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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a “relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also
Theorem 7) a bit further by considering a generalization of powers of an ideal.

Part 5 (Generalizing a lemma by Lombardi) is about an auxiliary result Lombardi
used in [3] to prove Kronecker’s Theoreml]| We extend this auxiliary result here.

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed).

This is an attempt to make the proofs as short as possible while keeping them easy to
read. If you are stuck following one of the proofs, you can find a more detailed version
in [4]. However, normally the proofs in [4] are over-detailed, making them harder to
read than the ones below.

Preludium

Definitions and notations:

Definition 1. In the following, “ring” will always mean “commutative ring with
unity”. We denote the set {0,1,2,...} by N, and the set {1,2,3,...} by NT.

Definition 2. Let A be a ring. Let M be an A-module. If n € N, and if mq, ms,
..., my, are n elements of M, then we define an A-submodule (my,my, ..., m,) , of M by

n
(ml,mQ,...,mn)A: {Zazmz | (al,ag,...,an) GA”}
i=1

'Kronecker’s Theorem. Let B be a ring (“ring” always means “commutative ring with unity”
in this paper). Let g and h be two elements of the polynomial ring B [X]. Let g, be any coefficient
of the polynomial g. Let hg be any coefficient of the polynomial h. Let A be a subring of B which
contains all coefficients of the polynomial gh. Then, the element g,hg of B is integral over the subring

A.



Also, if S is a finite set, and m, is an element of M for every s € S, then we define an
A-submodule (my | s € S), of M by

(ms | sES}A:{ZaSmS \ (aS)SGSeAS}.

seS
Of course, if my, mg, ..., m,, are n elements of M, then
(my,ma, ...omp) , = (ms | s€{1,2,...,n}),.
We notice something almost trivial:
Module inclusion lemma. Let A be a ring. Let M be an A-module. Let

N be an A-submodule of M. If S is a finite set, and my is an element of N
for every s € S, then (m, | s€S), CN.

Definition 3. Let A be a ring, and let n € N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements my, ms, ..., m, of M
such that M = (my,ms,...,m,) 4. In other words, the A-module M is n-generated if
and only if there exists a set S and an element m, of M for every s € S such that
|S|=nand M =(m, | s€S),.

Definition 4. Let A and B be two rings. We say that A C B if and only if

(the set A is a subset of the set B)
and (the inclusion map A — B is a ring homomorphism) .

Now assume that A C B. Then, obviously, B is canonically an A-algebra. If uq,
Ug, ..., Uy are n elements of B, then we define an A-subalgebra A [uy, us, ..., u,| of B by

A[Ul,U27...,Un]:{P<u1,U2,‘..,Un) | PGA[Xl,XQ,...,Xn]}.

In particular, if u is an element of B, then the A-subalgebra A [u] of B is defined
by
Al ={P(u) | PeA[X]}.

Since A [X]| = {Z ;X" | meNand (ag,a,...,a,) € Am“}, this becomes

=0

Alu] = {(Z al-X’> (w) | meNand (ag,aq,...,an) € Am+1}

1=0

(Where <Z a; X Z) (u) means the polynomial Z a; X" evaluated at X = u)
i=0

i=0
- {Z au’ | m €N and (ag,a,...,an) € AmH}
i=0
(because (Z aiXi) (u) = Z a,u’) :

i=0 =0

Obviously, uA [u] C Alu].



1. Integrality over rings

Theorem 1. Let A and B be two rings such that A C B. Obviously, B is
canonically an A-module (since A C B). Let n € N. Let u € B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P € A[X] with deg P =n
and P (u) = 0.

Assertion B: There exist a B-module C' and an n-generated A-submodule
U of C such that uU C U and such that every v € B satisfying vU = 0
satisfies v = 0. (Here, C' is an A-module, since C' is a B-module and
ACB,)

Assertion C: There exists an n-generated A-submodule U of B such that
leUand uU CU.

Assertion D: We have A [u] = (u°,u', ..., u™ 1) ,.

Definition 5. Let A and B be two rings such that A C B. Let n € N. Let u € B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, in particular, the element u of B is n-integral over A if and only if there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A = C,C = B, B = A,
A= D and D = C.

Proof of the implication A = C. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0. Since P € A[X]
is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such

n—1 n—1
that P (X) = X"+ > ap X*. Thus, P (u) = u™+ > apuf, so that P (u) = 0 becomes
k=0 k=0

n—-1 n—1
u" + Y apuf = 0. Hence, u" = — > apuk.
k=0 k=0
Let U be the A-submodule (u°,u!,...,u" 1), of B. Then, U is an n-generated A-
module (since u®, u!, ..., u"~! are n elements of U). Besides, 1 = u’ € U. (Make sure

you understand why this holds even when n = 0.)
Now, u - u* € U for any k € {0,1,...,n — 1} (this is clear for all k < n — 1, and for

n—1
k = n it follows from u - u* = u-u"' = u" = = Y qpu* € (WO, ul, .. u"t), = U).
k=0

Hence,

W = () = () U

(since u - u* € U for any k € {0,1,....,n — 1}).

Thus, Assertion C holds. Hence, we have proved that A = C.

Proof of the implication C = B. Assume that Assertion C holds. Then, there
exists an n-generated A-submodule U of B such that 1 € U and uU C U. Everyv € B
satisfying vU = 0 satisfies v = 0 (since 1 € U and vU = 0 yield v \1/_/ colU =0

eU
and thus v -1 = 0, so that v = 0). Set C' = B. Then, C' is a B-module, and U is



an n-generated A-submodule of C' (since U is an n-generated A-submodule of B, and
C' = B). Thus, Assertion B holds. Hence, we have proved that C = B.

Proof of the implication B = A. Assume that Assertion B holds. Then, there
exist a B-module C' and an n-generated A-submodule U of C such that uU C U (where
C' is an A-module, since C' is a B-module and A C B), and such that every v € B
satisfying vU = 0 satisfies v = 0.

Since the A-module U is n-generated, there exist n elements mq, mo, ..., m, of U
such that U = (my, mo, ..., m,) 4. For any k € {1,2,...,n}, we have

umy, € uU (since my, € U)

CU = (my,ma,....my) ,,

n
so that there exist n elements a1, a2, ..., ag, of A such that umy = > ax;m;.
i=1
We are now going to work with matrices over U (that is, matrices whose entries lie
in U). This might sound somewhat strange, because U is not a ring; however, we can
still define matrices over U just as one defines matrices over any ring. While we cannot
multiply two matrices over U (because U is not a ring), we can define the product of
a matrix over A with a matrix over U as follows: If P € A**? is a matrix over A, and

Q € UP*7 is a matrix over U, then we define the product PQ € U**" by

(PQ),., pr Q2 y for all z € {1,2,...,a} and y € {1,2,...,7} .

(Here, for any matrix 7" and any integers x and y, we denote by T, the entry of the
matrix 7" in the z-th row and the y-th column.)

It is easy to see that whenever P € A**f Q € AP and R € U?*° are three
matrices, then (PQ)R = P (QR). The proof of this fact is exactly the same as the
standard proof that the multiplication of matrices over a ring is associative.

Now define a matrix V' € U™ by V;; =m; for all i € {1,2,...,n}.

Define another matrix S € A™™ by Sy; = ay; for all k£ € {1,2,...,n} and ¢ €

{1,2,...,n}.

Then, for any k € {1,2,...,n}, we have u ﬂ;k =uVip1 = (uV), 1 and ZZI ag; m; =
=Vk,1 —Skl =Vi1

Z SkiVin = (SV),, so that umy = > agsm; becomes (uV), ; = (SV), ;. Since this
i=1
holds for every k € {1,2,...,n}, we conclude that V' = SV. Thus,
0=uV —-SV =ul,V-SV=(ul,—S)V.

Now, let P € A[X] be the characteristic polynomial of the matrix S € A™*".
Then, P is monic, and deg P = n. Besides, P (X) = det (X1, — S), so that P (u) =



det (ul,, — S). Thus,

P(u) -V =det (ul, = S)-V = det (ul, — S) I, -V = (adj (ul, — S) - (ul, = 5)) -V

=adj(ul,—9) (ulp—>S)

=adj(ul, —S)- [ (ul,—S)V
-0

(since (PQ)R = P(QR) for any P € A" Q€ A" and R € U"°)
= 0.

Since the entries of the matrix V' are my, mo, ..., my, this yields P (u) - my = 0 for
every k € {1,2,...,n}, and thus

P(u)-U=P(u)-(my,mg,...my), = (P(u)-my, P(u) -ma,..,Pu) -my),
=(0,0,...,0) 4, (since P (u)-my =0 for any k € {1,2,...,n})
= 0.

This implies P (u) = 0 (since v = 0 for every v € B satisfying vU = 0). Thus, Assertion
A holds. Hence, we have proved that B — A.

Proof of the implication A =—> D. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0. Since P € A[X]
is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such

n—1 n—1
that P (X) = X"+ > ap X*. Thus, P (u) = u"+ > apu¥, so that P (u) = 0 becomes
k=0 k=0

n—1 n—1
u™ + > apu® = 0. Hence, u" = — 3 aput.
k=0 k=0

Let U be the A-submodule (u°, u', ...,u""') , of B. As in the Proof of the implication

A = C, we can show that U is an n-generated A-module, and that 1 € U and uU C U.
Thus, induction over ¢ shows that

u' e U for any i € N, (1)

and consequently

Alul = aut | meNand (ag,a,...,am) € A™Y CU = (o, . 0™t .
[l =<9> | A

=0

On the other hand, (u°,u',...,u" "), C Au]. Hence, (u°,u',...,u"" "), = A[u]. Thus,
Assertion D holds. Hence, we have proved that A = D.
Proof of the implication D = C. Assume that Assertion D holds. Then, A[u] =
culy L)
Let U be the A-submodule (u°,u!,...,u" 1), of B. Then, U is an n-generated A-
module. Besides, 1 = v € A[u] = (u°,u!,...;u" 1), = U. Finally, U = (u°, v}, ...,u"" 1), =
Au] yields uU C U. Thus, Assertion C holds. Hence, we have proved that D = C.

Now, we have proved the implications A = D, D — (C,C = Band B —= A
above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.

(u’



Theorem 2. Let A and B be two rings such that A C B. Let n € N*.

Let v € B. Let ay, ai, ..., a, be n+ 1 elements of A such that > a;0" = 0.
i=0
n—=k
Let k € {0,1,....,n}. Then, Y a;;;v" is n-integral over A.
i=0

Proof of Theorem 2. Let U be the A-submodule (v°,v!,...,v"" "), of B. Then, U

is an n-generated A-module, and 1 =% € U.

n—k .
Let u= Y a;y,v". Then,

=0

O—Zav —Zav +Zalv —Zalv +Zaz+kv’+k

—pigpk
(here, we substituted i 4+ k for i in the second sum)
k—1 n—k k—1
= Z a0t + o* Z i V" = Z a;vt + vku,
i=0 i=0 i=0
———
=u
—1
so that v* u——Zav
Now, we are gomg to show that
w' € U for any t € {0,1,...,n — 1}. (2)

Proof of . In fact, we have either t < k or ¢t > k. In the case t < k, the relation
follows from

n—k n—k
t it i+t
uv:Ea»v-vzga»v eU
i+k , i+k
i=0 —yitt i=0

n—=k )
(since every i € {0,1,...,n — k} satisfies i+t € {0,1,...,n — 1}, and thus _ a; 0" €
i=0
(20!, .., o™ty = U). In the case ¢ > k, the relation follows from

k—

k—1
vt = w PR = kgt a; vt since vFu = g a; v’
—— H,_/

—pkyt—k =0 —pit(t—k)

._.

k-1
=— Zaiv”(t*k) elU

1=0

(since everyi € {0,1,...,k — 1} satisfies i+(t — k) € {0,1,...,n — 1}, and thus — Z a; vtk ¢

(00!, .. "ty | = U). Hence, is proven in both possible cases, and thus the proof

of is complete.
Now,

ulU = u<vo,vl, ...,U"*1>A = <uv0,uvl, ...,uv"71>A cU (due to (2))) .



Altogether, U is an n-generated A-submodule of B such that 1 € U and uU C U.
Thus, u € B satisfies Assertion C of Theorem 1. Hence, u € B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

n—k n—k
A. Since u = a;4+;v", this means that a;4+ V" is n-integral over A. This proves
+ ) +
i=0 i=0

Theorem 2.

Corollary 3. Let A and B be two rings such that A C B. Let « € N and
B € N be such that « + 3 € N*. Let u € B and v € B. Let sg, s, ..., 54

o
be o + 1 elements of A such that > s;v" = u. Let o, t1, ..., tg be f+1
i=0

B ,

elements of A such that > t;v°~" = wv®. Then, u is (a + 3)-integral over
i=0

A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)
First proof of Corollary 3. Let k = 8 and n = a+ . Then, k € {0,1,...,n}. Define

n + 1 elements ag, a4, ..., a, of A by

o it < 6
a; = to— so, if i = B3; for every i € {0,1,...,n}.
—Si—8, if 4 > 6
Then
n atp B—1 atp
a; V" = Zalv’ = a; v+ aﬁ VP Z
=0 i=0 i=0 =tg_; —to S0 i=p+1 _*Sz 3
B—1 a+p
= tg Z’U + (to — 80 + Z —S;— 5
=0 —tovﬁ sgvP ’L s _
a+p .
== > si_pgvt
i=B+1
-1 a+p B—1 a+p
= tﬁ zU + toU — SOU'B Z SZ',ﬁUZ = Z tgfiUZ + to’U'B — SgUﬂ + Z Si,BUl
=0 i=f+1 i=0 i=B+1
-1 a
— Z ta_v' +tgv®  — (sovﬂ + Z siv““ﬂ)
Zé tg_vi= Zgo tB—i=yoB :iizos vith= 12:05 wivB=uvP (since ng sivi=u)
=0.



n—k
Thus, Theorem 2 yields that > a0’ is n-integral over A. But

=0
n—k n—_ n—p3
% % 0 A
E Aip VU = E i1 gV = GoyB v+ E it B U
- »_ S~ Y - A
=0 =0 =ao=to—so ! =1 =—5(;18)—p (by the

definition of a;4g)

n—p n—p_ n—p
= (to — s0) 1+ —Saipp |V =to—so+ Y (=s)v'=to— | so+ y s’
n—pA
= S; v
1=0
n—p_ o
:zfo—z:siv’:150—2:!91-1)Z (since n = a4+ B yields n — 8 = «)
i=0 i=0
=u
= to — Uu.

Thus, ty — u is n-integral over A. On the other hand, —t, is 1-integral over A (clearly,
since —tg € A). Thus, (—tg)+ (to — w) is n- 1-integral over A (by Theorem 5 (b) below,
applied to x = —ty, y = tg — uw and m = 1). In other words, —u is n-integral over A.
On the other hand, —1 is 1-integral over A (trivially). Thus, (—1)-(—u) is n- 1-integral
over A (by Theorem 5 (c) below, applied to z = —1, y = —u and m = 1). In other
words, u is (a + ()-integral over A (since (—1)-(—u) =wand n-1=n=a+ ). This
proves Corollary 3.
We will provide a second proof of Corollary 3 in Part 5.

Theorem 4. Let A and B be two rings such that A C B. Let v € B and
u € B. Let m € N and n € N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.
Proof of Theorem 4. Since v is m-integral over A, we have A [v] = (20, 0!, ... 0™ 1)
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).
Since u is n-integral over A [v], we have (A [v]) [u] = (u°, u', ..., u""") 4, (this is the
Assertion D of Theorem 1, stated for A [v] in lieu of A).
Let S ={0,1,...,n— 1} x {0,1,...,m — 1}.
Let € (A [v]) [u]. Then, there exist n elements by, by, ..., b,—1 of A[v] such that x =

n—1
z;) biu' (since z € (A[v]) [u] = (u°ut, ""un_1>A[v})' But for each i € {0,1,...,n — 1},

A

m—1
there exist m elements a;o, a;1, ..., @;m—1 of A such that b; = > a; ;17 (because
=0




n—1 n—1m—1
T = b; u' = a; jv'u’ = E a; jv'u’ = g a; jvlu'
=0, i=0 j=0 (6.)€{0,1,esn—1}x{0,1,...,m—1} (i.d)€S
=2 a; v
j=0
e (Vu' | (i,j)€S), (since a; ; € A for every (i,j) € 5)

So we have proved that =z € (viu' | (i,j) € S), for every x € (A[v])[u]. Thus,
(A]) [u] € (W' | (i,5) € S),. Conversely, (viu' | (i,7) € S), C (Av])[u] (this
is trivial). Hence, (A [v])[u] = (v/u" | (¢,7) € S),. Thus, the A-module (A [v]) [u] is
nm-generated (since |S| = nm).

Let U = (A[v])[u]. Then, the A-module U is nm-generated. Besides, U is an
A-submodule of B, and we have 1 € U and uU C U. Thus, the element u of B satisfies
the Assertion C of Theorem 1 with n replaced by nm. Hence, u € B satisfies the four
equivalent assertions A, B, C and D of Theorem 1, all with n replaced by nm. Thus,
u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A C B.
(a) Let @ € A. Then, a is 1-integral over A.

(b) Let z € Band y € B. Let m € N and n € N. Assume that x is m-
integral over A, and that y is n-integral over A. Then, x + y is nm-integral
over A.

(c) Let x € Band y € B. Let m € N and n € N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, zy is nm-integral
over A.

Proof of Theorem 5. (a) There exists a monic polynomial P € A [X] with deg P =1
and P (a) = 0 (namely, the polynomial P € A[X] defined by P (X) = X — a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).

(b) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
deg P = n and P (y) = 0. Since P € A[X] is a monic polynomial with deg P = n,
there exists a polynomial P € A[X] with deg P < n and P (X) = X" + P (X).

Now, define a polynomial @ € (Az]) [X] by Q (X) = P(X — z). Then, deg@ =
deg P (since shifting the polynomial P by the constant x does not change its degree), so
that deg @ = deg = P. Furthermore, from Q (X) = P (X — z), we obtain Q (z +y) =
P((x4+y)—x) = P(y) = 0. Also, the polynomial @) is monic (since it is a translate
of the monic polynomial P).

Hence, there exists a monic polynomial @ € (A[z])[X] with deg@ = n and
Q(x+y) = 0. Thus, x + y is n-integral over A[z]. Thus, Theorem 4 (applied to
v=2x and u = x + y) yields that = + y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
degP = n and P(y) = 0. Since P € A[X] is a monic polynomial with deg P = n,

n—1
there exist elements ag, a1, ..., a,_1 of A such that P(X) = X" + > axX*. Thus,
k=0
n—1
Py =y"+ X% apy®.
=0



n—1
Now, define a polynomial Q € (A[z]) [X] by Q (X) = X" + > 2" *a; X*. Then,
k=0

n—1
k n, n n—=k, .k k
Q (zy) = (zy) +Zx” S +Z$ " ary
——
_zn n k=0 =z
Y =apzk y
—zFayyk
n—1 n—1
_ xnyn + anakyk — " yn + Zakyk -0
k=0 k=0
N————
=P(y)=0

Also the polynomial @) € (A[x])[X] is monic and deg@ = n (since Q (X) = X" +
Z 2" *a, X*). Thus, there exists a monic polynomial Q € (A [z]) [X] with degQ = n

and Q@ (ry) = 0. Thus, zy is n-integral over A [z]. Hence, Theorem 4 (applied to v =z
and u = zy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A C B. Let n € N*
and m € N. Let v € B. Let by, by, ..., b,_1 be n elements of A, and let

u= > bv'. Assume that vu is m-integral over A. Then, u is nm-integral

over A.

Proof of Corollary 6. Define n + 1 elements ag, ai, ..., a, of Alvu| by

—ou, if 1 =0; _
a; = { by, ifi >0 for every i € {0,1,...,n}.

Then, ay = —vu. Let k = 1. Then,

n n n—1
E a;v" = ao + E al vt = —ovu+ E b, v = —vu + E bv'v
i=0 o _1 i=1 _b L =vi- 1@ i=1 i=0

since
>0

(here, we substituted i for ¢ — 1 in the sum)

= —vu+uv = 0.

Now, A[vu] and B are two rings such that A[vu] C B. The n + 1 elements ayg, a1,

., @y of Alvu] satisfy > a;v' =0. We have k =1 € {0,1,...,n}.
i=0

n—k
Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that > a; 0" is
i=0

n-integral over A [vu]. But

n—k n—1 n—1 n—1
7 7 ] 7
E ik V" = E aipp V= biit1)-10" = § biv' = u
=0 i=0 _ i=0 i=0
—P>+1)—-1»
since 1+1>0



Hence, u is n-integral over A [vu]. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary

6.
2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let ([p)pEN be a sequence of ideals of A. Then,
(1, p)peN is called an ideal semifiltration of A if and only if it satisfies the two conditions

Iy = A;
I, C 1,y for every a € N and b € N.

Definition 7. Let A and B be two rings such that A C B. Then, we identify
the polynomial ring A [Y] with a subring of the polynomial ring B [Y] (in fact, every
element of A [Y] has the form Y ;Y for some m € N and (ag, ay, ..., a,,) € A™1 and

i=0
thus can be seen as an element of B [Y] by regarding a; as an element of B for every
i€ {0,1,...,m}).
Definition 8. Let A be a ring, and let (/,) . be an ideal semifiltration of A. Con-

sider the polynomial ring A[Y]. Let A [(I p) pen * Y] denote the A-submodule > LY
ieN
of the A-algebra A[Y]. Then,
A [(Ip)peN ¥ Y] ~3 vy
ieN
— {Z a;Y' | (a; € I; for all i € N), and (only finitely many i € N satisfy a; # 0)}

i€N
={P € A[Y] | the i-th coefficient of the polynomial P lies in I; for every ¢ € N}.

It is very easy to see that 1 € A |:(IP)pEN * Y] (due to 1 € A = Ij) and that the
A-submodule A [(I p) pen * Y] of A[Y] is closed under multiplication (here we need to
use [;I; C I;y;). Hence, A [(Ip) * Y} is an A-subalgebra of the A-algebra A[Y].
This A-subalgebra A [([ o)
(o) pen-

Note that A = Iy yields A € A |(I,) e+ Y|

Definition 9. Let A and B be two rings such that A C B. Let (I,)
semifiltration of A. Let n € N. Let u € B.
We say that the element u of B is n-integral over <A, (1 p)peN) if there exists some

(ag, ay, ...,a,) € A" such that

pEN

pen ¥ Y} is called the Rees algebra of the ideal semifiltration

peN be an ideal

Zakuk =0, a, =1, and a; € I,,_; for every i € {0,1,....,n}.
k=0

11



We start with a theorem which reduces the question of n-integrality over (A, (1 p)p €N>
to that of n-integrality over a ring?

Theorem 7. Let A and B be two rings such that A C B. Let (I,) .y be
an ideal semifiltration of A. Let n € N. Let u € B.

Consider the polynomial ring A[Y] and its A-subalgebra A [(I p) pen * Y}
defined in Definition 8.

Then, the element u of B is n-integral over (A, (1,) ) if and only if

peEN
the element uY of the polynomial ring B [Y] is n-integral over the ring
A [(Ip)peN * Y] . (Here, A [([p)peN * Y} C B[Y] because A [(Ip)peN * Y] C

A[Y] and we consider A[Y] as a subring of B [Y] as explained in Definition

7).
Proof of Theorem 7. =>: Assume that u is n-integral over <A, (Ip)p€N>. Then, by
Definition 9, there exists some (ag, a1, ..., a,) € A™™! such that
Zakuk =0, ap, =1, and a; € I,_; for every i € {0,1,...,n}.
k=0

Then, there exists a monic polynomial P € <A [(Ip)pEN * Y]) [X] with deg P =n
and P (uY') = 0 (viz., the polynomial P (X) = > ;Y% X*). Hence, uY is n-integral
k=0

over A [(I o) en * Y] This proves the = direction of Theorem 7.

pEN

<=: Assume that uY is n-integral over A [(Ip)peN *Y]. Then, there exists a
monic polynomial P € (A [([P)peN*YD [X] with degP = n and P(uY) = 0.
Since P € (A [([p)peN*YD [X] satisfies deg P = n, there exists (po,p1,...,Pn) €

prX*. Besides, p, = 1, since P is monic

(A [([p)pEN * Y} )nH such that P (X) =

n

k

and deg P = n.
For every k € {0,1,...,n}, we have p, € A |:(Ip)p€N * Y] = > LY" and thus, there
iEN
exists a sequence (pi);cy € AN such that pp = > pi;Y?, such that py,; € I; for every

1€EN

i € N, and such that only finitely many i € N satisty py; # 0. Thus, P (X) =
2

kak
0

becomes P (X) = > > pr;Y'XF (since pp = > pr;Y?). Hence,

k=01ieN ieN

n n

P(uY) = Z Zpkﬂ-Yi (uwY)r = Z ZpkviYHkuk.

k=0 €N k=0 ieN

2Theorem 7 is inspired by Proposition 5.2.1 in [2].
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Therefore, P (uY) = 0 becomes > > pp; Y u* = 0. In other words, the polynomial
k=0 €N

S S YRR € B[Y] equals 0. Hence, its coefficient before Y™ equals 0 as well.
k=04i€N

n n
But its coefficient before Y™ is >_ prn_ruf, so we get > prn_put = 0.
k=0 k=0
Note that

meYi =Dy, (smce E:pkZ = py. for every k € {0, 1, ,n})

1eN
=1
in A[Y], and thus p,o = 1.
Define an (n + 1)-tuple (ao, a1, . Q) € A"Jr1 by ay = pin— forevery k € {0,1,...,n}.

Then, a, = pno = 1. Besides, Z apuf = Z Prn_ruf = 0. Finally, ax = prnr € I
=0
(since py,; € I; for every i € N) for every k‘ 6 {0,1,...,n}. In other words, a; € I,,_; for

every i € {0,1,...,n}.
Altogether, we now know that

Zakuk =0, a, =1, and a; € I,_; for every i € {0,1,...,n}.

Thus, by Definition 9, the element u is n-integral over (A, (Ip)p€N>. This proves the

<= direction of Theorem 7.
The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-
tions:

Theorem 8. Let A and B be two rings such that A C B. Let (I,) .y be
an ideal semifiltration of A.

(a) Let uw € A. Then, u is 1-integral over (A, (Ip)p€N> if and only if u € .

(b) Let x € Band y € B. Let m € N and n € N. Assume that x is
m-integral over (A, (Ip)peN> , and that y is n-integral over (A, (Ip)peN>.

Then, x + y is nm-integral over (A, <[p)p6N>'

(c) Let z € Band y € B. Let m € N and n € N. Assume that x is
m-integral over (A, (Ip)p€N> , and that y is n-integral over A. Then, xy is

nm-integral over (A, (Ip)p€N>.
Proof of Theorem 8. (a) Very obvious.
(b) Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y} . The-

orem 7 (applied to = and m instead of u and n) yields that zY is m-integral over
A [(Ip)pEN * Y] (since x is m-integral over (A, (Ip)p€N>). Also, Theorem 7 (applied to

y instead of u) yields that yY is n-integral over A [(I p)peN * Y] (since y is n-integral

13



over (A, (Ip)peN)). Hence, Theorem 5 (b) (applied to A [(Ip)peN * Y] , B[Y], zY and
yY instead of A, B, = and y, respectively) yields that zY + yY is nm-integral over
A |:(IP)pEN * Y]. Since zY +yY = (v +y) Y, this means that (z + y) Y is nm-integral

over A [(Ip) * Y} . Hence, Theorem 7 (applied to = + y and nm instead of u and n)

peN
yields that x 4+ y is nm-integral over (A, (1 p)pEN>’ This proves Theorem 8 (b).

(c) First, a trivial observation:

Lemma Z: Let A, A" and B’ be three rings such that A C A’ C B’. Let v € B'.
Let n € N. If v is n-integral over A, then v is n-integral over A’.

Now let us prove Theorem 8 (c).

Consider the polynomial ring A[Y] and its A-subalgebra A [([ p) pen * Y]. The-
orem 7 (applied to z and m instead of w and n) yields that zY is m-integral over
A [(Ip)peN * Y] (since x is m-integral over (A, ([P)pEN)>' On the other hand, Lemma
T (applied to A’ = A [(Jp)
over A [(Ip)peN * Y] (since y is n-integral over A, and A C A [(Ip)peN * Y] C B[Y]).

pen * Y}, B’ = B[Y] and v = y) yields that y is n-integral

Hence, Theorem 5 (c) (applied to A [([p)pEN * Y} , B[Y] and zY instead of A, B and z,

respectively) yields that xY -y is nm-integral over A [(I ) Y} . Since 2Y -y = xyY,

peEN *

this means that zyY is nm-integral over A [(I o) en * Y]. Hence, Theorem 7 (applied

pEN
to zy and nm instead of u and n) yields that xy is nm-integral over (A, (1 p)peN). This

proves Theorem 8 (c).
The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let A and B be two rings such that A C B. Let (1)
an ideal semifiltration of A.

Let v € Band u € B. Let m € Nand n € N.
(a) Then, (1,A[v]) ¢y is an ideal semifiltration of A [v]. E|

(b) Assume that v is m-integral over A, and that w is n-integral over

(A [v], (I,A [U])p€N>. Then, u is nm-integral over (A, (]p)p€N>.

be

Proof of Theorem 9. (a) This is evident. More generally (and still evidently):

Lemma J: Let A and A’ be two rings such that A C A’ Let (I,) o be an ideal
semifiltration of A. Then, (I,A’) .y is an ideal semifiltration of A".

(b) Again, we are going to use a rather trivial fact (for a proof, see [4]):

Lemma K: Let A, A and B’ be three rings such that A C A’ C B’. Let v € B'.
Then, A" - Av] = A" [v].

3Here and in the following, whenever A and B are two rings such that A C B, whenever v is
an element of B, and whenever [ is an ideal of A, you should read the term IA[v] as I (A [v]), not
as (IA) [v]. For instance, you should read the term I,A[v] (in Theorem 9 (a)) as I, (A [v]), not as

(I, A) [v].

14



Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A[Y]
and its A-subalgebra A [([P)pEN * Y]. We have A [(Ip)peN * Y} C A[Y], and (as ex-
plained in Definition 7) we can identify the polynomial ring A [Y] with a subring of
(A[v]) [Y] (since A C A[v]). Hence, A [(Ip) * Y] C (A[v]) [Y]. On the other hand,

(AL [, A ]+ Y] € (AL Y]
Now, we will show that (A [v]) [(IPA [v])
In fact, Definition 8 yields

(A (LA D e * Y| = D LAR] Y =Y 1Y Alo] = A | (L) e * Y| - A0

€N €N

(since Z LY'=A [(Ip)peN * Y})

1€EN

= (4| yex +Y]) o]

(by Lemma K (applied to A’ = A [(Ip) * y] and B' = (A[]) [Y])).

peEN

e # V] = (A ] o)

pEN
Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y]

with a subring of B[Y] (since A[v] € B). Thus, A [(Jp)peN * Y} C (Afv])[Y] yields
A [(Ip)pEN « Y] c BIY].
Besides, Lemma Z (applied to A [(I ) pen * Y}, BY] and m instead of A’, B’ and

n) yields that v is m-integral over A [( p) pen * Y] (since v is m-integral over A, and
ACA [(Ip)peN x Y] c BIY)).
Now, Theorem 7 (applied to A [v] and (I,A [v]) o instead of A and (I,) ) yields
that uY" is n-integral over (A [v]) [(IPA [v]) en * ] (since u is n-integral over (A [v], (1,A [v])peN> ).
Since (A [v]) [(IPA [v]) e * Y] = (A [(Ip)peN D [v], this means that Y is n-integral
over (A [([p) * YD [v]. Now, Theorem 4 (applied to A [(I ) pen * Y}, B[Y] and uY
instead of A, B and u) yields that uY" is nm-integral over A [( p) pen * Y] (since v is m-
Y], and uY is n-integral over (A [(IP)pEN * YD [v]). Thus,

integral over A [( p) pen *

Theorem 7 (applied to nm instead of n) yields that u is nm-integral over (A, (1 p)peN).
This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.
(a) Then, (A) oy is an ideal semifiltration of A.
(b) Let (1,) oy and (J,) oy be two ideal semifiltrations of A. Then, (I,.J,)

is an ideal Semlﬁltration of A.

P/ peN
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The proof of this is just basic axiom checking (see [4] for details).
Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that A C B. Let (/,)

€N
and (JP)pEN be two ideal semifiltrations of A. Let n € N. Let u € B. ’

We know that (I,J,) o is an ideal semifiltration of A (according to Theo-
rem 10 (b)).
Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y].

We will abbreviate the ring A [(Ip)peN * Y] by Apy.

By Lemma J (applied to Ay and (J;), oy instead of A" and (I,) ), the

sequence (JTA[I])T oy I8 an ideal semifiltration of Ay (since A C Ay and
since (J7), ey = (Jp) oy is an ideal semifiltration of A).

Then, the element u of B is n-integral over (A, (1 pJp)pEN) if and only if the
element uY of the polynomial ring B [Y] is n-integral over <A[I]> (JTA[U)TEN> :
(Here, Ay € B[Y] because Ay = A [(]p)peN * Y} C A]Y] and we consider
A[Y] as a subring of B [Y] as explained in Definition 7.)

Proof of Theorem 11. In order to verify Theorem 11, we have to prove the = and

< statements.
= Assume that u is n-integral over (A, (IPJP)pEN>‘ Then, by Definition 9 (ap-

plied to (I,J,) oy instead of (I,),y), there exists some (ag,a,...,a,) € A" such
that

Zakuk =0, a, =1, and a; € I,_;J,_; for every i € {0,1,...,n}.
k=0

Note that a, Y * € Ay for every k € {0,1,...,n} (because ay € ISt C In_p
(since I, is an ideal of A)). Thus, we can define an (n + 1)-tuple (bg, b1, ...,b,) €
(Am)n+1 by by = a, Y% for every k € {0,1,...,n}. This (n + 1)-tuple satisfies

Z by, - (uY)k =0, b, =1, and bi € Jn—i Ay for every i € {0,1,...,n}
k=0
(as can be easily checked). Hence, by Definition 9 (applied to Ay, B[Y], (J-Ay)

uY and (bo, by, ..., by) instead of A, B, (I)
is n-integral over (Am, (‘]TAU])TGN>' This proves the = direction of Theorem 11.

TeN?
uw and (ag, @y, ..., a,)), the element uY

<—: Assume that uY is n-integral over (A[I]7 (JTA[U)TEN>' Then, by Definition 9
(applied to Ay, B[Y], (‘]TAU])Tew uwY and (po, p1, ..., pn) instead of A, B, (I,)
and (ag, ai, ..., a,)), there exists some (pg, p1, ..., Pn) € (Am)nH such that

peEN? L

P (uY b= 0, Pn =1, and pi € Jo_iAp for every i € {0,1,...,n}.
1]
k=0
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For every k € {0,1,...,n}, we have

Pk € Jn—kA[I} = Ju_k Z IiYi (Since Am =A [( peN } Z] YZ>

ieN e
ieN ieN

and thus, there exists a sequence (pgi),cy € AN such that p, = Y pr;Y", such that
iEN

Dk,i € LiJn— for every ¢ € N, and such that only finitely many ¢ € N satisfy py; # 0.

Thus,

zpk W) =33 py (smcepk:zpk,m)

k=0 ieN e ieN
:quk
n
:E E priY TR

k=0 ieN
n n .
Hence, Y. pe-(uY)* = 0 becomes S 37 pp ;Y ¥ = 0. In other words, the polynomial
k=0 k=0ieN

S S YRR € B[Y] equals 0. Hence, its coefficient before Y™ equals 0 as well.
k=01ieN

But its coefficient before Y™ is Z Die.n— wu*. Hence, we obtain Z Dhen— R = 0.

k=0
Note that
meYi = Dn (since ZpkﬁiYi = py. for every k € {0, 1, ,n})
i€N iEN

=1
in A[Y], and thus p,o = 1.
Define an (n + 1)-tuple (ag, ay, ..., a,) € A" by ay = pgn_x forevery k € {0,1,...,n}.
Then, a,, = p,o = 1. Besides,

n

Z akuk = zn:pkm_kuk =0.

k=0 k=0
Finally, ax = prn—k € In—kJn—r (since py; € I;J,—y for every ¢ € N) for every k €
{0,1,...,n}. In other words, a; € I,,_;J,_; for every i € {0,1,....,n}.

Altogether, we now know that

Zakuk =0, an, = 1, and a; € I,_;J,_; for every i € {0,1,....,n}.
k=0

Thus, by Definition 9 (applied to (I,J,) ey instead of (1,) ),
integral over (A (1,J )p€N> This proves the <= direction of Theorem 11, and thus

the element u is n-

Theorem 11 is shown.
The reason why Theorem 11 generalizes Theorem 7 is the following triviality, men-
tioned here for the pure sake of completeness:
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Theorem 12. Let A and B be two rings such that A C B. Let n € N.
Let u € B.

We know that (A) ¢y is an ideal semifiltration of A (according to Theorem
10 (a)).
Then, the element u of B is n-integral over (A, (A)

n-integral over A.

peN) if and only if u is

Finally, let us generalize Theorem 8 (c):

Theorem 13. Let A and B be two rings such that A C B. Let (I,)
and (J,) cy be two ideal semifiltrations of A.

Let x € B and y € B. Let m € N and n € N. Assume that x is m-integral
over (A, (Ip)p€N> , and that y is n-integral over (A, (Jp)p€N>. Then, xy is

nm-integral over (A, (‘[pJp)pEN)'

Proof of Theorem 13. First, a trivial observation:

Lemma T': Let A, A" and B’ be three rings such that A C A’ C B’. Let (Ip)peN be
an ideal semifiltration of A. Let v € B’. Let n € N. If v is n-integral over (A, (Lp) pent )+
then v is n-integral over <A’, (IPA’)06N>. (Note that (1,A4") y is an ideal semifiltration
of A’ according to Lemma J.)

This is obvious upon unraveling the definitions of “n-integral over (A, (1 p)p€N>”
and of “n-integral over (A’, (]pA’)p€N>”.

Now let us prove Theorem 13.

We have (J,) oy = (Jr),cn. Hence, y is n-integral over (A, (J:),cy) (since y is

n-integral over (A, (Jp)p€N> ).

Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen

* Y]. We will
abbreviate the ring A [(]p)peN * Y} by Aj. We have Ayp € BY], because Ay =

A [(I 0) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in

Definition 7.
Theorem 7 (applied to z and m instead of w and n) yields that zY is m-integral

over A [(Ip)peN * Y] (since z is m-integral over (A, (Ip)p€N>). In other words, zY is
m-integral over Ay (since A [(Ip)peN * Y} = App).

On the other hand, Lemma Z’ (applied to Ay, B[Y], (J;),oy and y instead of
A, B', (I,) ey and v) yields that y is n-integral over (Am, (JTA[I])T€N> (since y is
n-integral over (A, (J;),y), and A C Ay C B[Y])).

Hence, Theorem 8 (c) (applied to Ay, B[Y], (J-Ap)
of A, B, (Ip)p€N7
(Am, (JTA[I])TGN) (since y is n-integral over (Am, (JTA[I])T€N>7 and xY is m-integral

over Ayp). Since y - xY = xyY and mn = nm, this means that xyY is nm-integral

e Ys Y, mand n instead
x, y, n and m respectively) yields that y - Y is mn-integral over
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over <A[I], (JTAU])TeN)‘ Hence, Theorem 11 (applied to xy and nm instead of u and
n) yields that zy is nm-integral over <A, (1 pJp)p€N>. This proves Theorem 13.

4. Accelerating ideal semifiltrations
We start this section with an obvious observation:

Theorem 14. Let A be aring. Let (I,) .y be an ideal semifiltration of A.
Let A € N. Then, (1)) is an ideal semifiltration of A.

I refer to (1)) oy as the A-acceleration of the ideal semifiltration (1,) .y
Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized
once more:

Theorem 15. Let A and B be two rings such that A C B. Let (/,)

eN
and (J,) o be two ideal semifiltrations of A. Let n € N. Let u € B. Let
AeN.
We know that (1)) ,cy is an ideal semifiltration of A (according to Theorem
14).
Hence, (I\,J)) o is an ideal semifiltration of A (according to Theorem 10
(b), applied to (1)) o instead of (1,) cx)-
Consider the polynomial ring A [Y] and its A-subalgebra A [(I P)pGN * Y]‘

We will abbreviate the ring A |:<Ip)pEN * Y] by App.

By Lemma J (applied to Ay and (J;), oy instead of A" and (I,) y), the

sequence (JTA[I])TEN is an ideal semifiltration of Ay (since A C Ay and
since (J7), ey = (Jp) oy is an ideal semifiltration of A).

Then, the element u of B is n-integral over (A, (]/\pJp)peN> if and only if the
element uY* of the polynomial ring B [Y] is n-integral over (A[ 1, (J- A I])TGN) .
(Here, Ay € B[Y] because Ay = A [(Ip)peN * Y} C A[Y] and we consider
A[Y] as a subring of B[Y] as explained in Definition 7.)

Proof of Theorem 15. First, note that

Z Ly = Z LY" (here we renamed /¢ as i in the sum)

LeN 1€N
=4 [(Ip)peN * Y] = A

In order to verify Theorem 15, we have to prove the = and <= statements.
—: Assume that u is n-integral over <A, (I/\pJp)peN)' Then, by Definition 9 (ap-

plied to (Ix,Jp) oy instead of (I,) cy), there exists some (ao,a1,...,as) € A" such
that
Zakuk =0, a, = 1, and a; € In(n—i)Jn—i for every i € {0,1,...,n}.
k=0
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Note that apY k) ¢ App for every k € {0,1,...,n} (because ar € Inp—g)Jn—t C

In(n—r) (since Iy(,—g) is an ideal of A) and thus apY Mn—k) ¢ ])\(n,k)YA(”*k) CY LY =
iEN
An). Thus, we can find an (n + 1)-tuple (bo, b1, ..., b,) € (Am)mrl satisfying

Zbk- (uY’\)k =0, b, =1, and bi € Jn—iApy for every i € {0,1,...,n}.
k=0

Hence, by Definition 9 (applied to Ay, B[Y], (‘]TAU])TGN’ uY? and (bg, by, ..., by)
instead of A, B, (Ip)pGN’ u and (ag,ay, ...,a,)), the element uY? is n-integral over

(Am, (‘]TAU])TeN>' This proves the = direction of Theorem 15.

<=: Assume that uY? is n-integral over (A[I], (JTAU])TGN>‘ Then, by Definition 9
(applied to Ay, B[Y], (JTA[I])T€N7 uY? and (po,p1, .., pn) instead of A, B, (I,)
w and (ag, ay, ..., a,)), there exists some (pg, p1, ..., pn) € (A[I])nH such that

peEN?

Zpk-(uY’\)k =0, Pn =1, and pi € Jn—i A for every i € {0,1,...,n}.
k=0

For every k € {0,1,...,n}, we have

Pr € Jn_kA[]] = Juk ZLYZ (Since A[[] = Z [ZYZ>

ieN €N
ieN ieN

and thus, there exists a sequence (pg;);cy € AN such that pr, = > pr;Y", such that
iEN

Pri € I Jn— for every @ € N, and such that only finitely many ¢ € N satisfy py,; # 0.

Thus,

ipk . (uY)‘)k = i Zp,w- Yi. (uY)‘)k (since DL = Zpk,iYi>
k=0 —

k=0 €N kY it AR 1€EN

_ zn: meukyiﬂk‘

k=0 ieN

Hence, > py - (uY)‘)k = 0 becomes > >~ ppufY M = 0. In other words, the poly-
k=0 k=0i€N

nomial Y 3 ppu* Y+ € B[Y] equals 0. Hence, its coefficient before Y equals 0
k=0ieN \/B—/
S

as well. But its coefficient before Y is pm(n,k)uk. Hence, ) pk,,\(n,k)uk equals 0.
k=0 k=0

4Namely, the (n + 1)-tuple (bo, by, ..., by) € (Am)”1 defined by
(b;c = a, YR for every k € {0,1, ..., n}) satisfies this. The proof is very easy (see [4] for
details).
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Note that

meYi = Dn (since ZpkviYi = py, for every k € {0, 1, ,n})

€N €N
=1
in A[Y], and thus the coefficient of the polynomial > p,;Y* € A[Y] before Y is 1;
ieN
but the coefficient of the polynomial Y p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.

iEN
Define an (n + 1)-tuple (ag, a1, ...,a,) € A" by ay = pgam-k) for every k €
{0,1,...,n}. Then, a, = p,o = 1. Besides,

Z apu® = Zpk,)\(nfk)uk = 0.
k=0 k=0

Finally, ar = pram—k) € Iaxm-k)Jn—r (since pp; € I;J,_j for every i € N) for every
k €{0,1,...,n}. In other words, a; € I\(,—i)Jy—; for every i € {0,1,...,n}.
Altogether, we now know that

Z apu® =0, a, =1, and a; € Iy(n—iyJn—i for every ¢ € {0,1,....,n}.
k=0

Thus, by Definition 9 (applied to (I,J,),c instead of (1) the element u is n-

pGN)?
integral over (A, (I ApJp)peN) This proves the <= direction of Theorem 15, and thus

completes the proof.
A particular case of Theorem 15:

Theorem 16. Let A and B be two rings such that A C B. Let ({,) be

an ideal semifiltration of A. Let n € N. Let ©u € B. Let A € N.

peN

We know that (1)) .y is an ideal semifiltration of A (according to Theorem
14).

Consider the polynomial ring A[Y] and its A-subalgebra A [(I »)
defined in Definition 8.

pen * Y}
) if and only if
the element uY? of the polynomial ring B[Y] is n-integral over the ring
A |:(Ip)p€N * Y] . (Here, A [(Ip)pEN * Y} C B[Y] because A [(]p)peN * Y] C

A[Y] and we consider A [Y] as a subring of B [Y] as explained in Definition
7).

Then, the element u of B is n-integral over (A, (I/\P)peN

Proof of Theorem 16. Theorem 10 (a) states that (A) .y is an ideal semifiltration
of A.
We will abbreviate the ring A |(I,) ey + Y| by Ap.

We have the following five equivalences:
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e The element u of B is n-integral over (A, (I /\P)peN> if and only if the element u

of B is n-integral over <A, (],\pA)peN> (since Iy, = I5,A).

e The element u of B is n-integral over (A, (I /\PA)peN> if and only if the element

uY? of the polynomial ring B [Y] is n-integral over (A[ 1 (AA[I])T€N> (according

to Theorem 15, applied to (A),cy instead of (J,) )

e The element uY ™ of the polynomial ring B [Y] is n-integral over (Am, (A4 I])T€N>

if and only if the element uY* of the polynomial ring B [Y] is n-integral over

(A (Ain) o) (since [ Ady | = (A1), = (Ai) o)

:Am T7EN

e The element uY? of the polynomial ring B [Y] is n-integral over (AU], (A[I])p€N>
if and only if the element uY* of the polynomial ring B [Y] is n-integral over A
(by Theorem 12, applied to Ay, B[Y] and uY? instead of A, B and u).

e The element uY* of the polynomial ring B [Y] is n-integral over Aqp if and only
if the element uY* of the polynomial ring B [Y] is n-integral over A [(I p) pen * Y}

(since Ay = A [(Ip)peN * Y] ).

Combining these five equivalences, we obtain that the element u of B is n-integral
over <A, (I /\P)peN) if and only if the element uY? of the polynomial ring B [Y] is n-

integral over A [([ p) pen * Y] . This proves Theorem 16.
Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that A C B. Let (I,) oy
be an ideal semifiltration of A. Let n € NT. Let v € B. Let ayg, ay, ...,

a, be n + 1 elements of A such that > a;v° = 0 and a; € I,,_; for every

=0
i€{0,1,...n}.
Let k € {0,1,...,n}. We know that (I(n_k)p)pEN is an ideal semifiltration of
A (according to Theorem 14, applied to A = n — k).
n—k
Then, Y a;1v" is n-integral over (A, (I(n,k)p)peN).
i=0

Proof of Theorem 17. Consider the polynomial ring A[Y] and its A-subalgebra
A [(Ip)pEN * Y] defined in Definition 8. We have A [(Ip)peN * Y] C BJY], because

A [(I 0) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in
Definition 7.
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As usual, note that

Z LY*' = Z LY" (here we renamed ¢ as i in the sum)
¢eN ieN
= A[(L) e+ Y|

In the ring B[Y], we have

ZalY" ‘ vY ZaZY” tyt ’—Y"Zav =0.

_vzyz Yyt =yn
=0

Besides, ;"' € A [( ) Y] foreveryi € {0,1,...,n} (since\aﬁ-/Y"_i cl, ;Y iC

P/ peN
Glnfi
erN]eye =A [(]p)peN * Y}) Hence, Theorem 2 (applied to A [( p) pen * Y] , B[Y],vY
n—k .
and ;Y™ instead of A, B, v and a;) yields that Y a;., Y (+% (vY)" is n-integral
i=0
over A [(Ip)peN * Y} Since
A n—k
Z ai+kyn—(z+k) (UY)Z _ Z Qish Yn—(z—i—k ot = Z az—&—kv LYy k
=0 i YieYiyi =0 —y(n—(i+k))+i—yn—k
n—k )
this means that > a; v’ - Y™ is n-integral over A [(Ip)peN * Y].
i=0
n—k n—k
But Theorem 16 (applied to u = >_ a4 v and A = n — k) yields that > a;x0° is
i=0 i=0

n-integral over <A, (](n—k)p)peN> if and only if i iy v’ - Y8 is meintegral over the
i=0

n—k
ring A [(]p)peN * Y] Since we know that > a4 ,0" - Y% is n-integral over the ring
i=0
n—k
A [(Ip)pEN * Y], this yields that z';o a;4 V" is n-integral over (A, ([("*’f)P)peN) This

proves Theorem 17.

5. Generalizing a lemma by Lombardi

Now, we are going to generalize Theorem 2 from [3] (which is the main result of
[3])F] First, a very technical lemma:

Lemma 18. Let A and B be two rings such that A C B. Let x € B.
Let m e Nand n € N. Let u € B. Let p € N and v € N be such that
p+ v € NT. Assume that

u" € <u0,u1, ...,u"_1>A . <[EO,ZL'1, ...,SEV>A (3)

5 Caveat: The notion “integral over (A,J) 7 defined in [3] has nothing to do with our notion
“n-integral over (A, (In),cn) 7
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and that
umxt e <u0,u1, ...,um_1>A-<x0,x1, ...,:E“>A+<u0,u1, ...,um>A-<x0,m1, ...,x“_1>A.
Then, u is (nu + mv)-integral over A.

The proof of this lemma is not difficult but rather elaborate. For a completely
detailed writeup of this proof, see [4]. Here let me give the skeleton of the proof of
Lemma 18. Let

S={0,1,....,n—1} x{0,1,...,p —1HU{O,1,...om — 1} x {p,u+1,...,u+v—1}).
Clearly, |S| = nu + mv and
Jj < p+v for every (i,7) € S. (5)

Let U be the A-submodule (u'z? | (i,5) € S), of B. Then, U is an (nu + mv)-
generated A-module (since |S| = nu + mv). Besides, clearly,

u'z? € U for every (i,j) € S. (6)
Now, we will show that
every i € N and j € N satisfying j < pu + v satisfy u'a? € U. (7)

The proof of (7) can be done either by double induction (over i and over j) or by
the minimal principle. The induction proof has the advantage that it is completely
constructive, but it is clumsy (I give this induction proof in [4]). So, for the sake of
brevity, the proof I am going to give here is by the minimal principle:

For the sake of contradiction, we assume that is not true. Then, let (I,.J) be
the lexicographically smallest pair (i,7) € N? satisfying j < u + v but not satisfying
vz € U. Then, J < p+ v but 'z’ ¢ U, and since (I,J) is the lexicographically
smallest such pair, we have

uw'2? € U for every j € N such that j < J (8)

and
u'z? € U for every i € N and j € N such that i < I and j < p + v. 9)

Now, (8] rewrites as
(u") - (2% 2, a7 CU, (10)
and (9)) rewrites as
(ul ut, a2 2t et C UL (11)

Also note that J < p+ v yields J < p+ v — 1 (since J and p + v are integers).

We distinguish between the following four cases (it is clear that at least one of them
must hold):

Case 1: We have [ >m N J > pu.
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Case 2: We have I <m A J > p.
Case 3: We have I >n A J < p.
Case 4: We have I <n A J < p.
In Case 1, we have I —m > 0 (since [ > m) and J — > 0 (since J > pu), thus

'U/I Q}J
~~ ~~
—yl—mym —gpugpd—p
— u[—m umrH xJ—/L
——
€<u0,u1 ..... um’1>A-<z0,z1,...,z“>A+<u0,u1,...,um>A~<:v0 :vl,...,as”’1>A
(by (@)
eyl ™ (<u0,u1, ...,um’1>A . < O 2t ...,:c“>A + <u0,u1, ...,um>A . <a:0,:131, ...,x“’1>A) gl H
=yl m <u0,u1, - um_1>A . <x0,x1, - a:“>A !
TV Vv
Cludul,.. w1y, C(x0,z! ... xrtr—1) , (since J<pu+v—1)
+ulm <u0, ul, ...,um>A . <x0, z' . x“_1>A ! H
7
Vv Vv
C uo,ul,...,uI>A Q<z0,zl,...,mJ_1>A
C <u0,u1, ...,u1_1>A . <x0,x1, ...,x“+”_1>A+ <u0,u1, ...,uI>A . <x0,x1, ...,xJ_1>A
~~ 7 N -~ 4
CU by =0 ul,. . ul =1y +(ul) ,

cCU+ (<u0,u1, ...,u1_1>A + <uI>A) . <x0,x1, ...,xJ_1>A
=0l ul—1) (20l ..., :c}r*1>A+(ul>A~($0,$1 ..... z/=1 ,

=U+ <u0,u1, ...,ul’1>A . \<x0,:c1, ...,x‘]71>4 + <uI>A . <x0,x1, ...,:c"’1>
§<x0,x1,...,m;:’“*1>A (since
J-1<J<p+v—1)

€U+ (000t (2t a2 (), (a0 ),
I

A

U by () U by (@)
CU+U+UCU (since U is an A-module) .

Thus, we have proved that u/z’ € U holds in Case 1.

In Case 2, we have (I,.J) € S and thus u!z” € U (by (6)), applied to I and .J instead
of i and 7). Thus, we have proved that u’z’ € U holds in Case 2.

In Case 3, we have I —n > 0 (since I > n) and J+v < p+v — 1 (since J < p
yields J + v < p+ v, and since J + v and u + v are integers), thus

UI (L’J
—~—
—ul—nyn
I—n n J I—n 0o, 1 n—1 0 ,.1 v J
=1Uu u T eu <u,u,...,u >A' <.§L’,Z‘,...,£IJ >ALL’
E(uo,ul,...,u”_1> -<x°,x1,...,x”>A ) C<u0 ulvu171> ’ CZxO x! .Z’;:V71> (su:(:e
(by ) - s A B J:,—.;/’Su—i-y—l)
C <u0,u1, ...,u171>A . <x0,x1, ...,x“+”71>A cU (by (11))).

Thus, we have proved that u’z” € U holds in Case 3.
In Case 4, we have (I, J) € S and thus u/z” € U (by @, applied to I and J instead
of 7 and 7). Thus, we have proved that u/x/ € U holds in Case 4.

25



Therefore, we have proved that u’z? € U holds in each of the four cases 1, 2, 3
and 4. Hence, u’z? € U always holds, contradicting u/xz” ¢ U. This contradiction
completes the proof of .

Now that is proven, we can easily conclude that uU C U. Furthermore, applying
to ¢ = 0 and j = 0 readily yields 1 € U. Altogether, U is an (nu + mv)-generated
A-submodule of B such that 1 € U and uU C U. Thus, u € B satisfies Assertion C
of Theorem 1 with n replaced by nu + mv. Hence, u € B satisfies the four equivalent
assertions A, B, C and D of Theorem 1 with n replaced by nu + mv. Consequently, u
is (nu + mv)-integral over A. This proves Lemma 18.

We record a weaker variant of Lemma 18:

Lemma 19. Let A and B be two rings such that A C B. Let x € B and
y € B be such that xy € A. Let m e Nand n € N. Let u e B. Let p € N
and v € N be such that u + v € N*. Assume that

u" € <u0,u1, ...,u"_1>A . <x0,x1, ...,x”> (12)

A

and that
u™ e <u0,u1, ...,um_1>A-<y0,y1, ...,y“>A+<u0,u1, ...,um>A~<y1,y2, ...,y“>A.

(13)
Then, u is (nu + mv)-integral over A.

Proof of Lemma 19. (Again, the same proof with more details can be found in [4].)
We have

</y07y17'-'7yu>Axu g <£ITO,$1,...,£L’M>A, (14)

since every i € {0, 1, ..., u} satisfies

Cogh =it it = 2yt e (gt 15
AN y Cam (15)
s =(zy)'€A,
since xy€A
C <x0, zt . x“>A )
Besides,
<y17y27"'7y#>14xu g <x07I17"'7xu_1>A7 (16)

since every i € {1,2, ..., u} satisfies

yat e (@), (by ([L3))

- <x0, zt . x“_1>A )
Now, yields

umxt e (<u0,u1, ...,um’1>A . <y0,y1, ...,y“>A + <u0,u1, ...,um>A . <y1,y2, ...,y“>A) Tt

= <u0,u1, ...,um_1>A -Syo,yl, ...,y”>Ax’i—|— <u0,u1, ...,um>A -Syl,gf, ...,y“>Ax“

g

Q<zo,zl,...,m“>A Q(mo,ml,...,x“*l
(by (T4)) (by (T6))

C <u0,u1, ...,um_1>A . <$0,:B1, ...,a:“>A + <u0,u1, ,um> : <x0,x1, ...,x“_1>A.

A
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In other words, holds. Also, holds (because holds, and because is the
same as (12)). Thus, Lemma 18 yields that u is (nu + mv)-integral over A. This proves
Lemma 19.

Something trivial now:

Lemma 20. Let A and B be two rings such that A C B. Let x € B. Let
n € N. Let u € B. Assume that u is n-integral over A[x]. Then, there
exists some v € N such that

n o ,1 n—1 o ,.1 v
U €<u Uy, U >A-<m N AN >A.

The proof of Lemma 20 (again, axiomatized in [4]) goes as follows: Since u is n-
integral over A [z], there exists a monic polynomial P € (A [z]) [X] with deg P = n and

P (u) = 0. Denoting the coefficients of this polynomial P by ag, o, ..., a;, (where a,, =
n—1

1), the equation P (u) = 0 becomes u™ = — > a;u’. Note that a; € A [z] for all i. Now,
i=0

there exists some v € N such that o; € (2%, 2!,...,2") , for every i € {0,1,....,n— 1}
o0

(because for each 7 € {0,1,...,n — 1}, we have a; € A[z] = Qo (2% xt, ... x¥) ,, so that

a; € (20,2t ..., 2" , for some v; € N; now take v = max {vg, 1, ..., v,—1}). This v then
satisfies
n—1 n—1
no__ _ ot i . 0,1 n—=1\ /.0 .1 v
u = g oU = 5 U Q; E<u,u,...,u >A<:U,x,...,x >A,
=0 =0 e(uOul,...,un—1) , (@0l av) 4

and Lemma 20 is proven.
A consequence of Lemmata 19 and 20 is the following theorem:

Theorem 21. Let A and B be two rings such that A C B. Let x € B and
y € B be such that zy € A. Let m € Nand n € N. Let u € B. Assume
that w is n-integral over A[z], and that u is m-integral over A[y]. Then,
there exists some A € N such that u is A-integral over A.

Proof of Theorem 21. Since u is n-integral over A [z]|, Lemma 20 yields that there
exists some v € N such that

In other words, holds.
Since u is m-integral over A [y], Lemma 20 (with z, n and v replaced by y, m and
w) yields that there exists some p € N such that

u™ € <u0,u1, ...,um_1>A . <y0,y1, ...,y“>A. (17)

Hence, holds as well (because is even stronger than ([13))).

Since both and hold, Lemma 19 yields that u is (nu + mv)-integral over A.
Thus, there exists some A € N such that u is A-integral over A (namely, A = nu+mv).
This proves Theorem 21.

We record a generalization of Theorem 21 (which will turn out to be easily seen
equivalent to Theorem 21):
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Theorem 22. Let A and B be two rings such that A C B. Let x € B and
y € B. Let m € Nand n € N. Let u € B. Assume that u is n-integral over
A|z], and that u is m-integral over A[y]. Then, there exists some A € N
such that u is A-integral over A [zy].

Proof of Theorem 22. Obviously, A C A[zy] yields A[z] C (A[zy]) [x] and Aly] C
(Alzy)) [y]-

Since u is n-integral over A [z], Lemma Z (applied to B, (Alzy]) [x], Alz] and u
instead of B’; A’, A and v) yields that u is n-integral over (A [zy]) [z].

Since u is m-integral over A [y]|, Lemma Z (applied to B, (A [zy]) [y], A[y], m and
u instead of B’; A’; A, n and v) yields that u is m-integral over (A [zy]) [y].

Now, Theorem 21 (applied to A [zy] instead of A) yields that there exists some
A € N such that w is Mintegral over A[zy] (because xy € A[xy|, because u is n-
integral over (A |[zy]) [z], and because u is m-integral over (A [zy])[y]). This proves
Theorem 22.

Theorem 22 has a “relative version”:

Theorem 23. Let A and B be two rings such that A € B. Let (1,) oy be
an ideal semifiltration of A. Let x € B and y € B.

(a) Then, (I,A [z]) oy is an ideal semifiltration of A [z]. Besides, (1,4 [y])
is an ideal semifiltration of A[y]. Besides, (I,A [zy]) . is an ideal semifil-
tration of A [zy].

(b) Let m € N and n € N. Let uw € B. Assume that u is n-integral over
(A [z], (I,A [m])p€N>, and that u is m-integral over <A [y], (I,A [y])p€N>.

Then, there exists some A € N such that u is A\-integral over (A [zy], (I,A [acy])peN).

Proof of Theorem 23. (a) Since (I,) oy is an ideal semifiltration of A, Lemma J
(applied to A [z] instead of A’) yields that (I,A [z]) .y is an ideal semifiltration of A [z].

Since (1), is an ideal semifiltration of A, Lemma J (applied to A[y] instead of
A') yields that (1,A[y]) cy is an ideal semifiltration of A [y].

Since (I p)pGN is an ideal semifiltration of A, Lemma J (applied to A [zy| instead of
A') yields that (I,A[ry]) oy is an ideal semifiltration of A [zy].

Thus, Theorem 23 (a§ is proven.

(b) We formulate a lemma:

Lemma N : Let A and B be two rings such that A C B. Let v € B. Let (£p) jery Pe
an ideal semifiltration of A. Consider the polynomial ring A [Y] and its A-subalgebra

A [(Ip)pEN * Y]. We have A [([P)pGN * Y} C A[Y], and (as explained in Definition 7)
we can identify the polynomial ring A [Y] with a subring of (A [v]) [Y] (since A C A [v]).
Hence, A [(Ip) * Y} C (A[v])[Y]. On the other hand, (A [v]) [(IpA [v]) pen * Y} C
(A[v]) [Y].

(a) We have

peEN

(AWD [(LARD e+ Y] = (A](0) e+ Y]) o).
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(b) Let w € B. Let n € N. Then, the element u of B is n-integral over
(A [v], (1,A [v])peN> if and only if the element uY of the polynomial ring B[Y] is

n-integral over the ring (A [(Ip)peN * Y]) [v].

Proof of Lemma N : (a) We have proven Lemma N (a) during the proof of Theorem
9 (b).

(b) Theorem 7 (applied to A[v] and (I,A [v]) . instead of A and (I,) ) yields

that the element u of B is n-integral over (A ], (1,Av]) ) if and only if the element

pEN
uY of the polynomial ring B [Y] is n-integral over the ring (A [v]) [(I,,A [v]) en * Y} . In

other words, the element v of B is n-integral over (A [v], (1,A v]) ) if and only if the

peN

element uY of the polynomial ring B [Y] is n-integral over the ring (A [([ p) pen * Y] ) [v]

(because Lemma N (a) yields (A [v]) [(]pA [v]) pen * Y} = (A [(]p)pGN * YD [v]). This
proves Lemma N (b).
Now, let us prove Theorem 23 (b). In fact, for every v € B, we can consider

the polynomial ring (A [v]) [Y] and its A [v]-subalgebra (A [v]) [(IpA [V]) _ * Y] We

have (A [v]) [(1,,,4 [0]) e * Y} C (A[v]) [Y], and (as explained in Definition 7) we can
identify the polynomial ring (A [v]) [Y] with a subring of B[Y] (since A[v] C B).
Hence, (A [v]) [(1,,A [0]) e * Y} c BIY].

Lemma N (b) (applied to x instead of v) yields that the element u of B is n-
integral over (A [z], (I,A [z])

peEN

peN if and only if the element uY of the polynomial ring

B Y] is n-integral over the ring <A [(Ip)peN * Y]) [z]. But since the element u of B is

n-integral over (A [z], (I,A[z]) this yields that the element uY" of the polynomial

peN )
ring B [Y] is n-integral over the ring (A [(Ip)peN * Y]) [z].

Lemma A (b) (applied to y and m instead of v and n) yields that the element
u of B is m-integral over <A ly], (1,A [y])peN) if and only if the element uY of the
polynomial ring B [Y] is m-integral over the ring (A |:(Ip)p€N * Y]) [y]. But since the
element u of B is m-integral over <A ], (I,A [y])p€N>, this yields that the element uY

of the polynomial ring B [Y] is m-integral over the ring (A [(Ip)pEN * Y]) [y].

Since uY is n-integral over the ring (A [(IP)pGN * Y} ) [x], and since ©Y is m-integral
over the ring (A [(Ip)peN * YD [y], Theorem 22 (applied to A [(Ip)peN * Y], BY] and
uY instead of A, B and u) yields that there exists some A € N such that Y is A-integral
over (A [(Ip)peN * Y]) [zy].

Lemma N (b) (applied to zy and X instead of v and n) yields that the element u of B
is A-integral over (A [zy], (I,Alzy]), eN) if and only if the element uY of the polynomial

ring B[Y] is A-integral over the ring (A [(Ip)peN * YD [zy]. But since the element
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uY of the polynomial ring B[Y] is A-integral over the ring (A [(Ip)pEN * YD [zy],

this yields that the element u of B is A-integral over (A [zy], (I,A [xy])peN). Thus,
Theorem 23 (b) is proven.

We notice that Corollary 3 can be derived from Lemma 18:

Second proof of Corollary 3. Let n = 1. Let m = 1. We have

u" € <u0,u1, ...,u”_1>A . <v0,v1, ...,UO‘>A

B and
u™’ e <u0,u1, ...,um’1>A . <’U0,Ul, ...,vﬁ>A + <u0,u1, ...,um>A . <v0,v1, ...,’UB’1>A

Thus, Lemma 18 (applied to v, § and « instead of =, p and v) yields that u is
(nf + ma)-integral over A. This means that u is (a + f)-integral over A (because
nfB+ma =15+ la =+ a = a+ ). This proves Corollary 3 once again.

In how far does this all generalize Theorem 2 from [3]7 Actually, Theorem 2 from
[3] can be easily reduced to the case when J = 0 (by passing from the ring A to its
localization A, ;) H, and in this case it easily follows from Lemma 18.
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