Three properties of the symmedian point / Darij Grinberg

1. On isogonal conjugates

The purpose of this note is to synthetically establish three results about the symmedian point of a triangle. Two of these don't seem to have received synthetic proofs hitherto. Before formulating the results, we remind about some fundamentals which we will later use, starting with the notion of isogonal conjugates.

Fig. 1
The definition of isogonal conjugates is based on the following theorem (Fig. 1):
Theorem 1. Let $A B C$ be a triangle and P a point in its plane. Then, the reflections of the lines $A P, B P, C P$ in the angle bisectors of the angles $C A B, A B C$, $B C A$ concur at one point.

This point is called the isogonal conjugate of the point P with respect to triangle $A B C$. We denote this point by Q.

Note that we work in the projective plane; this means that in Theorem 1, both the point P and the point of concurrence of the reflections of the lines $A P, B P, C P$ in the angle bisectors of the angles $C A B, A B C, B C A$ can be infinite points.

We are not going to prove Theorem 1 here, since it is pretty well-known and was showed e. g. in [5], Remark to Corollary 5. Instead, we show a property of isogonal conjugates.

At first, we meet a convention: Throughout the whole paper, we will make use of directed angles modulo 180°. An introduction into this type of angles was given in [4] (in German).

Fig. 2
Theorem 2. Let P be a point in the plane of a triangle $A B C$, and let Q be the isogonal conjugate of the point P with respect to triangle $A B C$. Then:
a) We have $\measuredangle B A Q=-\measuredangle C A P, \measuredangle C A Q=-\measuredangle B A P, \measuredangle C B Q=-\measuredangle A B P, \measuredangle A B Q=$ $-\measuredangle C B P, \measuredangle A C Q=-\measuredangle B C P$ and $\measuredangle B C Q=-\measuredangle A C P$. (See Fig. 1.)
b) Let X_{P}, Y_{P}, Z_{P} be the points of intersection of the lines $A P, B P, C P$ with the circumcircle of triangle $A B C$ (different from A, B, C). Let X_{Q}, Y_{Q}, Z_{Q} be the points of intersection of the lines $A Q, B Q, C Q$ with the circumcircle of triangle $A B C$ (different from A, B, C). Then, $X_{P} X_{Q}\left\|B C, Y_{P} Y_{Q}\right\| C A$ and $Z_{P} Z_{Q} \| A B$. (See Fig. 2.)
c) The perpendicular bisectors of the segments $B C, C A, A B$ are simultaneously
the perpendicular bisectors of the segments $X_{P} X_{Q}, Y_{P} Y_{Q}, Z_{P} Z_{Q}$. (See Fig. 3.)

Fig. 3
Here is a proof of Theorem 2. Skip it if you find the theorem trivial.
a) The point Q lies on the reflection of the line $B P$ in the angle bisector of the angle $A B C$. In other words, the reflection in the angle bisector of the angle $A B C$ maps the line $B P$ to the line $B Q$. On the other hand, this reflection maps the line $A B$ to the line $B C$ (since the axis of reflection is the angle bisector of the angle $A B C$). Since reflection in a line leaves directed angles invariant in their absolute value, but changes their sign, we thus have $\measuredangle(B C ; B Q)=-\measuredangle(A B ; B P)$. Equivalently, $\measuredangle C B Q=-\measuredangle A B P$. Similarly, $\measuredangle A B Q=-\measuredangle C B P, \measuredangle A C Q=-\measuredangle B C P, \measuredangle B C Q=-\measuredangle A C P, \measuredangle B A Q=-\measuredangle C A P$ and $\measuredangle C A Q=-\measuredangle B A P$. This proves Theorem $2 \mathbf{a}$).
b) (See Fig. 4.) Theorem $2 \mathbf{a}$) yields $\measuredangle C B Q=-\measuredangle A B P$. In other words, $\measuredangle C B Y_{Q}=$ $\measuredangle Y_{P} B A$. But since the points Y_{P} and Y_{Q} lie on the circumcircle of triangle $A B C$, we have $\measuredangle C B Y_{Q}=\measuredangle C Y_{P} Y_{Q}$ and $\measuredangle Y_{P} B A=\measuredangle Y_{P} C A$. Thus, $\measuredangle C Y_{P} Y_{Q}=\measuredangle Y_{P} C A$. In other words, $\measuredangle\left(C Y_{P} ; Y_{P} Y_{Q}\right)=\measuredangle\left(C Y_{P} ; C A\right)$. This yields $Y_{P} Y_{Q} \| C A$, and analogous reasoning leads to $Z_{P} Z_{Q} \| A B$ and $X_{P} X_{Q} \| B C$. Hence, Theorem $2 \mathbf{b}$) is proven.
c) After Theorem $2 \mathbf{b}$), the segments $Y_{P} Y_{Q}$ and $C A$ are parallel. Hence, the perpendicular bisectors of these segments $Y_{P} Y_{Q}$ and $C A$ are also parallel. But these
perpendicular bisectors have a common point, namely the center of the circumcircle of triangle $A B C$ (since the segments $Y_{P} Y_{Q}$ and $C A$ are chords in this circumcircle, and the perpendicular bisector of a chord in a circle always passes through the center of the circle). So, the perpendicular bisectors of the segments $Y_{P} Y_{Q}$ and $C A$ are parallel and have a common point; thus, they must coincide. In other words, the perpendicular bisector of the segment $C A$ is simultaneously the perpendicular bisector of the segment $Y_{P} Y_{Q}$. Similarly for $A B$ and $Z_{P} Z_{Q}$ and for $B C$ and $X_{P} X_{Q}$. This proves Theorem $2 \mathbf{c}$).

Fig. 4

2. The symmedian point

Now it's time to introduce the main object of our investigations, the symmedian point:

The symmedian point of a triangle is defined as the isogonal conjugate of the centroid of the triangle (with respect to this triangle). In other words: If S is the centroid of a triangle $A B C$, and L is the isogonal conjugate of this point S with respect to triangle $A B C$, then this point L is called the symmedian point of triangle $A B C$.

So the point L is the isogonal conjugate of the point S with respect to triangle $A B C$, i. e. the point of intersection of the reflections of the lines $A S, B S, C S$ in the
angle bisectors of the angles $C A B, A B C, B C A$. The lines $A S, B S, C S$ are the three medians of triangle $A B C$ (since S is the centroid of triangle $A B C$); thus, the point L is the point of intersection of the reflections of the medians of triangle $A B C$ in the corresponding angle bisectors of triangle $A B C$. In other words, the lines $A L, B L, C L$ are the reflections of the medians of triangle $A B C$ in the corresponding angle bisectors of triangle $A B C$. These lines $A L, B L, C L$ are called the symmedians of triangle $A B C$

Fig. 5
Since the point L is the isogonal conjugate of the point S with respect to triangle $A B C$, we can apply Theorem 2 to the points $P=S$ and $Q=L$, and obtain:

Theorem 3. Let S be the centroid and L the symmedian point of a triangle $A B C$. Then:
a) We have $\measuredangle B A L=-\measuredangle C A S, \measuredangle C A L=-\measuredangle B A S, \measuredangle C B L=-\measuredangle A B S, \measuredangle A B L=$ $-\measuredangle C B S, \measuredangle A C L=-\measuredangle B C S$ and $\measuredangle B C L=-\measuredangle A C S$. (See Fig. 5.)
b) Let X, Y, Z be the points of intersection of the medians $A S, B S, C S$ of triangle $A B C$ with the circumcircle of triangle $A B C$ (different from A, B, C). Let $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the points of intersection of the symmedians $A L, B L, C L$ with the circumcircle of
triangle $A B C$ (different from A, B, C). Then, $X X^{\prime}\left\|B C, Y Y^{\prime}\right\| C A$ and $Z Z^{\prime} \| A B$. (See Fig. 6.)
c) The perpendicular bisectors of the segments $B C, C A, A B$ are simultaneously the perpendicular bisectors of the segments $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$.

Fig. 6
Another basic property of the symmedian point will be given without proof, since it was shown in [1], Chapter 7, §4 (iii) and in [3], §24:

Theorem 4. Let the tangents to the circumcircle of triangle $A B C$ at the points B and C meet at a point D; let the tangents to the circumcircle of triangle $A B C$ at the points C and A meet at a point E; let the tangents to the circumcircle of triangle $A B C$ at the points A and B meet at a point F. Then, the lines $A D, B E, C F$ are the symmedians of triangle $A B C$ and pass through its symmedian point L. (See Fig. 7.)

The triangle $D E F$ is called the tangential triangle of triangle $A B C$.

Fig. 7
The last property of the symmedian point which we will use relates it to the midpoints of the altitudes of the triangle (Fig. 8):

Theorem 5. Let G be the foot of the altitude of triangle $A B C$ issuing from the vertex A, and let G^{\prime} be the midpoint of the segment $A G$. Furthermore, let A^{\prime} be the midpoint of the side $B C$ of triangle $A B C$. Then, the line $A^{\prime} G^{\prime}$ passes through the symmedian point L of triangle $A B C$.

For the proof of this fact, we refer to [1], Chapter 7, $\S 4$ (vii).

Fig. 8

3. The midpoints of two symmedians

Now we are prepared for stating and proving the three properties of the symmedian point. The first one is as follows:

Fig. 9
Theorem 6. Let L be the symmedian point of a triangle $A B C$. The symmedians $B L$ and $C L$ of triangle $A B C$ intersect the sides $C A$ and $A B$ at the points E^{\prime} and F^{\prime}, respectively. Denote by $E^{\prime \prime}$ and $F^{\prime \prime}$ the midpoints of the segments $B E^{\prime}$ and $C F^{\prime}$. Then:
a) We have $\measuredangle B C E^{\prime \prime}=-\measuredangle C B F^{\prime \prime}$. (See Fig. 9.)
b) The lines $B F^{\prime \prime}$ and $C E^{\prime \prime}$ are symmetric to each other with respect to the perpendicular bisector of the segment $B C$. (See Fig. 10.)

Fig. 10
Proof of Theorem 6. (See Fig. 11.) We will make use of the tangential triangle $D E F$ defined in Theorem 4.

In the above, we have constructed the midpoint A^{\prime} of the side $B C$ of triangle $A B C$. Now let B^{\prime} and C^{\prime} be the midpoints of its sides $C A$ and $A B$. The line $B^{\prime} C^{\prime}$ intersects the line $D E$ at a point R.

First we will show that $A R \| C F$.
We will use directed segments. After Theorem 4, the lines $A D, B E, C F$ concur at one point, namely at the point L. Hence, by the Ceva theorem, applied to the triangle $D E F$, we have

$$
\frac{E A}{A F} \cdot \frac{F B}{B D} \cdot \frac{D C}{C E}=1 .
$$

Let the parallel to the line $D E$ through the point F intersect the lines $B C$ and $C A$ at the points F_{a} and F_{b}, respectively. Then, since $F_{a} F_{b} \| D E$, Thales yields $\frac{C E}{F F_{b}}=\frac{E A}{A F}$
and $\frac{F_{a} F}{D C}=\frac{F B}{B D}$; hence,

$$
\frac{F_{a} F}{F F_{b}}=\frac{C E}{F F_{b}} \cdot \frac{F_{a} F}{D C} \cdot \frac{D C}{C E}=\frac{E A}{A F} \cdot \frac{F B}{B D} \cdot \frac{D C}{C E}=1
$$

Thus, the point F is the midpoint of the segment $F_{a} F_{b}$.

Fig. 11
Now, let the parallel to the line $B C$ through the point A meet the line $D E$ at Q. Since B^{\prime} and C^{\prime} are the midpoints of the sides $C A$ and $A B$ of triangle $A B C$, we have $B^{\prime} C^{\prime} \| B C$. Comparing this with $A Q \| B C$, we get $B^{\prime} C^{\prime} \| A Q$, and thus, Thales yields $\frac{C R}{R Q}=\frac{C B^{\prime}}{B^{\prime} A}$. But since B^{\prime} is the midpoint of the segment $C A$, we have $\frac{C B^{\prime}}{B^{\prime} A}=1$; thus $\frac{C R}{R Q}=1$, and it follows that R is the midpoint of the segment $Q C$.

We have $F_{a} F_{b} \| Q C$ (this is just a different way to say $F_{a} F_{b} \| D E$), we have $F_{b} C \| C A$ (trivial, since the lines $F_{b} C$ and $C A$ coincide), and we have $C F_{a} \| A Q$ (this is an equivalent way of stating $B C \| A Q)$. Hence, the corresponding sides of triangles $F_{a} F_{b} C$ and $Q C A$ are parallel; thus, these triangles are homothetic. In other words,
there exists a homothety mapping the points F_{a}, F_{b}, C to the points Q, C, A. Then, of course, this homothety must map the midpoint F of the segment $F_{a} F_{b}$ to the midpoint R of the segment $Q C$. Hence, this homothety maps the line $C F$ to the line $A R$. Since a homothety maps any line to a parallel line, we thus have $A R \| C F$.

Fig. 12
(See Fig. 12.) Since R is the midpoint of the segment $Q C$, the point C is the reflection of the point Q in the point R. Let R^{\prime} be the reflection of the point A in the point R. Since reflection in a point maps any line to a parallel line, we thus have $R^{\prime} C \| A Q$. Together with $A Q \| B C$, this becomes $R^{\prime} C \| B C$. Thus, the point R^{\prime} must lie on the line $B C$.

Since R^{\prime} is the reflection of the point A in the point R, the point R is the midpoint of the segment $R^{\prime} A$.

Fig. 13
(See Fig. 13.) After Theorem 4, the line $C F$ passes through the symmedian point L of triangle $A B C$. In other words, the line $C F$ coincides with the line $C L$. Hence, the point F^{\prime}, defined as the point of intersection of the lines $C L$ and $A B$, is the point of intersection of the lines $C F$ and $A B$. Consequently, from $A R \| C F$ we infer by Thales that $\frac{B C}{B R^{\prime}}=\frac{B F^{\prime}}{B A}$. The homothety with center B and factor $\frac{B C}{B R^{\prime}}=\frac{B F^{\prime}}{B A}$ maps the points R^{\prime} and A to the points C and F^{\prime}; hence, this homothety must also map the midpoint R of the segment $R^{\prime} A$ in the midpoint $F^{\prime \prime}$ of the segment $C F^{\prime}$. Hence, the points R and $F^{\prime \prime}$ lie on one line with the center of our homothety, i. e. with the point B. In other words, the line $B F^{\prime \prime}$ coincides with the line $R B$.
(See Fig. 14.) So we have shown that the line $B F^{\prime \prime}$ coincides with the line $R B$, where R is the point of intersection of the lines $B^{\prime} C^{\prime}$ and $D E$. Similarly, the line $C E^{\prime \prime}$ coincides with the line $T C$, where T is the point of intersection of the lines $B^{\prime} C^{\prime}$ and $F D$.

Hence, in order to prove Theorem $6 \mathbf{b}$), it is enough to show that the lines $R B$
and $T C$ are symmetric to each other with respect to the perpendicular bisector of the segment $B C$.

What is trivial is that the reflection with respect to the perpendicular bisector of the segment $B C$ maps the point B to the point C and the point C to the point B. Furthermore, it maps the circumcircle of triangle $A B C$ to itself (since the center of this circumcircle lies on the perpendicular bisector of the segment $B C$, i. e. on the axis of reflection). Hence, this reflection maps the tangent to the circumcircle of triangle $A B C$ at the point B to the tangent to the circumcircle of triangle $A B C$ at the point C. In other words, this reflection maps the line $F D$ to the line $D E$. On the other hand, this reflection maps the line $B^{\prime} C^{\prime}$ to itself (since the line $B^{\prime} C^{\prime}$ is parallel to the line $B C$, and thus perpendicular to the perpendicular bisector of the segment $B C$, i. e. to the axis of reflection). Hence, our reflection maps the point of intersection T of the lines $B^{\prime} C^{\prime}$ and $F D$ to the point of intersection R of the lines $B^{\prime} C^{\prime}$ and $D E$. Also, as we know, this reflection maps the point C to the point B. Thus, this reflection maps the line $T C$ to the line $R B$. In other words, the lines $R B$ and $T C$ are symmetric to each other with respect to the perpendicular bisector of the segment $B C$. And this proves Theorem $6 \mathbf{b}$).

Now, establishing Theorem $6 \mathbf{a}$) is a piece of cake: The reflection with respect to a line leaves directed angles invariant in their absolute value, but changes their sign. Since the reflection in the perpendicular bisector of the segment $B C$ maps the line $C E^{\prime \prime}$ to the line $B F^{\prime \prime}$ (according to Theorem $6 \mathbf{b}$)), while it leaves the line $B C$ invariant, we thus have $\measuredangle\left(B C ; B F^{\prime \prime}\right)=-\measuredangle\left(B C ; C E^{\prime \prime}\right)$. In other words, $\measuredangle C B F^{\prime \prime}=-\measuredangle B C E^{\prime \prime}$. Hence, $\measuredangle B C E^{\prime \prime}=-\measuredangle C B F^{\prime \prime}$. Thus, Theorem 6 a) is proven as well.

Fig. 14
The proof of Theorem 6 is thus complete. During this proof, we came up with two auxiliary results which could incidentally turn out useful, so let's compile them to a theorem:

Theorem 7. In the configuration of Theorem 6 , let B^{\prime} and C^{\prime} be the midpoints of the sides $C A$ and $A B$ of triangle $A B C$, and let R be the point of intersection of the lines $B^{\prime} C^{\prime}$ and $D E$. Then:
a) We have $A R \| C F$.
b) The points $R, F^{\prime \prime}$ and B lie on one line. (See Fig. 15.)

Fig. 15
Note that Theorem $6 \mathbf{a}$) forms a part of the problem G5 from the IMO Shortlist 2000. The two proposed solutions of this problem can be found in [2], p. 49-51, and both of them require calculation. (The original statement of this problem G5 doesn't use the notion of the symmedian point; instead of mentioning the symmedians $B L$ and $C L$, it speaks of the lines $B E$ and $C F$, what is of course the same thing, according to Theorem 4).

4. The point J on $S L$ such that $\frac{S J}{J L}=\frac{2}{3}$

Our second fact about the symmedian point originates from a locus problem by Antreas P. Hatzipolakis. Here is the most elementary formulation of this fact (Fig. 16):

Fig. 16
Theorem 8. Let $A B C$ be a triangle, and let A^{\prime} be the midpoint of its side $B C$. Let S be the centroid and L the symmedian point of triangle $A B C$. Let J be the point on the line $S L$ which divides the segment $S L$ in the ratio $\frac{S J}{J L}=\frac{2}{3}$.

Let X be the point of intersection of the median $A S$ of triangle $A B C$ with the circumcircle of triangle $A B C$ (different from A). Denote by U the orthogonal projection of the point X on the line $B C$, and denote by U^{\prime} the reflection of this point U in the point X.

Then, the line $A U^{\prime}$ passes through the point J and bisects the segment $L A^{\prime}$.

Fig. 17
Proof of Theorem 8. Since S is the centroid of triangle $A B C$, the line $A S$ is the median of triangle $A B C$ issuing from the vertex A, and thus passes through the midpoint A^{\prime} of its side $B C$. Also, it passes through X (remember the definition of X). Hence, the four points A, S, A^{\prime} and X lie on one line.
(See Fig. 17.) Let M be the midpoint of the segment $L A^{\prime}$. Then, the point L is the reflection of the point A^{\prime} in the point M.

We will use the auxiliary points constructed in Theorem 5. This means: Let G be the foot of the altitude of triangle $A B C$ issuing from the vertex A, and let G^{\prime} be the midpoint of the segment $A G$.

According to Theorem 5, the line $A^{\prime} G^{\prime}$ passes through the symmedian point L; in other words, the points L, A^{\prime} and G^{\prime} lie on one line. Of course, the midpoint M of the segment $L A^{\prime}$ must also lie on this line.

Let M^{\prime} be the foot of the perpendicular from the point M to the line $B C$, and let $M^{\prime \prime}$ be the point where this perpendicular meets the line $A A^{\prime}$.

The line $A G$ is, as an altitude of triangle $A B C$, perpendicular to its side $B C$. The line $M^{\prime \prime} M^{\prime}$ is also perpendicular to $B C$. Hence, $A G \| M^{\prime \prime} M^{\prime}$, and thus Thales yields
$\frac{M^{\prime \prime} M}{M M^{\prime}}=\frac{A G^{\prime}}{G^{\prime} G}$. But since G^{\prime} is the midpoint of the segment $A G$, we have $\frac{A G^{\prime}}{G^{\prime} G}=1 ;$ thus, $\frac{M^{\prime \prime} M}{M M^{\prime}}=1$, so that M is the midpoint of the segment $M^{\prime \prime} M^{\prime}$. In other words, the point $M^{\prime \prime}$ is the reflection of the point M^{\prime} in the point M. On the other hand, the point L is the reflection of the point A^{\prime} in the point M. Since reflection in a point maps any line to a parallel line, we thus have $L M^{\prime \prime} \| A^{\prime} M^{\prime}$. In other words: $L M^{\prime \prime} \| B C$.
(See Fig. 18.) Now, let X^{\prime} be the point of intersection of the symmedian $A L$ of triangle $A B C$ with the circumcircle of triangle $A B C$ (different from A). After Theorem $3 \mathbf{b}$), we then have $X X^{\prime} \| B C$, and after Theorem $3 \mathbf{c}$), the perpendicular bisector of the segment $B C$ is simultaneously the perpendicular bisector of the segment $X X^{\prime}$.

Now, let N^{\prime} be the orthogonal projection of the point X^{\prime} on the line $B C$.
The lines $A G, X U$ and $X^{\prime} N^{\prime}$ are all perpendicular to the line $B C$; thus, they are parallel to each other: $A G\|X U\| X^{\prime} N^{\prime}$.

As we know, the points L, A^{\prime} and G^{\prime} lie on one line. Let this line intersect the line $X U$ at a point N. Then, since $A G \| X U$, Thales yields $\frac{X N}{N U}=\frac{A G^{\prime}}{G^{\prime} G}$. But as we know, $\frac{A G^{\prime}}{G^{\prime} G}=1$. Hence, $\frac{X N}{N U}=1$, so that the point N is the midpoint of the segment $X U$.

We have $X X^{\prime} \| U N^{\prime}$ (this is just another way to say $X X^{\prime} \| B C$) and $X U \| X^{\prime} N^{\prime}$. Hence, the quadrilateral $X X^{\prime} N^{\prime} U$ is a parallelogram. Since $X^{\prime} N^{\prime} \perp B C$, we have $\measuredangle X^{\prime} N^{\prime} U=90^{\circ}$; thus, this parallelogram has a right angle, and thus is a rectangle. In a rectangle, the perpendicular bisectors of opposite sides coincide; hence, in the rectangle $X X^{\prime} N^{\prime} U$, the perpendicular bisector of the segment $X X^{\prime}$ coincides with the perpendicular bisector of the segment $U N^{\prime}$. On the other hand, as we know, the perpendicular bisector of the segment $X X^{\prime}$ coincides with the perpendicular bisector of the segment $B C$. Thus, the perpendicular bisector of the segment $U N^{\prime}$ coincides with the perpendicular bisector of the segment $B C$. Now, both segments $U N^{\prime}$ and $B C$ lie on one line; hence, this coincidence actually yields that the midpoint of the segment $U N^{\prime}$ coincides with the midpoint of the segment $B C$. In other words, the midpoint A^{\prime} of the segment $B C$ is simultaneously the midpoint of the segment $U N^{\prime}$.

Since A^{\prime} and N are the midpoints of the sides $U N^{\prime}$ and $X U$ of triangle $N^{\prime} X U$, we have $A^{\prime} N \| N^{\prime} X$. But the line $A^{\prime} N$ is simply the line $L A^{\prime}$. Hence, $L A^{\prime} \| N^{\prime} X$.

Since the quadrilateral $X X^{\prime} N^{\prime} U$ is a parallelogram, we have $U X=N^{\prime} X^{\prime}$, where we use directed segments and the two parallel lines $X U$ and $X^{\prime} N^{\prime}$ are oriented in the same direction. On the other hand, $U X=X U^{\prime}$, since U^{\prime} is the reflection of the point U in the point X. Hence, $X U^{\prime}=N^{\prime} X^{\prime}$. Together with $X U^{\prime} \| N^{\prime} X^{\prime}$ (this is just an equivalent version of $X U \| X^{\prime} N^{\prime}$), this yields that the quadrilateral $X U^{\prime} X^{\prime} N^{\prime}$ is a parallelogram, and thus $N^{\prime} X \| U^{\prime} X^{\prime}$. Together with $L A^{\prime} \| N^{\prime} X$, this leads to $L A^{\prime} \| U^{\prime} X^{\prime}$.

From $L M^{\prime \prime} \| B C$ and $X X^{\prime} \| B C$, we infer $L M^{\prime \prime} \| X X^{\prime}$.

Fig. 18
(See Fig. 19.) Since $M^{\prime \prime} M \perp B C$ and $X U^{\prime} \perp B C$ (the latter is just a different way to write $X U \perp B C$), we have $M^{\prime \prime} M \| X U^{\prime}$. Furthermore, $M L \| U^{\prime} X^{\prime}$ (this is equivalent to $L A^{\prime} \| U^{\prime} X^{\prime}$) and $L M^{\prime \prime} \| X^{\prime} X$ (this is equivalent to $L M^{\prime \prime} \| X X^{\prime}$). Hence, the corresponding sides of triangles $L M^{\prime \prime} M$ and $X^{\prime} X U^{\prime}$ are parallel. Thus, these triangles are homothetic; hence, the lines $L X^{\prime}, M^{\prime \prime} X, M U^{\prime}$ concur at one point (namely, at the center of homothety). In other words, the point of intersection of the lines $L X^{\prime}$ and $M^{\prime \prime} X$ lies on the line $M U^{\prime}$. But the point of intersection of the lines $L X^{\prime}$ and $M^{\prime \prime} X$ is simply the point A, and hence, we obtain that the point A lies on the line $M U^{\prime}$. To say it differently, the line $A U^{\prime}$ passes through the point M, hence through the midpoint of the segment $L A^{\prime}$. In other words, the line $A U^{\prime}$ bisects the segment $L A^{\prime}$.

Fig. 19
This shows a part of Theorem 8; the rest is now an easy corollary:
(See Fig. 20.) It is well-known that the centroid S of triangle $A B C$ divides the median $A A^{\prime}$ in the ratio $\frac{A S}{S A^{\prime}}=2$. Thus, $\frac{S A^{\prime}}{A S}=\frac{1}{2}$, so that $\frac{A A^{\prime}}{A S}=\frac{A S+S A^{\prime}}{A S}=$ $1+\frac{S A^{\prime}}{A S}=1+\frac{1}{2}=\frac{3}{2}$, and thus $\frac{A^{\prime} A}{A S}=-\frac{A A^{\prime}}{A S}=-\frac{3}{2}$. According to its definition, the point J lies on the line $S L$ and satisfies $\frac{S J}{J L}=\frac{2}{3}$; finally, $\frac{L M}{M A^{\prime}}=1$, since M is the midpoint of the segment $L A^{\prime}$. Hence,

$$
\frac{A^{\prime} A}{A S} \cdot \frac{S J}{J L} \cdot \frac{L M}{M A^{\prime}}=\left(-\frac{3}{2}\right) \cdot \frac{2}{3} \cdot 1=-1
$$

By the Menelaos theorem, applied to the triangle $L A^{\prime} S$ and the points A, J, M on its sidelines $A^{\prime} S, S L, L A^{\prime}$, this yields that the points A, J, M lie on one line. In other words, the line $A M$ passes through the point J. But the line $A M$ is the same as the line $A U^{\prime}$ (since the line $A U^{\prime}$ passes through M); hence, we can conclude that the line $A U^{\prime}$ passes through the point J. Thus, Theorem 8 is completely proven.

Fig. 20
Theorem 8 gives an assertion about the line $A U^{\prime}$; we can obtain two analogous assertions by cyclic permutation of the vertices A, B, C. Combining these three assertions, we get the following symmetric variant of Theorem 8:

Theorem 9. Let $A B C$ be a triangle, and let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of its sides $B C, C A, A B$. Let S be the centroid and L the symmedian point of triangle $A B C$. Let J be the point on the line $S L$ which divides the segment $S L$ in the ratio $\frac{S J}{J L}=\frac{2}{3}$.

Let X, Y, Z be the points of intersection of the medians $A S, B S, C S$ of triangle $A B C$ with the circumcircle of triangle $A B C$ (different from A, B, C). Let U, V, W be the orthogonal projections of the points X, Y, Z on the lines $B C, C A, A B$, and let U^{\prime}, V^{\prime}, W^{\prime} be the reflections of these points U, V, W in the points X, Y, Z.

Then, the lines $A U^{\prime}, B V^{\prime}, C W^{\prime}$ pass through the point J and bisect the segments $L A^{\prime}, L B^{\prime}, L C^{\prime}$, respectively. (See Fig. 21.)

Fig. 21

5. A remarkable cross-ratio

Finally, as a side-product of our above observations, we will establish our third property of the symmedian point (a rather classical one compared with the former two).
(See Fig. 22.) According to Theorem $3 \mathbf{c}$), the perpendicular bisector of the segment $B C$ is simultaneously the perpendicular bisector of the segment $X X^{\prime}$. The point A^{\prime}, being the midpoint of the segment $B C$, lies on the perpendicular bisector of the segment $B C$; hence, it must lie on the perpendicular bisector of the segment $X X^{\prime}$. Thus, $A^{\prime} X=A^{\prime} X^{\prime}$. Therefore, the triangle $X A^{\prime} X^{\prime}$ is isosceles, what yields $\measuredangle A^{\prime} X^{\prime} X=\measuredangle X^{\prime} X A^{\prime}$. In other words, $\measuredangle\left(A^{\prime} X^{\prime} ; X X^{\prime}\right)=\measuredangle\left(X X^{\prime} ; A X\right)$. But $X X^{\prime} \|$ $B C$ implies $\measuredangle\left(A^{\prime} X^{\prime} ; X X^{\prime}\right)=\measuredangle\left(A^{\prime} X^{\prime} ; B C\right)$ and $\measuredangle\left(X X^{\prime} ; A X\right)=\measuredangle(B C ; A X)$; thus, $\measuredangle\left(A^{\prime} X^{\prime} ; B C\right)=\measuredangle(B C ; A X)$. This rewrites as $\measuredangle X^{\prime} A^{\prime} B=\measuredangle B A^{\prime} A$.

Fig. 22
(See Fig. 23.) Now let A_{1} be the reflection of the point A in the line $B C$. On the other hand, G is the foot of the perpendicular from A to $B C$. Thus, G is the midpoint of the segment $A A_{1}$. Hence, $\frac{A A_{1}}{G A_{1}}=2$, and thus $\frac{A A_{1}}{A_{1} G}=-\frac{A A_{1}}{G A_{1}}=-2$.

Since A_{1} is the reflection of the point A in the line $B C$, we have $\measuredangle A_{1} A^{\prime} B=\measuredangle B A^{\prime} A$. Comparison with $\measuredangle X^{\prime} A^{\prime} B=\measuredangle B A^{\prime} A$ yields $\measuredangle A_{1} A^{\prime} B=\measuredangle X^{\prime} A^{\prime} B$; thus, the points A^{\prime}, A_{1} and X^{\prime} lie on one line. If we denote by D^{\prime} the point where the symmedian $A L$ of triangle $A B C$ meets the side $B C$, then the points A^{\prime}, G and D^{\prime} lie on one line. Finally, the points A^{\prime}, G^{\prime} and L lie on one line, and the points A^{\prime}, A and A lie on one line (trivial). But the points A, G, G^{\prime} and A_{1} lie on one line, and the points A, D^{\prime}, L and X^{\prime} lie on one line. Hence, by the invariance of the cross-ratio under central projection,

$$
\frac{A L}{L D^{\prime}}: \frac{A X^{\prime}}{X^{\prime} D^{\prime}}=\frac{A G^{\prime}}{G^{\prime} G}: \frac{A A_{1}}{A_{1} G}
$$

But since G^{\prime} is the midpoint of the segment $A G$, we have $\frac{A G^{\prime}}{G^{\prime} G}=1$. Furthermore,
$\frac{A A_{1}}{A_{1} G}=-2$. Hence, we obtain

$$
\frac{A L}{L D^{\prime}}: \frac{A X^{\prime}}{X^{\prime} D^{\prime}}=1:(-2)=-\frac{1}{2}
$$

Fig. 23
We formulate this as a theorem:
Theorem 10. Let L be the symmedian point of a triangle $A B C$. Let the symmedian $A L$ of triangle $A B C$ meet the side $B C$ at a point D^{\prime} and the circumcircle of triangle $A B C$ at a point X^{\prime} (different from A). Then,

$$
\frac{A L}{L D^{\prime}}: \frac{A X^{\prime}}{X^{\prime} D^{\prime}}=-\frac{1}{2}
$$

(See Fig. 24.)

Fig. 24

References

[1] Ross Honsberger: Episodes in Nineteenth and Twentieth Century Euclidean Geometry, USA 1995.
[2] IMO Shortlist 2000.
http://www.mathlinks.ro/Forum/viewtopic.php?t=15587
(you have to register at MathLinks in order to be able to download the files, but registration is free and painless; a mirror can be found at http://www.ajorza.org , but this server is currently down).
[3] Darij Grinberg: Über einige Sätze und Aufgaben aus der Dreiecksgeometrie, Stand 10.8.2003.
http://de.geocities.com/darij_grinberg/Dreigeom/Inhalt.html
[4] Darij Grinberg: Orientierte Winkel modulo 180° und eine Lösung der $\sqrt{\text { WURZEL- }}$ Aufgabe к 22 von Wilfried Haag.
http://de.geocities.com/darij_grinberg/Dreigeom/Inhalt.html
[5] Alexander Bogomolny: Ceva's Theorem, Cut The Knot.
http://www.cut-the-knot.org/Generalization/ceva.shtml

