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Abstract

The reduced expressions for a given element w of a Coxeter group (W, S)
can be regarded as the vertices of a directed graph R (w); its arcs correspond
to the braid moves. Specifically, an arc goes from a reduced expression
@ to a reduced expression b when b is obtained from @ by replacing
a contiguous subword of the form stst--- (for some distinct s,t € S) by
tsts--- (where both subwords have length m;;, the order of st ¢ W). We
prove a strong bipartiteness-type result for this graph R (w): Not only does
every cycle of R (w) have even length; actually, the arcs of R (w) can be
colored (with colors corresponding to the type of braid moves used), and
to every color ¢ corresponds an “opposite” color c°P (corresponding to the
reverses of the braid moves with color c), and for any color ¢, the number
of arcs in any given cycle of R (w) having color in {c,c°P} is even. This is a
generalization and strengthening of a 2014 result by Bergeron, Ceballos and
Labbé.

Introduction

Let (W,S) be a Coxeter groupﬂ with Coxeter matrix (ms,sl)( s5)esxss and let
w € W. Consider a directed graph R (w) whose vertices are the reduced ex-
pressions for w, and whose arcs are defined as follows: The ggph R (w) has
an arc from a reduced expressmn @ to a reduced expression b whenever b

can be obtained from @ by replacing some contiguous subword of the form
(s,t,s,t,...) by (t,s,t,5,...), where s and t are two distinct elements of S. (This

ms ¢ letters ms ¢ letters
replacement is called an (s, t)-braid move.)

LAll terminology and notation that appears in this introduction will later be defined in more
detail.
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The directed graph R (w) (or, rather, its undirected version) has been stud-
ied many times; see, for example, [ReiRoill] and the references therein. In this
note, we shall prove a bipartiteness-type result for R (w). Its simplest aspect
(actually, a corollary) is the fact that R (w) is bipartite (i.e., every cycle of R (w)
has even length); but we shall concern ourselves with stronger statements. We
can regard R (w) as an edge-colored directed graph: Namely, whenever a re-

duced expression b is obtained from a reduced expression T by an (s, t)-braid

move, we color the arc from 7 to 7 with the conjugacy class [(s,t)] of the
pair (s,t) € S x S. Our result (Theorem 2.3) then states that, for every such color
[(s,1)], every cycle of R (w) has as many arcs colored [(s, t)] as it has arcs colored
[(t,5)], and that the total number of arcs colored [(s, t)] and [(f,s)] in any given
cycle is even. This generalizes and strengthens a result of Bergeron, Ceballos
and Labbé [BeCelLal4, Theorem 3.1].
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1. A motivating example

Before we introduce the general setting, let us demonstrate it on a simple exam-
ple. This example is not necessary for the rest of this note (and can be skipped by
the readerﬂ) ; it merely provides some intuition and motivation for the definitions
to come.

For this example, we fix an integer n > 1, and we let W be the symmetric
group S, of the set {1,2,...,n}. Foreachi € {1,2,...,n—1}, lets; € W be the
transposition which switches i with i 41 (while leaving the remaining elements
of {1,2,...,n} unchanged). Let S = {s1,s2,...,5,-1} € W. The pair (W, S) is
an example of what is called a Coxeter group (see, e.g., [Bourba81, Chapter 4]
and [Lusztigl4, §1]); more precisely, it is known as the Coxeter group A,_1. In
particular, S is a generating set for W, and the group W can be described by the

2 A conjugacy class here means an equivalence class under the relation ~ on the set S x S, which
is given by

((s,t) ~ (s',t') <= there exists a g € W such that gsg ! =5’ and qtqg ' = t’) :

The conjugacy class of an (s,t) € S x S is denoted by [(s, t)].

3 All notations introduced in Section 1| should be understood as local to this section; they will
not be used beyond it (and often will be replaced by eponymic notations for more general
objects).
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generators s1, sy, ...,5,—1 and the relations

S?:id foreveryie {1,2,...,n—1}; (1)
SiSj = 88 for every i,j € {1,2,...,n— 1} such that |i —j| > 1; (2)
$iSjSi = 8jSiSj foreveryi,je {1,2,...,n—1} suchthat [i—j|=1. (3)

This is known as the Coxeter presentation of S, and is due to Moore (see, e.g.,
[CoxMos80, (6.23)—(6.25)] or [Willia03, Theorem 1.2.4]).

Given any w € W, there exists a tuple (a1, 4, ..., a;) of elements of S such that
w = ajay - - - a (since S generates W). Such a tuple is called a reduced expression
for w if its length k is minimal among all such tuples (for the given w). For
instance, when n = 4, the permutation 77 € S; = W that is written as (3,1,4,2)
in one-line notation has reduced expressions (s,s1,53) and (sp,s3,51); in fact,
T = 525153 = 535351. (We are following the convention by which the product
uov = uv of two permutations u,v € S, is defined to be the permutation
sending each i to u (v (i)).)

Given a w € W, the set of reduced expressions for w has an additional struc-
ture of a directed graph. Namely, the equalities (2) and (3) show that, given
a reduced expression 7 = (ay,a,...,a;) for w € W, we can obtain another
reduced expression in any of the following two ways:

e Pick some 7,j € {1,2,...,n—1} such that |i — j| > 1, and pick any factor
of the form (s;,s;) in @ (that is, a pair of adjacent entries of @, the first
of which is s; and the second of which is s;), provided that such a factor
exists, and replace this factor by (s]-, 5i).

e Alternatively, pick some 7,j € {1,2,...,n—1} such that |i —j| = 1, and
pick any factor of the form (si, s]-,si) in 7, provided that such a factor
exists, and replace this factor by (sj, S;, sj).

In both cases, we obtain a new reduced expression for w (provided that the
respective factors exist). We say that this new expression is obtained from i by
an (s;,s;)-braid move, or (when we do not want to mention s; and s;) by a braid
move. For instance, the reduced expression (sp,s1,s3) for T = (3,1,4,2) € Sy is
obtained from the reduced expression (sy,s3,s1) by an (ss, s1)-braid move, and
conversely (s, s3,51) is obtained from (s, s1,53) by an (s1, s3)-braid move.

Now, we can define a directed graph Ry (w ) whose vertices are | the reduced
express1ons for w, and which has an edge from @ to v whenever I is obtained

from @ by a braid move (of either sort). For instance, let n = 5, and let w be the
permutation written in one-line notation as (3,2,1,5,4). Then, Ry (w) looks as
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follows:
(54151)
—_—
(54,52) (52,54,51,52) (52,51,54,52) (54,52)
‘“—  —
// o \\
(54152181152) (52’54) (52’54) (52181182154)

(51,52)< )(52,51) (51152)<\ )(52151)
(84,51,82,51) (54,51) (54,51) (s1,52,51,54)
\\ (54152) //
—_

(51'54) (51154/ SZ/Sl) (51182/ 34151) (51’54)
“—

(52,54)

_>
Here, we have “colored” (i.e., labelled) every arc (7, b ) with the pair (s,',s]-)

—
such that b is obtained from @ by an (s;, sj)-braid move.
In our particular case, the graph R (w) consists of a single bidirected cycle.
This is not true in general, but certain things hold in general. First, it is clear that

_>
whenever an arc from some vertex a’ to some vertex b has color (sl-, sj), then

there is an arc with color (sj,si) from 7 to @. Thus, R (w) can be regarded
as an undirected graph (at the expense of murkying up the colors of the arcs).
Furthermore, every reduced expression for w can be obtained from any other by
a sequence of braid moves (this is the Matsumoto-Tits theorem; it appears, e.g.,
in [Lusztigl4, Theorem 1.9]). Thus, the graph Ry (w) is strongly connected.

What do the cycles of Ry (w) have in common? Walking down the long cycle
in the graph Ry (w) for w = (3,2,1,5,4) € Ss counterclockwise, we observe that
the (s1,s2)-braid move is used once (i.e., we traverse precisely one arc with color
(s1,52)), the (s2,51)-braid move once, the (s1,54)-braid move twice, the (s4,51)-
braid move once, the (s, s4)-braid move once, and the (s4, s7)-braid move twice.
In particular:

e The total number of (s;,s;)-braid moves with |i —j| = 1 used is even
(namely, 2).

e The total number of (s;,s;)-braid moves with |i —j| > 1 used is even
(namely, 6).

This example alone is scant evidence of any general result, but both even-
ness patterns persist for general 1, for any w € S, and any directed cycle in
Ro (w). We can simplify the statement if we change our coloring to a coarser one.
Namely, let 9 denote the subset {(s,t) € S xS | s # t} = {(si,s;) | i #j} of
S x S. We define a binary relation ~ on 91 by

s,t) ~ (s',t') <= there existsa g € W such thatgsg ! = and gtg~ ! =¢).
q qsq qrq
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This relation ~ is an equivalence relation; it thus gives rise to a quotient set
M/ ~. It is easy to see that the quotient set Mt/ ~ has exactly two elements (for
n > 4): the equivalence class of all (s;,s;) with |i — j| = 1, and the equivalence
class of all (s;, s]-) with |i —j| > 1. Let us now define an edge-colored directed
graph R (w) by starting with Rg (w), and replacing each color (s;,s;) by its
equivalence class [(s;,sj)]. Thus, in R (w), the arcs are colored with the (at most
two) elements of M/ ~. Now, our evenness patterns can be restated as follows:
For any n € IN, any w € S, and any color ¢ € 9/ ~, any directed cycle of R (w)
has an even number of arcs with color c.

This can be generalized further to every Coxeter group, with a minor caveat.
Namely, let (W, S) be a Coxeter group with Coxeter matrix (ms,s’)( s)esxs NO-
tions such as reduced expressions and braid moves still make sense (see below
for references and definitions). We redefine Mt as {(s,t) € Sx S | s # tand m,; < oo}
(since pairs (s,t) with m,; = oo do not give rise to braid moves). Unlike in the
case of W = S, it is not necessarily true that (s, t) ~ (t,s) for every (s,t) € 9.
We define [(s,t)]°? = [(t,s)]. The evenness pattern now has to be weakened as
follows: For every w € W and any color ¢ € M/ ~, any directed cycle of R (w)
has an even number of arcs whose color belongs to {c,c°P}. (For W = S,,, we
have ¢ = ¢°P, and thus this recovers our old evenness patterns.) This is part of
the main theorem we will prove in this note — namely, Theorem (b); it extends
a result [BeCeLal4, Theorem 3.1] obtained by Bergeron, Ceballos and Labbé by
geometric means. The other part of the main theorem (Theorem (a)) states
that any directed cycle of R (w) has as many arcs with color ¢ as it has arcs with
color c°P.

2. The theorem

In the following, we shall use the notations of [Lusztig14, §1] concerning Coxeter
groups. (These notations are compatible with those of [Bourba81, Chapter 4],
except that Bourbaki writes m (s,s’) instead of my, and speaks of “Coxeter
systems” instead of “Coxeter groups”.)

Let us recall a brief definition of Coxeter groups and Coxeter matrices:

A Coxeter group is a pair (W,S), where W is a group, and where S is a finite
subset of W having the following property: There exists a matrix (1 s ) (s,5/)€5xS €

{1,2,3,.. .,oo}SXS such that

e every s € S satisfies mgs = 1;
e every two distinct elements s and t of S satisfy mg; = m;s > 2;

o the group W can be presented by the generators S and the relations

(st)™t =1 for all (s,t) € S x S satisfying mg; # co.
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In this case, the matrix (11, 4) (s,5")esxs 18 called the Coxeter matrix of (W,S). Itis

well-known (see, e.g., [Lusztig14), §1]E[) that any Coxeter group has a unique Cox-
eter matrix, and conversely, for every finite set S and any matrix (1 ¢) (s5)eSxs €

{1,2,3,..., oo}S><S satisfying the first two of the three requirements above, there
exists a unique (up to isomorphism preserving S) Coxeter group (W, S).
We fix a Coxeter group (W, S) with Coxeter matrix (ms,S’)(s )esxs: Lhus, W

is a group, and S is a set of elements of order 2 in W such that for every (s,s’) €
S x S, the element ss' € W has order my. (See, e.g., [Lusztigl4, Proposition
1.3(b)] for this well-known fact.)

We let 901 denote the subset

{(s,t) € SxS | s #tand ms; < oo}

of S x S. (This is denoted by I in [Bourba81, Chapter 4, n° 1.3].) We define a
binary relation ~ on 9 by

((s, t) ~ (s',t') <= there exists a g € W such that gsg ' =’ and gqtq ' = t/> :

It is clear that this relation ~ is an equivalence relation; it thus gives rise to a
quotient set M/ ~. For every pair P € 9, we denote by [P] the equivalence
class of P with respect to this relation ~.

WesetIN ={0,1,2,...}.

A word will mean a k-tuple for some k € IN. A subword of a word (s1, sy, ..., Sk)

will mean a word of the form (51‘1/51'2/ .. .,s,-p), where iy,iy,...,i, are elements

of {1,2,...,k} satisfying iy < ip < --- < i,. For instance, (1), (3,5), (1,3,5), ()
and (1,5) are subwords of the word (1,3,5). A factor of a word (s1,sp,...,5k)
will mean a word of the form (s;;1,S;i12,...,5i+m) for somei € {0,1,...,k} and
some m € {0,1,...,k—i}. For instance, (1), (3,5), (1,3,5) and () are factors of
the word (1,3,5), but (1,5) is not.

We recall that a reduced expression for an element w € W is a k-tuple (s1, 2, ..., k)
of elements of S such that w = sys; - - - 5, and such that k is minimum (among
all such tuples). The length of a reduced expression for w is called the length of
w, and is denoted by I (w). Thus, a reduced expression for an element w € W is
a k-tuple (s1,s2,...,5¢) of elements of S such that w = sys, - - - sy and k = [ (w).

—
Definition 2.1. Let w € W. Let @ = (a1,az,...,ax) and b = (b, by,...,by)
be two reduced expressions for w.

4See also [Bourba8l] Chapter V, n° 4.3, Corollaire] for a proof of the existence of a Coxeter
group corresponding to a given Coxeter matrix. Note that Bourbaki’s definition of a “Coxeter
system” differs from our definition of a “Coxeter group” in the extra requirement that m,;
be the order of st € W; but this turns out to be a consequence of the other requirements.
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_>
Let (s,£) € M. We say that b is obtained from @ by an (s, t)-braid move if
b can be obtained from @ by finding a factor of @ of the form (s,t,s,t,5,...)
—_———
ms; elements
and replacing it by (¢,s,t,s,t,...).
—_———
_>mst elements
We notice that if b is obtained from @ by an (s, t)-braid move, then 7 is
obtained from b by an (t,s)-braid move.

Definition 2.2. Let w € W. We define an edge-colored directed graph R (w),
whose arcs are colored with elements of 97t/ ~, as follows:

e The vertex set of R (w) shall be the set of all reduced expressions for w.

e The arcs of R (w ) are defined as follows: Whenever (s,t) € 9, and

whenever @ and b are two reduced expressions for w such that b is
obtained from @ by an (s, t)-braid move, we draw an arc from s to f
with color [(s, t)].

Theorem 2.3. Let w € W. Let C be a (directed) cycle in the graph R (w). Let
c = [(s,t)] € M/ ~ be an equivalence class with respect to ~. Let ¢°P be the
equivalence class [(f,5)] € M/ ~. Then:

(a) The number of arcs colored ¢ appearing in the cycle C equals the number
of arcs colored c°P appearing in the cycle C.

(b) The number of arcs whose color belongs to {c,c°P} appearing in the
cycle C is even.

None of the parts (a) and (b) of Theorem [2.3|is a trivial consequence of the
other: When ¢ = c°P, the statement of Theorem (a) is obvious and does not
imply part (b).

Theorem (b) generalizes [BeCeLal4, Theorem 3.1] in two directions: First,
Theorem is stated for arbitrary Coxeter groups, rather than only for finite
Coxeter groups as in [BeCeLal4]. Second, in the terms of [BeCeLal4, Remark
3.3], we are working with sets Z that are “stabled by conjugation instead of
automorphism”.

3. Inversions and the word p;

We shall now introduce some notations and state some auxiliary results that will
be used to prove Theorem Our strategy of proof is inspired by that used in
[BeCeLal4), §3.4] and thus (indirectly) also by that in [ReiRoill)} §3, and proof of
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Corollary 5.2]; however, we shall avoid any use of geometry (such as roots and
hyperplane arrangements), and work entirely with the Coxeter group itself.

We denote the subset |J xSx~! of W by T. The elements of T are called the
xeW
reflections (of W). They all have order 2. (The notation T is used here in the same

meaning as in [Lusztigl4, §1] and in [Bourba81, Chapter 4, n° 1.4].)

Definition 3.1. For every k € IN, we consider the set W as a left W-set by the
rule
w (wy, wo, ..., w) = (wwy, wwy,. .., Wwy),

and as a right W-set by the rule

(w1, wy,..., wp) w = (Ww, wrw, ..., Ww).

Definition 3.2. Let s and t be two distinct elements of T. Let m; denote
the order of the element st € W. (This extends the definition of m; for
s,t € S.) Assume that m;; < co. We let Ds; denote the subgroup of W
generated by s and t. Then, D;; is a dihedral group (since s and t are two
distinct nontrivial involutions, and since any group generated by two distinct
nontrivial involutions is dihedral). We denote by ps; the word

<(st)0 s, (st)'s, ..., (st)" 1 s) = | s,sts,ststs,..., ststs---s | € (Dsp)"™" .

2ms—1 letters

The reversal of a word (ay,ay, ..., ax) is defined to be the word (ay, ax_1,...,a1).
The following proposition collects some simple properties of the words ps ;.

Proposition 3.3. Let s and t be two distinct elements of T such that m;; < co.
Then:

(@) The word ps ¢ consists of reflections in D;¢, and contains every reflection
in Ds; exactly once.

(b) The word p; is the reversal of the word p; ;.

(c) Let g € W. Then, the word gp;sq~ " is the reversal of the word gps g~ ".

Proof of Proposition (a) We need to prove three claims:
Claim 1: Every entry of the word p; is a reflection in Dy ;.
Claim 2: The entries of the word p; are distinct.

Claim 3: Every reflection in Ds; is an entry of the word p ;.

Proof of Claim 1: We must show that (st)ks is a reflection in D, for every
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ke{0,1,...,mss —1}. Thus, fixk € {0,1,...,ms; — 1}. Then,

stst---tststs---s, if kis even;
—_ —

(St)k S = stst---5 = k letters k letters
stst---ststst---s, if kis odd
——

k letters k letters

2k+1 letters

( —1
stst---ts | stst---t , if k is even;
N——~— N——~—
_ k letters k letters
- -1
stst---st | stst---s , if kis odd
N—— N——
Kk letters k letters
-1
since fsts---s = | stst---t if k is even,
— S —
k letters k letters
-1
and stst---s = | stst---s if k is odd
N——— N——
k letters k letters

Hence, (st)ks is conjugate to either s or t (depending on whether k is even or
odd). Thus, (st)k s is a reflection. Also, it clearly lies in Ds;. This proves Claim
1.

Proof of Claim 2: The element st of W has order m,;. Thus, the elements
(st)°, (st)*, ..., (st)™* ! are all distinct. Hence, the elements (st)°s, (st)'s, ..., (st)™* '
are all distinct. In other words, the entries of the word ps; are all distinct. Claim
2 is proven.

Proof of Claim 3: The dihedral group Ds; has 2m;; elementsﬂ of which at
most m; ¢ are reﬂectionﬂ But the word ps  has m;; entries, and all its entries are
reflections in Ds; (by Claim 1); hence, it contains m; ¢ reflections in D; s (by Claim
2). Since D;; has only at most m;; reflections, this shows that every reflection in
D;; is an entry of the word p; . Claim 3 is proven.

This finishes the proof of Proposition 3.3| (a).

(b) We have ps; = ((st)o s, (st)'s, ..., (st)" s> and

Ots = ((ts)0 t(ts) ..., (ts)"t ! t) (since mys = msy). Thus, in order to prove

Ssince it is generated by two distinct involutions s # 1 and t # 1 whose product st has order
Mg t
®Proof. Consider the group homomorphism sgn : W — {1, —1} defined in [Lusztigl4, §1.1].
The group homomorphism sgn | Dyt Dst — {1, —1} sends either none or m;; elements of Ds
to —1. Thus, this homomorphism sgn | D,, sends at most 1 elements of Ds; to —1. Since it
must send every reflection to —1, this shows that at most m;; elements of D;; are reflections.
(Actually, we can replace “at most” by “exactly” here, but we won’t need this.)
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Proposition |3.3| (b), we must merely show that (s)s = (ts)™ 1% ¢ for every
k E {0,1,. . .,mslt - ].}.
So fix k € {0,1,...,ms;s — 1}. Then,

mstflfk
-1 -1 ,
k . ms’t_l_k e k -1 mslt_l_k — k —1 -1
(st)"s ((ts) t) (st)*s t <(ts) ) (st)" st (s t )

=t . 7

_(Sfltfl)mslt_l_k
= (st (st 1K = sty = 1,

so that (st)*s = (ts)™* 1% t. This proves Proposition 3.3 (b).

(c) Let ¢ € W. Proposition [3.3] (b) shows that the word p;s is the reversal of
the word ps . Hence the word gp;sq ! is the reversal of the word gps ;g (since
the word gp;sq~! is obtained from p;s by conjugating each letter by g, and the
word gpsq~! is obtained from p;; in the same way). This proves Proposition

=s =t
:(St)k+1

(o). O
7 = k — . :
Definition 3.4. Let a° = (ay,ay,...,ax) € S*. Then, Invs 4" is defined to be
the k-tuple (t1,ta,...,t;) € TF, where we set
t; = (ayap -+ -a;_1)a; (ayap - --a,-_l)_1 foreveryi e {1,2,...,k}.

Remark 3.5. Let w € W. Let @ = (ay,az,...,a;) be a reduced expression for
w. The k-tuple Invs 7 is denoted by ® ( 7) in [Bourba81, Chapter 4, n° 1.4],
and is closely connected to various standard constructions in Coxeter group
theory. A well-known fact states that the set of all entries of Invs @ depends
only on w (but not on a4 7); this set is called the ( left) inversion set of w. The
k-tuple Invs @ contains each element of this set exactly once (see Proposition
.6 below); it thus induces a total order on this set.

Proposition 3.6. Let w € W.

@) If 7 is a reduced expression for w, then all entries of the tuple Invs T
are distinct.

(b) Let (s,t) € M. Let 7 and b be two reduced expressions for w such

_>
that b is obtained from @ by an (s, t)-brald move. Then, there existsa g € W

such that Invs b is obtained from Invs @’ by replacing a particular factor of
the form gps g~ ! by its reversa]l

Proof of Proposition 3.6, Let @ be a reduced expression for w. Write @ as ai,ap,..
P p

Then, the definition of Invs 7 shows that Invs @ = (t1,t2,...,t), where the
are defined by

t; = (a1a2 s 11,'_1) a; (511112 s 111'_1)71 for every 1€ {1,2, .. ,k} .

’See Definition 3.1/ for the meaning of gps 14!

10

.,le).
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Now, every i € {1,2,...,k} satisfies

= (may---aiq)a;  (may---a ) = (may--ai1)a; (a8 0 @)

~
-1 -1 1
:al'flaiszl . .al =a;_1a;_p---a1
(since each a; belongs to S)

= maz - - - 4a;14a;a;—1 - - a20a1.

But [Lusztigl4, Proposition 1.6 (a)] (apphed to g = k and s; = a;) shows that
the elements ay,a1aa1, a1a2a3aa1, . ..,a1a « - - Ap_10,lk_1 + - - ApA7 are dlStlnCﬁ In
other words, the elements ty,5,..., tk are distinct (since
t; = ajap---a;_1a;a;_1 - - - agay for every i € {1,2,...,k}). In other words, all
entries of the tuple Invs 4" are distinct. Proposition 3.6| (a) is proven.

(b) We need to prove that there exists a ¢ € W such that Invs b is obtained
from Invs @ by replacing a particular factor of the form gpsg~! by its reversal.

We set m = m; (for the sake of brevity).

Write @ as (a,az,.. ., ag).

The word b can be obtained from 7 a by an (s, t)-braid move. In other words,

the word b can be obtained from @ by finding a factor of @ of the form
(s,t,s,t,5,...) and replacing it by (¢,s,t,s,t,...) (by the definition of an “(s, t)-
%,_/ _\,_/

m elements m elements
braid move”, since m;; = m). In other words, there existsan p € {0,1,...,k —m}
%
such that (ap41,ap12,...,8p4m) = (s,t,5,t,5,...), and the word b can be ob-
N——

m elements

tained by replacing the (p + 1)-st through (p + m)-th entries of @ by (t,s,t,5,t,...).

m elements
Consider this p. erte b as (b, by, ..., by) (this is possible since the tuple b has
the same length as a 7). Thus,
(111,512,..., ) = (bl,bz, ..,bp), (4)
(aps1,8p42, - ap1m) = (s, 1,5,1,5,...), (5)
o cloments
(bps1,bps2s - bpym) = (L,5,8,5,8,...), (6)
m elements
(aptms1s8psmy2s - 0) = (Bpmsts bprmsas -, k) - (7)

—
Write the k-tuples Invs @ and Invs b as (a1,a,...,a;) and (B1, B, ..., Bi), re-
spectively. Their definitions show that

wj = (ayay---a;_1) a; (a1 - a;_1) " ®)

8This also follows from [Bourba81) Chapter 4, n° 1.4, Lemme 2].

11
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and
Bi= (biba--bi 1) b; (iby-- by 1)~ 9
foreveryic {1,2,...,k}.
Now, set g = a1a; - - - ap. From , we see that g = b1by - - - bp as well. In order
to prove Proposition (b), it clearly suffices to show that Invs ? is obtained

from Invs @ by replacing a particular factor of the form gps:q~' — namely, the
factor (api1,&p42,...,&pym) — by its reversal.

So let us show this. In view of Invs @ = (w1, ap,...,a;) and Invs.z> =
(B1, B2, - - -, Bk), it clearly suffices to prove the following claims:

Claim 1: We have B; = a; for every i € {1,2,...,p}.

Claim 2: We have (ap11,&p12, ..., &pym) = GPsq "

Claim 3: The m-tuple (Bp41, Bp+2, - - -, Bp+m) is the reversal of (api1, &pio, ..., Xpym).

Claim 4: We have B; = a; foreveryi € {p+m+1,p+m+2,...,k}.

Proof of Claim 1: Leti € {1,2,...,p}. Then, (4) shows that a, = b, for every
g€{1,2,...,i}. Now, (8) becomes

;= (aay---ai_1) a; (araz - ai_1) " = (byby - bi_1) b; (biby - - - by_1) "
(since ag = by for every g € {1,2,...,i})
= Bi (by ©@)) -

This proves Claim 1.
Proof of Claim 2: We have

Ost = ((sif)O s, (sif)1 S, ..., (sif)m”_1 s) = ((st)O s, (sif)1 S, ..., (sif)m_1 s)

(since m, ¢ = m). Hence,

Gosiq ' =4 ( c(st)" ) !
= <q )1 sgY, ., q(st)™ ! sq_l) :

Thus, in order to prove (zpo, Npi2, .-, ocp+m) = qpsltq_l, it suffices to show that

Apyi=( (st) tsqg! forevery i € {1,2,...,m}. Solet us fixi € {1,2,...,m}.
We have

ayay Ay = (a1a2 ) (ap+1ap+2-~ap+i_1)/ =q sist .
:q —otgt--- i—1 letters
o —
i—1 letters
(by B))

12
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Hence,
-1
-1 _ —-1.,-1,-1_-1 -1
(ara2---apyiq) = | qstst-- =.--t st s g
i—1 letters i—1 letters
= .- -tsts g ! (since sl=sandt ! = t) .
——
i—1 letters
Also,
(0102"'ﬂp+i71) aeri = ala2"'ap+i = (glaz. . .ap) (ap-l-laerZ' . 'aeri) = q&gt ..
=q —ofst- .- i letters
i letters
(by @)

Now, (8) (applied to p + i instead of i) yields

-1 -
Xpti = \(51‘12 e 'ﬂp+i—1) ﬂpﬂ'\(ﬂlﬂz e 'ﬂp+i—1) =q §tst--- .- -tsts g

B Si?Srt L . ;;ts _q i letters i—1 letters
1~ — =1 e i1
i letters i—1 letters =stst- - - S=(st)'"s
2i—1 letters
. i-1_ -1
=q(st) "sq .

This completes the proof of (ap41, &pi2, ..., &pim) = gps,1q~ L. Hence, Claim 2 is
proven.

Proof of Claim 3: In our proof of Claim 2, we have shown that (a1, @42, ..., &p1m) =
qpsq . The same argument (applied to ?, (b1,ba,...,bx), (B1,B2,---,Bx), t and
s instead of 7, (a1,a,...,ar), (a1,82, ..., &), s and t) shows that (Bpi1, Bp+2,-- -, Bpim) =
gptsq~" (where we now use @ instead of , and use g = b1b - - - b, instead of
q = aiaz - - - ap).

Now, recall that the word gp;sq~" is the reversal of the word gps g~ . Since
(“p-i—lr Xpt2, .- -r“p+m) = qps,tq_l and (ﬁp+1rﬁp+2/ ceey ﬁerm) = qpt,sq_lr this
means that the word (Bp41, Bp+2,-- -, Bp+m) is the reversal of (api1, 0p12, ..., &pym).
This proves Claim 3.

Proof of Claim 4: Since m = ms;, we have stst--. = tsts- .. (this is one of
’ —_— ——
m letters m letters
the braid relations of our Coxeter group). Let us set x = gtst--. = fsts---.
S—— N——~
m letters m letters

Now, H yields a, 1ap42 - - apym = gtst - - = x. Similarly, from (6)), we obtain
m letters
bp+1bp_|_2 st bp+m = X.

13
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Letie {p+m+1,p+m+2,...,k}. Thus,

amaz---aj1 = (1116!2 e 'ﬂp) (ﬂp+1ﬂp+2 e 'ap+mlgap+m+1ap+m+2 : "ai—1)

N 7\ 7

NV Vv VT
=1 =X :bp+m+1bp+m+2"'bi—l

by @)
=qx (bp+m+lbp+m+2 T bi—l) :

Comparing this with

biby---biy = (biby---bp) (bps1bpya- - bpim) (Opymi1bprmia---bio1)

-~

=q =x
= qx (bprmr1bprmsa- - bio1),
we obtain ayay - - -a;_1 = biby - - - bj_1. Also, a; = b; (by (7)). Now, (8) becomes

-1

wj= | aay---a;i_1 | a; | max---a;_q = (byby-- b 1) b (byby---b; 1) 7"
—_— | | Y————
bbby ) =b \ =bibrbi
= Bi (by (9)) .

This proves Claim 4.
Hence, all four claims are proven, and the proof of Proposition (3.6 (b) is com-
plete. O

The following fact is rather easy (but will be proven in detail in the next
section):

Proposition 3.7. Let w € W. Let s and t be two distinct elements of T such
that m;; < co. Let 7 be a reduced expression for w.

(a) The word ps+ appears as a subword of Invs @ at most one time.

(b) The words ps and p; s cannot both appear as subwords of Invs 7.

Proof of Proposition (a) This follows from the fact that the word ps ; has length
msy > 2 >0, and from Proposition (a).

(b) Assume the contrary. Then, both words ps; and p;s appear as a subword
of Invs 7. By Proposition (b), this means that both the word ps; and its
reversal appear as a subword of Invs 7. Since the word st has length m;; > 2,
this means that at least one letter of p, ; appears twice in Invs . This contradicts
Proposition 3.6| (a). This contradiction concludes our proof. [

4. The set 91 and subwords of inversion words

We now let 9 denote the subset |J xMx~! of T x T. Clearly, M C M. More-
xeW
over, for every (s,t) € 91, we have s # t and ms; < oo (because (s,f) € 9 =

14
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U x9Mx~!, and because these properties are preserved by conjugation). Thus,
xeW
for every (s, t) € M, the word ps ¢ is well-defined and has exactly m; entries.

We define a binary relation ~ on 9t by
((s, t) ~ (s',t') <= there exists a g € W such that gsg ' = s’ and gqtq ' = t’) :

It is clear that this relation ~ is an equivalence relation; it thus gives rise to a
quotient set 91/ ~. For every pair P € 0N, we denote by [[P]] the equivalence
class of P with respect to this relation ~.

The relation ~ on 9 is the restriction of the relation ~ to 9. Hence, every
equivalence class ¢ with respect to ~ is a subset of an equivalence class with
respect to ~. We denote the latter equivalence class by cy. Thus, [P]y; = [[P]]
for every P € 9.

We notice that the set 91 is invariant under switching the two elements of a
pair (i.e., for every (u,v) € N, we have (v,u) € MN). Moreover, the relation ~ is
preserved under switching the two elements of a pair (i.e., if (s, t) =~ (s/,t'), then
(t,s) ~ (¥,s")). This shall be tacitly used in the following proofs.

Definition 4.1. Let w € W. Let @ be a reduced expressmn for w.
(a) For any (s, t) € 9, we define an element has,; @ € {0,1} by
— {1, if ps ¢ appears as a subword of Invs T

hass; a° = i
0, otherwise

(Keep in mind that we are speaking of subwords, not just factors, here.)
(b) Consider the free Z-module Z [91] with basis 9. We define an element
Has @ € Z [0 by
Has @ Z hasst a -(s,t)
(s,£)eM

(where the (s, t) stands for the basis element (s,t) € 91 of Z [1)).

We can now state the main result that we will use to prove Theorem

%
Theorem 4.2. Let w € W. E)et (s,t) € M. Let 7 and b be two reduced
expressions for w such that b is obtained from i by an (s, t)-braid move,
Proposition (b) shows that there exists a ¢ € W such that Invs b is
obtained from Invs @ by replacing a particular factor of the form gps:q~' by
its reversal. Consider this g. Set s’ = gsq~! and #' = qtq!; thus, s’ and t' are
reflections and satisfy mgy = m,; < co. Also, the definitions of s’ and ' yield
(s',t)=q(s,t) g~ € ¢gMg~! C M. Similarly, (#,s") € N (since (t,s) € M).
——
em
Now, we have N
Has b = Has @ — (s, t")+ (¥,s). (10)

15
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Before we prove Theorem we first show two lemmas. The first one is a
crucial property of dihedral subgroups in our Coxeter group:

Lemma 4.3. Let (s,t) € M and (u,v) € N. Let g € W. Assume that u €
qu,tq_l and v € qu,tq_l. Then, ms; = my .

Proof of Lemma Claim 1: Lemma 4.3/ holds in the case when (u,v) € 9.

Proof. Assume that (u,v) € 9. Thus, u,v € S. Let I be the subset {s,t} of
S. We shall use the notations of [Lusztigl4, §9]. In particular, / () denotes the
length of any element r € W.

We have W = D, ;. Consider the coset WIq_1 of W;. From [Lusztigl4, Lemma
9.7 (a)] (applied to a = g~ 1), we know that this coset W;g~! has a unique element
of minimal length. Let w be this element. Thus, w € qu_l, so that Wyw =
Wig~1. Now,

-1

=
[

1

(471> (W)= | wig? = (W) ' = w W,
1 1 W ”

(g1 =W =Ww

Let u' = wuw~! and v/ = wow 1.

We have u € g Ds; g7 ' = qWig ' = gW; w = w 'Wjw. In other words,
~~ N—— ~~

=W =Ww =w~1W,
wuw~! € W;. In other words, u’ € W; (since ' = wuw™1'). Similarly, o’ € W].
We have u' = wuw™!, hence w'w = wu. But [Lusztigl4, Lemma 9.7 (b)]
(applied to a = g~ and y = u/) shows that [ (u/w) = (u’) + 1 (w). Hence,

!/ / .

l(u)—i—l(w):l(w):l(wu):l(w)il (since u € §).
=wu

Subtracting ! (w) from this equality, we obtain ! (1') = +1, and thus ! (1) = 1, so

that ' € S. Combined with u’ € Wi, this shows that ¥’ € SN W; = I. Similarly,

v el

We have u # v (since (u,v) € M), thus wuw ! # wow™!, thus ' = wuw=! #
wow 1 = v'. Thus, u’ and v’ are two distinct elements of the two-element set
I = {s,t}. Hence, either (1/,v") = (s,t) or (u/,v') = (t,s). In either of these two
cases, we have m,s , = mg;. But since #’ = wuw~! and v = wow~!, we have
my » = My, Hence, msy = my ,y = my, . This proves Claim 1.

Claim 2: Lemma 4.3/ holds in the general case.

Proof. Consider the general case. We have (#,0) € M = Uyew ¥9Mx~ 1. Thus,
there exists some x € W such that (z,v) € xMx~!. Consider this x. From
(u,0) € xMx~1, we obtain x~! (u,0) x € M. In other words, (x~lux,x"lox) €
9. Moreover,

-1 —1 D -1 —1 D -1 -1
X u X X X =X X
N~ S q st q 5] st ( Q) s
Equ,tq_l :(Xilq)il

16
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and similarly x"lox € x~1gDs, (x"1q) . Hence, Claim 1 (applied to (x~lux, x~1ox)

and x~!q instead of (1,v) and q) shows that ms; = m, 1,, . 1,, = Myy. This
proves Claim 2, and thus proves Lemma O

Next comes another lemma, bordering on the trivial:

Lemma 4.4. Let G be a group. Let H be a subgroup of G. Letu € G, v € G

and ¢ € Z. Assume that (uv)® 'u € H and (uv)*u € H. Then, u € H and
v e H.

[\ J/

-~

-1
Proof of Lemma 4] We have ((uv)® u) ((uv)gl u) € HH! C H (since H is
eH

a subgroup of G). Since
-1

(1) ) \((uv)g_l u) = (o) yu”L ((uv)g_l)_

~ =1

1

=y~1 ((uv)g71)7

this rewrites as uv € H. However, (uv) ¢ (uv)® u = u, so that

-8
_ g -8
u (uv) (uv)>ue HSH CH

eH €H

(since H is a subgroup of G). Now, both u and uv belong to the subgroup H of G.
Thus, so does u~! (uv). In other words, u~! (uv) € H, so that v = u~! (uv) € H.
This completes the proof of Lemma O

Proof of Theorem [4.2] Conjugation by g (that is, the map W — W, x — gqxq~1) is
a group endomorphism of W. Hence, for every i € IN, we have

i

a(sH)'sq' = | (asg7") (@_fqi) (s971) = (s'#)'s" (11)
~— N~ ~—

— ; —
=t

=g/ =g/

Let m = mg;. We have

Pst = <(st)0 s, (st)'s, ..., (st)"s 1 s)

((st)o s, (st)'s, ..., (st)™ ! s)

17
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(since m, ¢ = m) and thus

qesiq L =q ((st)os, (st)'s,..., (st)" s) g1
= <q (s)’sq L, q(st) sqgt, ..., q(st)" ! sq_1>
— ((s’t’)o s, (s’t')1 s ..., (s’t')m_1 S/>
( since every i € {0,1,...,m — 1} satisfies )
q(st)'sqg~" = (s't")'s’ (by (TI))
= ((s t )0 ' (s't ) . (s’t')ms"t'_1 s’> (since m = mgp = my y)

= Py pt (by the definition of py ;) .

The word 7 is obtamed from @ by an (s, t)-braid move. Hence, the word I

can be obtained from b by a (t,s)-braid move.

From (s',t') € M, we obtain s’ # t'. Hence, (s',t') # (', s).

From s’ = gsq~! and ' = gtq~1, we obtain Dy y = qDsq~! (since conjugation
by g is a group endomorphism of W).

Proposition (c) shows that the word gp;sq~' is the reversal of the word
qps;q~ . Hence, the word gps ;! is the reversal of the word go;sq~!

Recall that Invs b is obtained from Invs @ by replacing a particular factor of
the form gpsq~! by its reversal. Since thls latter reversal is gp, Sq ~1 (as we have

previously seen), this shows that Invs b has a factor of go;sq~' in the place
where the word Invs a had the factor gps;q~!. Hence, Invs @ can, in turn

be obtained from Invs 7 by replacing a partlcular factor of the form gp;sq~"
by its reversal (since the reversal of go;sq~ ! is gps g~ '). Thus, our situation is
symmetric with respect to s and t; more prec1sely, we Wlnd up in an analogous

situation if we replace s, t, a b s"and t' by t, s, b 7 , 1" and s/, respectively.
We shall prove the following claims:
Claim 1: Let (u,v) € M be such that (u,v) # (s',t') and (u,v) # (t,s’). Then,

has,, b =has,; 7.

Claim 2: We have hasy y b = hasy 7 1.

Claim 3: We have hasy ¢ b = hasy ¢ T+ 1.

Proof of Claim 1: Assume the contrary. Thus, has, ; b # has, , 7. Hence, one
of the numbers has,, v b and has, ; 7 equals 1 and the other equals 0 (since both
has,, » b and has, » 7 belong to {0,1}). Without loss of generality, we assume
that hasu v 7 =1and hasu v b = 0 (because in the other case, we can replace s,

b s'and ' by t, s, b @, t and s/, respectively).
The elements u and v are two distinct reflections (since (u,v) € N).

Write the tuple Invs @ as (a1,&s,...,4;). The tuple Invs b has the same
length as Invs 7, since Invs b is obtained from Invs @ by replacing a particular

18
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_>
factor of the form gps;q~! by its reversal. Hence, write the tuple Invs b as

(B1/ B2, - -/ Br)-

From has, , 7 = 1, we obtain that p,, appears as a subword of Invs 7. In
other words, p,, = (zxil,zx,-z,. . .,Dél'f> for some integers il,iz,...,if —fatisfying
1<n<ip<--<if< k. Consider these i1, 1»,..., ir. From has,, b =0, we

—
conclude that p, , does not a *;:Jpear as a subword of Invs b.

On the other hand, Invs b is obtained from Invs @’ by replacing a particular
factor of the form gpsq~! by its reversal. This factor has m;; = m letters; thus,
it has the form (ap41,ap42,...,&p1m) for some p € {0,1,...,k—m}. Consider
this p. Thus,

(@ps1, 0pr2, .o Opym) = T ((s’t’)os', (s’t’)1 s, ..., (s’t’)m_1 s’) )
In other words,
Apii = (s’t’)i_1 s’ foreveryie {1,2,...,m}. (12)
We now summarize:
e The word p,,» appears as the subword <oci1, Wjyy ooy O f> of Invs 7, but does

_>
not appear as a subword of Invs b .

%
e The word Invs b is obtained from Invs @ by replacing the factor
(@p41,&ps2, -, &pym) by its reversal.

Thus, replacing the factor (ocpH, Xp 42, .-, ocp+m) inInvs @ by its reversal must

mess up the subword (DCil, Rjyyovn s & f> of Invs @ badly enough that it no longer

appears as a subword (not even in different positions). This can only happen if
at least two of the integers i1, i, ..., is liein the interval {p +1,p +2,...,p + m}.

Hence, at least two of the integers iy, iy, ..., 1 I liein theinterval {p +1,p+2,..
In particular, there must be a ¢ € {1,2,..., f — 1} such that the integers i, and
ig11 lie in the interval {p +1,p+2,...,p+m} (since iy < ip < -+ < if). Con-
sider this g.

We have i; € {p+1,p+2,...,p+ m}. In other words, ig = p + rq for some
re €{1,2,...,m}. Consider this r,.

We have ig 1 € {p+1,p+2,...,p+m}. In other words, i1 = p + 1441 for
some r¢;1 € {1,2,...,m}. Consider this Tgt1-

We have (txil,ociz,...,ocif) = Pup = ((uv)o w, (uo) u, ..., (uo)™e 1 u) (by the

definition of p,,.). Hence, a;, = (uv)¥ ' u and a; ., = (uv)$ u. Now,

(uv)g—l U= ig = Rprg (since ig = p +7g)
= (s’t")rg*1 s’ (by (12), applied to i = ry)
€ DS’,t/

19
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and
(uv)du = Qi) = Qprrgy (since igy1 = p+7g41)
— (s't) s (by ([12), applied to i = rg1)
E DS/,i’/'

Hence, Lemma (applied to G = W and H = Dy y) yields u € Dy y and
AS DS’,t’-
Furthermore, we have

a, =1u and i =0

bl

Now, wehavei; € {p+1,p+2,...,p+m} (by asimple argumen and iy €
{p+1Lp+2,...,p+m} (by a similar argument, with v occasionally replacing
u). Thus, all of the integers 71,1, ...,if belong to {p +1,p +2,...,p + m} (since
i <ip<---<if).

Now, recall that f is the length of the word p,, , (since p,,» = <Déi1, Rjyyovn s & f> ),
and thus equals m,, ,. Thus, f = my .

But u € Dyy = gDs;q ' and v € Dy y = qDs g~ 1. Hence, Lemmayields
Mg = My . Since m = mgy and f = my ,, this rewrites as m = f.

Recall that all of the integers iy,iy,...,if belong to {p+1,p+2,...,p+m}
Since i1 < ip < -+ < if and f = m, these integers iy, 1y, .. .,if form a strictly
increasing sequence of length m. Thus, (il, in,...,10 f) is a strictly increasing se-
quence of length m whose entries belong to {p+1,p+2,...,p+m}. But the
only such sequenceis (p+1,p+2,...,p + m) (because theset {p+1,p+2,...,p +m}
has only m elements). Thus, (i1,i,...,if) = (p+1,p+2,...,p +m). In partic-
ular, iy = p+landif=p+m.

9Proof. From (Dél‘],txiz,. . -/“if) = ((uv)o u, (uv)l u,...,(MU)mu,vfl u), we obtain a;, = gw) u=

u.
We have (10)™* =1, and thus (u0)™* ! = (u0) ' = o~ 1u1.

;)= ((uv)o u, (wo)u, ..., (uv)™e! u), we obtain a;, =
(uo)™ 7 y = oyl = o1
N——

—p—1y-1

10Proof. The element u is a reflection and lies in Dy . Hence, Proposition (a) (applied to
s’ and # instead of s and ) shows that the word py y contains u. Since pg y = qpsg ' =
(@ps1,Qp12,. .., prm), this shows that the word (ap41,&p12,...,&p1m) contains u. In other
words, 1 = aps for some M € {p+1,p+2,...,p+ m}. Consider this M.

But Proposition (a) shows that all entries of the tuple Invs @ are distinct. In other
words, the elements aq, oy, . .., are pairwise distinct (since those are the entries of Invs 7).
Hence, from a;, = u = ajpg, we obtainiy = M€ {p+1,p+2,...,p+m}. Qed.

From 061'1,0(1'2,...,0(1'

= v (since v is a reflection), ged.
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Now, &;, = u, so that

U= =ap1 (sinceiy = p+1)
— (s't) s (by (12), applied to i = 1)
——

Also, «; ;= 0,80 that

V=, = Qpim (since i = p 4 m)
S CL 2 (by (12), applied to i = m)
——

=(s't)"

(since (s'+')"=1
(since m=ms =m ,))

:<S/t) -1 P

Combined with u = §', this yields (u,v) = (s,t'), which contradicts (u,v) #
(s’,t'). This contradiction proves that our assumption was wrong. Claim 1 is
proven.

Proof of Claim 2: The word Invs 7 is obtained from Invs @ by replacing a
particular factor of the form qps tq~ ! by its reversal Thus, the word Invs @ has
a factor of the form gps:q~1. Since gps:q~! = py y, this means that the word
Invs @ has a factor of the form ps ¢ Consequently, the word Invs 7 has a
subword of the form pgy y. In other words hasy y 7 =1

- —
The same argument (applied to ¢, s, b, @, t and s instead of 5, t, @, b,
s’ and t') shows that hasyy b = 1. In other words the word Invs b has a

subword of the form py . Hence, the word Invs b has no subword of the form
ps ¢ (because Proposition 3.7| (b) (applied to b s and # instead of @, s and t)
shows that the words py  and py ¢ cannot both appear as subwords of Invs b )-
In other words, hasy v b = 0.

Combining this with hasy y 7 =1, we immediately obtain hasy b = hasy T —
1. Thus, Claim 2 is proven.

Proof of Claim 3: Applying Claim 2 to ¢, s, b @, t and s’ instead of 5, t, @,

b,s and t', we obtain hasy o 7 = hasy ¢ b — 1. In other words, hasy o b =
hasy 7 + 1. This proves Claim 3.

Now, our goal is to prove that Has ¥ = Has @ — (s/,t') + (¥,s'). But the
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definition of Has 7 yields

ﬁ
Has b
%
- Z haSu/v b ° (u,v)
(u,0)eEN
= 2 has,, b - (u,v) + hasyy b -(s/, t') + hasyy b '(t/,S/)
(wo)ey, " ——
(u,0)#(s't'); :hasl".” a =hasy a1 =hasy ¢ a'+1
(o) £ (ts') by Claim 1) (by Claim 2) (by Claim 3)

(since (s',t') # (¥,5')

t',s"))
= Z has,, ; 7 - (u,v) + (hass/,t/ 7 — 1) . (s', t’) + (hast/,s/ 7+ 1) . (t',s')
(u,v)en;
(wo)#(s'H);
(o) #(t8")

= ( ; has,, , 7 - (u,v) +hasg ¢ 7 - (s, t") = (s',t') +hasy ¢ - (¢,s") + (¥,s)
u,v)eN;
(u,0)#(s't');
(uo)#(t ")

= ( ; has, , 7 - (u,v) + hasg y 7 - (s',t') +hasy ¢ 7 - (#,s") = (s, t') + (¥,s)
u,v)eN;
(w0} (5 )
(wo)#(t,8")

[

= Yy hasu,vﬁ-(u,v)
(n,v)eNn

(since (s’ t")#(t "))
= Y hasye @ - (10) — (s,¢) + (¥,s) = Has @ — (s, ') + (£,5).

(u,0)eN
—Has @
This proves Theorem O

5. The proof of Theorem

We are now ready to establish Theorem

Proof of Theorem 2.3, We shall use the Iverson bracket notation: i.e., if A is any
1, if Ais true;
0, if Ais false’

For every z € Z [N] and n € M, we let coord, z € Z be the n-coordinate of z
(with respect to the basis O of Z [7]).

For every z € Z [M] and N C 91, we set coordyz = Y. coord, z.

neN
We have ¢ = [(s,t)], thus ¢ [[(s,t)]] and c°P = [(t,s)]. From the latter

m =
equality, we obtain (c°P)y, = [[(£,5)]].

logical statement, then we shall write [A] for the integer
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Let c_f, c_2>, ey c_k>, Ck+1 be the vertices on the cycle C (listed in the order they
are encountered when we traverse the cycle, starting at some arbitrarily chosen
vertex on the cycle and going until we return to the starting point). Thus:

e We have ¢, ] = c_f

e There is an arc from E) to (ﬁ foreveryi e {1,2,...,k}.

Fix i € {1,2,...,k}. Then, there is an arc from c_l> to CZ_H> . In other words,
there exists some (s;,t;) € 9 such that c,—H> is obtained from ¢/ by an (s;, t;)-
braid move. Consider this (s;, t;). Thus,

the color of the arc from ¢ to CZ—H> is [(s;, t;)]- (13)

_>

Proposition (b) (applied to c_l->, Ci—+1>/ s; and t; instead of 7, b, s and t)
shows that there exists a g € W such that Invsc;;] is obtained from Invs E) by
replacing a particular factor of the form gps, ;g ! by its reversal. Let us denote
this g by g;. Set sl = g;s;,q; ! and t. = g;t;q; 1. Thus, s} # #/ (since s; # ;) and
Mgy = Mg, < oo (since (s;, t;) € M). Also, the definitions of s} and t; yield
(SQ, f;) = (%Siqi_lz%tiqi_l) = q; (si, t;) qz-_l € qiimqi_l C N. From s, = qisiqi_l and

——

em

th = qitiqi_l, we obtain (s, t!) = (s, t;).

7%

We shall now show that
coord,y, (Hasc 1 —Has ¢) = [[(si, t)] = <] = [[(si, t:)] = ¢] . (14)

Proof of ([I4): We have the following chain of logical equivalences:

at)

=1|(s,t

= ((t,s) € [l(s,1)]]) <= ((tisi) = (s,1)) <= ((si,t]) = (t,5))

<~ ((Si, ti) ~ (t,S)) (since (S;, t:) ~ (Si, ti))

< ((sj,t;) ~ (t,5)) (since the restriction of the relation ~ to M is ~)
—

(it € (L] = (st € ) = ([(sut)] = ).

[(t,s7) € em] = [[(si, t:)] = c°P]. (15)
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Also, we have the following chain of logical equivalences:

=[[(s)]]
= ((si.8) € s D]]) = ((si1) = (s,1))
<~ ((si,t;) = (s, 1)) (since (si,t;) =~ (s, i)
< ((si, t;) ~ (s, 1)) (since the restriction of the relation ~ to M is ~)
< | (si,ti) € [(s,t ]) > ((si,tj)) €c) <= ([(si,t;))] =¢).
g
Hence,

[(si, i) € em] = [[(si, t1)] = ] (16)

%
Applying (10) to Fl?, c,-_H>, si, ti, qi, s; and t; instead of @, b,s,t, g, s and t', we
obtain Has ¢, = Has ¢/ — (s}, t}) + (t:, !). In other words, Hascl—ﬂ> Has ¢/ =
(t,s!) — (s}, t}). Thus,

7
coord,,; (Has it — Has FE)
= coordey, ((#,87) — (si, 1)) = coord,,, (5, s’~) — coordcy, (si, 1)

-~ -~

_: (t’ ’ Ec?}p] :_[[([ist)eajct]]
s &) ~ (by (T8
= [[(si,t:)] = P} = [[(si, ti)] = c].-

This proves (14).

Now, let us forget that we fixed i. Thus, for every i € {1,2,...,k}, we have
defined (s;, t;) € 9 satisfying and (T4).

We have coord,,, (Hasc;;1 —Has ¢/ ) = coord,,, (Has et ) — coord,,, (Has C_Z>)
foralli e {1,2,...,k}. Hence,

k
Y _ coord,,, (Has it — Has E))
i=1
k
=Y (coordey, (Hasci;1) — coordey, (Has ¢/)) =0
i=1
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(by the telescope principle). Hence,

k
0 =) _coord,,, (Has it — Has Ff)
i=1

k

> ([[(sisti)] = cP] = [[(si, t;)] = c]) (by (14))
k k

= ; [[(si ;)] = c°P] — ; [[(si, ;)] = ].

Comparing this with

(the number of arcs colored c°P appearing in C)
— (the number of arcs colored ¢ appearing in C)

k
= Z [ (the color of the arc from o to ot ) = c°P]

k
— Z [ (the color of the arc from </ to CZ—H>) = |
i—1

~

k k
=) [l ti)] = P = }_ [[(sis ti)] = c] (by (13)),
we obtain

(the number of arcs colored ¢°P appearing in C)

— (the number of arcs colored ¢ appearing in C)
=0.

In other words, the number of arcs colored c appearing in C equals the number
of arcs colored c°P appearing in C. This proves Theorem [2.3| (a).

(b) If ¢ # c°P, then Theorem [2.3] (b) follows immediately from Theorem [2.3] (a).
Thus, for the rest of this proof, assume that c = c°P (without loss of generality).

We have [(s,t)] = ¢ = c°P = [(¢,5)], so that (t,s) ~ (s,t). Hence, (t,5) =~ (s,t)
(since ~ is the restriction of the relation ~ to 9).

Fix some total order on the set S. Let d be the subset {(1,v) € cn | u < v} of
ca.

Fixi € {1,2,...,k}. We shall now show that

coordy (Has ;11 — Has /) = [[(s;, t)] = ¢/ mod 2. (17)

Proof of ({17): Define g;, s and t] as before. We have s # t/. Hence, either s} < ]

or t < sl.
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We have the following equivalences:
((ts1) € em) = ((tis1) € [[(s:1)]]) (since cqr = [[(s,)]])
= ((thsi) = (1) == (siti) = (bs) = ((siti) = (s,1))
(since (s}, t;) =~ (s;, t;) and (t,5) =~ (s,1))
> ((siti) ~ (s,1)) (18)

(since the restriction of the relation ~ to 9 is ~) and

((si,t1) € em) <= ((si,t7) € [[(s,1)]]) (since e = [[(s,1)]])
= ((sit) = (s,t) <= ((si,t:) = (s,1))
= ((si,t;)) ~ (5,1)). (19)

Applying (10) to Ff, c,-_H>, si, ti, qi, s; and t; instead of @, 7 s, t,q,s and t/, we
obtain Has ¢, = Has ¢/ — (s}, t}) + (t:, !). In other words, Hascl—ﬂ> — Has Ff =
(t,st) — (s}, ). Thus,

coord, (Has it — Has E))
= coordy ((t,s;) — (s, t;)) = coord, (t},s;) — coord, (s, t;)
= [(ti,si) €d] = [(si,ti) € d]

[(ti,s7) € d] + [(si, ;) € d]
[(ti,si) € cpand ] < si] + [(s},t;) € cqp and s} < ;]

(since a pair (u,v) belongs to d if and only if (u,v) € ¢y and u < v)
[(si, ti) ~ (s,t) and t; < si| + [(si,t;) ~ (s,t) and s} < t]]

(by the equivalences and (19))

= [(si, ti) ~ (s,1)] (because either s; < t; or t; < s})
= [[(sit:)] = [(s, )] = [[(s, t:)] = ¢]mod 2 (since [(s, )] = ¢).
This proves (17).

Now, coord, (Has it — Has Ff) = coord, (Has it ) — coord, (Has Ff) for
eachi € {1,2,...,k}; hence,

k k
) _ coord, (Has ci+1 — Has cl =) _ (coord, (Has cl—+1>) coord, (Has Ff)) =0
i=1 i=1
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(by the telescope principle). Hence,

coord, (Hasc; 11 — Has ?f)

I
™~

~
I
—_

Il
™~

N
I
—

[[(si,t:)] = ¢] (by (17))

[(the color of the arc from ¢} to &11) = c] (by (13))

I
T~
I

(the number of arcs colored ¢ appearing in C) mod 2.

Thus, the number of arcs colored c appearing in C is even. In other words,
the number of arcs whose color belongs to {c} appearing in C is even. In other
words, the number of arcs whose color belongs to {c, c°P} appearing in C is even

(since {c, c°P } = {c,c} = {c}). This proves Theorem [2.3( (b). O

=C

6. Open questions

Theorem [2.3|is a statement about reduced expressions. As with all such state-
ments, one can wonder whether a generalization to “non-reduced” expressions
would still be true. If w is an element of W, then an expression for w means a
k-tuple (s1,2, . ..,5k) of elements of S such that w = s;s; - - - s¢. Definition 2.T|can
be applied verbatim to arbitrary expressions, leading to the concept of an (s, t)-
braid move. Finally, for every w € W, we define a directed graph £ (w) in the
same way as we defined R (w) in Definition but with the word “reduced”
removed everywhere. This directed graph £ (w) will be infinite (in general) and
consist of many connected components (one of which is R (w)), but we can still
inquire about its cycles. We conjecture the following generalization of Theorem

Conjecture 6.1. Let w € W. Theorem [2.3|is still valid if we replace R (w) by
& (w).

A further, slightly lateral, generalization concerns a kind of “spin extension”
of a Coxeter group:

Conjecture 6.2. For every (s,t) € M, let cs; be an element of {1, —1}. Assume
that cs; = cy p for any two elements (s, t) and (s',t") of M satisfying (s, ) ~
(s',t'). Assume furthermore that c;; = ¢ for each (s,t) € M. Let W’ be the
group with the following generators and relations:

Generators: the elements s € S and an extra generator q.
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Relations:
=1 for every s € S;
7 =1
gs = sq for every s € S;
(st)™t =1 for every (s,t) € M satisfying ¢s; = 1;
(st)™t =q for every (s,t) € M satisfying ¢sr = —1.

There is clearly a surjective group homomorphism 77 : W' — W sending
each s € S to s, and sending g to 1. There is also an injective group homomor-
phism ¢ : Z/27Z — W' which sends the generator of Z/2Z to q. Then, the

sequence

L 7T

1—2Z/2 W’

W —s1 (20)

is exact. Equivalently, |Ker 7r| = 2.

(Note that exactness of the sequence at W' and at W is easy.)

If Conjecture holds, then so does Conjecture (b) (that is, Theorem
(b) holds with R (w) replaced by &€ (w)). Indeed, assume Conjecture |6.2| to hold.
Let c € M/ ~ be an equivalence class. For any (#,v) € 9, define

A -1, if (u,v) €cor (v,u) €c;
e 1, otherwise ’

Thus, a group W’ is defined. Pick any section s : W — W’ (in the category of

sets) of the projection 77 : W — W. If w € W, and if (sq,s,...,5) is an expres-

sion of w, then the product s1s; - - - s, formed in W’ will either be s (w) or gs (w);

and these latter two values are distinct (by Conjecture [6.2). We can then de-

fine the sign of the expression (sq, sy, . ..,sk) to be L %f s152- 5 = 8 (w);
-1, ifsysy---sp=gqs(w)

{1, —1}. The sign of an expression switches when we apply a braid move whose

arc’s color belongs to {c, c°P}, but stays unchanged when we apply a braid move
of any other color. Theorem [2.3{(b) then follows by a simple parity argument.

The construction of W’ in Conjecture 6.2 generalizes the construction of one of

the two spin symmetric groups (up to a substitution). We suspect that Conjecture

could be proven by constructing a “regular representation”, and this would

then yield an alternative proof of Theorem 2.3/ (b).
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