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§1. Statement of the problem

Let n ∈ N.
For every w ∈ Sn, let σ (w) denote the number of cycles in the cycle

decomposition of the permutation w (this includes cycles consisting of one
element).

We can consider the matrix
(
xσ(gh

−1)
)
g,h∈Sn

; this is a matrix over the

polynomial ring Q [x], whose rows and whose columns are indexed by the
elements of Sn. (So this is a matrix with n! rows and n! columns, although
there is no explicit ordering on the set of rows/columns given.)

The claim of MathOverflow question #88399 is:

Theorem 1. The polynomial

det

((
xσ(gh

−1)
)
g,h∈Sn

)
∈ Q [x]

factors into linear factors of the form x−` with ` ∈ {−n+ 1,−n+ 2, ..., n− 1}.

Before we head to the proof of this theorem, let us show some examples:

Example. If n = 1, then the matrix
(
xσ(gh

−1)
)
g,h∈Sn

has only one row

and one column, and its only entry is x. Its determinant thus is x, which is in
agreement with Theorem 1.

If n = 2, then the matrix
(
xσ(gh

−1)
)
g,h∈Sn

has two rows and two columns.

Picking a reasonable ordering on Sn, we can represent it as the 2 × 2-matrix(
x2 x
x x2

)
, which has determinant x2 (x− 1) (x+ 1).

If n = 3, then the matrix
(
xσ(gh

−1)
)
g,h∈Sn

can be represented (by picking

an ordering on Sn) by the 6× 6-matrix
x3 x2 x2 x x x2

x2 x3 x x2 x2 x
x2 x x3 x2 x2 x
x x2 x2 x3 x x2

x x2 x2 x x3 x2

x2 x x x2 x2 x3

 ,
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and thus has determinant x6 (x− 2) (x+ 2) (x− 1)5 (x+ 1)5. This, again,
matches the claim of Theorem 1.

For n = 4, we have

det

((
xσ(gh

−1)
)
g,h∈Sn

)
= (x− 3) (x+ 3) (x− 2)10 (x+ 2)10 (x− 1)23 (x+ 1)23 x28.

Exercise 1. Prove that the polynomial det

((
xσ(gh

−1)
)
g,h∈Sn

)
is

even (that is, a polynomial in x2) for every n ≥ 2. (See the end of
this note for a hint.)

§2. Reduction to representation theory

Let us first reduce Theorem 1 to a representation-theoretical statement:
For any finite group G, let IrrepG denote a set of representatives of all

irreducible representations of G over C modulo isomorphism.1

From the theory of group determinants (more precisely, the results of [1],
or the proof of Theorem 4.7 in [2]), we know that if G is a finite group, and Xg

is an indeterminate2 for every g ∈ G, then the matrix (Xgh−1)
g,h∈G (both rows

and columns of this matrix are indexed by elements of G) has determinant

det
(

(Xgh−1)
g,h∈G

)
=

∏
ρ∈IrrepG

det

(∑
g∈G

ρ (g)Xg

)dim ρ
 .

Applying this to G = Sn and evaluating this polynomial identity at Xg =
xσ(g), we obtain

det

((
xσ(gh

−1)
)
g,h∈Sn

)
=

∏
ρ∈IrrepSn

det

(∑
g∈Sn

ρ (g)xσ(g)

)dim ρ
 . (1)

Hence, in order to show that the polynomial det

((
xσ(gh

−1)
)
g,h∈Sn

)
∈ Q [x]

factors into linear factors of the form x−` with ` ∈ {−n+ 1,−n+ 2, ..., n− 1},
it is enough to prove that, for every irreducible representation ρ of Sn over C,

1Remark. We are considering irreducible representations over C here for simplicity, but
actually the argument works more generally: We can replace C by any field K of character-
istic 0 such that the group algebra K [G] factors into a direct product of matrix rings over K.
In particular, the algebraic closure of Q does the trick. In the case G = Sn (this is the case
we are going to consider!), it is known that any field of characteristic 0 can be taken as K,
because the Specht modules are defined over Q and thus provide a factorization of the group
algebra K [G] into a direct product of matrix rings over K for any field K of characteristic
0. See any good text on representation theory of Sn for details (the main reason for this to
work is Corollary 4.38 of [2]).

2Distinct indeterminates are presumed to commute.
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the polynomial det

( ∑
g∈Sn

ρ (g)xσ(g)

)
factors into linear factors of the form x−`

with ` ∈ {−n+ 1,−n+ 2, ..., n− 1}.
We are going to show something better:

Theorem 2. Let λ = (λ1, λ2, ..., λn) be a partition of n. Let
mλ be the number of nonzero parts of the partition λ. Let ρλ be
the irreducible representation of Sn over C corresponding to the
partition λ. Then,

∑
g∈Sn

ρλ (g)xσ(g) =
n!

dim ρ

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) ·idρλ .
(2)

Let us first see how Theorem 1 follows from Theorem 2:
Proof of Theorem 1. For every partition λ of n, let us denote by ρλ the

irreducible representation of Sn over C corresponding to λ, and let us denote
by mλ the number of nonzero parts of the partition λ. It is known that the
isomorphism classes of irreducible representations of Sn over C are in 1-to-1
correspondence with the partitions of n, and this correspondence sends every
partition λ to the representation ρλ. Thus,

∏
ρ∈IrrepSn

det

(∑
g∈Sn

ρ (g)xσ(g)

)dim ρ


=
∏

λ partition of n

det

(∑
g∈Sn

ρλ (g)xσ(g)

)dim ρλ


=
∏

λ partition of n


 n!

dim ρ

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) · idρλ


dim ρλ


(by (2)) .

Combined with (1), this yields

det

((
xσ(gh

−1)
)
g,h∈Sn

)

=
∏

λ partition of n


 n!

dim ρ

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) · idρλ


dim ρλ
 .
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Now, the right hand side of this equation is clearly a polynomial in x which
factors into a product of a constant and linear factors. All of the linear factors
have the form x + λi − i − α for α ∈ {0, 1, ..., λi − 1} for various partitions
λ of n and various i ∈ {1, 2, ...,mλ}. 3 By very simple combinatorics, it
is easy to see that each of these factors has the form x − ` for some ` ∈

{−n+ 1,−n+ 2, ..., n− 1}. Thus, the polynomial det

((
xσ(gh

−1)
)
g,h∈Sn

)
∈

Q [x] factors into a product of a constant and linear factors of the form x−` with
` ∈ {−n+ 1,−n+ 2, ..., n− 1}. Moreover, the constant is 1 because the poly-

nomial det

((
xσ(gh

−1)
)
g,h∈Sn

)
is monic4. Hence, the polynomial det

((
xσ(gh

−1)
)
g,h∈Sn

)
∈

Q [x] factors into linear factors of the form x−` with ` ∈ {−n+ 1,−n+ 2, ..., n− 1}.
Thus, Theorem 1 is proven (using Theorem 2).

§3. Proof of Theorem 2

Proof of Theorem 2. First of all, (2) is a polynomial identity in x. Hence,
we can WLOG assume that x is not a polynomial indeterminate in Q [x], but
an integer greater than n (because if a polynomial identity over Q holds for
infinitely many integers, then it must always hold). Assume this.

Since x is an integer greater than n, we have x ∈ N. This allows us to find
a Q-vector space of dimension x. Let V be such a vector space.

For every Sn-module P , let χP denote the character of this module P . Note
that every h ∈ Sn satisfies

χV ⊗n (h) = xσ(h). (3)

5

Let Lλ be the representation of GL (V ) corresponding to the partition λ
of n. In other words, let Lλ be the image of V under the λ-th Schur functor.

3In fact, the only place where x occurs on the right hand side

of this equation is

(
x+ λi − i

λi

)
, and this factors as

(
x+ λi − i

λi

)
=

(x+ λi − i) (x+ λi − i− 1) ... (x+ λi − i− (λi − 1))

λi!
.

4Proof. In order to see this, it is enough to show that when the determinant

det

((
xσ(gh−1)

)
g,h∈Sn

)
is written as a sum over all permutations of the set Sn (nota bene:

permutations of Sn, not permutations in Sn), the highest degree of x is contributed by the
product of the main diagonal. But this is clear, because the main diagonal of the matrix(
xσ(gh−1)

)
g,h∈Sn

is filled with xσ(id) = xn terms, while all other entries of the matrix are

lower powers of x.
5Proof. Let h ∈ Sn. Denote the action of h on V ⊗n by h |V ⊗n . Then, by the definition

of a character, χV ⊗n (h) = Tr (h |V ⊗n).
Pick a basis (e1, e2, ..., ex) of V . This basis induces a basis

(ei1 ⊗ ei2 ⊗ ...⊗ ein)(i1,i2,...,in)∈{1,2,...,x}n of V ⊗n. By the definition of the action of
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Then, Lλ = HomQ[Sn] (ρλ, V
⊗n) (by one of the definitions of Schur functors),

so that

dimLλ = dim
(
HomQ[Sn]

(
ρλ, V

⊗n)) = 〈χV ⊗n , χρλ〉(
by Theorem 3.8 of [2], applied to V = V ⊗n and W = ρλ

)
=

1

|Sn|︸︷︷︸
=

1

n!

∑
g∈Sn

χρλ (g)︸ ︷︷ ︸
=Tr(ρλ(g))

χV ⊗n
(
g−1
)︸ ︷︷ ︸

=x
σ(g−1)

(by (3))

(by one of the definitions of the inner product of characters)

=
1

n!

∑
g∈Sn

Tr (ρλ (g))xσ(g
−1) =

1

n!
Tr

(∑
g∈Sn

ρλ (g)xσ(g
−1)

)

=
1

n!
Tr

(∑
g∈Sn

ρλ (g)xσ(g)

) (
since every g ∈ Sn satisfies σ

(
g−1
)

= σ (g)
)
.

(4)

Sn on V ⊗n, every (i1, i2, ..., in) ∈ {1, 2, ..., x}n satisfies

h (ei1 ⊗ ei2 ⊗ ...⊗ ein) = eh−1(i1) ⊗ eh−1(i2) ⊗ ...⊗ eh−1(in).

Thus, if h(×n) denotes the permutation of the set {1, 2, ..., x}n which sends every
(i1, i2, ..., in) ∈ {1, 2, ..., x}n to

(
h−1 (i1) , h−1 (i2) , ..., h−1 (in)

)
, then the linear map h |V ⊗n

is represented by the permutation matrix of the permutation h(×n) with respect to the basis
(ei1 ⊗ ei2 ⊗ ...⊗ ein)(i1,i2,...,in)∈{1,2,...,x}n of V ⊗n. Hence,

Tr (h |V ⊗n) = Tr
(

permutation matrix of the permutation h(×n)
)

=
(

number of fixed points of h(×n)
)

(because the trace of a permutation matrix always equals the number of fixed points of the
corresponding permutation). Now, let us count the fixed points of h(×n).

Clearly, an n-tuple (i1, i2, ..., in) ∈ {1, 2, ..., x}n is a fixed point of h(×n) if and only if every
j ∈ {1, 2, ..., n} satisfies ij = ih−1(j). In other words, an n-tuple (i1, i2, ..., in) ∈ {1, 2, ..., x}n

is a fixed point of h(×n) if and only if each pair of elements j and k of {1, 2, ..., n} which lie
in the same cycle of h satisfies ij = ik. Hence, if we want to choose a fixed point of h(×n),
we need only to specify, for every cycle c of h, the value of ij for some element j of this cycle
c (which element j we choose doesn’t matter). Thus, we have to choose one element of the
set {1, 2, ..., x} for each cycle of h; these choices are arbitrary and independent, but beside
them we have no more freedom. Thus, there is a total of xσ(h) ways to choose a fixed point
of h(×n) (because there are σ (h) cycles of h, and there are x elements of the set {1, 2, ..., x}).
In other words,

xσ(h) =
(

number of fixed points of h(×n)
)

= Tr (h |V ⊗n) = χV ⊗n (h) .

This proves (3).
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On the other hand, Theorem 4.63 of [2] (the Weyl character formula) yields

dimLλ =
∏

1≤i<j≤x

λi − λj + j − i
j − i

(where λ` denotes 0 for all ` > mλ)

=
∏

1≤i<j≤mλ

λi − λj + j − i
j − i

·
∏

1≤i≤mλ<j≤x︸ ︷︷ ︸
=
mλ∏
i=1

x∏
j=mλ+1

λi − λj + j − i
j − i︸ ︷︷ ︸

=
λi + j − i
j − i

(since mλ<j yields λj=0)

·
∏

mλ≤i<j≤x

λi − λj + j − i
j − i︸ ︷︷ ︸

=1 (since mλ≤i<j
yields that both λi and λj are 0)

=
∏

1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

x∏
j=mλ+1

λi + j − i
j − i︸ ︷︷ ︸

=

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

)
(this is straightforward to check)

·
∏

mλ≤i<j≤x

1︸ ︷︷ ︸
=1

=
∏

1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) .
Combined with (4), this yields

1

n!
Tr

(∑
g∈Sn

ρλ (g)xσ(g)

)
=

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) ,
so that

Tr

(∑
g∈Sn

ρλ (g)xσ(g)

)
= n!

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) . (5)

But
∑
g∈Sn

gxσ(g) is a central element of Q [Sn] (since the map Sn → Q,

g 7→ σ (g) is a class function), so that
∑
g∈Sn

gxσ(g) acts on any irreducible rep-

resentation of Sn as a scalar multiple of id (by Schur’s lemma). In particular,

this yields that ρλ

( ∑
g∈Sn

gxσ(g)

)
= κ · idρλ for some κ ∈ C (since ρλ is an
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irreducible representation of Sn). Consider this κ. Then,∑
g∈Sn

ρλ (g)xσ(g) = ρλ

(∑
g∈Sn

gxσ(g)

)
= κ · idρλ , (6)

so that

Tr

(∑
g∈Sn

ρλ (g)xσ(g)

)
= Tr (κ · idρλ) = κ · dim ρλ.

Combined with (5), this yields

κ · dim ρλ = n!
∏

1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) ,
so that

κ =
n!

dim ρ

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) .
Thus, (6) becomes

∑
g∈Sn

ρλ (g)xσ(g) =
n!

dim ρ

∏
1≤i<j≤mλ

λi − λj + j − i
j − i

·
mλ∏
i=1

(
x+ λi − i

λi

)
(
λi +mλ − i
mλ − i

) · idρλ .
This proves Theorem 2.

Hints to exercises

Hint to exercise 1: Let n ≥ 2. Expand det

((
xσ(gh

−1)
)
g,h∈Sn

)
as a product

over all permutations of Sn (a total of (n!)! permutations, but you don’t have to
actually do the computations...). It is clearly enough to show that every such
permutation gives rise to a product which simplifies to xm for some even m.
To prove this, show that any permutation α ∈ Sn satisfies signα = (−1)n−σ(α).
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