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Abstract. Given two (n+ 1) x (n+ 1)-matrices A and B over a com-

k
matrix W whose entries are (k + 1) x (k+ 1)-minors of A multiplied by
corresponding (k+ 1) x (k+ 1)-minors of B. Here we require the mi-
nors to use the last row and the last column (which is why we obtain an

n n . n+1 n+1 :
(k> X (k) -matrix, not a (k+ 1) X (k+ 1)-matrlx). We prove that

the determinant det W is a multiple of det A if the (n + 1, n + 1)-th entry
of B is 0. Furthermore, if the (1 + 1, n + 1)-th entries of both A and B are
0, then det W is a multiple of (det A) (detB). This extends a previous
result of Olver and the author.
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mutative ring, and some k € {0,1,...,n}, we consider the (Z) X (n) -

polynomials.
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1. Introduction

Let n and k be nonnegative integers, and let A = (a;;),_;, , |<j<niy e an

(n+1) x (n+1)-matrix over some commutative ring. Let P be the set of all k-
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element subsets of {1,2,...,n}. For any such subset K € P, let K+ denote the sub-
set KU{n+1}of {1,2,...,n+1}. If U and V are two subsets of {1,2,...,n+ 1},
then sub}; A shall denote the |U| x |V |-submatrix of A containing only the entries
ay, withu € Uand v € V. Let W4 be the P, x Pk—matrixﬂ whose (I, J)-th entry (for
allI € Prand | € Py) is

det <sub{i A) .

(Thus, the entries of W4 are all (k+ 1) x (k+ 1)-minors of A that use the last row
and the last column.) A particular case of a celebrated result going back to Sylvester
[Sylves51] (see [Prasol94, §2.7] or [Prasoll5, Teorema 2.9.1] or [Mohr53] for modern
proofs) then says that

@) s - (detA)T, where p = (n ; 1) and g = (Z : ;)

Now, consider a second (1 + 1) x (n+ 1)-matrix B = (b; ;)

det (WA) =

1<i<nt1, 1<j<nt1 OVET

the same ring. Let W4 p (later to be just called W) be the Py x Pr-matrix whose
(I, ])-th entry (for all I € Py and | € Py) is

det (subﬁ A) det (subﬁ B) .

What can be said about det (W, p) ? In general, very littl However, under
some assumptions, it splits off factors. Namely, we shall show (Theorem that
det (W4 p) is a multiple of det A if b,11,+1 = 0. We shall then conclude (The-
orem that if both a,,41,+1 and by11,41 are 0, then det (W, p) is a multiple
of (detA) (det B). In either case, the quotient (usually a much more complicated
polynomia remains mysterious; our proofs are indirect and reveal little about

2
[GriOlv18, Theorem 10] that arose from the study of the n-body problem (see Ex-

ample 2.4 for details).

. . . n n ,
it. Our second result generalizes a curious property of ( ) X ( 2) -determinants
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IThis means a matrix whose rows and columns are indexed by the k-element subsets of
{1,2,...,n}. If you pick a total order on the set P, then you can view such a matrix as an

) (" -matrix
k k '
2For example, if n = 3 and k = 2, then det (W, ) is an irreducible polynomial in the (altogether

2 (n+1)? = 32) variables a;j and b; ; with 110268 monomials.
3again irreducible in the case when n = 3 and k = 2
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2. The theorems

Let us first introduce the standing notations.

Let N = {0,1,2,...}. Let K be a commutative ring. If a2 and b are two elements
of K, then we write a | b when b is a multiple of a (that is, b € Ka).

If m € N, then [m] shall mean the set {1,2,...,m}.

Fix an n € IN. If K is any subset of [n], then K+ shall mean the subset KU {n + 1}
of [n+1J.

Fix k € {0,1,...,n}. Let P be the set of all k-element subsets of [n]. This is a
finite set; thus, any Py X Py-matrix (i.e., any matrix whose rows and columns are in-
dexed by k-element subsets of [n]) has a well-defined determinantﬁ Such matrices
appear frequently in classical determinant theory (see, e.g., the “k-th compound
determinants” in [MuiMet60] and in [Prasol94, §2.6], as well as the related “Gen-
eralized Sylvester’s identity” in [Prasol94, §2.7] and [Prasoll5, Teorema 2.9.1] and
[Mohr53])).

If A e K¥Yis a u x v-matrix, and if I C [u] and ] C [v], then sub%A shall
mean the submatrix of A obtained by removing all rows whose indices are not in
I and removing all columns whose indices are not in J. (Rigorously speaking, if

A= (ai/]'>1§igu,1§jgv and [ = {1 <ip<---<ip}and J = {1 <jp<---<jog},
then sub{ A= (aix,]-y> .) When |I| = |]|, then the submatrix sub{ Ais

square; its determinant det (sub{ A) is called a minor of A.
Our main two results are the following:

_ 1 1 _
Theorem 2.1. Let A = (ai'f)lgignﬂ, 1<j<ni1 € KM+)x(n+1) and B =
(bi,]-)1<l.<n+1 l<j<nt1 € K ("+1)x(+1) be such that by, 1,41 = 0. Let W be the

Py x Pr-matrix whose (I, ])-th entry (for all I € Py and | € P) is

det (subﬁ A) det (subﬁ B) .

Then, det A | det W.

Theorem 2.2. Let A = (ai'f)1<i<n+1 1<j<nt1 € K+D)x(n+1) and B =

(bi/j)1<i<n+1 1<j<nt1 € K ("+D)x(1+1) be such that a, 1,11 = 0 and by 1,11 = 0.
Define the Py x P-matrix W as in Theorem 2.1 Then, (det A) (detB) | det W.

Example 2.3. For this example, set k = 1. Then, P, = P; = {{1},{2},...,{n}}.
Thus, the map
[n] — D, i— {i}

“Here, we are using the concepts of P x P-matrices (where P is a finite set) and their determinants.
Both of these concepts are folklore; a brief introduction can be found in [Grinbel8, §1].
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is a bijection. Use this bijection to identify the elements 1,2,...,n of [n] with
the elements {1},{2},..., {n} of P. Thus, the P x P-matrix W in Theorem [2.1]
becomes the n x n-matrix

det (sul\orgii A) det (subg}}:i B)

o >
VT
=i jOnt 1 1041 =bj b ni1—Din1buia,j

1<i<n, 1<j<n

= | (@ijans1n41 = @ins18ns1j) | bijbnrinst —bins1bnin
——
=0 1<i<n, 1<j<n

= ((@ijant1,n41 — Bip418n41,7) (_bi,n+1bn+1,j))1§i§n’ 1<j<n
This is the matrix obtained from ((a;a,4+1n41 — ai,n+1an+1’]‘))1gi§n, 1<j<n by
multiplying the i-th row with —b;, 1 for all i € [n] and multiplying the j-th
column with b, for all j € [n]. Thus, the claim of Theorem [2.1] follows from
the classical fact that

_ n—1
det ((Eli,jan+1/n+1 — ai,n+1an+1lj)1§i§n, 1S]§n> =000 det A.

This fact is known as Chio pivotal condensation (see, e.g., [KarZhal6, Theorem
0.1]), and is a particular case of Sylvester’s identity ([Prasol94, §2.7]).

Example 2.4. For this example, set k = 2, and consider the situation of Theorem
again. Then, P, =P, = {{i,j} | 1<i<j<n}.If{ij} € P,and {k 1} € P,
satisfy i < j and k < [, then the ({i,j}, {k,1})-th entry of W is

K1)+ (K1} +
det (sub{. ; A) det (sub . B)
{ijh+ {ij}+ /,
—_—— —_—
aj k ai Ai nt1 bk bii  bint1
=| x4y ajun =| bix by binn
Ap+1k 9n+1,] An+1n+1 bn+1,k bn+1,l 0
(since by 11,1+1=0)
ajk ai| Aj i1 bk bii  bint1

=det| ajx a4y aju1 | det| bix b bjun
Apnt+1k 941, An+1,n+1 bn—l—l,k bn+1,l 0

If we furthermore assume that

Apt1ne1 =0, and
Api1i = Aipe1 =1 foralli € [n], and

bn+1,i = bi,n+1 =1 foralli e [7’1] ,
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then this entry rewrites as

i a1 bix biy 1

det Ajk a1 1 | det bj,k bj,l 1
1 1 0 1 1 0

=0 f+a;1—a;k—a;) =bj x+b;1—bix—bj,

= (a]-,k +aj;—ajx— ﬂj,z) (bj,k +bij — bij — bj,l ) :

Hence, [GriOlv18, Theorem 10] can be obtained from Theorem by setting
k=2 and A = Cs and B = Cr (and observing that the matrix W then equals to
Ws,T).

3. The proofs

Our proofs of Theorem 2.1)and Theorem 2.2 will rely on some basic commutative
algebra: the notion of a unique factorization domain (“UFD”); the concepts of
coprime, prime and irreducible elements; the localization of a commutative ring at
a multiplicative subset. This all appears in most textbooks on abstract algebra; for
example, [Knapp16| Sections VIIL.4 and VIIL.10] is a good referenceﬂ

The content of a polynomial p over a UFD is defined to be the greatest common
divisor of the coefficients of p. For example, the polynomial 4x? + 6y? € Z [x,y| has
content ged (4,6) = 2. (Of course, in a general UFD, the greatest common divisor is
defined only up to multiplication by a unit.) The following known facts are crucial
to us:

Proposition 3.1. A polynomial ring over Z in finitely many indeterminates is
always a UFD.

Proof of Proposition 3.1} Proposition appears, e.g., in [Knappl6, Remark after
Corollary 8.21]. For a constructive proof of Proposition we refer to [MiRiRu87,
Chapter IV, Theorems 4.8 and 4.9] or to [Edward05, Essay 1.4, Corollary of Theorem
1 and Corollary 1 of Theorem 2]. O

Proposition 3.2. Let p be an irreducible element of a UFD K. Then, the quotient
ring K/ (p) is an integral domain.

Proof of Proposition First of all, we recall that any irreducible element of a UFD
is prime (indeed, this follows from [Knapp16, Proposition 8.13]). Thus, the element
p of K is prime. Hence, [Knapp16, Proposition 8.14] shows that the ideal (p) of K
is prime. Therefore, the quotient ring K/ (p) is an integral domain. This proves

Proposition O

>We call “multiplicative subset” what Knapp (in [Knapp16, Section VIIL.10]) calls a “multiplicative
system”.
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We shall furthermore use the following properties of contents (whose proofs are
easy):

Proposition 3.3. Let U be a UFD. Let F be the field of fractions of U. Let
p € U|xq,x2,...,%u] be a polynomial over U. Assume that the content of p
is 1. Also assume that p is irreducible when considered as a polynomial in
FF [x1,x2,...,Xxm]. Then, p is also irreducible when considered as a polynomial in
U [x1,X2, .., Xm]-

Proposition 3.4. Let U be a UFD. Let p,q € U [x1, X2, ..., X;] be two polynomials
over U. Assume that both p and g have content 1, and assume furthermore that
p and g don’t have any indeterminates in common (i.e., there is no i € [m] such
that deg, p > 0 and deg, g > 0). Then, p and g are coprime.

The next simple fact states that for any positive integer 7, the determinant of
the “generic n x n-matrix” (i.e., of the n x n-matrix whose n? entries are distinct
indeterminates in a polynomial ring over Z) is irreducible as a polynomial over Z:

Corollary 3.5. Let n be a positive integer. Let G be the polynomial ring
Z [ai,]- | (i,7) € [n]z}. Let A € G"*" be the n X n-matrix (a; ) . Then,
the element det A of G is irreducible.

1<i<n, 1<j<n

Proof of Corollary[3.5] A well-known fact (e.g., [DeKuRo78, Lemma 5.12]) shows
that det A is irreducible as an element of Q [a,-,j | (i,)) € [n]z]. This yields (us-

ing Proposition that det A is irreducible as an element of Z [ai,]- | (i,]) € [n]z}
as well, since the polynomial det A has content 1. This proves Corollary [

An element a of a commutative ring A is said to be regular if every b € A
satisfying ab = 0 must satisfy b = 0. (Regular elements are also known as non-zero-
divisors.) In a polynomial ring, each indeterminate is regular; hence, each mono-
mial (without coefficient) is regular (since any product of two regular elements is
regular). The following fact is easy to see

®We recall a few standard concepts from commutative algebra:
Let K be a commutative ring. A multiplicative subset of K means a subset S of K that contains
the unity 1k of K and has the property that every a,b € S satisfy ab € S.
If S is a multiplicative subset of KK, then the localization of K at S is defined as follows: Let ~
be the binary relation on the set K x S defined by

((r,s) ~ (r',s")) < (t(rs' —sr') =0forsomet € S).

Then, it is easy to see that ~ is an equivalence relation. The set IL of its equivalence classes
[(r,s)] can be equipped with a ring structure via the rules [(r,s)] + [(*/,s")] = [(rs’ + s/, ss")]
and [(r,s)] - [(r,s")] = [(r7',ss")] (with zero element [(0,1)] and unity [(1,1)]). The resulting ring
L is commutative, and is known as the localization of K at S. (This generalizes the construction
of Q from Z known from high school.)
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Proposition 3.6. Let K be a commutative ring. Let S be a multiplicative subset
of K such that all elements of S are regular. Let IL be the localization of the ring
K at S. Then:

(a) The canonical ring homomorphism from K to L is injective. We shall thus
consider it as an embedding.

(b) If K is an integral domain, then LL is an integral domain.

(c) Let a and b be two elements of K. Then, we have the following logical
equivalence:

(a|binll) <= (a|sbinK for somes € S).

Matrices over arbitrary commutative rings can behave a lot less predictably than
matrices over fields. However, matrices over integral domains still show a lot of
the latter good behavior, such as the following:

Proposition 3.7. Let P be a finite set. Let M be an integral domain. Let W €
MP*P be a P x P-matrix over M. Let u € M’ be a vector such that u # 0 and
Wu = 0. Here, u is considered as a “column vector”, so that Wu is defined by

Wu = <2 wp,quq> ,  where W = (wpfq)(p,q)erP and u = (uP)peP'
qep peP

Then, det W = 0.

Proof of Proposition Let m = |P|. Then, we can view the P x P-matrix W as an
m X m-matrix (by “numerical reindexing”, as explained in [Grinbel8), §1]), and we
can view the vector u as a column vector of size m. Let us do this from here on.
Let IF be the quotient field of the integral domain M. Thus, there is a canonical
embedding of M into F. Hence, we can view the matrix W € IM"™*™ as a matrix
over [F, and we can view the vector u € IM" as a vector over [F. Let us do so from
here on. We are now in the realm of classical linear algebra over fields: The vector
u € F™" is nonzero (since u # 0) and belongs to the kernel of the m x m-matrix
W € F"™*" (since Wu = 0). Hence, the kernel of the matrix W is nontrivial. In
other words, this matrix W is singular. Thus, det W = 0 by a classical fact of linear
algebra. This proves Proposition O

Let us next recall an identity for determinants (a version of the Cauchy—Binet
formula):

The element [(r,s)] of IL is denoted by g There is a canonical ring homomorphism from K to

L that sends each ¥ € K to [(r,1)] = % e L.

When all elements of the multiplicative subset S are regular, the statement “f (rs’ —st') = 0
for some t € 5” in the definition of the relation ~ can be rewritten in the equivalent (but much

"o, ! ! 1

simpler) form “rs’ = sr’ 7 (which is even more reminiscent of the construction of Q).
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Lemma 3.8. Letn € N, m € N and p € N. Let A € K"*? be an n x p-matrix.
Let B € KP*™ be a p x m-matrix. Let k € IN. Let P be a subset of [n] such that
|P| = k. Let Q be a subset of [m] such that |Q| = k. Then,

det <sub§ (AB)) = RCZ[:} det (subg A) - det (sublg B) :
Clpl;
IR|=k

Lemma [3.8] is [Grinbel7|, Corollary 7.251] (except that we are using the notation
sub{ C for what is called sub:Zg; C in [Grinbel7]). It also appears in [Gantma0Q0,

Chapter I, (19)] (where it is stated using p-tuples instead of subsets). [
The next lemma is just a particular case of Theorem but it is a helpful step-
ping stone on the way to proving the latter theorem:

Lemma 3.9. Let A = (ai/j>l<i<n+1 l<j<ni1 € KtD)x(n+l) and B =

(bij)1<icnin, 1<j<nn € K1) 1) be such that byi1,41 = 0. Assume fur-
ther that
g1, =0 forall j € [n]. (1)

Define the Py x Pi-matrix W as in Theorem 2.1} Then, det A | det W.

The following proof is inspired by [GriOlv18, proof of Theorem 10].

Proof of Lemma[3.9, We WLOG assume that K is the polynomial ring over Z in
n?+(n+1)+ <(n +1)% - 1> indeterminates

aj foralli € [n] and j € [n];
Qi n1 foralli e [n+1];
bi foralli € [n+1] and j € [n+ 1] except for by 11 ,41-

And, of course, we assume that the entries of A and B that are not zero by assump-
tion are these indeterminates//

The ring K is a UFD (by Proposition [3.T).

We WLOG assume that n > 0 (otherwise, the result follows from detW =
det( 0 ) =0).

The set Py is nonempty (since k € {0,1,...,n}); thus, |P¢| > 1.

Let A be the n x n-matrix (ai/j)lgign, 1<j<n € K"*". Then, because of H we

have B
detA = an+1,n+1 . detA (2)

"These assumptions are legitimate, because if we can prove Lemma [3.9) under these assumptions,
then the universal property of polynomial rings shows that Lemma [3.9/holds in the general case.
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(by [Grinbel?7, Theorem 6.43], applied to n + 1 instead of n).
The matrix A is a completely generic n x n-matrix (i.e., its entries are distinct in-
determinates); thus, its determinant det A is an irreducible polynomial in the poly-

nomial ring Z [ai,j | (i,]) € [n]z] (by Corollary . Hence, det A also is an irre-
ducible polynomial in the ring K (since K differs from Z [a,-,j | (i,]) € [n]z] only in

having more variables, which clearly cannot contribute any factors to det A). Thus,
Proposition [3.2| (applied to p = det A) shows that the quotient ring K/ (det A) is
an integral domain.

Let M be the quotient ring K/ (det A). Then, M is an integral domain (since

K/ (det A) is an integral domain). All monomials in the variables b; ; (with (i,7) #
(n+1,n+ 1)) are nonzero in M. Likewise, a,1,,4+1 7 0 in M.
Let w be the element [] b,1; € M. (Strictly speaking, we mean the canonical
j€ln]
projection of [] b,y1; € K onto the quotient ring M.) Then, w is a nonzero
j€ln]
element of the integral domain M (since b, ;1 # 0 in M for all j € [n]).
For each i € [n], we define z; € M by z; = [] b1 (projected onto M). This is

j€ln];
j#i
a nonzero element of M. In M, we have
bpi1,izi = bur [ burrj =[] burj=w (3)
j€nl; j€ln]

J#i

foralli € [n].

We need another piece of notation: If M is a p X g-matrix, and if u € [p]| and
v € [gq], then M., ., denotes the (p — 1) x (g — 1)-matrix obtained from M by
removing the u-th row and the v-th column.

The matrix A (,41) has determinant 0 (because shows that its last row

consists of zeroes). In other words, det <A~1,~(n +1)) =0.
Also, due to (), we see that each i € [n] satisfies

det (A1,ui) = @pi1n41 - det (Ay i) 4)
(by [GrinbelZ, Theorem 6.43], applied to A.; ; instead of A), because the last row
of the matrix A1 ;is (0,0,...,0,441n+1)-
For each i € [n + 1], we define an element u; € M by

zi (—1) det (Aq i), ifie[n];
u; = ’ .
1, fi=n+1
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All these n + 1 elements uq,uy, ..., u,11 of M are nonzeroﬂ
Let u = (uj) € M be the vector defined by

up=[Tu

j€]

JeP

Then, the entries of the vector u are nonzero (because they are products of the
nonzero elements 1, uy, . .., u,4+1 of the integral domain IM). Since the vector u has
at least one entry (because |Px| > 1), we thus conclude that u # 0.

Let A be the diagonal matrix A = diag (u1, U, ..., Uy1) € MOFDX(41),

Let x € M"*! be the column vector defined by

T
x = <(—1)1det(AN1,N1),(—1)2det(AN1,N2),...,(—1)”“ det (ANLN(HH))) .

Let (e1,e2,...,e,.1) be the standard basis of the free M-module M"*!. Thus, for
any (n+1) x (n+1)-matrix C € M**Dx("+1) and any j € {1,2,...,n+1}, we
have

(the j-th column of the matrix C) = Ce;. )

Now, using Laplace expansion, it is easy to see that
Ax = —detA - e;. (6)

[Proof of (6): Consider the adjugate adjA of the matrix A. A standard fact
([GrinbelZ, Theorem 6.100]) says that A - adj A = det A - I, ;1. But the definition of
adj A reveals that the first column of the matrix adj A is —x. Hence, the first column
of the matrix A-adjA is A- (—x) = —Ax. On the other hand, the first column of
the matrix A -adj A is det A -e; (since A-adjA = det A - [,,;1). Comparing the pre-
ceding two sentences, we conclude that —Ax = det A - e1, so that Ax = —det A - e;.
This proves (6).]

Also, (5) (applied to C = BT and j = n + 1) yields

BTe, 1 = (the (n + 1) -st column of the matrix BT) = (by411,bnt12,---, bn+1’n+1)T

8Proof. Each i € [n] satisfies

up=z; (1) det(Ai) = z &ﬂ Antlntl det (A1)
——— N ~— S——
i det(Ay ) AOMMADNM £0in M _A0inM
(by @) (since det(ANLN,-) is a polynomial

of smaller degree than det 4, and thus
is not a multiple of detA)

#0in M

(since M is an integral domain). Thus, uq,u,...,u, are nonzero. Moreover, 1,1 iS nonzero
(since u,,11 = 1). Thus, we are done.




A double Sylvester determinant page 11
Hence,
ABTenJrl =A (bn+l,l/ bn+l,2/ ceey bn+1,n+1)T
= (t1byy1,1,U2bns12, - -+ Un1 b 1) 7)
(since A = diag (u1,up, ..., Uyt1)).
Now, we claim that
Uibpy1; = w- (=1) det (Aq ;) for eachi € [n+1]. (8)

[Proof of (8): Leti € [n+1]. If i = n + 1, then both sides of (8) are zero (because
byt+1n+1 = 0 and det (A~1,~(n+1)> =0). If i #n+1, then i € [n] and thus

7 bui1; = zi (—1) det (Auy i) by

:Zi(—l)i det(ANLNi)
(by the definition of u;)

w-(—1) det(As ).

Hence, (8) is proven in both cases.]
Now, (7) becomes

ABTe, 4
T
.y un+1bn+1,n+1)

(w- (—1)'det (Aq 1), w- (—1)*det (Aq 2),. ..

= (u1bp111, U2bp112, -

= bn+1,iZ/i (—1)" det (At~i)

Hﬁ/—
(by ()

,w - (—1)" det (A~1,~(n+1)))T

1)n+1 det (AN1,~(H+1)> ) )

J/

(by ()
=w- ((—1)1det (A1), (—1)*det (A 2),...,(—
(by the deﬁr):ition of x)
= WX.
Hence,
AABTen—I-l = Awx = w - AXx = —w-
=—detA-¢;
(by (@)
= —W-Ap+1,n+1 " ,detz

det A
——

:an+1/n+1 -det A

(by @)
e = 0.

.el

=0
(since we are in M)

In other words, the (n + 1)-st column of the matrix AABT is 0 (since the (n + 1)-
st column of the matrix AABT is AABTe, 4 (by , applied to C = AABT and
j=n+1)).
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Now, fix I € P,. Then, the last column of the matrix subﬁ (AABT) is 0 (because
this column is a piece of the (1 + 1)-st column of the matrix AABT, but as we have

just shown the latter column is 0). Thus, det <subﬁ (AABT)> =0.

But Lemma (appliedtoM,n+1,n+1,n+1, ABT k+1, I+ and I+ instead
of K, n, m, p, B, k, P and Q) yields

det (subﬁr <AABT)) = 2 det (subﬁ A> det (sub{;r (ABT>> .
e

Comparing this with det (subﬁ (AABT)) = 0, we obtain

0= RC%Ll];det (sub?+ A) det (subf;r (ABT>> .

IR|=k+1
In the sum on the right hand side, all addends for which n +1 ¢ R are zero
(because if R C [n + 1] satisfies |R| = k+ 1 and n+ 1 ¢ R, then the last row of the

matrix subﬁ A consists of zeroeq’|, and therefore we have det <sub§+ A) =0), and
thus can be discarded. Hence, we are left with

0= Rg%”;det <subﬁ A) det (subff (ABT>> :

|R|=k+1;
n+1€eR

But the subsets R of [n + 1] satisfying |R| = k+1and n+1 € R can be parametrized
as J+ with | ranging over Py. Hence, this rewrites further as

0= ];k det <subﬁ A) det <subﬁL <ABT>> .

It is easily seen that det (subﬁ (ABT)) = det <sub{i B) uj for each | € Dy (indeed,

recall the definition of A and the fact that 1,7 = 1 and that det (CT) = detC for
each square matrix C). Thus, the above equality simplifies to

0= ];k det (sub{i A) det (sub{i B) uy.

Now, forget that we fixed I. We thus have proven that

0= ]gk det (subﬁr A) det (subﬁr B) uj )

9by,sincen+1§éRbutn+1€I+




A double Sylvester determinant page 13

for each I € P;. This rewrites as Wu = 0 (indeed, the left hand side of (9) is the
I-th entry of the zero vector 0, whereas the right hand side of (9) is the I-th entry
of Wu).

Now, consider the matrix W as a matrix in M «*Px. Then, Proposition (applied
to P = P) yields detW = 0 in M (since u # 0 and Wu = 0). In view of the
definition of M, this rewrites as det A | det W in K.

Let us consider the matrix W again as a matrix over K. Each entry of W has

the form det (sub{i A) det (sub{i B) for some I, ] € Py. Thus, all entries of W are
multiples of a,41 ,+1 (since det (subﬁ A) is a multiple of 4,41 ,41 forall I,] € P

. Hence, the determinant of W is a multiple of (an+1ln+1)‘P"|, thus a multiple of
Ap+1p+1 (since |P| > 1). In other words, 4,11 ,41 | det W in K.

Recall that K is a UFD. Also, the two polynomials 4,1 ,1 and det A in K both
have content 1, and don’t have any indeterminates in common; thus, these two
polynomials are coprime (by Proposition [3.4). Hence, any polynomial in K that
is divisible by both 4,11 ,4+1 and det A must be divisible by the product a,1 ,+1 -
det A as well. Thus, from a,,1,.1 | detW and det A | det W, we obtain a, 1,1 -
det A | detW. In view of , this rewrites as det A | detW. This proves Lemma
B.9 O

We shall now derive Theorem 2.2 from Lemma following the same idea as in
[Prasol94, §2.7] and [Prasol15, Teorema 2.9.1] and [Mohr53|:

Proof of Theorem We WLOG assume that n > 0 (otherwise, the result follows
from detW = det ( 0 ) = 0).

We WLOG assume that K is the polynomial ring over Z in (n + 1%+ <(n +1)* — 1)
indeterminates

a; forallie [n+1] andj e [n+1];
bi j foralli € [n+1] and j € [n+ 1] except for by 1111

And, of course, we assume that the entries of A and B that are not zero by assump-
tion are these indeterminates. Proposition 3.1{shows that the ring K is a UFD (since
it is a polynomial ring over Z).

Let S be the multiplicative subset {aZ sl | PE ]N} of K. Then, all elements of

S are regular (since they are monomials in a polynomial ring).

Let IL be the localization of the commutative ring K at the multiplicative subset
S. Then, Proposition (a) shows that the canonical ring homomorphism from K
to IL is injective; we shall thus consider it as an embedding. Also, Proposition
(b) shows that IL is an integral domain.

19Proof. Let I,] € Pr. Then, the equality shows that the last row of the matrix subﬁA
is (0,0,...,0,4,4144+1). Hence, an application of [Grinbel7, Theorem 6.43] shows that

det (subﬁ A) = Ap4+1,+1 det (sub% A). Thus, det (subﬁ A) is a multiple of 4,11 11, qed.
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We claim that
det A | detWin L. (10)

[Proof of : Consider A, B and W as matrices over IL. The entry a,,11,+1 of A is
invertible in IL (by the construction of IL). Hence, we can subtract appropriate scalar
multiple'] of the (1 4 1)-st column of A from each other column of A to ensure
that all entries of the last row of A become 0, except for a,1,+1. (Specifically,
for each j € [n], we have to subtract a;,1/a,11,,11 times the (1 + 1)-st column
of A from the j-th column of A.) All these column transformations preserve the
determinant det A, and also preserve the minors det (subﬁ A) for all I,] € P
(because when the (n + 1)-st column of A is subtracted from another column of
I
transformation@ which preserves its determinant); thus, they preserve the matrix
W. Hence, we can replace A by the result of these transformations. This new
matrix A satisfies (I). Hence, Lemma (applied to IL instead of K) yields that
det A | detW in IL. This proves (10).]

But we must prove that detA | detW in K. Fortunately, this is easy: Since
K embeds into IL, we can translate our result “det A | detW in IL” as “det A |
aZ +1411detW in K for an appropriate p € IN” (by Proposition (c), applied
toa = detA and b = detW). Consider this p. The polynomial a,41,+; € K

is coprime to det A (this is easily checke; thus, its power af; 4141 1S cOprime

A, the matrix sub;, A either stays the same or undergoes an analogous column

to det A as well. Hence, we can cancel the a’ +1n41 from the divisibility det A |

al +1n+19etW, and conclude that det A | det W in K. This proves Theorem O

Proof of Theorem We WLOG assume that K is the polynomial ring over Z in the
<(n +1)* — 1) + ((n +1)% - 1) indeterminates

a; foralli € [n+1] and j € [n + 1] except for a,1,,41;
b; i foralli € [n+1] and j € [n+ 1] except for by, 11 ;41-

And, of course, we assume that the entries of A and B that are not zero by assump-
tion are these indeterminates. The ring K is a UFD (by Proposition 3.1).
WLOG assume that n > 0 (otherwise, the result follows from det W = det ( 0 ) =
0). Thus, the monomial a1 4142, - --an411 = [ ainu+2—; occurs in the polyno-
ie[n+1]
mial det A with coefficient £1. Hence, the polynomial det A has content 1. Simi-
larly, the polynomial det B has content 1.

UThe scalars, of course, come from L here.

12Here we are using the fact that n +1 € [+ (so that the matrix sub{
(n +1)-st column of A).
13Proof. The polynomial det A contains the monomial a1 , 142, - - - ay+11 = I 4in42-i, and thus
i€[n+1]
is not a multiple of 4,11 ,,+1. Hence, it is coprime to 4,41 ,+1 (since the only non-unit divisor of
Ay41n+1 1S 41 41 itself, up to scaling by units).

+

4 A contains part of the
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Theorem [2.1| yields det A | det W. The same argument yields det B | det W (since
the matrices A and B play symmetric roles in the construction of W). But Propo-
sition 3.4 shows that the polynomials det A and det B in K are coprime (because
they have content 1, and don’t have any indeterminates in common). Thus, any
polynomial in K that is divisible by both det A and det B must be divisible by the
product (det A) (detB) as well. Thus, from detA | detW and detB | detW, we
obtain (det A) (det B) | det W. This proves Theorem O

4. Further questions

While Theorems 2.1 and 2.2] are now proven, the field appears far from fully har-
vested. Three questions readily emerge:

det W
(det A) (det B)

det W
det A

Question 4.1. What can be said about

(in Theorem i and
(in Theorem 2.2)? Are there formulas?

Question 4.2. Are there more direct proofs of Theorems 2.1} and avoiding the
use of polynomial rings and their properties and instead “staying inside K”? Such
proofs might help answer the previous question.

Question 4.3. The entries of our matrix W were products of minors of two (1 + 1) x
(n 4 1)-matrices that each use the last row and the last column. What can be said
about products of minors of two (n + m) x (n + m)-matrices that each use the last
m rows and the last m columns, where m is an arbitrary positive integer? The
“Generalized Sylvester’s identity” in [Prasol94, §2.7] answers this for the case of
one matrix. It is not quite obvious what the right analogues of the conditions
Ap+1n+1 = 0 and b,y1,41 = 0 are; furthermore, nontrivial examples become even
more computationally challenging.
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