
Darij Grinberg, Research Statement page 1 of 22

Research statement
Darij Grinberg
[detailed version]

I work in the field of algebraic combinatorics, centered on (but not limited to) symmetric
functions and related concepts, such as combinatorial Hopf algebras, Young tableaux
and trees. These objects live at the borderlands of algebra and combinatorics, often
allowing for viewpoints from both sides and transfer of knowledge from one to the other.
I also study adjacent subjects such as invariant theory, Lie algebras, representations, and
constructive algebra.
Among my contributions to these disciplines are a new generalization of the dual

stable Grothendieck polynomials (which themselves generalize the Schur functions), an
antipode formula for quasisymmetric functions, a proof of a conjecture of K. Mészáros on
the “subdivision algebra”, and a periodicity result on “birational rowmotion” (originally
conjectured by D. Einstein and J. Propp) that has seen several uses in dynamical algebraic
combinatorics. Details on this and other work can be found below.

Background. The history of symmetric functions goes back at least as far as the 17th
Century, when Newton and Girard explored the relations between elementary symmetric
polynomials and power sums. The next major steps were Cauchy’s 1815 introduction of
what later came to be known as Schur functions, and Jacobi’s and Trudi’s determinantal
formulas for them (1841 and 1864). Symmetric functions found various uses in the
algebra of the 19th Century, particularly in Galois and invariant theory, as well as in
Schubert calculus. However, their combinatorial meaning was not discovered until the
1930s, when Schur and others connected them to Young tableaux and the representation
theory of symmetric and general linear groups. This connection opened the floodgates,
and the research that followed since the mid-20th Century could fill bookshelves (see,
e.g., [Stan99, Ch. 7], [Fulton97], [Sagan01]). Symmetric functions were found to form
a Hopf algebra, which tended to appear in various guises in seemingly unrelated fields
such as algebraic topology (as cohomology of some classifying spaces) and number theory
(as coordinate ring of the Witt vectors, e.g., [Hazewi08]). The multiplication of Schur
functions turned out to be governed by a combinatorial rule (the Littlewood-Richardson
rule), formulated in 1934 and first proven in 1974, with applications in theoretical
physics. The combinatorics of Young tableaux became a subject of its own, bordering
on theoretical computer science (Knuth devoted a section in “The Art of Computer
Programming” to it). Symmetric functions have been applied in fields as diverse as
random matrix theory, K-theory (particularly of Grassmannians), group theory and
quantum groups. The description of the representations of symmetric and general linear
groups using Schur functions has become a mold in which many other representation
theories have been shaped.
By now, even as various questions on Schur functions remain unanswered, the focus

has broadened to include generalizations and analogues thereof, such as Hall-Littlewood
and Macdonald polynomials, factorial Schur functions, Schubert and Grothendieck
polynomials, P-partition enumerators, and others.
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It is such generalizations that I have been dealing with in much of my research. From
a bird’s eye view, their theories follow a certain pattern: a family of power series is
defined, and analogues of classical properties of the Schur functions (such as symmetry,
determinantal formulas à la Jacobi-Trudi, Littlewood-Richardson rule(s), and antipode
formulas) are proven for this family. However, this is rarely ever straightforward, as each
generalization comes with its additional complications; consequently, these programs
are at rather different stages of completion, and some of them (e.g., a full Littlewood-
Richardson rule for Schubert polynomials) appear out of reach today. Additionally, each
generalization has its own motivation, sometimes stemming from a totally different field.
Combinatorial Hopf algebras are one (although not the only) place where these

generalizations live. They are interesting both in their intrinsic properties (e.g., some
of them are free as algebras for non-obvious reasons) and for the special elements they
contain (such as the above-mentioned generalizations of symmetric functions). They have
found applications to algebraic groups, Lie groups, probability and renormalization theory.
One of the most frequently seen among these Hopf algebras is the ring of quasisymmetric
functions, which has been introduced by Gessel and Stanley for combinatorial purposes in
the 1970s, but has recently appeared in topology ([BakRic08]) and K-theory ([Morava15],
[Oesing18]); this ring has also been involved in much of my past research (e.g., [Grinbe15a],
[Grinbe14], [Grinbe17c]).

Overview of selected past results. My results so far, as well as my research plans
for the future, live in and around the algebro-combinatorial landscape surveyed above.
Among my finished work on symmetric functions and related Hopf algebras, the following
are the most relevant:

• In [Grinbe14], I prove a conjecture of Mike Zabrocki on a quasisymmetric analogue
of Bernstein’s creation-operator approach to the Schur functions. The proof relies
on a dendriform algebra structure on the quasisymmetric functions – a structure I
later apply to a combinatorial problem in [Grinbe17c].

• In [Grinbe15a], I reprove and generalize a formula of Malvenuto and Reutenauer for
the antipode of a P-partition enumerator (which itself extends a classical formula
for the antipode of a Schur function).

• In [GaGrLi15], Pavel Galashin, Gaku Liu and I refine the dual stable Grothendieck
polynomials (a recent generalization of Schur functions motivated by K-theory)
to include new parameters, and prove the symmetry of these new power series
combinatorially.

• In [BorGri13], James Borger and I explore positivity properties of symmetric
functions and apply them to Witt vectors over semirings.

• In [Grinbe15d], I leverage a universal property to obtain a new construction of the
Bernstein homomorphism for commutative connected graded Hopf algebras (which
generalizes the internal comultiplication of the quasisymmetric functions).
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• The lecture notes [GriRei15] (joint with Victor Reiner) are an introduction to both
symmetric functions and combinatorial Hopf algebras.

Some other works of mine are not directly concerned with symmetric functions:

• In the two papers [GriRob14], Tom Roby and I prove the periodicity of birational
rowmotion on rectangles and some related results.

• In [Grinbe17a], I answer a question of Karola Mészáros on the subdivision algebra
(a deformation of the Orlik-Solomon algebra of the type-A braid arrangement).

• In [GrHuRe17], Jia Huang, Victor Reiner and I study the combinatorics of the
Grothendieck groups of a finite-dimensional Hopf algebra, revealing a parallel to
the chip-firing game on directed graphs.

• In [GriPos17], Alexander Postnikov and I demonstrate a property of reduced ex-
pressions in Coxeter groups.

• In [GriOlv18], Peter Olver and I factorize the determinant of a matrix arising from
the n-body problem. I have since generalized this factorization in [Grinbe19a].

• In [AaGrSc18], Erik Aas, Travis Scrimshaw and I prove two conjectures on multiline
queues and the totally asymmetric simple exclusion process (one coming from physics,
one from probability theory).

Current and finished research

Cohomology-like quotients of symmetric polynomials. See [Grinbe18b] for a
survey (slightly out of date) and https://www.cip.ifi.lmu.de/~grinberg/algebra/

umn2019.pdf for a semi-introductory talk.
It is well-known since the early 20th century that the symmetric functions can be used

to describe the cohomology ring H∗ (Grk,n) of the Grassmannian Grk,n (see [Fulton97,
Part III] for an introduction). More precisely, this cohomology ring is a quotient of
the ring of symmetric functions modulo an ideal generated by all “large” elementary
symmetric functions ek+1, ek+2, ek+3, . . . and the k complete homogeneous symmetric
functions hn−k+1, hn−k+2, . . . , hn. More recently it has been revealed that a deformation
of this ideal induces a quotient that is isomorphic to the quantum cohomology ring
QH∗ (Grk,n), whose structure constants are the Gromov-Witten invariants (see [Postni05]
for a recent perspective). These facts motivate a more general scenario:
Fix integers n ≥ k ≥ 0, and let S be the ring of symmetric polynomials in k variables

x1, x2, . . . , xk over an arbitrary base ring k. (We can view S itself as a quotient of the
ring of symmetric functions by the elementary symmetric functions ek+1, ek+2, . . ..) Fix
k scalars a1, a2, . . . , ak ∈ k, and let I be the ideal of S generated by hn−k+i − ai for all
i ∈ {1, 2, . . . , k}. The quotient algebra S/I then generalizes both the classical and the
quantum cohomology rings.
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I have initiated the study of this quotient algebra S/I in [Grinbe18a] (work in progress).

In particular, I have shown that S/I is a free k-module of rank

(
n

k

)
with three explicit

bases. All three bases are indexed by the set Pk,n of all partitions that “fit inside” the
k× (n− k)-rectangle (that is, partitions that have at most k parts, with each part being
≤ n− k). If we let f denote the projection of a symmetric polynomial f ∈ S onto S/I,
then these three bases are (sλ)λ∈Pk,n

,
(
hλ

)
λ∈Pk,n

and (mλ)λ∈Pk,n
, where sλ, hλ and mλ

are Schur polynomials, complete homogeneous symmetric polynomials and monomial
symmetric polynomials, respectively.
Furthermore, I have shown that the structure coefficients of the algebra S/I in the

basis (sλ)λ∈Pk,n
satisfy an S3-symmetry, generalizing those of the Littlewood-Richardson

coefficients and of the Gromov-Witten invariants. I have found a Pieri rule for products
of the form sλhi (with i ≤ n − k) as well as a “rim hook algorithm” for reducing
arbitrary Schur polynomials sµ (with µ /∈ Pk,n) in the basis (sλ)λ∈Pk,n

. (Both of these are
significantly subtler than the original results of Bertram, Ciocan-Fontanine and Fulton
[BeCiFu99] they generalize.) Further work on this algebra is ongoing, the goal being to
explore what other properties of the cohomology rings generalize to this situation:

• The structure coefficients of S/I in the basis (sλ)λ∈Pk,n
seem to satisfy a positivity

property (more precisely, predictable signs) generalizing the positivity of Gromov-
Witten invariants. This is so far a conjecture, which I expect to be highly difficult.

• What further properties of classical and quantum cohomology extend to S/I ?
Computations have shown that neither the Grk,n ↔ Grn−k,n duality nor Postnikov’s
“curious duality” [Postni05] do (at least not without further restrictions), but others
remain to be tested.

• What other bases with combinatorial meaning does S/I have? For any of the
dozens of known bases (bλ)λ of S (indexed by partitions λ into ≤ k parts), we can
ask whether

(
bλ
)
λ∈Pk,n

is a basis of S/I. So far, this has been verified for (sλ)λ∈Pk,n
,(

hλ

)
λ∈Pk,n

and (mλ)λ∈Pk,n
and refuted for (pλ)λ∈Pk,n

(even when k = Q).

• How many of the properties survive when a1, a2, . . . , ak are no longer scalars in k,
but symmetric polynomials with deg (ai) < n− k + i for all i? For example, the
(sλ)λ∈Pk,n

-basis still holds in that generality, while the S3-symmetry does not.

• Inspired by [CoKrWa09], I have introduced a variant of the ideal I, in which the
hj are replaced by the power-sum symmetric polynomials pj = xj

1 + xj
2 + · · ·+ xj

k.
Thus, define an ideal Ip of S generated by pn−k+i − ai for all i ∈ {1, 2, . . . , k}.
Is (sλ)λ∈Pk,n

again a basis of the quotient k-module S/Ip, assuming that k is a

Q-algebra (a natural assumption when dealing with pj’s)? After I proposed this
question for the MIT PRIMES project 2019 (an REU-like research program for
talented high-schoolers), a student (Andrew Weinfeld) has come up with a highly
elegant proof. Further questions naturally suggest themselves here.
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Connections with the splitting algebras of Laksov and Thorup [LakTho12], with
equivariant quantum cohomology [BeMiTa18]1 and with the structure constants of the
Schubert polynomials [Manive01] is also suspected.

Petrie symmetric functions. See [Grinbe19b] for a (so far unfinished) draft.
Recent algebro-geometric work by Liu and Polo [LiuPol19] got me interested in a

family of symmetric functions which I dubbed the Petrie symmetric functions2. Given a
positive integer k, we define a symmetric formal power series

G (k) =
∞∏
i=1

(
1 + xi + x2

i + · · ·+ xk−1
i

)
in the indeterminates x1, x2, x3, . . . ;

this is the sum of all monomials containing no exponents ≥ k. Also, if k is a positive
and m a nonnegative integer, then G (k,m) shall denote the m-th graded component
of G (k); this is the sum of all monomials of degree m containing no exponents ≥ k. A
conjecture by Liu and Polo [LiuPol19, Remark 1.4.5] can be rephrased as saying that

G (n, 2n− 1) =
n−2∑
i=0

(−1)i s(n−1,n−1−i,1i+1) for every integer n > 1,

where sλ denote the Schur functions as usual. I have proved this conjecture and showed,
more generally, that G (k,m) is always a linear combination

∑
λ petk (λ) sλ of Schur func-

tions sλ in which the coefficients petk (λ) are certain numbers in the set {1,−1, 0}. These
numbers are easiest to describe as determinants of certain Petrie matrices [GorWil74].
One of my next goals (partly achieved) is to find a simple combinatorial rule for petk (λ)
in terms of the k-abacus of λ.
More generally, for any partition λ, the product G (k,m) · sλ is a linear combination

of sµ’s with coefficients in {1,−1, 0}. The coefficients, again, are determinants of Petrie
matrices. A more direct combinatorial description would be rather interesting, as it
would interpolate between the Pieri rule for hmsλ and the Murnaghan–Nakayama rule
for pmsλ (since hm = G (k,m) for all k > m, whereas pm = G (m+ 1,m)−G (m,m)).
Other questions can be asked. It is not hard to see that for any given k > 1, the

sequence of symmetric functions (G (k, 1) , G (k, 2) , G (k, 3) , . . .) is algebraically indepen-
dent. Thus, the products of these G (k,m)’s form a new basis of the ring of symmetric
functions over Q. Can anything be said about this basis?

Refined dual stable Grothendieck polynomials. Dual stable Grothendieck
polynomials first appear in the work of Lam and Pylyavskyy [LamPyl07], after having

1Discussions with Kaisa Taipale have revealed that the equivariant cohomology ring of Grk,n is
also isomorphic to S/I for an appropriate choice of a1, a2, . . . , ak in S (not constants, but with
deg (ai) < n− k + i), but the isomorphism does not map (sλ)λ∈Pk,n

to any (known) geometrically
interesting basis of the cohomology ring.

2The name is tentative and honors the egyptologist Flinders Petrie, who introduced a class of matrices
(now known as Petrie matrices) to help with the seriation of artifacts; see, e.g., [Shucha84]. Petrie
matrices appear in the evaluation of my symmetric functions, whence the name.
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been anticipated by Lenart and Buch. In joint work [GaGrLi15] with Pavel Galashin
and Gaku Liu, I have extended their definition and some of their properties to a more
general setup, involving an infinite family of new parameters.
A weak composition means a sequence (α1, α2, α3, . . .) ∈ N∞ (where N = {0, 1, 2, . . .})

such that all but finitely many i satisfy αi = 0.
Consider a skew partition λ/µ. A reverse plane partition (short: rpp) of shape λ/µ

means a filling of the skew Young diagram of λ/µ with positive integers which increase
weakly along rows and weakly along columns. (Requiring them to increase strictly along
columns would instead yield the definition of a semistandard tableau.) For every rpp
T , we let ircontT be the weak composition whose i-th entry is the number of columns
of T which contain the entry i. Moreover, for every rpp T , we let ceqT be the weak
composition whose i-th entry is the number of cells c in the i-th row of T such that the
entry of T in cell c equals the entry of T in the cell directly below c (and, in particular,
the latter entry exists). Notice that ceqT = (0, 0, 0, . . .) if and only if T is a semistandard
tableau.
The refined dual stable Grothendieck polynomial g̃λ/µ corresponding to the skew parti-

tion λ/µ is defined to be∑
T is an rpp of shape λ/µ

tceqTxircontT ∈ (Z [t1, t2, t3, . . .]) [[x1, x2, x3, . . .]] .

Here we are using the notation xα for the monomial xα1
1 xα2

2 xα3
3 · · · whenever α =

(α1, α2, α3, . . .) is a weak composition, and similarly the notation tα stands for tα1
1 tα2

2 tα3
3 · · · .

The dual stable Grothendieck polynomials are obtained from the g̃λ/µ by setting all ti
equal to 1, whereas the skew Schur functions are obtained by setting all ti equal to 0.
Other specializations of g̃λ/µ have not been explored so far, but the parameter space is
obviously vast.
In [GaGrLi15], Galashin, Liu and I have shown that the power series g̃λ/µ is symmetric

(in the x1, x2, x3, . . .).
Two proofs are given in [GaGrLi15], and yet another can be obtained with the methods

of [LamPyl07].
Various questions suggest themselves now:

• Do the g̃λ/µ satisfy a determinantal formula generalizing (one of) the Jacobi-Trudi
identities? The answer appears to be positive, but a proof has not been found so
far. Damir Yeliussizov [Yelius16] has found a proof in the µ = ∅ case; research on
the general case is ongoing.

• Do the g̃λ/µ satisfy a Littlewood-Richardson rule? There are several ways to
interpret the question, some of which (e.g., expanding the product g̃λ/∅g̃µ/∅ as a
linear combination of the g̃ν/∅) appear out of reach. I have proven one Littlewood-
Richardson rule (expanding sν g̃λ/µ in terms of the sκ) using the results of [GaGrLi15]
and an analogue of Stembridge’s proof of the classical Littlewood-Richardson rule3.

3See http://www.cip.ifi.lmu.de/~grinberg/algebra/chicago2015.pdf for a statement of this
(proof not yet written up) and also of the conjectural Jacobi-Trudi identity.
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• It appears that a similar refinement can be done to the (non-dual) stable Grothendieck
polynomials Gλ/µ.

Antipodes and P-partitions. We shall use the notation S for the antipode of
a Hopf algebra. It is well-known that any skew Schur function sλ/µ (regarded as a

symmetric function) satisfies S
(
sλ/µ

)
= (−1)|λ/µ| sλt/µt , where νt denotes the transpose

of a partition ν. Ira Gessel generalized this fact to P-partition enumerators. Here, we
consider a finite set E with a partial order relation <1 and a total order relation <2. We
define an (E,<1, <2)-partition to be a map f : E → {1, 2, 3, . . .} such that

• f (u) ≤ f (v) for any u ∈ E and v ∈ E with u <1 v;

• f (u) < f (v) for any u ∈ E and v ∈ E with u <1 v and v <2 u.

We define the P-partition enumerator F(E,<1,<2) as the formal power series∑
f is an (E,<1,<2)-partition

xf ∈ Z [[x1, x2, x3, . . .]] , where xf =
∏
e∈E

xf(e).

The power series F(E,<1,<2) is a quasisymmetric function (although its most important
particular cases are the skew Schur functions, which are symmetric). Gessel’s formula
[GriRei15, Corollary 5.27] states that the antipode S of the Hopf algebra of quasisym-

metric functions satisfies S
(
F(E,<1,<2)

)
= (−1)|E| F(E,>1,<2), where >1 is the opposite

relation of <1.
In [Grinbe15a], I prove a generalization of this formula in which the elements e ∈ E

are equipped with (positive integer) weights w (e) (and the monomial xf =
∏

e∈E xf(e) is

replaced by
∏

e∈E x
w(e)
f(e) ), in which the order <2 is no longer required to be total (although

not completely arbitrary either), and in which a finite group G is allowed to act on E
in a way that preserves <1 and <2. The weights and the partial order <2 are not a
new idea (in this generality, the result can be viewed as a restatement of Malvenuto
and Reutenauer’s [MalReu98, Theorem 3.1]), but the group action appears to be new; it
combines Gessel’s antipode formula with the ideas of Pólya enumeration.

Dual immaculate creation operators. In [BBSSZ13a], Berg, Bergeron, Saliola, Ser-
rano and Zabrocki introduced a lift of the Schur functions to the ring of noncommutative
symmetric functions, and also a “dual” version of this lift in the ring of quasisymmetric
functions. The dual version is probably the simpler one to define: Let α = (α1, α2, . . . , αℓ)
be a composition (i.e., a tuple of positive integers), and let Y (α) be the “Young dia-
gram” of α (this is defined as the set

{
(i, j) ∈ {1, 2, 3, . . .}2 | j ≤ αi

}
, even if α is not

a partition). An immaculate tableau of shape α is a filling of this Young diagram with
positive integers such that each row is weakly increasing, and the first column is strictly
increasing. (This can be viewed as an (E,<1, <2)-partition, where (E,<1) is a certain
binary tree.) The dual immaculate function S∗

α corresponding to α is defined to be the
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sum of xT over all immaculate tableaux T of shape α, where xT =
∏

e is a cell of T xT (e).
(This is a particular case of the P-partition enumerator F(E,<1,<2) defined above.)

Mike Zabrocki has conjectured that an alternative definition of S∗
α, using a certain

notion of quasisymmetric “creation operators” (similar to the Bernstein creation operators
that generate the Schur functions, but more intricate), results in the same power series.
I proved this in [Grinbe14], by introducing a dendriform algebra structure on the ring of
quasisymmetric functions.
This project per se is finished, but it has spawned further research by the “Marne-

la-Vallée school” of symmetric functions. Specifically, Novelli, Thibon and Toumazet
[NoThTo17] have built upon it to construct a noncommutative generalization of Bell
polynomials and study their underlying combinatorics.

Shuffle-compatible permutation statistics. A recent paper of Ira Gessel and
Yan Zhuang [GesZhu17] has introduced the concept of shuffle-compatible permutation
statistics. These are certain combinatorial statistics on the set S of all permutations (in
a wide sense – i.e., they are maps that assign something to a permutation, not always
a number); for example, “the set of all descents”, “the number of descents”, and “the
set of all peaks” are shuffle-compatible, but “the number of inversions” is not. The
definition of “shuffle-compatible” is combinatorial, but for most permutation statistics
it can be restated using quasisymmetric functions. Namely, consider the ring QSym
of quasisymmetric functions, and its fundamental basis (Fα) (with α ranging over all
compositions). For any permutation π, let γ (π) denote the descent composition of π.
Any map st : {compositions} → X gives rise to a submodule Kst of QSym, which is
spanned by Fα − Fβ where (α, β) ranges over all pairs of compositions of the same size
satisfying stα = st β. Also, any map st : {compositions} → X gives rise to a map
{permutations} → X which sends each permutation π to st (γ (π)). The latter map is a
permutation statistic, and is shuffle-compatible if and only if Kst is an ideal of QSym.
Thus, shuffle-compatible permutation statistics (provided they only depend on γ (π))
define ideals of QSym (binomial ideals with respect to the fundamental basis), and
therefore also quotient algebras of QSym.
In [Grinbe17c], I prove that the “exterior peak set” statistic is shuffle-compatible (as

conjectured by Gessel and Zhuang [GesZhu17]). I further introduce a strengthening of
the notion of shuffle-compatibility that separates between left and right shuffles, leading
to quotients of QSym as dendriform algebras (where the dendriform structure on QSym
is the one from [Grinbe14]). I prove that the exterior peak set statistic is left- and right-
shuffle-compatible; similar results are proved (and disproved) for some other statistics
(e.g., the left peak set is left- and right-shuffle-compatible, whereas the right peak set is
not). While [Grinbe17c] is self-contained, the underlying ideas originate in my previous
research of P-partitions and the dendriform structure of QSym ([Grinbe14], [Grinbe15a]).
A followup to [Grinbe17c] is in the making, exploring even stronger compatibility

properties.

Peak quasisymmetric functions. A question that arose in the just-mentioned study
of shuffle-compatibility [Grinbe17c, Question 2.51] has opened my eyes to a new basis of
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the ring of quasisymmetric functions.
Consider a commutative Q-algebra k. If n ∈ N and if α = (α1, α2, . . . , αℓ) is a

composition of n (that is, a tuple of positive integers with α1 + α2 + · · ·+ αℓ = n), then
we define the formal power series

ηα =
∑

1≤g1≤g2≤···≤gn;
gi=gi+1 for each i∈E(α)

2|{g1,g2,...,gn}|xg1xg2 · · ·xgn ∈ k [[x1, x2, x3, . . .]] ,

where E (α) denotes the set {1, 2, . . . , n− 1} \ {α1 + α2 + · · ·+ αi | 0 < i < ℓ}. This
ηα belongs to the k-algebra QSym of quasisymmetric functions.
If we let α range over all odd compositions (i.e., compositions (α1, α2, . . . , αℓ) whose

entries αi are all odd), then the ηα form a basis of a certain Hopf subalgebra of QSym,
known as Stembridge’s Hopf algebra or the odd subalgebra Π− of QSym; see [Stembr97],
[Hsiao07] (where they are called “peak functions”) and [AgBeSo14]. (Roughly speaking,
they are a quasisymmetric analogue of Schur’s Q-functions.)
I have taken up the study of ηα for arbitrary compositions α. It is easy to see that

these ηα form a basis of the whole QSym. Moreover, their products ηαηβ are given by a
novel kind of shuffle, which allows adding k consecutive entries of α together with k ± 1
consecutive entries of β; for example, for α = (a, b) and β = (c, d) the formula is

η(a,b)η(c,d) = η(a,b,c,d) + η(a,c,b,d) + η(a,c,d,b) + η(c,a,b,d) + η(c,a,d,b) + η(c,d,a,b)

− η(a,b+c+d) − η(c,a+b+d) − η(a+b+c,d) − η(a+c+d,b).

Further properties of this new basis of QSym remain to be uncovered (and the existing
results to be exposed).

Multiline queues. The notion of a multiline queue arose in the work of P. Ferrari
and J. Martin as a combinatorial tool for the computation of the steady state of the
totally asymmetric simple exclusion process (a classical random process with multiple
applications in physics, biology and traffic analysis).
In joint work with Erik Aas and Travis Scrimshaw [AaGrSc18], I prove several conjec-

tures on multiline queues: the “commutativity conjecture” of Arita, Ayyer, Mallick, and
Prolhac [AAMP11], and the enumerative conjectures of Aas and Linusson [AasLin18] on
multiline queues with a given bottom row. Our methods reduce these to the classical
Lascoux-Schützenberger action of the symmetric group and to a Lindström-Gessel-Viennot
lattice path count. This reveals multiline queues as tableau-like objects in disguise (we
actually construct a bijection between them and semistandard tableaux in [AaGrSc18],
albeit only in a special case); generating functions for multiline queues thus can be viewed
as analogues of Schur functions (or, rather, Schur polynomials).
Recent work by Corteel, Mandelshtam and Williams [CoMaWi18], independently of

[AaGrSc18], makes a similar connection, although in a different setting and with different
weights for the generating function. Their generating functions reveal themselves as
Macdonald polynomials (both of the symmetric and nonsymmetric kinds). A connection
between the two results seems possible.

9
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Greedoids from ultrametric distance functions. We are now leaving the realm
of symmetric (and adjacent) functions for a wider view of algebraic combinatorics. The
following problem arose as a way to crystallize the combinatorial undercurrent of Manjul
Bhargava’s notion of “P -orderings” (see [Bharga97, §2] for the general case, or [Bharga00,
§4] and [Bharga09, §2] for elementary expositions of the integer case), but has since
widened and revealed links to some existing combinatorial structures (greedoids and
phylogenetic trees). Some of the results have been written up in a joint preprint with
Fedor Petrov [GriPet19]; the rest will fill another paper of my own.
Let E be a finite set. Assume that a weight w (e) ∈ R has been assigned to each e ∈ E,

and a distance d (e, f) = d (f, e) has been assigned to any two distinct e, f ∈ E, such that
the distances satisfy the ultrametric triangle inequality d(a, b) ⩽ max {d(a, c), d(b, c)}.
Any subset F of E has a perimeter, defined as the sum of the weights of and pairwise
distances between all elements of F . Given some m ∈ N, how do we find an m-element
subset of E with maximum perimeter?
A natural approach (an example of a greedy algorithm) is to start with the empty set,

and then adjoin new elements one by one, maximizing the perimeter at each step. We
show that this does indeed construct a maximum-perimeter m-element subset of E, and
any maximum-perimeter m-element subset of E can be constructed this way. Moreover,
if we define a collection F of subsets of E by

F = {F ⊆ E | F is a maximum-perimeter m-element subset of E for m = |F |} ,

then F is an instance of what is known as a greedoid : a combinatorial structure general-
izing (and closely connected to) matroids. Greedoids have been extensively studied in
[KoLoSc91], and many classes of greedoids are known. In [GriPet19], Petrov and I show
that F is a strong greedoid (also known as a Gauss greedoid). As a consequence, for any
fixed m ∈ N, the maximum-perimeter m-element subsets of E are the bases of a matroid.
An even better result I have obtained very recently (still unpublished) is that F is

a Gaussian elimination greedoid (a greedoid analogue of the notion of a representable
matroid). More precisely, over any field with at least |E| many elements, F can be
represented by a vector family.
Our perimeter maximization problem, and the greedy algorithm solving it, generalize

Bhargava’s “P -orderings” introduced in [Bharga97, §2]. A related problem in mathemati-
cal biology has been studied by Moulton, Semple and Steel [MoSeSt06]: to find a set of m
leaves of a given phylogenetic tree that maximizes phylogenetic diversity (defined as the
perimeter of the subtree that connects these m leaves). Again, the solutions form a strong
greedoid ([MoSeSt06, Theorem 3.2]). While the triples (E,w, d) considered by Petrov
and myself are closely related to phylogenetic trees4, the two problems are nevertheless
distinct, as phylogenetic diversity is not perimeter. The exact relation between these
problems is worthy of understanding.

Simplicial complexes from digraphs. Consider a directed graph with edge set E,
and fix two vertices s and t. A subset F of E will be called path-free if there is no path

4To some extent, they can be translated into each other. For one direction, see [GriPet19, Example
2.9].
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from s to t using only edges from F . Is the number of path-free subsets of E odd or
even? Lukas Katthän, Joel Lewis and I have shown that it is even if the graph has a
“useless edge” (i.e., an edge that appears in no path from s to t) or a (directed) cycle;
otherwise it is odd. Behind this curious puzzle is some nontrivial theory: The path-free
subsets of E form a simplicial complex, whose Euler characteristic is always 0 or ±1 and
whose homotopy type (always contractible or homotopic to a sphere) we have determined.
These results (and a bit more) are on their way to publication.

Critical groups in representation theory.5 The concept of a critical group
originated from the theory of chip-firing on digraphs (also known as the sandpile model).
The group can be defined as the cokernel (over Z) of the digraph’s reduced Laplacian (the
submatrix of its Laplacian obtained by removing a certain row and a certain column);
from this point of view, the theory of chip-firing can be recast as a study of this Laplacian
acting on the integer lattice. In particular, it has been observed by Gabrielov, Benkart,
Klivans, Reiner and others (e.g., [BeKlRe16]) that the reduced Laplacian of a strongly
connected digraph is a nonsingular M-matrix (an integer matrix whose off-diagonal
entries are nonpositive, and whose inverse has nonnegative entries; several equivalent
definitions exist), and that most of the theory of chip-firing can be recovered from this
property. Hence, wherever one encounters a nonsingular M-matrix, one can construct a
“chip-firing theory” with similar properties to that arising from a digraph.

Benkart, Klivans, Reiner, and Gaetz ([BeKlRe16], [Gaetz16]) have recently used this
strategy to build a “chip-firing theory” from a faithful representation V of a finite group G
(over C). The analogue of the Laplacian here is the matrix LV = nI−MV , where I is the
identity matrix, n is the dimension of V , and MV is the matrix (“McKay matrix of V ”)
that represents tensoring by V on the Grothendieck ring of G. Explicitly, if the irreducible
representations of G are S1, S2, . . . , Sℓ+1, then MV is an (ℓ+ 1) × (ℓ+ 1)-matrix with
(i, j)-th entry [Si ⊗ V : Sj]. The analogue of the reduced Laplacian is the submatrix of LV

obtained by removing the row and the column corresponding to the trivial representation.
They have shown that this reduced Laplacian is a nonsingular M-matrix (it is here that
the faithfulness of V shows its relevance), and computed the order of the critical group
(the cokernel of the reduced Laplacian) in terms of the character of V .

In a paper [GrHuRe17] with Reiner and Huang, we extend this construction to an
arbitrary representation V of a finite-dimensional Hopf algebra A over any algebraically
closed field. Instead of faithfulness, we now need a slightly subtler property of V (which
we call “tensor-richness”: every simple A-module appears in a composition series of
some V ⊗k) to ensure that our “reduced Laplacian” is a nonsingular M-matrix. We fully
describe the critical group of the regular representation and some further examples;
moreover, we express the order of the critical group in the case when A = Fp [G] for some
finite group G (in terms of Brauer characters of G). We have no formula for the order of
the critical group of a general V over a general A. Some further questions left to explore
are

5See http://www.cip.ifi.lmu.de/~grinberg/algebra/madison17.pdf for slides of a talk on this
subject, which might clarify the below.
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• the extent to which theory generalizes even further to objects in tensor categories
(the basic facts do);

• the behavior of the critical groups under restriction and induction.

Birational rowmotion. Given a finite poset P , we can form another poset P̂ by
adjoining a global minimum (called 0) and a global maximum (called 1) to P . Given

a field (or semifield) K, we consider the set KP̂ of all labelings of the elements of P̂ by
elements of K. On this set, David Einstein and James Propp have defined a birational
equivalence, which they call birational rowmotion, and which generalizes the notion of
rowmotion on the order ideals of P . Einstein and Propp have experimentally observed
that, for various special classes of posets P , this birational equivalence has finite order
(i.e., a certain power of it is the identity). In [GriRob14], Tom Roby and I prove these
observations and some others. The most prominent case is that when P is a “rectangle”
(i.e., a product of two chains with p and q elements, respectively); in this case, the order
of birational rowmotion is p+ q. This generalizes Schützenberger’s classical result that
the promotion operator ∂ on the semistandard Young tableaux of a given rectangular
shape with entries in {1, 2, . . . , n} satisfies ∂n = id.
(The generalization is not trivial; translating from tableaux to labellings of a rectan-

gle poset P involves an intermediate step through Gelfand-Tsetlin triangles, and the
sidelengths of the rectangular partition are not those of P .)
Another class of finite posets P for which birational rowmotion has finite order are

graded forests (i.e., forests where all leaves are at the same depth).
The proof of this result on rectangles is inspired by Volkov’s proof of the type-AA

Zamolodchikov conjecture [Volkov06]; we also analyze some other posets like graded
forests (by an inductive argument) and some triangle-shaped posets (via a “folding”
reduction to the rectangular case). One case – that of “trapezoidal” posets, which can be
seen as a type-B analogue of rectangles – is still unresolved, and a conjecture by Nathan
Williams connects it to the rectangular case in a remarkable way [GriRob14, §19], which
(if correct) generalizes a conjecture by Elizalde on noncrossing families of Dyck paths
[Elizal14].
Further developments have happened in the last few years6. For one, Max Glick has

found a more direct relation between birational rowmotion in the case of a rectangle
and the type-AA Zamolodchikov Y-system, whereas Alexander Postnikov has suggested
a connection to the octahedral recurrence which still remains to be fully understood.
Richard Stanley suggested a generalization of the case of graded forests, which is currently
being written up by others. James Propp has conjectured some “homomesies” (algebraic
identities holding for each orbit under birational rowmotion), some of which I have
proven. Tom Roby and Gregg Musiker have recently found explicit formulas for iterates
of birational rowmotion on rectangles [MusRob17], which are inspired by [GriRob14] but

6For a list of papers inspired by [GriRob14], see the citations listed at Google Scholar, e.g., for the
second half of [GriRob14]: https://scholar.google.com/scholar?cites=445460616416961588&
as_sdt=5,24&sciodt=0,24&hl=en .
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are independent of it (and provide new proofs for its main results). Their formulas could
help prove the remaining homomesies.
Among the questions that I am planning to study are the following:

• The finite order of birational rowmotion in the above-mentioned “trapezoidal” case
needs to be proven.

• The finite order of birational rowmotion proven for rectangles seems to hold even
if K is replaced by a (noncommutative) semifield, up to a certain conjugation7;
Tom Roby and I have proven this for the most part, but the correct theoretical
underpinnings of the noncommutative setting still need to be found.

Roby and I have proven this based on the Gelfand–Retakh theory of noncommutative
Plücker coordinates, but foundational work is still in progress. There should be material
for at least three smaller papers here.

Subdivision algebras. Fix a commutative ring k, two elements α ∈ k and β ∈ k
and a positive integer n. Let X be the polynomial ring over k in the n (n− 1) /2
indeterminates xi,j for all 1 ≤ i < j ≤ n. Consider the ideal J of X generated by all
polynomials of the form xi,jxj,k − xi,k (xi,j + xj,k + β)− α for 1 ≤ i < j < k ≤ n.
In [Grinbe17a], I find a (combinatorially described) basis of the k-module X/J , and

show that a certain “straightening-and-substitution” map X/J → k is well-defined. The
latter settles (and generalizes) a conjecture by Karola Mészáros. The quotient algebra
X/J , in the case when α = 0, relates to various seemingly disjoint areas of combinatorics:
It was first introduced by Mészáros in [Meszar09] as a commutative analogue of Anatol
Kirillov’s quasi-classical Yang-Baxter algebra; it then was used by Laura Escobar and
Karola Mészáros [EscMes15, §5] in the study of Grothendieck polynomials; finally, for

β = 1 and α = 0, it can be embedded as a subalgebra (xi,j 7→ yj
yi − yj

) into the

localization of the polynomial ring k [y1, y2, . . . , yn] at the multiplicative subset generated
by all differences yi−yj (with i < j), which is a well-known object from algebraic geometry.
In particular, X/J can be regarded as a deformation of the (large) Orlik-Terao algebra
of the braid arrangement. This suggests further questions, which I plan to study, such
as the action of the symmetric group on X/J , and whether the Orlik-Terao algebras of
other hyperplane arrangements can be similarly deformed.8

Recent discussions with Victor Reiner and Nicholas Early have revealed a connection
between X/J and the Whitehouse representations of symmetric group [Whiteh97], which
we are in the process of exploring.

Hopf Algebras in Combinatorics. The lecture notes [GriRei15] by Victor Reiner
and myself are, predominantly, an expository work, providing probably the first intro-
duction into the subject with a strong emphasis on the combinatorics. Nevertheless, a

7See the end of my 2014 talk in Vienna ( http://www.cip.ifi.lmu.de/~grinberg/algebra/

vienna2014.pdf ) for an example of this noncommutative phenomenon.
8On a more speculative note: The relations defining X/J (for α = 0) also bear an uncanny resemblance
to the axioms of a Rota-Baxter algebra: see https://mathoverflow.net/questions/286510 .
Whether there is anything behind this similarity remains to be seen.
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few of my exercises contain minor innovations; these are Exercise 2.9.4(f) (the “third
comultiplication” ∆r on the symmetric functions), Exercise 2.9.11(c), Exercise 6.1.32,
and Exercise 6.1.33. The first two are concerned with symmetric functions, the latter
two with certain extensions of the concept of Lyndon words. The proof of [GriRei15,
Theorem 6.2.2] also appears to be new.
A related preprint I have provisionally completed in 2016 is an approach to the

quasisymmetric Bernstein homomorphism (and the internal comultiplication of QSym)
using universal properties [Grinbe15d]. This work is semi-expository, as the results were
known at least to some of the experts (e.g., Aguiar) and could be obtained with some
work from published claims; but the proofs (using universal properties and a change of
base ring that is almost too simple to be true) appear to be new, and my preprint might
clear some hurdles for newcomers on this rough terrain. Questions yet remain (chiefly
about how far the results can be generalized).

SageMath. I have contributed some functionality to the open-source SageMath
computer algebra system (in particular, parts of its support for symmetric functions),
and reviewed some others’ code.

Research plans, work in progress, future directions

The Reiner-Saliola-Welker conjecture. Let n ∈ N, and consider the group algebra
CSn of the n-th symmetric group Sn. For any k ∈ {1, 2, . . . , n}, we define an element
RSWk of CSn as

∑
w∈Sn

(noninvk w) ·w, where noninvk w is the number of all k-element
subsets I of {1, 2, . . . , n} such that w |I is strictly increasing.
A surprisingly difficult result by Reiner, Saliola and Welker ([ReSaWe11, Theorem

1.1]) states that the elements RSW1,RSW2, . . . ,RSWn commute pairwise. They further
conjecture that each of these elements (viewed as a C-linear endomorphism of CSn, given
by left multiplication) has integer spectrum (i.e., all its eigenvalues are integers). This
suggests the existence of a combinatorially meaningful joint eigenbasis for these operators
(similar to, e.g., the seminormal basis for CSn). Indeed, an eigenbasis for RSW1 has
been found recently by Dieker and Saliola [DieSal15], which led to a proof of the fact
that the eigenvalues of RSW1 are integers between 0 and n2. The proof is a tour-de-force
of tensor algebra, representation theory of symmetric groups and Young tableau theory,
and naturally suggests further questions (for instance, it appears to contain homological
arguments in disguise).
The element RSW1 of CSn is known as the “random-to-random operator” on Sn, due

to the following probabilistic interpretation: Imagine a shelf with n books labelled by
1, 2, . . . , n. In one step, we take out a randomly chosen book from the shelf, and put it
back at a randomly chosen position9. The transition matrix of this Markov chain is the
representing matrix of RSW1. Thus, the Dieker-Saliola result claims that this Markov
chain has integer eigenvalues; from this viewpoint, it appears surprising that such a
simple-looking result has not been proven until 2015, and not without such difficulties!

9I.e., we place it in one of the n gaps (either between two books or at the beginning or at the end
of the shelf) with equal probability. We do not model gaps between different books as intervals of
different sizes (although that, too, might lead to interesting questions).
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The Markov chain just described is reminiscent of a simpler and better-known Markov
chain: the Tsetlin library. Here, one puts the book back at the beginning of the shelf
rather than at a random point. This chain is, indeed, closely related, and has a number
of similar properties. It, too, has integer eigenvalues, and also corresponds to the first
element of a sequence R2T1,R2T2, . . . ,R2Tn of pairwise commuting elements of CSn

10.
These elements R2Tk not only commute, but also (unlike the RSWk) span a subalgebra
of CSn, and their products can be explicitly expanded; this is a particular case of the
famous “Solomon’s Mackey formula” for the descent algebra of Sn.
The symmetric group algebra CSn is a Hopf algebra (as any group algebra is) and

thus has an antipode S. It is not hard to see that RSWk =
1

(n− k)!
R2Tk S (R2Tk) for

every k.
In [Grinbe15b], I describe the kernel of the action of the random-to-top operator R2T1

on the tensor algebra (or, more precisely, the kernels of two of its actions – one “unsigned”
and one “signed”) over fields of arbitrary characteristic (and, in the “signed” case, even
over arbitrary commutative rings). While the methods used do not directly apply to
diagonalizing R2Tk and RSWk (which seems out of reach in positive characteristic), they
might provide some valuable insights. I hope to explore the algebra of the RSWk and
R2Tk more thoroughly. Questions of interest are:

• While the integrality of the eigenvalues of RSW1 has been proved, the question
still stands for RSW2,RSW3, . . . ,RSWn.

• The proof of the commutativity of the RSW1,RSW2, . . . ,RSWn given in [ReSaWe11,
Theorem 1.1] is unsatisfactory (neither slick nor intuitive – its author called it
“horrendous”); a better one needs to be found.

• It also feels that the eigenvalues of RSW1 (at least the fact that they are integers
between 0 and n2) should have a simpler proof than the one in [DieSal15].

Carlitz-Witt vectors and function-field symmetric functions. The “field with
one element” (F1) stands for the meta-mathematical idea that the ring Z has deep
similarities with the polynomial rings Fq [T ] over finite fields; that the combinatorics of
sets has analogies with the linear algebra of Fq-vector spaces; that the symmetric group
is, in some sense, the “q = 1” version of the general linear group GLn (Fq). No fully
explicatory mathematical foundation for these analogies is known, but they have been
highly useful as heuristics many times, and a vast number of objects have been translated
from one world to the other. Some basic examples can be found in [Cohn04]; another is
the theory of Carlitz polynomials [Conrad15].
The ring of symmetric functions is deeply connected with integer partitions (e.g., almost

all of its well-known bases are indexed by partitions); these correspond to conjugacy
classes of permutations in symmetric groups. This raises the question of finding an “Fq-
analogue” of this ring which is similarly connected to “Fq [T ]-partitions” (i.e., sequences

10The notation R2T stands for “random-to-top”, which relates to how these elements are defined.
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(p1, p2, p3, . . .) of monic polynomials in Fq [T ] such that · · · | p3 | p2 | p1 and such that
all but finitely many pi are = 1), or, equivalently, to conjugacy classes of matrices in
GLn (Fq). Partial results towards the construction of such an analogue can be found
in my work-in-progress [Grinbe15c]. My approach to finding such an analogue takes a
detour through the notion of Witt vectors, which are an affine group whose coordinate
ring is the symmetric functions ([Hazewi08, §10]). An Fq-analogue of the Witt vectors
(the Carlitz-Witt vectors, as I call them due to their use of Carlitz polynomials) is not
hard to construct, and its coordinate ring can then be regarded as an Fq-analogue of the
symmetric functions. However, the combinatorics of this Fq-analogue still remains to
be understood, as the theory of Witt vectors reflects but little of the combinatorics of
symmetric functions.
This is not directly related to Hall algebras (see [Dycker15] for a novel categorical

viewpoint by Dyckerhoff and Kapranov, which I am highly interested in), which can also
be regarded as an Fq-analogue of symmetric functions, but which is a different sort of
Fq-analogue. (Hall algebras, at least in the simplest case, still have bases indexed by
integer partitions; only their structure constants rely on Fq.)

Other projects. Further ongoing research of mine includes a sequel to [GriPos17]
that generalizes the main result to non-reduced expressions (I have been able to prove
the first half of that generalization).
I have been engaging in (proof-carrying) expository writing for over a decade now;

besides the already mentioned lecture notes [GriRei15], I have written a detailed elemen-
tary introduction to determinants ([Grinbe16]) and various smaller notes available on my
website, as well as many answers on MathOverflow and math.stackexchange. In Spring
2019, I have developed an undergraduate course on abstract algebra and written a set of
lecture notes for it [Grinbe19c] (currently finished and detailed in its first 2 chapters; the
rest will likely be finished during my next abstract algebra course). I am currently in
the process of creating lecture notes on enumerative combinatorics for my Drexel class
(Math 222).

Further work I am currently doing or planning includes:

• noncommutative generalizations of Abel-Hurwitz type identities [Grinbe17b] (with
plans to generalize further, possibly including Strehl’s [Strehl92] results);

• RSK and dual RSK algorithms for cylindric and periodic tableaux (continuing
Neyman’s work [Neyman14], which resulted from a PRIMES project under my
mentorship).

One other area of interest that I am planning to explore is formal proving in Coq/ssreflect.
Coq is a proof assistant for constructive mathematics that has proven its worth in logic
and software formalization, and ssreflect is a “sublanguage” that makes it particularly
suitable to formalization of complex mathematical proofs (such as those of the four-color
conjecture and the Feit-Thompson theorem, developed at the MSR-Inria joint centre by
a team under Georges Gonthier). Recent work (mostly) by Florent Hivert (the coq-combi
project) has created a library of formally verified results from algebraic combinatorics

16

http://www.cip.ifi.lmu.de/~grinberg/
http://www.cip.ifi.lmu.de/~grinberg/
https://coq.inria.fr/
http://math-comp.github.io/math-comp/
https://coq.inria.fr/
http://math-comp.github.io/math-comp/
https://www.msr-inria.fr/
http://research.microsoft.com/en-us/people/gonthier/
https://github.com/hivert/Coq-Combi
https://github.com/hivert/Coq-Combi


Darij Grinberg, Research Statement page 17 of 22

(Littlewood-Richardson rule, hook-length formula and more) in ssreflect, and one of my
long-term goals is to extend this library. Another promising proof assistant is Lean, and
it would be interesting to port Coq’s combinatorics libraries to it.
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