Function-field symmetric functions: In search of an $\mathbb{F}_q[T]$ -combinatorics

Darij Grinberg (UMN)

```
27 January 2017, CAAC 2017, Montréal; 27 February 2017, Cornell (extended)
```

```
http:

//www.cip.ifi.lmu.de/~grinberg/algebra/caac17.pdf

preprint (WIP, and currently a mess):

http:

//www.cip.ifi.lmu.de/~grinberg/algebra/schur-ore.pdf
```

slides:

Symmetric functions and Witt vectors

- The connection between symmetric functions and (big) Witt vectors is due to Cartier around 1970 (vaguely; made explicit by Reutenauer in 1995), and can be used to the benefit of either.
- Modern references: e.g., Hazewinkel's Witt vectors, part 1
 (arXiv:0804.3888v1, see also errata), and works of James
 Borger (mainly arXiv:0801.1691v6, as well as
 arXiv:math/0407227v1 joint with Wieland).

Symmetric functions and Witt vectors

- The connection between symmetric functions and (big) Witt vectors is due to Cartier around 1970 (vaguely; made explicit by Reutenauer in 1995), and can be used to the benefit of either.
- Modern references: e.g., Hazewinkel's Witt vectors, part 1
 (arXiv:0804.3888v1, see also errata), and works of James
 Borger (mainly arXiv:0801.1691v6, as well as
 arXiv:math/0407227v1 joint with Wieland).
- Let $\mathbb{N}_+ = \{1, 2, 3, \ldots\}$. The *(big) Witt vector functor* is a functor $W : \mathbf{CRing} \to \mathbf{CRing}$, sending any commutative ring A to a new commutative ring W(A) with some extra structure.
- Note that W(A) is a ring, not an A-algebra.

Definition of Witt vectors, 1: ghost maps

- Let A be a commutative ring.
 We abbreviate a family (a_k)_{k∈N+} ∈ A^{N+} as a. Similarly for other letters.
- For each $n \in \mathbb{N}_+$, define a map $w_n : A^{\mathbb{N}_+} \to A$ by

$$w_n(\mathbf{a}) = \sum_{d|n} da_d^{n/d}.$$

The map w_n is called the *n*-th ghost projection.

• Examples:

- $w_1 = a_1$.
- If p is a prime, then $w_p = a_1^p + pa_p$.
- $w_6 = a_1^6 + 2a_2^3 + 3a_3^2 + 6a_6$.

Definition of Witt vectors, 1: ghost maps

- Let A be a commutative ring. We abbreviate a family $(a_k)_{k\in\mathbb{N}_+}\in A^{\mathbb{N}_+}$ as \mathbf{a} . Similarly for other letters.
- For each $n \in \mathbb{N}_+$, define a map $w_n : A^{\mathbb{N}_+} \to A$ by

$$w_n(\mathbf{a}) = \sum_{d|n} da_d^{n/d}.$$

The map w_n is called the *n*-th ghost projection.

• Let $w: A^{\mathbb{N}_+} \to A^{\mathbb{N}_+}$ be the map given by

$$w(\mathbf{a}) = (w_n(\mathbf{a}))_{n \in \mathbb{N}_+}.$$

We call w the ghost map.

Definition of Witt vectors, 1: ghost maps

- Let A be a commutative ring. We abbreviate a family $(a_k)_{k\in\mathbb{N}_+}\in A^{\mathbb{N}_+}$ as \mathbf{a} . Similarly for other letters.
- For each $n \in \mathbb{N}_+$, define a map $w_n : A^{\mathbb{N}_+} \to A$ by

$$w_n(\mathbf{a}) = \sum_{d|n} da_d^{n/d}.$$

The map w_n is called the *n*-th ghost projection.

• Let $w: A^{\mathbb{N}_+} \to A^{\mathbb{N}_+}$ be the map given by

$$w\left(\mathbf{a}\right)=\left(w_{n}\left(\mathbf{a}\right)\right)_{n\in\mathbb{N}_{+}}.$$

We call w the ghost map.

 This ghost map w is not linear and in general not injective or surjective. However, its image turns out to be a subring of A^{N+}. It is called the ring of ghost-Witt vectors.

Definition of Witt vectors, 2: addition

• For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_+}$, we have $w(\mathbf{a}) + w(\mathbf{b}) = w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_+}$. How to compute this \mathbf{c} ?

Definition of Witt vectors, 2: addition

- For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_+}$, we have $w(\mathbf{a}) + w(\mathbf{b}) = w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_+}$. How to compute this \mathbf{c} ?
- Good news:
 - w is injective if A is torsionfree (as \mathbb{Z} -module).
 - w is bijective if A is a \mathbb{Q} -vector space.

Definition of Witt vectors, 2: addition

- For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_+}$, we have $w(\mathbf{a}) + w(\mathbf{b}) = w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_+}$. How to compute this \mathbf{c} ?
- Good news:
 - w is injective if A is torsionfree (as \mathbb{Z} -module).
 - w is bijective if A is a \mathbb{Q} -vector space.
- Hence, we can compute \mathbf{c} back from $w(\mathbf{c})$ by recursion (coordinate by coordinate). Miraculously, the denominators vanish.

Examples:

•
$$w_1(\mathbf{c}) = w_1(\mathbf{a}) + w_1(\mathbf{b}) \iff c_1 = a_1 + b_1$$
.

•
$$w_2(\mathbf{c}) = w_2(\mathbf{a}) + w_2(\mathbf{b}) \iff$$

$$c_1^2 + 2c_2 = \left(a_1^2 + 2a_2\right) + \left(b_1^2 + 2b_2\right) \stackrel{\text{naturality}}{\iff}$$

$$c_2 = a_2 + b_2 + \frac{1}{2}\left(a_1^2 + b_1^2 - (a_1 + b_1)^2\right), \text{ and the RHS is indeed a \mathbb{Z}-polynomial.}$$

Definition of Witt vectors, 3: W(A)

• Let's make a new ring out of this: We define W(A) to be the ring that equals $A^{\mathbb{N}_+}$ as a set, but whose ring structure is such that $W: \mathbf{CRing} \to \mathbf{CRing}$ is a functor, and w is a natural (in A) ring homomorphism from W(A) to $A^{\mathbb{N}_+}$.

Definition of Witt vectors, 3: W(A)

- Let's make a new ring out of this: We define W(A) to be the ring that equals $A^{\mathbb{N}_+}$ as a set, but whose ring structure is such that $W: \mathbf{CRing} \to \mathbf{CRing}$ is a functor, and w is a natural (in A) ring homomorphism from W(A) to $A^{\mathbb{N}_+}$.
- This looks abstract and confusing, but the underlying idea is simple: Define addition on W(A) so that $w_n(\mathbf{a} + \mathbf{b}) = w_n(\mathbf{a}) + w_n(\mathbf{b})$ for all n. Thus, $\mathbf{a} + \mathbf{b}$ is the \mathbf{c} from last page.
- Functoriality is needed, because there might be several choices for a given A (if A is not torsionfree), but only one consistent choice for all rings A. Functoriality forces us to pick the consistent choice.

Definition of Witt vectors, 3: W(A)

- Let's make a new ring out of this: We define W(A) to be the ring that equals $A^{\mathbb{N}_+}$ as a set, but whose ring structure is such that $W: \mathbf{CRing} \to \mathbf{CRing}$ is a functor, and w is a natural (in A) ring homomorphism from W(A) to $A^{\mathbb{N}_+}$.
- This looks abstract and confusing, but the underlying idea is simple: Define addition on W(A) so that $w_n(\mathbf{a} + \mathbf{b}) = w_n(\mathbf{a}) + w_n(\mathbf{b})$ for all n. Thus, $\mathbf{a} + \mathbf{b}$ is the \mathbf{c} from last page.
- Functoriality is needed, because there might be several choices for a given A (if A is not torsionfree), but only one consistent choice for all rings A. Functoriality forces us to pick the consistent choice.
- If $\mathbf{a} \in W(A)$, then the a_n are called the *Witt coordinates* of \mathbf{a} , while the $w_n(\mathbf{a})$ are called the *ghost coordinates* of \mathbf{a} .

Definition of Witt vectors, 4: coda

- The ring W(A) is called the ring of (big) Witt vectors over A.
- The functor $\mathbf{CRing} \to \mathbf{CRing}$, $A \mapsto W(A)$ is called the *(big)* Witt vector functor.

Definition of Witt vectors, 4: coda

- The ring W(A) is called the ring of (big) Witt vectors over A.
- The functor $\mathbf{CRing} \to \mathbf{CRing}$, $A \mapsto W(A)$ is called the *(big)* Witt vector functor.
- For any given prime p, there is a canonical quotient $W_p(A)$ of W(A) called the *ring of p-typical Witt vectors of A*. Number theorists usually care about the latter ring. For example, $W_p(\mathbb{F}_p) = \mathbb{Z}_p$ (the p-adics). We have nothing to say about it here.
- W(A) comes with more structure: Frobenius and Verschiebung endomorphisms, a comonad comultiplication map $W(A) \to W(W(A))$, etc.

Avatars of Witt vectors, 1: Power series

- There are some equivalent ways to define W(A). Let me show two.
- One is the Grothendieck construction using power series (see, again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
- Let $\Lambda(A)$ be the topological ring defined as follows:
 - As topological spaces, $\Lambda(A) = 1 + tA[[t]] = \{\text{power series with constant term } 1\}.$
 - Addition $\widehat{+}$ in $\Lambda(A)$ is multiplication of power series.
 - Multiplication $\widehat{\cdot}$ in $\Lambda(A)$ is given by

$$(1-at)\widehat{\cdot}(1-bt)=1-abt$$

(and distributivity and continuity, and naturality in A).

Avatars of Witt vectors, 1: Power series

- There are some equivalent ways to define W(A). Let me show two.
- One is the Grothendieck construction using power series (see, again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
- Let $\Lambda(A)$ be the topological ring defined as follows:
 - As topological spaces, $\Lambda(A) = 1 + tA[[t]] = \{\text{power series with constant term } 1\}.$
 - Addition $\widehat{+}$ in $\Lambda(A)$ is multiplication of power series.
 - Multiplication $\widehat{\cdot}$ in $\Lambda(A)$ is given by

$$(1-at)\widehat{\cdot}(1-bt)=1-abt$$

(and distributivity and continuity, and naturality in A).

Canonical ring isomorphism

$$W(A) \to \Lambda(A), \quad \mathbf{a} \mapsto \prod_{n=1}^{\infty} (1 - a_n t^n).$$

Avatars of Witt vectors, 2: Characters of ∧ (virtual alphabets)

- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z} . (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $Alg(\Lambda, A)$ as follows:
 - As set, $Alg(\Lambda, A) = \{algebra homomorphisms \Lambda \to A\}.$
 - Addition = convolution.
 - Multiplication = convolution using the second comultiplication on Λ (= Kronecker comultiplication = Hall dual of Kronecker multiplication).

Avatars of Witt vectors, 2: Characters of ∧ (virtual alphabets)

- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z} . (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $Alg(\Lambda, A)$ as follows:
 - As set, $Alg(\Lambda, A) = \{algebra homomorphisms \Lambda \to A\}.$
 - Addition = convolution.
 - Multiplication = convolution using the second comultiplication on Λ (= Kronecker comultiplication = Hall dual of Kronecker multiplication).
- The elements of $Alg(\Lambda, A)$ are known as *characters* of Λ (as in Aguiar-Bergeron-Sottile) or *virtual alphabets* (to the Lascoux school) or as *specializations of symmetric functions* (as in Stanley's EC2).

Avatars of Witt vectors, 2: Characters of Λ (virtual alphabets)

- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z} . (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $Alg(\Lambda, A)$ as follows:
 - As set, $Alg(\Lambda, A) = \{algebra homomorphisms \Lambda \to A\}.$
 - Addition = convolution.
 - Multiplication = convolution using the second comultiplication on Λ (= Kronecker comultiplication = Hall dual of Kronecker multiplication).
- There is a unique family $(w_n)_{n\in\mathbb{N}_+}$ of symmetric functions satisfying $p_n=\sum_{d\mid n}dw_d^{n/d}$ for all $n\in\mathbb{N}_+$. (Equivalently, it is determined by $h_n=\sum_{\lambda\vdash n}w_\lambda$, where $w_\lambda=w_{\lambda_1}w_{\lambda_2}\cdots$.) These are called the *Witt coordinates*.
- We have a ring isomorphism

$$Alg(\Lambda, A) \to W(A), \qquad f \mapsto (f(w_n))_{n \in \mathbb{N}_+}.$$

Avatars of Witt vectors, 2: Characters of ∧, cont'd

- There is a unique family $(w_n)_{n\in\mathbb{N}_+}$ of symmetric functions satisfying $p_n=\sum_{d\mid n}dw_d^{n/d}$ for all $n\in\mathbb{N}_+$. (Equivalently, it is determined by $h_n=\sum_{\lambda\vdash n}w_\lambda$, where $w_\lambda=w_{\lambda_1}w_{\lambda_2}\cdots$.) These generate Λ as a ring, are called the *Witt coordinates*, and were first introduced in 1995 by Reutenauer.
- We have a ring isomorphism

$$Alg(\Lambda, A) \to W(A), \qquad f \mapsto (f(w_n))_{n \in \mathbb{N}_+}.$$

Avatars of Witt vectors, 2: Characters of Λ , cont'd

- There is a unique family $(w_n)_{n\in\mathbb{N}_+}$ of symmetric functions satisfying $p_n=\sum_{d\mid n}dw_d^{n/d}$ for all $n\in\mathbb{N}_+$. (Equivalently, it is determined by $h_n=\sum_{\lambda\vdash n}w_\lambda$, where $w_\lambda=w_{\lambda_1}w_{\lambda_2}\cdots$.) These generate Λ as a ring, are called the *Witt coordinates*, and were first introduced in 1995 by Reutenauer.
- We have a ring isomorphism

$$Alg(\Lambda, A) \to W(A), \qquad f \mapsto (f(w_n))_{n \in \mathbb{N}_+}.$$

• We also have a ring homomorphism (isomorphism when A is a \mathbb{Q} -algebra)

$$Alg(\Lambda, A) \to A^{\mathbb{N}_+}, \qquad f \mapsto (f(p_n))_{n \in \mathbb{N}_+}.$$

These form commutative diagram

$$\mathsf{Alg}(\Lambda,A) \xrightarrow{\cong} W(A)$$

$$\downarrow^{w}$$

$$A^{\mathbb{N}_{+}}$$

Reconstructing Λ from $W = Alg(\Lambda, -)$

- This also works in reverse: We can reconstruct Λ from the functor W, as its representing object. Namely:
 - The functor Forget ∘ W : CRing → Set determines Λ as a ring (by Yoneda).
 - The functor Forget $\circ W$: **CRing** \to **Ab** (additive group of W(A)) determines Λ as a Hopf algebra.
 - The functor $W : \mathbf{CRing} \to \mathbf{CRing}$ determines Λ as a Hopf algebra equipped with a second comultiplication.
 - The comonad structure on W additionally determines plethysm on Λ .

Reconstructing Λ from $W = Alg(\Lambda, -)$

- This also works in reverse: We can reconstruct Λ from the functor W, as its representing object. Namely:
 - The functor Forget $\circ W$: **CRing** \rightarrow **Set** determines Λ as a ring (by Yoneda).
 - The functor Forget $\circ W$: **CRing** \to **Ab** (additive group of W(A)) determines Λ as a Hopf algebra.
 - The functor $W : \mathbf{CRing} \to \mathbf{CRing}$ determines Λ as a Hopf algebra equipped with a second comultiplication.
 - The comonad structure on W additionally determines plethysm on Λ .
- Thus, if symmetric functions hadn't been around, Witt vectors would have let us rediscover them.

\mathbb{Z} and $\mathbb{F}_q[T]$: a tale of two rings

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_q[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)

All that matters to us is that

- **positive** integers in \mathbb{Z} correspond to **monic** polynomials in $\mathbb{F}_q[T]$;
- **primes** in \mathbb{Z} correspond to **irreducible** monic polynomials in $\mathbb{F}_q[T]$.

\mathbb{Z} and $\mathbb{F}_q[T]$: a tale of two rings

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_q[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)

All that matters to us is that

- **positive** integers in \mathbb{Z} correspond to **monic** polynomials in $\mathbb{F}_a[T]$;
- **primes** in \mathbb{Z} correspond to **irreducible** monic polynomials in $\mathbb{F}_q[T]$.
- Let $\mathbb{F}_q[T]_+$ be the set of all **monic** polynomials in $\mathbb{F}_q[T]$.

\mathbb{Z} and $\mathbb{F}_q[T]$: a tale of two rings

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_q[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)

All that matters to us is that

- **positive** integers in \mathbb{Z} correspond to **monic** polynomials in $\mathbb{F}_q[T]$;
- **primes** in \mathbb{Z} correspond to **irreducible** monic polynomials in $\mathbb{F}_q[T]$.
- Let $\mathbb{F}_q[T]_+$ be the set of all **monic** polynomials in $\mathbb{F}_q[T]$.
- Let's define an analogue of (big) Witt vectors for $\mathbb{F}_q[T]$ instead of \mathbb{Z} .

Definition of $\mathbb{F}_q[T]$ -Witt vectors, 1: ghost maps

- Let A be a commutative $\mathbb{F}_q[T]$ -algebra. We abbreviate a family $(a_N)_{N\in\mathbb{F}_q[T]_+}\in A^{\mathbb{F}_q[T]_+}$ as \mathbf{a} .
- ullet For each $N\in\mathbb{F}_q\left[T
 ight]_+$, define a map $w_N:A^{\mathbb{F}_q\left[T
 ight]_+} o A$ by

$$w_N(\mathbf{a}) = \sum_{D|N} Da_D^{q^{\deg(N/D)}},$$

where the sum is over all **monic** divisors D of N.

• Let $w: A^{\mathbb{F}_q[T]_+} \to A^{\mathbb{F}_q[T]_+}$ be the map given by

$$w\left(\mathbf{a}\right)=\left(w_{N}\left(\mathbf{a}\right)\right)_{N\in\mathbb{F}_{q}\left[T\right]_{+}}.$$

Definition of $\mathbb{F}_q[T]$ -Witt vectors, 1: ghost maps

- Let A be a commutative $\mathbb{F}_q[T]$ -algebra. We abbreviate a family $(a_N)_{N\in\mathbb{F}_q[T]_\perp}\in A^{\mathbb{F}_q[T]_+}$ as \mathbf{a} .
- ullet For each $N\in\mathbb{F}_q\left[T
 ight]_+$, define a map $w_N:A^{\mathbb{F}_q\left[T
 ight]_+} o A$ by

$$w_N(\mathbf{a}) = \sum_{D|N} Da_D^{q^{\deg(N/D)}},$$

where the sum is over all **monic** divisors D of N.

• Let $w: A^{\mathbb{F}_q[T]_+} \to A^{\mathbb{F}_q[T]_+}$ be the map given by

$$w\left(\mathbf{a}\right)=\left(w_{N}\left(\mathbf{a}\right)\right)_{N\in\mathbb{F}_{q}\left[T\right]_{+}}.$$

ullet This "ghost map" w is \mathbb{F}_q -linear, but not $\mathbb{F}_q[T]$ -linear.

- Let's make a new $\mathbb{F}_q[T]$ -algebra out of this: We define $W_q(A)$ to be the $\mathbb{F}_q[T]$ -algebra
 - ullet that equals $A^{\mathbb{F}_q[T]_+}$ as a set, but
 - which is functorial in A (that is, we are really defining a functor $W_q: \mathbf{CRing}_{\mathbb{F}_q[T]} \to \mathbf{CRing}_{\mathbb{F}_q[T]}$, where \mathbf{CRing}_R is the category of commutative R-algebras), and
 - whose $\mathbb{F}_q[T]$ -algebra structure is such that w is a natural (in A) homomorphism of $\mathbb{F}_q[T]$ -algebras from $W_q(A)$ to $A^{\mathbb{F}_q[T]_+}$.

• Example: The addition in $W_q(A)$ is the same as in $A^{\mathbb{F}_q[T]_+}$ (since w is \mathbb{F}_q -linear, and so $W_q(A) = A^{\mathbb{F}_q[T]_+}$ as \mathbb{F}_q -modules), so this would be boring.

• Example: The addition in $W_q(A)$ is the same as in $A^{\mathbb{F}_q[T]_+}$ (since w is \mathbb{F}_q -linear, and so $W_q(A) = A^{\mathbb{F}_q[T]_+}$ as \mathbb{F}_q -modules), so this would be boring. Instead, let's set $\mathbf{c} = T\mathbf{a}$ in $W_q(A)$, and compute $w_\pi(\mathbf{c})$ for an irreducible π .

• Example: The addition in $W_q(A)$ is the same as in $A^{\mathbb{F}_q[T]_+}$ (since w is \mathbb{F}_q -linear, and so $W_q(A) = A^{\mathbb{F}_q[T]_+}$ as \mathbb{F}_q -modules), so this would be boring. Instead, let's set $\mathbf{c} = T\mathbf{a}$ in $W_q(A)$, and compute $w_\pi(\mathbf{c})$ for an **irreducible** π . Start with $c_1 = Ta_1$, which is easy to check.

• Example: The addition in $W_q(A)$ is the same as in $A^{\mathbb{F}_q[T]_+}$ (since w is \mathbb{F}_q -linear, and so $W_q(A) = A^{\mathbb{F}_q[T]_+}$ as \mathbb{F}_q -modules), so this would be boring. Instead, let's set $\mathbf{c} = T\mathbf{a}$ in $W_q(A)$, and compute $w_\pi(\mathbf{c})$ for an irreducible π . Start with $c_1 = Ta_1$, which is easy to check. $w_\pi(\mathbf{c}) = Tw_\pi(\mathbf{a})$

$$w_{\pi}(\mathbf{c}) = Iw_{\pi}(\mathbf{a})$$
 $\iff c_{1}^{q^{\deg \pi}} + \pi c_{\pi} = Ta_{1}^{q^{\deg \pi}} + T\pi a_{\pi}$
 $\stackrel{c_{1}=Ta_{1}}{\iff} (Ta_{1})^{q^{\deg \pi}} + \pi c_{\pi} = Ta_{1}^{q^{\deg \pi}} + T\pi a_{\pi}$
 $\iff \pi c_{\pi} = T\pi a_{\pi} - \left(T^{q^{\deg \pi}} - T\right) a_{1}^{q^{\deg \pi}}$
 $\stackrel{\text{naturality}}{\iff} c_{\pi} = Ta_{\pi} - \frac{T^{q^{\deg \pi}} - T}{a_{1}^{q^{\deg \pi}}} a_{1}^{q^{\deg \pi}}.$

The fraction on the RHS $\stackrel{\pi}{\text{is}}$ a polynomial due to a known fact from Galois theory (namely:

$$T^{q^k}-T=\prod_{\gamma\in \mathbb{F}_q[T]_+ ext{ irreducible; deg }\gamma|k}\gamma$$
).

Definition of $\mathbb{F}_q[T]$ -Witt vectors, 3: coda

• There is also a second construction of $W_q(A)$, using Carlitz polynomials, yielding an isomorphic $\mathbb{F}_q[T]$ -algebra. (See the preprint.)

Avatars of $\mathbb{F}_q[T]$ -Witt vectors?

• Can we find anything similar to the two avatars of W(A)?

Avatars of $\mathbb{F}_q[T]$ -Witt vectors?

- Can we find anything similar to the two avatars of W(A)?
- Power series? This appears to require a notion of power series where the exponents are polynomials in $\mathbb{F}_q[T]$. Product ill-defined due to lack of actual "positivity". Seems too much to wish...

Avatars of $\mathbb{F}_q[T]$ -Witt vectors?

- Can we find anything similar to the two avatars of W(A)?
- Power series? This appears to require a notion of power series where the exponents are polynomials in $\mathbb{F}_q[T]$. Product ill-defined due to lack of actual "positivity". Seems too much to wish...
- Alg(Λ , A)? Well, we can try brute force: Remember how Λ was reconstructed from W, and do something similar to "reconstruct" a representing object from W_q . We'll come back to this shortly.

• First, a surprise...

- First, a surprise...
- We aren't using the whole $\mathbb{F}_q[T]$ -algebra structure on A! (This is unlike the \mathbb{Z} -case, where it seems that we use the commutative ring A in full.)

ullet Let ${\mathcal F}$ be the noncommutative ring

$$\mathbb{F}_q \langle F, T \mid FT = T^q F \rangle$$
.

This is an \mathbb{F}_q -vector space with basis $(T^iF^j)_{(i,j)\in\mathbb{N}^2}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

ullet Let ${\mathcal F}$ be the noncommutative ring

$$\mathbb{F}_{q}\langle F, T \mid FT = T^{q}F \rangle$$
.

This is an \mathbb{F}_q -vector space with basis $(T^iF^j)_{(i,j)\in\mathbb{N}^2}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

Actually,

$$\mathcal{F} \cong \left(\mathbb{F}_q \left[T \right] \left[X \right]_{q-\text{lin}}, +, \circ \right),$$

where $\mathbb{F}_q[T][X]_{q-\text{lin}}$ are the polynomials in X over $\mathbb{F}_q[T]$ where X occurs only with exponents q^k , and where \circ is composition of polynomials.

ullet Let ${\mathcal F}$ be the noncommutative ring

$$\mathbb{F}_q \langle F, T \mid FT = T^q F \rangle$$
.

This is an \mathbb{F}_q -vector space with basis $(T^iF^j)_{(i,j)\in\mathbb{N}^2}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- What matters to us: Each commutative $\mathbb{F}_q[T]$ -algebra canonically becomes a (left) \mathcal{F} -module by having
 - T act as multiplication by T, and
 - F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor $\mathbf{CRing}_{\mathbb{F}_a[T]} \to \mathbf{Mod}_{\mathcal{F}}$.

ullet Let ${\mathcal F}$ be the noncommutative ring

$$\mathbb{F}_q \langle F, T \mid FT = T^q F \rangle$$
.

This is an \mathbb{F}_q -vector space with basis $(T^iF^j)_{(i,j)\in\mathbb{N}^2}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- What matters to us: Each commutative $\mathbb{F}_q[T]$ -algebra canonically becomes a (left) \mathcal{F} -module by having
 - T act as multiplication by T, and
 - F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor $\mathbf{CRing}_{\mathbb{F}_q[T]} \to \mathbf{Mod}_{\mathcal{F}}$.

• There are other sources of \mathcal{F} -modules too (cf. Jacobson on "commutative restricted Lie algebras").

$\mathbb{F}_q[T]$ -Witt vectors of an \mathcal{F} -module

- Let A be a (left) \mathcal{F} -module. We abbreviate a family $(a_N)_{N\in\mathbb{F}_q[T]_+}\in A^{\mathbb{F}_q[T]_+}$ as \mathbf{a} .
- ullet For each $N\in\mathbb{F}_q\left[T
 ight]_+$, define a map $w_N:A^{\mathbb{F}_q\left[T
 ight]_+} o A$ by

$$w_N(\mathbf{a}) = \sum_{D|N} DF^{\deg(N/D)} a_D,$$

where the sum is over all **monic** divisors D of N.

• Let $w: A^{\mathbb{F}_q[T]_+} \to A^{\mathbb{F}_q[T]_+}$ be the map given by

$$w\left(\mathbf{a}\right)=\left(w_{N}\left(\mathbf{a}\right)\right)_{N\in\mathbb{F}_{q}\left[T\right]_{+}}.$$

$\mathbb{F}_q[T]$ -Witt vectors of an \mathcal{F} -module

- Let A be a (left) \mathcal{F} -module. We abbreviate a family $(a_N)_{N \in \mathbb{F}_q[T]_+} \in A^{\mathbb{F}_q[T]_+}$ as \mathbf{a} .
- ullet For each $N\in\mathbb{F}_q\left[T
 ight]_+$, define a map $w_N:A^{\mathbb{F}_q\left[T
 ight]_+} o A$ by

$$w_N(\mathbf{a}) = \sum_{D|N} DF^{\deg(N/D)} a_D,$$

where the sum is over all **monic** divisors D of N.

ullet Let $w:A^{\mathbb{F}_q[T]_+} o A^{\mathbb{F}_q[T]_+}$ be the map given by

$$w\left(\mathbf{a}\right)=\left(w_{N}\left(\mathbf{a}\right)\right)_{N\in\mathbb{F}_{q}\left[T\right]_{+}}.$$

- We define $W_q(A)$ to be the \mathcal{F} -module
 - that equals $A^{\mathbb{F}_q[T]_+}$ as a set, but
 - which is functorial in A (that is, we are really defining a functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$), and
 - whose \mathcal{F} -module structure is such that w is a natural (in A) homomorphism of \mathcal{F} -modules from $W_a(A)$ to $A^{\mathbb{F}_q[T]_+}$.

Tinfoil, 1: What is $\Lambda_{\mathcal{F}}$?

• Now, back to the question: We have found two functors

$$W_q: \mathbf{CRing}_{\mathbb{F}_q[T]} o \mathbf{CRing}_{\mathbb{F}_q[T]}$$
 and $W_q: \mathbf{Mod}_{\mathcal{F}} o \mathbf{Mod}_{\mathcal{F}}.$

What are their representing objects? Call them $\Lambda'_{\mathcal{F}}$ and $\Lambda_{\mathcal{F}}$.

Tinfoil, 1: What is $\Lambda_{\mathcal{F}}$?

Now, back to the question: We have found two functors

$$W_q: \mathbf{CRing}_{\mathbb{F}_q[T]} o \mathbf{CRing}_{\mathbb{F}_q[T]}$$
 and $W_q: \mathbf{Mod}_{\mathcal{F}} o \mathbf{Mod}_{\mathcal{F}}.$

What are their representing objects? Call them $\Lambda_{\mathcal{F}}'$ and $\Lambda_{\mathcal{F}}$.

• Both objects (they are distinct) have good claims on the name " $\mathbb{F}_q[T]$ -symmetric functions".

Tinfoil, 1: What is $\Lambda_{\mathcal{F}}$?

• Now, back to the question: We have found two functors

$$W_q: \mathbf{CRing}_{\mathbb{F}_q[T]} o \mathbf{CRing}_{\mathbb{F}_q[T]}$$
 and $W_q: \mathbf{Mod}_{\mathcal{F}} o \mathbf{Mod}_{\mathcal{F}}.$

What are their representing objects? Call them $\Lambda'_{\mathcal{F}}$ and $\Lambda_{\mathcal{F}}$.

- Both objects (they are distinct) have good claims on the name " $\mathbb{F}_q[T]$ -symmetric functions".
- I shall focus on $\Lambda_{\mathcal{F}}$, since it is smaller.

Tinfoil, 2: "Re" constructing $\Lambda_{\mathcal{F}}$

- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$:
 - The functor Forget $\circ W_q$: $\mathbf{Mod}_{\mathcal{F}} \to \mathbf{Set}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} -module (by Yoneda).
 - The functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an $\mathcal{F}\text{-}\mathcal{F}\text{-bimodule}$.
 - There is an additional comonad structure on W_q , which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.

Tinfoil, 2: "Re" constructing $\Lambda_{\mathcal{F}}$

- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$:
 - The functor Forget $\circ W_q : \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Set}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} -module (by Yoneda).
 - The functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an $\mathcal{F}\text{-}\mathcal{F}\text{-bimodule}$.
 - There is an additional comonad structure on W_q , which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.
- So what is this $\Lambda_{\mathcal{F}}$?

Tinfoil, 2: "Re" constructing $\Lambda_{\mathcal{F}}$

- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$:
 - The functor Forget $\circ W_q$: $\mathbf{Mod}_{\mathcal{F}} \to \mathbf{Set}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} -module (by Yoneda).
 - The functor $W_q: \mathbf{Mod}_{\mathcal{F}} \to \mathbf{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} - \mathcal{F} -bimodule.
 - There is an additional comonad structure on W_q , which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.
- So what is this $\Lambda_{\mathcal{F}}$?
- I don't really know.

Tinfoil, 3: Some computations inside $\Lambda_{\mathcal{F}}$

- At least, we can compute in $\Lambda_{\mathcal{F}}$ (in theory):
- The left \mathcal{F} -module $\Lambda_{\mathcal{F}}$ has a basis $(w_N)_{N \in \mathbb{F}_q[T]_+}$, similarly to the generating set $(w_n)_{n \in \mathbb{N}_+}$ of the commutative ring Λ .
- The left \mathcal{F} -module $\Lambda_{\mathcal{F}}$ has an "almost-basis" $(p_N)_{N \in \mathbb{F}_q[T]_+}$, similarly to the "almost-generating set" $(p_n)_{n \in \mathbb{N}_+}$ of the commutative ring Λ .
 - Here, "almost-basis" means "basis after localizing so that elements of $\mathbb{F}_q[T]_+$ become invertible". (Noncommutative localization, but a harmless case thereof.)

Tinfoil, 3: Some computations inside $\Lambda_{\mathcal{F}}$

- At least, we can compute in $\Lambda_{\mathcal{F}}$ (in theory):
- The left \mathcal{F} -module $\Lambda_{\mathcal{F}}$ has a basis $(w_N)_{N \in \mathbb{F}_q[T]_+}$, similarly to the generating set $(w_n)_{n \in \mathbb{N}_+}$ of the commutative ring Λ .
- The left \mathcal{F} -module $\Lambda_{\mathcal{F}}$ has an "almost-basis" $(p_N)_{N\in\mathbb{F}_q[T]_+}$, similarly to the "almost-generating set" $(p_n)_{n\in\mathbb{N}_+}$ of the commutative ring Λ .

 Here, "almost-basis" means "basis after localizing so that elements of $\mathbb{F}_q[T]_+$ become invertible". (Noncommutative localization, but a harmless case thereof.)
- The right \mathcal{F} -module structure is easily expressed on the p_N 's (just as the second comultiplication of Λ is easily expressed on the p_n 's):

$$p_N f = f p_N$$
 for all $f \in \mathcal{F}$ and $N \in \mathbb{F}_q[T]_+$.

• You can thus express qf for each $f \in \mathcal{F}$ and $q \in \Lambda_{\mathcal{F}}$ by recursion (all fractions will turn out polynomial at the end), but nothing really explicit.

Tinfoil, 4: Examples

• Here are some of these expressions:

$$w_{\pi}T = Tw_{\pi} - \frac{T^{q^{\deg \pi}} - T}{\pi}F^{\deg \pi}w_{1};$$

 $w_{\pi}F = \pi^{q-1}Fw_{\pi}$

for any irreducible $\pi \in \mathbb{F}_q \left[\mathcal{T} \right]_+$.

Thanks to James Borger for some inspiring discussions. Thanks to Christophe Reutenauer for historiographical comments. And thank you!