On Bidigare's proof of Solomon's theorem

Mark Wildon

http://www.ma.rhul.ac.uk/~uvah099/Maths/Bidigare4.pdf version of 6 February 2019

Errata and addenda by Darij Grinberg

1. Errata

- **page 1:** As usual, I think it's worth explaining that your functions (or permutations, at least) act on the right of their values and are multiplied accordingly (so that $\alpha\beta$ sends i to $(i\alpha)\beta$).
- page 1: Also, I think "natural number" should be defined (to warn the reader that 0 doesn't count as a natural number).
- **page 1:** Also, the Young subgroup S_p should be defined.
- **page 1 and later:** You occasionally use " Ξ_p " as a synonym for " Ξ^p ". (Probably, a search for " $Xi_$ " will quickly locate all the instances of this.)
- **page 1:** In the definition of Des (g), replace "xg < (x+1)g" by "xg > (x+1)g" (or does gravity, too, work the other way round in Britain?).
- **page 1:** "Given compositions p, q and r of \mathbf{N} such that p has k parts and q has ℓ parts" \to "Given compositions $p = (p_1, p_2, \ldots, p_k)$, $q = (q_1, q_2, \ldots, q_\ell)$ and r of $n \in \mathbf{N}$ ". (Two things corrected here: "of \mathbf{N} " became "of $n \in \mathbf{N}$ ", and the notations p_i and q_j have been defined explicitly since you refer to them later.)
- page 1, Theorem 1: "If p, q and r" \rightarrow "If p and q".
- **page 1, §2:** "the sets P_1, \ldots, P_n are disjoint" \rightarrow "the sets P_1, \ldots, P_k are disjoint".
- **page 1, §2:** In the first displayed equation of §2, add a comma after " P_1g " in " $(P_1g ..., P_kg)$ ".
- **page 1, §2:** It might be worth saying a few words about why this product \land is associative. To me, this becomes really clear when I identify each set composition $P = (P_1, \ldots, P_k)$ of n with a total pre-order on the set $\{1, 2, \ldots, n\}$ (namely, the pre-order under which two elements i and j satisfy $i \leq j$ if and only if $i \in P_u$ and $j \in P_v$ for some $u \leq v$), and then the product \land becomes a "lexicographic order" product (i.e., two elements i and j of $\{1, 2, \ldots, n\}$ satisfy $i \leq j$ in $P \land Q$ if and only if they satisfy $i \leq j$ in P and (if $i \sim j$ in P, then $i \leq j$ in Q)). Thus, $P \land Q$ means "order the elements according to P, and use Q to break ties".

- page 2, basic property (2): Here, " $\{1,\ldots,n\}$ " should be replaced by " $(\{1,\ldots,n\})$ ".
- page 2, basic property (3): This statement relies on a somewhat unusual concept of "refinement", as you explain a few paragraphs below; with the normal concept of refinement for compositions, it is false¹.
 - Let me, however, suggest to replace (3) by the weaker claim that "If $Q \in \Pi_n$ has type (1^n) , then $P \wedge Q$ has type (1^n) for any $P \in \Pi_n$.". This is all you need in the following, and it has the advantage of being obviously true.
- page 2, basic property (C): "By (3) above" → "By (3) and (4) above" (at least if you follow my suggestion in nerfing (3)).
- page 2, basic property (D): "If q has ℓ parts" \to "If $q = (q_1, \ldots, q_{\ell})$ ".
- **page 2, basic property (D):** In the displayed equation that defines T^q , replace " $\{1...q_1\}$ " by " $\{1,...,q_1\}$, $\{q_1+1,...,q_1+q_2\}$ " (I've added missing commas and also added a second set to make the construction clearer).
- **page 3, proof of Proposition 3:** "Let p be a composition with k parts" \rightarrow "Let $p = (p_1, \dots, p_k)$ be a composition".
- **page 3, proof of Proposition 3:** Remove the "where q has ℓ parts" (you never use ℓ).
- page 3, proof of Proposition 3: "for $1 \le i < k$ " \rightarrow "for $1 \le i \le k$ ".
- page 3, proof of Proposition 3: Replace " T_q " by " T^q ". This, too, appears several times, so it's worth searching for it.
- page 3: You write "is a subalgebra of $\mathbb{Z}S_n$ isomorphic to $(\mathbb{Z}\Pi_n)^{S_n}$ ". You seem to be going a tad too fast here; the isomorphism only follows once you realize that the Ξ^p are linearly independent, which follows from the distinctness of their "leading terms" with respect to some order on the permutations; but this isn't really so obvious that it isn't worth further mention, if you ask me.
- **page 3:** "say that $T \in \Pi_n$ is increasing" \to "say that $T = (T_1, ..., T_\ell) \in \Pi_n$ is increasing".
- page 3: "for $1 \le i < i' \le \ell$ " \to "for $1 \le i < j \le \ell$ " (or rename j as i' later).

$$(\{1,2,3\},\{4\}) \land (\{1,4\},\{2,3\}) = (\{1\},\{2,3\},\{4\})$$

is (1,2,1), which is a refinement of (3,1) but not a refinement of (2,2) in the usual sense of this word.

¹For example, the type of

• page 3, proof of Proposition 4: "Suppose that p has k parts, q has ℓ parts and that r has m parts" \to "Suppose that $p=(p_1,\ldots,p_k)$ and $q=(q_1,\ldots,q_\ell)$ ". (You don't need m.)