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of their classical properties.
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@ | shall review the Littlewood—Richardson coefficients and some
of their classical properties.

@ | will then state a “hidden symmetry” conjectured by Pelletier
and Ressayre (arXiv:2005.09877) and outline how | proved
it.

@ The proof is a nice example of birational combinatorics: the
use of birational transformations in elementary combinatorics
(specifically, here, in finding and proving a bijection).
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Chapter 1

CHAPTER 1

Littlewood—Richardson coefficients
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Richard Stanley, Enumerative Combinatorics, vol. 2, Chapter
7.

Darij Grinberg, Victor Reiner, Hopf Algebras in
Combinatorics, arXiv:1409.8356.

Emmanuel Briand, Mercedes Rosas, The 144 symmetries of
the Littlewood-Richardson coefficients of SL3,
arXiv:2004.04995.

Igor Pak, Ernesto Vallejo, Combinatorics and geometry of
Littlewood-Richardson cones, arXiv:math/0407170.
Emmanuel Briand, Rosa Orellana, Mercedes Rosas,
Rectangular symmetries for coefficients of symmetric
functions, arXiv:1410.8017.
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Reminder on symmetric functions

@ Fix a commutative ring k with unity. We shall do everything
over k.

o Consider the ring k [[x1, x2, x3, .. .|| of formal power series in
countably many indeterminates.
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Reminder on symmetric functions

@ Fix a commutative ring k with unity. We shall do everything
over k.
o Consider the ring k[[x1, x2, x3, . . .|| of formal power series in
countably many indeterminates.
@ A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.
@ A formal power series f is said to be symmetric if it is
invariant under permutations of the indeterminates.
@ For example:
o 1+ x1 + x3 is bounded-degree but not symmetric.
o (1+x1)(14+x2) (14 x3)--- is symmetric but not
bounded-degree.
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Reminder on symmetric functions

@ Fix a commutative ring k with unity. We shall do everything
over k.

o Consider the ring k[[x1, x2, x3, . . .|| of formal power series in
countably many indeterminates.

@ A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.

@ A formal power series f is said to be symmetric if it is
invariant under permutations of the indeterminates.

@ Let A be the set of all symmetric bounded-degree power series
in k [[x1,x2,x3,...]]. This is a k-subalgebra, called the ring of
symmetric functions over k.

It is also known as Sym.
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Schur functions, part 1: Young diagrams

@ Let A = (A1, A2, A3, ...) be a partition (i.e., a weakly
decreasing sequence of nonnegative integers such that A\; =0
for all i > 0).

We commonly omit trailing zeroes: e.g., the partition
(4,2,2,1,0,0,0,0,...) is identified with the tuple (4,2,2,1).
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Schur functions, part 1: Young diagrams

@ Let A = (A1, A2, A3, ...) be a partition (i.e., a weakly
decreasing sequence of nonnegative integers such that A\; =0
for all i > 0).

We commonly omit trailing zeroes: e.g., the partition
(4,2,2,1,0,0,0,0,...) is identified with the tuple (4,2,2,1).
The Young diagram of X is like a matrix, but the rows have
different lengths, and are left-aligned; the i-th row has \; cells.
Examples:

o The Young diagram of (3,2) has the form

o The Young diagram of (4,2,1) has the form
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Schur functions, part 2: semistandard tableaux

@ A semistandard tableau of shape )\ is the Young diagram of A,
filled with positive integers, such that
o the entries in each row are weakly increasing;
o the entries in each column are strictly increasing.

Examples:
o A semistandard tableau of shape (3,2) is
2[3]3]
35|
o A semistandard tableau of shape (4,2,1) is
2[2]3]4]
3
5
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Schur functions, part 2: semistandard tableaux

@ A semistandard tableau of shape )\ is the Young diagram of A,
filled with positive integers, such that
o the entries in each row are weakly increasing;
o the entries in each column are strictly increasing.

Examples:
o The semistandard tableaux of shape (3,2) are the arrays
of the form
a|b|c |
dle

witha<b<candd<eanda<dand b<e.
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Schur functions, part 3: definition of Schur functions

@ Given a partition A\, we define the Schur function sy as the
power series

Sy = Z XT, where xr = H XT(p)

T is a semistandard pisacell of T
tableau of shape A\

(where T (p) denotes the entry of T in p).
o Examples:

5(3,2) = E XaXpXcXdXe,
a<b<c, d<e,
a<d, b<e
because the semistandard tableau
T_|a b|c |
d|e

contributes the addend x7 = XaXpXcXgXe.
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Schur functions, part 3: definition of Schur functions

@ Given a partition A\, we define the Schur function sy as the
power series

Sy = Z XT, where xr = H XT(p)

T is a semistandard pisacell of T
tableau of shape A\

(where T (p) denotes the entry of T in p).
o Examples:
o For any n > 0, we have

S(n) = E Xiy Xip *** Xiys

i1 <ip <<l

since the semistandard tableaux of shape (n) are the
fillings

with i1 < <--- <.
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Schur functions, part 3: definition of Schur functions

@ Given a partition A\, we define the Schur function sy as the
power series

Sy = Z XT, where xr = H XT(p)

T is a semistandard pisacell of T
tableau of shape A\

(where T (p) denotes the entry of T in p).
o Examples:
o For any n > 0, we have

S(n) = E Xiy Xip *** Xiys

i1 <ip <<l

since the semistandard tableaux of shape (n) are the

fillings
i)

with i1 < <--- <.
This symmetric function s, is commonly called h,.
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Schur functions, part 4: classical properties

@ Theorem: The Schur function sy is a symmetric function (=
an element of A) for any partition A.

® Theorem: The family (s))) i 4 partition 1 @ basis of the
k-module A.
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Schur functions, part 4: classical properties

@ Theorem: The Schur function sy is a symmetric function (=
an element of A) for any partition A.

® Theorem: The family (s))) i 4 partition 1 @ basis of the
k-module A.

@ Theorem: Fix n > 0. Let A = (A1, \2,...,\,) be a partition
with at most n nonzero entries. Then,

sy (X1, x2,. .., Xn)
Aj+n—j _j
= det ( (x""7) s det((x)
1<ij<n 1<ij<n
this is called an alternant = II Xi_Xj)
1<i<j<n
(= the Vandermonde determinant)

Here, for any f € A, we let f (x1, x2, ..., X,) denote the result
of substituting 0 for X,4+1, Xn+2, Xnt3, - .. in f; thisis a
symmetric polynomial in x1,x2,...,X,.
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Schur functions, part 4: classical properties

@ Theorem: The Schur function sy is a symmetric function (=
an element of A) for any partition A.

® Theorem: The family (s))) i 4 partition 1 @ basis of the
k-module A.

@ Theorem: Fix n > 0. Let A = (A1, \2,...,\,) be a partition
with at most n nonzero entries. Then,

sy (X1, x2,. .., Xn)
Aj+n—j _j
= det ( (x""7) s det((x)
1<ij<n 1<ij<n
this is called an alternant = II Xi_Xj)
1<i<j<n
(= the Vandermonde determinant)

Here, for any f € A, we let f (x1, x2, ..., X,) denote the result
of substituting 0 for X,4+1, Xn+2, Xnt3, - .. in f; thisis a
symmetric polynomial in x1,x2,...,X,.

@ For proofs, see any text on symmetric functions (e.g.,
Stanley's EC2, or Grinberg-Reiner, or Mark Wildon's notes).
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Littlewood—Richardson coefficients: definition

@ If 11 and v are two partitions, then s,s, belongs to A (since A
is a ring)
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_ A
SuSy = g SN
A is a partition
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Littlewood—Richardson coefficients: definition

@ If 11 and v are two partitions, then s,s, belongs to A (since A
is a ring) and thus can be written in the form

_ A
SuSy = Z o uSA
A is a partition
for some cﬁ"l, € k (since the sy form a basis of A).
@ The coefficients ¢, are integers, and are called the

(8%
Littlewood—Richardson coefficients.
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Littlewood—Richardson coefficients: definition

@ If 11 and v are two partitions, then s,s, belongs to A (since A
is a ring) and thus can be written in the form

_ A
SuSy = g SN
A is a partition

for some cﬁ"l, € k (since the sy form a basis of A).
@ The coefficients cﬁ‘W are integers, and are called the
Littlewood—Richardson coefficients.

o Example:
S(2,1)5(3,1) = 5(3,2,1,1) T 5(3,2,2) T 5(3,3,1)
+ S(4,1,1,1) T 254,2,1) T S(4.3)
+ 5(5,1,1) T 5(5,2)

(21 —2and O3 =1

SO C2,1),(3.1) = (2,1),(3,1)
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Littlewood—Richardson coefficients: definition

@ If 11 and v are two partitions, then s,s, belongs to A (since A
is a ring) and thus can be written in the form

- A
SuSy = E o uSA

A\ is a partition

for some cﬁ"l, € k (since the sy form a basis of A).

@ The coefficients cﬁ‘W are integers, and are called the

Littlewood—Richardson coefficients.

o Example:

S(2,1)5(3,1) = 5(3,2,1,1) T 53,2,2) T 533,1)
+ 5(4,1,1,1) T 254,2,1) T 54,3)
+5(5,1,1) T 5(5,2)

(421) _ (331 _
0 1)1 ~ 220 oy = L
@ Theorem: The coefficients Cﬁ\,u are nonnegative integers.

Various combinatorial interpretations (“Littlewood—Richardson

rules™) for them are known.
9/43



Skew semistandard tableaux

@ In order to formulate the classic (or, at least, best known)
Littlewood—Richardson rule, we need a
o Definition:
o Two partitions A = (A1, Az, A3,...) and
= (u1, 12, 13, ...) are said to satisfy ;. C \ if each
i > 1 satisfies u; < Aj.
(Equivalently: if the Young diagram of u is contained in
that of \.)
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@ In order to formulate the classic (or, at least, best known)
Littlewood—Richardson rule, we need a
o Definition:
o Two partitions A = (A1, Az, A3,...) and
= (u1, 12, 13, ...) are said to satisfy ;. C \ if each
i > 1 satisfies u; < Aj.
o A skew partition is a pair (A, p) of two partitions
satisfying 1+ C A. Such a pair is denoted by \/p.
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Skew semistandard tableaux

@ In order to formulate the classic (or, at least, best known)
Littlewood—Richardson rule, we need a
o Definition:
o Two partitions A = (A1, Az, A3,...) and
= (u1, 12, 13, ...) are said to satisfy ;. C \ if each
i > 1 satisfies u; < Aj.
o A skew partition is a pair (A, p) of two partitions
satisfying 1+ C A. Such a pair is denoted by \/p.
o If \/u is a skew partition, then the Young diagram of
A/ is obtained from the Young diagram A when all cells
of the Young diagram of p are removed.
Example: The Young diagram of (4,2,1) /(1,1) is

[
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Skew semistandard tableaux

@ In order to formulate the classic (or, at least, best known)
Littlewood—Richardson rule, we need a
o Definition:
o Two partitions A = (A1, Az, A3,...) and
= (u1, 12, 13, ...) are said to satisfy ;. C \ if each
i > 1 satisfies u; < Aj.
o A skew partition is a pair (A, p) of two partitions
satisfying 1+ C A. Such a pair is denoted by \/p.
o If \/u is a skew partition, then the Young diagram of
A/ is obtained from the Young diagram A when all cells
of the Young diagram of p are removed.
o Semistandard tableaux of shape \/u are defined just as
ones of shape A, except that we are now only filling the
cells of \/p.
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Littlewood—Richardson rule: the classical version

o Littlewood—Richardson rule: Let A, ;x and v be three
partitions. Then, cﬁ‘ﬂj is the number of semistandard tableaux
T of shape A/u such that cont T = v and such that
cont (T |cols> j) is a partition for each j. Here,

o cont T denotes the sequence (ci, 2, ¢3, . ..), where ¢; is
the number of entries equal to / in T;
o T |cols>j is what obtained from T when the first j — 1

columns are deleted.

o Example: c((i’lz)”l(éyl) = 2 due to the two tableaux
1)1 and 1)1 ‘
1 2

2] [1]
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Littlewood—Richardson rule: the classical version

o Littlewood—Richardson rule: Let A, ;x and v be three
partitions. Then, cﬁ‘ﬂj is the number of semistandard tableaux
T of shape A/u such that cont T = v and such that
cont (T |cols> j) is a partition for each j. Here,

o cont T denotes the sequence (ci, 2, ¢3, . ..), where ¢; is
the number of entries equal to / in T;

o T |cols>j is what obtained from T when the first j — 1
columns are deleted.

o Example: c((i’lz)”l(éyl) = 2 due to the two tableaux

T|T| and T|T|
2] H

@ The shortest proof is due to Stembridge (using ideas by
Gasharov); see John R. Stembridge, A Concise Proof of the

Littlewood-Richardson Rule, 2002, or Section 2.6 in
Grinberg-Reiner. 11/43
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Basic properties of Littlewood—Richardson coefficients

e Gradedness: Cﬁw = 0 unless |A| = |u| + |v|, where |&]
denotes the size (i.e., the sum of the entries) of a partition .
(This is because A is a graded ring and the sy are

homogeneous.)
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Basic properties of Littlewood—Richardson coefficients

e Gradedness: C;i\w = 0 unless |A| = || + |v|, where |&]
denotes the size (i.e., the sum of the entries) of a partition .
(This is because A is a graded ring and the sy are
homogeneous.)

o Transposition symmetry: C,i‘,u = céfjut, where ! denotes
the transpose of a partition « (i.e., the partition whose Young
diagram is obtained from that of s by flipping across the main
diagonal).

Example:

[ 1T
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Basic properties of Littlewood—Richardson coefficients

@ Gradedness: ¢

ﬁ:u = 0 unless ‘)\‘ = ’,U’ + ’y’, where ’H’

denotes the size (i.e., the sum of the entries) of a partition .
(This is because A is a graded ring and the sy are
homogeneous.)

o Transposition symmetry: C,i‘,u = céfjut, where ! denotes
the transpose of a partition « (i.e., the partition whose Young
diagram is obtained from that of s by flipping across the main
diagonal).

o Commutativity: ch"V =Gy
(Obvious from the definition, but hard to prove
combinatorially using the Littlewood—Richardson rule.)

A
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Littlewood—Richardson coefficients: more symmetries

e Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.
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Littlewood—Richardson coefficients: more symmetries

e Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.
o If A= (A1,\2,...,Ay) € Par|[n], and if kK > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition
(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
Example: If n =5, then

(3,1,1)V" =(3,1,1,0,0)" = (7—-0,7—-0,7—1,7— 1,7 — 3)
=(7,7,6,6,4).
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Littlewood—Richardson coefficients: more symmetries

e Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.
o If A= (A1,\2,...,Ay) € Par|[n], and if kK > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition
(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
Mustration: If n = 3, then

4
(3,2)"* = |
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Littlewood—Richardson coefficients: more symmetries

e Fix n € N. Let Par[n] be the set of all partitions having at

most n nonzero entries.
o If A= (A1,\2,...,Ay) € Par|[n], and if kK > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition

(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
Mustration: If n = 3, then

(3,2)"* = (4,2,1).
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Littlewood—Richardson coefficients: more symmetries

@ Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.

o If A= (A1,\2,...,Ay) € Par|[n], and if kK > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition

(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
e Complementation symmetry |: Let A, u, v € Par[n] and
k > 0 be such that all entries of A\, u, v are < k. Then,
A A vk vk VK VK

— — — M — —
Cupv = Sop = C)\vk’l, = Cy’)\vk = Cuavk = vk g
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Littlewood—Richardson coefficients: more symmetries

@ Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.

o If A= (A1,\2,...,Ay) € Par|[n], and if kK > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition

(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
e Complementation symmetry |: Let A, u, v € Par[n] and
k > 0 be such that all entries of A\, u, v are < k. Then,

AN vk vk vk vk
Cupv = Sop = C)\vk’l, = Cy’)\vk = Cuavk = vk g

(This can be proved by applying skew Schur functions to

x{ Y x5t .., x; L, or by interpreting Schur functions as

fundamental classes in the cohomology of the Grassmannian.
See Exercise 2.9.15 in Grinberg-Reiner for the former proof.)
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Littlewood—Richardson coefficients: more symmetries

Fix n € N. Let Par[n] be the set of all partitions having at
most n nonzero entries.

If A= (A1,A2,...,An) € Par[n], and if k > 0 is such that all
entries of \ are < k, then \V¥ shall denote the partition

(k— X,k —Ap—1,..., k— A1) € Par[n].

This is called the k-complement of A.
Complementation symmetry I: Let \, i, v € Par[n] and
k > 0 be such that all entries of A\, u, v are < k. Then,

AN vk vk vk vk
Cupv = Sop = C)\vk’l, = Cy’)\vk = Cuavk = vk g

Complementation symmetry Il: Let \, 1, v € Par[n] and
g, r > 0 be such that all entries of i are < g, and all entries
of v are < r. Then:

o If all entries of A are < g + r, then CZ"V = cjif,",f?,

o If not, then C//z\yv =0.
(See, e.g., Exercise 2.9.16 in Grinberg-Reiner.)
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The Briand—Rosas symmetry

@ In arXiv:2004.04995, Emmanuel Briand and Mercedas
Rosas have used a computer (and prior work of Rassart,
Knutson and Tao, which made the problem computable) to
classify all such “symmetries” of Littlewood—Richardson
coefficients cﬁ\yy with A, i, v € Par[n] for fixed
ne{3,4,...,7}.
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The Briand—Rosas symmetry

@ In arXiv:2004.04995, Emmanuel Briand and Mercedas
Rosas have used a computer (and prior work of Rassart,
Knutson and Tao, which made the problem computable) to
classify all such “symmetries” of Littlewood—Richardson
coefficients cﬁ\yy with A, i, v € Par[n] for fixed
ne{3,4,...,7}.

e For ne€ {4,5,...,7}, they only found the complementation
symmetries above, as well as the trivial translation symmetries
(adding 1 to each entry of A and v does not change cﬁ‘ﬂ,; nor
does adding 1 to each entry of X and p).
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The Briand—Rosas symmetry

In arXiv:2004.04995, Emmanuel Briand and Mercedas
Rosas have used a computer (and prior work of Rassart,
Knutson and Tao, which made the problem computable) to
classify all such “symmetries” of Littlewood—Richardson
coefficients Cﬁ\,v with A, i, v € Par[n] for fixed
ne{3,4,...,7}.

For n € {4,5,...,7}, they only found the complementation
symmetries above, as well as the trivial translation symmetries
(adding 1 to each entry of A and v does not change cﬁ‘ﬂ,; nor
does adding 1 to each entry of X and p).

For n = 3, they found an extra symmetry:

C(>\1,>\2,>\3) _ (A11,28)
(p1,12),(v1,12) (u14v1=A2,p2+v1—A2),(A2,12) -~

(Read the right hand side as 0 if the tuples are not partitions.)
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The Briand—Rosas symmetry

@ In arXiv:2004.04995, Emmanuel Briand and Mercedas
Rosas have used a computer (and prior work of Rassart,
Knutson and Tao, which made the problem computable) to
classify all such “symmetries” of Littlewood—Richardson
coefficients Cﬁ\,v with A, i, v € Par[n] for fixed
ne{3,4,...,7}.

e For ne€ {4,5,...,7}, they only found the complementation
symmetries above, as well as the trivial translation symmetries
(adding 1 to each entry of A and v does not change cﬁ‘ﬂ,; nor
does adding 1 to each entry of X and p).

@ For n = 3, they found an extra symmetry:

(A1,22,A3) _ (A11,28)
(p1,12),(v1,12) (u14v1=A2,p2+v1—A2),(A2,12) -~

(Read the right hand side as 0 if the tuples are not partitions.)
Question: Is there a non-computer proof? What is the
meaning of this identity?
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Chapter 2

CHAPTER 2

The Pelletier—Ressayre symmetry

References (among many):

@ Darij Grinberg, The Pelletier—Ressayre hidden symmetry for
Littlewood—Richardson coefficients, arXiv:2008.06128.

@ Maxime Pelletier, Nicolas Ressayre, Some unexpected
properties of Littlewood-Richardson coefficients,
arXiv:2005.09877.

@ Robert Coquereaux, Jean-Bernard Zuber, On sums of tensor
and fusion multiplicities, 2011.
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Inspiration: The Coquereaux—Zuber sum identity, 1

@ Theorem (Coquereaux and Zuber, 2011): Let n > 0 and
w,v € Par[n]. Let k > 0 be such that all entries of u are < k.

Then,
A A
D Gw= D G

A€Par[n] A€Par[n]

(See https://mathoverflow.net/a/236220/ for a hint at
a combinatorial proof.)
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Inspiration: The Coquereaux—Zuber sum identity, 1

@ Theorem (Coquereaux and Zuber, 2011): Let n > 0 and

w,v € Par[n]. Let k > 0 be such that all entries of n are < k.

Then,

A
D G = DL G

A€Par[n] A€Par[n]

@ This can be interpreted in terms of Schur polynomials. For
any A € Par[n], the Schur polynomial sy (x1,x2,...,Xn) is the
symmetric polynomial

sx (X1, X2, ..., Xn)

= det (( Aa J>1§i1j§n>l/ det ((X"n_j> 1§iJ§n)

this is called an alternant = I (Xi*Xj)
1<i<j<n
(= the Vandermonde determinant)

in x1, X2, ...,Xp obtained by setting
Xp+1 = Xpn42 = Xp43 = - - - = 0in sy.
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Inspiration: The Coquereaux—Zuber sum identity, 1

@ Theorem (Coquereaux and Zuber, 2011): Let n > 0 and
w,v € Par[n]. Let k > 0 be such that all entries of n are < k.

Then,
A
D Gw= D Gy
A€Par[n] A€Par[n]

@ This can be interpreted in terms of Schur polynomials. For
any A € Par[n], the Schur polynomial sy (x1, X2, ..., Xp) is the
symmetric polynomial

sx (X1, %2, ...y Xn) -
o The family (sy (x1, X2, .., Xn)) \cpar[s] IS @ basis of the
k-module of symmetric polynomials in x1, x2, ..., x,. We call

it the Schur basis.
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Inspiration: The Coquereaux—Zuber sum identity, 2

@ The theorem of Coquereaux and Zuber says that

coeffsum (s, (x1, X2, ..., Xn) S (X1,%2, ..., Xn))
= coeffsum (s,vic (X1, X2, -, Xn) S (X1, X2, -, Xn) ) ,

where coeffsum f denotes the sum of all coefficients in the
expansion of a symmetric polynomial f in the Schur basis.
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@ The theorem of Coquereaux and Zuber says that
coeffsum (s, (x1, X2, ..., Xn) S (X1,%2, ..., Xn))
= coeffsum (s,vic (X1, X2, -, Xn) S (X1, X2, -, Xn) ) ,

where coeffsum f denotes the sum of all coefficients in the
expansion of a symmetric polynomial f in the Schur basis.
@ So the products

S (X1, X2, oy Xn) Sy (X1, X2, - -+, Xn)
and s, (X1, X2, « oy Xn) Sy (X1, X2, -+, Xn)

have the same sum of coefficients when expanded in the Schur
basis. Do they also have the same multiset of coefficients?
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Inspiration: The Coquereaux—Zuber sum identity, 2

@ The theorem of Coquereaux and Zuber says that

coeffsum (s, (x1, X2, ..., Xn) S (X1,%2, ..., Xn))
= coeffsum (s,vic (X1, X2, -, Xn) S (X1, X2, -, Xn) ) ,

where coeffsum f denotes the sum of all coefficients in the
expansion of a symmetric polynomial f in the Schur basis.
@ So the products

S (X1, X2, oy Xn) Sy (X1, X2, - -+, Xn)
and s, (X1, X2, « oy Xn) Sy (X1, X2, -+, Xn)

have the same sum of coefficients when expanded in the Schur

basis. Do they also have the same multiset of coefficients?
No.

(Counterexample: n =5 and p = (5,2,1) and v = (4,2,2).)
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Inspiration: The Coquereaux—Zuber sum identity, 2

@ The theorem of Coquereaux and Zuber says that

coeffsum (s, (x1, X2, ..., Xn) S (X1,%2, ..., Xn))
= coeffsum (s,vk (X1, X2, ..., Xn) Sy (X1, X2, ., Xn)) ,

where coeffsum f denotes the sum of all coefficients in the
expansion of a symmetric polynomial f in the Schur basis.
@ So the products

S (X1, X2, oy Xn) Sy (X1, X2, - -+, Xn)
and s, (X1, X2, « oy Xn) Sy (X1, X2, -+, Xn)
have the same sum of coefficients when expanded in the Schur

basis. Do they also have the same multiset of coefficients?
No.

(Counterexample: n =5 and p = (5,2,1) and v = (4,2,2).)
Question: Does this hold for n <4 ? (Proved for n = 3.)
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The Pelletier—Ressayre conjecture

@ Conjecture (Pelletier and Ressayre, 2020): It does hold
when p is near-rectangular — i.e., when p = (a + b, a”_2) for

some a, b > 0. Here, 2”2 means a, a, ..., a.
N——

n—2 times
In this case, for k = a+ b, we have p¥k = (a+ b, b"2).
(Taking k higher makes no real difference.)
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@ Conjecture (Pelletier and Ressayre, 2020): It does hold
when p is near-rectangular — i.e., when py = (a + b, a”_2) for

some a, b > 0. Here, 2”2 means a, a, ..., a.
N——

n—2 times
In this case, for k = a+ b, we have p¥k = (a+ b, b"2).
(Taking k higher makes no real difference.)
@ In other words:
Conjecture (Pelletier and Ressayre, 2020): Let n > 0 and
v € Par[n]. Let a,b>0. Let &« = (a+ b,a"2) and
8= (a + b, b”_2). Then,

{cc)!"l, | A e Par[n]} = {“ﬁv | A e Par[n]}

multiset multiset
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The Pelletier—Ressayre conjecture

@ Conjecture (Pelletier and Ressayre, 2020): It does hold
when p is near-rectangular — i.e., when py = (a + b, a”_2) for

some a, b > 0. Here, 2”2 means a, a, ..., a.
N——

n—2 times
In this case, for k = a+ b, we have p¥k = (a+ b, b"2).
(Taking k higher makes no real difference.)
@ In other words:
Conjecture (Pelletier and Ressayre, 2020): Let n > 0 and
v € Par[n]. Let a,b>0. Let &« = (a+ b,a"2) and
8= (a + b, b”_2). Then,

{cc)!"l, | A e Par[n]} = {cé"l, | A e Par[n]}

multiset multiset

@ This means that there should be a bijection
@ : Par [n] — Par[n] such that

hy= c;f’(y)‘) for each \ € Par[n].
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The Pelletier—Ressayre conjecture, restated

e Conjecture (Pelletier and Ressayre, 2020): Let n > 0 and
v € Par[n]. Let a,b > 0. Let = (a+ b,a""?) and
B = (a+ b,b"™2). Then, there is a bijection
¢ : Par[n] — Par[n] such that

A ()

Cow = i, for each A € Par[n].
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The Pelletier—Ressayre conjecture, restated

e Conjecture (Pelletier and Ressayre, 2020): Let n > 0 and
v € Par[n]. Let a,b > 0. Let = (a+ b,a""?) and
B = (a+ b,b"™2). Then, there is a bijection
¢ : Par[n] — Par[n] such that

co)[‘,,, = cg(j‘) for each A € Par[n].

@ Theorem (G., 2020): This is true. Moreover, this bijection
(o can more or less be defined explicitly in terms of maxima of
sums of entries of A and v.

(“More or less” means that we find a bijection ¢ : Z" — Z",
not ¢ : Par [n] — Par[n], where we set ¢, = Cé"y =0 for all
A€ Z"\ Par[n].)
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The Pelletier—Ressayre conjecture, restated

e Conjecture (Pelletier and Ressayre, 2020): Let n > 0 and
v € Par[n]. Let a,b > 0. Let = (a+ b,a""?) and
B = (a+ b,b"™2). Then, there is a bijection
¢ : Par[n] — Par[n] such that

CO)[‘,,, = cg(j‘) for each A € Par[n].

@ Theorem (G., 2020): This is true. Moreover, this bijection
(o can more or less be defined explicitly in terms of maxima of
sums of entries of A and v.

(“More or less” means that we find a bijection ¢ : Z" — Z",
not ¢ : Par [n] — Par[n], where we set ¢, = Cé"y =0 for all
A€ Z"\ Par[n].)

@ The rest of this talk will sketch how this bijection ¢ was

found.
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@ First, we notice that
a=(a+b,a"?) = (a+b,a"2,0) (as n-tuple)
= (b,0" 2 ~a) +a

(where “+2a" means “add a to each entry").
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@ First, we notice that
a=(a+b,a"?) = (a+b,a"2,0) (as n-tuple)
= (b,0" 2 ~a) +a

(where “+2a" means “add a to each entry").
Likewise, 3 = (a,0"2,—b) + b.
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a=(a+b,a"?) = (a+b,a"2,0) (as n-tuple)
= (b,0" 2 ~a) +a
(where “4a" means “add a to each entry”).
Likewise, 3 = (a,0"2,—b) + b.
@ This suggest allowing “partitions with negative entries”. We
call them snakes.
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call them snakes.

e Formally: A snake will mean an n-tuple (A1, A2,..., \,) € Z"
with )\1 > )\2 > > )\n- Thus,

Par [n] C {snakes} C Z".
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@ First, we notice that
a=(a+b,a"?) = (a+b,a"2,0) (as n-tuple)
= (b,0" 2 ~a) +a
(where “4a" means “add a to each entry”).
Likewise, 3 = (a,0"2,—b) + b.
@ This suggest allowing “partitions with negative entries”. We
call them snakes.

e Formally: A snake will mean an n-tuple (A1, A2,..., \,) € Z"
with )\1 > )\2 > > )\n- Thus,

Par [n] C {snakes} C Z".

@ Snakes index rational representations of GL (n): See John R.
Stembridge, Rational tableaux and the tensor algebra of gl,,,
1987.
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@ First, we notice that
a=(a+b,a"?) = (a+b,a"2,0) (as n-tuple)
= (b,0" 2 ~a) +a

(where “4a" means “add a to each entry”).
Likewise, 3 = (a,0"2,—b) + b.

@ This suggest allowing “partitions with negative entries”. We
call them snakes.

e Formally: A snake will mean an n-tuple (A1, A2,..., \,) € Z"
with Ay > Ao > --- > \,. Thus,

Par [n] C {snakes} C Z".

o If A € Z" is any n-tuple, then
o we let \; denote the i-th entry of A (for any i);
o we let A + a denote the n-tuple
()\1 +a,)\2+a,...,)\n+a);
o we let A — a denote the n-tuple
()\1 —a,)\g —a,...,)\,,—a).
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Schur Laurent polynomials

@ We have defined a Schur polynomial
sx(x1,x2,...,%p) € k[x1,X2,...,x,] for any A € Par[n]. We
now denote it by s,.
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@ We have defined a Schur polynomial

sx(x1,x2,...,%p) € k[x1,X2,...,x,] for any A € Par[n]. We
now denote it by s,.
@ It is easy to see that

Sara = (axa - x,)7 3 for any A € Par[n] and a > 0.
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Schur Laurent polynomials

@ We have defined a Schur polynomial
sx(x1,x2,...,%p) € k[x1,X2,...,x,] for any A € Par[n]. We
now denote it by s,.

@ It is easy to see that

Sara = (axa - x,)7 3 for any A € Par[n] and a > 0.

@ This allows us to extend the definition of 5, from the case
A € Par [n] to the more general case A € {snakes}:
If X is a snake, then we choose some a > 0 such that
A+ a € Par[n], and define

S\ = (X1X2 cee X,,)_a Sh\ta-

This is a Laurent polynomial in k [xfcl,x;El ...,xﬂ].

i
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Schur Laurent polynomials

@ We have defined a Schur polynomial
sx(x1,x2,...,%p) € k[x1,X2,...,x,] for any A € Par[n]. We
now denote it by s,.

@ It is easy to see that

Sara = (axa - x,)7 3 for any A € Par[n] and a > 0.

@ This allows us to extend the definition of 5, from the case
A € Par [n] to the more general case A € {snakes}:
If X is a snake, then we choose some a > 0 such that
A+ a € Par[n], and define

— —a —
SA:(X1X2---X,,) SA\+a-
This is a Laurent polynomial in k [xlil,x;cl, . ,xﬂ].

@ Alternatively, we can define 5, explicitly by

5\ = det ((X;\jJrn_j) ) /det ((X,-"_j> )
1<ij<n 1<ij<n

(same formula as before). 2143



5, and s revealed

@ For any k > 0, define the two Laurent polynomials

hz_ - hk (X17X27' .. 7Xn)7
r=he gt gt
(Recall: hy = Sk) = > Xiy Xiy *** Xi,.-)
i1 <ip <<l
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5, and s revealed

@ For any k > 0, define the two Laurent polynomials

+ — E
hk _hk(X17X27"‘7XI1)_ Xiy Xiy =+« Xiys
1< <p<-<ik<n

- -1 -1 -1\ _ —1,-1 —1
h, —hk(x1 Xy s Xy )— E Xi Xy T X

1< << <ik<n
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5, and s revealed

@ For any k > 0, define the two Laurent polynomials

+ — E
hk _hk(X17X27"‘7XI1)_ Xiy Xiy =+« Xiys
1< <p<-<ik<n

- -1 -1 -1\ _ —1,-1 —1
h, —hk(x1 Xy s Xy )— E Xi Xy T X

1< << <ik<n

@ Proposition: Let a,b > 0. Then,

S(b,on-2,—a) = h; hf —h (b} .
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5, and s revealed

@ For any k > 0, define the two Laurent polynomials

+ _ _
hi = hi (x1,x0,. .., xn) = E Xiy Xiy =+ Xy

- _ -1 -1 -1\ _ -1,-1 —1
h, —hk(x1 Xy s Xy )— E Xi Xy T X

@ Proposition: Let a,b > 0. Then,
S(bor-2,—a) = hy hf — h_1hy .

o Corollary: Let a,b> 0. Let a = (a + b, a”_2) and
B = (a+b,b"2). Then,
Sa = (xxe - xn)® - (hyhy — hoihy )

55 = (xaxe - xn)” - (hy b — by 1T ).
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5, and s revealed

@ For any k > 0, define the two Laurent polynomials

+ _ _
hi = hi (x1,x0,. .., xn) = E Xiy Xiy =+ Xy

- _ -1 -1 -1\ _ -1,-1 —1
h, —hk(x1 Xy s Xy )— E Xi Xy T X

@ Proposition: Let a,b > 0. Then,
S(bor-2,—a) = hy hf — h_1hy .
o Corollary: Let a,b> 0. Let a = (a + b, a”_2) and
B = (a+b,b"2). Then,
Sa = (xxe - xn)® - (hyhy — hoihy )

55 = (xaxe - xn)” - (hy b — by 1T ).

@ Thus, if we "know how to multiply by" h," and hj, then we
“know how to multiply by" 5, and 5g.
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Multiplying by hj: the h-Pieri rule, 1

@ Theorem (h-Pieri rule): Let \ be a partition. Let k € Z.

Then,
hic s\ = E S
W is a partition;
|| —|A|=k;
HIZA1Z 2> Ao >
Here:

o We let hy =0 if k < 0. (And we recall that hg = 1.)

o We let |k| denote the size (i.e., the sum of the entries) of
any partition k.

o The i-th entry of a partition « is denoted by x;.
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Multiplying by hj: the h-Pieri rule, 1

@ Theorem (h-Pieri rule): Let \ be a partition. Let k € Z.

Then,
hic s\ = E S
W is a partition;
|| —|A|=k;
HIZA1Z 2> Ao >
Here:

o We let hy =0 if k < 0. (And we recall that hg = 1.)
o We let |k| denote the size (i.e., the sum of the entries) of
any partition k.
o The i-th entry of a partition « is denoted by x;.
@ Note that the chain of inequalities 1 > A1 > o > Ao > -+
is saying that the diagram u/\ is a horizontal strip (i.e., has
no two cells in the same column). For example,

L
L

]

23/43



Multiplying by hj: the h-Pieri rule, 1

@ Theorem (h-Pieri rule): Let \ be a partition. Let k € Z.

Then,
hic s\ = E S
W is a partition;
|| —|A|=k;
HIZA1Z 2> Ao >
Here:

o We let hy =0 if k < 0. (And we recall that hg = 1.)
o We let |k| denote the size (i.e., the sum of the entries) of
any partition k.
o The i-th entry of a partition « is denoted by x;.
@ The Pieri rule is actually a particular case of the
Littlewood—Richardson rule (exercise!).
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Multiplying by hj: the h-Pieri rule, 1

@ Theorem (h-Pieri rule): Let \ be a partition. Let k € Z.

Then,
hic s\ = E S
W is a partition;
|| —|A|=k;
HIZA1Z 2> Ao >
Here:

o We let hy =0 if k < 0. (And we recall that hg = 1.)
o We let |k| denote the size (i.e., the sum of the entries) of
any partition k.
o The i-th entry of a partition « is denoted by x;.
@ By evaluating both sides at x1, x, ..., x, (and recalling that
sy (x1,%2,...,Xn) = 0 whenever p is a partition with more
than n nonzero entries), we obtain:
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Multiplying by hj: the h-Pieri rule, 2

e Theorem (h™-Pieri rule for symmetric polynomials): Let
A € Par[n]. Let k € Z. Then,

J’_ —_ _ —_
hi -5\ = E Sy

pePar(n];
Il =1 Al=k;
HIZA1Z 2> X0 > n > An

Here:
o We let |k| denote the size (i.e., the sum of the entries) of
any n-tuple x.
o The i-th entry of an n-tuple & is denoted by k;.
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Multiplying by hj: the h-Pieri rule, 2

e Theorem (h™-Pieri rule for symmetric polynomials): Let
A € Par[n]. Let k € Z. Then,

hi 5, = > 5.
wePar[n];
|l = [Al=k;
H1ZA1Zp2 > A > 2 n>An
Here:
o We let |k| denote the size (i.e., the sum of the entries) of
any n-tuple x.
o The i-th entry of an n-tuple & is denoted by k;.
@ We can easily extend this from Par [n] to {snakes}, and obtain
the following:
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Multiplying by hj: the h-Pieri rule, 3

e Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,

+ = _ —
hi -5\ = E Sy

ue{snakes};
lul—[AI=k;
HIZA1Z 2> X0 > n > An

Here:
o We let |k| denote the size (i.e., the sum of the entries) of
any n-tuple x.
o The i-th entry of an n-tuple & is denoted by k;.
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Multiplying by hj: the h-Pieri rule, 3

e Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,
W= Y. s
ue{snakes};
|l =[Al=k;
n—A
Here:
o We let |k| denote the size (i.e., the sum of the entries) of
any n-tuple x.
o The i-th entry of an n-tuple & is denoted by k;.
e The notation p© — A stands for
1= A1 > 12 > Ap > - 2 fin > A
(Note that if A\, u € Z" satisfy p — A, then X and p are
snakes automatically.)
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Multiplying by hj: the h-Pieri rule, 3

e Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,

W= Y. s
nE{snakes};
|l =\ =k;
n—A
Here:
o We let |k| denote the size (i.e., the sum of the entries) of
any n-tuple x.
o The i-th entry of an n-tuple & is denoted by k;.
e The notation p© — A stands for
H1 = A1 2> 2 2> A2 > 2> g 2> Ap.
(Note that if A\, u € Z" satisfy p — A, then X and p are
snakes automatically.)
@ So we know how to multiply 5y by h?. What about A~ 7
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Multiplying by h, : the reversed h-Pieri rule

@ Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,

h -5y = Z 5,

ue{snakes};
M= lul=k;
A=
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Multiplying by h, : the reversed h-Pieri rule

@ Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,

he Sa= Y. S

ue{snakes};
IAl=lul=k;
A=

@ This follows from the h™-Pieri rule by substituting

xl_l,x2_1, ..., x L for x1,x0, ..., xn, using the following fact:
Proposition: For any snake \, we have

- = (-1 -1 -1

S\v :s>\(x1 S Xy ey Xp )
Here, AV denotes the snake (—\p, —Ap—1,...,—A1) (formerly

denoted by AV0, but now defined for any snake \).
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Multiplying by h, : the reversed h-Pieri rule

@ Theorem (h™-Pieri rule for Laurent polynomials): Let
A € {snakes}. Let k € Z. Then,

he Sa= Y. S

ue{snakes};
IAl=lul=k;
A=

@ This follows from the h™-Pieri rule by substituting

xl_l,x2_17 ..., x L for x1,x0, ..., xn, using the following fact:
Proposition: For any snake \, we have

- = (-1 -1 -1

S\v :s>\(x1 S Xy ey Xp )
Here, AV denotes the snake (—\p, —Ap—1,...,—A1) (formerly

denoted by AV0, but now defined for any snake \).
@ So we now know how to multiply 5 by h, .
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Back to the conjecture

@ A consequence of the above:
Corollary: Let i be a snake. Let a, b € Z. Then,

hohisu =Y |Ruan(7)|5y

v is a snake

where R, 5 (7) is the set of all snakes v satisfying

uw—v and |u|—|v|]=a and v —v and |y|-|v|=b.
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Back to the conjecture

@ A consequence of the above:
Corollary: Let i be a snake. Let a, b € Z. Then,

hohisu =Y |Ruan(7)|5y

v is a snake

where R, 5 (7) is the set of all snakes v satisfying
uw—v and |u|—|v|]=a and v —v and |y|-|v|=b.
@ Corollary: Let v € Par[n]. Let a,b > 0. Define the partition
o= (a+ b,a""2). Then, every \ € Z" satisfies
Caw = |Ruap (A= 3)| = |Rua-16-1 (A = a)|.

Here, we understand céﬂ, to mean 0 if X\ is not a partition
(i.e., not a snake with all entries nonnegative).
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Back to the conjecture

@ A consequence of the above:
Corollary: Let i be a snake. Let a, b € Z. Then,

h;h;?# = Z | Rys,a,b (V)57
v is a snake

where R, 5 (7) is the set of all snakes v satisfying

uw—v and |u|—|v|]=a and v —v and |y|-|v|=b.

@ Corollary: Let v € Par[n]. Let a,b > 0. Define the partition
o= (a+ b,a""2). Then, every \ € Z" satisfies

v = |Ruap (A= a)| = [Rua-15-1 (A —a)l.

Here, we understand céﬂ, to mean 0 if X\ is not a partition
(i.e., not a snake with all entries nonnegative).
@ Recall that we want a bijection ¢ : Z" — Z" such that

N ()

an = a0 for each A\ € Par[n].
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Closing in on the bijection, 1

@ So we want a bijection ¢ : Z" — Z" such that
|Ra6 (A — @) = [Rua—1,6-1 (A — a)|
= |Rup,a (0 (A) = b)[ = [Rup-1,a-1 (¢ (A) — b)|
for all A € Z".
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Closing in on the bijection, 1

@ So we want a bijection f: Z" — 7" such that

|Ru,a,6 (V)| = [Ry,a—1,6-1 (7)]
= |Rub,a (F(V) = [Rup-1,a-1 (F(7))]
for all v € Z".
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Closing in on the bijection, 1

@ So we want a bijection f: Z" — 7" such that
|Rua (M) = [Rua-1,-1(7)|
= |Ruba (F()) = [Rub-1,a-1 (F(7))]

for all v € Z".
@ It clearly suffices to find a bijection f: Z" — Z" such that

[Ruab (M| = [Rupa(F(¥)) forally € Z7,

as long as this f is independent on a and b.
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Closing in on the bijection, 1

@ So we want a bijection f: Z" — 7" such that

|Ryu,a,b (V)| = [Rua—1,6-1 (7)]
= |Rub,a (F(1))] = [Ryub-1,a-1 (F(7))]
for all v € Z".
@ It clearly suffices to find a bijection f: Z" — Z" such that
|Riap (V)] = [Rupa(F(7))|  forallyeZ”,

as long as this f is independent on a and b.
@ In other words, if f(y) =7, then we want

|Ruab (V)] = [Rub,a ()] -
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Closing in on the bijection, 2

@ In other words, if f(v) =7, then we want there to be a
bijection from the snakes v satisfying

uw—v and |u|—|v|]=a and v—v and |y|-|y|=0b
to the snakes ( satisfying
p—¢ and |ul-lcl=b and n—=¢ and |nl-[¢| = a.
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Closing in on the bijection, 2

@ In other words, if f(v) =7, then we want there to be a
bijection from the snakes v satisfying

uw—v and |u|—|v|]=a and v—v and |y|-|y|=0b
to the snakes ( satisfying
p—C and [ul-c|=b and n—C and [nl-|| = a.

@ Forget at first about the size conditions (|u| — |v| = a, etc.).
Then the former snakes satisfy
uw—v and v—v
<~ (uj >y forall i <n)A(vi > pipq forall i < n)
A (vi > v forall i < n) A (y; > viy1 for all i < n)
<= (min{ui,vi} > v forall i < n)
A (vi > max {pit1,7vis1} for all i < n)
<~ (vj € [max{pit1,Vit1},min{ui,~vi}] forall i < n)
A (min {iin, Yn} > V).
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Closing in on the bijection, 3

@ Compare the condition

vi € [max {mit1,7vit1}, min{pi,~vi}] forall i <n

with the analogous condition

Ci € [max{pjtr1,miv1},min{p;,n;i}] foralli<n
on (.
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Closing in on the bijection, 3

@ Compare the condition

vi € [max {mit1,7vit1}, min{pi,~vi}] forall i <n

with the analogous condition

Ci € [max{pjtr1,miv1},min{p;,n;i}] foralli<n
on (.

@ It is thus reasonable to hope for

min {p;, vi b—max { iy 1, vig1} = min {pi, i t—max {miy1, miv1}
for all / < n.
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Closing in on the bijection, 3

@ Compare the condition

vi € [max {mit1,7vit1}, min{pi,~vi}] forall i <n

with the analogous condition

Ci € [max{pjtr1,miv1},min{p;,n;i}] foralli<n
on (.

@ It is thus reasonable to hope for

min {1, vit—max{piy1, Y1} = min {pi, i} —max {pit1, iv1}
for all i < n.
@ Size conditions also suggest that we should have

| — |l = [u] = |v]-
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Closing in on the bijection, 3

@ Compare the condition

vi € [max {mit1,7vit1}, min{pi,~vi}] forall i <n
with the analogous condition
Ci € [max{pjtr1,miv1},min{p;,n;i}] foralli<n
on (.
@ It is thus reasonable to hope for
min {1, vit—max{piy1, Y1} = min {pi, i} —max {pit1, iv1}
for all i < n.
@ Size conditions also suggest that we should have

| — |l = [u] = |v]-

@ These conditions do not suffice to determine f(y) = n (nor

probably to guarantee |R,, ;5 (V)| = |Rub.a (1)]), but let's see
what they tell us.
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy

min {p1,71} — max{u2, 72} = min {p1,m1} — max{u2,m2} ;
min {2, v2} — max {us, v3} = min{po, 2} — max{us, n3};
| = |ul = [p] = |v|-
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy

min {p1,71} — max{u2, 72} = min {p1,m1} — max{u2,m2} ;
min {2, v2} — max {us, v3} = min{po, 2} — max{us, n3};
V[ =+ |nl = 2|ul.
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy

min {p1, 71} — max {2, 72} = min {p1,m} — max{u2,m2};
min {p, v2} — max {us,v3} = min{uz, mo} — max{us, n3};
(1 +72+93)+ (m +m+n3) =2 (1 + p2 + p3)
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy

min {p1,91} + min {—p2, —y2} = min {1, 71} + min {—p2, —n2} ;
min {p2, 72} + min {—p3, =3} = min {po, 7o} + min {—pu3, —n3};
(M +v2+73)+ m+m+n3) =2 (1 + p2 + (13)

(here we used max (u, v) = —min (—u, —v)).
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy

min {1, 71} + min {—p2, =32} = min {p1,m} + min {—p2, -2} ;
min {2, 72} 4 min{—ps, —y3} = min {2, m2} 4 min {—ps, =3} ;
(71 +2+73) + (m +m2+n3) =2 (p1 + p2 + p3)
(here we used max (u, v) = —min (—u, —v)).

@ This is a system of equations that only involves the operations
+, — and min. (Recall: 2a=a+ a.)
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Closing in on the bijection: the case n =3

@ Let n= 3. We want f(y) = 7 to satisfy
min {1, 71} + min {—p2, =72} = min {p1, m} + min {—p2, —n2};
min {p2, 92} + min {—p3, —y3} = min {2, 72} + min {—pu3, —n3} ;
(M1 +92+73) + (m +n2 +m3) =2 (1 + p2 + p13)

(here we used max (u, v) = —min (—u, —v)).
@ This is a system of equations that only involves the operations

+, — and min. (Recall: 2a=a+ a.)
@ There is a trick for studying such systems: detropicalization.
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
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o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
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@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity).
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o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
The same construction works for any totally ordered abelian
group instead of Z.
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
@ If you see a system of equations using only 4+ and min, you
can thus
e view it as a system of polynomial equations over Zqp;
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
@ If you see a system of equations using only 4+ and min, you
can thus
e view it as a system of polynomial equations over Zqp;
o then solve it over the semifield Q. instead (or any other
“normal” semifield);
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
@ If you see a system of equations using only 4+ and min, you
can thus
e view it as a system of polynomial equations over Zqp;
e then solve it over the semifield Q. instead ;
e then check if your solution still works over Ziop.
This strategy is known as detropicalization.
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Detropicalization in a nutshell

@ A semifield is defined in the same way as a field, but
e additive inverses and a zero element are not required, and
o every element (not just every nonzero element) must
have a multiplicative inverse.
o Example: The set Q4 of all positive rationals is a semifield.
o Example: The set Z, equipped with the binary operation min
as addition and the binary operation 4+ as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Zop.
@ If you see a system of equations using only 4+ and min, you
can thus
e view it as a system of polynomial equations over Zqp;
e then solve it over the semifield Q. instead ;
e then check if your solution still works over Ziop.
This strategy is known as detropicalization.
@ It is particularly useful if you just want one solution (rather
than all of them). Often, solutions over Q. are unique, while
those over the min tropical semifield are not. 32 /43



Detropicalizing our system (n=3), 1

@ Recall our system

min {p1, 91} + min {—p2, —y2}= min {g1, n1} + min {—p2, —m2};
min {p2, 72} + min {—p3, —=y3}= min {p2, 2} + min {—p3, —n3};
(v1+ 72 +73) + (1 + m2 4+ m3)= 2 (1 + p2 + p13)

(where 11,12, m3 are unknown).
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Detropicalizing our system (n=3), 1

@ Recall our system

min {p1, 91} + min {—p2, —y2}= min {g1, n1} + min {—p2, —m2};
min {p2, 72} + min {—p3, —=y3}= min {p2, 2} + min {—p3, —n3};
(v1+ 72 +73) + (1 + m2 4+ m3)= 2 (1 + p2 + p13)

(where 11,12, m3 are unknown).
@ Detropicalization transforms this into

1 1 1 1
(m+y)|—+—)=@w+m)|—+—);

H2 V2 H2 2

1 1 1 1
(2 +7) | —+—)=(pet+m) | —+—);

Hs o3 fs 73

(17273) (mmens) = (uapops)? .
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Detropicalizing our system (n = 3), 2

@ So we now need to solve the system

(11 + ) (;lez) — (p1 +m) <u12+1>;

Yp:
1 1 1 1

(2+m) | —+— ) =@+m) | —+—);
Hs o3 H3 o3

(117273) (mnans) = (papaps)”.
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Detropicalizing our system (n = 3), 2

@ Let us rename u,7,n as u,x,y. Then, this becomes
1 1 1 1
(11 +x1) <+) = (11 +y1) (+ ) ;
us X2 uz y2
1 1 1 1
(2 + x2) <+> = (2 + y2) (-i- ) ;
u3 X3 uz  y3

(x1xax3) (y1yays) = (uruaus)® .
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Detropicalizing our system (n = 3), 2

@ Let us rename u,7,n as u,x,y. Then, this becomes
1 1 1 1
(11 +x1) <+) = (11 +y1) (+ ) ;
us X2 uz y2
1 1 1 1
(2 + x2) <+> = (2 + y2) (-i- ) ;
u3 X3 uz  y3

(x1xax3) (y1yays) = (uruaus)® .

@ This is a system of polynomial equations, so we can give it to
a computer. The answer is:
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Solving the detropicalized system (n = 3)

@ Solution 1:

= (urupu3 + X1 UpU3 + X1X2U3 + X1 X2X3)
1 p—
U1 XoU3z — X1X2X3 ’

—ujUo U3
yo=——
X1X3

upuz (x1x3 — urU3)

Uilpuz + X1Up U3 + X1 Xo U3 + X1X2X3

@ Solution 2:
uruz (upu + x1Up + x1x0)

1=
xp (uru3 + u1x3 + x1x3)
urup (uaus + xau3 + Xxox3)
Yo =
x3 (ULt + xyu2 + Xx1x2)
L (urus + urx3 + x1x3)
3 p—

X1 (U2U3 “+ xou3 + X2X3)
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Solving the detropicalized system (n = 3)

@ Solution 1:

= (urupu3 + X1 UpU3 + X1X2U3 + X1 X2X3)
1 p—
U1 xpU3 — X1X2X3 ’

—ujUo U3
o= ———
X1X3

upuz (x1x3 — urU3)

Uilpuz + X1Up U3 + X1 Xo U3 + X1X2X3

@ Solution 2:

s (Uit + xyuz + Xx1x2)
 xp (U3 + uixs + x1x3)
uruz (tpuz + xou3 + x2x3)
x3 (Uurto + X1U2 + X1X2)
w3 (Urus + Uupx3 + x1x3)
T x1 (U3 + xou3 + x2x3)

Y2 =

@ Solution 1 is useless, since we want y1, y», y3 € Q.
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Solving the detropicalized system (n = 3)

@ Solution 1:

ur (Urpus + x1Upus + X1XU3 + X1X2X3)
UuixoUs — X1X2X3 ‘

n=
—uilpus3
Yo=————7
X1X3
upu3 (x1x3 — UL U3)
upouz + Xpuu3 + X1 xoU3 + X1x2X3

@ Solution 2:
uruz (uruo + X1 + x1x2)

y1=
xp (uru3 + u1x3 + x1x3)
urup (upu3 + xou3 + X2X3)
Y2 =
x3 (Uru + X1 U2 + x1x2)
yy = 243 (urus + urx3 + x1x3)
3 p—

x1 (U203 + xou3 4 X2x3)
@ But Solution 2 looks promising.
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Solving the detropicalized system (n = 3)

@ Solution 1:

ur (Urpus + x1Upus + X1XU3 + X1X2X3)
UuixoUs — X1X2X3 ‘

n=
—uilpus3
Yo=————7
X1X3
upu3 (x1x3 — UL U3)
upouz + Xpuu3 + X1 xoU3 + X1x2X3

@ Solution 2:
uruz (uruo + X1 + x1x2)

y1=
xp (uru3 + u1x3 + x1x3)
urup (upu3 + xou3 + X2X3)
Y2 =
x3 (Uru + X1 U2 + x1x2)
yy = 243 (urus + urx3 + x1x3)
3 p—

x1 (U203 + xou3 4 X2x3)
@ But Solution 2 looks promising. Note in particular the

(unexpected) cyclic symmetry! s



The map f: definition

@ Reverse-engineering Solution 2, we come up with the following
Definition: Let K be a semifield, let n > 1, and let v € K".
We define a map f: K” — K" as follows:

Let x € K" be an n-tuple. For each j € Z and r > 0, define
an element t,; € K by

r
trj = E Xj+1X+2  Xjtk * Ujtk+1Uj+ k42 Ujtr -
it
— S = Uii;
; 1XJ+' ik O

x

(Here and in the following, all indices are cyclic modulo n.)
Define y € K" by setting

Ui_1th_1.i— i
y; = uj - =Lzl for each i € {1,2,...,n}.

;-
Xi+1tn—1,i4+1
Set f(x) =y.
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The map f: definition

@ Reverse-engineering Solution 2, we come up with the following
Definition: Let K be a semifield, let n > 1, and let v € K".
We define a map f: K” — K" as follows:

Let x € K" be an n-tuple. For each j € Z and r > 0, define
an element t,; € K by

r
trj = E Xj+1X+2  Xjtk * Ujtk+1Uj+ k42 Ujtr -
it
— S = Uii;
; 1XJ+' ik O

x

(Here and in the following, all indices are cyclic modulo n.)
Define y € K" by setting

Ui_1th_1.i— i
y,-:u,--M for each i € {1,2,...,n}.
Xi+1tn—1,i4+1
Set f(x) =y.

@ Note that f depends on u (whence | call it f, in the paper).
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The map f: main properties

@ Theorem. Let K be a semifield, n > 1 and v € K". Then:
(a) The map fis an involution (i.e., we have fo f =id).
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The map f: main properties

@ Theorem. Let K be a semifield, n > 1 and v € K". Then:
(a) The map fis an involution (i.e., we have fo f =id).
(b) Let x € K" and y € K" be such that y = f(x). Then,

(ylyzyn) . (X]_X2 . .Xn) — (U1U2 un)2 .

(c) Let x € K" and y € K" be such that y = f(x). Then,

(u,-+x,-)< L )-(u,-—i—y,-)( L 1)

Uiv1 X1 Uir1 Vi1
for each i € Z. (Recall that indices are cyclic modulo n.)
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The map f: main properties

@ Theorem. Let K be a semifield, n > 1 and v € K". Then:
(a) The map fis an involution (i.e., we have fo f =id).
(b) Let x € K" and y € K" be such that y = f(x). Then,

(ylyzyn) . (X]_X2 . .Xn) — (U1U2 un)2 .

(c) Let x € K" and y € K" be such that y = f(x). Then,
1 1 1 1

(Ui+Xi)< + ) —(Ui+yi)< + )

Ujt+1 Xit+1 Uit+1  Yi+1

for each i € Z. (Recall that indices are cyclic modulo n.)
(d) Let x € K" and y € K" be such that y = f(x). Then,

n

up+xi Toui+ i
H lXi 17H IUi I.

i=1 i=1
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The map f: main properties

@ Theorem. Let K be a semifield, n > 1 and v € K". Then:
(a) The map fis an involution (i.e., we have fo f =id).
(b) Let x € K" and y € K" be such that y = f(x). Then,

(ylyzyn) . (X]_X2 . .Xn) — (U1U2 un)2 .

(c) Let x € K" and y € K" be such that y = f(x). Then,

1 1 1 1
(ui +x) + = (ui + yi) +
Ujt+1 Xi+1 Ujt1 Yi+1

for each i € Z. (Recall that indices are cyclic modulo n.)
(d) Let x € K" and y € K" be such that y = f(x). Then,

ﬁ ui+Xi ﬁ Ui+)’i.

i1 N iz Ui

@ In short: f(x) solves our system and more. (Note that the
i = n case of part (c) is not part of our original system!)
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The map f: main properties

@ Theorem. Let K be a semifield, n > 1 and v € K". Then:
(a) The map fis an involution (i.e., we have fo f =id).
(b) Let x € K" and y € K" be such that y = f(x). Then,

(ylyzyn) . (X]_X2 . .Xn) — (U1U2 un)2 .

(c) Let x € K" and y € K" be such that y = f(x). Then,
1 1 1 1

(Ui+Xi)< + ) —(Ui+yi)< + )

Ujt+1 Xit+1 Uit+1  Yi+1

for each i € Z. (Recall that indices are cyclic modulo n.)
(d) Let x € K" and y € K" be such that y = f(x). Then,

ﬁ ui+Xi ﬁ ui +Yi

-1 iz Y

@ The proof is heavily computational but not too hard (various
auxiliary identities had to be discovered).
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Back to snakes

@ Recall that we were looking for a bijection f: Z" — Z"
(independent on a and b) such that

|Ruab (V)] = |Rupa (F(7))] forally € Z".
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(independent on a and b) such that

|Ruab (V)] = |Rupa (F(7))] forally € Z".

@ The map f constructed above, applied to K = Zop and
u=(p1,12,...,pn), does the trick. (This is not hard to
prove using the above Theorem.)
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Back to snakes

@ Recall that we were looking for a bijection f: Z" — Z"
(independent on a and b) such that

|Ruab (V)] = |Rupa (F(7))] forally € Z".

@ The map f constructed above, applied to K = Zop and
u=(p1,12,...,pn), does the trick. (This is not hard to
prove using the above Theorem.)

@ Shifting by a and b thus produces the bijection ¢ needed for
the Pelletier—Ressayre conjecture. Explicitly:
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The Pelletier—Ressayre hidden symmetry, 1

@ Theorem (G., 2020): Assume that n > 2. Let a, b > 0, and
set a = (a+b,a"?) and B = (a+ b,b"2).
Fix any partition p € Par [n].
Define a map ¢ : Z" — Z" as follows:
Let w e Z". Set v =w —a € Z". For each j € Z, set

7 = min{(Vj41 + Vg2 + -+ jgk)
+ (k41 + Hjph2 + 0+ Bjgn-1)
| ke{0,1,...,n—1}},
where (unusually for partitions!) all indices are cyclic modulo
gefine an n-tuple n = (n1,m2,...,Mn) € Z" by setting
ni = pi + (i—1 + 7i-1) — (Vig1 + 7ig1) for each i.

Let ¢ (w) be the n-tuple n+ b € Z". Thus, we have defined a
map ¢ : Z" — Z".
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The Pelletier—Ressayre hidden symmetry, 2

@ Theorem (cont’d): Then:
(a) The map ¢ is a bijection.
(b) We have

Cop = c;f’(:)

Here, we are using the convention that every n-tuple

w € Z" that is not a partition satisfies ¢, , = 0 and

c5, =0.

for each w € Z".
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@ Theorem (cont’d): Then:
(a) The map ¢ is a bijection.
(b) We have

w w(w)

—_ n
Cop = Sy for each w € Z".

(e

Here, we are using the convention that every n-tuple
w € Z" that is not a partition satisfies ¢, , = 0 and
cy =0.

@ This prbves the conjecture.
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w € Z" that is not a partition satisfies ¢, , = 0 and
cy =0.
@ This prbves the conjecture.
@ Question: Does ¢ have a more mainstream combinatorial
interpretation?
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The Pelletier—Ressayre hidden symmetry, 2

@ Theorem (cont’d): Then:
(a) The map ¢ is a bijection.
(b) We have

= c‘;’(:) for each w € Z".

Here, we are using the convention that every n-tuple
w € Z" that is not a partition satisfies ¢, , = 0 and
cy =0.
@ This prbves the conjecture.
@ Question: Does ¢ have a more mainstream combinatorial
interpretation?
@ Question: Can ¢ be written as a composition of “toggles”
(i.e., “local” transformations, each affecting only one entry of
the tuple)?
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Uniqueness questions, 1

@ Question: Given a semifield K and n > 2 and v € K".
Assume that x € K” and y € K” satisfy

1 1 1 1
(ui + xi) + = (ui +yi) +
Uit+1  Xit1 U1 Yi+1

for each i € Z. Is it true that y = f(x)
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@ Yes if K = Q4 (or, more generally, K is a subsemifield of an
integral domain).

41/43



Uniqueness questions, 1

@ Question: Given a semifield K and n > 2 and v € K".
Assume that x € K” and y € K” satisfy

1 1 1 1
(ui + xi) + = (ui +yi) +
Ui+1  Xit1 Uir1  Yit1

for each i € Z. Is it true that y = f(x) or y = x ?

@ Yes if K = Q4 (or, more generally, K is a subsemifield of an
integral domain).

@ No if K = Zirop.
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Uniqueness questions, 2

@ Question: Given a semifield K and n > 2 and v € K".
Assume that x € K” and y € K” satisfy

(YI)/2' )/n) . (X1X2“'Xn) = (U1u2' . .un)2

and

(Ui+Xi)< L + L )Z(Ui+)/i)( ! + L )

Uiyl  Xi41 Uir1  Yit1

for each 1 < i < n. (This is our detropicalized system.)
Is it true that y = f(x) ?
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@ Yes if K= Q. (Nice exercise!)
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@ Yes if K= Q. (Nice exercise!)
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Uniqueness questions, 2

@ Question: Given a semifield K and n > 2 and v € K".
Assume that x € K” and y € K” satisfy

(yiya: - ¥n) - (X2 xn) = (U1t - up)?
and
(Ui+Xi)< ! + L )Z(U;+yi)( ! + L >
U1 Xit1 Uit+1 Vit
for each 1 < i < n. (This is our detropicalized system.)
Is it true that y = f(x) ?
@ Yes if K= Q. (Nice exercise!)
@ No if K = Zirop.
@ Thus, detropicalization has made the solution unique by
removing the “extraneous” solutions.
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