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1. Introduction

In this note we are going to shed new light on some aspects of the theory of the
radical axis. For a rather complete account of this theory, see Chapter VIII of [1]. We
are going to make use of but the most basic properties of radical axes (the existence
of the radical axis and of the radical center), and prove some possibly new facts along
with a few known ones.
First we introduce several conventions and notations:

� We work in the plane. That means, the geometrical objects de�ned below are all
meant to lie on the same plane.

� We use directed lengths. Hereby, we denote the directed length of a segment AB
by AB; and the non-directed (i. e. standard) length of this segment just by AB:

� For any point A and any nonnegative real x; we denote by A (x) the circle with
center A and radius x: 1

� For any circle k and any point P; we de�ne the power of the point P with respect to
the circle k as the number PM2 � r2; where M is the center and r is the radius
of the circle k: This power will be denoted by pot (P ; k) ; thus, pot (P ; k) =
PM2 � r2:
In other words: If M is a point, and r is a number, then pot (P ; M (r)) =
PM2 � r2:

� A known fact (see, e. g., [1], §421) states:
If k and m are two circles with distinct centers, then the set of all points P
satisfying pot (P ; k) = pot (P ; m) is a line.
This line is called the radical axis of the circles k and m; and will be denoted by
rad (k; m) in the following.
It is known that the radical axis of two circles is always perpendicular to the line
joining their centers. In other words, if K andM are two points, and r and s are
two numbers, then

rad (K (r) ; M (s)) ? KM: (1)

� If g is a line and P is a point, then we denote by perp (P ; g) the perpendicular
to the line g through the point P:

2. A theorem by Casey

Now we can start with a rather easy and known result ([1], §471):

1Note that this circle is de�ned for all x � 0; including the case x = 0: One can also allow x to
be negative or even purely imaginary, if one departs from the usual de�nition of circles as point-sets
and, instead, de�nes an "abstract circle" as an ordered pair of a point (the center) and a number
(the radius) such that the square of the radius is real. All results in this note remain valid for such
"abstract circles".
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Theorem 1 (Casey). Let A and B be two distinct points, and let x and y
be two numbers. Let P be a point, and let Q be the orthogonal projection
of the point P on the line rad (A (x) ; B (y)) :

The two lines PQ and AB are parallel. If we direct these lines in the same
way (that means, we direct them in such a way that equal vectors along
these lines correspond to equal directed segments), then

pot (P ; A (x))� pot (P ; B (y)) = 2 �QP � AB: (2)

(See Fig. 1.)

A B

P Q

Fig. 1
Proof of Theorem 1. (See Fig. 2.) First, we have to show that the lines PQ and

AB are parallel. In fact, (1) yields rad (A (x) ; B (y)) ? AB; but, on the other hand,
PQ ? rad (A (x) ; B (y)) (by the construction of the pointQ). Thus, PQ k AB follows.
As we now have shown that the lines PQ and AB are parallel, it only remains to

prove the equation (2) - under the condition that the lines PQ and AB are directed in
the same way.
Let P 0 be the orthogonal projection of the point P on the line AB: Let Q0 =

rad (A (x) ; B (y)) \ AB: Then, rad (A (x) ; B (y)) ? AB yields ]P 0Q0Q = 90�: Fur-
thermore, ]PP 0Q0 = 90� and ]PQQ0 = 90� (by the construction of the points P 0

and Q). Hence, the quadrilateral PQQ0P 0 has three right angles and thus must be a
rectangle. Hence, Q0P 0 = QP: Therefore, the directed lengths Q0P 0 and QP have the
same absolute value. On the other hand, these directed lengths have the same sign
(since the lines PQ and AB were directed in the same way). Thus, Q0P 0 = QP:
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From Q0 2 rad (A (x) ; B (y)) ; it follows that pot (Q0; A (x)) = pot (Q0; B (y)) :
Hence,

Q0A
2 � x2 = Q0A2 � x2 = pot (Q0; A (x)) = pot (Q0; B (y)) = Q0B2 � y2 = Q0B2 � y2:

This becomes
Q0A

2 �Q0B2 = x2 � y2: (3)

A B

P Q

P' Q'

Fig. 2
From PP 0 ? AB; it follows that ]AP 0P = 90�: This means that the triangle

AP 0P is right-angled at P 0: Thus, by the Pythagorean theorem, PA2 = P 0P 2 + P 0A2:
Consequently,

pot (P ; A (x)) = PA2 � x2 =
�
P 0P 2 + P 0A2

�
� x2 =

�
P 0P 2 + P 0A

2
�
� x2:
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Similarly, pot (P ; B (y)) =
�
P 0P 2 + P 0B

2
�
� y2: This yields

pot (P ; A (x))� pot (P ; B (y))

=
��
P 0P 2 + P 0A

2
�
� x2

�
�
��
P 0P 2 + P 0B

2
�
� y2

�
=
�
P 0A

2 � P 0B2
�
�
�
x2 � y2

�
=
�
P 0A

2 � P 0B2
�
�
�
Q0A

2 �Q0B2
� �

since x2 � y2 = Q0A2 �Q0B2 from (3)
�

=
�
P 0A+ P 0B

�
�
�
P 0A� P 0B

�
�
�
Q0A+Q0B

�
�
�
Q0A�Q0B

�
=
�
P 0A+ P 0B

�
�BA�

�
Q0A+Q0B

�
�BA

=
��
P 0A+ P 0B

�
�
�
Q0A+Q0B

��
�BA

=
��
P 0A�Q0A

�
+
�
P 0B �Q0B

��
�BA =

�
P 0Q0 + P 0Q0

�
�BA

= 2 � P 0Q0 �BA = 2 �
�
�Q0P 0

�
�
�
�AB

�
= 2 �Q0P 0 � AB = 2 �QP � AB:

Thus, the equation (2) is proven, i. e. the proof of Theorem 1 is complete.

3. Three circles with collinear centers

Now we come to a theorem apparently new, and central to this note (Fig. 3):

Theorem 2. Let g be a line, and let A; B; C be three pairwise distinct
points on this line g: Let x; y; z be three numbers. Let

X = rad (B (y) ; C (z))\g; Y = rad (C (z) ; A (x))\g; Z = rad (A (x) ; B (y))\g:

Let the line g be directed in some way. Then:

a) We have

Y Z =
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
�BC: (4)

b) We have
Y Z

BC
=
ZX

CA
=
XY

AB
:

Proof of Theorem 2 a). From (1), we have rad (A (x) ; B (y)) ? AB; thus rad (A (x) ; B (y)) ?
g: In other words, rad (A (x) ; B (y)) ? AZ:On the other hand, Z 2 rad (A (x) ; B (y)) :
Thus, the point Z is the orthogonal projection of the pointA on the line rad (A (x) ; B (y)) :

According to the formula (2) of Theorem 1, we thus have pot (A; A (x))�pot (A; B (y)) =
2 � ZA � AB: Hence,

ZA =
pot (A; A (x))� pot (A; B (y))

2 � AB
=
(AA2 � x2)� (AB2 � y2)

2 � AB

=
(02 � x2)�

�
AB

2 � y2
�

2 � AB
=
y2 � x2 � AB2

2 � AB
:

Similarly,

Y A =
z2 � x2 � AC2

2 � AC
:

4



Therefore,

Y Z = Y A� ZA = z2 � x2 � AC2

2 � AC
� y

2 � x2 � AB2

2 � AB

=

�
z2 � x2 � AC2

�
� AB �

�
y2 � x2 � AB2

�
� AC

2 � AB � AC

=

�
z2 � AB � x2 � AB � AC2 � AB

�
�
�
y2 � AC � x2 � AC � AB2 � AC

�
2 � AB � AC

=

�
x2 � AC � x2 � AB

�
� y2 � AC + z2 � AB �

�
AC

2 � AB � AB2 � AC
�

2 � AB � AC

=
x2 �

�
AC � AB

�
� y2 � AC + z2 � AB � AB � AC �

�
AC � AB

�
2 � AB � AC

=
x2 �BC � y2 � AC + z2 � AB � AB � AC �BC

2 � AB � AC

=
1

2
� x

2 �BC � y2 � AC + z2 � AB � AB � AC �BC
AB � AC �BC

�BC

=
1

2
�
�

x2

AB � AC
� y2

BC � AB
+

z2

AC �BC
� 1
�
�BC

=
1

2
�
 

x2

AB � AC
� y2

BC �
�
�BA

� + z2�
�CA

�
�
�
�CB

� � 1! �BC
=
1

2
�
�

x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
�BC:

This proves Theorem 2 a).
We give two proofs of Theorem 2 b) now: one depending on Theorem 2 a), and

one not.
First proof of Theorem 2 b). As we have already veri�ed Theorem 2 a), we can use

it now: From (4), we have

Y Z

BC
=
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
:

Similarly,

ZX

CA
=
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
;

XY

AB
=
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
:

Thus,
Y Z

BC
=
ZX

CA
=
XY

AB
: This proves Theorem 2 b).

Second proof of Theorem 2 b). After (1), we have rad (A (x) ; B (y)) ? AB; so that
rad (A (x) ; B (y)) ? g: In other words: rad (A (x) ; B (y)) ? Y Z: On the other hand,
Z 2 rad (A (x) ; B (y)) :
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Thus, the point Z is the orthogonal projection of the point Y on the line rad (A (x) ; B (y)) :
According to the formula (2) of Theorem 1, we thus have pot (Y ; A (x))�pot (Y ; B (y)) =
2 � ZY � AB: By analogy, pot (Y ; C (z)) � pot (Y ; B (y)) = 2 � XY � CB: But Y 2
rad (C (z) ; A (x)) yields pot (Y ; C (z)) = pot (Y ; A (x)) : Hence,

2�XY �CB = pot (Y ; C (z))�pot (Y ; B (y)) = pot (Y ; A (x))�pot (Y ; B (y)) = 2�ZY �AB;

so that XY � CB = ZY � AB: Therefore,

XY �BC = XY �
�
�CB

�
= �XY � CB = �ZY � AB =

�
�ZY

�
� AB = Y Z � AB;

so that
XY

AB
=
Y Z

BC
: Similarly,

Y Z

BC
=
ZX

CA
: Thus,

Y Z

BC
=
ZX

CA
=
XY

AB
; and Theorem 2

b) is proven once again.
As both Theorems 2 a) and 2 b) are veri�ed now, the proof of Theorem 2 is

complete.

A B
C

XYZ g

Fig. 3

4. Coaxal circles

Three circles k; m; n (with pairwise distinct centers) are said to be coaxal if
rad (m; n) = rad (n; k) = rad (k; m) (that is: if the three pairwise radical axes of
these three circles coincide).
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One can readily show that three circles k; m; n already must be coaxal if at least
two of the lines rad (m; n) ; rad (n; k) ; rad (k; m) coincide. With the aid of Theorem
2 a) we can obtain a more profound criterion for the coaxality of three circles:

Theorem 3. Let A; B; C be three pairwise distinct points. Let x; y;
z be three numbers. Then, the following two assertions A1 and A2 are
equivalent:

Assertion A1: The circles A (x) ; B (y) ; C (z) are coaxal.
Assertion A2: The points A; B; C lie on one line, and if we direct this

line2, then the equation
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1 holds.

Proof of Theorem 3. In order to prove Theorem 3, we have to show that Assertion
A1 implies Assertion A2; and that Assertion A2 implies Assertion A1:
First we will show that Assertion A1 implies Assertion A2:
Assume that the Assertion A1 holds. Then, the circles A (x) ; B (y) ; C (z) are

coaxal. Thus, rad (B (y) ; C (z)) = rad (C (z) ; A (x)) = rad (A (x) ; B (y)) : But (1)
yields rad (B (y) ; C (z)) ? BC and rad (C (z) ; A (x)) ? CA:
Since rad (B (y) ; C (z)) = rad (C (z) ; A (x)) ; the relation rad (B (y) ; C (z)) ?

BC becomes rad (C (z) ; A (x)) ? BC: Together with rad (C (z) ; A (x)) ? CA; this
yields BC k CA: But the lines BC and CA have a common point (namely, C), and
thus can only be parallel if they coincide. Hence, BC k CA yields that the lines BC
and CA coincide. In other words, the points A; B; C lie on one line. If we denote this
line by g and direct this line, then Theorem 2 a) yields

Y Z =
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
�BC; (5)

where Y = rad (C (z) ; A (x))\g and Z = rad (A (x) ; B (y))\g:Now, rad (C (z) ; A (x)) =
rad (A (x) ; B (y)) leads to rad (C (z) ; A (x)) \ g = rad (A (x) ; B (y)) \ g; so that
Y = Z; and thus Y Z = 0: Hence, (5) becomes

0 =
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
�BC:

Since
1

2
� BC 6= 0 (because BC 6= 0; since the points B and C are distinct), we can

divide this equation by
1

2
�BC; and obtain

0 =
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1;

so that
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1:

Altogether, we conclude: The points A; B; C lie on one line, and if we direct this

line, then we have
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1: Thus, Assertion A2 is ful�lled.

2Hereby it is irrelevant in which of the two possible ways we direct this line - in fact, the values of
AB �AC; BC �BA; CA � CB don�t depend on the direction of the line.
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Herewith we have shown that Assertion A1 implies Assertion A2: Now it only
remains to prove that Assertion A2 implies Assertion A1: This we will do as follows:
Assume that Assertion A2 holds. That is, the points A; B; C lie on one line, and

we have
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1; where the line through the points A;

B; C is directed.
Let g be the line through the points A; B; C: Then, Theorem 2 a) yields

Y Z =
1

2

�
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
� 1
�
�BC;

where Y = rad (C (z) ; A (x)) \ g and Z = rad (A (x) ; B (y)) \ g: Since x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1; this equation simpli�es to Y Z =

1

2
(1� 1) � BC; and thus

to Y Z = 0: Hence, Y = Z; so that perp (Y ; g) = perp (Z; g) :
Now, rad (C (z) ; A (x)) ? g (in fact, this is equivalent to rad (C (z) ; A (x)) ? CA;

what follows from (1)) and Y 2 rad (C (z) ; A (x)) : Hence, rad (C (z) ; A (x)) =
perp (Y ; g) : Similarly, rad (A (x) ; B (y)) = perp (Z; g) : Thus, perp (Y ; g) = perp (Z; g)
yields rad (C (z) ; A (x)) = rad (A (x) ; B (y)) : Similarly, rad (B (y) ; C (z)) = rad (C (z) ; A (x)) ;
and hence rad (B (y) ; C (z)) = rad (C (z) ; A (x)) = rad (A (x) ; B (y)) : Thus, the cir-
cles A (x) ; B (y) ; C (z) are coaxal; i. e., Assertion A1 is ful�lled. Thus we have shown
that Assertion A2 implies Assertion A1: This completes our proof of Theorem 3.

A B C

P

g

Fig. 4
From Theorem 3 we can deduce the following fact, which is a restatement of the

well-known Stewart theorem ([1], §308):

Theorem 4. Let A; B; C be three pairwise distinct points on a line g; and
let P be a point. We direct the line g: Then,

AP 2

AB � AC
+

BP 2

BC �BA
+

CP 2

CA � CB
= 1:
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(See Fig. 4.)

A B C

P

g

Fig. 5
Proof of Theorem 4. (See Fig. 5.) We set x = AP; y = BP; z = CP:
Then, pot (P ; A (x)) = PA2 � x2 = AP 2 � x2 = AP 2 � AP 2 = 0 and similarly

pot (P ; B (y)) = 0:Hence, pot (P ; A (x)) = pot (P ; B (y)) ; so that P 2 rad (A (x) ; B (y)) :
On the other hand, rad (A (x) ; B (y)) ? AB (after (1)), and thus rad (A (x) ; B (y)) ?
g:
From rad (A (x) ; B (y)) ? g and P 2 rad (A (x) ; B (y)) ; it follows that rad (A (x) ; B (y)) =

perp (P ; g) : Similarly, rad (B (y) ; C (z)) = perp (P ; g) and rad (C (z) ; A (x)) =
perp (P ; g) : Thus, rad (B (y) ; C (z)) = rad (C (z) ; A (x)) = rad (A (x) ; B (y)) : Con-
sequently, the circles A (x) ; B (y) ; C (z) are coaxal. Thus, the Assertion A1 of Theo-
rem 3 is ful�lled. According to Theorem 3, the Assertions A1 and A2 are equivalent.
Hence, Assertion A2 of Theorem 3 must also hold. In particular, we must therefore

have
x2

AB � AC
+

y2

BC �BA
+

z2

CA � CB
= 1: Since x = AP; y = BP; z = CP; this

becomes
AP 2

AB � AC
+

BP 2

BC �BA
+

CP 2

CA � CB
= 1:

9



Thus, Theorem 4 is proven.

5. Inversion and radical axes

Before we come to a less trivial application of Theorem 2, we prepare with a lemma
(which, strangely enough, I have nowhere seen explicitely stated):

BA
C

X

Fig. 6

Theorem 5. Let A and B be two distinct points, and let y be a number.
Let C be the midpoint of the segment AB: Let X be the image of the
point A under the inversion with respect to the circle B (y) : Then, X 2

rad

�
C

�
AB

2

�
; B (y)

�
: 3 (See Fig. 6.)

Proof of Theorem 5. We direct the line BA in some way. Since the point X is the
image of the point A under the inversion with respect to the circle B (y) ; this point X
must lie on the line BA and satisfy BX �BA = y2:
Since the point C is the midpoint of the segment AB; it lies on the line BA and

3Of course, the circle C
�
AB

2

�
is the circle with diameter AB:
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satis�es AC = CB =
1

2
� AB: Hence,

pot

�
X; C

�
AB

2

��
= XC2 �

�
AB

2

�2
= XC2 � 1

4
� AB2 = XC2 � 1

4
� AB2

= XC
2 �

�
1

2
� AB

�2
=

�
XC � 1

2
� AB

�
�
�
XC +

1

2
� AB

�
=
�
XC � AC

�
�
�
XC + CB

�
= XA �XB:

On the other hand,

pot (X; B (y)) = XB2 � y2 = BX2 � y2 = BX2 � y2 = BX2 �BX �BA = BX �
�
BX �BA

�
= BX � AX =

�
�XB

�
�
�
�XA

�
= XA �XB:

Thus, pot
�
X; C

�
AB

2

��
= pot (X; B (y)) ; so that X 2 rad

�
C

�
AB

2

�
; B (y)

�
;

and Theorem 5 is proven.
Using Theorems 2 b) and 5, we can give a new proof for a property of the radical

axis that was published by Dave Wilson in [2] (Fig. 7):

Theorem 6. Let A and B be two distinct points, and let x and y be
two numbers. Let X be the image of the point A under the inversion with
respect to the circle B (y) : Let Y be the image of the point B under the
inversion with respect to the circle A (x) : Then, the line rad (A (x) ; B (y))
is the perpendicular bisector of the segment XY:
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A B
XY

Fig. 7
Proof of Theorem 6. (See Fig. 8.) Let C be the midpoint of the segment AB:

Then, Theorem 5 yields X 2 rad
�
C

�
AB

2

�
; B (y)

�
: On the other hand, the point

X is the image of the point A under the inversion with respect to the circle B (y) ;

and thus lies on the line AB: Therefore, X = rad

�
C

�
AB

2

�
; B (y)

�
\AB: Similarly,

Y = rad

�
C

�
AB

2

�
; A (x)

�
\ AB:

Now we denote the line AB by g: Then, obviously, A 2 g and B 2 g; and therefore
also C 2 g (since C is the midpoint of the segment AB).

Besides, we set z =
AB

2
: Then, X = rad

�
C

�
AB

2

�
; B (y)

�
\ AB becomes X =

rad (C (z) ; B (y))\g; henceX = rad (B (y) ; C (z))\g:Also, Y = rad
�
C

�
AB

2

�
; A (x)

�
\

AB becomes Y = rad (C (z) ; A (x)) \ g:
Now let Z = rad (A (x) ; B (y)) \ g: Furthermore, let us direct the line g: Then,

our line g; our points A; B; C; our numbers x; y; z and our points X; Y; Z satisfy all

conditions of Theorem 2; hence, we can apply Theorem 2 b) and obtain
Y Z

BC
=
ZX

CA
=

XY

AB
:
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Particularly, we thus have
Y Z

BC
=
ZX

CA
: But BC = CA (since C is the midpoint of

AB). Hence, Y Z = ZX: In other words, the point Z is the midpoint of the segment
XY:
According to (1), we have rad (A (x) ; B (y)) ? AB: In other words, rad (A (x) ; B (y)) ?

g; or, equivalently, rad (A (x) ; B (y)) ? XY: Since Z 2 rad (A (x) ; B (y)) ; we thus
have rad (A (x) ; B (y)) = perp (Z; XY ) :
But since Z is the midpoint of the segment XY; the line perp (Z; XY ) is the

perpendicular bisector of the segment XY: Hence, the equality rad (A (x) ; B (y)) =
perp (Z; XY ) means that the line rad (A (x) ; B (y)) is the perpendicular bisector of
the segment XY: This proves Theorem 6.

A B
XY C Z

g

Fig. 8

6. On the center of the Taylor circle

The Theorem 6 proven above allows for some surprising applications. One of these
is obvious - a rather simple construction of the radical axis of two circles suitable for a
dynamical geometry macro. Another one, which we are going to elaborate on, concerns
the center of the Taylor circle of a triangle. We start with a known result from triangle
geometry:
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A

B

C

X

Y

Z

Xb

Xc
Za

Zb

Yc

Ya

Fig. 9

Theorem 7. Let ABC be a triangle, and let X; Y; Z be the feet of the
altitudes of this triangle issuing from A; B; C; respectively.

Let Xb and Xc be the orthogonal projections of the point X on the lines
CA and AB:

Let Yc and Ya be the orthogonal projections of the point Y on the lines AB
and BC:

Let Za and Zb be the orthogonal projections of the point Z on the lines BC
and CA:

Then, the points Xb; Xc; Yc; Ya; Za; Zb lie on one circle.

This circle is called the Taylor circle of triangle ABC: (See Fig. 9.)

We will not prove this theorem here (the reader is referred to [1], §689 or [4],
Chapter 9, §6 for the proof - which can, by the way, also be done by straightforward
angle chasing). What we are going to do is establishing a property of the center of the
Taylor circle - but �rst we recall a de�nition:
A known fact states that if k; m; n are three circles with pairwise distinct centers,

then the radical axes rad (m; n) ; rad (n; k) ; rad (k; m) concur at one point (which
can happen to be an in�nite point). This point is called the radical center of the three
circles k; m; n:
Now we can formulate the fact that we are going to prove (Fig. 10):
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A

B

C

X

Y

Z

Xb
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Theorem 8. Let ABC be a triangle, and let X; Y; Z be the feet of the
altitudes of this triangle issuing from A; B; C; respectively.

a) The circle A (AX) touches the line BC at the point X:

b) The radical center of the circles A (AX) ; B (BY ) ; C (CZ) is the center
of the Taylor circle of triangle ABC:

Proof of Theorem 8. First, BC ? AX (since AX is an altitude of triangle ABC).
The point X lies on the circle A (AX) (since AX = AX). The tangent to the circle

A (AX) at the point X is, obviously, the perpendicular to the line AX through the
point X: But the perpendicular to the line AX through the point X is the line BC
(since X 2 BC and BC ? AX). Thus, the tangent to the circle A (AX) at the point
X is the line BC: This means that the circle A (AX) touches the line BC at the point
X: This proves Theorem 8 a).
The interesting part is proving Theorem 8 b): (See Fig. 11.) Let the points Xb;

Xc; Yc; Ya; Za; Zb be de�ned as in Theorem 7.
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Let T be the center of the Taylor circle of triangle ABC: Then, TXb = TZb; since
the points Xb and Zb lie on the Taylor circle of triangle ABC: Thus, the point T lies
on the perpendicular bisector of the segment XbZb:
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Fig. 11
We direct the line CA in some way.
We have ]AXbX = 90� and ]AXC = 90�; so that ]AXbX = ]AXC: Besides, it

is obvious that ]XbAX = ]XAC: Thus, the triangles AXbX and AXC are similar.
Hence, AXb : AX = AX : AC; what rewrites as AXb � AC = AX2:
So we now know that the pointXb lies on the ray AC and satis�es AXb �AC = AX2:

Hence, the point Xb is the image of the point C under the inversion with respect to
the circle A (AX) : Similarly, the point Zb is the image of the point A under the
inversion with respect to the circle C (CZ) : Hence, according to Theorem 6, the line
rad (C (CZ) ; A (AX)) is the perpendicular bisector of the segment XbZb: Since the
point T lies on the perpendicular bisector of the segment XbZb; we thus obtain that the
point T lies on the line rad (C (CZ) ; A (AX)) : Similarly, we can show that the point T
lies on the lines rad (A (AX) ; B (BY )) and rad (B (BY ) ; C (CZ)) :Hence, the point T
is the point of intersection of the lines rad (B (BY ) ; C (CZ)) ; rad (C (CZ) ; A (AX)) ;
rad (A (AX) ; B (BY )) : This yields that T is the radical center of the circles A (AX) ;
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B (BY ) ; C (CZ) : But since the point T was de�ned as the center of the Taylor circle
of triangle ABC; we can conclude that the center of the Taylor circle of triangle ABC
is the radical center of the circles A (AX) ; B (BY ) ; C (CZ) : We have thus proven
Theorem 8 b), so that the proof of Theorem 8 is complete.
Theorem 8 b) was proven trigonometrically by myself in [3]. I don�t know in how

far it had been known before: The only reference I have is [5], where Stärk mentions -
in passing and without proof - that the radical center of the circles A (AX) ; B (BY ) ;
C (CZ) lies on the Brocard axis of triangle ABC and speci�es its position on that
axis more precisely. The Taylor circle appears nowhere in his result, but with some
further knowledge of its properties one could see that his speci�cation of the position
of the radical center is equivalent to it being the center of the Taylor circle, i. e. to
our Theorem 8 b).
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