Original proposal of Mathematical Reflections problem 025 / Darij
Grinberg

The following problem submission made it into the periodical "Mathematical Re-
flections" as Problem O25 (in a shortened form). Below is my original solution of this
problem. A much simpler solution was published in "Mathematical Reflections" issue
6,/2006.

Problem. For any triangle ABC, prove that

A tA+ B tB—|— ¢ \/_ t + tB+ tC
€08 5 cot o + cos - cot - + cos 7 cot 2 5~ | oot 5 + cot 7+ cot
9 A B C
2522(C0825+00825+COS25>.

Solution. The only interesting part of the inequality is

V3

A tA+ b tB+ ¢ tC> tA+ tB+ tC (1)
€08 7 cot o + cos - cot o + cos o cot o = == | cot o +cot o +cot o ],

because the other two parts of the inequality are pretty easy:

Since the angles of a triangle sum up to 180°, we have A+ B 4+ C' = 180°; since the
function f (x) = cot z is convex on the interval |0°; 90°[ (the interval where the angles
USR] lie), the Jensen inequality yields

A B C St5t5 A+ B+C 180°
cot E—i-cot E—l—cot 3 > 3cot % = 3cot % = 3cot

so that

= 3cot 30° = 3V/3,

\/_§ coté+cot§+cotg >g
2 2 2 2) =2

and since cos ¢ = 2 cos? g — 1 for every angle ¢, the famous triangle inequality cos A +

3
cos B+ cosC < 5 rewrites as
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2c08? = — 1)+ (2cos>=—1]+(2cos’=—1) <=, so that
2 2 2 2
A B 3
2 [ cos®> = + cos> = 4+ cos®’ — | —3 < =, and thus
2 2 2
2 cosA—i-cos——i-co g §——
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So it only remains to prove the inequality (1). Let s = %—l—c be the semiperime-

ter of triangle ABC. Then, it is known that thereals xr = s —a, y=s—b, z2=s—c¢
are positive. Also, v +y+ 2z = s (because t +y+ 2= (s—a)+ (s—b)+(s—¢) =
3s—(a+b+c)=3s—2s=s)and y+ 2z = a (because y + 2z = (x +y+2) —x =

1



s—(s —a) = a) and similarly z4+x = b and 24y = ¢. Hence, the well-known half-angle

formulas cos é = M

A —
and cot — = \/ (s(s—a) (the latter is better known

be 2 s—>b)(s—c)
A —b)(s—
in the equivalent form tan — = w) rewrite as
2 s(s—a)
cosé: (r+y+z)e and coté: —(x—l—y—l—z)m'
2 (z +2) (z +y) 2 yz

Now, using the sign ) for cyclic sums, the inequality (1) becomes

A A (x+y+2)x (r+y+z2)r (x+y+2)x
ZCOSECOtE_Z\/(szx)(Q:—i—y).\/ v _Z\/

(z+2z)(z+y)yz

and

Zcot— Z /x+y+z /x+y+zz /x+y+z( —|—y+z),

so this inequality becomes

o _letyrde V3 [TV gyt
ViE+z)(z+y)yz 2
/TYZ

Upon multiplication b ,
P P Y rT+y+z

this rewrites as

3
Z \/ Z \/—\/x +y+z, or, equivalently,

Now, by the Cauchy-Schwarz inequality in Engel form,

(r+y+2)?

Z\/x (z+2)(x+vy) = SV (z+a)(z+y)

so it remains to prove that

2
(x+y+2) S
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This simplifies to

\/(x+y+z>32?Z%w(ﬂw)(wy)-

Squaring this yields

3
(r+y+2)° Z(Z\/x z+x) :c—l—y)) , i e.
>3

(Z\/x Z+x) x+y)) .

4(z+y+2)°

This rewrites as

4 x+y+z3

w

>3 (Y r+a) @ty +2) VG2 VT2 e +a),
23(Z:c(z—irx)(:c—iry)+2Z(y+z)\/yz(2+x)(aﬂ+y)>, i e.

>3 x(z+x)(x+y)+62(y+z)\/yz(z+$)(x—|-y), i e.

w

4z +y+z

( )
4(x+y+2)
( )
Ar+y+2)°-3> z(z+2)(x+y)>6> (y+2)Vyz(z+2) (@ +y)
Now,
A(r+y+2)°’-3> z(z+1)(x+y)
=4(@+y+2)°-3) (z+y+2)(z+z)(@+y) —(y+2)(z+z) (= +y))
=4(@+y+2°-3@+y+2)) (+a)@+y) +9y+2) (z+2)(x+y)
:(a:—l—y—irz)'(4($+y+z)2—32(z+x)(x+y))+9(y—|—z)(z—|—a:)(x+y)

=x+y+=2)- <§2+y2+z2yzzxxy/) +9(y+2)(z+2x) (x+vy)

TV
>0, as you know

v

I(y+2)(z+2)(x+y)=3> (y+2)(z+z)(r+y)
(Z (z+z)(x+y) +Z (z+ ) x—l—y)
(Z @+y)y+2)+Y y(y+2) z—l—a:)

=3) (@+y W+2)+yy+2)(z+2) =3 (y+2)y(z+z)+2(@+y),

so that, in order to prove the above inequality, it will be enough to show that

BZ(y—l—z) (y(z+z)+2 >6Z Y+ 2) Vyz (z+2) (x +y), or, equivalently,
Z(y—i—z)(y(z—l—x)—l— >2Z Y+ 2) Vyz (z+2) (x + y).

But this is obvious, since AM-GM yields y (z + z)+2 (z + y) > 2\/y (z +2) - z (x + y) =
24/yz (2 + ) (x + y). Thus, the proof of inequality (1) is complete, and the problem is
solved.




