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These are corrections and comments to the “Lecture Notes on Cherednik Algebras”
by Pavel Etingof and Xiaoguang Ma. In their current form, they cover only the first
ca. 10 pages of the notes.

Section 1

• Page 4: Replace “irrieducible” by “irreducible”.

• Page 5: Replace “shperical” by “spherical”.

Section 2

• Page 6, Theorem 2.1: I think the words “rational coefficients”, “lower or-
der terms” and “homogeneous” need some more explanations. Here is how I
understand them; please correct me if I am getting something wrong:

“rational coefficients” means “coefficients which are rational functions in the vari-
ables x1, x2, ..., xn” (not “coefficients which are rational numbers” or “coefficients
which are polynomials over Q”).

“lower order terms” means the following: Let D be the C-algebra of all partial
differential operators in the variables x1, x2, ..., xn whose coefficients are rational
functions in the variables x1, x2, ..., xn. Define a C-algebra filtration on D by
requiring that all rational functions in x1, x2, ..., xn are in filtration degree 0, and

all
∂

∂xj
are in filtration degree 1. Then,

Lj =
n∑
i=1

(
∂

∂xi

)j
+ lower order terms

means that

Lj ≡
n∑
i=1

(
∂

∂xi

)j
mod ((j − 1) -th filtered part of D) .

And the order of a partial differential operator E ∈ D means the smallest n ∈ N
such that E lies in the n-th filtered part of D. Am I seeing this right?

Note that this C-algebra filtration on D can be also characterized differently:
Let Dconst denote the C-algebra of all partial differential operators in the vari-
ables x1, x2, ..., xn whose coefficients are constant. Let the unadorned ⊗ sign
denote ⊗C. Then, D = C (x1, x2, ..., xn) ⊗ Dconst as vector spaces. Since the

algebra Dconst is canonically graded (by giving all
∂

∂xj
the degree 1) and the
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algebra C (x1, x2, ..., xn) is trivially graded (by giving its every element the de-
gree 0), the tensor product C (x1, x2, ..., xn) ⊗Dconst is also graded. Since D =
C (x1, x2, ..., xn) ⊗ Dconst as vector spaces, this yields that the vector space D
is also graded (albeit this is not a grading of the C-algebra D, since generally
D 6= C (x1, x2, ..., xn)⊗Dconst as algebras), hence filtered. This filtration is easily
seen to be the same filtration on D as defined above.)

Note that as vector spaces,

(j-th filtered part of D)� ((j − 1) -th filtered part of D)
∼= (j-th graded part of D)

(since the filtration of D comes from a vector space grading on D)

= (j-th graded part of C (x1, x2, ..., xn)⊗Dconst)

= C (x1, x2, ..., xn)⊗ (j-th graded part of Dconst)

(since C (x1, x2, ..., xn) is concentrated in degree 0) .

“homogeneous” means the following: Let Dhom be the C-subalgebra of the algebra
D (defined above) generated by all homogeneous rational functions in x1, x2, ..., xn

and the derivations
∂

∂xj
. This is a graded algebra, where the degree of a homo-

geneous rational function is its usual degree, and the degree of a derivation
∂

∂xj
is −1. Then, when we say that a differential operator in D is homogeneous of
degree k (for some integer k), we mean that this operator lies in Dhom and has
degree k.

• Page 6, four lines above Definition 2.3: You speak of an “inner product”.
Maybe point out that it is supposed to be bilinear, not sesquilinear (some people
might be confused).

• Page 6, two lines above Definition 2.3: You say “equivalently, s is conjugate
to diag (−1, 1, ..., 1)”. Conjugate where? in GL (h) or in O (h) ? In this case,
both are true (as long as we suppose s to lie in O (h)), but it would be better if
you would point this out more explicitly.

• Page 6, Theorem 2.4, and many times after: I think Theorem 2.4 is called
the Chevalley-Shephard-Todd theorem, with two “h”’s in “Shephard” (cf. http:
//en.wikipedia.org/wiki/Geoffrey_Colin_Shephard ).

• Page 6, one line below Theorem 2.4: Maybe add “if G is a complex reflection
group” into the sentence that comes directly after Theorem 2.4.

• Page 6, two lines below Theorem 2.4: You write: “The numbers di are
uniquely determined”. You need to add here that you require d1 ≤ d2 ≤ ... ≤
ddim h (else, the “L1 = H” part of Theorem 2.9 makes no sense).

• Page 7, Example 2.5: It is not clear what pi are, and why you write Pi (p1, ..., pn)
(the pi are definitely not polynomial variables, since they are algebraically de-
pendent). Let me just record the answer (which you explained in an email): You
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want pi = ei −
e1 + e2 + · · ·+ en

n
∈ h (where e1, e2, ..., en are the standard basis

vectors of Cn), and instead of Pi (p1, ..., pn) you simply want to write Pi.

• Page 7, between Definition 2.6 and Example 2.7: You write: “Note that
by Chevalley’s theorem, a parabolic subgroup of a complex (respectively, real)
reflection group is itself a complex (respectively, real) reflection group.” What
Chevalley’s theorem do you mean? If you are applying Theorem 2.4, isn’t it quite
an overkill? (Or is there really no simpler proof?)

• Page 7, between Example 2.7 and §2.4: You write: “and we can define the
open set h∗G

′
reg of all λ ∈ hG

′
for which Gλ = G′”. I think the “hG

′
” should be

“h∗G
′
” here.

• Page 7, first line of §2.4: Replace “Let s ⊂ GL (h)” by “Let s ∈ GL (h)”.

• Page 7, second line of §2.4: You might want to point out that a “nontrivial
eigenvalue” of a reflection means an eigenvalue 6= 1. (Normally, in linear algebra,
I tend to mean 6= 0 by “nontrivial”.)

• Page 7, one line above Definition 2.8: What do you mean by a “conjuga-
tion invariant function”? Invariant under conjugation by elements of W , or by
conjugation by any element of O (h) (or even GL (h) ?) that happens to send an
element of S to another element of S ?

• Page 7, Definition 2.8: This is hardly an error, but maybe it would improve
the exposition if you would define what ∆h means. (It’s just that I don’t like
algebra texts relying on geometry preknowledge.) I assume we can define it by

∆h =
r∑
i=1

∂2
yi

for any orthonormal basis (y1, y2, ..., yr) of h ?

• Page 7, one line above Theorem 2.9: When you write “P1 (p) = p2”, it
wouldn’t hurt to point out that p is a variable vector in h∗ (not h), so “P1 (p) =
p2” describes P1 as a polynomial function on h∗ (that is, an element of C [h∗] =
Sh).

• Page 8, two lines above Remark 2.10: You write: “This theorem is obviously
a generalization of Theorem 1 about W = Sn.” Given that the representation
Cn of Sn is not irreducible, while lifting the Lj from the representation Cn−1

of Sn to Cn requires some work (as our emails showed), I don’t think the word
“obviously” is justified here. See below for a proposal how to improve this (by
getting rid of the standing assumption that h be irreducible).

• Page 8, fourth line of §2.5: You write: “We normalize them in such a way
that 〈αs, α∨s 〉 = 2.” At this point, I had to think for a while about why this is
possible (i. e., why we don’t have 〈αs, α∨s 〉 = 0). This is quite easy to see by
diagonalizing the matrix s, but maybe you should make this an explicit exercise.
(Remark 2.13, too, could be an exercise.)

• Page 8, fifth line of §2.5: Again, you speak of a “function invariant with
respect to conjugation”, and it is not clear by what you allow to conjugate. (I
will henceforth assume that you allow conjugation by G.)
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• Page 8, Definition 2.11: Please say that C (h) means the quotient field of
S (h∗). (I know that this follows from standard algebraic geometry notation, but
I didn’t expect that you are using algebraic geometry notation.) Also, please add
“Let a ∈ h.” at the beginning of this Definition.

• Page 8, Proposition 2.14: Beginning with part (i) of this proposition, you
seem to systematically write (·, ·) for the bilinear form on h∗×h that you formerly
denoted by 〈·, ·〉. I don’t like this notation very much, because (·, ·) already means
two different bilinear forms (one on h × h and one on h∗ × h∗) in the case when
G ⊆ O (h), but it’s okay since one can always infer types. But you should point
out the change in notation, or else it appears as if you suddenly switched to the
case G ⊆ O (h) !

• Page 9, proof of Theorem 2.15: I think that

−
∑
s∈S

cs (a, αs) (x, α∨s ) (b, αs) sDα∨s ·
1− λ−1

s

2

should be

−
∑
s∈S

cs (a, αs) (x, α∨s ) (b, αs) sDα∨s ·
1− λs

2

(leaving aside the fact that you are still using the notation (·, ·) for what was
formerly called 〈·, ·〉). To make sure that I haven’t done any mistakes, let me
write up the details of this computation. (They are completely straightforward
and I don’t think you should explicit them in the paper, but I am doing them
here so you can tell me where I am going wrong.)

It is clearly enough to prove that every s ∈ S satisfies

[s,Db] = 〈b, αs〉 sDα∨s ·
1− λs

2
. (1)

First, we show that

every b ∈ h satisfies b− s−1b =
1− λs

2
〈b, αs〉α∨s . (2)

(This is similar to Proposition 2.14 (i), but with h instead of h∗.)

Proof of (2): WLOG, assume that h = Cn, s = diag (λs, 1, 1, ..., 1), αs = e∗1 and
α∨s = 2e1, where (e1, e2, ..., en) is the standard basis of Cn and (e∗1, e

∗
2, ..., e

∗
n) is its

dual basis. (This situation can always be achieved by an appropriate change of
basis in h.) By linearity, it is enough to prove (2) in the cases when b = ei for
i ∈ {1, 2, ..., n}. So consider this case. If i > 1, then both sides of (2) are 0, and

thus (2) holds. Remains the case i = 1. In this case, b = e1 =
1

2
α∨s , so that

b− s−1b =
1

2

α∨s − s−1α∨s︸ ︷︷ ︸
=λsα∨s

 =
1− λs

2
α∨s
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and
1− λs

2

〈
b︸︷︷︸

=e1

, αs︸︷︷︸
=e∗1

〉
α∨s =

1− λs
2
〈e1, e

∗
1〉︸ ︷︷ ︸

=1

α∨s =
1− λs

2
α∨s .

Thus, (2) holds in the case i = 1 as well, and thus (2) is proven.

Proof of (1): We have

[s,Db] = sDb −Dbs = s

Db − s−1Dbs︸ ︷︷ ︸
=Ds−1b

(by Proposition 2.14 (ii))


= s (Db −Ds−1b)︸ ︷︷ ︸

=Db−s−1b=D1− λs
2

〈b,αs〉α∨s

(by (1))

= sD1− λs
2

〈b,αs〉α∨s

= 〈b, αs〉 sDα∨s ·
1− λs

2
, and (1) is proven.

• Page 9, proof of Theorem 2.15: You write: “since this algebra acts faithfully
on C (h)” (where “this algebra” is the semidirect product CG n D (hreg)). I am
wondering how you prove this. I have a proof, but it is rather messy: First, the
claim that CG n D (hreg) acts faithfully on C (h) can be rewritten as follows: If
(Dg)g∈G is a family of differential operators indexed by elements of G such that∑
g∈G

gDg is 0 as an endomorphism of C (h), then each g ∈ G satisfies Dg = 0.

To prove this, we first notice that we can WLOG assume that every Dg has
polynomial coefficients (because we can move denominators to the left, moving
them past derivations by means of the quotient rule and moving them past the
g’s by using the formula

g ◦ f = (gf) g for any g ∈ G and f ∈ C (h)

). Now, let v ∈ h be a point which is not fixed by any g ∈ G� {id}. Recall that∑
g∈G

gDg is 0 as an endomorphism of C (h). In particular,
∑
g∈G

gDg acts as 0 on

C [h]. Thus, for every p ∈ C [h], a certain C [h]-linear combination of the partial
derivatives of p (of various orders) taken at the points gv for varying g ∈ G is
identically 0 (and the coefficients of this combination don’t depend on p). But
since we can find a polynomial with any given set of finitely many prescribed
values of partial derivatives at finitely many points1, this yields that the C [h]-
linear combination must be trivial at v; in other words, Dg is identically 0 at v

1This follows from the Chinese remainder theorem, applied to the ring C [h]. In fact, by prescribing
the values of finitely many partial derivatives of a polynomial p ∈ C [h] at some point w ∈ h, we put
a condition on the residue class of p modulo a certain power of the maximal ideal mw ⊆ h (where
mw is the ideal of all polynomials that vanish at w). Such a condition is always satisfiable. Thus, if
we prescribe the values of finitely many partial derivatives of a polynomial p ∈ C [h] at finitely many
points w1, w2, ..., w` ∈ h, we put conditions on the residue classes of p modulo powers of mw1

, mw2
,

..., mw`
. Each of these ` conditions alone is satisfiable; thus, the conjunction of these ` conditions
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for every g ∈ G. Since this holds for every point v ∈ h which is not fixed by any
g ∈ G� {id}, and since the set of such points is Zariski-dense in h, this yields
that Dg is identically 0 everywhere for every g ∈ G. This proves that each g ∈ G
satisfies Dg = 0, qed.

• Page 9, §2.6, just before Proposition 2.16: It would be nice to explain when
an element of CW nD (hreg) or an operator on the space of regular functions of
hreg is said to be W -invariant. (Short answer: When it commutes with every
g ∈ W .)

• Page 10, two lines above Corollary 2.17: You write: “the algebra (Sh)W

is free”. By “free”, you mean “free as a commutative algebra”, not “free as an
algebra”. (I know, this is some nitpicking.)

• Page 10, Corollary 2.17: In my opinion, you should explain what Pj (Dy1 , ..., Dyr)
means, because Pj is just an element of Sh, and not a polynomial. (The meaning
of Pj (Dy1 , ..., Dyr) is the following: Since {y1, y2, ..., yr} is a basis of h, we can
identify the symmetric algebra Sh with the ring of polynomials in the r variables
y1, y2, ..., yr over C. Thus, Pj ∈ Sh becomes a polynomial in the r variables y1,
y2, ..., yr. If we now substitute Dy1 , Dy2 , ..., Dyr for these variables y1, y2, ..., yr
in Pj (this is allowed because the Dunkl operators Da commute), we obtain an
element of CW nD (hreg). This element is what you denote by Pj (Dy1 , ..., Dyr).

• Page 10, proof of Corollary 2.17: Replace “Lj” by “Lj” twice in this proof.

• Page 10, proof of Corollary 2.17: This proof would be more readable if you
would explain why the Pj (Dy1 , ..., Dyr) is W -invariant for all j. The proof is not
too immediate:

First, it is easy to see that the map

h→ CW nD (hreg) ,

a 7→ Da

is C-linear2. Denote this map by T .

Since {y1, y2, ..., yr} is a basis of h, we can identify the symmetric algebra Sh
with the ring of polynomials in the r variables y1, y2, ..., yr over C. Thus,
every P ∈ Sh becomes a polynomial in the r variables y1, y2, ..., yr. As a
consequence, for every P ∈ Sh, we will denote by P (Dy1 , Dy2 , ..., Dyr) the result
of substituting Dy1 , Dy2 , ..., Dyr for these variables y1, y2, ..., yr in P . When

is also satisfiable (because the Chinese remainder theorem says that (C [h])�
(
mα1
w1

mα2
w2
...mα`

w`

)
=∏̀

i=1

(C [h])�mαi
wi

, so that every `-tuple in
∏̀
i=1

(C [h])�mαi
wi

has a common representative in C [h]), i. e.,

we can find a polynomial with our given set of prescribed values.
2This is because the map

h→ CW nD (hreg) ,

a 7→ ∂a

is C-linear, and because αs is C-linear for every s ∈W .
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P ∈ h, then P (Dy1 , Dy2 , ..., Dyr) is a C-linear combination of Dy1 , Dy2 , ..., Dyr

(here, we regard h as a subspace of Sh, so P ∈ h yields P ∈ Sh).

It is easy to see that

every a ∈ h satisfies Da = a (Dy1 , Dy2 , ..., Dyr) (3)

(where a (Dy1 , Dy2 , ..., Dyr) is to be understood as just explained, with a being
regarded as an element of Sh). (In fact, the equation (3) is C-linear in a (because
of the C-linearity of T ), and thus in order to prove it for all a ∈ h, it is enough
to prove it in the case when a ∈ {y1, y2, ..., yr} (since {y1, y2, ..., yr} is a basis of
h), but in this case it is trivial.)

Now, for any j ∈ {1, 2, ..., dim h} and any g ∈ W , we have

gPj (Dy1 , ..., Dyr) g
−1

= Pj
(
gDy1g

−1, ..., gDyrg
−1
)

(since conjugation by g is an algebra automorphism)

= Pj (Dgy1 , ..., Dgyr)
(
since gDyig

−1 = Dgyi for every i due to Proposition 2.14 (ii)
)

= Pj ((gy1) (Dy1 , Dy2 , ..., Dyr) , ..., (gyr) (Dy1 , Dy2 , ..., Dyr))

(since (3) yields that Dgyi = (gyi) (Dy1 , Dy2 , ..., Dyr) for every i)

= (Pj (gy1, ..., gyr))︸ ︷︷ ︸
=gPj=Pj

(since Pj∈(Sh)W )

(Dy1 , ..., Dyr)

(
here (as explained above) (Pj (gy1, ..., gyr)) (Dy1 , ..., Dyr) means

“the polynomial Pj (gy1, ..., gyr) with Dy1 , Dy2 , ..., Dyr substituted for y1, y2, ..., yr”

)
= Pj (Dy1 , ..., Dyr) ,

so that Pj (Dy1 , ..., Dyr) is W -invariant, qed.

The main idea of this proof, I think, was the C-linearity of T . While trivial, it is
(in my opinion) unexpected for such a complicated map.

• Pages 7-10: Here are various suggested changes to make the proofs clearer (these
changes should be made at the same time, as they depend one on another):

– In Theorem 2.9, add the claim that the Lj are W -invariant. (Otherwise, The-
orem 2.1 doesn’t directly follow from Theorem 2.9, because Theorem 2.1 claims
the Sn-invariance of the Lj.)

– In Corollary 2.17, add the claim that the Lj are W -invariant. (Otherwise,
Theorem 2.9 with the added claim that the Lj are W -invariant doesn’t directly
follow from Theorem 2.9.)

– On page 9, you write:

“For any element B ∈ CW nD (hreg), define m (B) to be the differential operator

C (h)W → C (h), defined by B. That is, if B =
∑

g∈W Bgg, Bg ∈ D (hreg), then
m (B) =

∑
g∈W Bg.”

This is slightly confusing, since you later (in the proof of Corollary 2.17) want
m (B) to be defined on the whole C (h) rather than just on C (h)W . In my opinion,
you should replace the text I’ve just quoted by the following:
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“For any element B ∈ CW n D (hreg), define a differential operator m (B) ∈
D (hreg) by m (B) =

∑
g∈W

Bg, where B is being written in the form B =
∑
g∈W

Bgg

with Bg ∈ D (hreg). The differential operator B defined this way satisfies the
following properties:

(i) If f ∈ C (h)W , then m (B) f = Bf .

(ii) If B ∈ CW nD (hreg) is W -invariant, then m (B) is W -invariant as well3.

(iii) Any s ∈ W and any B ∈ CW n D (hreg) satisfy m (B) = m (Bs). (This
is used, e. g., in the proof that m

(
D2
y

)
= m (Dy∂y) in the proof of Proposition

3Proof. Let B ∈ CW n D (hreg) be W -invariant. Write B in the form B =
∑
g∈W

Bgg with Bg ∈

D (hreg). Then, m (B) =
∑
g∈W

Bg. Let h ∈W . Since B is W -invariant, we have hB = Bh, so that

∑
g∈W

hBgg = h
∑
g∈W

Bgg︸ ︷︷ ︸
=B

= hB = B︸︷︷︸
=

∑
g∈W

Bgg

h =
∑
g∈W

Bggh =
∑
g∈W

Bgh−1g h−1h︸ ︷︷ ︸
=id

(
here, we substituted gh−1 for g in the sum

(since the map W →W, g 7→ gh−1 is a bijection)

)
=
∑
g∈W

Bgh−1g.

Compared to∑
g∈W

hBg g︸︷︷︸
=h−1hg

=
∑
g∈W

hBgh
−1hg =

∑
g∈W

hBgh
−1hg =

∑
g∈W

hBh−1gh
−1 hh−1︸ ︷︷ ︸

=id

g

(
here, we substituted h−1g for g in the sum

(since the map W →W, g 7→ h−1g is a bijection)

)
=
∑
g∈W

hBh−1gh
−1g,

this yields
∑
g∈W

Bgh−1g =
∑
g∈W

hBh−1gh
−1g. Notice that every g ∈ W satisfies Bgh−1 ∈ D (hreg) and

hBh−1gh
−1 ∈ D (hreg).

But any element of CWnD (hreg) can be uniquely written in the form
∑
g∈W

Cgg with Cg ∈ D (hreg).

Hence, if we have
∑
g∈W

Cgg =
∑
g∈W

Dgg for some choice of Cg ∈ D (hreg) and Dg ∈ D (hreg), then every

g ∈W satisfies Cg = Dg. Applied to Cg = Bgh−1 and Cg = hBh−1gh
−1, this yields that

every g ∈W satisfies Bgh−1 = hBh−1gh
−1

(because
∑
g∈W

Bgh−1g =
∑
g∈W

hBh−1gh
−1g). Hence,

∑
g∈W

Bgh−1 =
∑
g∈W

hBh−1gh
−1 =

∑
g∈W

hBgh
−1

(
here, we substituted g for h−1g in the sum

(since the map W →W, g 7→ h−1g is a bijection)

)

= h

∑
g∈W

Bg


︸ ︷︷ ︸

=m(B)

h−1 = hm (B)h−1.
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2.16.)

(iv) Any A ∈ CW n D (hreg) and any W -invariant B ∈ CW n D (hreg) satisfy
m (AB) = m (A)m (B).”

• Pages 7-10: In much of Section 2, you work with a standing assumption re-
quiring that h be an irreducible W -module. This makes deducing Theorem 2.1
from Theorem 2.9 unnecessarily hard. There is a very easy way to get rid of the
standing assumption:

– On page 7, replace “Let us assume that h is an irreducible representation
of W (i. e. W is an irreducible finite Coxeter group, and h is its reflection
representation.) In this case, we can take P1 (p) = p2” by “Note that if h is an
irreducible representation of W (i. e. W is an irreducible finite Coxeter group,
and h is its reflection representation), then we can take P1 (p) = p2. If W = Sn

and h = Cn (with the standard permutation representation of Sn), then we can
take P2 (p) = p2”.

– In Theorem 2.9, replace “L1 = H” by “if ` ∈ {1, 2, ..., dim h} is such that
P` (p) = p2, then L` = H”.

– One line above Corollary 2.17, replace “P1 = p2” by “P1”.

– In Corollary 2.17, replace “L1 = H” by “if ` ∈ {1, 2, ..., dim h} is such that
P` (p) = p2, then L` = H”.

• Page 10, proof of Proposition 2.18: The expression “
r∑
i=1

∂yi (log δc) ∂yi” is

ambiguous: Does ∂yi (log δc) mean the product ∂yi · (log δc) in D (hreg) or the
yi-derivative of log δc ? (I know it means the latter.)

• Page 10, proof of Proposition 2.18: As I don’t like this proof (it uses a
strange function δc, which is in general not algebraic and doesn’t have a very
obvious interpretation as a power series), let me reformulate it in a more algebraic
way. First, I will show some lemmas:

Lemma 2.18a. Let A and D be C-algebras. Let G be a subset of A which
generates A as a C-algebra. Let f : A→ D be a C-linear map. Assume that

f (ab) = f (a) f (b) for every a ∈ G and b ∈ A.

Also, assume that f (1) = 1. Then, f is a C-algebra homomorphism.

Proof of Lemma 2.18a. Let H be the subset

{x ∈ A | f (xb) = f (x) f (b) for every b ∈ A} .

Compared to∑
g∈W

Bgh−1 =
∑
g∈W

Bg

(
here, we substituted g for gh−1 in the sum

(since the map W →W, g 7→ gh−1 is a bijection)

)
= m (B) ,

this yields m (B) = hm (B)h−1, so that m (B)h = hm (B).
Since this holds for every h ∈W , this yields that m (B) is W -invariant, qed.
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Every a ∈ G satisfies a ∈ H (because every a ∈ G satisfies f (ab) = f (a) f (b) for
every b ∈ A, and thus a ∈ {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A} = H).
In other words, G ⊆ H.

Also, any λ ∈ C, µ ∈ C, a ∈ H and a′ ∈ H satisfy λa + µa′ ∈ H 4. Combined
with the trivial fact that 0 ∈ H (this quickly follows from f (0) = 0), this yields
that H is a C-vector subspace of A.

Also, 1 ∈ H (since f

(
1b︸︷︷︸
=b

)
= f (b) = 1︸︷︷︸

=f(1)

f (b) = f (1) f (b) for every b ∈ A,

so that 1 ∈ {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A} = H). Besides, any
a ∈ H and a′ ∈ H satisfy aa′ ∈ H 5. Combining this with the fact that
1 ∈ H and that H is a C-vector subspace of A, we conclude that H is a C-
subalgebra of A. Combined with G ⊆ H, this yields that H is a C-subalgebra
of A containing G as a subset. But since every C-subalgebra of A containing
G as a subset must contain A as a subset6, this yields that H contains A as a
subset. In other words, A ⊆ H. Thus, every a ∈ A satisfies a ∈ A ⊆ H =
{x ∈ A | f (xb) = f (x) f (b) for every b ∈ A}, so that f (ab) = f (a) f (b) for

4Proof. Let λ ∈ C, µ ∈ C, a ∈ H and a′ ∈ H. Since a ∈ H =
{x ∈ A | f (xb) = f (x) f (b) for every b ∈ A}, we have f (ab) = f (a) f (b) for every b ∈ A. Since
a′ ∈ H = {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A}, we have f (a′b) = f (a′) f (b) for every
b ∈ A. Now,

f

(λa+ µa′) b︸ ︷︷ ︸
=λab+µa′b

 = f (λab+ µa′b) = λ f (ab)︸ ︷︷ ︸
=f(a)f(b)

+µ f (a′b)︸ ︷︷ ︸
=f(a′)f(b)

(since f is C-linear)

= λf (a) f (b) + µf (a′) f (b) = (λf (a) + µf (a′))︸ ︷︷ ︸
=f(λa+µa′)

(since f is C-linear)

f (b) = f (λa+ µa′) f (b)

for every b ∈ A. In other words, λa+ µa′ ∈ {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A} = H, qed.
5Proof. Let a ∈ H and a′ ∈ H. Since a ∈ H = {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A}, we

have
f (ab) = f (a) f (b) for every b ∈ A (4)

for every b ∈ A. Since a′ ∈ H = {x ∈ A | f (xb) = f (x) f (b) for every b ∈ A}, we have f (a′b) =
f (a′) f (b) for every b ∈ A. Now, every b ∈ A satisfies

f (aa′b) = f (a) f (a′b)︸ ︷︷ ︸
=f(a′)f(b)

(by (4), applied to a′b instead of b)

= f (a) f (a′) f (b)

and
f (aa′)︸ ︷︷ ︸

=f(a)f(a′)
(by (4), applied to a′

instead of b)

f (b) = f (a) f (a′) f (b) .

Hence, f (aa′b) = f (a) f (a′) f (b) = f (aa′) f (b) for every b ∈ A. Hence, aa′ ∈
{x ∈ A | f (xb) = f (x) f (b) for every b ∈ A} = H, qed.

6Proof. We know that G generates A as a C-algebra. In other words, A is the smallest C-subalgebra
of A containing G as a subset. Hence, every C-subalgebra of A containing G as a subset must contain
A as a subset, qed.
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every b ∈ A.

We thus have proven that every a ∈ A and b ∈ A satisfy f (ab) = f (a) f (b).
Combined with f (1) = 1 and with the C-linearity of the map f , this yields that
f is a C-algebra homomorphism. Lemma 2.18a is proven.

Lemma 2.18b. Let V be a finite-dimensional C-vector space, and let U be a
Zariski-dense open subset of V . Let C [U ] and C [V ] be the coordinate rings of U
and V , respectively (so that C [V ] = S (V ∗), and C [U ] is a localization of C [V ]).
Let τ : V → C [U ] be a C-linear map. Assume that

[∂a + τ (a) , ∂b + τ (b)] = 0 for any a ∈ V and b ∈ V. (5)

Then, there exists a unique C-algebra homomorphism ς : D (U) → D (U) which
satisfies the following two conditions:

Condition 1: We have ς (f) = f for every f ∈ C [U ] (where C [U ] is canonically
embedded into D (U)).

Condition 2: We have ς (∂a) = ∂a + τ (a) for every a ∈ V .

Proof of Lemma 2.18b. Since the C-algebra D (U) is generated by the elements
of C [U ] and the elements ∂a for a ∈ V , it is clear that there exists at most
one C-algebra homomorphism ς : D (U)→ D (U) satisfying Conditions 1 and 2.
Hence, in order to prove that there exists exactly one such homomorphism, we
need only check that there exists at least one such homomorphism. Let us do
this now.

Let Dconst (V ) be the C-algebra of differential operators on V with constant coef-
ficients. Recall that D (U) = C [U ]⊗Dconst (V ) as a vector space (where ⊗ means
⊗C). In particular, for any f ∈ C [U ] and any D ∈ Dconst (V ), the operator
fD ∈ D (U) is the tensor product f ⊗D ∈ C [U ]⊗Dconst (V ).

Moreover, we can define a map ∂ : V → Dconst (V ) by

∂ (v) = ∂v for every v ∈ V.

Then, ∂ is a C-linear injection, and the image ∂ (V ) is the space of all degree-1
differential operators on V with constant coefficients. Denote by ∂−1 : ∂ (V )→ V
the inverse of ∂ on ∂ (V ).

Let D′ be the C-subalgebra of D (U) generated by {∂v + τ (v) | v ∈ V }. Then,
the algebra D′ is commutative (because (5) shows that its generators commute).
Define a k-linear map ξ : V → D′ by

ξ (v) = ∂v + τ (v) for every v ∈ V.

Then, ξ ◦ ∂−1 is a C-linear map ∂ (V ) → D′. By the universal property of the
symmetric algebra, the C-linear map ξ ◦ ∂−1 : ∂ (V )→ D′ can be extended to a
C-algebra homomorphism Ξ : S (∂ (V ))→ D′ such that

Ξ (z) =
(
ξ ◦ ∂−1

)
(z) for every z ∈ ∂ (V ) (6)

(because D′ is commutative). Consider this Ξ.
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Since ∂ (V ) is the space of all degree-1 differential operators on V with con-
stant coefficients, we have Dconst (V ) ∼= S (∂ (V )). Hence, we can regard Ξ :
S (∂ (V )) → D′ as a C-algebra homomorphism Dconst (V ) → D′. Since Ξ is a
C-algebra homomorphism, we have Ξ (1) = 1.

Now, define a C-linear map ς : C [U ]⊗Dconst (V )→ D (U) by

ς (f ⊗D) = fΞ (D) for every f ∈ C [U ] and D ∈ Dconst (V ) .

Since C [U ] ⊗ Dconst (V ) = D (U), this map ς is a C-linear map D (U) → D (U).
We claim that ς is a C-algebra homomorphism satisfying Conditions 1 and 2.

In fact, every f ∈ C [U ] satisfies

ς

 f︸︷︷︸
=f⊗1

 = ς (f ⊗ 1) = f Ξ (1)︸ ︷︷ ︸
=1

(by the definition of ς)

= f.

Thus, ς satisfies Condition 1. Applied to f = 1, Condition 1 yields ς (1) = 1.

Every a ∈ V satisfies

ς

 ∂a︸︷︷︸
=1⊗∂a

 = ζ (1⊗ ∂a) = 1Ξ (∂a) (by the definition of ς)

= Ξ (∂a) =
(
ξ ◦ ∂−1

)
(∂a) (by (6), applied to z = ∂a)

= ξ

 ∂−1 (∂a)︸ ︷︷ ︸
=a

(since ∂a=∂(a))

 = ξ (a) = ∂a + τ (a) (by the definition of ξ) .

Thus, ς satisfies Condition 2.

We now will prove that ς is a C-algebra homomorphism. For this, define a subset
G of D (U) by G = C [U ]∪∂ (V ). Then, G generates D (U) as a C-algebra. Hence,
Lemma 2.18a (applied to A = D (U), D = D (U) and f = ς), in order to prove
that ς is a C-algebra homomorphism, it will be enough to prove that

ς (ab) = ς (a) ς (b) for every a ∈ G and b ∈ D (U) . (7)

So let us prove this now:

Proof of (7): Let a ∈ G and b ∈ D (U). Since the equality (7) is C-linear in b, we
can WLOG assume that b has the form gE for some g ∈ C [U ] and E ∈ D (U)
(because every element of D (U) is a C-linear combination of elements of this
form). Assume this. Thus, b = gE = g ⊗ E. Hence,

ς (b) = ς (g ⊗ E) = gΞ (E) (by the definition of ς) . (8)

Since a ∈ G = C [U ] ∪ ∂ (V ), we have a ∈ C [U ] or a ∈ ∂ (V ). Thus, we must be
in one of the following cases:
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Case 1: We have a ∈ C [U ].

Case 2: We have a ∈ ∂ (V ).

Let us consider Case 1 first. In this case, a ∈ C [U ]. Hence, ς (a) = a (by
Condition 1, applied to f = a), and

ς

a b︸︷︷︸
=gE

 = ς

 agE︸︷︷︸
=ag⊗E

 = ς (ag ⊗ E) = a︸︷︷︸
=ς(a)

gΞ (E)︸ ︷︷ ︸
=ς(b)

(by (8))

(by the definition of ς)

= ς (a) ς (b) .

Hence, (7) is proven in Case 1.

Let us now consider Case 2. In this case, a ∈ ∂ (V ). Thus, there exists some
v ∈ V such that a = ∂v. Consider this v. Let ∂vg denote the product of the
elements ∂v and g in the C-algebra D (V ), whereas ∂v (g) denotes the image of g
under the differential operator ∂v. Then,

∂vg = g∂v + ∂v (g) ,

so that

a︸︷︷︸
=∂v

b︸︷︷︸
=gE

= ∂vg︸︷︷︸
=g∂v+∂v(g)

E = g∂vE + ∂v (g)E = g ⊗ ∂vE + ∂v (g)⊗ E,

and thus

ς (ab) = ς (g ⊗ ∂vE + ∂v (g)⊗ E) = ς (g ⊗ ∂vE)︸ ︷︷ ︸
=gΞ(∂vE)

(by the definition of ς)

+ ς (∂v (g)⊗ E)︸ ︷︷ ︸
=∂v(g)Ξ(E)

(by the definition of ς)

= g Ξ (∂vE)︸ ︷︷ ︸
=Ξ(∂v)Ξ(E)

(since Ξ is a C-algebra
homomorphism)

+∂v (g) Ξ (E) = g Ξ (∂v)︸ ︷︷ ︸
=(ξ◦∂−1)(∂v)

(by (6), applied
to z=∂v)

Ξ (E) + ∂v (g) Ξ (E)

= g
(
ξ ◦ ∂−1

)
(∂v)︸ ︷︷ ︸

=ξ(∂−1(∂v))

Ξ (E) + ∂v (g) Ξ (E) = gξ

 ∂−1 (∂v)︸ ︷︷ ︸
=v

(since ∂v=∂(v))

Ξ (E) + ∂v (g) Ξ (E)

= g ξ (v)︸︷︷︸
=∂v+τ(v)

(by the definition of ξ)

Ξ (E) + ∂v (g) Ξ (E) = g (∂v + τ (v)) Ξ (E) + ∂v (g) Ξ (E)

=

g (∂v + τ (v))︸ ︷︷ ︸
=g∂v+gτ(v)

+∂v (g)

Ξ (E) = (g∂v + gτ (v) + ∂v (g)) Ξ (E) .

On the other hand, Condition 2 (applied to v instead of a) yields ς (∂v) = ∂v +
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τ (v), so that

ς

 a︸︷︷︸
=∂v

 ς

 b︸︷︷︸
=gE=g⊗E

 = ς (∂v)︸ ︷︷ ︸
=∂v+τ(v)

ς (g ⊗ E)︸ ︷︷ ︸
=gΞ(E)

(by the definition of ς)

= (∂v + τ (v)) gΞ (E) = ∂vg︸︷︷︸
=g∂v+∂v(g)

Ξ (E) + τ (v) g︸ ︷︷ ︸
=gτ(v)

Ξ (E)

= g∂vΞ (E) + ∂v (g) Ξ (E) + gτ (v) Ξ (E)

= (g∂v + ∂v (g) + gτ (v)) Ξ (E) = (g∂v + gτ (v) + ∂v (g)) Ξ (E)

= ς (ab) .

Hence, (7) is proven in Case 2.

So we have proven (7) in each of the Cases 1 and 2. Since Cases 1 and 2 are the
only possible cases, this yields that (7) always holds.

Thus, Lemma 2.18a (applied to A = D (U), D = D (U) and f = ς) yields
that ς is a C-algebra homomorphism. Hence, ς is a C-algebra homomorphism
satisfying Conditions 1 and 2. We thus have verified the existence of a C-algebra
homomorphism ς : D (U)→ D (U) satisfying Conditions 1 and 2. This completes
the proof of Lemma 2.18b.

Corollary 2.18c. Let h be a C-vector space. Let S be a finite set. For every
s ∈ S, let cs be an element of C and let αs be an element of h∗. Let hreg be a
Zariski-dense open subset of h such that every a ∈ hreg and every s ∈ S satisfy
αs (a) 6= 0. Then, there exists a unique C-algebra homomorphism ς : D (hreg)→
D (hreg) which satisfies the following two conditions:

Condition 1: We have ς (f) = f for every f ∈ C [hreg] (where C [hreg] is canonically
embedded into D (hreg)).

Condition 2: We have ς (∂a) = ∂a +
∑
s∈S

csαs (a)

αs
for every a ∈ h.

Proof of Corollary 2.18c. Let V = h and U = hreg. Define a C-linear map
τ : h→ C [hreg] by

τ (a) =
∑
s∈S

csαs (a)

αs
for every a ∈ h.

Then, obviously, Conditions 1 and 2 of Corollary 2.18c are equivalent to Condi-
tions 1 and 2 of Lemma 2.18b, respectively.
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Every a ∈ h and b ∈ h satisfy

[∂a + τ (a) , ∂b + τ (b)]

=

[
∂a +

∑
s∈S

csαs (a)

αs
, ∂b +

∑
s∈S

csαs (b)

αs

]
(

since τ (a) =
∑
s∈S

csαs (a)

αs
and τ (b) =

∑
s∈S

csαs (b)

αs

)

= [∂a, ∂b]︸ ︷︷ ︸
=0

+

[
∂a,
∑
s∈S

csαs (b)

αs

]
+

[∑
s∈S

csαs (a)

αs
, ∂b

]
︸ ︷︷ ︸
=−

∂b,∑
s∈S

csαs (a)

αs



+

[∑
s∈S

csαs (a)

αs
,
∑
s∈S

csαs (b)

αs

]
︸ ︷︷ ︸

=0

=

[
∂a,
∑
s∈S

csαs (b)

αs

]
︸ ︷︷ ︸

=∂a

 ∑
s∈S

csαs (b)

αs

=
∑
s∈S

csαs(b)·∂a

 1

αs



−

[
∂b,
∑
s∈S

csαs (a)

αs

]
︸ ︷︷ ︸

=∂b

 ∑
s∈S

csαs (a)

αs

=
∑
s∈S

csαs(a)·∂b

 1

αs


=
∑
s∈S

csαs (b) · ∂a

(
1

αs

)
︸ ︷︷ ︸

=−
∂a (αs)

α2
s

=−
αs (a)

α2
s

(since ∂a(αs)=αs(a) (because αs
is linear))

−
∑
s∈S

csαs (a) · ∂b

(
1

αs

)
︸ ︷︷ ︸

=−
∂b (αs)

α2
s

=.
αs (b)

α2
s

(since ∂b(αs)=αs(b) (because αs
is linear))

=
∑
s∈S

csαs (b) ·
(
−αs (a)

α2
s

)
︸ ︷︷ ︸

=
−csαs (a)αs (b)

α2
s

−
∑
s∈S

csαs (a) ·
(
−αs (b)

α2
s

)
︸ ︷︷ ︸

=
−csαs (a)αs (b)

α2
s

=
∑
s∈S

csαs (a)αs (b)

α2
s

−
∑
s∈S

csαs (a)αs (b)

α2
s

= 0.

Hence, Lemma 2.18b yields that there exists a unique C-algebra homomorphism
ς : D (U) → D (U) which satisfies the Conditions 1 and 2 of Lemma 2.18b. In
other words, there exists a unique C-algebra homomorphism ς : D (U) → D (U)
which satisfies the Conditions 1 and 2 of Corollary 2.18c (because we know that
Conditions 1 and 2 of Corollary 2.18c are equivalent to Conditions 1 and 2 of
Lemma 2.18b, respectively). Corollary 2.18c is thus proven.

Definition. Let h be a C-vector space with a nondegenerate bilinear inner
product (·, ·). Let W ⊆ O (h) be a real reflection group, and S ⊆ W the set of
reflections. Let c : S → C be a function invariant under conjugation (by elements
of W ). For every s ∈ S, we will write cs for c (s). For every s ∈ S, let αs ∈ h∗ be
the unique (up to scaling by an element of C×) nonzero eigenvector of s (acting
on h∗) with eigenvalue −1, and let α∨s ∈ h be the unique (up to scaling by an
element of C×) nonzero eigenvector of s (acting on h) with eigenvalue −1. Define
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H as in Definition 2.8, and define H as in Proposition 2.16. Let hreg be the subset
{x ∈ h | Wx = {id}} of h. According to Corollary 2.18c, there exists a unique
C-algebra homomorphism ς : D (hreg) → D (hreg) which satisfies the Conditions
1 and 2 of Corollary 2.18c7. This homomorphism ς will be denoted by ςc. Due
to Condition 1, it satisfies

ςc (f) = f for every f ∈ C [hreg] (9)

(where C [hreg] is canonically embedded into D (hreg)). Due to Condition 2, it
satisfies

ςc (∂a) = ∂a +
∑
s∈S

csαs (a)

αs
for every a ∈ h. (10)

Remark. In terms of your Proposition 2.18, this homomorphism ςc is the conju-
gation by δc (that is, it is given by D 7→ δ−1

c ◦D ◦ δc). However, our definition of
ςc was purely algebraic, while your δc is a transcendental function (in general).

Now, our elementary version of Proposition 2.18 rewrites as follows:

Proposition 2.18d. We have ςc
(
H
)

= H.

Before we prove this, another lemma:

Lemma 2.18e. Let h be a C-vector space with a nondegenerate bilinear inner
product (·, ·). Let W ⊆ O (h) be a real reflection group, and S ⊆ W the set of
reflections. Let c : S → C be a function invariant under conjugation (by elements
of W ). For every s ∈ S, we will write cs for c (s). For every s ∈ S, let αs ∈ h∗ be
the unique (up to scaling by an element of C×) nonzero eigenvector of s (acting
on h∗) with eigenvalue −1. Let hreg be the subset {x ∈ h | Gx = {id}} of h.
Then:

(a) Every t ∈ S satisfies

t

(∏
s∈S

αs

)
= −

∏
s∈S

αs

(where t

(∏
s∈S

αs

)
denotes the action of t ∈ W on

∏
s∈S

αs ∈ S (h∗)).

(b) We have ∑
s∈S; u∈S;

s 6=u

cscu (αs, αu)

αsαu
= 0.

(c) We have ∑
s∈S; u∈S

cscu (αs, αu)

αsαu
=
∑
s∈S

c2
s (αs, αs)

α2
s

.

Proof of Lemma 2.18e. Let us notice that

if two t ∈ S and s ∈ S satisfy Ker (αt) ⊆ Ker (αs) , then t = s (11)

7In fact, every a ∈ hreg and every s ∈ S satisfy αs (a) 6= 0 (because otherwise, a would be fixed
under s, contradicting Wa = {id}).
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8. As a consequence, the polynomials αs ∈ C [h] for s ∈ S are pairwise coprime.9

Also, for every t ∈ S and every s ∈ S, we have tαs ∈ C×αtst−1
10. In other

words, for every t ∈ S and every s ∈ S, there exists a µt,s ∈ C× such that

tαs = µt,sαtst−1 . (12)

Consider these µt,s.

(a) Let t ∈ S. Then,

t

 ∏
s∈S�{t}

αs

 =
∏

s∈S�{t}

(tαs)︸ ︷︷ ︸
=µt,sαtst−1

=
∏

s∈S�{t}

µt,s
∏

s∈S�{t}

αtst−1

︸ ︷︷ ︸
=

∏
s∈S�{t}

αs

(because the map
S�{t}→S�{t}, s7→tst−1

is a bijection)

=
∏

s∈S�{t}

µt,s
∏

s∈S�{t}

αs.

8Proof of (11): Let t ∈ S and s ∈ S satisfy Ker (αt) ⊆ Ker (αs). Then, Ker (αt) = Ker (αs) (since
Ker (αt) and Ker (αs) are hyperplanes in h, and thus have the same dimension).

But s is the reflection in the hyperplane Ker (αs) (because s is a reflection, and αs ∈ h∗ is the
unique (up to scaling by an element of C×) nonzero eigenvector of s (acting on h∗) with eigenvalue
−1). Similarly, t is the reflection in the hyperplane Ker (αt). Thus,

s =

the reflection in the hyperplane Ker (αs)︸ ︷︷ ︸
=Ker(αt)

 = (the reflection in the hyperplane Ker (αt)) = t,

qed.
9Proof. Assume the contrary. Then, there exist two distinct elements t ∈ S and s ∈ S such

that the polynomials αs and αt have a nontrivial common divisor. Consider these t and s. The
polynomials αs and αt have a nontrivial common divisor, but are both linear. Therefore, αs and αt
must be proportional to each other, i. e., there exists a λ ∈ C× such that αs = λαt. Therefore,
Ker (αt) = Ker (αs), so that t = s (by (11)), contradicting the assumption that t and s be distinct.
This contradiction proves that our assumption was wrong, qed.

10Proof. Let t ∈ S and s ∈ S. Then, αs is a nonzero eigenvector of s (acting on h∗) with eigenvalue
−1. Thus, sαs = −1αs = −αs, so that

(
tst−1

)
(tαs) = t sαs︸︷︷︸

=−αs

= −tαs. In other words, tαs is an

eigenvector of tst−1 (acting on h∗) with eigenvalue −1. Also, tαs 6= 0 (since αs 6= 0). Hence, tαs is a
nonzero eigenvector of tst−1 (acting on h∗) with eigenvalue −1. Thus, tαs ∈ C×αtst−1 (because αtst−1

is the unique (up to scaling by an element of C×) nonzero eigenvector of tst−1 (acting on h∗) with
eigenvalue −1), qed.
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Hence,

t2

 ∏
s∈S�{t}

αs

 = t · t

 ∏
s∈S�{t}

αs


︸ ︷︷ ︸

=
∏

s∈S�{t}
µt,s

∏
s∈S�{t}

αs

=
∏

s∈S�{t}

µt,s · t

(∏
s∈S

αs

)
︸ ︷︷ ︸

=
∏

s∈S�{t}
µt,s

∏
s∈S�{t}

αs

=

 ∏
s∈S�{t}

µt,s

2 ∏
s∈S�{t}

αs.

Compared with t2

( ∏
s∈S�{t}

αs

)
=

∏
s∈S�{t}

αs (because t is a reflection and thus

satisfies t2 = id), this yields

( ∏
s∈S�{t}

µt,s

)2 ∏
s∈S�{t}

αs =
∏

s∈S�{t}
αs. Since

∏
s∈S�{t}

αs

is nonzero, this yields

( ∏
s∈S�{t}

µt,s

)2

= 1. Hence,
∏

s∈S�{t}
µt,s = 1 or

∏
s∈S�{t}

µt,s =

−1.

Let us first assume that
∏

s∈S�{t}
µt,s = −1. In this case,

t

 ∏
s∈S�{t}

αs

 =
∏

s∈S�{t}

µt,s︸ ︷︷ ︸
=−1

∏
s∈S�{t}

αs = −
∏

s∈S�{t}

αs. (13)

Now, Ker (αt) 6⊆
⋃

s∈S; s 6=t
Ker (αs)

11. Hence, there exists a p ∈ Ker (αt) such

that p /∈
⋃

s∈S; s 6=t
Ker (αs). Pick such a p.

Now, t is the reflection in the hyperplane Ker (αt) (because t is a reflection, and
αt ∈ h∗ is the unique (up to scaling by an element of C×) nonzero eigenvector of t
(acting on h∗) with eigenvalue−1). Thus, Ker (αt) = {set of fixed points of t in h}.
Since p ∈ Ker (αt) = {set of fixed points of t in h}, the point p is fixed under t,
so that tp = p and thus t−1p = p. Thus,t

 ∏
s∈S�{t}

αs

 (p) =

 ∏
s∈S�{t}

αs

(t−1p
)︸ ︷︷ ︸

=p

=

 ∏
s∈S�{t}

αs

 (p) .

11Proof. Assume the contrary. Then, Ker (αt) ⊆
⋃

s∈S; s 6=t
Ker (αs). Since Ker (αt) and Ker (αs) are

vector subspaces of h, this yields that there exists some s ∈ S such that s 6= t and Ker (αt) ⊆ Ker (αs)
(because there is a well-known linear-algebraic fact that if a vector subspace U of a finite-dimensional
C-vector space V is a subset of the union

⋃
i∈I

Wi of finitely many subspaces Wi of V , then there exists

some i ∈ I such that U ⊆ Wi). Consider this s. Then, Ker (αt) ⊆ Ker (αs), so that t = s (by (11)),
contradicting s 6= t. This contradiction shows that our assumption was wrong, qed.
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Compared to t
 ∏
s∈S�{t}

αs


︸ ︷︷ ︸

=−
∏

s∈S�{t}
αs

(by (13))

(p) = −

 ∏
s∈S�{t}

αs

 (p) ,

this yields

( ∏
s∈S�{t}

αs

)
(p) = −

( ∏
s∈S�{t}

αs

)
(p). Thus,

( ∏
s∈S�{t}

αs

)
(p) = 0.

In other words,
∏

s∈S�{t}
αs (p) = 0. Hence, there exists some s ∈ S� {t} such that

p ∈ Ker (αs). In other words, p ∈
⋃

s∈S�{t}
Ker (αs) =

⋃
s∈S; s 6=t

Ker (αs), contradict-

ing p /∈
⋃

s∈S; s 6=t
Ker (αs).

This contradiction shows that our assumption (the assumption that
∏

s∈S�{t}
µt,s =

−1) was wrong. So we don’t have
∏

s∈S�{t}
µt,s = −1. Since we know that we have∏

s∈S�{t}
µt,s = 1 or

∏
s∈S�{t}

µt,s = −1, this yields that
∏

s∈S�{t}
µt,s = 1.

But we know that αt is an eigenvector of t (acting on h∗) with eigenvalue −1.
Thus, tαt = −1αt = −αt.
Now,

∏
s∈S

αs = αt ·
∏

s∈S�{t}
αs, so that

t

(∏
s∈S

αs

)
= t

αt · ∏
s∈S�{t}

αs

 = tαt︸︷︷︸
=−αt

· t

 ∏
s∈S�{t}

αs


︸ ︷︷ ︸

=
∏

s∈S�{t}
µt,s

∏
s∈S�{t}

αs

= −
∏

s∈S�{t}

µt,s︸ ︷︷ ︸
=1

·αt
∏

s∈S�{t}

αs︸ ︷︷ ︸
=

∏
s∈S

αs

= −
∏
s∈S

αs.

This proves Lemma 2.18e (a).

(b) Let P be the function∑
s∈S; u∈S;

s 6=u

cscu (αs, αu)

αsαu
∈ C [hreg] .
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Then, every t ∈ S satisfies

tP = t
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu)

αsαu
=

∑
s∈S; u∈S;

s 6=u

cscu (αs, αu)

(tαs) (tαu)
=

∑
s∈S; u∈S;

s 6=u

cscu (tαs, tαu)

(tαs) (tαu)

(since t ∈ S ⊆ W ⊆ O (h) and thus (αs, αu) = (tαs, tαu))

=
∑

s∈S; u∈S;
s6=u

cscu (µt,sαtst−1 , µt,uαtut−1)

µt,sαtst−1 · µt,uαtut−1

(since (12) yields tαs = µt,sαtst−1 and tαu = µt,uαtut−1)

=
∑

s∈S; u∈S;
s 6=u

cscuµt,sµt,u (αtst−1 , αtut−1)

µt,sαtst−1 · µt,uαtut−1

=
∑

s∈S; u∈S;
s 6=u

cscu (αtst−1 , αtut−1)

αtst−1αtut−1

=
∑

s∈S; u∈S;
s 6=u

ctst−1ctut−1 (αtst−1 , αtut−1)

αtst−1αtut−1

(
since the function c is invariant under

conjugation, and thus cs = ctst−1 and cu = ctut−1

)

=
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu)

αsαu here, we substituted (s, u) for (tst−1, tut−1) in the sum, because the map
{(s, u) ∈ S × S | s 6= u} → {(s, u) ∈ S × S | s 6= u} , (s, u) 7→ (tst−1, tut−1)

is a bijection


= P.

Moreover, since P =
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu)

αsαu
and

∏
s∈S

αs =
∏
q∈S

αq, we have

P ·
∏
s∈S

αs =
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu)

αsαu
·
∏
q∈S

αq =
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu) ·

∏
q∈S

αq

αsαu︸ ︷︷ ︸
=

∏
q∈S�{s,u}

αq

=
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu) ·
∏

q∈S�{s,u}

αq.

This yields immediately that P ·
∏
s∈S

αs ∈ C [h] and deg

(
P ·

∏
s∈S

αs

)
≤ |S| − 2.

Also, every t ∈ S satisfies

t

(
P ·
∏
s∈S

αs

)
= tP︸︷︷︸

=P

· t

(∏
s∈S

αs

)
︸ ︷︷ ︸

=−
∏
s∈S

αs

(by Lemma 2.18e (a))

= −P ·
∏
s∈S

αs. (14)
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Thus, for every t ∈ S, we have αt | P ·
∏
s∈S

αs in C [h] 12. Since the polynomials

αs ∈ C [h] for s ∈ S are pairwise coprime, this yields that
∏
t∈S

αt | P ·
∏
s∈S

αs in

C [h] (because C [h] is a unique factorization domain). Since deg

(
P ·

∏
s∈S

αs

)
≤

|S|−2 < |S| = deg

(∏
t∈S

αt

)
, this leads to P ·

∏
s∈S

αs = 0 (because if a polynomial

is divisible by a polynomial of greater degree, then the former polynomial must
be 0). Hence, P = 0 (since C [hreg] is an integral domain, and

∏
s∈S

αs 6= 0). Since

P =
∑

s∈S; u∈S;
s 6=u

cscu (αs, αu)

αsαu
, this rewrites as

∑
s∈S; u∈S;

s 6=u

cscu (αs, αu)

αsαu
= 0. Lemma

2.18e (b) is proven.

(c) We have∑
s∈S; u∈S

cscu (αs, αu)

αsαu
=

∑
s∈S; u∈S;

s 6=u

cscu (αs, αu)

αsαu︸ ︷︷ ︸
=0

(by Lemma 2.18e (b))

+
∑

s∈S; u∈S;
s=u

cscu (αs, αu)

αsαu︸ ︷︷ ︸
=

∑
s∈S

cscs (αs, αs)

αsαs

=
∑
s∈S

cscs (αs, αs)

αsαs
=
∑
s∈S

c2
s (αs, αs)

α2
s

,

and thus Lemma 2.18e (c) is proven.

12Proof. Let t ∈ S. We know that t is the reflection in the hyperplane Ker (αt) (because t is a
reflection, and αt ∈ h∗ is the unique (up to scaling by an element of C×) nonzero eigenvector of t
(acting on h∗) with eigenvalue −1). Thus, Ker (αt) = {set of fixed points of t in h}.

Now, let x ∈ Ker (αt). Then, tx = x (because x ∈ Ker (αt) = {set of fixed points of t in h}) and
thus t−1x = x, so that(

t

(
P ·

∏
s∈S

αs

))
(x) =

(
P ·

∏
s∈S

αs

)t−1x︸︷︷︸
=x

 =

(
P ·

∏
s∈S

αs

)
(x) .

Compared to (
t

(
P ·

∏
s∈S

αs

))
︸ ︷︷ ︸

=−P ·
∏

s∈S
αs

(by (14))

(x) = −

(
P ·

∏
s∈S

αs

)
(x) ,

this yields

(
P ·

∏
s∈S

αs

)
(x) = −

(
P ·

∏
s∈S

αs

)
(x), so that

(
P ·

∏
s∈S

αs

)
(x) = 0.

Now forget that we fixed x. We thus have proven that every x ∈ Ker (αt) satisfies

(
P ·

∏
s∈S

αs

)
(x) =

0. In other words, the polynomial P ·
∏
s∈S

αs vanishes on the kernel of the linear function αt. Thus,

αt | P ·
∏
s∈S

αs in C [h] (because a polynomial which vanishes on the kernel of a linear function must

be divisible by that function), qed.
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Proof of Proposition 2.18d. Let {y1, y2, ..., yr} be an orthonormal basis of h.

Then, by the definition of the Laplace operator, ∆h =
r∑
i=1

∂2
yi

.

For every s ∈ S, we have

r∑
i=1

αs (yi) yi =
1

2
(αs, αs)α

∨
s . (15)

13 Thus, for every s ∈ S, we have

r∑
i=1

αs (yi) ∂yi = ∂ r∑
i=1

αs(yi)yi
= ∂1

2
(αs,αs)α∨s

(by (15))

=
1

2
(αs, αs) ∂α∨s . (16)

13Proof of (15): Let s ∈ S. Then, the bilinear form (·, ·) is W -invariant (because W ⊆ O (h)).
Since the bilinear form (·, ·) is nondegenerate, it induces an isomorphism J : h∗ → h. This isomor-

phism J is W -linear (since (·, ·) is W -invariant). Also, it satisfies

J (ϕ) =

r∑
i=1

ϕ (yi) yi for every ϕ ∈ h∗

(since {y1, y2, ..., yr} is an orthonormal basis of h). Applied to ϕ = αs, this yields

J (αs) =

r∑
i=1

αs (yi) yi.

But since αs is an eigenvector of s (acting on h∗) with eigenvalue −1, we have sαs = −1αs = −αs.
Thus, J (sαs) = J (−αs) = −J (αs). Compared with J (sαs) = sJ (αs) (since J is W -linear), this
yields sJ (αs) = −J (αs) = −1J (αs). In other words, J (αs) is an eigenvector of s (acting on h) with
eigenvalue −1. This yields that J (αs) ∈ Cα∨s (because α∨s ∈ h is the unique (up to scaling by an
element of C×) nonzero eigenvector of s (acting on h) with eigenvalue −1). In other words, there

exists a λ ∈ C such that J (αs) = λα∨s . We now will prove that λ =
1

2
(αs, αs).

In fact, from J (αs) =
r∑
i=1

αs (yi) yi, we deduce that

〈αs, J (αs)〉 =

〈
αs,

r∑
i=1

αs (yi) yi

〉
=

r∑
i=1

αs (yi) 〈αs, yi〉︸ ︷︷ ︸
=αs(yi)

=

r∑
i=1

(αs (yi))
2

= (αs, αs)

(since {y1, y2, ..., yr} is an orthonormal basis of h). Compared with〈
αs, J (αs)︸ ︷︷ ︸

=λα∨s

〉
= λ 〈αs, α∨s 〉︸ ︷︷ ︸

=2

= 2λ,

this yields 2λ = (αs, αs), so that λ =
1

2
(αs, αs). Now,

r∑
i=1

αs (yi) yi = J (αs) = λ︸︷︷︸
=

1

2
(αs,αs)

α∨s =
1

2
(αs, αs)α

∨
s .

This proves (15).
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Also, for every s ∈ S and g ∈ h∗, we have

(αs, αs) g (α∨s ) = 2 (αs, g) . (17)

14

14Proof. Let s ∈ S and g ∈ h∗. Then, (15) yields
1

2
(αs, αs)α

∨
s =

r∑
i=1

αs (yi) yi, so that (αs, αs)α
∨
s =

2
r∑
i=1

αs (yi) yi, and thus

g ((αs, αs)α
∨
s ) = g

(
2

r∑
i=1

αs (yi) yi

)
= 2

r∑
i=1

αs (yi) g (yi)︸ ︷︷ ︸
=(αs,g)

(since {y1,y2,...,yr} is an
orthonormal basis of h)

= 2 (αs, g) .

Since g ((αs, αs)α
∨
s ) = (αs, αs) g (α∨s ), this rewrites as (αs, αs) g (α∨s ) = 2 (αs, g). This proves (17).
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On the other hand, from ∆h =
r∑
i=1

∂2
yi

, we obtain

ςc (∆h) = ςc

(
r∑
i=1

∂2
yi

)
=

r∑
i=1


ςc (∂yi)︸ ︷︷ ︸

=∂yi+
∑
s∈S

csαs (yi)

αs
(by (10), applied to a=yi)



2

(since ςc is a C-algebra homomorphism)

=
r∑
i=1

(
∂yi +

∑
s∈S

csαs (yi)

αs

)2

︸ ︷︷ ︸
=∂2yi+∂yi

∑
s∈S

csαs (yi)

αs
+

∑
s∈S

csαs (yi)

αs
∂yi+

 ∑
s∈S

csαs (yi)

αs

2

=
r∑
i=1

∂2
yi

+ ∂yi
∑
s∈S

csαs (yi)

αs
+
∑
s∈S

csαs (yi)

αs
∂yi +

(∑
s∈S

csαs (yi)

αs

)2


=
r∑
i=1

∂2
yi︸ ︷︷ ︸

=∆h

+
r∑
i=1

∂yi
∑
s∈S

csαs (yi)

αs︸ ︷︷ ︸
=

∑
s∈S

cs
r∑
i=1

αs(yi)∂yi

1

αs

+
r∑
i=1

∑
s∈S

csαs (yi)

αs
∂yi︸ ︷︷ ︸

=
∑
s∈S

cs
r∑
i=1

αs(yi)
1

αs
∂yi

+
r∑
i=1

(∑
s∈S

csαs (yi)

αs

)2

︸ ︷︷ ︸
=

∑
s∈S; u∈S

csαs (yi)

αs
·
cuαu (yi)

αu

= ∆h +
∑
s∈S

cs

r∑
i=1

αs (yi) ∂yi
1

αs︸ ︷︷ ︸
=

1

αs
∂yi+∂yi

 1

αs



+
∑
s∈S

cs

r∑
i=1

αs (yi)
1

αs
∂yi +

r∑
i=1

∑
s∈S; u∈S

csαs (yi)

αs
· cuαu (yi)

αu︸ ︷︷ ︸
=

∑
s∈S; u∈S

cscu
αsαu

r∑
i=1

αs(yi)αu(yi)
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= ∆h +
∑
s∈S

cs

r∑
i=1

αs (yi)

(
1

αs
∂yi + ∂yi

(
1

αs

))
︸ ︷︷ ︸

=
∑
s∈S

cs
r∑
i=1

αs(yi)
1

αs
∂yi+

∑
s∈S

cs
r∑
i=1

αs(yi)∂yi

 1

αs



+
∑
s∈S

cs

r∑
i=1

αs (yi)
1

αs
∂yi +

∑
s∈S; u∈S

cscu
αsαu

r∑
i=1

αs (yi)αu (yi)︸ ︷︷ ︸
=(αs,αu)

(since {y1,y2,...,yr} is an orthonormal
basis of h)

= ∆h +
∑
s∈S

cs

r∑
i=1

αs (yi)
1

αs
∂yi +

∑
s∈S

cs

r∑
i=1

αs (yi) ∂yi

(
1

αs

)

+
∑
s∈S

cs

r∑
i=1

αs (yi)
1

αs
∂yi +

∑
s∈S; u∈S

cscu
αsαu

(αs, αu)

= ∆h + 2
∑
s∈S

cs

r∑
i=1

αs (yi)
1

αs
∂yi︸ ︷︷ ︸

=
1

αs

r∑
i=1

αs(yi)∂yi

+
∑
s∈S

cs

r∑
i=1

αs (yi) ∂yi

(
1

αs

)
︸ ︷︷ ︸

=−
∂yi (αs)

α2
s

=−
αs (yi)

α2
s

(since ∂yi (αs)=αs(yi) (because αs
is linear))

+
∑

s∈S; u∈S

cscu
αsαu

(αs, αu)︸ ︷︷ ︸
=

∑
s∈S; u∈S

cscu (αs, αu)

αsαu
=

∑
s∈S

c2
s (αs, αs)

α2
s

(by Lemma 2.18e (c))

= ∆h + 2
∑
s∈S

cs
1

αs

r∑
i=1

αs (yi) ∂yi︸ ︷︷ ︸
=

1

2
(αs,αs)∂α∨s

(by (16))

+
∑
s∈S

cs

r∑
i=1

αs (yi)

(
−αs (yi)

α2
s

)
︸ ︷︷ ︸

=−
∑
s∈S

cs
α2
s

r∑
i=1

(αs(yi))
2

+
∑
s∈S

c2
s (αs, αs)

α2
s
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= ∆h + 2
∑
s∈S

cs
1

αs
· 1

2
(αs, αs) ∂α∨s︸ ︷︷ ︸

=
∑
s∈S

cs (αs, αs)

αs
∂α∨s

−
∑
s∈S

cs
α2
s

r∑
i=1

(αs (yi))
2

︸ ︷︷ ︸
=(αs,αs)

(since {y1,y2,...,yr} is an
orthonormal basis of h)

+
∑
s∈S

c2
s (αs, αs)

α2
s

= ∆h +
∑
s∈S

cs (αs, αs)

αs
∂α∨s −

∑
s∈S

cs
α2
s

(αs, αs)︸ ︷︷ ︸
=
cs (αs, αs)

α2
s

+
∑
s∈S

c2
s (αs, αs)

α2
s

= ∆h +
∑
s∈S

cs (αs, αs)

αs
∂α∨s −

∑
s∈S

cs (αs, αs)

α2
s

+
∑
s∈S

c2
s (αs, αs)

α2
s

. (18)

On the other hand, every t ∈ S satisfies

ςc
(
∂α∨t
)

= ∂a∨t +
∑
s∈S

csαs (α∨t )

αs
(by (10), applied to a = α∨t )

= ∂a∨t +
∑
u∈S

cuαu (α∨t )

αu
(here, we renamed s as u in the sum) .

(19)
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Now,

ςc

(∑
s∈S

cs (αs, αs)

αs
∂α∨s

)

=
∑
s∈S

cs (αs, αs)

αs
ςc
(
∂α∨s
)︸ ︷︷ ︸

=∂a∨s
+

∑
u∈S

cuαu (α∨s )

αu
(by (19), applied to t=s)

=
∑
s∈S

cs (αs, αs)

αs

(
∂a∨s +

∑
u∈S

cuαu (α∨s )

αu

)

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s +

∑
s∈S

cs (αs, αs)

αs

∑
u∈S

cuαu (α∨s )

αu︸ ︷︷ ︸
=

∑
s∈S; u∈S

cs (αs, αs)

αs
·
cuαu (α∨s )

αu

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s +

∑
s∈S; u∈S

cs (αs, αs)

αs
· cuαu (α∨s )

αu︸ ︷︷ ︸
=
cscu
αsαu

(αs,αs)αu(α∨s )

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s +

∑
s∈S; u∈S

cscu
αsαu

(αs, αs)αu (α∨s )︸ ︷︷ ︸
=2(αs,αu)

(by (17), applied to g=αu)

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s + 2

∑
s∈S; u∈S

cscu
αsαu

(αs, αu)︸ ︷︷ ︸
=
cscu (αs, αu)

αsαu

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s + 2

∑
s∈S; u∈S

cscu (αs, αu)

αsαu︸ ︷︷ ︸
=

∑
s∈S

c2
s (αs, αs)

α2
s

(by Lemma 2.18e (c))

=
∑
s∈S

cs (αs, αs)

αs
∂a∨s + 2

∑
s∈S

c2
s (αs, αs)

α2
s

. (20)
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Now, H = ∆h −
∑
s∈S

cs (αs, αs)

αs
∂α∨s , so that

ςc
(
H
)

= ςc

(
∆h −

∑
s∈S

cs (αs, αs)

αs
∂α∨s

)
= ςc (∆h)− ςc

(∑
s∈S

cs (αs, αs)

αs
∂α∨s

)

=

(
∆h +

∑
s∈S

cs (αs, αs)

αs
∂α∨s −

∑
s∈S

cs (αs, αs)

α2
s

+
∑
s∈S

c2
s (αs, αs)

α2
s

)

−

(∑
s∈S

cs (αs, αs)

αs
∂a∨s + 2

∑
s∈S

c2
s (αs, αs)

α2
s

)
(by (18) and (20))

= ∆h −

(∑
s∈S

cs (αs, αs)

α2
s

+
∑
s∈S

c2
s (αs, αs)

α2
s

)
︸ ︷︷ ︸

=
∑
s∈S

cs (αs, αs)

α2
s

+
c2
s (αs, αs)

α2
s

=
∑
s∈S

cs (cs + 1) (αs, αs)

α2
s

= ∆h −
∑
s∈S

cs (cs + 1) (αs, αs)

α2
s

= H.

This proves Proposition 2.18d.

Proof of Theorem 2.9. The C-algebra homomorphism ςc : D (hreg) → D (hreg)
preserves the degree of homogeneous differential operators and their symbols and
commutes with the action of W by conjugation (these facts all are easy to prove),
and maps H to H (by Proposition 2.18d). Hence, applying ςc to Corollary 2.17,
we obtain Theorem 2.9 (at least, if we add to Corollary 2.17 the claim that the Lj
are W -invariant, as I suggested above), with the Lj being given by Lj = ςc

(
Lj
)
.

Theorem 2.9 is thus proven, and with it Theorem 2.1.

• Page 10, Remark 2.20: It would be better to replace “Li” by “Li” here.

... [To be continued?]

• Page 12, Example 2.25: In this example, you regard h as being embedded into
Cn as the subspace consisting of the vectors whose coordinates sum to zero. (This
is the same embedding as in Example 2.5.) The pi are the same as in Example
2.5. The xi (for each i ∈ {1, 2, . . . , n}) is the linear map sending each element of
h to its i-th coordinate. This all is worth pointing out explicitly, since it is far
from obvious.
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