove (67) by induction over p ∈ N.
The induction base case - the case p = 0 - is trivial, because (67) is easily seen to

hold for p = 0 42.

42Proof. Let T ∈ I(v;0;q)
f . By the definition of I

(v;p;q)
f , we have

I
(v;0;q)
f = L⊗0︸︷︷︸

=k

· (v ⊗ v − f (v, v)) · L⊗q = k · (v ⊗ v − f (v, v))︸ ︷︷ ︸
=(v⊗v−f(v,v))·k

·L⊗q

= (v ⊗ v − f (v, v)) · k · L⊗q︸ ︷︷ ︸
=L⊗q

= (v ⊗ v − f (v, v)) · L⊗q.

Thus, T ∈ I
(v;0;q)
f = (v ⊗ v − f (v, v)) · L⊗q, so that there exists some U ∈ L⊗q such that T =

(v ⊗ v − f (v, v)) ·U . Since the multiplication in the algebra ⊗L is the tensor product, we can rewrite
this as T = (v ⊗ v − f (v, v))⊗ U . Thus,

αg (T ) = αg

(v ⊗ v − f (v, v))⊗ U︸ ︷︷ ︸
=v⊗v⊗U−f(v,v)⊗U

 = αg

v ⊗ v ⊗ U − f (v, v)⊗ U︸ ︷︷ ︸
=f(v,v)U

 = αg (v ⊗ v ⊗ U − f (v, v)U)

= αg (v ⊗ v ⊗ U)− f (v, v)αg (U) (since αg is linear)

= (v ⊗ v − g (v, v))⊗ αg (U)︸ ︷︷ ︸
=(v⊗v−g(v,v))·αg(U)

(since the tensor product
is the multiplication in the

algebra ⊗L)

−f (v, v)αg (U) (by (61), applied to g instead of f)

= (v ⊗ v − g (v, v)) · αg (U)− f (v, v)αg (U)

=

v ⊗ v − g (v, v)− f (v, v)︸ ︷︷ ︸
=v⊗v−(f(v,v)+g(v,v))

=v⊗v−(f+g)(v,v)

 · αg (U)︸ ︷︷ ︸
∈⊗L

∈ (v ⊗ v − (f + g) (v, v)) · (⊗L)

= 1︸︷︷︸
∈⊗L

· (v ⊗ v − (f + g) (v, v)) · (⊗L) ⊆ (⊗L) · (v ⊗ v − (f + g) (v, v)) · (⊗L) = I
(v)
f+g.

Thus, we have shown that αg (T ) ∈ I(v)
f+g for every T ∈ I(v;0;q)

f . In other words, αg
(
I

(v;0;q)
f

)
⊆ I

(v)
f+g.

This proves (67) for p = 0.

49



Now to the induction step: Let p ∈ N+. We must now prove (67) for this p,
assuming that (67) is already proven for p− 1 instead of p.

In fact, let us prove (67). Let T ∈ I(v;p;q)
f . Then, p > 0 (because p ∈ N+) yields

L⊗p = L⊗ L⊗(p−1), and thus

T ∈ I(v;p;q)
f = L⊗p︸︷︷︸

=L⊗L⊗(p−1)=L·L⊗(p−1)

(since the tensor product is the
multiplication in the algebra ⊗L)

· (v ⊗ v − f (v, v)) · L⊗q

= L · L⊗(p−1) · (v ⊗ v − f (v, v)) · L⊗q︸ ︷︷ ︸
=I

(v;p−1;q)
f

= L · I(v;p−1;q)
f .

Hence, there exist a finite set I, a family (`i)i∈I of elements of L and a family (Ui)i∈I of

elements of I
(v;p−1;q)
f such that T =

∑
i∈I
`iUi. Since the multiplication in the algebra ⊗L

is the tensor product, this rewrites as T =
∑
i∈I
`i⊗Ui. Every i ∈ I satisfies Ui ∈ I(v;p−1;q)

f

and thus
αg (Ui) ∈ αg

(
I

(v;p−1;q)
f

)
⊆ I

(v)
f+g

(by (67), applied to p− 1 instead of p 43) and

`i ⊗ I(v)
f+g = `i ⊗ (⊗L)︸ ︷︷ ︸

⊆⊗L

· (v ⊗ v − (f + g) (v, v)) · (⊗L)

(
since I

(v)
f+g = (⊗L) · (v ⊗ v − (f + g) (v, v)) · (⊗L)

)
⊆ (⊗L) · (v ⊗ v − (f + g) (v, v)) · (⊗L) = I

(v)
f+g.

43In fact, we are allowed to apply (67) to p − 1 instead of p, since we have assumed that (67) is
already proven for p− 1 instead of p.
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Now, T =
∑
i∈I
`i ⊗ Ui yields

αg (T ) = αg

(∑
i∈I

`i ⊗ Ui

)
=
∑
i∈I

αg (`i ⊗ Ui) (since αg is a linear map)

=
∑
i∈I

`i ⊗ αg (Ui)︸ ︷︷ ︸
∈I(v)f+g

−`i
g
xαg (Ui)︸ ︷︷ ︸
∈I(v)f+g


(

since (46) (applied to g, `i and Ui instead of f , u and U)

yields αg (`i ⊗ Ui) = `i ⊗ αg (Ui)− `i
g
xαg (Ui)

)

∈
∑
i∈I

`i ⊗ I(v)
f+g︸ ︷︷ ︸

⊆I(v)f+g

− `i
g
xI(v)

f+g︸ ︷︷ ︸
⊆I(v)f+g (by (65),

applied to f+g and `i instead of f and w)



⊆
∑
i∈I

 I
(v)
f+g − I

(v)
f+g︸ ︷︷ ︸

⊆I(v)f+g (since I
(v)
f+g is a k-module)

 =
∑
i∈I

I
(v)
f+g ⊆ I

(v)
f+g

(
since I

(v)
f+g is a k-module

)
.

Hence, we have proven that αg (T ) ∈ I
(v)
f+g for every T ∈ I

(v;p;q)
f . In other words, we

have proven (67). Thus, the induction step is complete, and we have successfully shown
that (67) holds for every v ∈ L, p ∈ N and q ∈ N.

Now, every v ∈ L satisfies

αg
(
I

(v)
f

)
= αg

(∑
p∈N

∑
q∈N

I
(v;p;q)
f

)
(by (58))

=
∑
p∈N

∑
q∈N

αg
(
I

(v;p;q)
f

)
︸ ︷︷ ︸
⊆I(v)f+g (by (67))

(by the linearity of αg)

⊆
∑
p∈N

∑
q∈N

I
(v)
f+g ⊆ I

(v)
f+g

(
since I

(v)
f+g is a k-module

)
.

Consequently, (57) yields

αg (If ) = αg

(∑
v∈L

I
(v)
f

)
=
∑
v∈L

αg (I(v)
f

)
︸ ︷︷ ︸
⊆I(v)f+g

 (by the linearity of αg)

⊆
∑
v∈L

I
(v)
f+g = If+g (by (57), applied to f + g instead of f) .
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This proves Theorem 30.
Actually a stronger fact holds:

Theorem 31. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, αg (If ) = If+g.

We will prove this in the next section, using the inverse of αg.

7. αf ◦ αg = αf+g

Until now, each of our results involved αf only for one bilinear form f . Though we
sometimes called it g instead of f , never did we consider the maps αf for two different
forms f together in one and the same theorem. Let us change this now:

Theorem 32. (a) Let f : L × L → k and g : L × L → k be two bilinear
forms. Then, αf ◦ αg = αf+g.

(b) The bilinear form 0 : L×L→ k defined by (0 (x, y) = 0 for every x ∈ L and y ∈ L)
satisfies α0 = id.

(c) Let f : L× L→ k be a bilinear form. Then, the map αf is invertible,
and its inverse is α−f .

Proof of Theorem 32. (a) We will first show that for every p ∈ N, we have

αf (αg (U)) = αf+g (U) (68)

for every U ∈ L⊗p.
In fact, we will prove (68) by induction over p:
The induction base case p = 0 is obvious (because in this case, U ∈ L⊗p = L⊗0 = k

and thus αf

αg (U)︸ ︷︷ ︸
=U

 = αf (U) = U and αf+g (U) = U , rending the equation (68)

trivially true).
So let us now come to the induction step: Let p ∈ N+. We must prove (68),

assuming that (68) has already been proven for p− 1 instead of p.
We want to prove (68). In other words, we want to prove that (68) holds for every

U ∈ L⊗p. In order to do this, it is enough to prove that (68) holds for every left-induced
U ∈ L⊗p (by the left tensor induction tactic, because the equation (68) is linear in U).
So, let us prove this. Let U ∈ L⊗p be a left-induced tensor. Then, we can write U
in the form U = u ⊗ Ü for some u ∈ L and Ü ∈ L⊗(p−1) (because U is left-induced).
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Thus,

αf (αg (U))

= αf
(
αg
(
u⊗ Ü

))
= αf

(
u⊗ αg

(
Ü
)
− ugxαg

(
Ü
))

(
since (46) (applied to g and Ü instead of f and U)

yields αg
(
u⊗ Ü

)
= u⊗ αg

(
Ü
)
− ugxαg

(
Ü
) )

= αf
(
u⊗ αg

(
Ü
))

︸ ︷︷ ︸
=u⊗αf(αg(Ü))−u

f
xαf(αg(Ü))

(by (46), applied to

αg(Ü) instead of U)

− αf
(
u
g
xαg

(
Ü
))

︸ ︷︷ ︸
=u

g
xαf(αg(Ü)) (by (55), applied

to αg(Ü) instead of U)

=
(
u⊗ αf

(
αg
(
Ü
))
− ufxαf

(
αg
(
Ü
)))

−
(
u
g
xαf

(
αg
(
Ü
)))

= u⊗ αf
(
αg
(
Ü
))
−


u
f
xαf

(
αg
(
Ü
))

+ u
g
xαf

(
αg
(
Ü
))

︸ ︷︷ ︸
=u

f+g
x αf(αg(Ü))

(by (16), applied to

u and αf(αg(Ü)) instead of w and U)


= u⊗ αf

(
αg
(
Ü
))
− uf+g

x αf
(
αg
(
Ü
))

= u⊗ αf+g
(
Ü
)
− uf+g

x αf+g
(
Ü
)


because (68) (applied to Ü instead of U) yields αf

(
αg
(
Ü
))

= αf+g
(
Ü
)

(in fact, we are allowed to apply (68) to Ü instead of U , because

Ü ∈ L⊗(p−1) and because (68) has already been proven for p− 1
instead of p)


= αf+g

u⊗ Ü︸ ︷︷ ︸
=U

 (
since (46) (applied to f + g and Ü instead of f and U)

yields αf+g
(
u⊗ Ü

)
= u⊗ αf+g

(
Ü
)
− uf+g

x αf+g
(
Ü
) )

= αf+g (U) .

Hence, the equality (68) is proven for every left-induced tensor U ∈ L⊗p. As we already
said above, this entails that (68) must also hold for every tensor U ∈ L⊗p, and thus the
induction step is complete. Hence, (68) is proven for every p ∈ N and every U ∈ L⊗p.

Consequently, the equation (68) holds for every U ∈ ⊗L (since every U ∈ ⊗L is a
k-linear combination of elements of L⊗p for various p ∈ N, and since the equation (68)
is k-linear). In other words, Theorem 32 (a) is proven.

(b) We will first show that for every p ∈ N, we have

α0 (U) = U (69)

for every U ∈ L⊗p.
In fact, we will prove (69) by induction over p:
The induction base case p = 0 is obvious (because in this case, U ∈ L⊗p = L⊗0 = k

and thus α0 (U) = U , and thus the equation (69) holds in this case).
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So let us now come to the induction step: Let p ∈ N+. We must prove (69),
assuming that (69) has already been proven for p− 1 instead of p.

We want to prove (69). In other words, we want to prove that (69) holds for every
U ∈ L⊗p. In order to do this, it is enough to prove that (69) holds for every left-induced
U ∈ L⊗p (by the left tensor induction tactic, because the equation (69) is linear in U).
So, let us prove this. Let U ∈ L⊗p be a left-induced tensor. Then, we can write U
in the form U = u ⊗ Ü for some u ∈ L and Ü ∈ L⊗(p−1) (because U is left-induced).
Thus,

α0 (U)

= α0
(
u⊗ Ü

)
= u⊗ α0

(
Ü
)
− u0

xα0
(
Ü
)

(
since (46) (applied to 0 and Ü instead of f and U)

yields αg
(
u⊗ Ü

)
= u⊗ αg

(
Ü
)
− ugxαg

(
Ü
) )

= u⊗ Ü − u0
xÜ
because (69) (applied to Ü instead of U) yields α0

(
Ü
)

= Ü

(in fact, we are allowed to apply (69) to Ü instead of U , because

Ü ∈ L⊗(p−1) and because (69) has already been proven for p− 1
instead of p)


= u⊗ Ü − 0

(
since (16) (applied to u, Ü , 0 and 0 instead of w, U , f and g)

yields u
0
xÜ + u

0
xÜ = u

0+0
x Ü = u

0
xÜ , so that u

0
xÜ = 0

)
= u⊗ Ü = U.

Hence, the equality (69) is proven for every left-induced tensor U ∈ L⊗p. As we already
said above, this entails that (69) must also hold for every tensor U ∈ L⊗p, and thus the
induction step is complete. Hence, (69) is proven for every p ∈ N and every U ∈ L⊗p.

Consequently, the equation (69) holds for every U ∈ ⊗L (since every U ∈ ⊗L is a
k-linear combination of elements of L⊗p for various p ∈ N, and since the equation (69)
is k-linear). In other words, Theorem 32 (b) is proven.

(c) Applying Theorem 32 (a) to −f instead of g, we obtain αf ◦ α−f = αf+(−f) =
α0 = id (by Theorem 32 (b)). On the other hand, applying Theorem 32 (a) to −f and
f instead of f and g, we obtain α−f ◦ αf = α(−f)+f = α0 = id (by Theorem 32 (b)).
Combining αf ◦α−f = id with α−f ◦αf = id, we see that the map αf is invertible, and
its inverse is α−f . This proves Theorem 32 (c).

Now, we can prove Theorem 31:
Proof of Theorem 31. Theorem 30 yields αg (If ) ⊆ If+g. On the other hand, Theo-

rem 30, applied to f+g and −g instead of f and g, yields α−g (If+g) ⊆ I(f+g)+(−g) = If .
Applying αg to both sides of this relation, we obtain αg (α−g (If+g)) ⊆ αg (If ). But The-
orem 31 (c) (applied to g instead of f) yields that the map αg is invertible, and its in-
verse is α−g; thus, αg◦α−g = id. So we have αg (α−g (If+g)) =

(
αg ◦ α−g

)︸ ︷︷ ︸
=id

(If+g) = If+g,

and therefore αg (α−g (If+g)) ⊆ αg (If ) becomes If+g ⊆ αg (If ). When combined with
αg (If ) ⊆ If+g, this leads to αg (If ) = If+g, and therefore Theorem 31 is proven.

Now we are able to give a proof of Theorem 1. First a definition:
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Definition 12. Let f : L × L → k and g : L × L → k be two bilinear
forms. Theorem 25 yields αg (If ) ⊆ If+g. Therefore, the k-module homo-
morphism αg : ⊗L→ ⊗L induces a k-module homomorphism (⊗L)�If →
(⊗L)�If+g. We denote this homomorphism by αgf . Since (⊗L)�If =
Cl (L, f) and (⊗L)�If+g = Cl (L, f + g), this homomorphism αgf is a ho-
momorphism αgf : Cl (L, f)→ Cl (L, f + g).

Now consider two bilinear forms f and g. According to Theorem 32 (c) (applied to
g instead of f), the map αg is invertible, and its inverse is α−g. Thus, αg ◦α−g = id and
α−g ◦αg = id. Now, the homomorphism α−gf+g is a homomorphism from Cl (L, f + g) to

Cl

L, (f + g) + (−g)︸ ︷︷ ︸
=f

 = Cl (L, f), while the homomorphism αgf is a homomorphism

from Cl (L, f) to Cl (L, f + g). Therefore, αg ◦ α−g = id becomes αgf ◦ α
−g
f+g = id, and

for the same reason α−g ◦ αg = id becomes α−gf+g ◦ α
g
f = id. Thus, the homomorphism

αgf has an inverse - namely, the homomorphism α−gf+g. Therefore, αgf and α−gf+g are
isomorphisms. We have thus proven the following fact:

Theorem 33. Let f : L×L→ k and g : L×L→ k be two bilinear forms.
Then, the k-modules Cl (L, f) and Cl (L, f + g) are isomorphic, and the
maps αgf : Cl (L, f) → Cl (L, f + g) and α−gf+g : Cl (L, f + g) → Cl (L, f)
are two mutually inverse isomorphisms between them.

In particular, this generalizes the following fact:

Theorem 34. Let f : L×L→ k be a bilinear form. Then, the k-modules
Cl (L, f) and ∧L are isomorphic, and the maps α−ff : Cl (L, f) → ∧L and

αf0 : ∧L→ Cl (L, f) are two mutually inverse isomorphisms between them.

In fact, Theorem 34 follows from applying Theorem 33 to g = −f (because if we set

g = −f , then f + g = 0, Cl

L, f + g︸ ︷︷ ︸
=f+(−f)=0

 = Cl (L,0) = ∧L and −g = − (−f) = f).

Clearly, Theorem 34 immediately yields Theorem 1. Theorem 3 is a simple conse-
quence, as well:

Proof of Theorem 3. Let projf : ⊗L → Cl (L, f) denote the canonical projection
of the k-algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f), and let proj0 :
⊗L→ ∧L denote the canonical projection of the k-algebra ⊗L onto its factor algebra
(⊗L)�I0 = ∧L. The isomorphism αf0 is the map from ∧L to Cl (L, f) induced by the
homomorphism αf : ⊗L→ ⊗L; in other words, αf0 ◦ proj0 = projf ◦αf .

We identify any vector v ∈ L with the 1-tensor inj (v) in the tensor algebra ⊗L. In
other words, we write inj (v) = v for every vector v ∈ L. This makes L a subspace of
⊗L. It is known that the map proj0 |L: L→ ∧L (this is the canonical map from the k-
module L to the exterior algebra of L) is injective. Also, the map αf0 : ∧L→ Cl (L, f) is
injective (since it is an isomorphism, according to Theorem 34). Thus, the composition
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αf0 ◦ (proj0 |L) is also an injective map (because the two maps proj0 |L and αf0 are
injective). But every v ∈ L satisfies

(
αf0 ◦ (proj0 |L)

)
(v) = αf0

proj0 |L (v)︸ ︷︷ ︸
=proj0(v)

 = αf0 (proj0 (v)) =
(
αf0 ◦ proj0

)
︸ ︷︷ ︸

=projf ◦αf

(v)

=
(
projf ◦αf

)
(v) = projf

 αf (v)︸ ︷︷ ︸
=v (by (43))

 = projf (v) = ϕf (v)

(since we identify any vector v ∈ L with its image inj (v) in the tensor algebra ⊗L,
and thus projf (v) = projf (inj (v)) =

(
projf ◦ inj

)︸ ︷︷ ︸
=ϕf

(v) = ϕf (v)). In other words,

αf0 ◦ (proj0 |L) = ϕf . Since the map αf0 ◦ (proj0 |L) is injective, this yields that the map
ϕf is injective, and Theorem 3 is proven.

8. A simple formula for αf on special pure tensors

We record the following simple formula to compute αf of certain kinds of pure
tensors. It doesn’t help us to compute αf generally, but can be used to compute αf0
and α−ff .

Theorem 35. Let p ∈ N. Let u1, u2, ..., up be p elements of L such that

(f (ui, uj) = 0 for every i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., p} satisfying i < j) .
(70)

Then,
αf (u1 ⊗ u2 ⊗ ...⊗ up) = u1 ⊗ u2 ⊗ ...⊗ up.

Before we prove this, a lemma about the right interior product:

Theorem 36. Let p ∈ N. Let u1, u2, ..., up be p elements of L, and let v
be another element of L such that

(f (ui, v) = 0 for every i ∈ {1, 2, ..., p}) . (71)

Then,

(u1 ⊗ u2 ⊗ ...⊗ up)
f
yv = 0.

While this theorem is trivial using Theorem 5 (c), let us give here a proof avoiding
Theorem 5 (c) here:

Proof of Theorem 36. Let us prove that every i ∈ {0, 1, ..., p} satisfies

(u1 ⊗ u2 ⊗ ...⊗ ui)
f
yv = 0. (72)

In fact, we are going to prove (72) by induction over i.
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The induction base case i = 0 is obvious44.
Now, let us come to the induction step: Let j ∈ {1, 2, ..., p}. We assume that (72)

holds for i = j − 1, and we want to prove that (72) also holds for i = j.

Since (72) holds for i = j−1, we have (u1 ⊗ u2 ⊗ ...⊗ uj−1)
f
yv = 0. In other words,

U
f
yv = 0, where we denote the tensor u1⊗u2⊗ ...⊗uj−1 by U . Now, u1⊗u2⊗ ...⊗uj =

(u1 ⊗ u2 ⊗ ...⊗ uj−1)︸ ︷︷ ︸
=U

⊗uj = U ⊗ uj and thus

(u1 ⊗ u2 ⊗ ...⊗ uj)
f
yv

= (U ⊗ uj)
f
yv

= f (uj, v)︸ ︷︷ ︸
=0 (by (71))

U −
(
U
f
yv
)

︸ ︷︷ ︸
=0

⊗uj (by (22) (applied to uj instead of u))

= 0U − 0⊗ uj = 0.

In other words, (72) holds for i = j. This completes the induction step. Hence, (72)
is proved for every i ∈ {0, 1, ..., p}. In particular, we can therefore apply (72) to i = p,

and thus obtain (u1 ⊗ u2 ⊗ ...⊗ up)
f
yv = 0. Thus, Theorem 36 is proven.

Proof of Theorem 35. Let us prove that every i ∈ {0, 1, ..., p} satisfies

αf (u1 ⊗ u2 ⊗ ...⊗ ui) = u1 ⊗ u2 ⊗ ...⊗ ui. (73)

In fact, we are going to prove (73) by induction over i.
The induction base case i = 0 is obvious45.
Now, let us come to the induction step: Let j ∈ {1, 2, ..., p}. We assume that (73)

holds for i = j − 1, and we want to prove that (73) also holds for i = j.
Since (73) holds for i = j−1, we have αf (u1 ⊗ u2 ⊗ ...⊗ uj−1) = u1⊗u2⊗ ...⊗uj−1.

In other words, αf (U) = U , where we denote the tensor u1⊗u2⊗ ...⊗uj−1 by U . Now,
u1 ⊗ u2 ⊗ ...⊗ uj = (u1 ⊗ u2 ⊗ ...⊗ uj−1)︸ ︷︷ ︸

=U

⊗uj = U ⊗ uj and thus

αf (u1 ⊗ u2 ⊗ ...⊗ uj)
= αf (U ⊗ uj)

= αf (U)⊗ uj − αf (U)
f
yuj (by (52) (applied to uj instead of u))

= U ⊗ uj − U
f
yuj

(
since αf (U) = U

)
. (74)

But on the other hand, we have

(f (ui, uj) = 0 for every i ∈ {1, 2, ..., j − 1})

44In fact, in the case i = 0, we have (u1 ⊗ u2 ⊗ ...⊗ ui)︸ ︷︷ ︸
=(empty tensor product)=1

f
yv = 1

f
yv = 0 (by Theorem 11 (a),

applied to λ = 1), and thus (72) holds for i = 0.
45In fact, in the case i = 0, we have αf (u1 ⊗ u2 ⊗ ...⊗ ui)︸ ︷︷ ︸

=(empty tensor product)=1

= αf (1) = 1 =

(empty tensor product) = (u1 ⊗ u2 ⊗ ...⊗ ui), and thus (73) holds for i = 0.
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(by (70), since i ∈ {1, 2, ..., j − 1} yields i < j), and therefore Theorem 36 (applied

to j − 1 and uj instead of p and v) yields (u1 ⊗ u2 ⊗ ...⊗ uj−1)
f
yuj = 0. Since U =

u1 ⊗ u2 ⊗ ...⊗ uj−1, this becomes U
f
yuj = 0. Hence, (74) becomes

αf (u1 ⊗ u2 ⊗ ...⊗ uj) = U ⊗ uj − U
f
yuj︸ ︷︷ ︸
=0

= U ⊗ uj = u1 ⊗ u2 ⊗ ...⊗ uj.

In other words, (73) holds for i = j. This completes the induction step. Hence, (73)
is proved for every i ∈ {0, 1, ..., p}. In particular, we can therefore apply (73) to i = p,
and thus obtain αf (u1 ⊗ u2 ⊗ ...⊗ up) = u1⊗u2⊗...⊗up. Thus, Theorem 35 is proven.

9. The Clifford basis theorem

We now come closer to proving Theorem 2 - the Clifford basis theorem. First let
us make Theorem 20 a bit more precise:

Theorem 37. Let U ∈ L⊗p for some p ∈ N. Then,

αf (U)− U ∈
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i. (75)

Our proof of this fact will be more or less a copy of the proof of Theorem 20, with
the only difference that we take a closer look at the highest-degree terms:

Proof of Theorem 37. We are going to prove (75) by induction over p.
The induction base case p = 0 is obvious46.
So let us pass on to the induction step: Let p ∈ N+. Assume that we have proven

(75) for p− 1 instead of p; that is, we have shown that

αf (U)− U ∈
⊕

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗i for every U ∈ L⊗(p−1). (76)

Now we have to establish (75) for our value of p as well, i. e. we have to prove that

αf (U)− U ∈
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i for every U ∈ L⊗p. (77)

So let us prove (77). First, we notice that every u ∈ L and Ü ∈ L⊗(p−1) satisfy

αf
(
u⊗ Ü

)
= u⊗ αf

(
Ü
)

︸ ︷︷ ︸
=(αf(Ü)−Ü)+Ü

−ufx αf
(
Ü
)

︸ ︷︷ ︸
=(αf(Ü)−Ü)+Ü

(
by (46), applied to Ü instead of U

)

= u⊗
((
αf
(
Ü
)
− Ü

)
+ Ü

)
− ufx

((
αf
(
Ü
)
− Ü

)
+ Ü

)
=
(
u⊗

(
αf
(
Ü
)
− Ü

)
+ u⊗ Ü

)
−
(
u
f
x
(
αf
(
Ü
)
− Ü

)
+ u

f
xÜ
)

=
(
u⊗

(
αf
(
Ü
)
− Ü

)
− ufx

(
αf
(
Ü
)
− Ü

)
− ufxÜ

)
+ u⊗ Ü

46In fact, in this case, U ∈ L⊗p = L⊗0 = k, and thus αf (U) = U , which yields αf (U) − U = 0 ∈⊕
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i.
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and therefore47

αf
(
u⊗ Ü

)
− u⊗ Ü

= u⊗
(
αf
(
Ü
)
− Ü

)
︸ ︷︷ ︸

∈
⊕

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗i

(by (76), applied to Ü
instead of U)

−ufx
(
αf
(
Ü
)
− Ü

)
︸ ︷︷ ︸

∈
⊕

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗i

(by (76), applied to Ü
instead of U)

− u
f
xÜ︸︷︷︸

∈L⊗(p−2)

(since Ü∈L⊗(p−1),

and since u
f
xP∈L⊗(p−2)

for every P∈L⊗(p−1))

∈ u⊗
⊕

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗i + u
f
x

⊕
i∈{0,1,...,(p−1)−2};

i≡p−1 mod 2

L⊗i − L⊗(p−2)

= u⊗
∑

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗i + u
f
x

∑
i∈{0,1,...,(p−1)−2};

i≡p−1 mod 2

L⊗i − L⊗(p−2)

(since direct sums are sums)

=
∑

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

u⊗ L⊗i︸ ︷︷ ︸
⊆L⊗(i+1) (since u∈L)

+
∑

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

u
f
xL⊗i︸ ︷︷ ︸

⊆L⊗(i−1) (since

u
f
xP∈L⊗(i−1) for every

P∈L⊗i)

−L⊗(p−2)

(
since both the tensor product and the operation

f
x are bilinear

)
⊆

∑
i∈{0,1,...,(p−1)−2};

i≡p−1 mod 2

L⊗(i+1) +
∑

i∈{0,1,...,(p−1)−2};
i≡p−1 mod 2

L⊗(i−1) − L⊗(p−2)

=
∑

i∈{0,1,...,(p−1)−2};
i+1≡pmod 2

L⊗(i+1) +
∑

i∈{0,1,...,(p−1)−2};
i−1≡pmod 2

L⊗(i−1) − L⊗(p−2)


since i ≡ p− 1 mod 2 is equivalent to i+ 1 ≡ pmod 2, and

since i ≡ p− 1 mod 2 is equivalent to i− 1 ≡ pmod 2
(the latter is because i ≡ p− 1 mod 2 is equivalent

to i+ 1 ≡ pmod 2, and because i+ 1 ≡ i− 1 mod 2)


=

∑
i∈{0,1,...,p−3};
i+1≡pmod 2

L⊗(i+1) +
∑

i∈{0,1,...,p−3};
i−1≡pmod 2

L⊗(i−1) − L⊗(p−2) (since (p− 1)− 2 = p− 3)

47In the following, whenever P is a k-submodule of ⊗L, we denote by u
f
xP the k-submodule{

u
f
xp | p ∈ P

}
of ⊗L. This is indeed a submodule, since u

f
xp is k-linear in p (because of the bi-

linearity of
f
x).
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=
∑

i∈{1,2,...,p−2};
i≡pmod 2

L⊗i

︸ ︷︷ ︸
⊆

∑
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

+
∑

i∈{−1,0,...,p−4};
i≡pmod 2

L⊗i

︸ ︷︷ ︸
⊆L⊗(−1)+

∑
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

=
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i (since L⊗(−1)=0)

− L⊗(p−2)︸ ︷︷ ︸
⊆

∑
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

(because p−2∈{0,1,...,p−2}
and p−2≡pmod 2)

(
here, we substituted i for i+ 1 in the first sum, and we

substituted i for i− 1 in the second sum

)
⊆

∑
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i +
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i +
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

⊆
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

since
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i is a k-module


=

⊕
i∈{0,1,...,p−2};
i≡pmod 2

L⊗i (78)

(since the sum
∑

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i is a direct sum). Consequently, (77) is true for each

tensor U ∈ L⊗p (because every tensor U ∈ L⊗p can be written in the form U =∑
i∈I
αiui⊗ Üi for a finite set I, a family (αi)i∈I of scalars in k, a family (ui)i∈I of vectors

in L and a family
(
Üi

)
i∈I

of tensors in L⊗(p−1) 48, and thus it satisfies

αf (U)− U

= αf

(∑
i∈I

αiui ⊗ Üi

)
︸ ︷︷ ︸

=
∑
i∈I

αiα
f(ui⊗Üi)

(since the map αf is k-linear)

−
∑
i∈I

αiui ⊗ Üi =
∑
i∈I

αiα
f
(
ui ⊗ Üi

)
−
∑
i∈I

αiui ⊗ Üi

=
∑
i∈I

αi

(
αf
(
ui ⊗ Üi

)
− ui ⊗ Üi

)
︸ ︷︷ ︸

∈
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

(due to (78), applied

to ui and Üi instead of u and Ü)

∈
∑
i∈I

αi
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

⊆
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i

since
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i is a k-module


). Thus, the induction is complete, and (75) is proven. Thus, Theorem 37 is proven.

48This is because U ∈ L⊗p = L⊗ L⊗(p−1).
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Before we can finally prove Theorem 2, some preliminary work is needed. First, we
define some notations:

In Definition 4, we defined the ascending product
−→∏
i∈I
ai of a finite family (ai)i∈I of

elements of a ring A. However, this notation can turn out to be ambiguous if ai are
elements of two different rings with different multiplications. For instance, we consider
every vector in L both as an element of the tensor algebra ⊗L and as an element of
the exterior algebra ∧L. So, if ai is a vector in L for each i ∈ I, then what exactly

does the product
−→∏
i∈I
ai mean: does it mean the ascending product of the vectors ai

seen as elements of ⊗L, or does it mean the ascending product of the vectors ai seen
as elements of ∧L ? In order to avoid this ambiguity, we shall rename the ascending

product
−→∏
i∈I
ai in the algebra ⊗L as

−→⊗
i∈I
ai, and we shall rename the ascending product

−→∏
i∈I
ai in the algebra ∧L as

−→∧
i∈I
ai. In other words, we declare the following notation:

Definition 13. (a) Let I be a finite subset of Z. Let ai be an element of

⊗L for each i ∈ I. Then, we will denote by
−→⊗
i∈I
ai the ascending product of

the elements ai of ⊗L (this product is built using the multiplication in the
ring ⊗L, i. e., using the tensor product multiplication).

(b) Let I be a finite subset of Z. Let ai be an element of ∧L for each

i ∈ I. Then, we will denote by
−→∧
i∈I
ai the ascending product of the elements

ai of ∧L (this product is built using the multiplication in the ring ∧L, i.
e., using the exterior product multiplication).

One more definition:

Definition 14. If N is a set, and ` ∈ N, then we denote by P` (N) the set
of all `-element subsets of the set N .

It is known that if (e1, e2, ..., en) is a basis of the k-module L, then(−→∧
i∈I

ei

)
I∈P`({1,2,...,n})

is a basis of the k-module ∧` L. (79)

(This is one of the many classical properties of the exterior algebra.)

Proof of Theorem 2. We want to prove that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is

a basis of the k-module Cl (L, f). In order to prove this, we must show that this family
is linearly independent, and that it generates the k-module Cl (L, f). Let us first prove
that it is linearly independent:

Proof of the linear independence of the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

:

Let (λI)I∈P({1,2,...,n}) be a family of elements of k such that∑
I∈P({1,2,...,n})

λI ·
−→∏
i∈I

ϕf (ei) = 0. (80)
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We are now going to prove that this family (λI)I∈P({1,2,...,n}) satisfies λI = 0 for all I ∈
P ({1, 2, ..., n}). In order to prove this, we will show that for every j ∈ {0, 1, ..., n+ 1},
we have

(λI = 0 for all I ∈ P ({1, 2, ..., n}) satisfying |I| > n− j) . (81)

In fact, we will prove (81) by induction over j:
The induction base case j = 0 is trivial49.
Now we begin with the induction step: Let i ∈ {0, 1, ..., n}. Assume that (81) has

already been proven for j = i. Now, we must prove (81) for j = i + 1.
We have assumed that (81) has already been proven for j = i. In other words, we

have assumed that

(λI = 0 for all I ∈ P ({1, 2, ..., n}) satisfying |I| > n− i) (82)

has already been proven.
We consider the map α−ff : Cl (L, f) → ∧L. We have defined this map α−ff as the

map from (⊗L)�If = Cl (L, f) to (⊗L)�I0 = Cl (L, 0) = ∧L canonically induced by
the map α−f : ⊗L→ ⊗L. In other words, if we denote by projf : ⊗L→ Cl (L, f) the
canonical projection of the k-algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f),
and if we denote by proj0 : ⊗L → ∧L the canonical projection of the k-algebra ⊗L
onto its factor algebra (⊗L)�I0 = ∧L, then we have α−ff ◦ projf = proj0 ◦α−f . Note
that

∧` L = proj0
(
L⊗`
)

for every ` ∈ N. (83)

Clearly, for every subset I of {1, 2, ..., n}, we have

−→∏
i∈I

ϕf (ei)︸ ︷︷ ︸
=projf (ei)

=
−→∏
i∈I

projf (ei) = projf

(−→⊗
i∈I

ei

)

(because
−→∏
i∈I

denotes an ascending product in the algebra Cl (L, f), whereas
−→⊗
i∈I

denotes

an ascending product in the algebra ⊗L, and because taking products commutes with
projf since projf is a k-algebra homomorphism). Therefore,

α−ff

(−→∏
i∈I

ϕf (ei)

)
= α−ff

(
projf

(−→⊗
i∈I

ei

))
=
(
α−ff ◦ projf

)
︸ ︷︷ ︸

=proj0 ◦α−f

(−→⊗
i∈I

ei

)

=
(
proj0 ◦α−f

)(−→⊗
i∈I

ei

)

= proj0

(
α−f

(−→⊗
i∈I

ei

))
. (84)

But (80) yields

α−ff

 ∑
I∈P({1,2,...,n})

λI ·
−→∏
i∈I

ϕf (ei)

 = α−ff (0) = 0.

49In fact, (81) is vacuously true in the case j = 0, since there is no I ∈ P ({1, 2, ..., n}) satisfying
|I| > n− j in the case j = 0.
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This, in view of

α−ff

 ∑
I∈P({1,2,...,n})

λI ·
−→∏
i∈I

ϕf (ei)


=

∑
I∈P({1,2,...,n})

λI · α−ff

(−→∏
i∈I

ϕf (ei)

) (
since α−ff is k-linear

)

=
∑

I∈P({1,2,...,n})

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
(by (84)) ,

becomes ∑
I∈P({1,2,...,n})

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
= 0. (85)

But we have

∑
I∈P({1,2,...,n})

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))

=
∑

I∈P({1,2,...,n});
|I|≤n−i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
+

∑
I∈P({1,2,...,n});
|I|>n−i

λI︸︷︷︸
=0 (by (82),

since |I|>n−i)

· proj0

(
α−f

(−→⊗
i∈I

ei

))

=
∑

I∈P({1,2,...,n});
|I|≤n−i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
+

∑
I∈P({1,2,...,n});
|I|>n−i

0 · proj0

(
α−f

(−→⊗
i∈I

ei

))
︸ ︷︷ ︸

=0

=
∑

I∈P({1,2,...,n});
|I|≤n−i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
. (86)
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Now, every I ∈ P ({1, 2, ..., n}) satisfies
−→⊗
i∈I
ei ∈ L⊗|I| and therefore

α−f

(−→⊗
i∈I

ei

)
−
−→⊗
i∈I

ei

∈
⊕

i∈{0,1,...,|I|−2};
i≡|I|mod 2

L⊗i

(
due to Theorem 37, applied to

−→⊗
i∈I

ei, |I| and − f instead of U , p and f

)

⊆
⊕

i∈{0,1,...,|I|−2}

L⊗i ⊆
⊕

i∈{0,1,...,|I|−1}

L⊗i =

|I|−1⊕
i=0

L⊗i

=

|I|−1⊕
`=0

L⊗` (here, we renamed i into ` in the direct sum)

=

|I|−1∑
`=0

L⊗` (since direct sums are sums)

and therefore

proj0

(
α−f

(−→⊗
i∈I

ei

))
− proj0

(−→⊗
i∈I

ei

)
= proj0


α−f

(−→⊗
i∈I

ei

)
−
−→⊗
i∈I

ei︸ ︷︷ ︸
∈
|I|−1∑̀
=0

L⊗`


∈ proj0

|I|−1∑
`=0

L⊗`

 =

|I|−1∑
`=0

proj0
(
L⊗`
)︸ ︷︷ ︸

=∧`L (by (83))

=

|I|−1∑
`=0

∧`L.
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Since

proj0

(−→⊗
i∈I

ei

)

=
−→∧
i∈I

proj0 (ei)
since

−→⊗
i∈I

denotes the ascending product in the algebra ⊗ L, while
−→∧
i∈I

denotes the ascending product in the algebra ∧ L, and since the map
proj0 commutes with taking products (because proj0 is a k-algebra

homomorphism)


=
−→∧
i∈I

ei

(
since proj0 (ei) = ei, because we identify any

vector v ∈ L with its images in ⊗ L and in ∧ L

)
,

this rewrites as

proj0

(
α−f

(−→⊗
i∈I

ei

))
−
−→∧
i∈I

ei ∈
|I|−1∑
`=0

∧`L. (87)

Thus, if |I| ≤ n− i, then

proj0

(
α−f

(−→⊗
i∈I

ei

))
−
−→∧
i∈I

ei ∈
|I|−1∑
`=0

∧`L ⊆
n−i−1∑
`=0

∧`L

(since |I| ≤ n− i yields |I| − 1 ≤ n− i− 1). In other words, if |I| ≤ n− i, then

proj0

(
α−f

(−→⊗
i∈I

ei

))
≡
−→∧
i∈I

ei mod
n−i−1∑
`=0

∧`L.
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Hence, (86) becomes

∑
I∈P({1,2,...,n})

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))

=
∑

I∈P({1,2,...,n});
|I|≤n−i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
︸ ︷︷ ︸
≡
−→∧
i∈I

ei mod
n−i−1∑̀

=0
∧`L

≡
∑

I∈P({1,2,...,n});
|I|≤n−i

λI ·
−→∧
i∈I

ei

=
∑

I∈P({1,2,...,n});
|I|<n−i

λI ·
−→∧
i∈I

ei︸︷︷︸
≡0 mod

n−i−1∑̀
=0
∧`L

(because for every I∈P({1,2,...,n})
satisfying |I|<n−i, we have 0≤|I|≤n−i−1

and thus
−→∧
i∈I

ei∈∧|I|L⊆
n−i−1∑̀

=0

∧`L)

+
∑

I∈P({1,2,...,n});
|I|=n−i

λI ·
−→∧
i∈I

ei

≡
∑

I∈P({1,2,...,n});
|I|<n−i

λI · 0

︸ ︷︷ ︸
=0

+
∑

I∈P({1,2,...,n});
|I|=n−i

λI ·
−→∧
i∈I

ei =
∑

I∈P({1,2,...,n});
|I|=n−i

λI ·
−→∧
i∈I

ei

=
∑

I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei mod
n−i−1∑
`=0

∧`L

(since {I ∈ P ({1, 2, ..., n}) | |I| = n− i} = Pn−i ({1, 2, ..., n})). Combined with (85),
this yields ∑

I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei ≡ 0 mod
n−i−1∑
`=0

∧`L,

which is equivalent to

∑
I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei ∈
n−i−1∑
`=0

∧`L. (88)

But on the other hand, ∑
I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei ∈ ∧n−iL

(since every I ∈ Pn−i ({1, 2, ..., n}) satisfies
−→∧
i∈I
ei ∈ ∧n−iL 50, and since ∧n−iL is a

k-module). Combining this with (88), we obtain

∑
I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei ∈

 ∑
`∈{0,1,...,n−i−1}

∧`L

 ∩ (∧n−iL) .
50because I ∈ Pn−i ({1, 2, ..., n}) yields |I| = n− i
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But since

(
n−i−1∑̀

=0

∧`L
)
∩
(
∧n−iL

)
= 0 51, this becomes

∑
I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei ∈ 0,

so that ∑
I∈Pn−i({1,2,...,n})

λI ·
−→∧
i∈I

ei = 0.

But since

(−→∧
i∈I
ei

)
I∈Pn−i({1,2,...,n})

is a basis of the k-module ∧`L (this follows from (79),

applied to ` = n− i), this yields that

(λI = 0 for every I ∈ Pn−i ({1, 2, ..., n})) . (89)

Consequently,

(λI = 0 for all I ∈ P ({1, 2, ..., n}) satisfying |I| > n− (i + 1))

52. In other words, (81) is true for j = i + 1. This completes the induction step, and
thus we have proven (81) for every j ∈ {0, 1, ..., n+ 1}.

Now, we conclude that λI = 0 for all I ∈ P ({1, 2, ..., n}) (because every I ∈
P ({1, 2, ..., n}) satisfies |I| > −1 = n − (n+ 1), and thus (81) (applied to j = n + 1)
yields λI = 0). Hence, we have shown that if some family (λI)I∈P({1,2,...,n}) of elements
of k satisfies (80), then λI = 0 for all I ∈ P ({1, 2, ..., n}). In other words, the family(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is linearly independent.

Proof that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

generates the whole k-module Cl (L, f):

Next we are going to prove that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

generates the k-

module Cl (L, f). In order to verify this, we denote by S the sub-k-module of Cl (L, f)

51In fact, it is known that ∧L =
n⊕̀
=0

∧`L, so that

∧L =

n⊕
`=0

∧`L =

(
n−i−1⊕
`=0

∧`L

)
⊕
(
∧n−iL

)
⊕

(
n⊕

`=n−i+1

∧`L

)

and therefore

(
n−i−1⊕̀

=0

∧`L
)
∩
(
∧n−iL

)
= 0, which rewrites as

(
n−i−1∑̀

=0

∧`L
)
∩
(
∧n−iL

)
= 0 (because

n−i−1⊕̀
=0

∧`L =
n−i−1∑̀

=0

∧`L, since every direct sum is a sum).

52Proof. We have |I| ∈ Z and |I| > n− (i + 1). Therefore, only the following two cases are possible:
Case 1: We have |I| = n− (i + 1) + 1.
Case 2: We have |I| > n− (i + 1) + 1.
In Case 1, we have |I| = n− (i + 1) + 1 = n− i, so that I ∈ Pn−i ({1, 2, ..., n}) and therefore λI = 0

according to (89).
In Case 2, we have |I| > n− (i + 1) + 1 = n− i and therefore λI = 0 according to (82).
Thus, in both cases 1 and 2, we have λI = 0. Hence, λI = 0 is proven.

67



generated by the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

. In other words, we denote by S the

sub-k-module 〈−→∏
i∈I

ϕf (ei) | I ∈ P ({1, 2, ..., n})

〉
of Cl (L, f). Now we are going to prove that for any j ∈ {0, 1, ..., n+ 1}, we have

j−1∑
`=0

∧`L ⊆ α−ff (S) . (90)

In fact, we are going to prove (90) by induction over j:
The base case - the case j = 0 - is obvious53.
So let us now come to the induction step: Let ρ ∈ {0, 1, ..., n}. Assume that (90)

has already been proven for j = i. We must now show that (90) also holds for j = ρ+1.
We have assumed that (90) has already been proven for j = ρ. In other words, we

have assumed that
ρ−1∑
`=0

∧`L ⊆ α−ff (S) . (91)

Now, we will show that ∧ρL ⊆ α−ff (S).

In fact, according to (79) (applied to ρ instead of `), the family

(−→∧
i∈I
ei

)
I∈Pρ({1,2,...,n})

is a basis of the k-module ∧ρL. In particular, this yields that this family generates the

k-module ∧ρL; in other words, ∧ρL =

〈−→∧
i∈I
ei | I ∈ Pρ ({1, 2, ..., n})

〉
. Hence, in order

to prove that ∧ρL ⊆ α−ff (S), it will be enough to show that
−→∧
i∈I
ei ∈ α−ff (S) for each

I ∈ Pρ ({1, 2, ..., n}) (because α−ff (S) is a k-module).

Now, let I ∈ Pρ ({1, 2, ..., n}) be arbitrary. We are going to prove that
−→∧
i∈I
ei ∈

α−ff (S).
According to (87), we have

proj0

(
α−f

(−→⊗
i∈I

ei

))
−
−→∧
i∈I

ei ∈
|I|−1∑
`=0

∧`L =

ρ−1∑
`=0

∧`L

(since I ∈ Pρ ({1, 2, ..., n}) yields |I| = ρ)

⊆ α−ff (S) (by (91)) .

In other words,

proj0

(
α−f

(−→⊗
i∈I

ei

))
≡
−→∧
i∈I

ei modα−ff (S) .

53In fact, in the case j = 0, the assertion (90) is trivial (because j = 0 yields
j−1∑̀
=0

∧`L =

(empty sum) = 0).
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But since (84) yields proj0

(
α−f

(−→⊗
i∈I
ei

))
= α−ff

(−→∏
i∈I
ϕf (ei)

)
≡ 0 modα−ff (S) 54,

this rewrites as 0 ≡
−→∧
i∈I
ei modα−ff (S). Hence,

−→∧
i∈I
ei ∈ α−ff (S).

So we have now proven that
−→∧
i∈I
ei ∈ α−ff (S) for every I ∈ Pρ ({1, 2, ..., n}). Now,

∧ρ L =

〈 −→∧
i∈I

ei︸︷︷︸
∈α−ff (S)

| I ∈ Pρ ({1, 2, ..., n})

〉
⊆ α−ff (S) (92)

(since α−ff (S) is a k-module). Now,

(ρ+1)−1∑
`=0

∧`L =

ρ∑
`=0

∧`L =

(
ρ−1∑
`=0

∧`L

)
︸ ︷︷ ︸
⊆α−ff (S)

(by (91))

+ ∧ρL︸︷︷︸
⊆α−ff (S)

(by (92))

⊆ α−ff (S) + α−ff (S) = α−ff (S)

(since α−ff (S) is a k-module). In other words, (90) holds for j = ρ+ 1. This completes
the induction step, and thus we have proven (90) for every j ∈ {0, 1, ..., n+ 1}.

Now, applying (90) to j = n+ 1, we get

(n+1)−1∑
`=0

∧`L ⊆ α−ff (S) .

Since

(n+1)−1∑
`=0

∧`L =
n∑
`=0

∧`L = ∧L

(
because ∧ L =

n⊕
`=0

∧`L =
n∑
`=0

∧`L

)
,

this rewrites as ∧L ⊆ α−ff (S). Thus, αf0 (∧L) ⊆ αf0

(
α−ff (S)

)
. But αf0 (∧L) =

Cl (L, f) (because αf0 : ∧L → Cl (L, f) is an isomorphism) and αf0

(
α−ff (S)

)
=(

αf0 ◦ α
−f
f

)
(S) = S (since the maps α−ff and αf0 are mutually inverse). Hence,

αf0 (∧L) ⊆ αf0

(
α−ff (S)

)
becomes Cl (L, f) ⊆ S. Since S ⊆ Cl (L, f) (because S is

a sub-k-module of Cl (L, f)), this yields S = Cl (L, f). But since S is the sub-k-

module of Cl (L, f) generated by the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

, this yields that

the k-module Cl (L, f) is generated by the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

.

54In fact,
−→∏
i∈I
ϕf (ei) ∈ S (since we defined S as the sub-k-module of Cl (L, f) generated by the

family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

) yields α−ff

(−→∏
i∈I
ϕf (ei)

)
∈ α−ff (S) and thus α−ff

(−→∏
i∈I
ϕf (ei)

)
≡

0 modα−ff (S).
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We have now proven that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is linearly indepen-

dent, and that the k-module Cl (L, f) is generated by this family. In other words,

the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is a basis of the k-module Cl (L, f). This proves

Theorem 2.

10. The antisymmetrizer formula

We have constructed the Chevalley map αf0 : ∧L → Cl (L, f) through a canonical,
inductively defined map αf : ⊗L → ⊗L. This, however, is not the most common
definition of the Chevalley map. The purpose of this section is to prove a different
formula for αf0 (although the word ”formula” is not to be taken too seriously here,
since it gives a unique value for αf0 only if k is a Q-algebra), at least in the case when
the form f is symmetric:

Theorem 38. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p! · αf0 (u1 ∧ u2 ∧ ... ∧ up) =
∑
σ∈Sp

(−1)σ ϕf
(
uσ(1)

)
ϕf
(
uσ(2)

)
...ϕf

(
uσ(p)

)
.

Here and in the following, we denote by Sp the group of all permutations of the set
{1, 2, ..., p}, and we denote by (−1)σ the sign of the permutation σ for every σ ∈ Sp.

Theorem 38 is often used as a definition of the map αf0 in the case when k is a Q-
algebra (because in this case, we can divide by p!). However, it does not yield a unique
value of αf0 (u1 ∧ u2 ∧ ... ∧ up) if the characteristic of k is too small, and therefore I

believe my definition of αf0 (through the map αf introduced in Definition 10 above) to
be a better one.

Theorem 38 is an equality in the Clifford algebra Cl (L, f). However, it can be
”lifted” into ⊗L:

Theorem 39. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

 =
∑
σ∈Sp

(−1)σ uσ(1)⊗uσ(2)⊗...⊗uσ(p).

We will prove this... you guessed right, by induction. In the induction step we will
use a lemma which is interesting for its own merit:

Theorem 40. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
∑
σ∈Sp

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)
⊗ uσ(p).
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This, in turn, will be concluded from the following result:

Theorem 41. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,∑

σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p) = 0.

Proof of Theorem 41. Let σ ∈ Sp. Applying Theorem 11 (c) to the p − 1 vectors
uσ(1), uσ(2), ..., uσ(p−1) instead of the p vectors u1, u2, ..., up, we obtain(

uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yv

=

p−1∑
i=1

(−1)(p−1)−i f
(
uσ(i), v

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

55 for any vector v ∈ L. Applying this to v = uσ(p), we get(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p)

=

p−1∑
i=1

(−1)(p−1)−i f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1).

Thus,∑
σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p)

=
∑
σ∈Sp

(−1)σ
p−1∑
i=1

(−1)(p−1)−i f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

=

p−1∑
i=1

(−1)(p−1)−i
∑
σ∈Sp

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1).

(93)

Now, fix some i ∈ {1, 2, ..., p− 1}. Consider the transposition τ ∈ Sp defined byτ (j) =


p, if j = i;
i, if j = p;

j, if j /∈ {p, i}
for any j ∈ {1, 2, ..., p}

 . (94)

(This transposition τ is usually denoted (p, i) or (pi) in the notation of group theorists.)
It is known that (−1)τ = −1 and ττ = id 56. Let us consider the normal subgroup
Ap = {η ∈ Sp | (−1)η = 1} of Sp. Define a map Z : Ap → Sp�Ap by

(Z (σ) = στ for every σ ∈ Ap) .
55Here, the hat over the vector uσ(i) means that the vector uσ(i) is being omitted from the ten-

sor product; in other words, uσ(1) ⊗ uσ(2) ⊗ ... ⊗ ûσ(i) ⊗ ... ⊗ uσ(p−1) is just another way to write
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(i−1)︸ ︷︷ ︸

tensor product of the
first i−1 vectors uσ(`)

⊗ uσ(i+1) ⊗ uσ(i+2) ⊗ ...⊗ uσ(p−1)︸ ︷︷ ︸
tensor product of the

last (p−1)−i vectors uσ(`) with `≤p−1

.

56Here and in the following, whenever a and b are two elements of Sp, we denote by ab the product
of a and b in the group Sp (in other words, the composition of the permutations a and b).
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(This map is indeed well-defined, since στ ∈ Sp�Ap for every σ ∈ Ap
57.) Also,

define a map W : Sp�Ap → Ap by

(W (σ) = στ for every σ ∈ Sp�Ap) .

(This map is indeed well-defined, since στ ∈ Ap for every σ ∈ Sp�Ap 58.) The two
maps Z and W are mutually inverse59. Thus, the map Z is a bijection.

Clearly, (94) yields

τ (p) =


p, if p = i;
i, if p = p;

j, if p /∈ {p, i}
= i

(since p = p) and

τ (i) =


p, if i = i;
i, if i = p;

j, if i /∈ {p, i}
= p

(since i = i).
We note that every permutation σ ∈ Sp satisfies

u(στ)(1) ⊗ u(στ)(2) ⊗ ...⊗ u(στ)(i−1) = uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(i−1)

(since for every j ∈ {1, 2, ..., i− 1}, the equation (94) yields τ (j) =


p, if j = i;
i, if j = p;

j, if j /∈ {p, i}
=

j (since j ∈ {1, 2, ..., i− 1} yields j /∈ {p, i}) and thus (στ) (j) = σ

τ (j)︸︷︷︸
=j

 = σ (j))

and

u(στ)(i+1) ⊗ u(στ)(i+2) ⊗ ...⊗ u(στ)(p−1) = uσ(i+1) ⊗ uσ(i+2) ⊗ ...⊗ uσ(p−1)

(since for every j ∈ {i+ 1, i+ 2, ..., p− 1}, the equation (94) yields

τ (j) =


p, if j = i;
i, if j = p;

j, if j /∈ {p, i}
= j (since j ∈ {i+ 1, i+ 2, ..., p− 1} yields j /∈ {p, i}) and

57In fact, σ ∈ Ap = {η ∈ Sp | (−1)
η

= 1} yields (−1)
σ

= 1 and thus (−1)
στ

= (−1)
σ︸ ︷︷ ︸

=1

(−1)
τ︸ ︷︷ ︸

=−1

= −1 6=

1, so that στ /∈ {η ∈ Sp | (−1)
η

= 1} = Ap and therefore στ ∈ Sp�Ap.
58In fact, σ ∈ Sp�Ap yields σ /∈ Ap = {η ∈ Sp | (−1)

η
= 1} and thus (−1)

σ 6= 1, so that (−1)
σ

= −1
(since the term (−1)

σ
can only take the values 1 and −1) and thus (−1)

στ
= (−1)

σ︸ ︷︷ ︸
=−1

(−1)
τ︸ ︷︷ ︸

=−1

= 1, so

that στ ∈ {η ∈ Sp | (−1)
η

= 1} = Ap.
59In fact, Z ◦W = id (since every σ ∈ Ap satisfies (Z ◦W ) (σ) = Z (W (σ)) = τ W (σ)︸ ︷︷ ︸

=τσ

= ττ︸︷︷︸
=id

σ = σ)

and W ◦ Z = id (since every σ ∈ Sp�Ap satisfies (W ◦ Z) (σ) = W (Z (σ)) = τ Z (σ)︸ ︷︷ ︸
=τσ

= ττ︸︷︷︸
=id

σ = σ).
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thus (στ) (j) = σ

τ (j)︸︷︷︸
=j

 = σ (j)), and therefore

u(στ)(1) ⊗ u(στ)(2) ⊗ ...⊗ û(στ)(i) ⊗ ...⊗ u(στ)(p−1)

=
(
u(στ)(1) ⊗ u(στ)(2) ⊗ ...⊗ u(στ)(i−1)

)︸ ︷︷ ︸
=uσ(1)⊗uσ(2)⊗...⊗uσ(i−1)

⊗
(
u(στ)(i+1) ⊗ u(στ)(i+2) ⊗ ...⊗ u(στ)(p−1)

)︸ ︷︷ ︸
=uσ(i+1)⊗uσ(i+2)⊗...⊗uσ(p−1)

=
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(i−1)

)
⊗
(
uσ(i+1) ⊗ uσ(i+2) ⊗ ...⊗ uσ(p−1)

)
= uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1). (95)

Also, every permutation σ satisfies

f
(
u(στ)(i), u(στ)(p)

)
= f

(
uσ(i), uσ(p)

)
(96)

(since (στ) (i) = σ

τ (i)︸︷︷︸
=p

 = σ (p) and (στ) (p) = σ

τ (p)︸︷︷︸
=i

 = σ (i) yield

f
(
u(στ)(i), u(στ)(p)

)
= f

(
uσ(p), uσ(i)

)
= f

(
uσ(i), uσ(p)

)
(since f is symmetric)) and

(−1)στ = (−1)σ · (−1)τ︸ ︷︷ ︸
=−1

= − (−1)σ . (97)

Now,∑
σ∈Sp

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

=
∑
σ∈Ap

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

+
∑

σ∈Sp�Ap

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

(since the set Sp is the union of the two disjoint sets Ap and Sp�Ap)
= 0,

since∑
σ∈Sp�Ap

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

=
∑
σ∈Ap

(−1)Z(σ) f
(
u(Z(σ))(i), u(Z(σ))(p)

)
· u(Z(σ))(1) ⊗ u(Z(σ))(2) ⊗ ...⊗ ̂u(Z(σ))(i) ⊗ ...⊗ u(Z(σ))(p−1)(

here, we substituted Z (σ) for σ in the sum,
because the map Z : Ap → Sp�Ap is a bijection

)
=
∑
σ∈Ap

(−1)στ︸ ︷︷ ︸
=−(−1)σ

(by (97))

f
(
u(στ)(i), u(στ)(p)

)︸ ︷︷ ︸
=f(uσ(i),uσ(p))

(by (96))

·u(στ)(1) ⊗ u(στ)(2) ⊗ ...⊗ û(στ)(i) ⊗ ...⊗ u(στ)(p−1)︸ ︷︷ ︸
=uσ(1)⊗uσ(2)⊗...⊗ûσ(i)⊗...⊗uσ(p−1)

(by (95))

(since Z (σ) = στ)

= −
∑
σ∈Ap

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1).
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Hence, (93) becomes∑
σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p)

=

p−1∑
i=1

(−1)(p−1)−i
∑
σ∈Sp

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)︸ ︷︷ ︸

=0

=

p−1∑
i=1

(−1)(p−1)−i 0 = 0.

This proves Theorem 41.
Theorem 41 has a ”left” analogue:

Theorem 42. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,∑

σ∈Sp

(−1)σ uσ(1)
f
x
(
uσ(2) ⊗ uσ(3) ⊗ ...⊗ uσ(p)

)
= 0.

Proof of Theorem 42. Let ζ ∈ Sp be the permutation defined by

(ζ (j) = p+ 1− j for every j ∈ {1, 2, ..., p}) .

Then, ζζ = id (since any j ∈ {1, 2, ..., p} satisfies

(ζζ) (j) = ζ

 ζ (j)︸︷︷︸
=p+1−j

 = ζ (p+ 1− j) = p+ 1− (p+ 1− j) (by the definition of ζ)

= j

). Define a map U : Sp → Sp by

(U (σ) = σζ for every σ ∈ Sp) .

Then, U2 = id (since every σ ∈ Sp satisfies

U2 (σ) = U

U (σ)︸ ︷︷ ︸
=σζ

 = U (σζ) = σ ζζ︸︷︷︸
=id

(by the definition of U)

= σ

), and thus the map U is a bijection.
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Now, Theorem 41 yields

0 =
∑
σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p)

=
∑
σ∈Sp

(−1)U(σ) (u(U(σ))(1) ⊗ u(U(σ))(2) ⊗ ...⊗ u(U(σ))(p−1)

) f
yu(U(σ))(p)

(here, we substituted U (σ) for σ in the sum, since the map U is a bijection)

=
∑
σ∈Sp

(−1)σζ
(
u(σζ)(1) ⊗ u(σζ)(2) ⊗ ...⊗ u(σζ)(p−1)

) f
yu(σζ)(p)

(since U (σ) = σζ for every σ ∈ Sp)

=
∑
σ∈Sp

(−1)σζ
(
uσ(p+1−1) ⊗ uσ(p+1−2) ⊗ ...⊗ uσ(p+1−(p−1))

) f
yuσ(p+1−p)since every j ∈ {1, 2, ..., p} satisfies (σζ) (j) = σ

 ζ (j)︸︷︷︸
=p+1−j

 = σ (p+ 1− j)


=
∑
σ∈Sp

(−1)σζ︸ ︷︷ ︸
=(−1)σ(−1)ζ

(
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1)

= (−1)ζ
∑
σ∈Sp

(−1)σ
(
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1).

Dividing this equality by (−1)ζ , we obtain

0 =
∑
σ∈Sp

(−1)σ
(
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1). (98)

Since the bilinear form f is symmetric, it satisfies f t = f (since any two x ∈ L and
y ∈ L satisfy f t (x, y) = f (y, x) = f (x, y) because the form f is symmetric). Now, for
every σ ∈ Sp, the identity (32) (applied to U = uσ(p)⊗uσ(p−1)⊗ ...⊗uσ(2) and v = uσ(1))
yields

t
((
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1)

)
= uσ(1)

f t

x t
(
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

)︸ ︷︷ ︸
=uσ(2)⊗uσ(3)⊗...⊗uσ(p)

= uσ(1)
f t

x
(
uσ(2) ⊗ uσ(3) ⊗ ...⊗ uσ(p)

)
= uσ(1)

f
x
(
uσ(2) ⊗ uσ(3) ⊗ ...⊗ uσ(p)

)
(since f t = f). Now,

0 = t (0) = t

∑
σ∈Sp

(−1)σ
(
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1)

 (by (98))

=
∑
σ∈Sp

(−1)σ t
((
uσ(p) ⊗ uσ(p−1) ⊗ ...⊗ uσ(2)

) f
yuσ(1)

)
︸ ︷︷ ︸

=uσ(1)
f
x(uσ(2)⊗uσ(3)⊗...⊗uσ(p))

(since the map t is linear)

=
∑
σ∈Sp

(−1)σ uσ(1)
f
x
(
uσ(2) ⊗ uσ(3) ⊗ ...⊗ uσ(p)

)
.
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This proves Theorem 42.
Proof of Theorem 40. For every σ ∈ Sp, let us denote the tensor uσ(1)⊗uσ(2)⊗ ...⊗

uσ(p−1) by Uσ. Then, every σ ∈ Sp satisfies

αf

 uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)︸ ︷︷ ︸
=(uσ(1)⊗uσ(2)⊗...⊗uσ(p−1))⊗uσ(p)


= αf

(uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)︸ ︷︷ ︸
=Uσ

⊗uσ(p)


= αf

(
Uσ ⊗ uσ(p)

)
= αf (Uσ)⊗ uσ(p) − αf (Uσ)

f
yuσ(p)(

by (52), applied to Uσ and uσ(p) instead of U and u
)

= αf (Uσ)⊗ uσ(p) − αf
(
Uσ

f
yuσ(p)

)
(since (54) (applied to f , Uσ and uσ(p) instead of g, U and u) yields αf

(
Uσ

f
yuσ(p)

)
=

αf (Uσ)
f
yuσ(p), so that αf (Uσ)

f
yuσ(p) = αf

(
Uσ

f
yuσ(p)

)
). Thus,

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
∑
σ∈Sp

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

)︸ ︷︷ ︸
=αf (Uσ)⊗uσ(p)−αf

(
Uσ

f
yuσ(p)

)
(
since the map αf is linear

)

=
∑
σ∈Sp

(−1)σ
(
αf (Uσ)⊗ uσ(p) − αf

(
Uσ

f
yuσ(p)

))
=
∑
σ∈Sp

(−1)σ αf (Uσ)⊗ uσ(p) −
∑
σ∈Sp

(−1)σ αf
(
Uσ

f
yuσ(p)

)
.

Since

∑
σ∈Sp

(−1)σ αf
(
Uσ

f
yuσ(p)

)
= αf

∑
σ∈Sp

(−1)σ Uσ
f
yuσ(p)

 (
since αf is a linear map

)

= αf


∑
σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p)︸ ︷︷ ︸

=0 (by Theorem 41)


(
because Uσ = uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)
= αf (0) = 0,
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this simplifies to

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
∑
σ∈Sp

(−1)σ αf (Uσ)⊗ uσ(p) −
∑
σ∈Sp

(−1)σ αf
(
Uσ

f
yuσ(p)

)
︸ ︷︷ ︸

=0

=
∑
σ∈Sp

(−1)σ αf (Uσ)⊗ uσ(p)

=
∑
σ∈Sp

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)
⊗ uσ(p)(

because Uσ = uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)
.

This proves Theorem 40.
Proof of Theorem 39. We are going to prove Theorem 39 by induction over p.
The induction base case p = 0 is trivial60.
Now let us handle the induction step: Let q ∈ N+. Assume that Theorem 39 holds

for p = q − 1. We are now going to show that Theorem 39 holds for p = q as well.
We assumed that Theorem 39 holds for p = q−1. In other words, we assumed that

αf

 ∑
σ∈Sq−1

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

 =
∑

σ∈Sq−1

(−1)σ uσ(1)⊗uσ(2)⊗ ...⊗uσ(q−1)

(99)
for any q − 1 vectors u1, u2, ..., uq−1 in L.

Now, for every i ∈ {1, 2, ..., q}, let us denote by Sq,(i) the set of all permutations
σ ∈ Sq satisfying σ (q) = i. Then, the sets Sq,(1), Sq,(2), ..., Sq,(q) are pairwise disjoint61.
Besides, the set Sq is the union of these sets Sq,(1), Sq,(2), ..., Sq,(q) (since for every
σ ∈ Sq, there exists one and only one i ∈ {1, 2, ..., q} such that σ (q) = i, and thus this
i satisfies σ ∈ Sq,(i)).

60In fact, in the case p = 0, the sum
∑
σ∈Sp

(−1)
σ
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p) equals 1 (since it consists

of one summand only, and this summand is 1). Hence, in the case p = 0, Theorem 39 claims that
αf (1) = 1, which is trivial.

61In fact, if two elements i and j of {1, 2, ..., q} are distinct, then Sq,(i) ∩ Sq,(j) = ∅ (because if
the sets Sq,(i) and Sq,(j) had a common element σ, then this element σ would satisfy σ (q) = i (since
σ ∈ Sq,(i)) and σ (q) = j (since σ ∈ Sq,(j)), and thus i = σ (q) = j in contradiction to i 6= j).
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Now, let u1, u2, ..., uq be q vectors in L. Then,∑
σ∈Sq

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q)︸ ︷︷ ︸
=(uσ(1)⊗uσ(2)⊗...⊗uσ(q−1))⊗uσ(q)

=
∑
σ∈Sq

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
⊗ uσ(q)

=

q∑
i=1

∑
σ∈Sq,(i)

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
⊗ uσ(q)︸︷︷︸

=ui (since σ∈Sq,(i)
yields σ(q)=i)(

since the set Sq is the union of the pairwise disjoint sets Sq,(1), Sq,(2), ..., Sq,(q)
)

=

q∑
i=1

∑
σ∈Sq,(i)

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
⊗ ui

=

q∑
i=1

 ∑
σ∈Sq,(i)

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

⊗ ui. (100)

Now, for every i ∈ {1, 2, ..., q}, let κi denote the (q − i+ 1)-cycle (i, i+ 1, ..., q) ∈ Sq.
Then,

κi (j) = j for all j ∈ {1, 2, ..., q} satisfying j < i; (101)

κi (j) = j + 1 for all j ∈ {1, 2, ..., q} satisfying i ≤ j < q; (102)

κi (q) = i. (103)

Now, we are going to prove that∑
σ∈Sq,(i)

(−1)σ uσ(1)⊗uσ(2)⊗ ...⊗uσ(q−1) =
∑

σ∈Sq−1

(−1)σ uκi(σ(1))⊗uκi(σ(2))⊗ ...⊗uκi(σ(q−1))

(104)
for every i ∈ {1, 2, ..., q}.

In fact, fix some i ∈ {1, 2, ..., q}. Define a map P : Sq,(i) → Sq,(q) by(
P (σ) = κ−1

i σ for every σ ∈ Sq,(i)
)
.

62 (This map is well-defined, since every σ ∈ Sq,(i) satisfies κ−1
i σ ∈ Sq,(q) 63.) Also,

define a map Q : Sq,(q) → Sq,(i) by(
Q (σ) = κiσ for every σ ∈ Sq,(q)

)
.

62Here, whenever a and b are two elements of Sq, we denote by ab the product of a and b in the
group Sq (in other words, the composition of the permutations a and b).

63In fact, σ ∈ Sq,(i) yields σ (q) = i and thus
(
κ−1
i σ

)
(q) = κ−1

i

σ (q)︸︷︷︸
=i

 = κ−1
i (i) = q (since

κi (q) = i), so that κ−1
i σ ∈ Sq,(q).
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(This map is well-defined, since every σ ∈ Sq,(q) satisfies κiσ ∈ Sq,(i) 64.) The two
maps P and Q are mutually inverse65. Thus, the map P is a bijection.

Now, define a map R : Sq,(q) → Sq−1 as follows: For every σ ∈ Sq,(q), let R (σ) ∈ Sq−1

be the permutation of {1, 2, ..., q − 1} defined by

((R (σ)) (j) = σ (j) for every j ∈ {1, 2, ..., q − 1}) .

(This map R (σ) is indeed well-defined66 and is indeed a permutation of {1, 2, ..., q − 1}
67.)

On the other hand, let us define a map T : Sq−1 → Sq,(q) as follows: For every
σ ∈ Sq−1, let T (σ) ∈ Sq,(q) be the permutation of {1, 2, ..., q} defined by(

(T (σ)) (j) =

{
σ (j) , if j ∈ {1, 2, ..., q − 1} ;

q, if j = q
for every j ∈ {1, 2, ..., q}

)
.

(This map T (σ) is indeed a permutation of {1, 2, ..., q} 68 and indeed lies in Sq,(q)
(since (T (σ)) (q) = q).)

64In fact, σ ∈ Sq,(q) yields σ (q) = q and thus (κiσ) (q) = κi

σ (q)︸︷︷︸
=q

 = κi (q) = i, so that

κiσ ∈ Sq,(i).
65In fact, P◦Q = id (since every σ ∈ Sq,(q) satisfies (P ◦Q) (σ) = P (Q (σ)) = κ−1

i Q (σ)︸ ︷︷ ︸
=κiσ

= κ−1
i κiσ =

σ) and Q ◦ P = id (since every σ ∈ Sq,(i) satisfies (Q ◦ P ) (σ) = Q (P (σ)) = κi P (σ)︸ ︷︷ ︸
=κ−1

i σ

= κiκ
−1
i σ = σ).

66because σ (j) ∈ {1, 2, ..., q − 1} for every j ∈ {1, 2, ..., q − 1} (since j ∈ {1, 2, ..., q − 1} yields j 6= q,
and thus σ (j) 6= σ (q) (since σ is a permutation), so that σ (j) 6= q (since σ (q) = q because σ ∈ Sq,(q))
and therefore σ (j) ∈ {1, 2, ..., q}� {q} = {1, 2, ..., q − 1})

67since any two distinct elements j1 and j2 of {1, 2, ..., q − 1} satisfy

(R (σ)) (j1) = σ (j1) 6= σ (j2) (since j1 6= j2 and since σ is a permutation)

6= (R (σ)) (j2) ,

and therefore the map R (σ) is injective, so that it is a permutation of {1, 2, ..., q − 1} (because any
injective map from a finite set to itself must be a permutation of this set)

68because it is a surjective map from the set {1, 2, ..., q} to itself (since

(T (σ))

 {1, 2, ..., q}︸ ︷︷ ︸
={1,2,...,q−1}∪{q}


= (T (σ)) ({1, 2, ..., q − 1} ∪ {q}) = (T (σ)) ({1, 2, ..., q − 1})︸ ︷︷ ︸

=σ({1,2,...,q−1})
(since (T (σ))(j)=j for every j∈{1,2,...,q−1})

∪ (T (σ)) ({q})︸ ︷︷ ︸
={(T (σ))(q)}={q}
(since (T (σ))(q)=q)

= σ ({1, 2, ..., q − 1})︸ ︷︷ ︸
={1,2,...,q−1} (since σ∈Sq−1 is a

permutation of {1,2,...,q−1})

∪{q} = {1, 2, ..., q − 1} ∪ {q} = {1, 2, ..., q}

), and because a surjective map from a finite set to itself must always be a permutation of this set
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The maps R and T are mutually inverse69. Thus, R is a bijection.
Now,∑

σ∈Sq,(i)

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

=
∑

σ∈Sq,(i)

(−1)σ uκi((P (σ))(1)) ⊗ uκi((P (σ))(2)) ⊗ ...⊗ uκi((P (σ))(q−1))
since every j ∈ {1, 2, ..., q − 1} satisfies σ (j) = κi ((P (σ)) (j)) ,

because κi

(P (σ))︸ ︷︷ ︸
=κ−1

i σ

(j)

 = κi
((
κ−1
i σ
)

(j)
)

=

κiκ−1
i︸ ︷︷ ︸

=id

σ

 (j) = σ (j)


=

∑
σ∈Sq,(q)

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1))(
here, we substituted σ for P (σ) , since the map P : Sq,(i) → Sq,(q) is a bijection

)
=
∑

σ∈Sq−1

(−1)σ uκi((R(σ))(1)) ⊗ uκi((R(σ))(2)) ⊗ ...⊗ uκi((R(σ))(q−1))(
since every j ∈ {1, 2, ..., q − 1} satisfies σ (j) = (R (σ)) (j) (because the map

R (σ) was defined through the equation (R (σ)) (j) = σ (j) )

)
=
∑

σ∈Sq−1

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1))(
here, we substituted σ for R (σ) , since the map R : Sq,(q) → Sq−1 is a bijection

)
,

69In fact, every σ ∈ Sq−1 satisfies (R ◦ T ) (σ) = σ (because for every j ∈ {1, 2, ..., q − 1}, we have(R ◦ T ) (σ)︸ ︷︷ ︸
=R(T (σ))

 (j) = (R (T (σ))) (j) = (T (σ)) (j) (by the definition of R)

=

{
σ (j) , if j ∈ {1, 2, ..., q − 1} ;

q, if j = q
(by the definition of T )

= σ (j) (since j ∈ {1, 2, ..., q − 1})

). Thus, R ◦T = id. Also, every σ ∈ Sq,(q) satisfies (T ◦R) (σ) = σ (because for every j ∈ {1, 2, ..., q},
we have(T ◦R) (σ)︸ ︷︷ ︸

=T (R(σ))

 (j)

= (T (R (σ))) (j) =

{
(R (σ)) (j) , if j ∈ {1, 2, ..., q − 1} ;

q, if j = q
(by the definition of T )

=

{
σ (j) , if j ∈ {1, 2, ..., q − 1} ;

q, if j = q
(since (R (σ)) (j) = σ (j) by the definition of R)

=

{
σ (j) , if j ∈ {1, 2, ..., q − 1} ;

σ (j) , if j = q

(
since σ ∈ Sq,(q) yields σ (q) = q, and thus

q = σ (q) = σ (j) in the case j = q

)
= σ (j)

). Thus, T ◦ R = id. Together with R ◦ T = id, this yields that the maps R and T are mutually
inverse.
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and thus (104) is proven. But applying (99) to the q−1 vectors uκi(1), uκi(2), ..., uκi(q−1)

instead of u1, u2, ..., uq−1, we obtain

αf

 ∑
σ∈Sq−1

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1))


=
∑

σ∈Sq−1

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1)). (105)

But the k-linearity of the map αf yields∑
σ∈Sq,(i)

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)

= αf

 ∑
σ∈Sq,(i)

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)


= αf

 ∑
σ∈Sq−1

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1))

 (by (104))

=
∑

σ∈Sq−1

(−1)σ uκi(σ(1)) ⊗ uκi(σ(2)) ⊗ ...⊗ uκi(σ(q−1)) (by (105))

=
∑

σ∈Sq,(i)

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1) (by (104) again) . (106)

Now, Theorem 40 (applied to q instead of p) yields

αf

∑
σ∈Sq

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q)


=
∑
σ∈Sq

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
⊗ uσ(q)

=

q∑
i=1

∑
σ∈Sq,(i)

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
⊗ uσ(q)︸︷︷︸

=ui (since σ∈Sq,(i)
yields σ(q)=i)(

since the set Sq is the union of the pairwise disjoint sets Sq,(1), Sq,(2), ..., Sq,(q)
)

=

q∑
i=1

∑
σ∈Sq,(i)

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

)
︸ ︷︷ ︸

=
∑

σ∈Sq,(i)
(−1)σuσ(1)⊗uσ(2)⊗...⊗uσ(q−1)

(by (106))

⊗ui

=

q∑
i=1

 ∑
σ∈Sq,(i)

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q−1)

⊗ ui
=
∑
σ∈Sq

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(q)
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(by (100)). In other words, Theorem 39 is valid for p = q. This completes the induction
step, and thus Theorem 39 is proven.

Proof of Theorem 38. Let us denote by projf : ⊗L → Cl (L, f) the canonical
projection of the k-algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f). Let us
also denote by proj0 : ⊗L → ∧L the canonical projection of the k-algebra ⊗L onto
its factor algebra (⊗L)�I0 = ∧L. Then, the homomorphism αf0 was defined as the
homomorphism (⊗L)�I0 → (⊗L)�If induced by the homomorphism αf : ⊗L→ ⊗L;

in other words, projf ◦αf = αf0 ◦ proj0. Thus,

(
projf ◦αf

)∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
(
αf0 ◦ proj0

)∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


= αf0

proj0

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

 . (107)

Now, the multiplication in the algebra ⊗L is the tensor multiplication (denoted by
⊗), and the multiplication in the algebra ∧L is the exterior multiplication (denoted
by ∧). Since the map proj0 commutes with multiplication (since proj0 is an algebra
homomorphism), we thus have

proj0
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

)
= proj0

(
uσ(1)

)
∧ proj0

(
uσ(2)

)
∧ ... ∧ proj0

(
uσ(p)

)
= uσ(1) ∧ uσ(2) ∧ ... ∧ uσ(p)

(
since we identify the element proj0 (v) ∈ ∧L

with v for every vector v ∈ L

)
= (−1)σ u1 ∧ u2 ∧ ... ∧ up

(because if we interchange the factors in an exterior product of vectors, then the product
becomes multiplied with (−1)σ where σ is the permutation we used to interchange the
factors) for every σ ∈ Sp. Now, since proj0 is a linear map, we have

proj0

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
∑
σ∈Sp

(−1)σ proj0
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

)︸ ︷︷ ︸
=(−1)σu1∧u2∧...∧up

=
∑
σ∈Sp

(−1)σ (−1)σ︸ ︷︷ ︸
=((−1)σ)2=1

(since (−1)σ∈{1,−1})

u1 ∧ u2 ∧ ... ∧ up =
∑
σ∈Sp

u1 ∧ u2 ∧ ... ∧ up

= |Sp|︸︷︷︸
=p!

·u1 ∧ u2 ∧ ... ∧ up = p! · u1 ∧ u2 ∧ ... ∧ up,
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and therefore (107) becomes

(
projf ◦αf

)∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)



= αf0

proj0

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


︸ ︷︷ ︸

=p!·u1∧u2∧...∧up


= αf0 (p! · u1 ∧ u2 ∧ ... ∧ up) = p! · αf0 (u1 ∧ u2 ∧ ... ∧ up) (108)

(since αf0 is a linear map).
On the other hand, the multiplication in the algebra ⊗L is the tensor multiplication

(denoted by ⊗), and the multiplication in the algebra Cl (L, f) is simply written as
product. Since the map projf commutes with multiplication (since projf is an algebra
homomorphism), we thus have

projf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

)
= projf

(
uσ(1)

)
projf

(
uσ(2)

)
... projf

(
uσ(p)

)
= ϕf

(
uσ(1)

)
ϕf
(
uσ(2)

)
...ϕf

(
uσ(p)

)
(because projf (v) = ϕf (v) for every v ∈ L) for every σ ∈ Sp.

Comparing the equation

(
projf ◦αf

)∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


= projf

αf
∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


= projf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

 (by Theorem 39)

=
∑
σ∈Sp

(−1)σ projf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

)︸ ︷︷ ︸
=ϕf(uσ(1))ϕf(uσ(2))...ϕf(uσ(p))

(
since projf is a linear map

)
=
∑
σ∈Sp

(−1)σ ϕf
(
uσ(1)

)
ϕf
(
uσ(2)

)
...ϕf

(
uσ(p)

)
with (108), we obtain

p! · αf0 (u1 ∧ u2 ∧ ... ∧ up) =
∑
σ∈Sp

(−1)σ ϕf
(
uσ(1)

)
ϕf
(
uσ(2)

)
...ϕf

(
uσ(p)

)
.

This proves Theorem 38.

11. Some more identities
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Let us prove some more curious properties of
f
x,

f
y and αf for a symmetric bilinear

form f . The following theorems 43-45 bear a certain similarity to theorems 40-42 (and
can actually be used to give an alternative proof of Theorem 39, although we are not
going to elaborate on this proof).

Theorem 43. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 αf ((u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui)

=

p∑
i=1

(−1)i−1 αf (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui.

Here, the hat over the vector ui means that the vector ui is being omitted
from the tensor product; in other words, u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up is just
another way to write u1 ⊗ u2 ⊗ ...⊗ ui−1︸ ︷︷ ︸

tensor product of the
first i−1 vectors u`

⊗ui+1 ⊗ ui+2 ⊗ ...⊗ up︸ ︷︷ ︸
tensor product of the
last p−i vectors u`

.

This, in turn, will be concluded from the following result:

Theorem 44. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)
f
yui = 0.

(For the meaning of the term u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up, see Theorem 43.)

Proof of Theorem 44. We are going to prove that every j ∈ {0, 1, ..., p} satisfies

j∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uj)
f
yui = 0. (109)

In fact, we will prove this by induction over j:
The base case j = 0 is trivial70.
Now, let us come to the induction step: Let q ∈ {1, 2, ..., p}. Assume that we have

proven (109) for j = q − 1. Let us now prove (109) for j = q.
For any i ∈ {1, 2, ..., q − 1}, let us denote the tensor u1 ⊗ u2 ⊗ ... ⊗ ûi ⊗ ... ⊗ uq−1

by Ui.

70because in the case j = 0, we have
j∑
i=1

(−1)
i−1

(u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uj)
f
yui = (empty sum) =

0, and thus the equation (109) is trivially true in the case j = 0
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We have

q∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq)
f
yui

=

q−1∑
i=1

(−1)i−1

 u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq︸ ︷︷ ︸
=(u1⊗u2⊗...⊗ûi⊗...⊗uq−1)⊗uq=Ui⊗uq

(since u1⊗u2⊗...⊗ûi⊗...⊗uq−1=Ui)

 f
yui

+ (−1)q−1 (u1 ⊗ u2 ⊗ ...⊗ ûq ⊗ ...⊗ uq)︸ ︷︷ ︸
=u1⊗u2⊗...⊗uq−1

f
yuq

=

q−1∑
i=1

(−1)i−1 (Ui ⊗ uq)
f
yui︸ ︷︷ ︸

=f(uq ,ui)Ui−
(
Ui
f
yui

)
⊗uq

(by (22), applied to Ui,
uq and ui instead of U , u and v

+ (−1)q−1 (u1 ⊗ u2 ⊗ ...⊗ uq−1)
f
yuq︸ ︷︷ ︸

=
q−1∑
i=1

(−1)q−1−if(ui,uq)·u1⊗u2⊗...⊗ûi⊗...⊗uq−1

(by (21), applied to q−1 and uq instead of p and v)

=

q−1∑
i=1

(−1)i−1

 f (uq, ui)︸ ︷︷ ︸
=f(ui,uq) (since the form

f is symmetric)

Ui −
(
Ui

f
yui
)
⊗ uq


+ (−1)q−1

q−1∑
i=1

(−1)q−1−i f (ui, uq) · u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq−1︸ ︷︷ ︸
=Ui

=

q−1∑
i=1

(−1)i−1
(
f (ui, uq)Ui −

(
Ui

f
yui
)
⊗ uq

)
+ (−1)q−1

q−1∑
i=1

(−1)q−1−i f (ui, uq)Ui

=

(
q−1∑
i=1

(−1)i−1 f (ui, uq)Ui −
q−1∑
i=1

(−1)i−1
(
Ui

f
yui
)
⊗ uq

)

+ (−1)q−1
q−1∑
i=1

(−1)q−1−i f (ui, uq)Ui.

Since Ui = u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq−1 yields

q−1∑
i=1

(−1)i−1
(
Ui

f
yui
)

=

q−1∑
i=1

(−1)i−1
(

(u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq−1)
f
yui
)

= 0
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(according to (109), applied to j = q − 1 71), this simplifies to

q∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq)
f
yui

=


q−1∑
i=1

(−1)i−1 f (ui, uq)Ui −
q−1∑
i=1

(−1)i−1
(
Ui

f
yui
)

︸ ︷︷ ︸
=0

⊗uq


+ (−1)q−1

q−1∑
i=1

(−1)q−1−i f (ui, uq)Ui︸ ︷︷ ︸
=
q−1∑
i=1

(−1)q−1(−1)q−1−if(ui,uq)Ui

=

 q−1∑
i=1

(−1)i−1 f (ui, uq)Ui − 0⊗ uq︸ ︷︷ ︸
=0

+

q−1∑
i=1

(−1)q−1 (−1)q−1−i f (ui, uq)Ui

=

q−1∑
i=1

(−1)i−1 f (ui, uq)Ui +

q−1∑
i=1

(−1)q−1 (−1)q−1−i f (ui, uq)Ui

=

q−1∑
i=1

(
(−1)i−1 + (−1)q−1 (−1)q−1−i

)
f (ui, uq)Ui.

Since

(−1)i−1︸ ︷︷ ︸
=−(−1)i

+ (−1)q−1 (−1)q−1−i︸ ︷︷ ︸
=(−1)(q−1)+(q−1−i)=(−1)2(q−1)−i

=(−1)2(q−1−i)+i=(−1)2(q−1−i)(−1)i

= − (−1)i + (−1)2(q−1−i)︸ ︷︷ ︸
=((−1)2)

q−1−i
=1q−1−i=1

(−1)i

= (−1)i + 1 · (−1)i = 0,

this simplifies to

q∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ uq)
f
yui

=

q−1∑
i=1

(
(−1)i−1 + (−1)q−1 (−1)q−1−i

)
︸ ︷︷ ︸

=0

f (ui, uq)Ui =

q−1∑
i=1

0f (ui, uq)Ui = 0.

In other words, the equation (109) holds for j = q. Thus we have completed the
induction step. Consequently, we have proven (109) for every j ∈ {0, 1, ..., p}. Thus,
applying (109) to j = p, we obtain

p∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)
f
yui = 0.

71In fact, we are allowed to apply (109) to j = q − 1, because we assumed that we have proven
(109) for j = q − 1.
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This proves Theorem 44.
Theorem 44 has a ”left” analogue:

Theorem 45. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up) = 0.

(For the meaning of the term u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up, see Theorem 43.)

Proof of Theorem 45. Applying Theorem 44 to the p vectors up, up−1, ..., u1 instead
of u1, u2, ..., up, we obtain

p∑
i=1

(−1)i−1 (up ⊗ up−1 ⊗ ...⊗ ûp−i+1 ⊗ ...⊗ u1

) f
yup−i+1 = 0. (110)

Since the bilinear form f is symmetric, it satisfies f t = f (since any two x ∈ L and
y ∈ L satisfy f t (x, y) = f (y, x) = f (x, y) because the form f is symmetric). Now, for
every i ∈ {1, 2, ..., p}, the identity (32) (applied to U = up ⊗ up−1 ⊗ ... ⊗ ûi ⊗ ... ⊗ u1

and v = ui) yields

t
(

(up ⊗ up−1 ⊗ ...⊗ ûi ⊗ ...⊗ u1)
f
yui
)

= ui
f t

x t (up ⊗ up−1 ⊗ ...⊗ ûi ⊗ ...⊗ u1)︸ ︷︷ ︸
=u1⊗u2⊗...⊗ûi⊗...⊗up

= ui
f t

x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)

= ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)

(since f t = f). Now, (110) yields

0 =

p∑
i=1

(−1)i−1 (up ⊗ up−1 ⊗ ...⊗ ûp−i+1 ⊗ ...⊗ u1

) f
yup−i+1

=

p∑
i=1

(−1)p−i (up ⊗ up−1 ⊗ ...⊗ ûi ⊗ ...⊗ u1)
f
yui

(here we substituted i for p− i+ 1 in the sum) ,

so that

t (0) = t

(
p∑
i=1

(−1)p−i (up ⊗ up−1 ⊗ ...⊗ ûi ⊗ ...⊗ u1)
f
yui

)

=

p∑
i=1

(−1)p−i t
(

(up ⊗ up−1 ⊗ ...⊗ ûi ⊗ ...⊗ u1)
f
yui
)

︸ ︷︷ ︸
=ui

f
x(u1⊗u2⊗...⊗ûi⊗...⊗up)

=

p∑
i=1

(−1)p−i︸ ︷︷ ︸
=(−1)(p+1)+(i−1)

=(−1)p+1(−1)i−1

ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)

= (−1)p+1
p∑
i=1

(−1)i−1 ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up) .
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Since t (0) = 0, this rewrites as

0 = (−1)p+1
p∑
i=1

(−1)i−1 ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up) .

Dividing this equation by (−1)p+1, we get

0 =

p∑
i=1

(−1)i−1 ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up) .

This proves Theorem 45.
Proof of Theorem 43. For every i ∈ {1, 2, ..., p}, denote the tensor u1 ⊗ u2 ⊗ ... ⊗

ûi ⊗ ...⊗ up by Ui. Then,

αf

(u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)︸ ︷︷ ︸
=Ui

⊗ui


= αf (Ui ⊗ ui) = αf (Ui)⊗ ui − αf (Ui)

f
yui

(by (52), applied to Ui and ui instead of U and u)

= αf (Ui)⊗ ui − αf
(
Ui

f
yui
)

(
since (54) (applied to f , Ui and ui instead of g, U and u)

yields αf
(
Ui

f
yui
)

= αf (Ui)
f
yui, so that αf (Ui)

f
yui = αf

(
Ui

f
yui
) )

and thus

p∑
i=1

(−1)i−1 αf ((u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui)

=

p∑
i=1

(−1)i−1
(
αf (Ui)⊗ ui − αf

(
Ui

f
yui
))

=

p∑
i=1

(−1)i−1 αf (Ui)⊗ ui −
p∑
i=1

(−1)i−1 αf
(
Ui

f
yui
)
.

Since

p∑
i=1

(−1)i−1 αf
(
Ui

f
yui
)

= αf

(
p∑
i=1

(−1)i−1 Ui
f
yui

) (
since αf is a linear map

)

= αf


p∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)
f
yui︸ ︷︷ ︸

=0 (by Theorem 44)


(since Ui = u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)

= αf (0) = 0,
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this rewrites as
p∑
i=1

(−1)i−1 αf ((u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui)

=

p∑
i=1

(−1)i−1 αf (Ui)⊗ ui − 0 =

p∑
i=1

(−1)i−1 αf (Ui)⊗ ui

=

p∑
i=1

(−1)i−1 αf (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui

(since Ui = u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up). This proves Theorem 43.

12. The invariant module of the αf maps for all symmetric bilinear f

Let us consider a fixed commutative ring k, and a fixed k-module L. However,
in this section, we are not going to fix a bilinear form f on L, but we will consider
all bilinear forms f at once. Each bilinear form f gives rise to an endomorphism
αf : ⊗L → ⊗L, and we are going to study the module Fixαsymm of all tensors in ⊗L
that are fixed under αf for all symmetric bilinear forms f . 72

Definition 15. Let k be a commutative ring, and L be a k-module. We
denote by Fixαsymm the subset{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
=

⋂
f :L×L→k is a

symmetric bilinear form

U ∈ ⊗L | αf (U) = U︸ ︷︷ ︸
this equation is equivalent

to αf (U)−U=0


=

⋂
f :L×L→k is a

symmetric bilinear form

U ∈ ⊗L | αf (U)− U︸ ︷︷ ︸
=(αf−id)(U)

= 0


=

⋂
f :L×L→k is a

symmetric bilinear form

{
U ∈ ⊗L |

(
αf − id

)
(U) = 0

}︸ ︷︷ ︸
=Ker(αf−id)

=
⋂

f :L×L→k is a
symmetric bilinear form

Ker
(
αf − id

)
of ⊗L. Clearly, this subset Fixαsymm is a sub-k-module of ⊗L (since
Fixαsymm =

⋂
f :L×L→k is a

symmetric bilinear form

Ker
(
αf − id

)
, and since Ker

(
αf − id

)
is a

sub-k-module of ⊗L for each f).

It seems to be a nontrivial question to further characterize Fixαsymm. First we note
that antisymmetrizers always lie in Fixαsymm:

72As for the space Fixα of all tensors in ⊗L that are fixed under αf for all (not only symmetric)
bilinear forms f , we are planning to study this space later.
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Corollary 46. Let p ∈ N, and let u1, u2, ..., up be p vectors in L. Then,∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p) ∈ Fixαsymm.

Proof of Corollary 46. Every symmetric bilinear form f satisfies

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

 =
∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

(by Theorem 39). Thus,∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

∈
{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
= Fixαsymm.

This proves Corollary 46.
However, elements of the form

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ... ⊗ uσ(p) as in Corollary

46 are not the only inhabitants of Fixαsymm. There are more. I do not claim that I
know all of them, but here is a result that construct at least a part:

Theorem 47. Let k be a commutative ring. Let L be a k-module.

(a) We have k ⊆ Fixαsymm (where k is regarded as a sub-k-module of ⊗L
because k = L⊗0 ⊆ L⊗0⊕L⊗1⊕L⊗2⊕ ... = ⊗L) and L ⊆ Fixαsymm (where
L is regarded as a sub-k-module of ⊗L because L = L⊗1 ⊆ L⊗0 ⊕ L⊗1 ⊕
L⊗2 ⊕ ... = ⊗L).

(b) Let m ∈ N. Any two elements u ∈ L and V ∈ L⊗m ∩ Fixαsymm satisfy
u⊗ V + (−1)m V ⊗ u ∈ Fixαsymm.

The proof of Theorem 47 relies on the following result:

Lemma 48. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a symmetric bilinear form. Then, any
u ∈ L and U ∈ L⊗m satisfy αf (u⊗ U + (−1)m U ⊗ u) = u ⊗ αf (U) +
(−1)m αf (U) ⊗ u (where u is regarded as an element of ⊗L because u ∈
L = L⊗1 ⊆ L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ... = ⊗L).

This lemma, in turn, will be proven using the following fact:

Lemma 49. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a bilinear form. Then, any u ∈ L and

V ∈ L⊗m satisfy u
f
xV = (−1)m−1 V

f t

yu.
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Proof of Lemma 49. Fix some u ∈ L. We are now going to prove that for every
m ∈ N, (

every V ∈ L⊗m satisfies u
f
xV = (−1)m−1 V

f t

yu

)
. (111)

In fact, let us prove this by induction over m:
The induction base case, m = 0, is trivial (because in the case m = 0, we have

V ∈ L⊗m = L⊗0 = k, so that u
f
xV = 0 (by Theorem 5 (a), applied to u and V instead

of v and λ) and V
f t

yu = 0 (by Theorem 11 (a), applied to u, f t and V instead of v, f

and λ), and therefore clearly u
f
xV = (−1)m−1 V

f t

yu, so that (111) is proven in the case
m = 0).

Now let us come to the induction step. Fix some positive µ ∈ N+. Now, let us
prove (111) for m = µ, assuming that (111) has already been proven for m = µ− 1.

In fact, we have assumed that (111) has already been proven for m = µ − 1. In
other words, we have assumed that(

every V ∈ L⊗(µ−1) satisfies u
f
xV = (−1)(µ−1)−1 V

f t

yu

)
. (112)

Now, our goal is to show (111) for m = µ. That is, our goal is to show that every

V ∈ L⊗µ satisfies u
f
xV = (−1)µ−1 V

f t

yu. In order to achieve this goal, it is obviously

enough to show that every left-induced V ∈ L⊗µ satisfies u
f
xV = (−1)µ−1 V

f t

yu (by the

left tensor induction tactic, since the equation u
f
xV = (−1)µ−1 V

f t

yu is linear in V ).

So, let V ∈ L⊗µ be some left-induced tensor. Then, V = v ⊗ Ṽ for some v ∈ L and
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Ṽ ∈ L⊗(µ−1) (because V is left-induced). Thus,

u
f
xV = u

f
x
(
v ⊗ Ṽ

)
= f (u, v) Ṽ − v ⊗

(
u
f
xṼ
)

︸ ︷︷ ︸
=(−1)(µ−1)−1Ṽ

ft

y u (by (112),

applied to Ṽ instead of V )(
by (7), applied to u, v and Ṽ instead of v, u and U

)
= f (u, v) Ṽ − v ⊗

(
(−1)(µ−1)−1 Ṽ

f t

yu

)
︸ ︷︷ ︸

=(−1)(µ−1)−1v⊗
(
Ṽ
ft
y u

)
= f (u, v) Ṽ − (−1)(µ−1)−1︸ ︷︷ ︸

=−(−1)µ−1

v ⊗
(
Ṽ
f t

yu

)

= f (u, v) Ṽ + (−1)µ−1 v ⊗
(
Ṽ
f t

yu

)

= (−1)µ−1


1

(−1)µ−1︸ ︷︷ ︸
=(−1)µ−1 (since

((−1)µ−1)
2
=(−1)2(µ−1)=1,

because 2(µ−1) is even)

f (u, v) Ṽ + v ⊗
(
Ṽ
f t

yu

)


= (−1)µ−1

(
(−1)µ−1 f (u, v) Ṽ + v ⊗

(
Ṽ
f t

yu

))
. (113)

But V = v ⊗ Ṽ also yields

V
f t

yu =
(
v ⊗ Ṽ

)
f t

yu = (−1)µ−1 f t (v, u)︸ ︷︷ ︸
=f(u,v)

Ṽ + v ⊗
(
Ṽ
f t

yu

)
(

by (25), applied to v, Ṽ , f t, u and µ− 1 instead of u, U , f , v and p
)

= (−1)µ−1 f (u, v) Ṽ + v ⊗
(
Ṽ
f t

yu

)
.

Thus, (113) becomes

u
f
xV = (−1)µ−1

(−1)µ−1 f (u, v) Ṽ + v ⊗
(
Ṽ
f t

yu

)
︸ ︷︷ ︸

=V
ft
y u

 = (−1)µ−1 V
f t

yu.

Thus, we have proven that every left-induced V ∈ L⊗µ satisfies u
f
xV = (−1)µ−1 V

f t

yu.

As we already said above, this yields that every V ∈ L⊗µ satisfies u
f
xV = (−1)µ−1 V

f t

yu.
Therefore, (111) is proved for m = µ, so that the induction step is complete. Con-
sequently, we have proven that (111) holds for all m ∈ N. In other words, we have
verified Lemma 49.

Here is a little strengthening of Lemma 49:
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Lemma 50. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a bilinear form. Then, any u ∈ L and

V ∈
⊕
i∈N;

i≡mmod 2

L⊗i satisfy u
f
xV = (−1)m−1 V

f t

yu.

Proof of Lemma 50. Let u ∈ L be fixed. Our goal is to show that every V ∈⊕
i∈N;

i≡mmod 2

L⊗i satisfies u
f
xV = (−1)m−1 V

f t

yu.

Define a map Φu : ⊗L→ ⊗L by(
Φu (V ) = u

f
xV − (−1)m−1 V

f t

yu for every V ∈ ⊗L
)
.

This map Φu is k-linear (because
f
x and

f t

y are k-bilinear). Thus, Ker Φu is a sub-k-
module of ⊗L.

For every i ∈ N satisfying i ≡ mmod 2, we have L⊗i ⊆ Ker Φu (since every V ∈ L⊗i
satisfies

Φu (V ) = u
f
xV︸︷︷︸

=(−1)i−1V
ft

y u
(by Lemma 49, applied

to i instead of m)

− (−1)m−1 V
f t

yu = (−1)i−1︸ ︷︷ ︸
=(−1)m−1

(since i≡mmod 2 and
thus i−1≡m−1 mod 2)

V
f t

yu− (−1)m−1 V
f t

yu

= (−1)m−1 V
f t

yu− (−1)m−1 V
f t

yu = 0

). Thus,
⊕
i∈N;

i≡mmod 2

L⊗i ⊆
⊕
i∈N;

i≡mmod 2

Ker Φu ⊆ Ker Φu (since Ker Φu is a sub-k-module of

⊗L). Hence, every V ∈
⊕
i∈N;

i≡mmod 2

L⊗i satisfies Φu (V ) = 0. Since Φu (V ) = u
f
xV −

(−1)m−1 V
f t

yu, this rewrites as u
f
xV − (−1)m−1 V

f t

yu = 0, so that u
f
xV = (−1)m−1 V

f t

yu.
This proves Lemma 50.

Proof of Lemma 48. Applying (46), we get

αf (u⊗ U) = u⊗ αf (U)− ufxαf (U) .

Applying (52), we get

αf (U ⊗ u) = αf (U)⊗ u− αf (U)
f
yu.

On the other hand, (47) (applied to m instead of p) yields αf (U) ∈
⊕
i∈N;

i≡mmod 2

L⊗i. Hence,

we can apply Lemma 50 to V = αf (U) and obtain u
f
xαf (U) = (−1)m−1 αf (U)

f t

yu.
Since f = f t (because f is symmetric), we can replace f t by f in this equality, and

thus obtain u
f
xαf (U) = (−1)m−1 αf (U)

f
yu.
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Since αf is linear, we have

αf (u⊗ U + (−1)m U ⊗ u)

= αf (u⊗ U)︸ ︷︷ ︸
=u⊗αf (U)−ufxαf (U)

+ (−1)m αf (U ⊗ u)︸ ︷︷ ︸
=αf (U)⊗u−αf (U)

f
yu

=
(
u⊗ αf (U)− ufxαf (U)

)
+ (−1)m

(
αf (U)⊗ u− αf (U)

f
yu
)

= u⊗ αf (U)− u
f
xαf (U)︸ ︷︷ ︸

=(−1)m−1αf (U)
f
yu

+ (−1)m αf (U)⊗ u− (−1)m︸ ︷︷ ︸
=−(−1)m−1

αf (U)
f
yu

= u⊗ αf (U)− (−1)m−1 αf (U)
f
yu+ (−1)m αf (U)⊗ u−

(
− (−1)m−1)αf (U)

f
yu

= u⊗ αf (U) + (−1)m αf (U)⊗ u−
(

(−1)m−1 αf (U)
f
yu+

(
− (−1)m−1)αf (U)

f
yu
)

︸ ︷︷ ︸
=0

= u⊗ αf (U) + (−1)m αf (U)⊗ u.

This proves Lemma 48.
Proof of Theorem 47. (a) For every λ ∈ k, we have λ ∈ Fixαsymm. 73 Thus,

k ⊆ Fixαsymm.
For every u ∈ L, we have u ∈ Fixαsymm. 74 Thus, L ⊆ Fixαsymm.
Theorem 47 (a) is now proven.
(b) Let u ∈ L and V ∈ L⊗m ∩ Fixαsymm be arbitrary. Then, clearly, V ∈ L⊗m and

V ∈ Fixαsymm

=
{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
.

Thus, every symmetric bilinear form f : L× L→ k satisfies αf (V ) = V .
Let f : L × L → k be a symmetric bilinear form. Then, Lemma 48 (applied to

U = V ) yields

αf (u⊗ V + (−1)m V ⊗ u) = u⊗ αf (V )︸ ︷︷ ︸
=V

+ (−1)m αf (V )︸ ︷︷ ︸
=V

⊗u = u⊗ V + (−1)m V ⊗ u.

Thus,

u⊗ V + (−1)m V ⊗ u
∈
{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
= Fixαsymm.

73Proof. Every symmetric bilinear form f : L× L→ k satisfies αf (λ) = λ. Thus,

λ ∈
{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
= Fixαsymm.

74Proof. Every symmetric bilinear form f : L × L → k satisfies αf (u) = u (according to (43)).
Thus,

u ∈
{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
= Fixαsymm.
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This proves Theorem 47 (b).
Theorem 47 yields an inductive way to construct elements of Fixαsymm beginning

from elements of L. For example, for any two vectors u ∈ L and v ∈ L, Theorem 47
shows that u⊗ v − v ⊗ u ∈ Fixαsymm (not surprisingly). For any three vectors u ∈ L,
v ∈ L and w ∈ L, Theorem 47 shows that u⊗ (v ⊗ w − w ⊗ v)+(v ⊗ w − w ⊗ v)⊗u ∈
Fixαsymm. For any four vectors u ∈ L, v ∈ L, w ∈ L and x ∈ L, Theorem 47 shows
that

u⊗ (v ⊗ (w ⊗ x− x⊗ w) + (w ⊗ x− x⊗ w)⊗ v)

− (v ⊗ (w ⊗ x− x⊗ w) + (w ⊗ x− x⊗ w)⊗ v)⊗ u (114)

lies in Fixαsymm. And so on.
Do we get all elements of Fixαsymm this way? No. For example, for any four vectors

a ∈ L, b ∈ L, c ∈ L and d ∈ L, the tensor

a⊗ b⊗ (c⊗ d+ d⊗ c)− (c⊗ d+ d⊗ c)⊗ a⊗ b

lies in Fixαsymm (and is even fixed under αf for all (not only symmetric) bilinear forms
f). In general, this tensor cannot be written as a linear combination of elements of the
form (114) (with u ∈ L, v ∈ L, w ∈ L and x ∈ L), even if the underlying ring k is a
field of characteristic 0. (This was computed by Andrew Rupinski in [4].)

13. Further remarks

As we said, instead of Fixαsymm we could consider the subset Fixα of ⊗L defined
by

Fixα =
{
U ∈ ⊗L | every bilinear form f : L× L→ k satisfies αf (U) = U

}
=

⋂
f :L×L→k is a
bilinear form

U ∈ ⊗L | αf (U) = U︸ ︷︷ ︸
this equation is equivalent

to αf (U)−U=0


=

⋂
f :L×L→k is a
bilinear form

U ∈ ⊗L | αf (U)− U︸ ︷︷ ︸
=(αf−id)(U)

= 0


=

⋂
f :L×L→k is a
bilinear form

{
U ∈ ⊗L |

(
αf − id

)
(U) = 0

}︸ ︷︷ ︸
=Ker(αf−id)

=
⋂

f :L×L→k is a
bilinear form

Ker
(
αf − id

)
.

We can then prove that any three vectors b ∈ L, c ∈ L and d ∈ L satisfy

b⊗ (c⊗ d+ d⊗ c)− (c⊗ d+ d⊗ c)⊗ b ∈ Fixα.

We can also show that any four vectors a ∈ L, b ∈ L, c ∈ L and d ∈ L satisfy

a⊗ b⊗ (c⊗ d+ d⊗ c)− (c⊗ d+ d⊗ c)⊗ a⊗ b ∈ Fixα

(as we have already seen). Does this have a reasonable generalization?
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Can invariant theory help us in understanding Fixαsymm and Fixα ? After all,
Theorem 32 shows that f 7→ αf is a representation of the additive group of bilinear
forms on L (resp. symmetric bilinear forms on L) on ⊗L, and we are looking for the
invariant space of this representation.

Another interesting question would be to generalize αf to super-vector spaces, thus
obtaining results about Weyl algebras rather than just Clifford algebras.

14. The αf morphisms and direct sums

In this section we are going to deal with the behaviour of αf morphisms when the
k-module L is a direct sum of two smaller k-modules.

First a relative triviality on submodules:

Lemma 60. Let k be a commutative ring. Let L be a k-module. Let
f : L× L→ k be a bilinear form. Let M be a k-submodule of L such that
f (L×M) = 0. Then:

(a) Every U ∈ ⊗L and every m ∈M satisfy U
f
ym = 0.

(b) Every U ∈ ⊗L and every m ∈M satisfy αf (U ⊗m) = αf (U)⊗m.

(c) We have αf ((⊗L) ·M) = (⊗L) ·M .

Proof of Lemma 60. (a) Let m ∈M be fixed.
First we will prove that for every p ∈ N and every U ∈ L⊗p, the equation

U
f
ym = 0 (115)

holds. In fact, we will show this by induction over p: The induction base (p = 0) is

clear (since Theorem 11 (a) yields U
f
ym = 0 in the case p = 0). Now for the induction

step: Fix some p ∈ N+. Let us now prove (115) for all U ∈ L⊗p, assuming that (115)
is already proven for all U ∈ L⊗(p−1).

We want to prove (115) for all U ∈ L⊗p. But in order to achieve this, it is enough to
prove (115) for all right-induced U ∈ L⊗p (because of the right tensor induction tactic,
since the equation (115) is linear in U). So let us prove (115) for all right-induced
U ∈ L⊗p. In fact, let U ∈ L⊗p be a right-induced tensor. Then, U can be written in
the form U = Ü ⊗ u for some u ∈ L and Ü ∈ L⊗(p−1) (since U is right-induced).

Since we have assumed that (115) is already proven for all U ∈ L⊗(p−1), we can apply

(115) to Ü instead of U . Thus we obtain Ü
f
ym = 0. On the other hand, (u,m) ∈ L×M

yields f (u,m) ∈ f (L×M) = 0, so that f (u,m) = 0.
Now, from U = Ü ⊗ u we get

U
f
ym =

(
Ü ⊗ u

)
f
ym = f (u,m)︸ ︷︷ ︸

=0

Ü −
(
Ü
f
ym
)

︸ ︷︷ ︸
=0

⊗u

(
by (22), applied to Ü and m instead of U and v

)
= 0Ü − 0⊗ u = 0.

Thus, we have proven that (115) holds for all right-induced U ∈ L⊗p. Consequently, by
the right tensor induction tactic (as we said above), we conclude that (115) holds for
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all U ∈ L⊗p. This completes the induction step. Therefore we have now proven that
for every p ∈ N, and every U ∈ L⊗p, the equation (115) holds. Consequently, for every
U ∈ ⊗L, the equation (115) holds (because every U ∈ ⊗L is a k-linear combination
of elements of L⊗p for various p ∈ N, and because the equation (115) is linear in U).
This proves Lemma 60 (a).

(b) Let U ∈ ⊗L and m ∈ M be arbitrary. Then, (52) (applied to m instead of u)
yields

αf (U ⊗m) = αf (U)⊗m− αf (U)
f
ym︸ ︷︷ ︸

=0 (due to Lemma 60 (a),

applied to αf (U) instead of U)

= αf (U)⊗m.

This proves Lemma 60 (b).
(c) We know that the map αf : ⊗L → ⊗L is invertible (by Theorem 32), so that

the map αf × id : (⊗L) × M → (⊗L) × M is invertible as well. In other words,
αf × id : (⊗L)×M → (⊗L)×M is a bijection.

We have

(⊗L) ·M =

〈
U ·m︸ ︷︷ ︸
=U⊗m

(since the multiplication
in ⊗L is the tensor product)

| (U,m) ∈ (⊗L)×M

〉

= 〈U ⊗m | (U,m) ∈ (⊗L)×M〉 ,

so that

αf ((⊗L) ·M)

= αf (〈U ⊗m | (U,m) ∈ (⊗L)×M〉)

=

〈
αf (U ⊗m)︸ ︷︷ ︸

=αf (U)⊗m
(by Lemma 60 (b),

since U∈⊗L and m∈M)

| (U,m) ∈ (⊗L)×M

〉 (
since αf is a k-linear map

)

=

〈
αf (U)⊗m︸ ︷︷ ︸

=αf (U)·m
(since the multiplication

in ⊗L is the tensor product)

| (U,m) ∈ (⊗L)×M

〉

=
〈
αf (U) ·m | (U,m) ∈ (⊗L)×M

〉
= 〈V ·m | (V,m) ∈ (⊗L)×M〉(

here, we substituted (V,m) for
(
αf × id

)
(U,m) =

(
αf (U) ,m

)
,

because the map αf × id is a bijection

)
= (⊗L) ·M.

This proves Lemma 60 (c).
Note that we could also have derived Lemma 60 (a) from Theorem 11, but we

prefer the inductive approach.
Now we can prove:
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Theorem 61. Let k be a commutative ring. Let L be a k-module. Let
h : L×L→ k be a bilinear form. Let M and N be two k-submodules of L
such that h (M ×M) = 0 and L = M ⊕N . Then:

(a) For every bilinear form g : L × L → k, there exists a k-module iso-
morphism Cl (L, g)→ Cl (L, h+ g) which sends the k-submodule Cl (L, g) ·
ϕg (M) of Cl (L, g) to the k-submodule Cl (L, h+ g)·ϕh+g (M) of Cl (L, h+ g).

(b) There exists a k-module isomorphism ∧L→ Cl (L, h) which sends the
k-submodule (∧L) · ϕ0 (M) of ∧L to the k-submodule Cl (L, h) · ϕh (M) of
Cl (L, h). Therefore,

(Cl (L, h))� (Cl (L, h) · ϕh (M)) ∼= (∧L)� ((∧L) · ϕ0 (M)) ∼= ∧ (L�M) ∼= ∧N

as k-modules.

(c) Let projM be the projection from L on M with kernel N , and let projN
be the projection from L on N with kernel M . (These two projections are
well-defined because L = M ⊕N). Define a map f : L× L→ k by

(f (u, v) = h (projM u, v) + h (projN v, u) for every (u, v) ∈ L× L) .
(116)

Then, f is a bilinear form satisfying f (L×M) = 0. Also,

f (v, v) = h (v, v) for every v ∈ L. (117)

As a consequence, If = Ih and Cl (L, f) = Cl (L, h). Moreover, If+g = Ih+g,
and Cl (L, f + g) = Cl (L, h+ g) for every bilinear form g : L × L → k.
We also have αf ((⊗L) ·M) = (⊗L) ·M . Finally, for every bilinear form
g : L×L→ k, the isomorphism αfg : Cl (L, g)→ Cl (L, g + f) is a k-module
isomorphism from Cl (L, g) to Cl (L, h+ g) satisfying

αfg (Cl (L, g) · ϕg (M)) = Cl (L, h+ g) · ϕh+g (M) . (118)

Proof of Theorem 61. (c) Clearly, both projections projM and projN are k-linear
maps, and h is bilinear (because h is a bilinear form). This yields that the map f is
bilinear (because f was defined by (116)).

Since projM is the projection from L on M with kernel N , we have N = Ker projM
and M = projM L.

Since projN is the projection from L on N with kernel M , we have M = Ker projN
and N = projN L.

Every (u, v) ∈ L ×M satisfies f (u, v) = 0. 75 In other words, f (L×M) = 0.
According to Lemma 60 (c), this yields αf ((⊗L) ·M) = (⊗L) ·M .

75Proof. Let (u, v) ∈ L × M be arbitrary. Then, u ∈ L and v ∈ M . Now, u ∈ L leads to
projM u ∈ projM L = M , so that (projM u, v) ∈M ×M and thus h (projM u, v) ∈ h (M ×M) = 0. In
other words, h (projM u, v) = 0. Now,

f (u, v) = h (projM u, v)︸ ︷︷ ︸
=0

+h

 projN v︸ ︷︷ ︸
=0 (since v∈M=Ker projN )

, u

 = 0 + h (0, u)︸ ︷︷ ︸
=0 (since h is bilinear)

= 0 + 0 = 0,

qed.
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Every v ∈ L satisfies v = projM v + projN v. 76 But every v ∈ L satisfies

f (v, v) = h (projM v, v) + h (projN v, v) (by (116), applied to u = v)

= h

projM v + projN v︸ ︷︷ ︸
=v

, v

 (since h is bilinear)

= h (v, v) .

This proves (117).
Every bilinear form g : L× L→ k satisfies

(f + g) (v, v) = f (v, v)︸ ︷︷ ︸
=h(v,v) (due to (117))

+g (v, v) = h (v, v) + g (v, v) = (h+ g) (v, v)

for every v ∈ L. Therefore, every bilinear form g : L× L→ k satisfies

If+g = (⊗L) ·

〈
v ⊗ v − (f + g) (v, v)︸ ︷︷ ︸

=(h+g)(v,v)

| v ∈ L

〉
· (⊗L) (by the definition of If+g)

= (⊗L) · 〈v ⊗ v − (h+ g) (v, v) | v ∈ L〉 · (⊗L) = Ih+g(
since Ih+g = (⊗L) · 〈v ⊗ v − (h+ g) (v, v) | v ∈ L〉 · (⊗L)

by the definition of Ih+g

)
and

Cl (L, f + g) = (⊗L)�If+g (by the definition of Cl (L, f + g))

= (⊗L)�Ih+g (since If+g = Ih+g)

= Cl (L, h+ g)

(since Cl (L, h+ g) = (⊗L)�Ih+g by the definition of Cl (L, h+ g)) .

Applying this to g = 0, we obtain that If+0 = Ih+0 and Cl (L, f + 0) = Cl (L, h+ 0).
In other words, If = Ih and Cl (L, f) = Cl (L, h).

76Proof. Let v ∈ L be arbitrary. Then, v ∈ L = M ⊕N , so that there exist two elements m ∈ M
and n ∈ N such that v = m + n. Consider these m and n. We have projM m = m (since m ∈ M ,
while projM is a projection on M) and projM n = 0 (since n ∈ N = Ker projM ). Thus,

projM v︸︷︷︸
=m+n

= projM (m+ n) = projM m︸ ︷︷ ︸
=m

+ projM n︸ ︷︷ ︸
=0

(since projM is k-linear)

= m.

Further, projN n = n (since n ∈ N , while projN is a projection on N) and projN m = 0 (since
m ∈M = Ker projN ). Thus,

projN v︸︷︷︸
=m+n

= projN (m+ n) = projN m︸ ︷︷ ︸
=0

+ projN n︸ ︷︷ ︸
=n

(since projN is k-linear)

= n.

Now, v = m︸︷︷︸
=projM v

+ n︸︷︷︸
=projN v

= projM v + projN v, qed.
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Now let g : L × L → k be any bilinear form. We know from Theorem 33 (applied
to f and g instead of g and f) that αfg : Cl (L, g) → Cl (L, g + f) is a k-module
isomorphism. Since Cl (L, g + f) = Cl (L, f + g) = Cl (L, h+ g), this yields that αfg is
a k-module isomorphism from Cl (L, g) to Cl (L, h+ g). Now let us prove (118).

By the definition of ϕg, we have ϕg = projg ◦ inj. Thus, ϕg (M) =
(
projg ◦ inj

)
(M) =

projg (injM) = projgM (since we identifyM with injM). On the other hand, Cl (L, g) =
projg (⊗L) (since projg is the projection ⊗L → Cl (L, g), and therefore surjective).
Thus,

Cl (L, g)︸ ︷︷ ︸
=projg(⊗L)

·ϕg (M)︸ ︷︷ ︸
=projgM

=
(
projg (⊗L)

)
·
(
projgM

)
= projg ((⊗L) ·M)

(
since projg is a k-algebra homomorphism

)
,

so that

αfg (Cl (L, g) · ϕg (M)) = αfg
(
projg ((⊗L) ·M)

)
=
(
αfg ◦ projg

)
((⊗L) ·M) . (119)

Now let us recall how the homomorphism αfg was defined: It was defined as the
k-module homomorphism (⊗L)�Ig → (⊗L)�Ig+f induced by the k-module homo-
morphism αf : ⊗L→ ⊗L. Thus, αfg ◦ projg = projg+f ◦αf . Hence, (119) becomes

αfg (Cl (L, g) · ϕg (M)) =
(
αfg ◦ projg

)︸ ︷︷ ︸
=projg+f ◦αf

((⊗L) ·M) =
(
projg+f ◦αf

)
((⊗L) ·M)

= projg+f

αf ((⊗L) ·M)︸ ︷︷ ︸
=(⊗L)·M

 = projg+f ((⊗L) ·M)

=
(
projg+f (⊗L)

)
·
(
projg+f M

)
(120)(

since projg+f is a k-algebra homomorphism
)
.

By the definition of ϕg+f , we have ϕg+f = projg+f ◦ inj. Thus, ϕg+f (M) =(
projg+f ◦ inj

)
(M) = projg+f (injM) = projg+f M (since we identify M with injM).

On the other hand, Cl (L, g + f) = projg+f (⊗L) (since projg+f is the projection
⊗L→ Cl (L, g + f), and therefore surjective).

But Cl (L, g + f) = Cl (L, h+ g). By the definition of ϕg+f , we have

ϕg+f =

the canonical projection ⊗ L→ Cl (L, g + f)︸ ︷︷ ︸
=Cl(L,h+g)


= (the canonical projection ⊗ L→ Cl (L, h+ g)) = ϕh+g

(since ϕh+g was defined as the canonical projection ⊗L→ Cl (L, h+ g)).
Thus, (120) becomes

αfg (Cl (L, g) · ϕg (M)) =
(
projg+f (⊗L)

)︸ ︷︷ ︸
=Cl(L,g+f)=Cl(L,h+g)

·
(
projg+f M

)︸ ︷︷ ︸
=ϕg+f (M)

= Cl (L, h+ g) · ϕg+f︸︷︷︸
=ϕh+g

(M) = Cl (L, h+ g) · ϕh+g (M) .
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This proves Theorem 61 (c).
(a) Let g : L× L→ k be a bilinear form. Define a bilinear form f : L× L→ k as

in Theorem 61 (c).
We know (from Theorem 61 (c)) that αfg is a k-module isomorphism Cl (L, g) →

Cl (L, h+ g) which sends the k-submodule Cl (L, g) · ϕg (M) of Cl (L, g) to the k-
submodule Cl (L, h+ g) · ϕh+g (M) of Cl (L, h+ g) (due to (118)). Thus, there ex-
ists a k-module isomorphism Cl (L, g) → Cl (L, h+ g) which sends the k-submodule
Cl (L, g)·ϕg (M) of Cl (L, g) to the k-submodule Cl (L, h+ g)·ϕh+g (M) of Cl (L, h+ g).
This proves Theorem 61 (a).

(b) Applying Theorem 61 (a) to g = 0, we conclude that there exists a k-module
isomorphism Cl (L,0)→ Cl (L, h+ 0) which sends the k-submodule Cl (L,0) · ϕ0 (M)
of Cl (L,0) to the k-submodule Cl (L, h+ 0) · ϕh+0 (M) of Cl (L, h+ 0).

Since Cl (L,0) = ∧L and h + 0 = h, this rewrites as follows: There exists a k-
module isomorphism ∧L → Cl (L, h) which sends the k-submodule (∧L) · ϕ0 (M) of
Cl (L,0) to the k-submodule Cl (L, h) · ϕh (M) of Cl (L, h).

This isomorphism therefore induces an isomorphism between the factor module
(∧L)� ((∧L) · ϕ0 (M)) and the factor module (Cl (L, h))� (Cl (L, h) · ϕh (M)). We
thus have

(Cl (L, h))� (Cl (L, h) · ϕh (M))
∼= (∧L)� ((∧L) · ϕ0 (M))

∼= ∧ (L�M)

(
due to Corollary 80 (b) from [5] (applied to

L and M instead of V and W )

)
∼= ∧N (since L = M ⊕N yields L�M ∼= N)

as k-modules. This proves Theorem 61 (b).
Note that Theorem 61 (b) was inspired by the results of the paper [6] by Calaque,

Căldăraru and Tu. They considered, instead of a bilinear form h, a Lie bracket on L,
and instead of h (M ×M) = 0 they required [M,M ] ⊆M . In this situation, analogues
of Theorem 61 (b) for the universal enveloping algebra instead of the Clifford algebra
were shown; however, these analogues are much harder and require some additional
conditions.
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