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version of 5 December 2016
Errata by Darij Grinberg

Marginalia

The following are my comments on specific places in the paper “Structure theory
for the group algebra of the symmetric group, with applications to polynomial
identities for the octonions” by Murray R. Bremner, Sara Madariaga, Luiz A.
Peresi (Comment. Math. Univ. Carolin. 57,4 (2016), pp. 413–452). Very few of
them are corrections (there is barely anything wrong in the paper); most of them
are additional details and steps that have been omitted from the proofs.

• page 414: You write that the matrices obtained by restricting φ to Sn “have
entries in {0,±1}”. If you are talking about the matrices Rλ (p) from Defi-
nition 1.49, then I don’t see why this is true (and I suspect it is not).

• page 415, Definition 1.5: “A Young tableau Tλ” should be “A Young
tableau T”. (The “λ” superscript is unnecessary and confusing; you just
call it “T” afterwards.)

• page 416, Definition 1.9: It would be good to point out that this action of
Sn on the set {tableaux of shape λ} is free and transitive. (This is being
used tacitly further below.)

• page 417, Remark 1.14: This is perhaps a bit out of place: You have yet to
use the notation hvT at this point!

• page 417, proof of Proposition 1.15: In the second paragraph of this proof,
replace “obtaining tableaux Tλ′ � Tµ′ where λ′ and µ′ are partitions of
n − n1” by “obtaining tableaux Tλ′ and Tµ′ whose shapes λ′ and µ′ are
partitions of n− n1 satisfying Yλ′ � Yµ′ ”.

• page 419, proof of Lemma 1.19: It would be helpful to point out that
the third equality sign in the displayed equation relies on the facts that
ε (v)−1 = ε (v) (because ε (v) ∈ {1,−1}) and that ε is a group homomor-
phism.

• page 419, proof of Proposition 1.20: Remove “Since ε (p) = ε
(

p−1)”. (You
don’t use the fact that ε (p) = ε

(
p−1) here.)
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• page 419, Definition 1.21: Replace “in lex order” by “in some fixed or-
der chosen in such a way that the standard tableaux of shape λ will be
T1, T2, . . . , Tdλ

in lex order”. Indeed, you don’t need all the n! tableaux
T1, T2, . . . , Tn! to be in lex order; but you will later want the standard
tableaux of shape λ to be T1, T2, . . . , Tdλ

in lex order. If you list all the
n! tableaux of shape λ in lex order, then (in general) the first dλ tableaux
in your list will not be the standard tableaux of shape λ.

• page 420, Corollary 1.24: After “be the standard tableaux”, add “of shape
λ”.

• page 421, proof of Proposition 1.25: At the beginning of this proof, add
“Again, set Hi = HTi and Vi = VTi ; thus, Di = HiVi.”.

• page 421, proof of Proposition 1.25: After “hD2
i v = (hHi)ViHi (Viv) =

ε (v) HiViHiVi = ε (v) D2
i ”, add “= ε (v) ∑

p∈Sn

xp p” (in order to make the

step to the next equality clearer).

• page 421, proof of Proposition 1.25: Replace “On the left side of (7) take
p = ι, on the right side take p = hv, and compare coefficients” by “Com-
paring coefficients of hv on both sides of (7), we obtain”.

• page 421, proof of Proposition 1.25: Replace “Setting p = q on both sides,
we obtain

xqtqq−1tq = ε
(

q−1tq
)

xqq,

and this simplifies to xqq = −xqq” by “Comparing coefficients of q on both
sides of this equation, we obtain xq = ε

(
q−1tq

)
xq (since the only p ∈ Sn

satisfying tpq−1tq = q is q), and this simplifies to xq = −xq”.

• page 421, proof of Proposition 1.25: After “Combining the results of the
two cases,”, add “we obtain that D2

i = ∑
h∈GH(Ti)

∑
v∈GV(Ti)

xιε (v) hv, since

Lemma 1.12 shows that any permutation of the form hv can be written
in this form in exactly one way. In view of Di = ∑

h∈GH(Ti)
∑

v∈GV(Ti)
ε (v) hv,

this rewrites as”.

• page 422, proof of Proposition 1.25: The equality sign in “∑
h,v

ε (v) trace (hv) =

trace (IFSn)”, again, relies on Lemma 1.12. (Indeed, Lemma 1.12 shows that
the only pair (h, v) satisfying hv = ι is (ι, ι).)

• page 422, Definition 1.26: It is worth saying that Eλ
i will be denoted by Ei

when λ is clear from the context.
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• page 422, §1.5: After Corollary 1.27, I suggest adding another corollary
(which is being tacitly used in the proof of Lemma 1.29):

Corollary 1.27a. Let λ ` n. Let i, j ∈ {1, 2, . . . , n!}. Then, fi = f j and ci = cj
and Ej = sjiEisij and Eisij = sijEj.

Proof of Corollary 1.27a. From (5), we obtain Dj = sjiDisij, so that FSnDj =
F Snsji︸︷︷︸

=Sn

Disij = FSnDisij
∼= FSnDi as vector spaces (since sij ∈ FSn is invert-

ible). Hence, dim
(
FSnDj

)
= dim (FSnDi). In other words, f j = fi (since

the numbers fi and f j are defined to be dim (FSnDi) and dim
(
FSnDj

)
,

respectively). In other words, fi = f j. This yields n!/ fi = n!/ f j. In other
words, ci = cj (since the numbers ci and cj are defined to be n!/ fi and
n!/ f j, respectively). Finally, the definition of ci yields ci = n!/ fi, so that
fi

n!
=

1
ci

. But the definition of Ei yields Ei =
fi

n!︸︷︷︸
=

1
ci

Di =
1
ci

Di. Likewise,

Ej =
1
cj

Dj. Hence,

Ej =
1
cj︸︷︷︸

=
1
ci

(since ci=cj)

Dj︸︷︷︸
=sjiDisij

=
1
ci
· sjiDisij = sji

(
1
ci

Di

)
︸ ︷︷ ︸

=Ei

sij = sjiEisij.

Hence,
sij︸︷︷︸

=(sji)
−1

Ej︸︷︷︸
=sjiEisij

=
(
sji
)−1 sji︸ ︷︷ ︸
=ι

Eisij = Eisij,

so that Eisij = sijEj. This completes the proof of Corollary 1.27a. �

• page 422, §1.5: I would also add another corollary (which is being tacitly
used in the proof of Lemma 1.32):

Corollary 1.27b. Let λ ` n. Let i ∈ {1, 2, . . . , n!}. Then, Di 6= 0 and fi 6= 0
and Ei 6= 0.

Proof of Corollary 1.27b. The definition of Di yields

Di = HTi︸︷︷︸
= ∑

h∈GH(Ti)
h

VTi︸︷︷︸
= ∑

v∈GV(Ti)
ε(v)v

=

 ∑
h∈GH(Ti)

h

 ∑
v∈GV(Ti)

ε (v) v


= ∑

h∈GH(Ti)
∑

v∈GV(Ti)

ε (v) hv = ∑
(h,v)∈GH(Ti)×GV(Ti)

ε (v) hv.
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The group elements hv on the right hand side of this equality are all distinct
(by the second sentence of Lemma 1.12); thus, the sum ∑

(h,v)∈GH(Ti)×GV(Ti)
ε (v) hv

has no cancellations and therefore is nonzero. In other words, Di 6= 0.
Hence, the left ideal FSnDi is nonzero, and thus dim (FSnDi) > 0. The
definition of fi now yields fi = dim (FSnDi) > 0. Hence, fi 6= 0. Now, the

definition of Ei yields Ei =
fi

n!
Di 6= 0 (since fi 6= 0 and Di 6= 0). This proves

Corollary 1.27b. �

• page 422, proof of Lemma 1.29: At the beginning of the proof, add the
following sentence: “Again, set Hi = HTi and Vi = VTi ; thus, Di = HiVi.”.

• page 422, proof of Lemma 1.29: I would replace this proof with the fol-
lowing more detailed version:

“Again, set Hi = HTi and Vi = VTi ; thus, Di = HiVi. Define Hj and Vj
likewise, so that Dj = HjVj.

First, assume that sji = vh for some h ∈ GH (Ti) and v ∈ GV (Ti). Then,
Lemma 1.19 yields hHi = Hi. Now, from Di = HiVi, we obtain hDi =

hHi︸︷︷︸
=Hi

Vi = HiVi = Di. Multiplying this by
fi

n!
, we obtain hEi = Ei (since

Ei =
fi

n!
Di). Also, Lemma 1.19 yields Viv = ε (v)Vi. Now, from Di = HiVi,

we obtain Div = Hi Viv︸︷︷︸
=ε(v)Vi

= ε (v) HiVi︸︷︷︸
=Di

= ε (v) Di. Multiplying this by
fi

n!
,

we obtain Eiv = ε (v) Ei (since Ei =
fi

n!
Di).

Now, Corollary 1.27a yields Ej = sjiEisij, so that

EiEj = Ei

 sji︸︷︷︸
=vh

Eisij

 = Eiv︸︷︷︸
=ε(v)Ei

hEi︸︷︷︸
=Ei

sij = ε (v) EiEi︸︷︷︸
=(Ei)

2=Ei
(by Corollary 1.27)

sij = ε (v) Eisij

= ξijEisij
(
since ξij = ε (v)

)
.

Second, assume that sji 6= vh for any h ∈ GH (Ti) and v ∈ GV (Ti). Thus,(
sji
)−1 6= (vh)−1 for any h ∈ GH (Ti) and v ∈ GV (Ti). In other words,

sij 6= h−1v−1 for any h ∈ GH (Ti) and v ∈ GV (Ti) (since
(
sji
)−1

= sij and
(vh)−1 = h−1v−1). Equivalently, sij 6= hv for any h ∈ GH (Ti) and v ∈
GV (Ti) (since GH (Ti) and GV (Ti) are subgroups of Sn and thus invariant
under inversion). Hence, Lemma 1.16 (applied to T = Tj and p = sij)
shows that there exist two distinct numbers k, ` that lie in the same row of
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Tj and in the same column of sijTj. In view of sijTj = Ti, this shows that
k and ` lie in the same column of Ti; therefore, the transposition t = (k, `)
satisfies t ∈ GV (Ti). Hence, Vit = −Vi. But k and ` lie in the same row of
Tj; thus, t ∈ GH

(
Tj
)

and therefore tHj = Hj. Now,

Di︸︷︷︸
=HiVi

Dj︸︷︷︸
=HjVj

= HiViHjVj = Hi Vit︸︷︷︸
=−Vi

tHj︸︷︷︸
=Hj

Vj = −HiVi︸︷︷︸
=Di

HjVj︸︷︷︸
=Dj

= −DiDj,

so that DiDj = 0. Since Ei =
fi

n!
Di and Ej =

f j

n!
Dj, this entails EiEj = 0 =

ξijEisij (since ξij = 0). This completes the proof of Lemma 1.29.”

• page 423, proof of Lemma 1.32: After “and so ξij = 0”, I would add “(since
Corollary 1.27b yields Ei 6= 0, and thus Eisij 6= 0)”.

• page 423, proof of Lemma 1.32: Replace “and so Lemma 1.29 gives Ei =
ξiiEi, hence ξii = 1” by the simpler argument “and so the definition of ξii
yields ξii = ε (ι) = 1”.

• page 423, proof of Proposition 1.33: “Using Proposition 1.22” → “Using
Corollary 1.27a (specifically, the Eisij = sijEj part)”.

• page 423, Corollary 1.36: Please say that your definition of “subalgebra”
does not require that the unity of the subalgebra equals the unity of the
algebra! (This is far from standard.)

• page 423: After Corollary 1.36, I would add another corollary for later use:

Corollary 1.36a. Let λ, µ ` n be distinct. Then, NλNµ = 0.

Proof. It suffices to show that Eλ
i sλ

ijE
µ
k sµ

k` = 0 for any i, j ∈ {1, 2, . . . , dλ} and
k, ` ∈

{
1, 2, . . . , dµ

}
. So let us consider such i, j and k, `. Proposition 1.23

yields Dλ
j Dµ

k = 0 (since λ 6= µ). But the definitions of Eλ
j and Eµ

k yield

Eλ
j =

f j

n!
Dλ

j and Eµ
k =

fk
n!

Dµ
k . But Corollary 1.27a yields Eisλ

ij = sλ
ijE

λ
j and

therefore

Eλ
i sλ

ij︸︷︷︸
=sλ

ijE
λ
j

Eµ
k sµ

k` = sλ
ij Eλ

j︸︷︷︸
=

f j

n!
Dλ

j

Eµ
k︸︷︷︸

=
fk
n!

Dµ
k

sµ
k` =

f j

n!
· fk

n!
sλ

ij Dλ
j Dµ

k︸ ︷︷ ︸
=0

sµ
k` = 0.

This proves Corollary 1.36a. �

• page 423: After Lemma 1.37, I would add another corollary for later use:

Corollary 1.37a. For any partition λ ` n and any two dλ × dλ-matrices B
and C, we have

αλ (B) αλ (C) = αλ
(

BEλC
)

.

5



Marginalia to “Structure theory for the group algebra ...” January 29, 2020

Proof. Let λ ` n, and let B and C be two dλ × dλ-matrices B and C. Then,
we can write B and C in the forms B =

(
bij
)

and C =
(
cij
)
. Hence,

B =
(
bij
)
= ∑

i,j
bijEij and C =

(
cij
)
= (ck`) = ∑

k,`
ck`Ek`. Hence,

αλ

 B︸︷︷︸
=∑

i,j
bijEij

 αλ

 C︸︷︷︸
=∑

k,`
ck`Ek`


= αλ

(
∑
i,j

bijEij

)
αλ

(
∑
k,`

ck`Ek`

)
= ∑

i,j
bij ∑

k,`
ck` αλ

(
Eij
)

αλ (Ek`)︸ ︷︷ ︸
=αλ(EijEλEk`)

(by Lemma 1.37)

= ∑
i,j

bij ∑
k,`

ck`α
λ
(

EijEλEk`

)
= αλ


(

∑
i,j

bijEij

)
︸ ︷︷ ︸

=B

Eλ

(
∑
k,`

ck`Ek`

)
︸ ︷︷ ︸

=C


= αλ

(
BEλC

)
.

This proves Corollary 1.37a. �

• page 423, proof of Proposition 1.38: After “ ∑
µ`n

αµ (Aµ) = 0”, add “for

some matrices Aµ =
(

aµ
ij

)
i,j=1,2,...,dµ

”.

• pages 423–424, proof of Proposition 1.38: I think this whole proof would
become clearer if rewritten as follows:

“Assume that ∑
µ`n

dµ

∑
i,j=1

aµ
ijE

µ
i sµ

ij = 0 for some family of scalars aµ
ij ∈ F. We

shall show that aµ
ij = 0 for all µ and i, j.

Fix a partition λ. Let A be the dλ × dλ-matrix
(

aλ
ij

)
i,j=1,2,...,dλ

. We shall

show that A = 0.
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Fix u, v ∈ {1, 2, . . . , dλ}. We have Eλ
u ∑

µ`n

dµ

∑
i,j=1

aµ
ijE

µ
i sµ

ij︸ ︷︷ ︸
=0

= 0, so that

0 = Eλ
u ∑

µ`n

dµ

∑
i,j=1

aµ
ijE

µ
i sµ

ij = ∑
µ`n

dµ

∑
i,j=1

aµ
ijE

λ
u Eµ

i sµ
ij =

dλ

∑
i,j=1

aλ
ijE

λ
u Eλ

i sλ
ij(

since Proposition 1.23 yields that Eλ
u Eµ

i = 0 whenever λ 6= µ,
and this entails that all addends aµ

ijE
λ
u Eµ

i sµ
ij with λ 6= µ vanish

)

=
dλ

∑
i,j=1

aij EuEi︸︷︷︸
=ξuiEusui

(by Lemma 1.29)

sij

(from now on, we are omitting the superscripts λ)

=
dλ

∑
i,j=1

aijξuiEu suisij︸︷︷︸
=suj

=
dλ

∑
i,j=1

aijξuiEusuj.

Multiplying both sides of this equality with Ev on the right, we obtain

0 =

(
dλ

∑
i,j=1

aijξuiEusuj

)
Ev =

dλ

∑
i,j=1

aijξuiEusuj Ev︸︷︷︸
=Evsvv

(since svv=ι)

=
dλ

∑
i,j=1

aijξui
(
Eusuj

)
(Evsvv)︸ ︷︷ ︸

=ξ jvEusuv
(by Proposition 1.33)

=
dλ

∑
i,j=1

aijξuiξ jvEusuv =

(
dλ

∑
i,j=1

ξuiaijξ jv

)
Eusuv.

Since suv ∈ Sn is invertible, we can cancel suv from this equality and obtain

0 =

(
dλ

∑
i,j=1

ξuiaijξ jv

)
Eu.

Since Eu 6= 0 (by Corollary 1.27b), we thus obtain

dλ

∑
i,j=1

ξuiaijξ jv = 0

(since
dλ

∑
i,j=1

ξuiaijξ jv is a scalar).

But A =
(

aλ
ij

)
i,j=1,2,...,dλ

=
(
aij
)

i,j=1,2,...,dλ
(since we are omitting the su-

perscript λ) and Eλ =
(
ξij
)

i,j=1,2,...,dλ
(by the definition of Eλ). Hence,
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dλ

∑
i,j=1

ξuiaijξ jv is the (u, v)-th entry of the matrix Eλ AEλ. Thus, we have

showed that the (u, v)-th entry of the matrix Eλ AEλ is 0 (since we have

showed that
dλ

∑
i,j=1

ξuiaijξ jv = 0).

Forget that we fixed u, v. We thus have proved that the (u, v)-th entry of
the matrix Eλ AEλ is 0 for each u, v ∈ {1, 2, . . . , dλ}. In other words, all
entries of the matrix Eλ AEλ are 0. In other words, Eλ AEλ = 0. Since Eλ

is invertible (by Lemma 1.32), we thus obtain A = 0. Thus, all entries of A
are 0. In other words, aλ

ij = 0 for any i, j ∈ {1, 2, . . . , dλ} (since the entries
of A are aλ

ij). Since we have proved this for any λ ` n, we thus conclude

that all our scalars aµ
ij are 0. This proves Proposition 1.38. �”

• page 424, proof of Corollary 1.40: “by Proposition 1.23”→ “by Proposition
1.38”.

• page 424, Remark at the end of §1.6: You give the reference [35, §5.1.4,
Theorem A]. Here are a few alternative references for proofs of the equality
∑
λ

d2
λ = n!:

– Proposition 1.3.3 in Marc A. A. van Leeuwen, The Robinson-Schensted
and Schützenberger algorithms, an elementary approach, version 25 Nov
2011.
http://www-math.univ-poitiers.fr/~maavl/

– Corollary 8.5 in Richard P. Stanley, Algebraic Combinatorics: Walks,
Trees, Tableaux, and More, Undergraduate Texts in Mathematics, Springer
2013.
http://www-math.mit.edu/~rstan/algcomb/index.html

(This book also has a second edition; the equality still is Corollary 8.5
in it.)

– Theorem 2.6.5 part 3. in Bruce E. Sagan, The Symmetric Group: Repre-
sentations, Combinatorial Algorithms, and Symmetric Functions, 2nd edi-
tion, Springer 2001.

• page 424, §1.7: “We prove that the map ψ in (1) is” → “We shall now
construct the map ψ in (1), and prove that it is”.

• page 425, Proposition 1.43: It is worth saying that the expression “δλµδjkUλ
i`”

is understood to be 0 if λ = µ (even if Uλ
i` is undefined in this case).

• page 425, proof of Proposition 1.43: After “If λ = µ then”, add “the
definitions of Uij and Uk` and Lemma 1.37a yield (with the notation E
being used for Eλ)”.
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• page 425, proof of Proposition 1.43: Replace “orthogonality of Proposition
1.23” by “orthogonality of Corollary 1.36a”.

• page 425, proof of Theorem 1.45: Here is a more detailed version of this
proof:

“Proposition 1.43 shows that the map ψ is an F-algebra homomorphism. It
remains to prove that ψ is bijective. The Remark at the end of §1.6 shows
that ∑

λ
d2

λ = n!; in other words, dim M = dim (FSn). Hence, ψ is an F-

linear map between two F-vector spaces of the same (finite) dimension.
Thus, if ψ is injective, then ψ is bijective. Therefore, it will suffice to show
that ψ is injective.

Recall that M =
r⊕

i=1
Mdi (F). Let γ : M→ M be the F-linear map that sends

each (A1, A2, . . . , Ar) ∈ M to
(

A1
(
Eλ1
)−1 , A2

(
Eλ2
)−1 , . . . , Ar

(
Eλr
)−1
)
∈

M. This map γ is well-defined (since the r matrices Eλ1 , Eλ2 , . . . , Eλr are all
invertible) and injective (since the r matrices

(
Eλ1
)−1 ,

(
Eλ2
)−1 , . . . ,

(
Eλr
)−1

are all invertible). Moreover, it is easy to see that ψ = α ◦ γ. (Indeed, by
linearity, it suffices to show that ψ

(
Eλ

ij

)
= (α ◦ γ)

(
Eλ

ij

)
for all λ ` n and

i, j ∈ {1, 2, . . . , dλ}. But this is easy to check, since the definition of ψ yields

ψ
(

Eλ
ij

)
= Uλ

ij = αλ

(
Eλ

ij

(
Eλ
)−1

)
= α

(
0, 0, . . . , 0, Eλ

ij

(
Eλ
)−1

, 0, 0, . . . , 0
)

︸ ︷︷ ︸
=γ
(

0,0,...,0,Eλ
ij ,0,0,...,0

)
=γ
(

Eλ
ij

)
= α

(
γ
(

Eλ
ij

))
= (α ◦ γ)

(
Eλ

ij

)
.

Thus, ψ = α ◦ γ is proven.)

Now, the maps α and γ are both injective (indeed, the map α is injective
by Corollary 1.40). Hence, their composition α ◦ γ is injective. In other
words, the map ψ is injective (since ψ = α ◦ γ). As we have seen above, this
completes the proof of Theorem 1.45. �

• page 427: After “Our next goal is to compute explicitly the algebra homo-
morphism φ”, add “inverse to ψ”.

• page 427: Replace “Proposition 1.22 and Lemma 1.29” by “Lemma 1.29
and Corollary 1.27a (specifically, the Eisij = sijEj part of it)”.

• page 428: I’d replace “The Wedderburn decomposition of FSn shows that”
by “The surjectivity of ψ in Theorem 1.45 shows that” (this is more con-
crete).
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• page 428, Definition 1.49: This definition tacitly uses the fact that the rλ
ij (p)

are uniquely determined by p, λ, i and j. This follows from the fact that the
family

(
Uλ

ij

)
(with λ ranging over all partitions of n and with i, j ranging

over {1, 2, . . . , dλ} each) is a basis of the F-vector space FSn. (And this fact
follows from Theorem 1.45, since the family

(
Eλ

ij

)
forms a basis of M and

is sent to the family
(

Uλ
ij

)
by the map ψ.)

• page 428, Lemma 1.50: It is worth saying that Lemma 1.50 is a consequence
of Proposition 1.43.

• page 429, proof of Proposition 1.51: Replace both “α”s in this proof by
“αλ”. (It is dangerous to omit the superscript on an α, since α already has
a different meaning given to it in Definition 1.39.)

• page 429, proof of Proposition 1.51: Remove the “write E = Aλ
ι and” part

of the first sentence of the proof. Instead, at the beginning of the proof,
I’d add “The matrix Aλ

ι is the matrix Eλ from Definition 1.31, and thus is
invertible (by Lemma 1.32). We shall omit the superscripts λ, so we write
Ap for Aλ

p , and we write E for Eλ = Aλ
ι = Aι”.

• page 429, proof of Proposition 1.51: Replace “We have” by “Thus, EiiE−1

is the dλ × dλ-matrix whose i-th row has entries ηi1, ηi2, . . . , ηidλ
while all

other rows are 0. Therefore, the definition of αλ yields

αλ
(

EiiE−1
)
=

dλ

∑
k=1

ηikEisik.

Similarly,

αλ
(

EjjE−1
)
=

dλ

∑
`=1

ηj`Ejsj`.

Hence,”.

• page 429, proof of Proposition 1.51: The second-to-last equality sign in the
long (displayed) computation relies on the equality

dλ

∑
`=1

ηj`Eisi` = Uij,

which is not completely obvious. Here is how it can be proved: The matrix(
Eλ
)−1

= E−1 has entries ηij. Thus, Eλ
ij
(
Eλ
)−1 is the dλ × dλ-matrix whose

i-th row has entries ηj1, ηj2, . . . , ηjdλ
while all other rows are 0. Therefore,

10
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the definition of αλ yields

αλ

(
Eλ

ij

(
Eλ
)−1

)
=

dλ

∑
`=1

ηj`Eisi`.

Now, the definition of Uij yields

Uij = αλ

(
Eλ

ij

(
Eλ
)−1

)
=

dλ

∑
`=1

ηj`Eisi`.

Thus,
dλ

∑
`=1

ηj`Eisi` = Uij is proven.

• page 429, proof of Proposition 1.51: The last equality sign in the long
(displayed) computation relies on the equality

dλ

∑
k=1

ηikξ
p
kj =

(
A−1

ι Ap

)
ij

,

which is not completely obvious. Here is how it can be proved: We have
Aι = E , so that A−1

ι = E−1. Thus, the entries of the matrix A−1
ι are the

entries of the matrix E−1, which are the scalars ηij (by the definition of
ηij). On the other hand, the entries of the matrix Ap = Aλ

p are ξ
p
ij (by

the definition of Aλ
p). Hence, the (i, j)-th entry of the matrix A−1

ι Ap is
dλ

∑
k=1

ηikξ
p
kj (by the definition of the product of two matrices). In other words,

(
A−1

ι Ap
)

ij =
dλ

∑
k=1

ηikξ
p
kj. Thus,

dλ

∑
k=1

ηikξ
p
kj =

(
A−1

ι Ap
)

ij is proven.

• page 429, proof of Proposition 1.51: “Therefore rλ
ij (p)” → “Therefore, by

Lemma 1.50 (and because Uij 6= 0), we obtain rλ
ij (p)”.

• page 429: It is worth explaining why exactly Proposition 1.51 provides
an explicit way of computing the homomorphism φ in (11). Indeed, each

11
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p ∈ Sn satisfies

ψ
(

Rλ1 (p) , Rλ2 (p) , . . . , Rλr (p)
)

= ∑
λ`n

ψ


Rλ (p)︸ ︷︷ ︸

=
dλ
∑

i=1

dλ
∑

j=1
rλ

ij(p)Eλ
ij

(by the definition of Rλ(p))


= ∑

λ`n
ψ

(
dλ

∑
i=1

dλ

∑
j=1

rλ
ij (p) Eλ

ij

)
︸ ︷︷ ︸

=
dλ
∑

i=1

dλ
∑

j=1
rλ

ij(p)Uλ
ij

(by the definition of ψ)

= ∑
λ`n

dλ

∑
i=1

dλ

∑
j=1

rλ
ij (p)Uλ

ij = p (by (13))

and therefore
(

Rλ1 (p) , Rλ2 (p) , . . . , Rλr (p)
)
= ψ−1 (p) = φ (p) (since ψ−1 =

φ). Hence, by computing the matrices Rλ (p) for all λ ` n, we can obtain
an explicit formula for φ (p).
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