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Abstract. It is well-known that the antipode S of a commutative or
cocommutative Hopf algebra satisfies S2 = id (where S2 = S ◦ S). Re-
cently, similar results have been obtained by Aguiar and Lauve for con-
nected graded Hopf algebras: Namely, if H is a connected graded Hopf
algebra with grading H =

⊕
n≥0

Hn, then each positive integer n satisfies(
id−S2)n

(Hn) = 0 and (even stronger)
(
(id+S) ◦

(
id−S2)n−1

)
(Hn) =

0. For some specific H’s such as the Malvenuto–Reutenauer Hopf alge-
bra FQSym, the exponents can be lowered.

In this note, we generalize these results in several directions: We re-
place the base field by a commutative ring, replace the Hopf algebra by
a coalgebra (actually, a slightly more general object, with no coassocia-
tivity required), and replace both id and S2 by “coalgebra homomor-
phisms” (of sorts). Specializing back to connected graded Hopf alge-
bras, we show that the exponent n in Aguiar’s identity

(
id−S2)n

(Hn) =

0 can be lowered to n− 1 (for n > 1) if and only if
(
id−S2) (H2) = 0.

(A sufficient condition for this is that every pair of elements of H1 com-
mutes; this is satisfied, e.g., for FQSym.)

Keywords: Hopf algebra, antipode, connected graded Hopf algebra,
combinatorial Hopf algebra.

MSC subject classification: 16T05, 16T30.

Consider, for simplicity, a connected graded Hopf algebra H over a field (we
will soon switch to more general settings). Let S be the antipode of H. A clas-
sical result (e.g., [Sweedl69, Proposition 4.0.1 6)] or [HaGuKi10, Corollary 3.3.11]
or [Abe80, Theorem 2.1.4 (vi)] or [Radfor12, Corollary 7.1.11]) says that S2 = id
when H is commutative or cocommutative. (Here and in the following, powers
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are composition powers; thus, S2 means S ◦ S.) In general, S2 = id need not hold.
However, in [AguLau14, Proposition 7], Aguiar and Lauve showed that S2 is still
locally unipotent, and more precisely, we have(

id−S2
)n

(Hn) = 0 for each n > 0,

where Hn denotes the n-th graded component of H. Later, Aguiar [Aguiar17,
Lemma 12.50] strengthened this equality to(

(id+S) ◦
(

id−S2
)n−1

)
(Hn) = 0 for each n > 0.

For specific combinatorially interesting Hopf algebras, even stronger results hold;
in particular, (

id−S2
)n−1

(Hn) = 0 holds for each n > 1

when H is the Malvenuto–Reutenauer Hopf algebra (see [AguLau14, Example 8]).
In this note, we will unify these results and transport them to a much more

general setting. First of all, the ground field will be replaced by an arbitrary com-
mutative ring; this generalization is not unexpected, but renders the proof strategy
of [AguLau14, Proposition 7] insufficient1. Second, we will replace the Hopf al-
gebra by a coalgebra, or rather by a more general structure that does not even
require coassociativity. The squared antipode S2 will be replaced by an arbitrary
“coalgebra” endomorphism f (we are using scare quotes because our structure is
not really a coalgebra), and the identity map by another such endomorphism e.
Finally, the graded components will be replaced by an arbitrary sequence of sub-
modules satisfying certain compatibility relations. We state the general result in
Section 2.1 and prove it in Section 3.1. In Sections 2.2–2.4, we progressively special-
ize this result: first to connected filtered coalgebras with coalgebra endomorphisms
(in Section 2.2), then to connected filtered Hopf algebras with S2 (in Section 2.3),
and finally to connected graded Hopf algebras with S2 (in Section 2.4). The latter
specialization covers the results of Aguiar and Lauve. (The Malvenuto–Reutenauer
Hopf algebra turns out to be a red herring; any connected graded Hopf algebra H
with the property that ab = ba for all a, b ∈ H1 will do.)
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1In fact, the proof in [AguLau14, Proposition 7] relies on the coradical filtration of H and its asso-
ciated graded structure gr H. If the base ring is a field, then gr H is a well-defined commutative
Hopf algebra (see, e.g., [AguLau14, Lemma 1]), and thus the antipode of H can be viewed as a
“deformation” of the antipode of gr H. But the latter antipode does square to id because gr H is
commutative. Unfortunately, this proof does not survive our generalization; in fact, even defin-
ing a Hopf algebra structure on gr H would likely require at least some flatness assumptions.
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Remark on alternative versions

This is the detailed version of the present note. The regular version (with proofs in
less detail) is available at

http://www.cip.ifi.lmu.de/~grinberg/algebra/antipode-squared.pdf

1. Notations

We will use the notions of coalgebras, bialgebras and Hopf algebras over a com-
mutative ring, as defined (e.g.) in [Abe80, Chapter 2], [GriRei20, Chapter 1],
[HaGuKi10, Chapters 2, 3], [Radfor12, Chapters 2, 5, 7] or [Sweedl69, Chapters
I–IV]. (In particular, our Hopf algebras are not twisted by a Z/2-grading as the
topologists’ ones are.) We use the same notations for Hopf algebras as in [GriRei20,
Chapter 1]. In particular:

• We let N = {0, 1, 2, . . .}.

• “Rings” and “algebras” are always required to be associative and have a unity.

• We fix a commutative ring k. The symbols “⊗” and “End” shall always mean
“⊗k” and “Endk”, respectively. The unity of the ring k will be called 1k or
just 1 if confusion is unlikely.

• The comultiplication and the counit of a k-coalgebra are denoted by ∆ and ε.

• “Graded” k-modules mean N-graded k-modules. The base ring k itself is
not supposed to have any nontrivial grading.

• The n-th graded component of a graded k-module V will be called Vn. If
n < 0, then this is the zero submodule 0.

• A graded k-Hopf algebra means a k-Hopf algebra that has a grading as a
k-module, and whose structure maps (multiplication, unit, comultiplication
and counit) are graded maps. (The antipode is automatically graded in this
case, by [GriRei20, Exercise 1.4.29 (e)].)

• If f is a map from a set to itself, and if k ∈N is arbitrary, then f k shall denote
the map f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

. (Thus, f 1 = f and f 0 = id.)

2. Theorems

2.1. The main theorem

We can now state the main result of this note:

http://www.cip.ifi.lmu.de/~grinberg/algebra/antipode-squared.pdf


On the square of the antipode page 4

Theorem 2.1. Let D be a k-module, and let (D1, D2, D3, . . .) be a sequence of
k-submodules of D. Let δ : D → D⊗ D be any k-linear map.

Let e : D → D and f : D → D be two k-linear maps such that

Ker δ ⊆ Ker (e− f ) and (1)
( f ⊗ f ) ◦ δ = δ ◦ f and (2)
(e⊗ e) ◦ δ = δ ◦ e and (3)

f ◦ e = e ◦ f . (4)

Let p be a positive integer such that

(e− f )
(

D1 + D2 + · · ·+ Dp
)
= 0. (5)

Assume furthermore that

δ (Dn) ⊆
n−1

∑
i=1

Di ⊗ Dn−i for each n > p. (6)

(Here, the “Di ⊗ Dn−i” on the right hand side means the image of Di ⊗ Dn−i
under the canonical map Di ⊗ Dn−i → D⊗ D that is obtained by tensoring the
two inclusion maps Di → D and Dn−i → D together. When k is not a field, this
canonical map may fail to be injective.)

Then, for any integer u > p, we have

(e− f )u−p (Du) ⊆ Ker δ (7)

and
(e− f )u−p+1 (Du) = 0. (8)

As the statement of this theorem is not very intuitive, some explanations are in
order. The reader may think of the D in Theorem 2.1 as a “pre-coalgebra”, with δ
being its “reduced coproduct”. Indeed, the easiest way to obtain a nontrivial ex-
ample is to fix a connected graded Hopf algebra H, then define D to be either H or
the “positive part” of H (that is, the submodule

⊕
n>0

Hn of H), and define δ to be the

map x 7→ ∆ (x)− x⊗ 1− 1⊗ x + ε (x) 1⊗ 1 (the so-called reduced coproduct of H).
From this point of view, Ker δ can be regarded as the set of “primitive” elements
of D. The maps f and e can be viewed as two commuting “coalgebra endomor-
phisms” of D (indeed, the assumptions (2) and (3) are essentially saying that f and
e preserve the “reduced coproduct” δ). The submodules D1, D2, D3, . . . are an ana-
logue of the (positive-degree) graded components of D, while the assumption (6)
says that the “reduced coproduct” δ “respects the grading” (as is indeed the case
for connected graded Hopf algebras).

We stress that p is allowed to be 1 in Theorem 2.1; in this case, the assumption (5)
simplifies to (e− f ) (0) = 0, which is automatically true by the linearity of e− f .
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We shall prove Theorem 2.1 in Section 3.1. First, however, let us explore its
consequences for coalgebras and Hopf algebras, recovering in particular the results
of Aguiar and Lauve promised in the introduction.

2.2. Connected filtered coalgebras

We begin by specializing Theorem 2.1 to the setting of a connected filtered coalge-
bra. There are several ways to define what a filtered coalgebra is; ours is probably
the most liberal:

Definition 2.2. A filtered k-coalgebra means a k-coalgebra C equipped with an in-
finite sequence (C≤0, C≤1, C≤2, . . .) of k-submodules of C satisfying the following
three conditions:

• We have
C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . (9)

• We have ⋃
n∈N

C≤n = C. (10)

• We have

∆ (C≤n) ⊆
n

∑
i=0

C≤i ⊗ C≤n−i for each n ∈N. (11)

(Here, the “C≤i ⊗ C≤n−i” on the right hand side means the image of C≤i ⊗
C≤n−i under the canonical map C≤i ⊗ C≤n−i → C ⊗ C that is obtained by
tensoring the two inclusion maps C≤i → C and C≤n−i → C together. When
k is not a field, this canonical map may fail to be injective.)

The sequence (C≤0, C≤1, C≤2, . . .) is called the filtration of the filtered k-
coalgebra C.

A more categorically-minded person might replace the condition ∆ (C≤n) ⊆
n
∑

i=0
C≤i ⊗ C≤n−i in this definition by a stronger requirement (e.g., asking ∆ to factor

through a linear map C≤n →
n⊕

i=0
C≤i ⊗ C≤n−i, where the “⊗” signs now signify

the actual tensor products rather than their images in C ⊗ C). However, we have
no need for such stronger requirements. Mercifully, all reasonable definitions of
filtered k-coalgebras agree when k is a field.

The condition (10) in Definition 2.2 shall never be used in the following; we
merely state it to avoid muddling the meaning of “filtered k-coalgebra”.

A graded k-coalgebra C automatically becomes a filtered k-coalgebra; indeed,
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we can define its filtration (C≤0, C≤1, C≤2, . . .) by setting

C≤n =
n⊕

i=0

Ci for all n ∈N.

Definition 2.3. Let C be a filtered k-coalgebra with filtration (C≤0, C≤1, C≤2, . . .).
Let 1k denote the unity of the ring k.

(a) The filtered k-coalgebra C is said to be connected if the restriction ε |C≤0 is a
k-module isomorphism from C≤0 to k.

(b) In this case, the element
(
ε |C≤0

)−1
(1k) ∈ C≤0 is called the unity of C and

is denoted by 1C.
Now, assume that C is a connected filtered k-coalgebra.
(c) An element x of C is said to be primitive if ∆ (x) = x⊗ 1C + 1C ⊗ x.
(d) The set of all primitive elements of C is denoted by Prim C.

These notions of “connected”, “unity” and “primitive” specialize to the com-
monly established concepts of these names when C is a graded k-bialgebra. In-
deed, Definition 2.3 (b) defines the unity 1C of C to be the unique element of C≤0
that gets sent to 1k by the map ε; but this property is satisfied for the unity of a
graded k-bialgebra as well. (We will repeat this argument in more detail later on,
in the proof of Proposition 2.10.)

The following property of connected filtered k-coalgebras will be crucial for us:

Proposition 2.4. Let C be a connected filtered k-coalgebra with filtration
(C≤0, C≤1, C≤2, . . .). Define a k-linear map δ : C → C⊗ C by setting

δ (c) := ∆ (c)− c⊗ 1C − 1C ⊗ c + ε (c) 1C ⊗ 1C for each c ∈ C.

Then:
(a) We have

δ (C≤n) ⊆
n−1

∑
i=1

C≤i ⊗ C≤n−i for each n > 0.

(b) If f : C → C is a k-coalgebra homomorphism satisfying f (1C) = 1C, then
we have ( f ⊗ f ) ◦ δ = δ ◦ f .

(c) We have Prim C = (Ker δ) ∩ (Ker ε).
(d) The set Prim C is a k-submodule of C.
(e) We have Ker δ = k · 1C + Prim C.

We shall prove Proposition 2.4 in Section 3.2. The map δ in Proposition 2.4 is
called the reduced coproduct of C.

Proposition 2.4 helps us apply Theorem 2.1 to filtered k-coalgebras, resulting in
the following:
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Corollary 2.5. Let C be a connected filtered k-coalgebra with filtration
(C≤0, C≤1, C≤2, . . .).

Let e : C → C and f : C → C be two k-coalgebra homomorphisms such that

e (1C) = 1C and
f (1C) = 1C and

Prim C ⊆ Ker (e− f ) and (12)
f ◦ e = e ◦ f . (13)

Let p be a positive integer such that

(e− f )
(
C≤p

)
= 0. (14)

Then:
(a) For any integer u > p, we have

(e− f )u−p (C≤u) ⊆ Prim C. (15)

(b) For any integer u ≥ p, we have

(e− f )u−p+1 (C≤u) = 0. (16)

Corollary 2.5 results from an easy (although not completely immediate) applica-
tion of Theorem 2.1 and Proposition 2.4. The detailed proof can be found in Section
3.3.

Specializing Corollary 2.5 further to the case of p = 1, we can obtain a nicer
result:

Corollary 2.6. Let C be a connected filtered k-coalgebra with filtration
(C≤0, C≤1, C≤2, . . .).

Let e : C → C and f : C → C be two k-coalgebra homomorphisms such that

e (1C) = 1C and
f (1C) = 1C and

Prim C ⊆ Ker (e− f ) and
f ◦ e = e ◦ f .

Then:
(a) For any integer u > 1, we have

(e− f )u−1 (C≤u) ⊆ Prim C.

(b) For any positive integer u, we have

(e− f )u (C≤u) = 0.
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See Section 3.3 for a proof of this corollary.
The particular case of Corollary 2.6 for e = id is particularly simple:

Corollary 2.7. Let C be a connected filtered k-coalgebra with filtration
(C≤0, C≤1, C≤2, . . .).

Let f : C → C be a k-coalgebra homomorphism such that

f (1C) = 1C and Prim C ⊆ Ker (id− f ) .

Then:
(a) For any integer u > 1, we have

(id− f )u−1 (C≤u) ⊆ Prim C.

(b) For any positive integer u, we have

(id− f )u (C≤u) = 0.

Again, the proof of this corollary can be found in Section 3.3.
Note that Corollary 2.7 (b) is precisely [Grinbe17, Theorem 37.1 (a)].

2.3. Connected filtered bialgebras and Hopf algebras

We shall now apply our above results to connected filtered bialgebras and Hopf
algebras. We first define what we mean by these notions:

Definition 2.8. (a) A filtered k-bialgebra means a k-bialgebra H equipped with
an infinite sequence (H≤0, H≤1, H≤2, . . .) of k-submodules of H satisfying the
following five conditions:

• We have
H≤0 ⊆ H≤1 ⊆ H≤2 ⊆ · · · .

• We have ⋃
n∈N

H≤n = H.

• We have

∆ (H≤n) ⊆
n

∑
i=0

H≤i ⊗ H≤n−i for each n ∈N.

(Here, the “H≤i⊗H≤n−i” on the right hand side means the image of H≤i⊗
H≤n−i under the canonical map H≤i ⊗ H≤n−i → H⊗ H that is obtained by
tensoring the two inclusion maps H≤i → H and H≤n−i → H together.)
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• We have H≤iH≤j ⊆ H≤i+j for any i, j ∈ N. (Here, H≤iH≤j denotes the
k-linear span of the set of all products ab with a ∈ H≤i and b ∈ H≤j.)

• The unity of the k-algebra H belongs to H≤0.

The sequence (H≤0, H≤1, H≤2, . . .) is called the filtration of the filtered k-
bialgebra H.

(b) A filtered k-Hopf algebra means a filtered k-bialgebra H such that the k-
bialgebra H is a Hopf algebra (i.e., has an antipode) and such that the antipode
S of H respects the filtration (i.e., satisfies S (H≤n) ⊆ H≤n for each n ∈N).

The H≤iH≤j ⊆ H≤i+j condition in Definition 2.8 (a) will not actually be used in
what follows. Thus, we could have omitted it; but this would have resulted in a
less common (and less well-behaved in other ways) concept of “filtered bialgebra”.
Likewise, we have included the S (H≤n) ⊆ H≤n condition in Definition 2.8 (b), even
though we will never use it.

Every k-bialgebra is automatically a k-coalgebra. Thus, every filtered k-bialgebra
is automatically a filtered k-coalgebra. This allows the following definition:

Definition 2.9. A filtered k-bialgebra H is said to be connected if the filtered
k-coalgebra H is connected.

Thus, if H is a connected filtered k-bialgebra, then Definition 2.3 (b) defines a
“unity” 1H of H. This appears to cause an awkward notational quandary, since
H already has a unity by virtue of being a k-algebra (and this latter unity is also
commonly denoted by 1H). Fortunately, this cannot cause any confusion, since
these two unities are identical, as the following proposition shows:

Proposition 2.10. Let H be a connected filtered k-bialgebra. Then, the unity 1H
defined according to Definition 2.3 (b) equals the unity of the k-algebra H.

Proof of Proposition 2.10. Let 1H denote the unity 1H defined according to Definition
2.3 (b). Let 1 denote the unity of the k-algebra H. Thus, we must show that 1H = 1.

We know that H is a filtered k-bialgebra. Hence, the unity of the k-algebra H
belongs to H≤0 (by Definition 2.8 (a)). In other words, 1 belongs to H≤0 (since 1 is
the unity of the k-algebra H). Thus,

(
ε |H≤0

)
(1) is well-defined.

The axioms of a k-bialgebra yield ε (1) = 1k (since H is a k-bialgebra with unity
1).

However, 1H is defined to be
(
ε |H≤0

)−1
(1k) (by Definition 2.2 (b), applied to C =

H). Hence, 1H =
(
ε |H≤0

)−1
(1k). On the other hand, we have 1 =

(
ε |H≤0

)−1
(1k)

(since
(
ε |H≤0

)
(1) = ε (1) = 1k). Comparing these two equalities, we obtain 1H =

1. As explained above, this completes the proof of Proposition 2.10.

In Definition 2.3, we have defined the notion of a “primitive element” of a con-
nected filtered k-coalgebra C. In the same way, we can define a “primitive element”
of a k-bialgebra H (using the unity of the k-algebra H instead of 1C):
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Definition 2.11. Let H be a k-bialgebra with unity 1H.
(a) An element x of H is said to be primitive if ∆ (x) = x⊗ 1H + 1H ⊗ x.
(b) The set of all primitive elements of H is denoted by Prim H.

When H is a connected filtered k-bialgebra, Definition 2.11 (a) agrees with Defi-
nition 2.3 (c), since Proposition 2.10 shows that the two meanings of 1H are actually
identical. Thus, when H is a connected filtered k-bialgebra, Definition 2.11 (b)
agrees with Definition 2.3 (d). Hence, the notation Prim H is unambiguous.

Next we state some basic properties of the antipode in a Hopf algebra that will
be used later on:

Lemma 2.12. Let H be a k-Hopf algebra with unity 1H ∈ H and antipode S ∈
End H. Then:

(a) The map S2 : H → H is a k-coalgebra homomorphism.
(b) We have S (1H) = 1H.
(c) We have S (x) = −x for every primitive element x of H.
(d) We have S2 (x) = x for every primitive element x of H.

All parts of this lemma are proved in [Grinbe17, proof of Lemma 37.8] (at least
in the case when k is a field; but the proof applies equally well in the general case).
For the sake of completeness, we shall also give the proof in Section 3.4.

We can now state our main consequence for connected filtered Hopf algebras:

Corollary 2.13. Let H be a connected filtered k-Hopf algebra with filtration
(H≤0, H≤1, H≤2, . . .) and antipode S.

Let p be a positive integer such that(
id−S2

) (
H≤p

)
= 0. (17)

Then:
(a) For any integer u > p, we have(

id−S2
)u−p

(H≤u) ⊆ Prim H (18)

and (
(id+S) ◦

(
id−S2

)u−p
)
(H≤u) = 0. (19)

(b) For any integer u ≥ p, we have(
id−S2

)u−p+1
(H≤u) = 0. (20)

We shall derive this from Corollary 2.5 in Section 2.3.
Specializing Corollary 2.13 to p = 1, we can easily obtain the following:
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Corollary 2.14. Let H be a connected filtered k-Hopf algebra with filtration
(H≤0, H≤1, H≤2, . . .) and antipode S. Then:

(a) For any integer u > 1, we have(
id−S2

)u−1
(H≤u) ⊆ Prim H (21)

and (
(id+S) ◦

(
id−S2

)u−1
)
(H≤u) = 0. (22)

(b) For any positive integer u, we have(
id−S2

)u
(H≤u) = 0. (23)

Corollary 2.14 (b) has already appeared in [Grinbe17, Theorem 37.7 (a)]. It can
be derived from either Corollary 2.13 or Corollary 2.7; we shall show the latter
derivation in Section 2.3.

2.4. Connected graded Hopf algebras

Let us now specialize our results even further to connected graded Hopf algebras.
We have already seen that any graded k-coalgebra automatically becomes a filtered
k-coalgebra. In the same way, any graded k-Hopf algebra automatically becomes
a filtered k-Hopf algebra. Moreover, a graded k-Hopf algebra H is connected (in
the sense that H0

∼= k as k-modules) if and only if the filtered k-coalgebra H is
connected. (This follows easily from [GriRei20, Exercise 1.3.20 (e)].) Thus, our
above results for connected filtered k-Hopf algebras can be applied to connected
graded k-Hopf algebras. From Corollary 2.14, we easily obtain the following:

Corollary 2.15. Let H be a connected graded k-Hopf algebra with antipode S.
Then, for any positive integer u, we have(

id−S2
)u−1

(Hu) ⊆ Prim H (24)

and (
(id+S) ◦

(
id−S2

)u−1
)
(Hu) = 0 (25)

and (
id−S2

)u
(Hu) = 0. (26)

This is not an immediate consequence of Corollary 2.14, since the condition “u is
positive” is weaker than the condition “u > 1” in Corollary 2.14 (a); thus, deriving
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Corollary 2.15 from Corollary 2.14 requires some extra work to account for the case
of u = 1. We will give a detailed proof of Corollary 2.15 in Section 3.5.

The equality (25) in Corollary 2.15 yields [Aguiar17, Lemma 12.50], whereas the
equality (26) yields [AguLau14, Proposition 7]. Next, we apply Corollary 2.13 to
the graded setting:

Corollary 2.16. Let H be a connected graded k-Hopf algebra with antipode S.
Let p be a positive integer such that all i ∈ {2, 3, . . . , p} satisfy(

id−S2
)
(Hi) = 0. (27)

Then:
(a) For any integer u > p, we have(

id−S2
)u−p

(H≤u) ⊆ Prim H (28)

and (
(id+S) ◦

(
id−S2

)u−p
)
(H≤u) = 0. (29)

(b) For any integer u ≥ p, we have(
id−S2

)u−p+1
(H≤u) = 0. (30)

Again, the proof of Corollary 2.16 can be found in Section 3.5.
The particular case of Corollary 2.16 for p = 2 is the most useful, as the condition

(27) boils down to the equality
(
id−S2) (H2) = 0 in this case, and the latter equality

is satisfied rather frequently. Here is one sufficient criterion (which we will prove
in Section 3.5):

Corollary 2.17. Let H be a connected graded k-Hopf algebra with antipode S.
Assume that

ab = ba for every a, b ∈ H1. (31)

Then:
(a) We have (

id−S2
)
(H2) = 0.

(b) For any integer u > 2, we have(
id−S2

)u−2
(H≤u) ⊆ Prim H (32)

and (
(id+S) ◦

(
id−S2

)u−2
)
(H≤u) = 0. (33)
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(c) For any integer u > 1, we have(
id−S2

)u−1
(H≤u) = 0. (34)

The equality (34) in Corollary 2.17 generalizes [AguLau14, Example 8]. Indeed, if
H is the Malvenuto–Reutenauer Hopf algebra2, then the condition (31) is satisfied
(since H1 is a free k-module of rank 1 in this case); therefore, Corollary 2.17 (c) can
be applied in this case, and we recover [AguLau14, Example 8]. Likewise, we can
obtain the same result if H is the Hopf algebra WQSym of word quasisymmetric
functions3.

It is worth noticing that the condition (31) is only sufficient, but not necessary
for (34). For example, if H is the tensor algebra of a free k-module V of rank ≥ 2,
then (34) holds (since H is cocommutative, so that S2 = id), but (31) does not (since
u⊗ v 6= v⊗ u if u and v are two distinct basis vectors of V).

An example of a connected graded Hopf algebra H that does not satisfy (34)
(and thus does not satisfy (31) either) is not hard to construct:

Example 2.18. Assume that the ring k is not trivial. Let H be the free k-algebra
with three generators a, b, c. We equip this k-algebra H with a grading, by re-
quiring that its generators a, b, c are homogeneous of degrees 1, 1, 2, respectively.
Next, we define a comultiplication ∆ on H by setting

∆ (a) = a⊗ 1 + 1⊗ a;
∆ (b) = b⊗ 1 + 1⊗ b;
∆ (c) = c⊗ 1 + a⊗ b + 1⊗ c

(where 1 is the unity of H). Furthermore, we define a counit ε on H by setting
ε (a) = ε (b) = ε (c) = 0. It is straightforward to see that H thus becomes a con-
nected graded k-bialgebra, hence (by [GriRei20, Proposition 1.4.16]) a connected
graded k-Hopf algebra. Its antipode S is easily seen to satisfy S (c) = ab− c and
S2 (c) = ba− ab + c 6= c; thus,

(
id−S2) (H2) 6= 0. Hence, (34) does not hold for

u = 2.

The Hopf algebra H in this example is in fact an instance of a general construc-
tion of connected graded k-Hopf algebras that are “generic” (in the sense that their
structure maps satisfy no relations other than ones that hold in every connected
graded k-Hopf algebra). This latter construction will be elaborated upon in future
work.

2See [Meliot17, §12.1], [HaGuKi10, §7.1] or [GriRei20, §8.1] for the definition of this Hopf algebra.
(It is denoted FQSym in [Meliot17] and [GriRei20], and denoted MPR in [HaGuKi10].)

3See (e.g.) [MeNoTh13, §4.3.2] for a definition of this Hopf algebra.



On the square of the antipode page 14

Remark 2.19. A brave reader might wonder whether the connectedness condi-
tion in Corollary 2.15 could be replaced by something weaker – e.g., instead of
requiring H to be connected, we might require that the subalgebra H0 be com-
mutative. However, such a requirement would be insufficient. In fact, let k = C.
Then, for any integer n > 1 and any primitive n-th root of unity q ∈ k, the Taft
algebra Hn,q defined in [Radfor12, §7.3] can be viewed as a graded Hopf algebra
(with a ∈ H0 and x ∈ H1) whose subalgebra H0 = k [a] / (an − 1) is commuta-
tive, but whose antipode S does not satisfy

(
id−S2)k

(H1) = 0 for any k ∈ N

(since S2 (x) = q−1x and therefore
(
id−S2)k

(x) =
(
1− q−1)k x 6= 0 because

q−1 6= 1).

3. Proofs

We shall now prove all statements left unproved above.
We begin by stating three general facts from linear algebra, which will be used

several times in what follows:

Lemma 3.1. Let D be a k-module. Let U and V be two k-submodules of D. Let
α and β be two elements of End D. Then,

(α⊗ β) (U ⊗V) = α (U)⊗ β (V) . (35)

(Here, both U ⊗ V and α (U) ⊗ β (V) have to be understood as k-submodules
of D ⊗ D, specifically as the images of the “actual” tensor products U ⊗ V and
α (U)⊗ β (V) under the canonical maps into D⊗ D.)

The proof of Lemma 3.1 is straightforward and therefore omitted.

Lemma 3.2. Let D be a k-module. Let α, β, γ, δ be four elements of End D. Then,
in End (D⊗ D), we have

(α⊗ β) ◦ (γ⊗ δ) = (α ◦ γ)⊗ (β ◦ δ) .

This fact can be verified easily by comparing how the left and the right hand
sides transform any given pure tensor u⊗ v ∈ D⊗ D. Again, we leave the details
to the reader.

Lemma 3.3. Let D be a k-module. Let α and β be two elements of End D. Let
n ∈N. Then, in End (D⊗ D), we have

(α⊗ β)n = αn ⊗ βn.

Lemma 3.3 follows by induction on k using Lemma 3.2.
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3.1. Proof of Theorem 2.1

Our first goal is to prove Theorem 2.1.

Proof of Theorem 2.1. We shall prove (7) and (8) by strong induction on u:
Induction step: Fix an integer n > p. Assume (as the induction hypothesis) that

(7) and (8) hold for all u < n (that is, for all integers u > p satisfying u < n). We
must prove that (7) and (8) hold for u = n. In other words, we must prove that

(e− f )n−p (Dn) ⊆ Ker δ

and
(e− f )n−p+1 (Dn) = 0.

We shall focus on proving the first of these two equalities; the second will then
easily follow from (1).

Consider the k-algebras End D and End (D⊗ D). (The multiplication in each of
these k-algebras is composition of k-linear maps.) Note that u⊗ v ∈ End (D⊗ D)
for any u, v ∈ End D.

We have e, f ∈ End D. Let us define two elements g ∈ End D and h ∈ End (D⊗ D)
by

g = e− f and h = e⊗ e− f ⊗ f .

A simple computation then shows that

h = g⊗ f + e⊗ g

4. Moreover, from (5), we easily obtain

g (Du) = 0 for all u ∈ {1, 2, . . . , p} (36)

5.

4Proof. We have

g︸︷︷︸
=e− f

⊗ f + e⊗ g︸︷︷︸
=e− f

= (e− f )⊗ f + e⊗ (e− f )

= e⊗ f − f ⊗ f + e⊗ e− e⊗ f(
since tensoring k-linear maps

is a k-bilinear operation

)
= e⊗ e− f ⊗ f = h.

5Proof of (36): Let u ∈ {1, 2, . . . , p}. Thus, Du ⊆ D1 + D2 + · · ·+ Dp, so that

g (Du) ⊆ g
(

D1 + D2 + · · ·+ Dp
)
= (e− f )

(
D1 + D2 + · · ·+ Dp

)
(since g = e− f )

= 0 (by (5)) .

Thus, g (Du) = 0. This proves (36).
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Using (4) and g = e− f , we can easily see that g ◦ e = e ◦ g 6 and g ◦ f = f ◦ g
7. Hence, in particular, the elements g and e of End D commute (since g ◦ e = e ◦ g).
Hence, the k-subalgebra of End D generated by g and e is commutative (because a
k-algebra generated by two commuting elements is always commutative). There-
fore, for each i ∈N and j ∈N, we have8

giej = ejgi (37)

(because both gi and ej belong to this commutative k-subalgebra).
Furthermore, in End (D⊗ D), we have the equalities

(g⊗ f ) (e⊗ g) = (g⊗ f ) ◦ (e⊗ g) = (g ◦ e)︸ ︷︷ ︸
=e◦g

⊗ ( f ◦ g) (by Lemma 3.2)

= (e ◦ g)⊗ ( f ◦ g)

6Proof. This follows by comparing

g︸︷︷︸
=e− f

◦e = (e− f ) ◦ e = e ◦ e− f ◦ e

 since composition of k-linear maps
is a k-bilinear operation (and since the

maps e and f are k-linear)


with

e ◦ g︸︷︷︸
=e− f

= e ◦ (e− f ) = e ◦ e− e ◦ f︸︷︷︸
= f ◦e

(by (4))

 since composition of k-linear maps
is a k-bilinear operation (and since the

maps e and f are k-linear)


= e ◦ e− f ◦ e.

7Proof. This follows by comparing

g︸︷︷︸
=e− f

◦ f = (e− f ) ◦ f = e ◦ f − f ◦ f

 since composition of k-linear maps
is a k-bilinear operation (and since the

maps e and f are k-linear)


with

f ◦ g︸︷︷︸
=e− f

= f ◦ (e− f ) = f ◦ e︸︷︷︸
=e◦ f

(by (4))

− f ◦ f

 since composition of k-linear maps
is a k-bilinear operation (and since the

maps e and f are k-linear)


= e ◦ f − f ◦ f .

8We recall that the multiplication in the k-algebra End D is composition of maps. Thus, αβ = α ◦ β
for any α, β ∈ End D. (The same holds for End (D⊗ D).)
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and

(e⊗ g) (g⊗ f ) = (e⊗ g) ◦ (g⊗ f ) = (e ◦ g)⊗ (g ◦ f )︸ ︷︷ ︸
= f ◦g

(by Lemma 3.2)

= (e ◦ g)⊗ ( f ◦ g) .

Comparing these two equalities, we obtain (g⊗ f ) (e⊗ g) = (e⊗ g) (g⊗ f ). In
other words, the elements g ⊗ f and e ⊗ g of End (D⊗ D) commute. Hence, we
can apply the binomial formula9 to g⊗ f and e⊗ g. We thus conclude that each
k ∈N satisfies

(g⊗ f + e⊗ g)k =
k

∑
r=0

(
k
r

)
(g⊗ f )r︸ ︷︷ ︸
=gr⊗ f r

(by Lemma 3.3)

(e⊗ g)k−r︸ ︷︷ ︸
=ek−r⊗gk−r

(by Lemma 3.3)

=
k

∑
r=0

(
k
r

)
(gr ⊗ f r)

(
ek−r ⊗ gk−r

)
︸ ︷︷ ︸

=(gr⊗ f r)◦(ek−r⊗gk−r)
=(gr◦ek−r)⊗( f r◦gk−r)

(by Lemma 3.2)

=
k

∑
r=0

(
k
r

)(
gr ◦ ek−r

)
︸ ︷︷ ︸

=grek−r

=ek−rgr

(by (37))

⊗
(

f r ◦ gk−r
)
=

k

∑
r=0

(
k
r

)(
ek−rgr

)
︸ ︷︷ ︸
=ek−r◦gr

⊗
(

f r ◦ gk−r
)

=
k

∑
r=0

(
k
r

) (
ek−r ◦ gr

)
⊗
(

f r ◦ gk−r
)

︸ ︷︷ ︸
=(ek−r⊗ f r)◦(gr⊗gk−r)

(since Lemma 3.2
yields (ek−r⊗ f r)◦(gr⊗gk−r)=(ek−r◦gr)⊗( f r◦gk−r))

=
k

∑
r=0

(
k
r

)(
ek−r ⊗ f r

)
◦
(

gr ⊗ gk−r
)

. (38)

For each k ∈N and r ∈N, we define a map hk,r ∈ End (D⊗ D) by

hk,r =

(
k
r

)(
ek−r ⊗ f r

)
◦
(

gr ⊗ gk−r
)

. (39)

9We recall that the binomial formula says the following: If α and β are two commuting elements of

a ring, then each k ∈N satisfies (α + β)k =
k
∑

r=0

(
k
r

)
αrβk−r.
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Then, each k ∈N satisfies

hk = (g⊗ f + e⊗ g)k (since h = g⊗ f + e⊗ g)

=
k

∑
r=0

(
k
r

)(
ek−r ⊗ f r

)
◦
(

gr ⊗ gk−r
)

︸ ︷︷ ︸
=hk,r

(by (39))

(by (38))

=
k

∑
r=0

hk,r. (40)

Subtracting (2) from (3), we obtain

(e⊗ e) ◦ δ− ( f ⊗ f ) ◦ δ = δ ◦ e− δ ◦ f = δ ◦ (e− f )︸ ︷︷ ︸
=g since composition of k-linear maps

is a k-bilinear operation (and since
the maps δ, e and f are k-linear)


= δ ◦ g.

Thus,

δ ◦ g = (e⊗ e) ◦ δ− ( f ⊗ f ) ◦ δ = (e⊗ e− f ⊗ f )︸ ︷︷ ︸
=h

◦δ

 since composition of k-linear maps
is a k-bilinear operation (and since

the maps δ, e⊗ e and f ⊗ f are k-linear)


= h ◦ δ. (41)

Hence, by induction, we see that

δ ◦ gk = hk ◦ δ for each k ∈N (42)

10.
10Proof of (42): We shall prove (42) by induction on k:

Induction base: Comparing δ ◦ g0︸︷︷︸
=id

= δ ◦ id = δ with h0︸︷︷︸
=id

◦δ = id ◦δ = δ, we obtain δ ◦ g0 =

h0 ◦ δ. In other words, (42) holds for k = 0.
Induction step: Let ` ∈ N. Assume (as the induction hypothesis) that (42) holds for k = `. We

must show that (42) holds for k = `+ 1.
We have assumed that (42) holds for k = `. In other words, we have δ ◦ g` = h` ◦ δ. Now,

δ ◦ g`+1︸︷︷︸
=g`◦g

= δ ◦ g`︸ ︷︷ ︸
=h`◦δ

◦g = h` ◦ δ ◦ g︸︷︷︸
=h◦δ

(by (41))

= h` ◦ h︸ ︷︷ ︸
=h`+1

◦δ = h`+1 ◦ δ.

In other words, (42) holds for k = `+ 1. This completes the induction step. Thus, the induction
proof of (42) is complete.
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Our induction hypothesis says that (7) and (8) hold for all u < n. In particular,
(8) holds for all u < n. In other words, for each integer u > p satisfying u < n, we
have

(e− f )u−p+1 (Du) = 0. (43)

Hence, it is easy to see that every positive integer u < n and every positive integer
v > u− p satisfy

gv (Du) = 0 (44)
11.

Now, let k = n− p. Then, k = n− p > 0 (since n > p), so that k ∈ N (since k is

11Proof of (44): Let u < n be a positive integer. Let v > u− p be a positive integer. We must prove
that gv (Du) = 0.

We are in one of the following two cases:
Case 1: We have u ≤ p.
Case 2: We have u > p.
Let us first consider Case 1. In this case, we have u ≤ p. Hence, u ∈ {1, 2, . . . , p} (since u

is a positive integer) and therefore g (Du) = 0 (by (36)). However, we have v ≥ 1 (since v is a
positive integer). Hence, gv = gv−1 ◦ g, so that

gv (Du) =
(

gv−1 ◦ g
)
(Du) = gv−1

g (Du)︸ ︷︷ ︸
=0


= gv−1 (0) = 0

(
since the map gv−1 is k-linear

)
.

Hence, (44) is proved in Case 1.
Let us now consider Case 2. In this case, we have u > p. Therefore, (43) yields

(e− f )u−p+1 (Du) = 0. This rewrites as gu−p+1 (Du) = 0 (since g = e− f ). Set u′ = u− p + 1.
Thus, we have gu′ (Du) = gu−p+1 (Du) = 0.

However, from v > u− p, we obtain v ≥ u− p + 1 (since v and u− p are integers). In other
words, v ≥ u′ (since u′ = u− p + 1). Thus, gv = gv−u′ ◦ gu′ , so that

gv (Du) =
(

gv−u′ ◦ gu′
)
(Du) = gv−u′

gu′ (Du)︸ ︷︷ ︸
=0


= gv−u′ (0) = 0

(
since the map gv−u′ is k-linear

)
.

Hence, (44) is proved in Case 2.
We have now proved (44) in both Cases 1 and 2. Since these two Cases cover all possibilities,

we thus conclude that (44) always holds.
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an integer). Furthermore, (42) yields δ ◦ gk = hk ◦ δ. Thus,(
δ ◦ gk

)
(Dn) =

(
hk ◦ δ

)
(Dn) = hk (δ (Dn))︸ ︷︷ ︸

⊆
n−1
∑

i=1
Di⊗Dn−i

(by (6))

⊆ hk

(
n−1

∑
i=1

Di ⊗ Dn−i

)

=
n−1

∑
i=1

hk (Di ⊗ Dn−i) (45)

(since the map hk is k-linear).
We shall now prove that each i ∈ {1, 2, . . . , n− 1} and each r ∈ {0, 1, . . . , k}

satisfy (
gr ⊗ gk−r

)
(Di ⊗ Dn−i) = 0. (46)

[Proof of (46): Fix i ∈ {1, 2, . . . , n− 1} and r ∈ {0, 1, . . . , k}. We must prove (46).
We note that (35) (applied to α = gr, β = gk−r, U = Di and V = Dn−i) yields(

gr ⊗ gk−r
)
(Di ⊗ Dn−i) = gr (Di)⊗ gk−r (Dn−i) . (47)

We have i ∈ {1, 2, . . . , n− 1} and thus 1 ≤ i ≤ n − 1, so that i ≤ n − 1 < n.
Thus, n > i, so that n − i > 0. Moreover, from i ≥ 1 > 0, we obtain n − i < n.
Furthermore, the two integers i and n− i are positive (since i > 0 and n− i > 0).

We are in one of the following three cases:
Case 1: We have r ≥ k.
Case 2: We have r ≥ i.
Case 3: We have neither r ≥ k nor r ≥ i.
Let us first consider Case 1. In this case, we have r ≥ k. Thus, r ≥ k = n︸︷︷︸

>i

−p >

i− p. Moreover, the integer r is positive (since r ≥ k > 0). Hence, (44) (applied to
u = i and v = r) yields gr (Di) = 0 (since r > i− p). Now, (47) becomes(

gr ⊗ gk−r
)
(Di ⊗ Dn−i) = gr (Di)︸ ︷︷ ︸

=0

⊗gk−r (Dn−i) = 0⊗ gk−r (Dn−i) = 0.

Thus, (46) is proved in Case 1.
Let us next consider Case 2. In this case, we have r ≥ i. Thus, r ≥ i > i− p (since

p > 0). Moreover, the integer r is positive (since r ≥ i > 0). Hence, (44) (applied to
u = i and v = r) yields gr (Di) = 0 (since r > i− p). Now, (47) becomes(

gr ⊗ gk−r
)
(Di ⊗ Dn−i) = gr (Di)︸ ︷︷ ︸

=0

⊗gk−r (Dn−i) = 0⊗ gk−r (Dn−i) = 0.
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Thus, (46) is proved in Case 2.
Finally, let us consider Case 3. In this case, we have neither r ≥ k nor r ≥ i. In

other words, we have r < k and r < i. Now, the integer k − r is positive (since
r < k). Furthermore, from k = n− p, we obtain

k− r = n− p− r︸︷︷︸
<i

> n− p− i = n− i− p.

Hence, (44) (applied to u = n− i and v = k− r) yields gk−r (Dn−i) = 0. Now, (47)
becomes(

gr ⊗ gk−r
)
(Di ⊗ Dn−i) = gr (Di)⊗ gk−r (Dn−i)︸ ︷︷ ︸

=0

= gr (Di)⊗ 0 = 0.

Thus, (46) is proved in Case 3.
We have now proved (46) in all three Cases 1, 2 and 3. Thus, the proof of (46) is

complete.]
Now, each i ∈ {1, 2, . . . , n− 1} satisfies

hk︸︷︷︸
=

k
∑

r=0
hk,r

(by (40))

(Di ⊗ Dn−i) =

(
k

∑
r=0

hk,r

)
(Di ⊗ Dn−i)

⊆
k

∑
r=0

hk,r︸︷︷︸
=

(
k
r

)
(ek−r⊗ f r)◦(gr⊗gk−r)

(by (39))

(Di ⊗ Dn−i)

=
k

∑
r=0

((
k
r

)(
ek−r ⊗ f r

)
◦
(

gr ⊗ gk−r
))

(Di ⊗ Dn−i)︸ ︷︷ ︸
=

(
k
r

)
(ek−r⊗ f r)((gr⊗gk−r)(Di⊗Dn−i))

=
k

∑
r=0

(
k
r

)(
ek−r ⊗ f r

) ((
gr ⊗ gk−r

)
(Di ⊗ Dn−i)

)
︸ ︷︷ ︸

=0
(by (46))

=
k

∑
r=0

(
k
r

) (
ek−r ⊗ f r

)
(0)︸ ︷︷ ︸

=0
(since the map ek−r⊗ f r is k-linear)

=
k

∑
r=0

(
k
r

)
0︸ ︷︷ ︸

=0

= 0. (48)
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Hence, (45) becomes

(
δ ◦ gk

)
(Dn) ⊆

n−1

∑
i=1

hk (Di ⊗ Dn−i)︸ ︷︷ ︸
⊆0

(by (48))

⊆
n−1

∑
i=1

0 = 0.

From this, we can easily obtain

gk (Dn) ⊆ Ker δ

12. Since g = e− f and k = n− p, we can rewrite this as follows:

(e− f )n−p (Dn) ⊆ Ker δ. (49)

However, we have Ker δ ⊆ Ker (e− f ) (by (1)) and therefore (e− f ) (Ker δ) = 0
13. Thus,

(e− f )n−p+1︸ ︷︷ ︸
=(e− f )◦(e− f )n−p

(Dn) =
(
(e− f ) ◦ (e− f )n−p

)
(Dn)

= (e− f )

(e− f )n−p (Dn)︸ ︷︷ ︸
⊆Ker δ

(by (49))

 ⊆ (e− f ) (Ker δ) = 0.

In other words,
(e− f )n−p+1 (Dn) = 0. (50)

We have now proved the relations (49) and (50). In other words, (7) and (8) hold
for u = n. This completes the induction step. Thus, we have proved by strong
induction that (7) and (8) hold for all integers u > p. This proves Theorem 2.1.

12Proof. Let x ∈ gk (Dn). Thus, there exists some y ∈ Dn such that x = gk (y). Consider this y.
Applying the map δ to both sides of the equality x = gk (y), we find

δ (x) = δ
(

gk (y)
)
=
(

δ ◦ gk
) y︸︷︷︸

∈Dn

 ∈ (δ ◦ gk
)
(Dn) ⊆ 0,

so that δ (x) = 0. Hence, x ∈ Ker δ.
Now, forget that we fixed x. We thus have shown that x ∈ Ker δ for each x ∈ gk (Dn). In other

words, gk (Dn) ⊆ Ker δ.
13Proof. Let y ∈ (e− f ) (Ker δ). Thus, there exists some x ∈ Ker δ such that y = (e− f ) (x).

Consider this x.
We have x ∈ Ker δ ⊆ Ker (e− f ), so that (e− f ) (x) = 0. Hence, y = (e− f ) (x) = 0.
Forget that we fixed y. We thus have shown that y = 0 for each y ∈ (e− f ) (Ker δ). In other

words, (e− f ) (Ker δ) ⊆ 0. Hence, (e− f ) (Ker δ) = 0 (since (e− f ) (Ker δ) is a k-module).
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3.2. Proof of Proposition 2.4

Our next goal is to prove Proposition 2.4. We shall work towards this goal by
proving some lemmas. First, we note a simple consequence of the axioms of a
k-coalgebra:

Remark 3.4. Let C be any k-coalgebra. Let can1 : C ⊗ k → C be the k-module
isomorphism sending c ⊗ 1 to c for each c ∈ C. Let can2 : k ⊗ C → C be the
k-module isomorphism sending 1⊗ c to c for each c ∈ C.

Recall that C is a k-coalgebra, and therefore satisfies the axioms of a k-
coalgebra. Hence, in particular, the diagram

C⊗ k
can1 // C k⊗ C

can2oo

C⊗ C

id⊗ε

OO

C
∆

oo

id

OO

∆
// C⊗ C

ε⊗id

OO

is commutative (since this is one of the axioms of a k-coalgebra). In other words,
we have

can1 ◦ (id⊗ε) ◦ ∆ = id and (51)
can2 ◦ (ε⊗ id) ◦ ∆ = id . (52)

Next, we state a simple property of a slight generalization of primitive elements
in a coalgebra:

Lemma 3.5. Let C be any k-coalgebra. Let a, b, d ∈ C be three elements satisfying
ε (a) = 1 and ε (b) = 1 and ∆ (d) = d⊗ a + b⊗ d. Then, ε (d) = 0.

We shall later apply Lemma 3.5 to the case when a = b = 1C (and C is either
a connected filtered k-coalgebra or a k-bialgebra, so that 1C does make sense);
however, it is not any harder to prove it in full generality:

Proof of Lemma 3.5. Let us first observe that the map

C× C → C⊗ C,
(u, v) 7→ u⊗ v (53)

is k-bilinear. (This follows straight from the definition of the tensor product.)
Applying the map id⊗ε : C ⊗ C → C ⊗ k to both sides of the equality ∆ (d) =
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d⊗ a + b⊗ d, we obtain

(id⊗ε) (∆ (d)) = (id⊗ε) (d⊗ a + b⊗ d)
= (id⊗ε) (d⊗ a)︸ ︷︷ ︸

=id(d)⊗ε(a)

+ (id⊗ε) (b⊗ d)︸ ︷︷ ︸
=id(b)⊗ε(d)

(since the map id⊗ε is k-linear)
= id (d)︸ ︷︷ ︸

=d

⊗ ε (a)︸︷︷︸
=1

+ id (b)︸ ︷︷ ︸
=b

⊗ ε (d)︸︷︷︸
=ε(d)1

= d⊗ 1 + b⊗ ε (d) 1︸ ︷︷ ︸
=bε(d)⊗1

(since ε(d) is a scalar in k and thus
can be moved past the ⊗ sign)

= d⊗ 1 + bε (d)⊗ 1

= (d + bε (d))⊗ 1 (54)

(since the map (53) is k-bilinear).
Define the maps can1 and can2 as in Remark 3.4. Applying the map can1 to both

sides of the equality (54), we obtain

can1 ((id⊗ε) (∆ (d))) = can1 ((d + bε (d))⊗ 1) = d + bε (d)

(by the definition of can1). Hence,

d + bε (d) = can1 ((id⊗ε) (∆ (d))) = (can1 ◦ (id⊗ε) ◦ ∆)︸ ︷︷ ︸
=id

(by (51))

(d) = id (d) = d.

Subtracting d from both sides of this equality, we obtain bε (d) = 0. Applying the
map ε to both sides of this equality, we find ε (bε (d)) = 0. In view of

ε

bε (d)︸ ︷︷ ︸
=ε(d)b

 = ε (ε (d) b) = ε (d) ε (b)︸︷︷︸
=1

(since the map ε is k-linear)

= ε (d) ,

this rewrites as ε (d) = 0. This proves Lemma 3.5.

Next, let us define a “reduced identity map” id for any connected filtered k-
coalgebra C, and explore some of its properties:

Lemma 3.6. Let C be a connected filtered k-coalgebra with filtration
(C≤0, C≤1, C≤2, . . .). Define a k-linear map id : C → C by setting

id (c) := c− ε (c) 1C for each c ∈ C.



On the square of the antipode page 25

Define a k-linear map δ : C → C⊗ C by setting

δ (c) := ∆ (c)− c⊗ 1C − 1C ⊗ c + ε (c) 1C ⊗ 1C for each c ∈ C.

Then:
(a) We have δ =

(
id⊗ id

)
◦∆. (Here, of course, ∆ denotes the comultiplication

of C.)
(b) We have id (C≤n) ⊆ C≤n for each n ∈N.
(c) We have id (C≤0) = 0.

Proof of Lemma 3.6. Let us first observe that the map

C× C → C⊗ C,
(u, v) 7→ u⊗ v (55)

is k-bilinear. (This follows straight from the definition of the tensor product.)
(a) Let c ∈ C. The element ∆ (c) is a tensor in C⊗ C, and thus can be written in

the form

∆ (c) =
m

∑
i=1

λici ⊗ di (56)

for some m ∈ N, some λ1, λ2, . . . , λm ∈ k, some c1, c2, . . . , cm ∈ C and some
d1, d2, . . . , dm ∈ C. Consider this m, these λ1, λ2, . . . , λm, these c1, c2, . . . , cm and
these d1, d2, . . . , dm.

Now, define the maps can1 and can2 as in Remark 3.4. Applying the map id⊗ε
to both sides of the equality (56), we obtain

(id⊗ε) (∆ (c)) = (id⊗ε)

(
m

∑
i=1

λici ⊗ di

)

=
m

∑
i=1

λi (id⊗ε) (ci ⊗ di)︸ ︷︷ ︸
=id(ci)⊗ε(di)

(since the map id⊗ε is k-linear)

=
m

∑
i=1

λi id (ci)︸ ︷︷ ︸
=ci

⊗ ε (di)︸ ︷︷ ︸
=ε(di)1

=
m

∑
i=1

λi ci ⊗ ε (di) 1︸ ︷︷ ︸
=ciε(di)⊗1

(since ε(di) is a scalar in k and thus
can be moved past the ⊗ sign)

=
m

∑
i=1

λiciε (di)⊗ 1.
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Applying the map can1 to both sides of this equality, we obtain

can1 ((id⊗ε) (∆ (c))) = can1

(
m

∑
i=1

λiciε (di)⊗ 1

)

=
m

∑
i=1

λi can1 (ciε (di)⊗ 1)︸ ︷︷ ︸
=ciε(di)

(by the definition of can1 )

(since the map can1 is k-linear)

=
m

∑
i=1

λiciε (di) .

Comparing this with

can1 ((id⊗ε) (∆ (c))) = (can1 ◦ (id⊗ε) ◦ ∆)︸ ︷︷ ︸
=id

(by (51))

(c) = id (c) = c,

we obtain
m

∑
i=1

λiciε (di) = c. (57)

Furthermore, applying the map ε⊗ id to both sides of the equality (56), we obtain

(ε⊗ id) (∆ (c)) = (ε⊗ id)

(
m

∑
i=1

λici ⊗ di

)

=
m

∑
i=1

λi (ε⊗ id) (ci ⊗ di)︸ ︷︷ ︸
=ε(ci)⊗id(di)

(since the map ε⊗ id is k-linear)

=
m

∑
i=1

λi ε (ci)︸ ︷︷ ︸
=1ε(ci)

⊗ id (di)︸ ︷︷ ︸
=di

=
m

∑
i=1

λi 1ε (ci)⊗ di︸ ︷︷ ︸
=1⊗ε(ci)di

(since ε(ci) is a scalar in k and thus
can be moved past the ⊗ sign)

=
m

∑
i=1

λi1⊗ ε (ci) di.

Applying the map can2 to both sides of this equality, we obtain

can2 ((ε⊗ id) (∆ (c))) = can2

(
m

∑
i=1

λi1⊗ ε (ci) di

)

=
m

∑
i=1

λi can2 (1⊗ ε (ci) di)︸ ︷︷ ︸
=ε(ci)di

(by the definition of can2 )

(since the map can2 is k-linear)

=
m

∑
i=1

λiε (ci) di.
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Comparing this with

can2 ((ε⊗ id) (∆ (c))) = (can2 ◦ (ε⊗ id) ◦ ∆)︸ ︷︷ ︸
=id

(by (52))

(c) = id (c) = c,

we obtain
m

∑
i=1

λiε (ci) di = c. (58)

Applying the map id to both sides of this equality, we obtain

id

(
m

∑
i=1

λiε (ci) di

)
= id (c) = c− ε (c) 1C

(by the definition of id). Hence,

c− ε (c) 1C = id

(
m

∑
i=1

λiε (ci) di

)
=

m

∑
i=1

λiε (ci) id (di) (59)

(since the map id is k-linear).
Now, applying the map id⊗ id to both sides of the equality (56), we obtain(

id⊗ id
)
(∆ (c))

=
(

id⊗ id
)( m

∑
i=1

λici ⊗ di

)

=
m

∑
i=1

λi

(
id⊗ id

)
(ci ⊗ di)︸ ︷︷ ︸

=id(ci)⊗id(di)

(
since the map id⊗ id is k-linear

)

=
m

∑
i=1

λi id (ci)︸ ︷︷ ︸
=ci−ε(ci)1C

(by the definition of id )

⊗ id (di)

=
m

∑
i=1

λi (ci − ε (ci) 1C)⊗ id (di)︸ ︷︷ ︸
=ci⊗id(di)−ε(ci)1C⊗id(di)

(since the map (55) is k-bilinear)

=
m

∑
i=1

λi

(
ci ⊗ id (di)− ε (ci) 1C ⊗ id (di)

)
=

m

∑
i=1

λici ⊗ id (di)−
m

∑
i=1

λiε (ci) 1C ⊗ id (di) . (60)
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We shall now separately simplify the two sums on the right hand side of this
equality.

Indeed, we have

m

∑
i=1

λici ⊗ id (di)︸ ︷︷ ︸
=di−ε(di)1C

(by the definition of id )

=
m

∑
i=1

λici ⊗ (di − ε (di) 1C)︸ ︷︷ ︸
=λici⊗di−λici⊗ε(di)1C

(since the map (55) is k-bilinear)

=
m

∑
i=1

(λici ⊗ di − λici ⊗ ε (di) 1C)

=
m

∑
i=1

λici ⊗ di︸ ︷︷ ︸
=∆(c)

(by (56))

−
m

∑
i=1

λici ⊗ ε (di) 1C︸ ︷︷ ︸
=λiciε(di)⊗1C

(since ε(di) is a scalar in k and thus
can be moved past the ⊗ sign)

= ∆ (c)−
m

∑
i=1

λiciε (di)⊗ 1C︸ ︷︷ ︸
=

(
m
∑

i=1
λiciε(di)

)
⊗1C

(since the map (55) is k-bilinear)

= ∆ (c)−
(

m

∑
i=1

λiciε (di)

)
︸ ︷︷ ︸

=c
(by (57))

⊗1C

= ∆ (c)− c⊗ 1C
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and
m

∑
i=1

λiε (ci) 1C︸ ︷︷ ︸
=1Cλiε(ci)

⊗ id (di)

=
m

∑
i=1

1Cλiε (ci)⊗ id (di)︸ ︷︷ ︸
=1C⊗λiε(ci) id(di)

(since λiε(ci) is a scalar in k and thus
can be moved past the ⊗ sign)

=
m

∑
i=1

1C ⊗ λiε (ci) id (di) = 1C ⊗
(

m

∑
i=1

λiε (ci) id (di)

)
︸ ︷︷ ︸

=c−ε(c)1C
(by (59))

(since the map (55) is k-bilinear)
= 1C ⊗ (c− ε (c) 1C) = 1C ⊗ c− 1C ⊗ ε (c) 1C︸ ︷︷ ︸

=1Cε(c)⊗1C
(since ε(c) is a scalar in k and thus

can be moved past the ⊗ sign)

(since the map (55) is k-bilinear)
= 1C ⊗ c− 1Cε (c)︸ ︷︷ ︸

=ε(c)1C

⊗1C = 1C ⊗ c− ε (c) 1C ⊗ 1C.

In light of these two equalities, we can rewrite (60) as(
id⊗ id

)
(∆ (c)) = (∆ (c)− c⊗ 1C)− (1C ⊗ c− ε (c) 1C ⊗ 1C) .

Comparing this with

δ (c) = ∆ (c)− c⊗ 1C − 1C ⊗ c + ε (c) 1C ⊗ 1C (by the definition of δ)

= (∆ (c)− c⊗ 1C)− (1C ⊗ c− ε (c) 1C ⊗ 1C) ,

we obtain δ (c) =
(

id⊗ id
)
(∆ (c)) =

((
id⊗ id

)
◦ ∆
)
(c).

Forget that we fixed c. We thus have shown that δ (c) =
((

id⊗ id
)
◦ ∆
)
(c) for

each c ∈ C. In other words, δ =
(

id⊗ id
)
◦ ∆. This proves Lemma 3.6 (a).

(b) Let n ∈ N. Let c ∈ C≤n. We have 1C ∈ C≤0 (by Definition 2.3 (b)). However,
(9) yields C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · (since C is a filtered k-coalgebra). Therefore,
C≤0 ⊆ C≤n. Thus, 1C ∈ C≤0 ⊆ C≤n. Now, the definition of id yields

id (c) = c︸︷︷︸
∈C≤n

−ε (c) 1C︸︷︷︸
∈C≤n

∈ C≤n − ε (c)C≤n ⊆ C≤n

(since C≤n is a k-module).



On the square of the antipode page 30

Forget that we fixed c. We thus have shown that id (c) ∈ C≤n for each c ∈ C≤n.
In other words, we have id (C≤n) ⊆ C≤n. This proves Lemma 3.6 (b).

(c) The filtered k-coalgebra C is connected. In other words, the restriction ε |C≤0
is a k-module isomorphism from C≤0 to k (by Definition 2.3 (a)). Hence, this re-
striction ε |C≤0 is bijective, and thus injective. Also, we have 1C ∈ C≤0 (by Definition
2.3 (b)).

Now, let c ∈ C≤0. Hence,
(
ε |C≤0

)
(c) is well-defined. Definition 2.3 (b) yields

1C =
(
ε |C≤0

)−1
(1k). Thus,

(
ε |C≤0

)
(1C) = 1k. In other words, ε (1C) = 1k (since(

ε |C≤0

)
(1C) = ε (1C)).

Set d = ε (c) 1C. Then, d = ε (c) 1C︸︷︷︸
∈C≤0

∈ ε (c)C≤0 ⊆ C≤0 (since C≤0 is a k-module).

Thus,
(
ε |C≤0

)
(d) is well-defined.

Comparing (
ε |C≤0

)
(c) = ε (c)

with

(
ε |C≤0

)
(d) = ε

 d︸︷︷︸
=ε(c)1C

 = ε (ε (c) 1C)

= ε (c) ε (1C)︸ ︷︷ ︸
=1k

(since the map ε is k-linear)

= ε (c) ,

we obtain
(
ε |C≤0

)
(c) =

(
ε |C≤0

)
(d).

However, the map ε |C≤0 is injective. In other words, if u and v are two elements
of C≤0 satisfying

(
ε |C≤0

)
(u) =

(
ε |C≤0

)
(v), then u = v. Applying this to u = c and

v = d, we obtain c = d (since
(
ε |C≤0

)
(c) =

(
ε |C≤0

)
(d)). Now, the definition of id

yields

id (c) = c− ε (c) 1C︸ ︷︷ ︸
=d

(by the definition of d)

= c− d = 0 (since c = d) .

Forget that we have fixed c. We thus have shown that id (c) = 0 for each c ∈ C≤0.
In other words, id (C≤0) = 0. This proves Lemma 3.6 (c).

Proof of Proposition 2.4. (a) Define a k-linear map id : C → C as in Lemma 3.6. Then,
Lemma 3.6 (a) yields δ =

(
id⊗ id

)
◦ ∆.

Now, let n > 0 be an integer. Then, (11) yields

∆ (C≤n) ⊆
n

∑
i=0

C≤i ⊗ C≤n−i (61)
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(since C is a filtered k-coalgebra). Now,

δ︸︷︷︸
=(id⊗ id)◦∆

(C≤n)

=
((

id⊗ id
)
◦ ∆
)
(C≤n) =

(
id⊗ id

)
(∆ (C≤n))︸ ︷︷ ︸
⊆

n
∑

i=0
C≤i⊗C≤n−i

(by (61))

⊆
(

id⊗ id
)( n

∑
i=0

C≤i ⊗ C≤n−i

)

=
n

∑
i=0

(
id⊗ id

)
(C≤i ⊗ C≤n−i)︸ ︷︷ ︸

=id(C≤i)⊗id(C≤n−i)

(by (35), applied to D=C, α=id , β=id , U=C≤i and V=C≤n−i)(
since the map id⊗ id is k-linear

)
=

n

∑
i=0

id (C≤i)⊗ id (C≤n−i)

= id (C≤0)⊗ id (C≤n−0) +
n−1

∑
i=1

id (C≤i)⊗ id (C≤n−i) + id (C≤n)⊗ id (C≤n−n)︸ ︷︷ ︸
=id(C≤0)

(since n−n=0)(
here, we have split off the addends for i = 0 and for i = n from the

sum (and these are indeed two distinct addends, since n > 0)

)
= id (C≤0)︸ ︷︷ ︸

=0
(by Lemma 3.6 (c))

⊗ id (C≤n−0) +
n−1

∑
i=1

id (C≤i)⊗ id (C≤n−i) + id (C≤n)⊗ id (C≤0)︸ ︷︷ ︸
=0

(by Lemma 3.6 (c))

= 0⊗ id (C≤n−0)︸ ︷︷ ︸
=0

+
n−1

∑
i=1

id (C≤i)⊗ id (C≤n−i) + id (C≤n)⊗ 0︸ ︷︷ ︸
=0

=
n−1

∑
i=1

id (C≤i)︸ ︷︷ ︸
⊆C≤i

(by Lemma 3.6 (b),
applied to i instead of n)

⊗ id (C≤n−i)︸ ︷︷ ︸
⊆C≤n−i

(by Lemma 3.6 (b),
applied to n−i instead of n)

⊆
n−1

∑
i=1

C≤i ⊗ C≤n−i.

This proves Proposition 2.4 (a).
(b) Let f : C → C be a k-coalgebra homomorphism satisfying f (1C) = 1C. Thus,

f is a k-coalgebra homomorphism; in other words, f is a k-linear map satisfying
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( f ⊗ f ) ◦ ∆ = ∆ ◦ f and ε = ε ◦ f (by the definition of a “k-coalgebra homomor-
phism”).

Let c ∈ C. Then,

(( f ⊗ f ) ◦ δ) (c)

= ( f ⊗ f )

 δ (c)︸︷︷︸
=∆(c)−c⊗1C−1C⊗c+ε(c)1C⊗1C

(by the definition of δ)


= ( f ⊗ f ) (∆ (c)− c⊗ 1C − 1C ⊗ c + ε (c) 1C ⊗ 1C)

= ( f ⊗ f ) (∆ (c))︸ ︷︷ ︸
=(( f⊗ f )◦∆)(c)

− ( f ⊗ f ) (c⊗ 1C)︸ ︷︷ ︸
= f (c)⊗ f (1C)

− ( f ⊗ f ) (1C ⊗ c)︸ ︷︷ ︸
= f (1C)⊗ f (c)

+ε (c) ( f ⊗ f ) (1C ⊗ 1C)︸ ︷︷ ︸
= f (1C)⊗ f (1C)

(since the map f ⊗ f is k-linear)
= (( f ⊗ f ) ◦ ∆)︸ ︷︷ ︸

=∆◦ f

(c)− f (c)⊗ f (1C)︸ ︷︷ ︸
=1C

− f (1C)︸ ︷︷ ︸
=1C

⊗ f (c) + ε︸︷︷︸
=ε◦ f

(c) f (1C)︸ ︷︷ ︸
=1C

⊗ f (1C)︸ ︷︷ ︸
=1C

= (∆ ◦ f ) (c)︸ ︷︷ ︸
=∆( f (c))

− f (c)⊗ 1C − 1C ⊗ f (c) + (ε ◦ f ) (c)︸ ︷︷ ︸
=ε( f (c))

1C ⊗ 1C

= ∆ ( f (c))− f (c)⊗ 1C − 1C ⊗ f (c) + ε ( f (c)) 1C ⊗ 1C.

Comparing this with

(δ ◦ f ) (c) = δ ( f (c)) = ∆ ( f (c))− f (c)⊗ 1C − 1C ⊗ f (c) + ε ( f (c)) 1C ⊗ 1C

(by the definition of δ) ,

we obtain (( f ⊗ f ) ◦ δ) (c) = (δ ◦ f ) (c).
Forget that we fixed c. We thus have shown that (( f ⊗ f ) ◦ δ) (c) = (δ ◦ f ) (c) for

each c ∈ C. In other words, ( f ⊗ f ) ◦ δ = δ ◦ f . This proves Proposition 2.4 (b).
(c) Definition 2.3 (b) yields 1C =

(
ε |C≤0

)−1
(1k). Thus,

(
ε |C≤0

)
(1C) = 1k. In

other words, ε (1C) = 1 (since
(
ε |C≤0

)
(1C) = ε (1C) and 1k = 1).

Let c ∈ (Ker δ) ∩ (Ker ε). Thus, c ∈ (Ker δ) ∩ (Ker ε) ⊆ Ker δ, so that δ (c) = 0.
Moreover, c ∈ (Ker δ) ∩ (Ker ε) ⊆ Ker ε, so that ε (c) = 0. However, from δ (c) = 0,
we obtain

0 = δ (c) = ∆ (c)− c⊗ 1C − 1C ⊗ c + ε (c)︸︷︷︸
=0

1C ⊗ 1C (by the definition of δ)

= ∆ (c)− c⊗ 1C − 1C ⊗ c + 0 · 1C ⊗ 1C︸ ︷︷ ︸
=0

= ∆ (c)− c⊗ 1C − 1C ⊗ c.

In other words, ∆ (c) = c ⊗ 1C + 1C ⊗ c. In other words, the element c of C is
primitive (by the definition of “primitive”). In other words, c ∈ Prim C (since
Prim C is defined as the set of all primitive elements of C).
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Forget that we fixed c. We thus have shown that c ∈ Prim C for each c ∈ (Ker δ)∩
(Ker ε). In other words, (Ker δ) ∩ (Ker ε) ⊆ Prim C.

Now, let d ∈ Prim C. Thus, the element d of C is primitive (since Prim C is defined
as the set of all primitive elements of C). In other words, ∆ (d) = d⊗ 1C + 1C ⊗ d
(by the definition of “primitive”). Hence, Lemma 3.5 (applied to 1C and 1C instead
of a and b) yields ε (d) = 0 (since ε (1C) = 1). Hence, d ∈ Ker ε.

Furthermore, the definition of δ yields

δ (d) = ∆ (d)− d⊗ 1C − 1C ⊗ d︸ ︷︷ ︸
=0

(since ∆(d)=d⊗1C+1C⊗d)

+ε (d) 1C ⊗ 1C = ε (d)︸︷︷︸
=0

1C ⊗ 1C = 0.

Hence, d ∈ Ker δ. Combining this with d ∈ Ker ε, we obtain d ∈ (Ker δ) ∩ (Ker ε).
Forget that we fixed d. We thus have shown that d ∈ (Ker δ) ∩ (Ker ε) for each

d ∈ Prim C. In other words, Prim C ⊆ (Ker δ) ∩ (Ker ε). Combining this with
(Ker δ) ∩ (Ker ε) ⊆ Prim C, we obtain Prim C = (Ker δ) ∩ (Ker ε). This proves
Proposition 2.4 (c).

(d) Proposition 2.4 (c) yields Prim C = (Ker δ) ∩ (Ker ε).
The maps δ and ε are k-linear. Hence, their kernels Ker δ and Ker ε are k-

submodules of C. The intersection (Ker δ) ∩ (Ker ε) of these two kernels must
therefore be a k-submodule of C as well. In other words, Prim C is a k-submodule
of C (since Prim C = (Ker δ) ∩ (Ker ε)). This proves Proposition 2.4 (d).

(e) We first observe that 1C ∈ C≤0 (by Definition 2.3 (b)). However, (9) yields
C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · (since C is a filtered k-coalgebra). Therefore, C≤0 ⊆ C≤1.
Thus, 1C ∈ C≤0 ⊆ C≤1. Hence,

δ (1C) ∈ δ (C≤1) ⊆
1−1

∑
i=1

C≤i ⊗ C≤1−i

(by Proposition 2.4 (a), applied to n = 1)
= (empty sum) = 0.

In other words, δ (1C) = 0.
Definition 2.3 (b) yields 1C =

(
ε |C≤0

)−1
(1k). Thus,

(
ε |C≤0

)
(1C) = 1k. In other

words, ε (1C) = 1 (since
(
ε |C≤0

)
(1C) = ε (1C) and 1k = 1).

Let u ∈ Ker δ. Thus, δ (u) = 0. Set v = u− ε (u) 1C. Then,

δ

 v︸︷︷︸
=u−ε(u)1C

 = δ (u− ε (u) 1C) = δ (u)︸︷︷︸
=0

−ε (u) δ (1C)︸ ︷︷ ︸
=0

(since the map δ is k-linear)

= 0− ε (u) 0 = 0,

so that v ∈ Ker δ. Furthermore,

ε

 v︸︷︷︸
=u−ε(u)1C

 = ε (u− ε (u) 1C) = ε (u)− ε (u) ε (1C)︸ ︷︷ ︸
=1

(since the map ε is k-linear)

= ε (u)− ε (u) = 0,
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so that v ∈ Ker ε. Combining this with v ∈ Ker δ, we obtain v ∈ (Ker δ)∩ (Ker ε) =
Prim C (by Proposition 2.4 (c)). Now, from v = u− ε (u) 1C, we obtain

u = ε (u)︸︷︷︸
∈k

1C + v︸︷︷︸
∈Prim C

∈ k · 1C + Prim C.

Forget that we fixed u. We thus have shown that u ∈ k · 1C + Prim C for each
u ∈ Ker δ. In other words,

Ker δ ⊆ k · 1C + Prim C. (62)

On the other hand, let w ∈ k · 1C + Prim C. Thus, we can write w in the form
w = x + y for some x ∈ k · 1C and some y ∈ Prim C. Consider these x and y. We
have

y ∈ Prim C = (Ker δ) ∩ (Ker ε) (by Proposition 2.4 (c))
⊆ Ker δ,

so that δ (y) = 0.
We have x ∈ k · 1C; in other words, x = λ · 1C for some λ ∈ k. Consider this λ.

Now, w = x︸︷︷︸
=λ·1C

+y = λ · 1C + y. Applying the map δ to both sides of this equality,

we obtain

δ (w) = δ (λ · 1C + y) = λ · δ (1C)︸ ︷︷ ︸
=0

+ δ (y)︸︷︷︸
=0

(since the map δ is k-linear)

= λ · 0 + 0 = 0.

In other words, w ∈ Ker δ.
Forget that we fixed w. We thus have shown that w ∈ Ker δ for each w ∈ k · 1C +

Prim C. In other words,
k · 1C + Prim C ⊆ Ker δ.

Combining this with (62), we obtain Ker δ = k · 1C + Prim C. This proves Proposi-
tion 2.4 (e).

3.3. Proofs of the corollaries from Section 2.2

Proof of Corollary 2.5. We have (e− f ) (1C) = e (1C)︸ ︷︷ ︸
=1C

− f (1C)︸ ︷︷ ︸
=1C

= 1C − 1C = 0. Hence,

k · 1C ⊆ Ker (e− f ) 14.

14Proof. Let x ∈ k · 1C. Thus, x = λ · 1C for some λ ∈ k. Consider this λ. Now, applying the map
e− f to both sides of the equality x = λ · 1C, we obtain

(e− f ) (x) = (e− f ) (λ · 1C) = λ · (e− f ) (1C)︸ ︷︷ ︸
=0

(since the map e− f is k-linear)

= 0.
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Clearly, (C≤0, C≤1, C≤2, . . .) is a sequence of k-submodules of C (by the definition
of a filtered k-coalgebra). Thus, (C≤1, C≤2, C≤3, . . .) is a sequence of k-submodules
of C as well.

Define the k-linear map δ : C → C ⊗ C as in Proposition 2.4. The map f is
a k-coalgebra homomorphism satisfying f (1C) = 1C. Thus, Proposition 2.4 (b)
yields that ( f ⊗ f ) ◦ δ = δ ◦ f . The same argument (applied to e instead of f ) yields
(e⊗ e) ◦ δ = δ ◦ e. Moreover, Proposition 2.4 (e) yields

Ker δ = k · 1C︸ ︷︷ ︸
⊆Ker(e− f )

+ Prim C︸ ︷︷ ︸
⊆Ker(e− f )

(by (12))

⊆ Ker (e− f ) + Ker (e− f )

⊆ Ker (e− f ) (since Ker (e− f ) is a k-module) .

However, Proposition 2.4 (a) shows that

δ (C≤n) ⊆
n−1

∑
i=1

C≤i ⊗ C≤n−i for each n > 0.

Hence,

δ (C≤n) ⊆
n−1

∑
i=1

C≤i ⊗ C≤n−i for each n > p.

Moreover, the definition of a filtered k-coalgebra yields C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · .
Hence, each i ∈ {1, 2, . . . , p} satisfies

C≤i ⊆ C≤p (63)

15. Thus,

C≤1 + C≤2 + · · ·+ C≤p =
p

∑
i=1

C≤i︸︷︷︸
⊆C≤p

(by (63))

⊆
p

∑
i=1

C≤p ⊆ C≤p

(since C≤p is a k-module). Therefore,

(e− f )

C≤1 + C≤2 + · · ·+ C≤p︸ ︷︷ ︸
⊆C≤p

 ⊆ (e− f )
(
C≤p

)
= 0

(by (14)), so that (e− f )
(
C≤1 + C≤2 + · · ·+ C≤p

)
= 0.

In other words, x ∈ Ker (e− f ).
Forget that we fixed x. We thus have shown that x ∈ Ker (e− f ) for each x ∈ k · 1C. In other

words, k · 1C ⊆ Ker (e− f ).
15Proof of (63): Let i ∈ {1, 2, . . . , p}. Thus, i ∈ N and i ≤ p. However, we have C≤0 ⊆ C≤1 ⊆

C≤2 ⊆ · · · . In other words, if a and b are two elements of N satisfying a ≤ b, then C≤a ⊆ C≤b.
Applying this to a = i and b = p, we obtain C≤i ⊆ C≤p (since i ≤ p). This proves (63).
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Hence, Theorem 2.1 (applied to D = C and Di = C≤i) shows that for any integer
u > p, we have

(e− f )u−p (C≤u) ⊆ Ker δ (64)

and
(e− f )u−p+1 (C≤u) = 0. (65)

We are now close to proving both parts of Corollary 2.5. Let us begin with part
(a):

(a) Let u > p be an integer. Then, u − p > 0 (since u > p), so that u − p ≥ 1
(since u− p is an integer). Thus, (e− f )u−p = (e− f ) ◦ (e− f )u−p−1. However, f
is a k-coalgebra homomorphism, and thus satisfies ε ◦ f = ε (by the definition of
a k-coalgebra homomorphism). Similarly, ε ◦ e = ε. Since composition of k-linear
maps is a k-bilinear operation (and since the maps ε, e and f are k-linear), we have

ε ◦ (e− f ) = ε ◦ e︸︷︷︸
=ε

− ε ◦ f︸︷︷︸
=ε

= ε− ε = 0.

Thus,

ε ◦ (e− f )u−p︸ ︷︷ ︸
=(e− f )◦(e− f )u−p−1

= ε ◦ (e− f )︸ ︷︷ ︸
=0

◦ (e− f )u−p−1 = 0 ◦ (e− f )u−p−1 = 0.

Therefore, (e− f )u−p (C≤u) ⊆ Ker ε 16. Combining this with (64), we obtain
(e− f )u−p (C≤u) ⊆ (Ker δ) ∩ (Ker ε) = Prim C (by Proposition 2.4 (c)). This proves
Corollary 2.5 (a).

(b) Let u ≥ p be an integer. We must prove that (e− f )u−p+1 (C≤u) = 0. If u > p,
then this follows from (65). Thus, for the rest of this proof, we WLOG assume that
we don’t have u > p. Hence, u ≤ p. Combining this with u ≥ p, we obtain u = p.
Thus,

(e− f )u−p+1 (C≤u) = (e− f )p−p+1︸ ︷︷ ︸
=(e− f )1=e− f

(
C≤p

)
= (e− f )

(
C≤p

)
= 0

(by (14)). This proves Corollary 2.5 (b).

Proof of Corollary 2.6. Define the k-linear map δ : C → C⊗ C as in Proposition 2.4.
Just as we did in the proof of Corollary 2.5, we can show that Ker δ ⊆ Ker (e− f ).
However, Proposition 2.4 (a) (applied to n = 1) yields

δ (C≤1) ⊆
1−1

∑
i=1

C≤i ⊗ C≤1−i = (empty sum) = 0.

16Proof. Let z ∈ (e− f )u−p (C≤u). Thus, z can be written in the form z = (e− f )u−p (x) for some
x ∈ C≤u. Consider this x. From z = (e− f )u−p (x), we obtain ε (z) = ε

(
(e− f )u−p (x)

)
=(

ε ◦ (e− f )u−p
)

︸ ︷︷ ︸
=0

(x) = 0 (x) = 0. In other words, z ∈ Ker ε.

Forget that we fixed z. We thus have shown that z ∈ Ker ε for each z ∈ (e− f )u−p (C≤u). In
other words, (e− f )u−p (C≤u) ⊆ Ker ε.
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Hence, it is easy to see that C≤1 ⊆ Ker δ 17. Consequently, C≤1 ⊆ Ker δ ⊆
Ker (e− f ). Thus,

(e− f ) (C≤1) = 0 (66)
18. Hence, we can apply Corollary 2.5 to p = 1.

Therefore, applying Corollary 2.5 (a) to p = 1, we conclude the following: For
any integer u > 1, we have

(e− f )u−1 (C≤u) ⊆ Prim C. (67)

This proves Corollary 2.6 (a). It remains to prove Corollary 2.6 (b):
(b) Let u be a positive integer. Thus, u ≥ 1. Hence, Corollary 2.5 (b) (applied

to p = 1) shows that (e− f )u−1+1 (C≤u) = 0 (since we know that we can apply
Corollary 2.5 to p = 1). In view of u− 1+ 1 = u, this rewrites as (e− f )u (C≤u) = 0.
This proves Corollary 2.6 (b).

Proof of Corollary 2.7. Clearly, id : C → C is a k-coalgebra homomorphism such that
id (1C) = 1C. Furthermore, f ◦ id = f = id ◦ f . Hence, we can apply Corollary 2.6
to e = id. In particular, Corollary 2.6 (a) (applied to e = id) yields that for any
integer u > 1, we have

(id− f )u−1 (C≤u) ⊆ Prim C.

This proves Corollary 2.7 (a). Furthermore, Corollary 2.6 (b) (applied to e = id)
yields that for any positive integer u, we have

(id− f )u (C≤u) = 0.

This proves Corollary 2.7 (b).

3.4. Proofs for Section 2.3

Before we prove the claims left unproved in Section 2.3, let us recall the defining
property of the antipode of a Hopf algebra:

17Proof. Let x ∈ C≤1. Thus, δ (x) ∈ δ (C≤1) ⊆ 0, so that δ (x) = 0. In other words, x ∈ Ker δ.
Forget that we fixed x. We thus have shown that x ∈ Ker δ for each x ∈ C≤1. In other words,

C≤1 ⊆ Ker δ.
18Proof. For each x ∈ C≤1, we have (e− f ) (x) = 0 (since x ∈ C≤1 ⊆ Ker (e− f )). In other words,

we have (e− f ) (C≤1) = 0.
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Remark 3.7. Let H be a k-Hopf algebra with antipode S. Let 1H denote the unity
of the k-algebra H. Let m : H ⊗ H → H be the k-linear map that sends each
pure tensor x⊗ y ∈ H⊗ H to the product xy ∈ H. Let u : k→ H be the k-linear
map that sends 1k to 1H. Then, the diagram

H ⊗ H
S⊗idH // H ⊗ H

m

##

H

∆
;;

ε //

∆ ##

k u // H

H ⊗ H
idH ⊗S

// H ⊗ H
m

;;

commutes.19 In other words, we have

m ◦ (S⊗ idH) ◦ ∆ = u ◦ ε and (68)
m ◦ (idH ⊗S) ◦ ∆ = u ◦ ε. (69)

Proof of Lemma 2.12. (a) Let T : H ⊗ H → H ⊗ H be the k-linear map that sends
each pure tensor x⊗ y ∈ H ⊗ H to y⊗ x. This map T is known as the twist map. It
is obviously an involution, i.e., satisfies T2 = id. Furthermore, it is easy to see that
any two k-linear maps α, β ∈ End H satisfy

(α⊗ β) ◦ T = T ◦ (β⊗ α) . (70)

Furthermore, it is well-known (see, e.g., [Abe80, Theorem 2.1.4 (iii) and (iv)] or
[GriRei20, Exercise 1.4.28] or, in an equivalent form, [Radfor12, Proposition 7.1.9
(b)]) that the antipode S of H is a k-coalgebra anti-endomorphism, i.e., that it
satisfies

∆ ◦ S = T ◦ (S⊗ S) ◦ ∆ and ε ◦ S = ε.

19Indeed, this is the diagram (1.4.3) in [GriRei20].
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Now,

∆ ◦ S2︸︷︷︸
=S◦S

= ∆ ◦ S︸ ︷︷ ︸
=T◦(S⊗S)◦∆

◦S = T ◦ (S⊗ S) ◦ ∆ ◦ S︸ ︷︷ ︸
=T◦(S⊗S)◦∆

= T ◦ (S⊗ S) ◦ T︸ ︷︷ ︸
=T◦(S⊗S)

(by (70), applied to α=S and β=S)

◦ (S⊗ S) ◦ ∆

= T ◦ T︸ ︷︷ ︸
=T2=id

◦ (S⊗ S) ◦ (S⊗ S)︸ ︷︷ ︸
=(S◦S)⊗(S◦S)
(by Lemma 3.2)

◦∆ =

(S ◦ S)︸ ︷︷ ︸
=S2

⊗ (S ◦ S)︸ ︷︷ ︸
=S2

 ◦ ∆

=
(

S2 ⊗ S2
)
◦ ∆

and
ε ◦ S2︸︷︷︸

=S◦S
= ε ◦ S︸︷︷︸

=ε

◦S = ε ◦ S = ε.

These two equalities show that S2 is a k-coalgebra homomorphism (since S2 is a
k-linear map from H to H). This proves Lemma 2.12 (a).

(b) The axioms of a k-bialgebra yield ε (1H) = 1k (since H is a k-bialgebra) and
∆ (1H) = 1H ⊗ 1H (likewise).

Define the maps m and u as in Remark 3.7. Applying both sides of the equality
(68) to 1H, we obtain

(m ◦ (S⊗ idH) ◦ ∆) (1H) = (u ◦ ε) (1H) = u

ε (1H)︸ ︷︷ ︸
=1k

 = u (1k) = 1H

(by the definition of u). Hence,

1H = (m ◦ (S⊗ idH) ◦ ∆) (1H) = m

(S⊗ idH)

∆ (1H)︸ ︷︷ ︸
=1H⊗1H




= m

(S⊗ idH) (1H ⊗ 1H)︸ ︷︷ ︸
=S(1H)⊗idH(1H)

 = m (S (1H)⊗ idH (1H))

= S (1H) · idH (1H)︸ ︷︷ ︸
=1H

(by the definition of m)

= S (1H) .

This proves Lemma 2.12 (b).
(c) This is well-known (see, e.g., [GriRei20, Proposition 1.4.17]). For the sake of

completeness, let us nevertheless give a proof:
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Let x be a primitive element of H. Thus, ∆ (x) = x⊗ 1H + 1H ⊗ x (by the defini-
tion of “primitive”). Moreover, the axioms of a k-bialgebra yield ε (1H) = 1 (since
H is a k-bialgebra). Hence, Lemma 3.5 (applied to C = H, a = 1H, b = 1H and
d = x) yields ε (x) = 0.

Define the maps m and u as in Remark 3.7. Applying both sides of the equality
(68) to x, we obtain

(m ◦ (S⊗ idH) ◦ ∆) (x) = (u ◦ ε) (x) = u

ε (x)︸︷︷︸
=0

 = u (0) = 0

(since the map u is k-linear). Hence,

0 = (m ◦ (S⊗ idH) ◦ ∆) (x)

= m

(S⊗ idH)

 ∆ (x)︸ ︷︷ ︸
=x⊗1H+1H⊗x


 = m

(S⊗ idH) (x⊗ 1H + 1H ⊗ x)︸ ︷︷ ︸
=(S⊗idH)(x⊗1H)+(S⊗idH)(1H⊗x)

(since the map S⊗idH is k-linear)


= m

(S⊗ idH) (x⊗ 1H)︸ ︷︷ ︸
=S(x)⊗idH(1H)

+ (S⊗ idH) (1H ⊗ x)︸ ︷︷ ︸
=S(1H)⊗idH(x)



= m

S (x)⊗ idH (1H)︸ ︷︷ ︸
=1H

+ S (1H)︸ ︷︷ ︸
=1H

(by Lemma 2.12 (b))

⊗ idH (x)︸ ︷︷ ︸
=x

 = m (S (x)⊗ 1H + 1H ⊗ x)

= m (S (x)⊗ 1H)︸ ︷︷ ︸
=S(x)·1H

(by the definition of m)

+ m (1H ⊗ x)︸ ︷︷ ︸
=1H ·x

(by the definition of m)

(since the map m is k-linear)

= S (x) · 1H + 1H · x = S (x) + x.

Hence, S (x) = −x. This proves Lemma 2.12 (c).
(d) Let x be a primitive element of H. Then, Lemma 2.12 (c) yields S (x) = −x.

Now,

S2︸︷︷︸
=S◦S

(x) = (S ◦ S) (x) = S

S (x)︸ ︷︷ ︸
=−x

 = S (−x)

= − S (x)︸ ︷︷ ︸
=−x

(since the map S is k-linear)

= − (−x) = x.

This proves Lemma 2.12 (d).
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Proof of Corollary 2.13. We know that H is a connected filtered k-Hopf algebra, thus
a connected filtered k-bialgebra and therefore a connected filtered k-coalgebra.
Furthermore, Proposition 2.10 shows that the unity 1H defined according to Defi-
nition 2.3 (b) equals the unity of the k-algebra H. Thus, the notion of a “primitive
element” of H does not depend on whether we regard H as a k-bialgebra or as a
connected filtered k-coalgebra.

Lemma 2.12 (b) yields S (1H) = 1H. Hence,

S2︸︷︷︸
=S◦S

(1H) = (S ◦ S) (1H) = S

S (1H)︸ ︷︷ ︸
=1H

 = S (1H) = 1H.

Moreover, Lemma 2.12 (a) yields that the map S2 : H → H is a k-coalgebra ho-
momorphism. Of course, the map id : H → H is a k-coalgebra homomorphism
as well, and satisfies id (1H) = 1H. Furthermore, Lemma 2.12 (d) entails that
Prim H ⊆ Ker

(
id−S2) 20. Moreover, S2 ◦ id = S2 = id ◦S2. Furthermore, p is

a positive integer and satisfies
(
id−S2) (H≤p

)
= 0 (by (17)). Hence, we can apply

Corollary 2.5 to C = H and C≤i = H≤i and e = id and f = S2. Let us do this now.
Corollary 2.5 (b) (applied to C = H and C≤i = H≤i and e = id and f = S2)

shows that for any integer u ≥ p, we have(
id−S2

)u−p+1
(H≤u) = 0.

This proves Corollary 2.13 (b). It remains to prove Corollary 2.13 (a):
(a) Let u > p be any integer. Then, Corollary 2.5 (a) (applied to C = H and

C≤i = H≤i and e = id and f = S2) shows that(
id−S2

)u−p
(H≤u) ⊆ Prim H.

This proves (18). It remains to prove (19).
First, we shall show that (id+S) (Prim H) = 0.
Indeed, let x ∈ Prim H. Thus, x is a primitive element of H (since Prim H was

defined as the set of all primitive elements of H). Thus, Lemma 2.12 (c) yields
S (x) = −x. Hence, (id+S) (x) = id (x)︸ ︷︷ ︸

=x

+ S (x)︸ ︷︷ ︸
=−x

= x + (−x) = 0.

Forget that we fixed x. We thus have shown that (id+S) (x) = 0 for each x ∈
Prim H. In other words, (id+S) (Prim H) = 0.

20Proof. Let x ∈ Prim H. Thus, x is a primitive element of H (since Prim H is defined as the set of all
primitive elements of H). Therefore, Lemma 2.12 (d) yields S2 (x) = x. Hence,

(
id−S2) (x) =

id (x)︸ ︷︷ ︸
=x

− S2 (x)︸ ︷︷ ︸
=x

= x− x = 0, so that x ∈ Ker
(
id−S2).

Forget that we fixed x. We thus have shown that x ∈ Ker
(
id−S2) for each x ∈ Prim H. In

other words, we have Prim H ⊆ Ker
(
id−S2).
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Now,

(
(id+S) ◦

(
id−S2

)u−p
)
(H≤u) = (id+S)


(

id−S2
)u−p

(H≤u)︸ ︷︷ ︸
⊆Prim H
(by (18))


⊆ (id+S) (Prim H) = 0.

Therefore,
(
(id+S) ◦

(
id−S2)u−p

)
(H≤u) = 0 (since

(
(id+S) ◦

(
id−S2)u−p

)
(H≤u)

is a k-module). This proves (19). Thus, the proof of Corollary 2.13 (a) is com-
plete.

Proof of Corollary 2.14. We know that H is a connected filtered k-Hopf algebra, thus
a connected filtered k-bialgebra and therefore a connected filtered k-coalgebra.
Furthermore, Proposition 2.10 shows that the unity 1H defined according to Defi-
nition 2.3 (b) equals the unity of the k-algebra H. Thus, the notion of a “primitive
element” of H does not depend on whether we regard H as a k-bialgebra or as a
connected filtered k-coalgebra.

In our above proof of Corollary 2.13, we have already shown that

• we have S2 (1H) = 1H;

• the map S2 : H → H is a k-coalgebra homomorphism;

• we have Prim H ⊆ Ker
(
id−S2).

Hence, we can apply Corollary 2.7 to C = H and C≤i = H≤i and f = S2. Let us
do this now.

Corollary 2.7 (b) (applied to C = H and C≤i = H≤i and f = S2) shows that for
any positive integer u, we have(

id−S2
)u

(H≤u) = 0.

This proves Corollary 2.14 (b). It remains to prove Corollary 2.14 (a):
(a) Let u > 1 be any integer. Then, Corollary 2.7 (a) (applied to C = H and

C≤i = H≤i and f = S2) shows that(
id−S2

)u−1
(H≤u) ⊆ Prim H.

This proves (21). It remains to prove (22).
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We have (id+S) (Prim H) = 0 (indeed, we have already shown this in our above
proof of Corollary 2.13 (a)). Now,

(
(id+S) ◦

(
id−S2

)u−1
)
(H≤u) = (id+S)


(

id−S2
)u−1

(H≤u)︸ ︷︷ ︸
⊆Prim H
(by (21))


⊆ (id+S) (Prim H) = 0.

Therefore,
(
(id+S) ◦

(
id−S2)u−1

)
(H≤u) = 0 (since

(
(id+S) ◦

(
id−S2)u−1

)
(H≤u)

is a k-module). This proves (22). Thus, the proof of Corollary 2.14 (a) is com-
plete.

3.5. Proofs for Section 2.4

We shall next focus on proving the claims left unproven in Section 2.4. Before we
do so, let us first collect a few basic properties of connected graded Hopf algebras
into a lemma for convenience:

Lemma 3.8. Let H be a connected graded k-Hopf algebra with unity 1H and
antipode S. Then:

(a) If n is a positive integer, and if x is an element of Hn, then we have

∆ (x) = 1H ⊗ x + x⊗ 1H + w for some w ∈
n−1

∑
k=1

Hk ⊗ Hn−k.

(b) We have H1 ⊆ Prim H.
(c) We have S (ab) = ba for any a, b ∈ H1.

Proof of Lemma 3.8. (a) This follows from [GriRei20, Exercise 1.3.20 (h)] (applied to
A = H). (Note that what we are calling w is denoted by ∆+ (x) in [GriRei20, Exer-
cise 1.3.20 (h)].) It also appears in [Mancho06, Proposition II.1.1] and in [Preiss16,
Theorem 2.18] (using the notation ∆̃ (x) for ∆ (x)− 1H ⊗ x− x⊗ 1H).

(b) Let x ∈ H1. Then, x is an element of H1. Hence, Lemma 3.8 (a) (applied to
n = 1) yields that we have

∆ (x) = 1H ⊗ x + x⊗ 1H + w for some w ∈
1−1

∑
k=1

Hk ⊗ H1−k.

Consider this w. We have

w ∈
1−1

∑
k=1

Hk ⊗ H1−k = (empty sum) = 0,
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so that w = 0. Hence, ∆ (x) = 1H ⊗ x + x ⊗ 1H + w︸︷︷︸
=0

= 1H ⊗ x + x ⊗ 1H =

x⊗ 1H + 1H ⊗ x. In other words, the element x of H is primitive (by the definition
of a “primitive” element). In other words, x ∈ Prim H (since Prim H is defined as
the set of all primitive elements of H).

Forget that we fixed x. We thus have shown that x ∈ Prim H for each x ∈ H1. In
other words, H1 ⊆ Prim H. This proves Lemma 3.8 (b).

(c) Let a, b ∈ H1. Then, a ∈ H1 ⊆ Prim H (by Lemma 3.8 (b)). In other words,
the element a of H is primitive (since Prim H is defined as the set of all primitive
elements of H). Hence, S (a) = −a (by Lemma 2.12 (c), applied to x = a). Similarly,
S (b) = −b. However, it is well-known (see, e.g., [GriRei20, Proposition 1.4.10]
or [Radfor12, Proposition 7.1.9 (a)]) that the antipode S of H is a k-algebra anti-
endomorphism, i.e., that it satisfies S (1H) = 1H and

S (uv) = S (v) S (u) for all u, v ∈ H. (71)

Applying (71) to u = a and v = b, we obtain S (ab) = S (b)︸︷︷︸
=−b

S (a)︸︷︷︸
=−a

= (−b) (−a) = ba.

This proves Lemma 3.8 (c).

Proof of Corollary 2.15. As we know, the graded k-Hopf algebra H automatically
becomes a filtered k-Hopf algebra with filtration (H≤0, H≤1, H≤2, . . .) defined by
setting

H≤n :=
n⊕

i=0

Hi for all n ∈N.

This filtered k-Hopf algebra H is connected, since H≤0 = H0. Thus, Corollary 2.14
can be applied.

Let u be a positive integer. Then, Hu ⊆ H≤u
21.

Now, we must prove the three relations (24), (25) and (26). The third one is the
easiest: We have

(
id−S2

)u

 Hu︸︷︷︸
⊆H≤u

 ⊆ (id−S2
)u

(H≤u) = 0

(by Corollary 2.14 (b)) and therefore
(
id−S2)u

(Hu) = 0 (since
(
id−S2)u

(Hu) is a
k-module). This proves (26).

21Proof. The definition of H≤u yields H≤u =
u⊕

i=0
Hi. However, Hu ⊆

u⊕
i=0

Hi (since Hu is an addend

of the direct sum
u⊕

i=0
Hi). In view of H≤u =

u⊕
i=0

Hi, this rewrites as Hu ⊆ H≤u.
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We shall now focus on proving (24). Indeed, if u > 1, then (24) follows from

(
id−S2

)u−1

 Hu︸︷︷︸
⊆H≤u

 ⊆ (id−S2
)u−1

(H≤u)

⊆ Prim H (by (21), since u > 1) .

Thus, for the rest of this proof of (24), we WLOG assume that we don’t have u > 1.
Hence, we have u = 1 (since u is a positive integer). Therefore, u− 1 = 0, so that(
id−S2)u−1

=
(
id−S2)0

= id. Thus,(
id−S2

)u−1

︸ ︷︷ ︸
=id

(Hu) = id (Hu) = Hu = H1 (since u = 1)

⊆ Prim H (by Lemma 3.8 (b)) .

This completes our proof of (24).
Now, it remains to prove (25). We have (id+S) (Prim H) = 0 (indeed, we have

already shown this in our above proof of Corollary 2.13 (a)). Now,

(
(id+S) ◦

(
id−S2

)u−1
)
(Hu) = (id+S)


(

id−S2
)u−1

(Hu)︸ ︷︷ ︸
⊆Prim H
(by (24))


⊆ (id+S) (Prim H) = 0.

Therefore,
(
(id+S) ◦

(
id−S2)u−1

)
(Hu) = 0 (since

(
(id+S) ◦

(
id−S2)u−1

)
(Hu)

is a k-module). This proves (25).
Thus, we have shown all three relations (24), (25) and (26). This completes the

proof of Corollary 2.15.

Proof of Corollary 2.16. Let 1H denote the unity of the k-algebra H.
As we know, the graded k-Hopf algebra H automatically becomes a filtered k-

Hopf algebra with filtration (H≤0, H≤1, H≤2, . . .) defined by setting

H≤n :=
n⊕

i=0

Hi for all n ∈N.

This filtered k-Hopf algebra H is connected (because the graded k-Hopf algebra H
is connected, and because H≤0 = H0).

We know that p is a positive integer; thus, both 0 and 1 are elements of the set
{0, 1, . . . , p}.
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Now, we shall show that (
id−S2

) (
H≤p

)
= 0. (72)

[Proof of (72): It is easy to see that
(
id−S2) (H0) = 0 22. Furthermore,(

id−S2) (H1) = 0 23. Now, the definition of H≤p yields H≤p =
p⊕

i=0
Hi =

p
∑

i=0
Hi

(since direct sums are sums). Applying the map id−S2 to both sides of this equal-

22Proof. In our above proof of Corollary 2.13, we have already shown that S2 (1H) = 1H . Hence,(
id−S2

)
(1H) = id (1H)︸ ︷︷ ︸

=1H

− S2 (1H)︸ ︷︷ ︸
=1H

= 1H − 1H = 0.

Define a k-linear map id : H → H by setting

id (c) := c− ε (c) 1H for each c ∈ H.

Then, Lemma 3.6 (c) (applied to H and H≤i instead of C and C≤i) yields id (H≤0) = 0.

The definition of H≤0 yields H≤0 =
0⊕

i=0
Hi = H0. Thus, H0 = H≤0. Applying the map id to

both sides of this equality, we obtain id (H0) = id (H≤0) = 0.
Now, let c ∈ H0. Then, the definition of id yields id (c) = c− ε (c) 1H . On the other hand,

we have id (c) = 0 (since id

 c︸︷︷︸
∈H0

 ∈ id (H0) = 0). Comparing these two equalities, we obtain

c− ε (c) 1H = 0. In other words, c = ε (c) 1H . Now, applying the map id−S2 to both sides of
this equality, we obtain(

id−S2
)
(c) =

(
id−S2

)
(ε (c) 1H)

= ε (c) ·
(

id−S2
)
(1H)︸ ︷︷ ︸

=0

(
since the map id−S2 is k-linear

)
= 0.

Forget that we fixed c. We thus have shown that
(
id−S2) (c) = 0 for each c ∈ H0. In other

words,
(
id−S2) (H0) = 0.

23Proof. Let x ∈ H1. Then, x ∈ H1 ⊆ Prim H (by Lemma 3.8 (b)). In other words, the element x of
H is primitive (since Prim H is defined as the set of all primitive elements of H). Hence, Lemma
2.12 (d) yields S2 (x) = x. Now,(

id−S2
)
(x) = id (x)︸ ︷︷ ︸

=x

− S2 (x)︸ ︷︷ ︸
=x

= x− x = 0.

Forget that we fixed x. We thus have shown that
(
id−S2) (x) = 0 for each x ∈ H1. In other

words, we have
(
id−S2) (H1) = 0.
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ity, we obtain

(
id−S2

) (
H≤p

)
=
(

id−S2
)( p

∑
i=0

Hi

)

=
p

∑
i=0

(
id−S2

)
(Hi)

(
since the map id−S2 is k-linear

)
=
(

id−S2
)
(H0)︸ ︷︷ ︸

=0

+
(

id−S2
)
(H1)︸ ︷︷ ︸

=0

+
p

∑
i=2

(
id−S2

)
(Hi)︸ ︷︷ ︸

=0
(by (27)) here, we have split off the addends for i = 0

and for i = 1 from the sum (since both 0 and 1
are elements of the set {0, 1, . . . , p} )


= 0 + 0︸ ︷︷ ︸

=0

+
p

∑
i=2

0︸︷︷︸
=0

= 0.

This proves (72).]
Hence, we can apply Corollary 2.13. In particular, Corollary 2.13 (a) shows that

for any integer u > p, we have(
id−S2

)u−p
(H≤u) ⊆ Prim H

and (
(id+S) ◦

(
id−S2

)u−p
)
(H≤u) = 0.

This proves Corollary 2.16 (a).
Furthermore, Corollary 2.13 (b) shows that for any integer u ≥ p, we have(

id−S2
)u−p+1

(H≤u) = 0.

This proves Corollary 2.16 (b).

Proof of Corollary 2.17. (a) Let 1H denote the unity of the k-algebra H. Define the
maps m and u as in Remark 3.7.

Let x ∈ H2. Then, x is an element of H2. Hence, Lemma 3.8 (a) (applied to n = 2)
yields that we have

∆ (x) = 1H ⊗ x + x⊗ 1H + w for some w ∈
2−1

∑
k=1

Hk ⊗ H2−k.
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Consider this w. We have

w ∈
2−1

∑
k=1

Hk ⊗ H2−k =
1

∑
k=1

Hk ⊗ H2−k (since 2− 1 = 1)

= H1 ⊗ H2−1 = H1 ⊗ H1 (since 2− 1 = 1) .

Therefore, w is a tensor in H1 ⊗ H1. Hence, w can be written in the form

w =
k

∑
i=1

λiai ⊗ bi (73)

for some k ∈ N, some λ1, λ2, . . . , λk ∈ k, some a1, a2, . . . , ak ∈ H1 and some
b1, b2, . . . , bk ∈ H1. Consider this k, these λ1, λ2, . . . , λk, these a1, a2, . . . , ak and these
b1, b2, . . . , bk.

We have a1, a2, . . . , ak ∈ H1. Thus, for each i ∈ {1, 2, . . . , k}, we have ai ∈ H1 ⊆
Prim H (by Lemma 3.8 (b)) and therefore

S (ai) = −ai (74)
24. Moreover, for each i ∈ {1, 2, . . . , k}, we have

S (aibi) = aibi (75)
25.

Applying the map S⊗ idH : H ⊗ H → H ⊗ H to both sides of the equality (73),
we obtain

(S⊗ idH) (w) = (S⊗ idH)

(
k

∑
i=1

λiai ⊗ bi

)
=

k

∑
i=1

λi (S⊗ idH) (ai ⊗ bi)︸ ︷︷ ︸
=S(ai)⊗idH(bi)

(since the map S⊗ idH is k-linear)

=
k

∑
i=1

λi S (ai)︸ ︷︷ ︸
=−ai

(by (74))

⊗ idH (bi)︸ ︷︷ ︸
=bi

=
k

∑
i=1

λi (−ai)⊗ bi︸ ︷︷ ︸
=−ai⊗bi

(since the map H×H→H⊗H, (u,v) 7→u⊗v
is k-bilinear (by the definition of the

tensor product))

=
k

∑
i=1

λi (−ai ⊗ bi) = −
k

∑
i=1

λiai ⊗ bi︸ ︷︷ ︸
=w

(by (73))

= −w. (76)

24Proof of (74): Let i ∈ {1, 2, . . . , k}. Then, ai ∈ H1 ⊆ Prim H (by Lemma 3.8 (b)). In other words, the
element ai of H is primitive (since Prim H is defined as the set of all primitive elements of H).
Therefore, Lemma 2.12 (c) (applied to ai instead of x) yields S (ai) = −ai. This proves (74).

25Proof of (75): Let i ∈ {1, 2, . . . , k}. Then, ai ∈ H1 (since a1, a2, . . . , ak ∈ H1) and bi ∈ H1 (since
b1, b2, . . . , bk ∈ H1). Hence, (31) (applied to a = ai and b = bi) yields aibi = biai. On the other
hand, Lemma 3.8 (c) (applied to a = ai and b = bi) yields S (aibi) = biai. Comparing these two
equalities, we obtain S (aibi) = aibi. This proves (75).
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The Hopf algebra H is graded. Hence, its counit ε is a graded map from H to k
(by the definition of a graded Hopf algebra). In other words, ε (Hi) ⊆ ki for each
i ∈ N. Thus, ε (H2) ⊆ k2 = 0 (since the graded k-module k is concentrated in

degree 0). Therefore, ε

 x︸︷︷︸
∈H2

 ∈ ε (H2) ⊆ 0, so that ε (x) = 0.

Lemma 2.12 (b) yields S (1H) = 1H.
Applying both sides of the equality (68) to x, we obtain

(m ◦ (S⊗ idH) ◦ ∆) (x) = (u ◦ ε) (x) = u

ε (x)︸︷︷︸
=0

 = u (0) = 0

(since the map u is k-linear). Therefore,

0 = (m ◦ (S⊗ idH) ◦ ∆) (x)

= m

(S⊗ idH)

 ∆ (x)︸ ︷︷ ︸
=1H⊗x+x⊗1H+w




= m

 (S⊗ idH) (1H ⊗ x + x⊗ 1H + w)︸ ︷︷ ︸
=(S⊗idH)(1H⊗x)+(S⊗idH)(x⊗1H)+(S⊗idH)(w)

(since the map S⊗idH is k-linear)



= m

(S⊗ idH) (1H ⊗ x)︸ ︷︷ ︸
=S(1H)⊗idH(x)

+ (S⊗ idH) (x⊗ 1H)︸ ︷︷ ︸
=S(x)⊗idH(1H)

+ (S⊗ idH) (w)︸ ︷︷ ︸
=−w

(by (76))


= m

S (1H)︸ ︷︷ ︸
=1H

⊗ idH (x)︸ ︷︷ ︸
=x

+S (x)⊗ idH (1H)︸ ︷︷ ︸
=1H

+ (−w)


= m (1H ⊗ x + S (x)⊗ 1H + (−w)) = m (1H ⊗ x)︸ ︷︷ ︸

=1H x
(by the definition

of the map m)

+m (S (x)⊗ 1H)︸ ︷︷ ︸
=S(x)·1H

(by the definition
of the map m)

+ m (−w)︸ ︷︷ ︸
=−m(w)

(since the map m
is k-linear)

(since the map m is k-linear)
= 1Hx︸︷︷︸

=x

+ S (x) · 1H︸ ︷︷ ︸
=S(x)

+ (−m (w)) = x + S (x) + (−m (w)) = x + S (x)−m (w) .

Solving this equality for S (x), we obtain

S (x) = m (w)− x. (77)
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Applying the map m : H ⊗ H → H to both sides of the equality (73), we obtain

m (w) = m

(
k

∑
i=1

λiai ⊗ bi

)

=
k

∑
i=1

λi m (ai ⊗ bi)︸ ︷︷ ︸
=aibi

(by the definition of the map m)

(since the map m is k-linear)

=
k

∑
i=1

λiaibi. (78)

Applying the map S to both sides of this equality, we obtain

S (m (w)) = S

(
k

∑
i=1

λiaibi

)
=

k

∑
i=1

λi S (aibi)︸ ︷︷ ︸
=aibi

(by (75))

(since the map S is k-linear)

=
k

∑
i=1

λiaibi = m (w) (by (78)) . (79)

Now, applying the map S to both sides of the equality (77), we obtain

S (S (x)) = S (m (w)− x) = S (m (w))︸ ︷︷ ︸
=m(w)
(by (79))

− S (x)︸ ︷︷ ︸
=m(w)−x
(by (77))

(since the map S is k-linear)

= m (w)− (m (w)− x) = x.

Now, (
id−S2

)
(x) = id (x)︸ ︷︷ ︸

=x

− S2︸︷︷︸
=S◦S

(x) = x− (S ◦ S) (x)︸ ︷︷ ︸
=S(S(x))=x

= x− x = 0.

Forget that we fixed x. We thus have shown that
(
id−S2) (x) = 0 for each

x ∈ H2. In other words,
(
id−S2) (H2) = 0. This proves Corollary 2.17 (a).

Now we know that
(
id−S2) (H2) = 0 (by Corollary 2.17 (a)). In other words,(

id−S2) (Hi) = 0 holds for i = 2. In other words, all i ∈ {2, 3, . . . , 2} satisfy(
id−S2) (Hi) = 0 (since the only i ∈ {2, 3, . . . , 2} is 2). Hence, we can apply

Corollary 2.16 to p = 2.
Thus, Corollary 2.16 (a) (applied to p = 2) yields that for any integer u > 2, we

have (
id−S2

)u−2
(H≤u) ⊆ Prim H

and (
(id+S) ◦

(
id−S2

)u−2
)
(H≤u) = 0.
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This proves Corollary 2.17 (b).
Furthermore, Corollary 2.16 (b) (applied to p = 2) yields that for any integer

u ≥ 2, we have (
id−S2

)u−2+1
(H≤u) = 0.

In other words, for any integer u ≥ 2, we have(
id−S2

)u−1
(H≤u) = 0

(since u− 2 + 1 = u− 1). In other words, for any integer u > 1, we have(
id−S2

)u−1
(H≤u) = 0

(since “u > 1” is equivalent to “u ≥ 2” when u is an integer). This proves Corollary
2.17 (c).
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