Littlewood–Richardson coefficients and birational combinatorics

Darij Grinberg

28 August 2020 [corrected version]
Algebraic and Combinatorial Perspectives in the Mathematical
Sciences

```
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/acpms2020.pdf
paper: arXiv:2008.06128 aka http:
//www.cip.ifi.lmu.de/~grinberg/algebra/lrhspr.pdf
```

Manifest

• I shall review the Littlewood–Richardson coefficients and some of their classical properties.

Manifest

- I shall review the Littlewood–Richardson coefficients and some of their classical properties.
- I will then state a "hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it.

Manifest

- I shall review the Littlewood–Richardson coefficients and some of their classical properties.
- I will then state a "hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it.
- The proof is a nice example of birational combinatorics: the use of birational transformations in elementary combinatorics (specifically, here, in finding and proving a bijection).

Chapter 1

Littlewood-Richardson coefficients

References (among many):

- Richard Stanley, Enumerative Combinatorics, vol. 2, Chapter
 7.
- Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356.
- Emmanuel Briand, Mercedes Rosas, The 144 symmetries of the Littlewood-Richardson coefficients of SL₃, arXiv:2004.04995.
- Igor Pak, Ernesto Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, arXiv:math/0407170.
- Emmanuel Briand, Rosa Orellana, Mercedes Rosas, Rectangular symmetries for coefficients of symmetric functions, arXiv:1410.8017.

- Fix a commutative ring k with unity. We shall do everything over k.
- Consider the ring \mathbf{k} [[x_1, x_2, x_3, \ldots]] of formal power series in countably many indeterminates.

- Fix a commutative ring k with unity. We shall do everything over k.
- Consider the ring \mathbf{k} [[x_1, x_2, x_3, \ldots]] of formal power series in countably many indeterminates.
- A formal power series f is said to be **bounded-degree** if the monomials it contains are bounded (from above) in degree.

- Fix a commutative ring k with unity. We shall do everything over k.
- Consider the ring \mathbf{k} [[x_1, x_2, x_3, \ldots]] of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series f is said to be symmetric if it is invariant under permutations of the indeterminates.
- For example:
 - $1 + x_1 + x_2^3$ is bounded-degree but not symmetric.
 - $(1+x_1)(1+x_2)(1+x_3)\cdots$ is symmetric but not bounded-degree.

- Fix a commutative ring k with unity. We shall do everything over k.
- Consider the ring \mathbf{k} [[x_1, x_2, x_3, \ldots]] of formal power series in countably many indeterminates.
- A formal power series f is said to be **bounded-degree** if the monomials it contains are bounded (from above) in degree.
- A formal power series *f* is said to be *symmetric* if it is invariant under permutations of the indeterminates.
- Let Λ be the set of all symmetric bounded-degree power series in k [[x₁, x₂, x₃, ...]]. This is a k-subalgebra, called the *ring of symmetric functions* over k.
 It is also known as Sym.

Schur functions, part 1: Young diagrams

• Let $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ be a *partition* (i.e., a weakly decreasing sequence of nonnegative integers such that $\lambda_i = 0$ for all $i \gg 0$).

We commonly omit trailing zeroes: e.g., the partition $(4,2,2,1,0,0,0,0,\dots)$ is identified with the tuple (4,2,2,1).

Schur functions, part 1: Young diagrams

• Let $\lambda=(\lambda_1,\lambda_2,\lambda_3,\ldots)$ be a *partition* (i.e., a weakly decreasing sequence of nonnegative integers such that $\lambda_i=0$ for all $i\gg 0$).

We commonly omit trailing zeroes: e.g., the partition $(4,2,2,1,0,0,0,0,\dots)$ is identified with the tuple (4,2,2,1). The *Young diagram* of λ is like a matrix, but the rows have different lengths, and are left-aligned; the *i*-th row has λ_i cells.

Examples:

The Young diagram of (3,2) has the form

• The Young diagram of (4,2,1) has the form

Schur functions, part 2: semistandard tableaux

- A semistandard tableau of shape λ is the Young diagram of λ , filled with positive integers, such that
 - the entries in each row are weakly increasing;
 - the entries in each column are strictly increasing.

Examples:

A semistandard tableau of shape (3,2) is

• A semistandard tableau of shape (4,2,1) is

2	2	3	4
3	4		
5			

Schur functions, part 2: semistandard tableaux

- A semistandard tableau of shape λ is the Young diagram of λ , filled with positive integers, such that
 - the entries in each row are weakly increasing;
 - the entries in each column are strictly increasing.

Examples:

• The semistandard tableaux of shape (3,2) are the arrays of the form

with $a \le b \le c$ and $d \le e$ and a < d and b < e.

Schur functions, part 3: definition of Schur functions

• Given a partition λ , we define the *Schur function* s_{λ} as the power series

$$s_{\lambda} = \sum_{\substack{T \text{ is a semistandard} \\ \text{tableau of shape } \lambda}} \mathsf{x}_{T}, \qquad \text{where } \mathsf{x}_{T} = \prod_{\substack{p \text{ is a cell of } T}} \mathsf{x}_{T(p)}$$

(where T(p) denotes the entry of T in p).

• Examples:

•

$$s_{(3,2)} = \sum_{\substack{a \le b \le c, \ d \le e, \\ a < d, \ b < e}} x_a x_b x_c x_d x_e,$$

because the semistandard tableau

$$T = \begin{array}{|c|c|c|c|} \hline a & b & c \\ \hline d & e \\ \hline \end{array}$$

contributes the addend $x_T = x_a x_b x_c x_d x_e$.

Schur functions, part 3: definition of Schur functions

• Given a partition λ , we define the *Schur function* s_{λ} as the power series

$$s_{\lambda} = \sum_{\substack{T \text{ is a semistandard} \\ \text{tableau of shape } \lambda}} \mathsf{x}_{T}, \qquad \text{where } \mathsf{x}_{T} = \prod_{\substack{p \text{ is a cell of } T}} \mathsf{x}_{T(p)}$$

(where T(p) denotes the entry of T in p).

- Examples:
 - For any $n \ge 0$, we have

$$s_{(n)} = \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n},$$

since the semistandard tableaux of shape (n) are the fillings

$$T = \boxed{i_1 \mid i_2} \cdots \cdots \boxed{i_n}$$

with $i_1 \leq i_2 \leq \cdots \leq i_n$.

Schur functions, part 3: definition of Schur functions

• Given a partition λ , we define the *Schur function* s_{λ} as the power series

$$s_{\lambda} = \sum_{\substack{T \text{ is a semistandard} \\ \text{tableau of shape } \lambda}} \mathsf{x}_{T}, \qquad \text{where } \mathsf{x}_{T} = \prod_{\substack{p \text{ is a cell of } T}} \mathsf{x}_{T(p)}$$

(where T(p) denotes the entry of T in p).

- Examples:
 - For any $n \ge 0$, we have

$$s_{(n)} = \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n},$$

since the semistandard tableaux of shape (n) are the fillings

$$T = \begin{bmatrix} i_1 & i_2 \\ \end{bmatrix} \cdots \begin{bmatrix} i_n \\ \end{bmatrix}$$

with $i_1 \leq i_2 \leq \cdots \leq i_n$.

This symmetric function $s_{(n)}$ is commonly called h_n .

Schur functions, part 4: classical properties

- **Theorem:** The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ .
- **Theorem:** The family $(s_{\lambda})_{\lambda \text{ is a partition}}$ is a basis of the **k**-module Λ .

Schur functions, part 4: classical properties

- **Theorem:** The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ .
- **Theorem:** The family $(s_{\lambda})_{\lambda \text{ is a partition}}$ is a basis of the **k**-module Λ .
- **Theorem:** Fix $n \ge 0$. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be a partition with at most n nonzero entries. Then,

$$s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) = \underbrace{\det\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right)}_{\text{this is called an } alternant} \underbrace{\det\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)}_{=\prod\limits_{1 \leq i < j \leq n}\left(x_{i}-x_{j}\right)} = \underbrace{\det\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)}_{\text{(= the Vandermonde determinant)}}$$

Here, for any $f \in \Lambda$, we let $f(x_1, x_2, ..., x_n)$ denote the result of substituting 0 for $x_{n+1}, x_{n+2}, x_{n+3}, ...$ in f; this is a symmetric **polynomial** in $x_1, x_2, ..., x_n$.

Schur functions, part 4: classical properties

- **Theorem:** The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ .
- Theorem: The family $(s_{\lambda})_{\lambda \text{ is a partition}}$ is a basis of the **k**-module Λ .
- **Theorem:** Fix $n \ge 0$. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be a partition with at most n nonzero entries. Then,

$$5_{\lambda}\left(x_{1}, x_{2}, \dots, x_{n}\right)$$

$$= \det\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right) / \det\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)$$

$$= \prod_{1 \leq i, j \leq n}\left(x_{i}-x_{j}\right)$$

$$(= \text{the Vandermonde determinant})$$

Here, for any $f \in \Lambda$, we let $f(x_1, x_2, ..., x_n)$ denote the result of substituting 0 for $x_{n+1}, x_{n+2}, x_{n+3}, ...$ in f; this is a symmetric **polynomial** in $x_1, x_2, ..., x_n$.

 For proofs, see any text on symmetric functions (e.g., Stanley's EC2, or Grinberg-Reiner, or Mark Wildon's notes).

• If μ and ν are two partitions, then $s_{\mu}s_{\nu}$ belongs to Λ (since Λ is a ring)

• If μ and ν are two partitions, then $s_{\mu}s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$s_{\mu}s_{
u} = \sum_{\lambda ext{ is a partition}} c_{\mu,
u}^{\lambda} s_{\lambda}$$

for some $c_{\mu,\nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

• If μ and ν are two partitions, then $s_{\mu}s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$s_{\mu}s_{
u} = \sum_{\lambda ext{ is a partition}} c_{\mu,
u}^{\lambda} s_{\lambda}$$

for some $c_{\mu,\nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

• The coefficients $c_{\mu,\nu}^{\lambda}$ are integers, and are called the Littlewood–Richardson coefficients.

• If μ and ν are two partitions, then $s_{\mu}s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$s_{\mu}s_{
u}=\sum_{\lambda ext{ is a partition}}c_{\mu,
u}^{\lambda}s_{\lambda}$$

for some $c_{\mu,\nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu,\nu}^{\lambda}$ are integers, and are called the Littlewood–Richardson coefficients.
- Example:

$$\begin{split} s_{(2,1)}s_{(3,1)} &= s_{(3,2,1,1)} + s_{(3,2,2)} + s_{(3,3,1)} \\ &+ s_{(4,1,1,1)} + 2s_{(4,2,1)} + s_{(4,3)} \\ &+ s_{(5,1,1)} + s_{(5,2)}, \end{split}$$
 so $c_{(2,1),(3,1)}^{(4,2,1)} = 2$ and $c_{(2,1),(3,1)}^{(3,3,1)} = 1.$

• If μ and ν are two partitions, then $s_{\mu}s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$s_{\mu}s_{
u}=\sum_{\lambda ext{ is a partition}}c_{\mu,
u}^{\lambda}s_{\lambda}$$

for some $c_{\mu,\nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu,\nu}^{\lambda}$ are integers, and are called the Littlewood–Richardson coefficients.
- Example:

$$\begin{split} s_{(2,1)}s_{(3,1)} &= s_{(3,2,1,1)} + s_{(3,2,2)} + s_{(3,3,1)} \\ &+ s_{(4,1,1,1)} + 2s_{(4,2,1)} + s_{(4,3)} \\ &+ s_{(5,1,1)} + s_{(5,2)}, \end{split}$$
 so $c_{(2,1),(3,1)}^{(4,2,1)} = 2$ and $c_{(2,1),(3,1)}^{(3,3,1)} = 1.$

• Theorem: The coefficients $c_{\mu,\nu}^{\lambda}$ are nonnegative integers. Various combinatorial interpretations ("Littlewood–Richardson rules") for them are known.

In order to formulate the classic (or, at least, best known)
 Littlewood–Richardson rule, we need a

Definition:

• Two partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ and $\mu = (\mu_1, \mu_2, \mu_3, \ldots)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \geq 1$ satisfies $\mu_i \leq \lambda_i$. (Equivalently: if the Young diagram of μ is contained in that of λ .)

In order to formulate the classic (or, at least, best known)
 Littlewood–Richardson rule, we need a

Definition:

- Two partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ and $\mu = (\mu_1, \mu_2, \mu_3, ...)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \ge 1$ satisfies $\mu_i \le \lambda_i$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ/μ .

In order to formulate the classic (or, at least, best known)
 Littlewood–Richardson rule, we need a

Definition:

- Two partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ and $\mu = (\mu_1, \mu_2, \mu_3, \ldots)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \ge 1$ satisfies $\mu_i \le \lambda_i$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ/μ .
- If λ/μ is a skew partition, then the Young diagram of λ/μ is obtained from the Young diagram λ when all cells of the Young diagram of μ are removed.

Example: The Young diagram of (4,2,1)/(1,1) is

In order to formulate the classic (or, at least, best known)
 Littlewood–Richardson rule, we need a

Definition:

- Two partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ and $\mu = (\mu_1, \mu_2, \mu_3, \ldots)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \ge 1$ satisfies $\mu_i \le \lambda_i$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ/μ .
- If λ/μ is a skew partition, then the *Young diagram* of λ/μ is obtained from the Young diagram λ when all cells of the Young diagram of μ are removed.
- Semistandard tableaux of shape λ/μ are defined just as ones of shape λ , except that we are now only filling the cells of λ/μ .

Littlewood–Richardson rule: the classical version

- Littlewood–Richardson rule: Let λ , μ and ν be three partitions. Then, $c_{\mu,\nu}^{\lambda}$ is the number of semistandard tableaux T of shape λ/μ such that cont $T=\nu$ and such that cont $(T|_{\mathsf{cols}\geq j})$ is a partition for each j. Here,
 - cont T denotes the sequence $(c_1, c_2, c_3, ...)$, where c_i is the number of entries equal to i in T;
 - $T \mid_{\operatorname{cols} \geq j}$ is what obtained from T when the first j-1 columns are deleted.
- **Example:** $c_{(2,1),(3,1)}^{(4,2,1)} = 2$ due to the two tableaux

Littlewood-Richardson rule: the classical version

- Littlewood–Richardson rule: Let λ , μ and ν be three partitions. Then, $c_{\mu,\nu}^{\lambda}$ is the number of semistandard tableaux T of shape λ/μ such that cont $T=\nu$ and such that cont $(T|_{\mathsf{cols}\geq j})$ is a partition for each j. Here,
 - cont T denotes the sequence $(c_1, c_2, c_3, ...)$, where c_i is the number of entries equal to i in T;
 - $T \mid_{\operatorname{cols} \geq j}$ is what obtained from T when the first j-1 columns are deleted.
- **Example:** $c_{(2,1),(3,1)}^{(4,2,1)} = 2$ due to the two tableaux

 The shortest proof is due to Stembridge (using ideas by Gasharov); see John R. Stembridge, A Concise Proof of the Littlewood-Richardson Rule, 2002, or Section 2.6 in Grinberg-Reiner.

Basic properties of Littlewood–Richardson coefficients

• Gradedness: $c_{\mu,\nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the *size* (i.e., the sum of the entries) of a partition κ . (This is because Λ is a graded ring and the s_{λ} are homogeneous.)

Basic properties of Littlewood–Richardson coefficients

- Gradedness: $c_{\mu,\nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the *size* (i.e., the sum of the entries) of a partition κ . (This is because Λ is a graded ring and the s_{λ} are homogeneous.)
- Transposition symmetry: $c_{\mu,\nu}^{\lambda} = c_{\mu^t,\nu^t}^{\lambda^t}$, where κ^t denotes the *transpose* of a partition κ (i.e., the partition whose Young diagram is obtained from that of κ by flipping across the main diagonal).

Example:

Basic properties of Littlewood–Richardson coefficients

- Gradedness: $c_{\mu,\nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the *size* (i.e., the sum of the entries) of a partition κ . (This is because Λ is a graded ring and the s_{λ} are homogeneous.)
- Transposition symmetry: $c_{\mu,\nu}^{\lambda} = c_{\mu^t,\nu^t}^{\lambda^t}$, where κ^t denotes the *transpose* of a partition κ (i.e., the partition whose Young diagram is obtained from that of κ by flipping across the main diagonal).
- Commutativity: $c_{\mu,\nu}^{\lambda} = c_{\nu,\mu}^{\lambda}$. (Obvious from the definition, but hard to prove combinatorially using the Littlewood–Richardson rule.)

Littlewood–Richardson coefficients: more symmetries

• Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.

Littlewood–Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

Example: If n = 5, then

$$(3,1,1)^{\vee 7} = (3,1,1,0,0)^{\vee 7} = (7-0,7-0,7-1,7-1,7-3)$$

= $(7,7,6,6,4)$.

Littlewood–Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

Illustration: If n = 3, then

$$(3,2)^{\vee 4} =$$

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k - \lambda_n, k - \lambda_{n-1}, \dots, k - \lambda_1) \in \mathsf{Par}[n].$$

This is called the k-complement of λ .

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k - \lambda_n, k - \lambda_{n-1}, \dots, k - \lambda_1) \in Par[n].$$

This is called the k-complement of λ .

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k - \lambda_n, k - \lambda_{n-1}, \dots, k - \lambda_1) \in \mathsf{Par}[n].$$

This is called the k-complement of λ .

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

$$(3,2)^{\vee 4} = (4,2,1)$$
.

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

• Complementation symmetry I: Let $\lambda, \mu, \nu \in \text{Par}[n]$ and $k \ge 0$ be such that all entries of λ, μ, ν are $\le k$. Then,

$$c_{\mu,\nu}^{\lambda} = c_{\nu,\mu}^{\lambda} = c_{\lambda^{\vee k},\nu}^{\mu^{\vee k}} = c_{\nu,\lambda^{\vee k}}^{\mu^{\vee k}} = c_{\mu,\lambda^{\vee k}}^{\nu^{\vee k}} = c_{\lambda^{\vee k},\mu}^{\nu^{\vee k}}.$$

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k-\lambda_n, k-\lambda_{n-1}, \ldots, k-\lambda_1) \in Par[n].$$

This is called the k-complement of λ .

• Complementation symmetry I: Let $\lambda, \mu, \nu \in \text{Par}[n]$ and $k \ge 0$ be such that all entries of λ, μ, ν are $\le k$. Then,

$$c_{\mu,\nu}^{\lambda} = c_{\nu,\mu}^{\lambda} = c_{\lambda^{\vee k},\nu}^{\mu^{\vee k}} = c_{\nu,\lambda^{\vee k}}^{\mu^{\vee k}} = c_{\mu,\lambda^{\vee k}}^{\nu^{\vee k}} = c_{\lambda^{\vee k},\mu}^{\nu^{\vee k}}.$$

(This can be proved by applying skew Schur functions to $x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}$, or by interpreting Schur functions as fundamental classes in the cohomology of the Grassmannian. See Exercise 2.9.15 in Grinberg-Reiner for the former proof.)

- Fix $n \in \mathbb{N}$. Let Par[n] be the set of all partitions having at most n nonzero entries.
- If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \text{Par}[n]$, and if $k \ge 0$ is such that all entries of λ are $\le k$, then $\lambda^{\vee k}$ shall denote the partition

$$(k - \lambda_n, k - \lambda_{n-1}, \dots, k - \lambda_1) \in \mathsf{Par}[n].$$

This is called the k-complement of λ .

• Complementation symmetry I: Let $\lambda, \mu, \nu \in \text{Par}[n]$ and $k \geq 0$ be such that all entries of λ, μ, ν are $\leq k$. Then,

$$c_{\mu,\nu}^{\lambda} = c_{\nu,\mu}^{\lambda} = c_{\lambda^{\vee k},\nu}^{\mu^{\vee k}} = c_{\nu,\lambda^{\vee k}}^{\mu^{\vee k}} = c_{\mu,\lambda^{\vee k}}^{\nu^{\vee k}} = c_{\lambda^{\vee k},\mu}^{\nu^{\vee k}}.$$

- Complementation symmetry II: Let $\lambda, \mu, \nu \in \text{Par}[n]$ and $q, r \geq 0$ be such that all entries of μ are $\leq q$, and all entries of ν are $\leq r$. Then:
 - If all entries of λ are $\leq q + r$, then $c_{u,\nu}^{\lambda} = c_{u,\nu q}^{\lambda \vee (q+r)}$
 - If not, then $c_{\mu,\nu}^{\lambda}=0$.

(See, e.g., Exercise 2.9.16 in Grinberg-Reiner.)

The Briand-Rosas symmetry

• In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood–Richardson coefficients $c_{\mu,\nu}^{\lambda}$ with $\lambda,\mu,\nu\in \operatorname{Par}[n]$ for fixed $n\in\{3,4,\ldots,7\}$.

The Briand-Rosas symmetry

- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood–Richardson coefficients $c_{\mu,\nu}^{\lambda}$ with $\lambda,\mu,\nu\in \operatorname{Par}[n]$ for fixed $n\in\{3,4,\ldots,7\}$.
- For $n \in \{4, 5, \ldots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu,\nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).

The Briand–Rosas symmetry

- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood–Richardson coefficients $c_{\mu,\nu}^{\lambda}$ with $\lambda,\mu,\nu\in \operatorname{Par}[n]$ for fixed $n\in\{3,4,\ldots,7\}$.
- For $n \in \{4, 5, \dots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu,\nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).
- For n = 3, they found an extra symmetry:

$$c_{(\mu_1,\mu_2),(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} = c_{(\mu_1+\nu_1-\lambda_2,\mu_2+\nu_1-\lambda_2),(\lambda_2,\nu_2)}^{(\lambda_1,\nu_1,\lambda_3)} \ .$$

(Read the right hand side as 0 if the tuples are not partitions.)

The Briand-Rosas symmetry

- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood–Richardson coefficients $c_{\mu,\nu}^{\lambda}$ with $\lambda,\mu,\nu\in \operatorname{Par}[n]$ for fixed $n\in\{3,4,\ldots,7\}$.
- For $n \in \{4, 5, \ldots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu,\nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).
- For n = 3, they found an extra symmetry:

$$c_{(\mu_1,\mu_2),(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} = c_{(\mu_1+\nu_1-\lambda_2,\mu_2+\nu_1-\lambda_2),(\lambda_2,\nu_2)}^{(\lambda_1,\nu_1,\lambda_3)} \ .$$

(Read the right hand side as 0 if the tuples are not partitions.) **Question:** Is there a non-computer proof? What is the meaning of this identity?

Chapter 2

The Pelletier-Ressayre symmetry

References (among many):

- Darij Grinberg, The Pelletier-Ressayre hidden symmetry for Littlewood-Richardson coefficients, arXiv:2008.06128.
- Maxime Pelletier, Nicolas Ressayre, Some unexpected properties of Littlewood-Richardson coefficients, arXiv:2005.09877.
- Robert Coquereaux, Jean-Bernard Zuber, On sums of tensor and fusion multiplicities, 2011.

• Theorem (Coquereaux and Zuber, 2011): Let $n \ge 0$ and $\mu, \nu \in \text{Par}[n]$. Let $k \ge 0$ be such that all entries of μ are $\le k$. Then,

$$\sum_{\lambda \in \mathsf{Par}[n]} c_{\mu,\nu}^{\lambda} = \sum_{\lambda \in \mathsf{Par}[n]} c_{\mu^{\vee k},\nu}^{\lambda}.$$

(See https://mathoverflow.net/a/236220/ for a hint at a combinatorial proof.)

• Theorem (Coquereaux and Zuber, 2011): Let $n \ge 0$ and $\mu, \nu \in \text{Par}[n]$. Let $k \ge 0$ be such that all entries of μ are $\le k$. Then,

$$\sum_{\lambda \in \mathsf{Par}[n]} c_{\mu,
u}^{\lambda} = \sum_{\lambda \in \mathsf{Par}[n]} c_{\mu^{ee k},
u}^{\lambda}.$$

• This can be interpreted in terms of Schur **polynomials**. For any $\lambda \in \text{Par}[n]$, the *Schur polynomial* $s_{\lambda}(x_1, x_2, \dots, x_n)$ is the symmetric polynomial

$$s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$$

$$= \det\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right) / \det\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)$$

$$= \prod_{1 \leq i < j \leq n} (x_{i}-x_{j})$$

$$(= \text{the Vandermonde determinant})$$

in
$$x_1, x_2, \dots, x_n$$
 obtained by setting $x_{n+1} = x_{n+2} = x_{n+3} = \dots = 0$ in s_{λ} .

• Theorem (Coquereaux and Zuber, 2011): Let $n \ge 0$ and $\mu, \nu \in \text{Par}[n]$. Let $k \ge 0$ be such that all entries of μ are $\le k$. Then,

$$\sum_{\lambda \in \mathsf{Par}[n]} c_{\mu,\nu}^{\lambda} = \sum_{\lambda \in \mathsf{Par}[n]} c_{\mu^{\vee k},\nu}^{\lambda}.$$

• This can be interpreted in terms of Schur **polynomials**. For any $\lambda \in \text{Par}[n]$, the *Schur polynomial* $s_{\lambda}(x_1, x_2, \dots, x_n)$ is the symmetric polynomial

$$s_{\lambda}(x_1,x_2,\ldots,x_n)$$
.

• The family $(s_{\lambda}(x_1, x_2, \dots, x_n))_{\lambda \in \mathsf{Par}[n]}$ is a basis of the **k**-module of symmetric polynomials in x_1, x_2, \dots, x_n . We call it the *Schur basis*.

The theorem of Coquereaux and Zuber says that

coeffsum
$$(s_{\mu}(x_1, x_2, \dots, x_n) s_{\nu}(x_1, x_2, \dots, x_n))$$

= coeffsum $(s_{\mu^{\vee k}}(x_1, x_2, \dots, x_n) s_{\nu}(x_1, x_2, \dots, x_n))$,

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

The theorem of Coquereaux and Zuber says that

$$\begin{split} & \mathsf{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\ &= \mathsf{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right), \end{split}$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

So the products

$$s_{\mu}\left(x_1, x_2, \dots, x_n\right) s_{\nu}\left(x_1, x_2, \dots, x_n\right)$$

and $s_{\mu^{\vee k}}\left(x_1, x_2, \dots, x_n\right) s_{\nu}\left(x_1, x_2, \dots, x_n\right)$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients?

The theorem of Coquereaux and Zuber says that

$$\begin{aligned} & \operatorname{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\ & = \operatorname{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right), \end{aligned}$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

So the products

$$s_{\mu}\left(x_1, x_2, \dots, x_n\right) s_{\nu}\left(x_1, x_2, \dots, x_n\right)$$

and $s_{\mu^{\vee k}}\left(x_1, x_2, \dots, x_n\right) s_{\nu}\left(x_1, x_2, \dots, x_n\right)$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients? **No**.

(Counterexample:
$$n = 5$$
 and $\mu = (5, 2, 1)$ and $\nu = (4, 2, 2)$.)

The theorem of Coquereaux and Zuber says that

$$\begin{split} & \mathsf{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\ &= \mathsf{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right), \end{split}$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

So the products

$$s_{\mu}\left(x_1,x_2,\ldots,x_n\right)s_{\nu}\left(x_1,x_2,\ldots,x_n\right)$$
 and $s_{\mu^{\vee k}}\left(x_1,x_2,\ldots,x_n\right)s_{\nu}\left(x_1,x_2,\ldots,x_n\right)$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients? \mathbf{No} .

(Counterexample:
$$n = 5$$
 and $\mu = (5, 2, 1)$ and $\nu = (4, 2, 2)$.) **Question:** Does this hold for $n \le 4$? (Proved for $n = 3$.)

The Pelletier-Ressayre conjecture

• Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular – i.e., when $\mu = (a+b,a^{n-2})$ for some $a,b \geq 0$. Here, a^{n-2} means $\underbrace{a,a,\ldots,a}_{n-2 \text{ times}}$. In this case, for k=a+b, we have $\mu^{\vee k}=(a+b,b^{n-2})$. (Taking k higher makes no real difference.)

The Pelletier–Ressayre conjecture

- Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular i.e., when $\mu = (a+b,a^{n-2})$ for some $a,b \geq 0$. Here, a^{n-2} means $\underbrace{a,a,\ldots,a}_{n-2 \text{ times}}$. In this case, for k=a+b, we have $\mu^{\vee k}=(a+b,b^{n-2})$. (Taking k higher makes no real difference.)
- In other words:

Conjecture (Pelletier and Ressayre, 2020): Let
$$n \ge 0$$
 and $\nu \in \operatorname{Par}[n]$. Let $a,b \ge 0$. Let $\alpha = (a+b,a^{n-2})$ and $\beta = (a+b,b^{n-2})$. Then,
$$\left\{c_{\alpha,\nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text{multiset}} = \left\{c_{\beta,\nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text{multiset}}.$$

The Pelletier-Ressayre conjecture

• Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular – i.e., when $\mu = (a+b,a^{n-2})$ for some $a,b \geq 0$. Here, a^{n-2} means $\underbrace{a,a,\ldots,a}_{n-2 \text{ times}}$. In this case, for k=a+b, we have $\mu^{\vee k}=(a+b,b^{n-2})$. (Taking k higher makes no real difference.)

In other words:

Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a,b \geq 0$. Let $\alpha = \left(a+b,a^{n-2}\right)$ and $\beta = \left(a+b,b^{n-2}\right)$. Then, $\left\{c_{\alpha,\nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text{multiset}} = \left\{c_{\beta,\nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text{multiset}}.$

• This means that there should be a bijection $\varphi: \operatorname{Par}[n] \to \operatorname{Par}[n]$ such that

$$c_{lpha,
u}^{\lambda}=c_{eta,
u}^{arphi(\lambda)}\qquad \qquad ext{for each }\lambda\in\operatorname{Par}\left[n
ight] .$$

The Pelletier–Ressayre conjecture, restated

• Conjecture (Pelletier and Ressayre, 2020): Let $n \ge 0$ and $\nu \in \operatorname{Par}[n]$. Let $a,b \ge 0$. Let $\alpha = (a+b,a^{n-2})$ and $\beta = (a+b,b^{n-2})$. Then, there is a bijection $\varphi : \operatorname{Par}[n] \to \operatorname{Par}[n]$ such that

$$c_{lpha,
u}^{\lambda}=c_{eta,
u}^{arphi(\lambda)}\qquad \qquad ext{for each }\lambda\in\operatorname{Par}\left[\mathit{n}
ight].$$

The Pelletier-Ressayre conjecture, restated

• Conjecture (Pelletier and Ressayre, 2020): Let $n \ge 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \ge 0$. Let $\alpha = (a+b, a^{n-2})$ and $\beta = (a+b, b^{n-2})$. Then, there is a bijection $\varphi : \operatorname{Par}[n] \to \operatorname{Par}[n]$ such that

$$c_{lpha,
u}^{\lambda}=c_{eta,
u}^{arphi(\lambda)}\qquad \qquad ext{for each }\lambda\in\operatorname{\mathsf{Par}}\left[\mathit{n}
ight].$$

• Theorem (G., 2020): This is true. Moreover, this bijection φ can more or less be defined explicitly in terms of maxima of sums of entries of λ and ν .

("More or less" means that we find a bijection $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$, not $\varphi: \operatorname{Par}[n] \to \operatorname{Par}[n]$, where we set $c_{\alpha,\nu}^{\lambda} = c_{\beta,\nu}^{\lambda} = 0$ for all $\lambda \in \mathbb{Z}^n \setminus \operatorname{Par}[n]$.)

The Pelletier-Ressayre conjecture, restated

• Conjecture (Pelletier and Ressayre, 2020): Let $n \ge 0$ and $\nu \in \operatorname{Par}[n]$. Let $a,b \ge 0$. Let $\alpha = (a+b,a^{n-2})$ and $\beta = (a+b,b^{n-2})$. Then, there is a bijection $\varphi : \operatorname{Par}[n] \to \operatorname{Par}[n]$ such that

$$c_{lpha,
u}^{\lambda}=c_{eta,
u}^{arphi(\lambda)}\qquad \qquad ext{for each }\lambda\in\operatorname{\mathsf{Par}}\left[\mathit{n}
ight].$$

- Theorem (G., 2020): This is true. Moreover, this bijection φ can more or less be defined explicitly in terms of maxima of sums of entries of λ and ν .
 - ("More or less" means that we find a bijection $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$, not $\varphi: \operatorname{Par}[n] \to \operatorname{Par}[n]$, where we set $c_{\alpha,\nu}^{\lambda} = c_{\beta,\nu}^{\lambda} = 0$ for all $\lambda \in \mathbb{Z}^n \setminus \operatorname{Par}[n]$.)
- ullet The rest of this talk will sketch how this bijection φ was found.

• First, we notice that

$$\alpha=\left(a+b,a^{n-2}\right)=\left(a+b,a^{n-2},0\right) \qquad \text{(as n-tuple)}$$

$$=\left(b,0^{n-2},-a\right)+a$$
 (where "+a" means "add \$a\$ to each entry").

First, we notice that

$$\alpha = \left(a+b, a^{n-2}\right) = \left(a+b, a^{n-2}, 0\right) \qquad \text{(as n-tuple)}$$

$$= \left(b, 0^{n-2}, -a\right) + a$$
 (where "+a" means "add \$a\$ to each entry"). Likewise,
$$\beta = \left(a, 0^{n-2}, -b\right) + b.$$

First, we notice that

$$\alpha = \left(a+b, a^{n-2}\right) = \left(a+b, a^{n-2}, 0\right)$$
 (as *n*-tuple)
$$= \left(b, 0^{n-2}, -a\right) + a$$

(where "+a" means "add a to each entry"). Likewise, $\beta = (a, 0^{n-2}, -b) + b$.

• This suggest allowing "partitions with negative entries". We call them **snakes**.

First, we notice that

$$\alpha = \left(a+b, a^{n-2}\right) = \left(a+b, a^{n-2}, 0\right)$$
 (as *n*-tuple)
$$= \left(b, 0^{n-2}, -a\right) + a$$

(where "+a" means "add a to each entry"). Likewise, $\beta = (a, 0^{n-2}, -b) + b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A *snake* will mean an *n*-tuple $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ with $\lambda_1 > \lambda_2 > \dots > \lambda_n$. Thus,

$$Par[n] \subseteq \{snakes\} \subseteq \mathbb{Z}^n$$
.

First, we notice that

$$\alpha = \left(a+b, a^{n-2}\right) = \left(a+b, a^{n-2}, 0\right)$$
 (as *n*-tuple)
$$= \left(b, 0^{n-2}, -a\right) + a$$

(where "+a" means "add a to each entry"). Likewise, $\beta = (a, 0^{n-2}, -b) + b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A *snake* will mean an *n*-tuple $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. Thus,

$$Par[n] \subseteq \{snakes\} \subseteq \mathbb{Z}^n$$
.

• Snakes index rational representations of GL (n): See John R. Stembridge, *Rational tableaux and the tensor algebra of* \mathfrak{gl}_n , 1987.

First, we notice that

$$\alpha = \left(a+b, a^{n-2}\right) = \left(a+b, a^{n-2}, 0\right)$$
 (as *n*-tuple)
$$= \left(b, 0^{n-2}, -a\right) + a$$

(where "+a" means "add a to each entry"). Likewise, $\beta = (a, 0^{n-2}, -b) + b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A *snake* will mean an *n*-tuple $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$. Thus,

$$Par[n] \subseteq \{snakes\} \subseteq \mathbb{Z}^n$$
.

- If $\lambda \in \mathbb{Z}^n$ is any *n*-tuple, then
 - we let λ_i denote the *i*-th entry of λ (for any *i*);
 - we let $\lambda + a$ denote the *n*-tuple $(\lambda_1 + a, \lambda_2 + a, \dots, \lambda_n + a)$:
 - we let λa denote the *n*-tuple $(\lambda_1 a, \lambda_2 a, \dots, \lambda_n a)$.

• We have defined a Schur polynomial $s_{\lambda}(x_1, x_2, \dots, x_n) \in \mathbf{k}[x_1, x_2, \dots, x_n]$ for any $\lambda \in \text{Par}[n]$. We now denote it by \overline{s}_{λ} .

- We have defined a Schur polynomial $s_{\lambda}(x_1, x_2, \dots, x_n) \in \mathbf{k}[x_1, x_2, \dots, x_n]$ for any $\lambda \in \mathsf{Par}[n]$. We now denote it by \overline{s}_{λ} .
- It is easy to see that

$$\overline{s}_{\lambda+a} = (x_1 x_2 \cdots x_n)^a \overline{s}_{\lambda}$$
 for any $\lambda \in \text{Par}[n]$ and $a \ge 0$.

- We have defined a Schur polynomial $s_{\lambda}(x_1, x_2, \dots, x_n) \in \mathbf{k}[x_1, x_2, \dots, x_n]$ for any $\lambda \in \text{Par}[n]$. We now denote it by \overline{s}_{λ} .
- It is easy to see that

$$\overline{s}_{\lambda+a} = (x_1 x_2 \cdots x_n)^a \overline{s}_{\lambda}$$
 for any $\lambda \in \text{Par}[n]$ and $a \ge 0$.

• This allows us to extend the definition of \overline{s}_{λ} from the case $\lambda \in \operatorname{Par}[n]$ to the more general case $\lambda \in \{\operatorname{snakes}\}$: If λ is a snake, then we choose some $a \geq 0$ such that $\lambda + a \in \operatorname{Par}[n]$, and define

$$\overline{s}_{\lambda} = (x_1 x_2 \cdots x_n)^{-a} \overline{s}_{\lambda+a}.$$

This is a Laurent polynomial in $\mathbf{k} \left[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1} \right]$.

- We have defined a Schur polynomial $s_{\lambda}(x_1, x_2, \dots, x_n) \in \mathbf{k}[x_1, x_2, \dots, x_n]$ for any $\lambda \in \text{Par}[n]$. We now denote it by \overline{s}_{λ} .
- It is easy to see that

$$\overline{s}_{\lambda+a} = (x_1 x_2 \cdots x_n)^a \overline{s}_{\lambda}$$
 for any $\lambda \in \text{Par}[n]$ and $a \ge 0$.

• This allows us to extend the definition of \overline{s}_{λ} from the case $\lambda \in \operatorname{Par}[n]$ to the more general case $\lambda \in \{\operatorname{snakes}\}$: If λ is a snake, then we choose some $a \geq 0$ such that $\lambda + a \in \operatorname{Par}[n]$, and define

$$\overline{s}_{\lambda} = (x_1 x_2 \cdots x_n)^{-a} \overline{s}_{\lambda+a}.$$

This is a Laurent polynomial in $\mathbf{k} \left[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1} \right]$.

• Alternatively, we can define \overline{s}_{λ} explicitly by

$$\overline{s}_{\lambda} = \det\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i,j \leq n}\right) \diagup \det\left(\left(x_{i}^{n-j}\right)_{1 \leq i,j \leq n}\right)$$

(same formula as before).

• For any $k \ge 0$, define the two Laurent polynomials

$$\begin{array}{l} h_k^+ = h_k \left(x_1, x_2, \dots, x_n \right), \\ h_k^- = h_k \left(x_1^{-1}, x_2^{-1}, \dots, x_n^{-1} \right). \end{array}$$
 (Recall: $h_k = s_{(k)} = \sum_{i_1 \leq i_2 \leq \dots \leq i_k} x_{i_1} x_{i_2} \cdots x_{i_k}.)$

• For any $k \ge 0$, define the two Laurent polynomials

$$h_{k}^{+} = h_{k}(x_{1}, x_{2}, \dots, x_{n}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},$$

$$h_{k}^{-} = h_{k}(x_{1}^{-1}, x_{2}^{-1}, \dots, x_{n}^{-1}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1}.$$

• For any $k \ge 0$, define the two Laurent polynomials

$$h_{k}^{+} = h_{k}(x_{1}, x_{2}, \dots, x_{n}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},$$

$$h_{k}^{-} = h_{k}(x_{1}^{-1}, x_{2}^{-1}, \dots, x_{n}^{-1}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1}.$$

• **Proposition:** Let $a, b \ge 0$. Then,

$$\overline{s}_{(b,0^{n-2},-a)} = h_a^- h_b^+ - h_{a-1}^- h_{b-1}^+.$$

• For any $k \ge 0$, define the two Laurent polynomials

$$h_{k}^{+} = h_{k}(x_{1}, x_{2}, \dots, x_{n}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},$$

$$h_{k}^{-} = h_{k}(x_{1}^{-1}, x_{2}^{-1}, \dots, x_{n}^{-1}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1}.$$

• **Proposition:** Let $a, b \ge 0$. Then,

$$\overline{s}_{(b,0^{n-2},-a)} = h_a^- h_b^+ - h_{a-1}^- h_{b-1}^+.$$

• Corollary: Let $a, b \ge 0$. Let $\alpha = (a + b, a^{n-2})$ and $\beta = (a + b, b^{n-2})$. Then, $\overline{s}_{\alpha} = (x_1 x_2 \cdots x_n)^a \cdot (h_a^- h_b^+ - h_{a-1}^- h_{b-1}^+);$ $\overline{s}_{\beta} = (x_1 x_2 \cdots x_n)^b \cdot (h_b^- h_a^+ - h_{b-1}^- h_{a-1}^+).$

• For any $k \ge 0$, define the two Laurent polynomials

$$h_{k}^{+} = h_{k}(x_{1}, x_{2}, \dots, x_{n}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},$$

$$h_{k}^{-} = h_{k}(x_{1}^{-1}, x_{2}^{-1}, \dots, x_{n}^{-1}) = \sum_{1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1}.$$

• **Proposition:** Let $a, b \ge 0$. Then,

$$\overline{s}_{(b,0^{n-2},-a)} = h_a^- h_b^+ - h_{a-1}^- h_{b-1}^+.$$

• Corollary: Let $a, b \ge 0$. Let $\alpha = (a + b, a^{n-2})$ and $\beta = (a + b, b^{n-2})$. Then, $\overline{s}_{\alpha} = (x_1 x_2 \cdots x_n)^a \cdot (h_a^- h_b^+ - h_{a-1}^- h_{b-1}^+);$ $\overline{s}_{\beta} = (x_1 x_2 \cdots x_n)^b \cdot (h_b^- h_a^+ - h_{b-1}^- h_{a-1}^+).$

• Thus, if we "know how to multiply by" h_k^- and h_k^+ , then we "know how to multiply by" \overline{s}_{α} and \overline{s}_{β} .

• Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$h_k \cdot s_\lambda = \sum_{\substack{\mu \text{ is a partition;} \ |\mu| - |\lambda| = k; \ \mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots}} s_\mu.$$

- We let $h_k = 0$ if k < 0. (And we recall that $h_0 = 1$.)
- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any partition κ .
- The *i*-th entry of a partition κ is denoted by κ_i .

• Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$h_k \cdot s_\lambda = \sum_{\substack{\mu \text{ is a partition;} \ |\mu| - |\lambda| = k; \ \mu_1 \geq \lambda_1 \geq \mu_2 \geq \lambda_2 \geq \cdots}} s_\mu.$$

- We let $h_k = 0$ if k < 0. (And we recall that $h_0 = 1$.)
- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any partition κ .
- The *i*-th entry of a partition κ is denoted by κ_i .
- Note that the chain of inequalities $\mu_1 \geq \lambda_1 \geq \mu_2 \geq \lambda_2 \geq \cdots$ is saying that the diagram μ/λ is a *horizontal strip* (i.e., has no two cells in the same column). For example,

• Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$h_k \cdot s_\lambda = \sum_{\substack{\mu \text{ is a partition;} \ |\mu| - |\lambda| = k; \ \mu_1 \geq \lambda_1 \geq \mu_2 \geq \lambda_2 \geq \cdots}} s_\mu.$$

- We let $h_k = 0$ if k < 0. (And we recall that $h_0 = 1$.)
- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any partition κ .
- The *i*-th entry of a partition κ is denoted by κ_i .
- The Pieri rule is actually a particular case of the Littlewood–Richardson rule (exercise!).

• Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$h_k \cdot s_\lambda = \sum_{\substack{\mu \text{ is a partition;} \ |\mu| - |\lambda| = k; \ \mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots}} s_\mu.$$

- We let $h_k = 0$ if k < 0. (And we recall that $h_0 = 1$.)
- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any partition κ .
- The *i*-th entry of a partition κ is denoted by κ_i .
- By evaluating both sides at x_1, x_2, \ldots, x_n (and recalling that $s_{\mu}(x_1, x_2, \ldots, x_n) = 0$ whenever μ is a partition with more than n nonzero entries), we obtain:

• Theorem (h^+ -Pieri rule for symmetric polynomials): Let $\lambda \in \text{Par}[n]$. Let $k \in \mathbb{Z}$. Then,

$$h_k^+ \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \mathsf{Par}[n]; \\ |\mu| - |\lambda| = k; \\ \mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots \ge \mu_n \ge \lambda_n}} \overline{s}_{\mu}.$$

- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any *n*-tuple κ .
- The *i*-th entry of an *n*-tuple κ is denoted by κ_i .

• Theorem (h^+ -Pieri rule for symmetric polynomials): Let $\lambda \in \text{Par}[n]$. Let $k \in \mathbb{Z}$. Then,

$$h_k^+ \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \mathsf{Par}[n]; \\ |\mu| - |\lambda| = k; \\ \mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots \ge \mu_n \ge \lambda_n}} \overline{s}_{\mu}.$$

- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any *n*-tuple κ .
- The *i*-th entry of an *n*-tuple κ is denoted by κ_i .
- We can easily extend this from Par [n] to {snakes}, and obtain the following:

• Theorem (h^+ -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^+ \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \{\mathsf{snakes}\};\\ |\mu| - |\lambda| = k;\\ \mu_1 \geq \lambda_1 \geq \mu_2 \geq \lambda_2 \geq \cdots \geq \mu_n \geq \lambda_n}} \overline{s}_{\mu}.$$

- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any *n*-tuple κ .
- The *i*-th entry of an *n*-tuple κ is denoted by κ_i .

• Theorem (h^+ -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^+ \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \{ \text{snakes} \}; \\ |\mu| - |\lambda| = k; \\ \mu \rightharpoonup \lambda}} \overline{s}_{\mu}.$$

- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any *n*-tuple κ .
- The *i*-th entry of an *n*-tuple κ is denoted by κ_i .
- The notation $\mu \longrightarrow \lambda$ stands for $\mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots \ge \mu_n \ge \lambda_n$. (Note that if $\lambda, \mu \in \mathbb{Z}^n$ satisfy $\mu \rightharpoonup \lambda$, then λ and μ are snakes automatically.)

• Theorem (h^+ -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^+ \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \{ \text{snakes} \}; \\ |\mu| - |\lambda| = k; \\ \mu \rightharpoonup \lambda}} \overline{s}_{\mu}.$$

- We let $|\kappa|$ denote the *size* (i.e., the sum of the entries) of any *n*-tuple κ .
- The *i*-th entry of an *n*-tuple κ is denoted by κ_i .
- The notation $\mu \longrightarrow \lambda$ stands for $\mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \cdots \ge \mu_n \ge \lambda_n$. (Note that if $\lambda, \mu \in \mathbb{Z}^n$ satisfy $\mu \rightharpoonup \lambda$, then λ and μ are snakes automatically.)
- So we know how to multiply \overline{s}_{λ} by h_k^+ . What about h_k^- ?

Multiplying by h_{k}^{-} : the reversed h-Pieri rule

• Theorem (h^- -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^- \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \{ \text{snakes} \}; \\ |\lambda| - |\mu| = k; \\ \lambda \rightharpoonup \mu}} \overline{s}_{\mu}.$$

Multiplying by h_{ν}^{-} : the reversed h-Pieri rule

• Theorem (h^- -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^- \cdot \overline{s}_{\lambda} = \sum_{\substack{\mu \in \{ \text{snakes} \}; \\ |\lambda| - |\mu| = k; \\ \lambda \rightharpoonup \mu}} \overline{s}_{\mu}.$$

• This follows from the h^+ -Pieri rule by substituting $x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}$ for x_1, x_2, \ldots, x_n , using the following fact: **Proposition:** For any snake λ , we have

$$\overline{s}_{\lambda^{\vee}} = \overline{s}_{\lambda} \left(x_1^{-1}, x_2^{-1}, \dots, x_n^{-1} \right).$$

Here, λ^{\vee} denotes the snake $(-\lambda_n, -\lambda_{n-1}, \dots, -\lambda_1)$ (formerly denoted by $\lambda^{\vee 0}$, but now defined for any snake λ).

Multiplying by h_{ν}^{-} : the reversed h-Pieri rule

• Theorem (h^- -Pieri rule for Laurent polynomials): Let $\lambda \in \{\text{snakes}\}$. Let $k \in \mathbb{Z}$. Then,

$$h_k^- \cdot \overline{s}_\lambda = \sum_{\substack{\mu \in \{ \text{snakes} \}; \\ |\lambda| - |\mu| = k; \\ \lambda \rightharpoonup \mu}} \overline{s}_\mu.$$

• This follows from the h^+ -Pieri rule by substituting $x_1^{-1}, x_2^{-1}, \ldots, x_n^{-1}$ for x_1, x_2, \ldots, x_n , using the following fact: **Proposition:** For any snake λ , we have

$$\overline{s}_{\lambda^{\vee}} = \overline{s}_{\lambda} \left(x_1^{-1}, x_2^{-1}, \dots, x_n^{-1} \right).$$

Here, λ^{\vee} denotes the snake $(-\lambda_n, -\lambda_{n-1}, \dots, -\lambda_1)$ (formerly denoted by $\lambda^{\vee 0}$, but now defined for any snake λ).

• So we now know how to multiply \bar{s}_{λ} by h_{k}^{-} .

Back to the conjecture

A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$h_{a}^{-}h_{b}^{+}\overline{s}_{\mu}=\sum_{\gamma \text{ is a snake}}\left|R_{\mu,a,b}\left(\gamma\right)\right|\overline{s}_{\gamma},$$

where $R_{\mu,a,b}(\gamma)$ is the set of all snakes ν satisfying

$$\mu \rightharpoonup \nu \quad \text{and} \quad |\mu| - |\nu| = a \quad \text{and} \quad \gamma \rightharpoonup \nu \quad \text{and} \quad |\gamma| - |\nu| = b.$$

Back to the conjecture

A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$h_{a}^{-}h_{b}^{+}\overline{s}_{\mu}=\sum_{\gamma \text{ is a snake}}\left|R_{\mu,a,b}\left(\gamma\right)\right|\overline{s}_{\gamma},$$

where $R_{\mu,a,b}(\gamma)$ is the set of all snakes ν satisfying

$$\mu \rightharpoonup \nu$$
 and $|\mu| - |\nu| = a$ and $\gamma \rightharpoonup \nu$ and $|\gamma| - |\nu| = b$.

• Corollary: Let $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Define the partition $\alpha = (a + b, a^{n-2})$. Then, every $\lambda \in \mathbb{Z}^n$ satisfies

$$c_{\alpha,\nu}^{\lambda} = |R_{\nu,a,b}(\lambda - a)| - |R_{\nu,a-1,b-1}(\lambda - a)|.$$

Here, we understand $c_{\alpha,\nu}^{\lambda}$ to mean 0 if λ is not a partition (i.e., not a snake with all entries nonnegative).

Back to the conjecture

A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$h_{a}^{-}h_{b}^{+}\overline{s}_{\mu}=\sum_{\gamma \text{ is a snake}}\left|R_{\mu,a,b}\left(\gamma\right)\right|\overline{s}_{\gamma},$$

where $R_{\mu,a,b}(\gamma)$ is the set of all snakes ν satisfying

$$\mu
ightharpoonup
u$$
 and $|\mu| - |\nu| = a$ and $\gamma
ightharpoonup
u$ and $|\gamma| - |\nu| = b$.

• Corollary: Let $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Define the partition $\alpha = \left(a + b, a^{n-2}\right)$. Then, every $\lambda \in \mathbb{Z}^n$ satisfies

$$c_{lpha,
u}^{\lambda} = |R_{
u,a,b}(\lambda - a)| - |R_{
u,a-1,b-1}(\lambda - a)|.$$

Here, we understand $c_{\alpha,\nu}^{\lambda}$ to mean 0 if λ is not a partition (i.e., not a snake with all entries nonnegative).

• Recall that we want a bijection $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$c_{\alpha,\mu}^{\lambda} = c_{\beta,\mu}^{\varphi(\lambda)}$$
 for each $\lambda \in \operatorname{Par}\left[n\right]$.

• So we want a bijection $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$\begin{split} |R_{\mu,a,b}\left(\lambda-a\right)| - |R_{\mu,a-1,b-1}\left(\lambda-a\right)| \\ &= |R_{\mu,b,a}\left(\varphi\left(\lambda\right)-b\right)| - |R_{\mu,b-1,a-1}\left(\varphi\left(\lambda\right)-b\right)| \end{split}$$
 for all $\lambda \in \mathbb{Z}^n$.

• So we want a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$|R_{\mu,a,b}(\gamma)| - |R_{\mu,a-1,b-1}(\gamma)|$$

= |R_{\mu,b,a}(\mathbf{f}(\gamma))| - |R_{\mu,b-1,a-1}(\mathbf{f}(\gamma))|

for all $\gamma \in \mathbb{Z}^n$.

• So we want a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$|R_{\mu,a,b}(\gamma)| - |R_{\mu,a-1,b-1}(\gamma)|$$

= $|R_{\mu,b,a}(\mathbf{f}(\gamma))| - |R_{\mu,b-1,a-1}(\mathbf{f}(\gamma))|$

for all $\gamma \in \mathbb{Z}^n$.

• It clearly suffices to find a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\mathbf{f}(\gamma))|$$
 for all $\gamma \in \mathbb{Z}^n$,

as long as this \mathbf{f} is independent on a and b.

• So we want a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$|R_{\mu,a,b}(\gamma)| - |R_{\mu,a-1,b-1}(\gamma)|$$

= $|R_{\mu,b,a}(\mathbf{f}(\gamma))| - |R_{\mu,b-1,a-1}(\mathbf{f}(\gamma))|$

for all $\gamma \in \mathbb{Z}^n$.

• It clearly suffices to find a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ such that

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\mathbf{f}(\gamma))|$$
 for all $\gamma \in \mathbb{Z}^n$,

as long as this \mathbf{f} is independent on a and b.

• In other words, if $\mathbf{f}(\gamma) = \eta$, then we want

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\eta)|.$$

• In other words, if $\mathbf{f}(\gamma) = \eta$, then we want there to be a bijection from the snakes ν satisfying

$$\mu \rightharpoonup \nu$$
 and $|\mu|-|\nu|=a$ and $\gamma \rightharpoonup \nu$ and $|\gamma|-|\nu|=b$ to the snakes ζ satisfying

$$\mu \rightharpoonup \zeta$$
 and $|\mu| - |\zeta| = b$ and $\eta \rightharpoonup \zeta$ and $|\eta| - |\zeta| = a$.

• In other words, if $\mathbf{f}(\gamma) = \eta$, then we want there to be a bijection from the snakes ν satisfying

$$\mu \rightharpoonup \nu$$
 and $|\mu| - |\nu| = a$ and $\gamma \rightharpoonup \nu$ and $|\gamma| - |\nu| = b$ to the snakes ζ satisfying

$$\mu
ightharpoonup \zeta$$
 and $|\mu| - |\zeta| = b$ and $\eta
ightharpoonup \zeta$ and $|\eta| - |\zeta| = a$.

• Forget at first about the size conditions ($|\mu| - |\nu| = a$, etc.). Then the former snakes satisfy

$$\begin{array}{ll} \mu \rightharpoonup \nu & \text{and} & \gamma \rightharpoonup \nu \\ \\ \iff & \left(\mu_{i} \geq \nu_{i} \text{ for all } i \leq n\right) \land \left(\nu_{i} \geq \mu_{i+1} \text{ for all } i < n\right) \\ & \land \left(\gamma_{i} \geq \nu_{i} \text{ for all } i \leq n\right) \land \left(\gamma_{i} \geq \gamma_{i+1} \text{ for all } i < n\right) \\ \\ \iff & \left(\min\left\{\mu_{i}, \gamma_{i}\right\} \geq \nu_{i} \text{ for all } i \leq n\right) \\ & \land \left(\nu_{i} \geq \max\left\{\mu_{i+1}, \gamma_{i+1}\right\} \text{ for all } i < n\right) \\ \\ \iff & \left(\nu_{i} \in \left[\max\left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min\left\{\mu_{i}, \gamma_{i}\right\}\right] \text{ for all } i < n\right) \\ & \land \left(\min\left\{\mu_{n}, \gamma_{n}\right\} \geq \nu_{n}\right). \end{array}$$

Compare the condition

$$\nu_i \in \left[\max\left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min\left\{\mu_i, \gamma_i\right\}\right] \text{ for all } i < n$$
 with the analogous condition
$$\zeta_i \in \left[\max\left\{\mu_{i+1}, \eta_{i+1}\right\}, \min\left\{\mu_i, \eta_i\right\}\right] \text{ for all } i < n$$
 on ζ .

Compare the condition

on ζ .

$$\nu_i \in [\max\{\mu_{i+1}, \gamma_{i+1}\}, \min\{\mu_i, \gamma_i\}]$$
 for all $i < n$

with the analogous condition

$$\zeta_i \in \left[\max \left\{ \mu_{i+1}, \eta_{i+1} \right\}, \min \left\{ \mu_i, \eta_i \right\} \right] \text{ for all } i < n$$

• It is thus reasonable to hope for

$$\min \{\mu_i, \gamma_i\} - \max \{\mu_{i+1}, \gamma_{i+1}\} = \min \{\mu_i, \eta_i\} - \max \{\mu_{i+1}, \eta_{i+1}\}$$
 for all $i < n$.

Compare the condition

on ζ .

$$\nu_i \in \left[\max\left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min\left\{\mu_i, \gamma_i\right\}\right] \text{ for all } i < n$$

with the analogous condition

$$\zeta_i \in [\max\{\mu_{i+1}, \eta_{i+1}\}, \min\{\mu_i, \eta_i\}]$$
 for all $i < n$

- It is thus reasonable to hope for $\min \{\mu_i, \gamma_i\} \max \{\mu_{i+1}, \gamma_{i+1}\} = \min \{\mu_i, \eta_i\} \max \{\mu_{i+1}, \eta_{i+1}\}$ for all i < n.
- Size conditions also suggest that we should have

$$|\eta| - |\mu| = |\mu| - |\gamma|.$$

Compare the condition

on ζ .

$$\nu_i \in [\max \{\mu_{i+1}, \gamma_{i+1}\}, \min \{\mu_i, \gamma_i\}] \text{ for all } i < n$$

with the analogous condition

$$\zeta_i \in [\max\{\mu_{i+1}, \eta_{i+1}\}, \min\{\mu_i, \eta_i\}]$$
 for all $i < n$

- It is thus reasonable to hope for $\min \{\mu_i, \gamma_i\} \max \{\mu_{i+1}, \gamma_{i+1}\} = \min \{\mu_i, \eta_i\} \max \{\mu_{i+1}, \eta_{i+1}\}$ for all i < n.
- Size conditions also suggest that we should have

$$|\eta| - |\mu| = |\mu| - |\gamma|.$$

• These conditions do not suffice to determine $\mathbf{f}(\gamma) = \eta$ (nor probably to guarantee $|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\eta)|$), but let's see what they tell us.

• Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}-\max\{\mu_2,\gamma_2\}=\min\{\mu_1,\eta_1\}-\max\{\mu_2,\eta_2\}\,;$ $\min\{\mu_2,\gamma_2\}-\max\{\mu_3,\gamma_3\}=\min\{\mu_2,\eta_2\}-\max\{\mu_3,\eta_3\}\,;$ $|\eta|-|\mu|=|\mu|-|\gamma|\,.$

• Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}-\max\{\mu_2,\gamma_2\}=\min\{\mu_1,\eta_1\}-\max\{\mu_2,\eta_2\}\,;$ $\min\{\mu_2,\gamma_2\}-\max\{\mu_3,\gamma_3\}=\min\{\mu_2,\eta_2\}-\max\{\mu_3,\eta_3\}\,;$ $|\gamma|+|\eta|=2\,|\mu|\,.$

• Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}-\max\{\mu_2,\gamma_2\}=\min\{\mu_1,\eta_1\}-\max\{\mu_2,\eta_2\}\,;$ $\min\{\mu_2,\gamma_2\}-\max\{\mu_3,\gamma_3\}=\min\{\mu_2,\eta_2\}-\max\{\mu_3,\eta_3\}\,;$ $(\gamma_1+\gamma_2+\gamma_3)+(\eta_1+\eta_2+\eta_3)=2\,(\mu_1+\mu_2+\mu_3)$

• Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}+\min\{-\mu_2,-\gamma_2\}=\min\{\mu_1,\eta_1\}+\min\{-\mu_2,-\eta_2\};\\ \min\{\mu_2,\gamma_2\}+\min\{-\mu_3,-\gamma_3\}=\min\{\mu_2,\eta_2\}+\min\{-\mu_3,-\eta_3\};\\ (\gamma_1+\gamma_2+\gamma_3)+(\eta_1+\eta_2+\eta_3)=2(\mu_1+\mu_2+\mu_3)\\ (\text{here we used }\max(u,v)=-\min(-u,-v)).$

- Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}+\min\{-\mu_2,-\gamma_2\}=\min\{\mu_1,\eta_1\}+\min\{-\mu_2,-\eta_2\}\,;$ $\min\{\mu_2,\gamma_2\}+\min\{-\mu_3,-\gamma_3\}=\min\{\mu_2,\eta_2\}+\min\{-\mu_3,-\eta_3\}\,;$ $(\gamma_1+\gamma_2+\gamma_3)+(\eta_1+\eta_2+\eta_3)=2\,(\mu_1+\mu_2+\mu_3)$ (here we used $\max(u,v)=-\min(-u,-v)$).
- This is a system of equations that only involves the operations +, and min. (Recall: 2a = a + a.)

- Let n=3. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min\{\mu_1,\gamma_1\}+\min\{-\mu_2,-\gamma_2\}=\min\{\mu_1,\eta_1\}+\min\{-\mu_2,-\eta_2\}\,;$ $\min\{\mu_2,\gamma_2\}+\min\{-\mu_3,-\gamma_3\}=\min\{\mu_2,\eta_2\}+\min\{-\mu_3,-\eta_3\}\,;$ $(\gamma_1+\gamma_2+\gamma_3)+(\eta_1+\eta_2+\eta_3)=2\,(\mu_1+\mu_2+\mu_3)$ (here we used $\max(u,v)=-\min(-u,-v)$).
- This is a system of equations that only involves the operations +, and min. (Recall: 2a = a + a.)
- There is a trick for studying such systems: detropicalization.

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are **not** required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set \mathbb{Z} , equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity).

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set \mathbb{Z} , equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the *min tropical semifield* of \mathbb{Z} . We denote it \mathbb{Z}_{trop} .

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set \mathbb{Z} , equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z} . We denote it \mathbb{Z}_{trop} .

The same construction works for any totally ordered abelian group instead of \mathbb{Z} .

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set Z, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of Z. We denote it Z_{trop}.
- ullet If you see a system of equations using only + and min, you can thus
 - ullet view it as a system of **polynomial** equations over \mathbb{Z}_{trop} ;

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set Z, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of Z. We denote it Z_{trop}.
- ullet If you see a system of equations using only + and min, you can thus
 - ullet view it as a system of **polynomial** equations over $\mathbb{Z}_{\mathsf{trop}}$;
 - then solve it over the semifield \mathbb{Q}_+ instead (or any other "normal" semifield);

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set Z, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of Z. We denote it Z_{trop}.
- ullet If you see a system of equations using only + and min, you can thus
 - ullet view it as a system of **polynomial** equations over \mathbb{Z}_{trop} ;
 - ullet then solve it over the semifield \mathbb{Q}_+ instead ;
 - then check if your solution still works over \mathbb{Z}_{trop} .

This strategy is known as *detropicalization*.

- A semifield is defined in the same way as a field, but
 - additive inverses and a zero element are not required, and
 - every element (not just every nonzero element) must have a multiplicative inverse.
- **Example:** The set \mathbb{Q}_+ of all positive rationals is a semifield.
- Example: The set Z, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of Z. We denote it Z_{trop}.
- If you see a system of equations using only + and min, you can thus
 - view it as a system of **polynomial** equations over $\mathbb{Z}_{\mathsf{trop}}$;
 - then solve it over the semifield \mathbb{Q}_+ instead ;
 - then check if your solution still works over \mathbb{Z}_{trop} .

This strategy is known as *detropicalization*.

 It is particularly useful if you just want one solution (rather than all of them). Often, solutions over Q₊ are unique, while those over the min tropical semifield are not.

Recall our system

```
\begin{split} \min \left\{ \mu_1, \gamma_1 \right\} + \min \left\{ -\mu_2, -\gamma_2 \right\} &= \min \left\{ \mu_1, \eta_1 \right\} + \min \left\{ -\mu_2, -\eta_2 \right\}; \\ \min \left\{ \mu_2, \gamma_2 \right\} + \min \left\{ -\mu_3, -\gamma_3 \right\} &= \min \left\{ \mu_2, \eta_2 \right\} + \min \left\{ -\mu_3, -\eta_3 \right\}; \\ \left( \gamma_1 + \gamma_2 + \gamma_3 \right) + \left( \eta_1 + \eta_2 + \eta_3 \right) &= 2 \left( \mu_1 + \mu_2 + \mu_3 \right) \\ \text{(where } \eta_1, \eta_2, \eta_3 \text{ are unknown)}. \end{split}
```

Recall our system

$$\begin{split} \min \left\{ \mu_1, \gamma_1 \right\} + \min \left\{ -\mu_2, -\gamma_2 \right\} &= \min \left\{ \mu_1, \eta_1 \right\} + \min \left\{ -\mu_2, -\eta_2 \right\}; \\ \min \left\{ \mu_2, \gamma_2 \right\} + \min \left\{ -\mu_3, -\gamma_3 \right\} &= \min \left\{ \mu_2, \eta_2 \right\} + \min \left\{ -\mu_3, -\eta_3 \right\}; \\ \left(\gamma_1 + \gamma_2 + \gamma_3 \right) + \left(\eta_1 + \eta_2 + \eta_3 \right) &= 2 \left(\mu_1 + \mu_2 + \mu_3 \right) \\ \text{(where } \eta_1, \eta_2, \eta_3 \text{ are unknown)}. \end{split}$$

Detropicalization transforms this into

$$(\mu_{1} + \gamma_{1}) \left(\frac{1}{\mu_{2}} + \frac{1}{\gamma_{2}} \right) = (\mu_{1} + \eta_{1}) \left(\frac{1}{\mu_{2}} + \frac{1}{\eta_{2}} \right);$$

$$(\mu_{2} + \gamma_{2}) \left(\frac{1}{\mu_{3}} + \frac{1}{\gamma_{3}} \right) = (\mu_{2} + \eta_{2}) \left(\frac{1}{\mu_{3}} + \frac{1}{\eta_{3}} \right);$$

$$(\gamma_{1}\gamma_{2}\gamma_{3}) (\eta_{1}\eta_{2}\eta_{3}) = (\mu_{1}\mu_{2}\mu_{3})^{2}.$$

• So we now need to solve the system

$$(\mu_1 + \gamma_1) \left(\frac{1}{\mu_2} + \frac{1}{\gamma_2} \right) = (\mu_1 + \eta_1) \left(\frac{1}{\mu_2} + \frac{1}{\eta_2} \right);$$

$$(\mu_2 + \gamma_2) \left(\frac{1}{\mu_3} + \frac{1}{\gamma_3} \right) = (\mu_2 + \eta_2) \left(\frac{1}{\mu_3} + \frac{1}{\eta_3} \right);$$

$$(\gamma_1 \gamma_2 \gamma_3) (\eta_1 \eta_2 \eta_3) = (\mu_1 \mu_2 \mu_3)^2.$$

• Let us rename μ, γ, η as u, x, y. Then, this becomes

$$(u_1 + x_1) \left(\frac{1}{u_2} + \frac{1}{x_2} \right) = (u_1 + y_1) \left(\frac{1}{u_2} + \frac{1}{y_2} \right);$$

$$(u_2 + x_2) \left(\frac{1}{u_3} + \frac{1}{x_3} \right) = (u_2 + y_2) \left(\frac{1}{u_3} + \frac{1}{y_3} \right);$$

$$(x_1 x_2 x_3) (y_1 y_2 y_3) = (u_1 u_2 u_3)^2.$$

• Let us rename μ, γ, η as u, x, y. Then, this becomes

$$(u_1 + x_1) \left(\frac{1}{u_2} + \frac{1}{x_2} \right) = (u_1 + y_1) \left(\frac{1}{u_2} + \frac{1}{y_2} \right);$$

$$(u_2 + x_2) \left(\frac{1}{u_3} + \frac{1}{x_3} \right) = (u_2 + y_2) \left(\frac{1}{u_3} + \frac{1}{y_3} \right);$$

$$(x_1 x_2 x_3) (y_1 y_2 y_3) = (u_1 u_2 u_3)^2.$$

• This is a system of polynomial equations, so we can give it to a computer. The answer is:

• Solution 1:

$$y_1 = \frac{u_1 (u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3)}{u_1 x_2 u_3 - x_1 x_2 x_3},$$

$$y_2 = \frac{-u_1 u_2 u_3}{x_1 x_3},$$

$$y_3 = \frac{u_2 u_3 (x_1 x_3 - u_1 u_3)}{u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3}.$$

• Solution 2:

$$y_1 = \frac{u_1 u_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)}{x_2 (u_1 u_3 + u_1 x_3 + x_1 x_3)},$$

$$y_2 = \frac{u_1 u_2 (u_2 u_3 + x_2 u_3 + x_2 x_3)}{x_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)},$$

$$y_3 = \frac{u_2 u_3 (u_1 u_3 + u_1 x_3 + x_1 x_3)}{x_1 (u_2 u_3 + x_2 u_3 + x_2 x_3)}.$$

• Solution 1:

$$y_1 = \frac{u_1 (u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3)}{u_1 x_2 u_3 - x_1 x_2 x_3},$$

$$y_2 = \frac{-u_1 u_2 u_3}{x_1 x_3},$$

$$y_3 = \frac{u_2 u_3 (x_1 x_3 - u_1 u_3)}{u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3}.$$

• Solution 2:

$$y_1 = \frac{u_1 u_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)}{x_2 (u_1 u_3 + u_1 x_3 + x_1 x_3)},$$

$$y_2 = \frac{u_1 u_2 (u_2 u_3 + x_2 u_3 + x_2 x_3)}{x_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)},$$

$$y_3 = \frac{u_2 u_3 (u_1 u_3 + u_1 x_3 + x_1 x_3)}{x_1 (u_2 u_3 + x_2 u_3 + x_2 x_3)}.$$

• Solution 1 is useless, since we want $y_1, y_2, y_3 \in \mathbb{Q}_+$.

• Solution 1:

$$y_1 = \frac{u_1 (u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3)}{u_1 x_2 u_3 - x_1 x_2 x_3},$$

$$y_2 = \frac{-u_1 u_2 u_3}{x_1 x_3},$$

$$y_3 = \frac{u_2 u_3 (x_1 x_3 - u_1 u_3)}{u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3}.$$

• Solution 2:

$$y_1 = \frac{u_1 u_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)}{x_2 (u_1 u_3 + u_1 x_3 + x_1 x_3)},$$

$$y_2 = \frac{u_1 u_2 (u_2 u_3 + x_2 u_3 + x_2 x_3)}{x_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)},$$

$$y_3 = \frac{u_2 u_3 (u_1 u_3 + u_1 x_3 + x_1 x_3)}{x_1 (u_2 u_3 + x_2 u_3 + x_2 x_3)}.$$

But Solution 2 looks promising.

• Solution 1:

$$y_1 = \frac{u_1 (u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3)}{u_1 x_2 u_3 - x_1 x_2 x_3}$$

$$y_2 = \frac{-u_1 u_2 u_3}{x_1 x_3},$$

$$y_3 = \frac{u_2 u_3 (x_1 x_3 - u_1 u_3)}{u_1 u_2 u_3 + x_1 u_2 u_3 + x_1 x_2 u_3 + x_1 x_2 x_3}.$$

Solution 2:

$$y_1 = \frac{u_1 u_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)}{x_2 (u_1 u_3 + u_1 x_3 + x_1 x_3)},$$

$$y_2 = \frac{u_1 u_2 (u_2 u_3 + x_2 u_3 + x_2 x_3)}{x_3 (u_1 u_2 + x_1 u_2 + x_1 x_2)},$$

$$y_3 = \frac{u_2 u_3 (u_1 u_3 + u_1 x_3 + x_1 x_3)}{x_1 (u_2 u_3 + x_2 u_3 + x_2 x_3)}.$$

 But Solution 2 looks promising. Note in particular the (unexpected) cyclic symmetry!

The map f: definition

• Reverse-engineering Solution 2, we come up with the following **Definition:** Let \mathbb{K} be a semifield, let $n \geq 1$, and let $u \in \mathbb{K}^n$. We define a map $\mathbf{f} : \mathbb{K}^n \to \mathbb{K}^n$ as follows: Let $x \in \mathbb{K}^n$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \geq 0$, define an element $t_{r,j} \in \mathbb{K}$ by

$$t_{r,j} = \sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod\limits_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod\limits_{i=k+1}^{r} u_{j+i}}.$$

(Here and in the following, all indices are cyclic modulo n.) Define $y \in \mathbb{K}^n$ by setting

$$y_i=u_i\cdot\frac{u_{i-1}t_{n-1,i-1}}{x_{i+1}t_{n-1,i+1}}\qquad \text{for each }i\in\{1,2,\ldots,n\}\,.$$
 Set $\mathbf{f}(x)=y$.

The map f: definition

• Reverse-engineering Solution 2, we come up with the following **Definition:** Let \mathbb{K} be a semifield, let $n \geq 1$, and let $u \in \mathbb{K}^n$. We define a map $\mathbf{f} : \mathbb{K}^n \to \mathbb{K}^n$ as follows: Let $x \in \mathbb{K}^n$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \geq 0$, define an element $t_{r,j} \in \mathbb{K}$ by

$$t_{r,j} = \sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod\limits_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod\limits_{i=k+1}^{r} u_{j+i}}.$$

(Here and in the following, all indices are cyclic modulo n.) Define $y \in \mathbb{K}^n$ by setting

$$y_i = u_i \cdot \frac{u_{i-1}t_{n-1,i-1}}{x_{i+1}t_{n-1,i+1}}$$
 for each $i \in \{1, 2, \dots, n\}$.

Set $\mathbf{f}(x) = y$.

• Note that \mathbf{f} depends on u (whence I call it \mathbf{f}_u in the paper).

Theorem. Let K be a semifield, n ≥ 1 and u ∈ Kⁿ. Then:
(a) The map f is an involution (i.e., we have f ∘ f = id).

- **Theorem.** Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^n$. Then:
 - (a) The map f is an involution (i.e., we have $f \circ f = id$).
 - **(b)** Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(y_1y_2\cdots y_n)\cdot (x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2.$$

- **Theorem.** Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^n$. Then:
 - (a) The map f is an involution (i.e., we have $f \circ f = id$).
 - (b) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then, $(y_1 y_2 \cdots y_n) \cdot (x_1 x_2 \cdots x_n) = (u_1 u_2 \cdots u_n)^2.$
 - (c) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)

- **Theorem.** Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^n$. Then:
 - (a) The map f is an involution (i.e., we have $f \circ f = id$).
 - (b) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then, $(y_1 y_2 \cdots y_n) \cdot (x_1 x_2 \cdots x_n) = (u_1 u_2 \cdots u_n)^2$.
 - (c) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)

(d) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$\prod_{i=1}^{n} \frac{u_i + x_i}{x_i} = \prod_{i=1}^{n} \frac{u_i + y_i}{u_i}.$$

- **Theorem.** Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^n$. Then:
 - (a) The map f is an involution (i.e., we have $f \circ f = id$).
 - (b) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(y_1y_2\cdots y_n)\cdot (x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2.$$

(c) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)

(d) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$\prod_{i=1}^{n} \frac{u_i + x_i}{x_i} = \prod_{i=1}^{n} \frac{u_i + y_i}{u_i}.$$

• In short: f(x) solves our system and more. (Note that the i = n case of part (c) is not part of our original system!)

- **Theorem.** Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^n$. Then:
 - (a) The map f is an involution (i.e., we have $f \circ f = id$).
 - (b) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then, $(y_1 y_2 \cdots y_n) \cdot (x_1 x_2 \cdots x_n) = (u_1 u_2 \cdots u_n)^2$.

(c) Let
$$x \in \mathbb{K}^n$$
 and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)

(d) Let $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ be such that $y = \mathbf{f}(x)$. Then,

$$\prod_{i=1}^{n} \frac{u_i + x_i}{x_i} = \prod_{i=1}^{n} \frac{u_i + y_i}{u_i}.$$

 The proof is heavily computational but not too hard (various auxiliary identities had to be discovered).

Back to snakes

• Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ (independent on a and b) such that

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\mathbf{f}(\gamma))|$$
 for all $\gamma \in \mathbb{Z}^n$.

Back to snakes

• Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ (independent on a and b) such that

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\mathbf{f}(\gamma))|$$
 for all $\gamma \in \mathbb{Z}^n$.

• The map **f** constructed above, applied to $\mathbb{K} = \mathbb{Z}_{\text{trop}}$ and $u = (\mu_1, \mu_2, \dots, \mu_n)$, does the trick. (This is not hard to prove using the above Theorem.)

Back to snakes

• Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^n \to \mathbb{Z}^n$ (independent on a and b) such that

$$|R_{\mu,a,b}(\gamma)| = |R_{\mu,b,a}(\mathbf{f}(\gamma))|$$
 for all $\gamma \in \mathbb{Z}^n$.

- The map **f** constructed above, applied to $\mathbb{K} = \mathbb{Z}_{\text{trop}}$ and $u = (\mu_1, \mu_2, \dots, \mu_n)$, does the trick. (This is not hard to prove using the above Theorem.)
- Shifting by a and b thus produces the bijection φ needed for the Pelletier–Ressayre conjecture. Explicitly:

• Theorem (G., 2020): Assume that $n \ge 2$. Let $a, b \ge 0$, and set $\alpha = (a + b, a^{n-2})$ and $\beta = (a + b, b^{n-2})$.

Fix any partition $\mu \in \text{Par}[n]$.

Define a map $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$ as follows:

Let $\omega \in \mathbb{Z}^n$. Set $\nu = \omega - a \in \mathbb{Z}^n$. For each $j \in \mathbb{Z}$, set

$$\begin{aligned} \tau_{j} &= \min \left\{ \left(\nu_{j+1} + \nu_{j+2} + \dots + \nu_{j+k} \right) \right. \\ &+ \left(\mu_{j+k+1} + \mu_{j+k+2} + \dots + \mu_{j+n-1} \right) \\ &+ \left. \left\{ 0, 1, \dots, n-1 \right\} \right\}, \end{aligned}$$

where (unusually for partitions!) all indices are cyclic modulo n.

Define an *n*-tuple $\eta = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{Z}^n$ by setting

$$\eta_i = \mu_i + (\mu_{i-1} + \tau_{i-1}) - (\nu_{i+1} + \tau_{i+1})$$
 for each i .

Let $\varphi(\omega)$ be the *n*-tuple $\eta + b \in \mathbb{Z}^n$. Thus, we have defined a map $\varphi: \mathbb{Z}^n \to \mathbb{Z}^n$.

- Theorem (cont'd): Then:
 - (a) The map φ is a bijection.
 - (b) We have

$$c_{lpha,\mu}^{\omega}=c_{eta,\mu}^{arphi(\omega)}\qquad ext{ for each }\omega\in\mathbb{Z}^n.$$

Here, we are using the convention that every *n*-tuple $\omega \in \mathbb{Z}^n$ that is not a partition satisfies $c_{\alpha,\mu}^\omega = 0$ and $c_{\beta,\mu}^\omega = 0$.

- Theorem (cont'd): Then:
 - (a) The map φ is a bijection.
 - (b) We have

$$c_{lpha,\mu}^{\omega}=c_{eta,\mu}^{arphi(\omega)}\qquad ext{ for each }\omega\in\mathbb{Z}^n.$$

Here, we are using the convention that every *n*-tuple $\omega \in \mathbb{Z}^n$ that is not a partition satisfies $c_{\alpha,\mu}^{\omega}=0$ and $c_{\beta,\mu}^{\omega}=0$.

This proves the conjecture.

- Theorem (cont'd): Then:
 - (a) The map φ is a bijection.
 - (b) We have

$$c_{lpha,\mu}^{\omega}=c_{eta,\mu}^{arphi(\omega)}\qquad \qquad ext{for each }\omega\in\mathbb{Z}^n.$$

Here, we are using the convention that every *n*-tuple $\omega \in \mathbb{Z}^n$ that is not a partition satisfies $c_{\alpha,\mu}^{\omega}=0$ and $c_{\beta,\mu}^{\omega}=0$.

- This proves the conjecture.
- Question: Does φ have a more mainstream combinatorial interpretation?

- Theorem (cont'd): Then:
 - (a) The map φ is a bijection.
 - (b) We have

$$c_{lpha,\mu}^{\omega}=c_{eta,\mu}^{arphi(\omega)}\qquad \qquad ext{for each }\omega\in\mathbb{Z}^n.$$

Here, we are using the convention that every *n*-tuple $\omega \in \mathbb{Z}^n$ that is not a partition satisfies $c_{\alpha,\mu}^{\omega}=0$ and $c_{\beta,\mu}^{\omega}=0$.

- This proves the conjecture.
- Question: Does φ have a more mainstream combinatorial interpretation?
- Question: Can φ be written as a composition of "toggles" (i.e., "local" transformations, each affecting only one entry of the tuple)?

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. Is it true that $y = \mathbf{f}(x)$

• **Question:** Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. Is it true that $y = \mathbf{f}(x)$ or y = x?

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. Is it true that $y = \mathbf{f}(x)$ or y = x?

• Yes if $\mathbb{K}=\mathbb{Q}_+$ (or, more generally, \mathbb{K} is a subsemifield of an integral domain).

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $i \in \mathbb{Z}$. Is it true that $y = \mathbf{f}(x)$ or y = x?

- Yes if $\mathbb{K}=\mathbb{Q}_+$ (or, more generally, \mathbb{K} is a subsemifield of an integral domain).
- $\bullet \ \ \mathsf{No} \ \mathsf{if} \ \mathbb{K} = \mathbb{Z}_{\mathsf{trop}}.$

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(y_1y_2\cdots y_n)\cdot(x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2$$

and

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $1 \le i < n$. (This is our detropicalized system.) Is it true that $y = \mathbf{f}(x)$?

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(y_1y_2\cdots y_n)\cdot(x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2$$

and

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $1 \le i < n$. (This is our detropicalized system.) Is it true that $y = \mathbf{f}(x)$?

 \bullet Yes if $\mathbb{K}=\mathbb{Q}_+.$ (Nice exercise!)

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(y_1y_2\cdots y_n)\cdot(x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2$$

and

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $1 \le i < n$. (This is our detropicalized system.) Is it true that $y = \mathbf{f}(x)$?

- Yes if $\mathbb{K} = \mathbb{Q}_+$. (Nice exercise!)
- No if $\mathbb{K} = \mathbb{Z}_{\mathsf{trop}}$.

• Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^n$. Assume that $x \in \mathbb{K}^n$ and $y \in \mathbb{K}^n$ satisfy

$$(y_1y_2\cdots y_n)\cdot(x_1x_2\cdots x_n)=(u_1u_2\cdots u_n)^2$$

and

$$(u_i + x_i) \left(\frac{1}{u_{i+1}} + \frac{1}{x_{i+1}} \right) = (u_i + y_i) \left(\frac{1}{u_{i+1}} + \frac{1}{y_{i+1}} \right)$$

for each $1 \le i < n$. (This is our detropicalized system.) Is it true that $y = \mathbf{f}(x)$?

- Yes if $\mathbb{K} = \mathbb{Q}_+$. (Nice exercise!)
- No if $\mathbb{K} = \mathbb{Z}_{\mathsf{trop}}$.
- Thus, detropicalization has made the solution unique by removing the "extraneous" solutions.

Thank you

- Maxime Pelletier and Nicolas Ressayre for the conjecture.
- Joscha Diehl for the invitation.
- Tom Roby and Grigori Olshanski for enlightening discussions.
- you for your patience.