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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a “relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also
Theorem 7) a bit further by considering a generalization of powers of an ideal.

Part 5 (Generalizing a lemma by Lombardi) is about an auxiliary result Lombardi
used in [3] to prove Kronecker’s Theorem1. We extend this auxiliary result here.

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed).

This is an attempt to make the proofs as short as possible while keeping them easy to
read. If you are stuck following one of the proofs, you can find a more detailed version
in [4]. However, normally the proofs in [4] are over-detailed, making them harder to
read than the ones below.

Preludium

Definitions and notations:
Definition 1. In the following, “ring” will always mean “commutative ring with

unity”. We denote the set {0, 1, 2, ...} by N, and the set {1, 2, 3, ...} by N+.
Definition 2. Let A be a ring. Let M be an A-module. If n ∈ N, and if m1, m2,

..., mn are n elements of M , then we define an A-submodule 〈m1,m2, ...,mn〉A of M by

〈m1,m2, ...,mn〉A =

{
n∑
i=1

aimi | (a1, a2, ..., an) ∈ An
}
.

1Kronecker’s Theorem. Let B be a ring (“ring” always means “commutative ring with unity”
in this paper). Let g and h be two elements of the polynomial ring B [X]. Let gα be any coefficient
of the polynomial g. Let hβ be any coefficient of the polynomial h. Let A be a subring of B which
contains all coefficients of the polynomial gh. Then, the element gαhβ of B is integral over the subring
A.
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Also, if S is a finite set, and ms is an element of M for every s ∈ S, then we define an
A-submodule 〈ms | s ∈ S〉A of M by

〈ms | s ∈ S〉A =

{∑
s∈S

asms | (as)s∈S ∈ A
S

}
.

Of course, if m1, m2, ..., mn are n elements of M , then

〈m1,m2, ...,mn〉A = 〈ms | s ∈ {1, 2, ..., n}〉A .

We notice something almost trivial:

Module inclusion lemma. Let A be a ring. Let M be an A-module. Let
N be an A-submodule of M . If S is a finite set, and ms is an element of N
for every s ∈ S, then 〈ms | s ∈ S〉A ⊆ N .

Definition 3. Let A be a ring, and let n ∈ N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements m1, m2, ..., mn of M
such that M = 〈m1,m2, ...,mn〉A. In other words, the A-module M is n-generated if
and only if there exists a set S and an element ms of M for every s ∈ S such that
|S| = n and M = 〈ms | s ∈ S〉A.

Definition 4. Let A and B be two rings. We say that A ⊆ B if and only if

(the set A is a subset of the set B)

and (the inclusion map A→ B is a ring homomorphism) .

Now assume that A ⊆ B. Then, obviously, B is canonically an A-algebra. If u1,
u2, ..., un are n elements of B, then we define an A-subalgebra A [u1, u2, ..., un] of B by

A [u1, u2, ..., un] = {P (u1, u2, ..., un) | P ∈ A [X1, X2, ..., Xn]} .

In particular, if u is an element of B, then the A-subalgebra A [u] of B is defined
by

A [u] = {P (u) | P ∈ A [X]} .

Since A [X] =

{
m∑
i=0

aiX
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
, this becomes

A [u] =

{(
m∑
i=0

aiX
i

)
(u) | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
(

where

(
m∑
i=0

aiX
i

)
(u) means the polynomial

m∑
i=0

aiX
i evaluated at X = u

)

=

{
m∑
i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
(

because

(
m∑
i=0

aiX
i

)
(u) =

m∑
i=0

aiu
i

)
.

Obviously, uA [u] ⊆ A [u].
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1. Integrality over rings

Theorem 1. Let A and B be two rings such that A ⊆ B. Obviously, B is
canonically an A-module (since A ⊆ B). Let n ∈ N. Let u ∈ B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P ∈ A [X] with degP = n
and P (u) = 0.

Assertion B: There exist a B-module C and an n-generated A-submodule
U of C such that uU ⊆ U and such that every v ∈ B satisfying vU = 0
satisfies v = 0. (Here, C is an A-module, since C is a B-module and
A ⊆ B.)

Assertion C: There exists an n-generated A-submodule U of B such that
1 ∈ U and uU ⊆ U .

Assertion D: We have A [u] = 〈u0, u1, ..., un−1〉A.

Definition 5. Let A and B be two rings such that A ⊆ B. Let n ∈ N. Let u ∈ B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, in particular, the element u of B is n-integral over A if and only if there
exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A =⇒ C, C =⇒ B, B =⇒ A,
A =⇒ D and D =⇒ C.

Proof of the implication A =⇒ C. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with degP = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated A-
module (since u0, u1, ..., un−1 are n elements of U). Besides, 1 = u0 ∈ U . (Make sure
you understand why this holds even when n = 0.)

Now, u · uk ∈ U for any k ∈ {0, 1, ..., n− 1} (this is clear for all k < n− 1, and for

k = n it follows from u · uk = u · un−1 = un = −
n−1∑
k=0

aku
k ∈ 〈u0, u1, ..., un−1〉A = U).

Hence,
uU = u

〈
u0, u1, ..., un−1

〉
A

=
〈
u · u0, u · u1, ..., u · un−1

〉
A
⊆ U

(since u · uk ∈ U for any k ∈ {0, 1, ..., n− 1}).
Thus, Assertion C holds. Hence, we have proved that A =⇒ C.
Proof of the implication C =⇒ B. Assume that Assertion C holds. Then, there

exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊆ U . Every v ∈ B
satisfying vU = 0 satisfies v = 0 (since 1 ∈ U and vU = 0 yield v · 1︸︷︷︸

∈U

∈ vU = 0

and thus v · 1 = 0, so that v = 0). Set C = B. Then, C is a B-module, and U is
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an n-generated A-submodule of C (since U is an n-generated A-submodule of B, and
C = B). Thus, Assertion B holds. Hence, we have proved that C =⇒ B.

Proof of the implication B =⇒ A. Assume that Assertion B holds. Then, there
exist a B-module C and an n-generated A-submodule U of C such that uU ⊆ U (where
C is an A-module, since C is a B-module and A ⊆ B), and such that every v ∈ B
satisfying vU = 0 satisfies v = 0.

Since the A-module U is n-generated, there exist n elements m1, m2, ..., mn of U
such that U = 〈m1,m2, ...,mn〉A. For any k ∈ {1, 2, ..., n}, we have

umk ∈ uU (since mk ∈ U)

⊆ U = 〈m1,m2, ...,mn〉A ,

so that there exist n elements ak,1, ak,2, ..., ak,n of A such that umk =
n∑
i=1

ak,imi.

We are now going to work with matrices over U (that is, matrices whose entries lie
in U). This might sound somewhat strange, because U is not a ring; however, we can
still define matrices over U just as one defines matrices over any ring. While we cannot
multiply two matrices over U (because U is not a ring), we can define the product of
a matrix over A with a matrix over U as follows: If P ∈ Aα×β is a matrix over A, and
Q ∈ Uβ×γ is a matrix over U , then we define the product PQ ∈ Uα×γ by

(PQ)x,y =

β∑
z=1

Px,zQz,y for all x ∈ {1, 2, ..., α} and y ∈ {1, 2, ..., γ} .

(Here, for any matrix T and any integers x and y, we denote by Tx,y the entry of the
matrix T in the x-th row and the y-th column.)

It is easy to see that whenever P ∈ Aα×β, Q ∈ Aβ×γ and R ∈ Uγ×δ are three
matrices, then (PQ)R = P (QR). The proof of this fact is exactly the same as the
standard proof that the multiplication of matrices over a ring is associative.

Now define a matrix V ∈ Un×1 by Vi,1 = mi for all i ∈ {1, 2, ..., n}.
Define another matrix S ∈ An×n by Sk,i = ak,i for all k ∈ {1, 2, ..., n} and i ∈

{1, 2, ..., n}.
Then, for any k ∈ {1, 2, ..., n}, we have u mk︸︷︷︸

=Vk,1

= uVk,1 = (uV )k,1 and
n∑
i=1

ak,i︸︷︷︸
=Sk,i

mi︸︷︷︸
=Vi,1

=

n∑
i=1

Sk,iVi,1 = (SV )k,1, so that umk =
n∑
i=1

ak,imi becomes (uV )k,1 = (SV )k,1. Since this

holds for every k ∈ {1, 2, ..., n}, we conclude that uV = SV . Thus,

0 = uV − SV = uInV − SV = (uIn − S)V.

Now, let P ∈ A [X] be the characteristic polynomial of the matrix S ∈ An×n.
Then, P is monic, and degP = n. Besides, P (X) = det (XIn − S), so that P (u) =
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det (uIn − S). Thus,

P (u) · V = det (uIn − S) · V = det (uIn − S) In︸ ︷︷ ︸
=adj(uIn−S)·(uIn−S)

·V = (adj (uIn − S) · (uIn − S)) · V

= adj (uIn − S) ·

(uIn − S)V︸ ︷︷ ︸
=0


(
since (PQ)R = P (QR) for any P ∈ Aα×β, Q ∈ Aβ×γ and R ∈ Uγ×δ)

= 0.

Since the entries of the matrix V are m1, m2, ..., mn, this yields P (u) · mk = 0 for
every k ∈ {1, 2, ..., n}, and thus

P (u) · U = P (u) · 〈m1,m2, ...,mn〉A = 〈P (u) ·m1, P (u) ·m2, ..., P (u) ·mn〉A
= 〈0, 0, ..., 0〉A (since P (u) ·mk = 0 for any k ∈ {1, 2, ..., n})
= 0.

This implies P (u) = 0 (since v = 0 for every v ∈ B satisfying vU = 0). Thus, Assertion
A holds. Hence, we have proved that B =⇒ A.

Proof of the implication A =⇒ D. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with degP = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A ofB. As in the Proof of the implication
A =⇒ C, we can show that U is an n-generated A-module, and that 1 ∈ U and uU ⊆ U .
Thus, induction over i shows that

ui ∈ U for any i ∈ N, (1)

and consequently

A [u] =

{
m∑
i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
⊆ U =

〈
u0, u1, ..., un−1

〉
A
.

On the other hand, 〈u0, u1, ..., un−1〉A ⊆ A [u]. Hence, 〈u0, u1, ..., un−1〉A = A [u]. Thus,
Assertion D holds. Hence, we have proved that A =⇒ D.

Proof of the implication D =⇒ C. Assume that Assertion D holds. Then, A [u] =
〈u0, u1, ..., un−1〉A.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated A-
module. Besides, 1 = u0 ∈ A [u] = 〈u0, u1, ..., un−1〉A = U . Finally, U = 〈u0, u1, ..., un−1〉A =
A [u] yields uU ⊆ U . Thus, Assertion C holds. Hence, we have proved that D =⇒ C.

Now, we have proved the implications A =⇒ D, D =⇒ C, C =⇒ B and B =⇒ A
above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.
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Theorem 2. Let A and B be two rings such that A ⊆ B. Let n ∈ N+.

Let v ∈ B. Let a0, a1, ..., an be n+ 1 elements of A such that
n∑
i=0

aiv
i = 0.

Let k ∈ {0, 1, ..., n}. Then,
n−k∑
i=0

ai+kv
i is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule 〈v0, v1, ..., vn−1〉A of B. Then, U
is an n-generated A-module, and 1 = v0 ∈ U .

Let u =
n−k∑
i=0

ai+kv
i. Then,

0 =
n∑
i=0

aiv
i =

k−1∑
i=0

aiv
i +

n∑
i=k

aiv
i =

k−1∑
i=0

aiv
i +

n−k∑
i=0

ai+k v
i+k︸︷︷︸

=vivk

(here, we substituted i+ k for i in the second sum)

=
k−1∑
i=0

aiv
i + vk

n−k∑
i=0

ai+kv
i

︸ ︷︷ ︸
=u

=
k−1∑
i=0

aiv
i + vku,

so that vku = −
k−1∑
i=0

aiv
i.

Now, we are going to show that

uvt ∈ U for any t ∈ {0, 1, ..., n− 1} . (2)

Proof of (2). In fact, we have either t < k or t ≥ k. In the case t < k, the relation
(2) follows from

uvt =
n−k∑
i=0

ai+k v
i · vt︸ ︷︷ ︸

=vi+t

=
n−k∑
i=0

ai+kv
i+t ∈ U

(since every i ∈ {0, 1, ..., n− k} satisfies i+ t ∈ {0, 1, ..., n− 1}, and thus
n−k∑
i=0

ai+kv
i+t ∈

〈v0, v1, ..., vn−1〉A = U). In the case t ≥ k, the relation (2) follows from

uvt = u vk+(t−k)︸ ︷︷ ︸
=vkvt−k

= vku · vt−k = −
k−1∑
i=0

ai v
i · vt−k︸ ︷︷ ︸

=vi+(t−k)

(
since vku = −

k−1∑
i=0

aiv
i

)

= −
k−1∑
i=0

aiv
i+(t−k) ∈ U

(since every i ∈ {0, 1, ..., k − 1} satisfies i+(t− k) ∈ {0, 1, ..., n− 1}, and thus−
k−1∑
i=0

aiv
i+(t−k) ∈

〈v0, v1, ..., vn−1〉A = U). Hence, (2) is proven in both possible cases, and thus the proof
of (2) is complete.

Now,

uU = u
〈
v0, v1, ..., vn−1

〉
A

=
〈
uv0, uv1, ..., uvn−1

〉
A
⊆ U (due to (2)) .
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Altogether, U is an n-generated A-submodule of B such that 1 ∈ U and uU ⊆ U .
Thus, u ∈ B satisfies Assertion C of Theorem 1. Hence, u ∈ B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

A. Since u =
n−k∑
i=0

ai+kv
i, this means that

n−k∑
i=0

ai+kv
i is n-integral over A. This proves

Theorem 2.

Corollary 3. Let A and B be two rings such that A ⊆ B. Let α ∈ N and
β ∈ N be such that α + β ∈ N+. Let u ∈ B and v ∈ B. Let s0, s1, ..., sα

be α + 1 elements of A such that
α∑
i=0

siv
i = u. Let t0, t1, ..., tβ be β + 1

elements of A such that
β∑
i=0

tiv
β−i = uvβ. Then, u is (α + β)-integral over

A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)
First proof of Corollary 3. Let k = β and n = α+β. Then, k ∈ {0, 1, ..., n}. Define

n+ 1 elements a0, a1, ..., an of A by

ai =


tβ−i, if i < β;
t0 − s0, if i = β;
−si−β, if i > β

for every i ∈ {0, 1, ..., n} .

Then,

n∑
i=0

aiv
i =

α+β∑
i=0

aiv
i =

β−1∑
i=0

ai︸︷︷︸
=tβ−i

vi + aβ︸︷︷︸
=t0−s0

vβ +

α+β∑
i=β+1

ai︸︷︷︸
=−si−β

vi

=

β−1∑
i=0

tβ−iv
i + (t0 − s0) vβ︸ ︷︷ ︸

=t0vβ−s0vβ

+

α+β∑
i=β+1

(−si−β) vi︸ ︷︷ ︸
=−

α+β∑
i=β+1

si−βvi

=

β−1∑
i=0

tβ−iv
i + t0v

β − s0v
β −

α+β∑
i=β+1

si−βv
i =

β−1∑
i=0

tβ−iv
i + t0v

β −

(
s0v

β +

α+β∑
i=β+1

si−βv
i

)

=

β−1∑
i=0

tβ−iv
i + t0v

β

︸ ︷︷ ︸
=

β∑
i=0

tβ−ivi=
β∑
i=0

tivβ−i=uvβ

−

(
s0v

β +
α∑
i=1

siv
i+β

)
︸ ︷︷ ︸

=
α∑
i=0

sivi+β=
α∑
i=0

sivivβ=uvβ (since
α∑
i=0

sivi=u)

= 0.
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Thus, Theorem 2 yields that
n−k∑
i=0

ai+kv
i is n-integral over A. But

n−k∑
i=0

ai+kv
i =

n−β∑
i=0

ai+βv
i = a0+β︸︷︷︸

=a0=t0−s0

v0︸︷︷︸
=1

+

n−β∑
i=1

ai+β︸︷︷︸
=−s(i+β)−β (by the

definition of ai+β)

vi

= (t0 − s0) 1︸ ︷︷ ︸
=t0−s0

+

n−β∑
i=1

− s(i+β)−β︸ ︷︷ ︸
=si

 vi = t0 − s0 +

n−β∑
i=1

(−si) vi = t0 −


s0 +

n−β∑
i=1

siv
i

︸ ︷︷ ︸
=
n−β∑
i=0

sivi


= t0 −

n−β∑
i=0

siv
i = t0 −

α∑
i=0

siv
i

︸ ︷︷ ︸
=u

(since n = α + β yields n− β = α)

= t0 − u.

Thus, t0 − u is n-integral over A. On the other hand, −t0 is 1-integral over A (clearly,
since −t0 ∈ A). Thus, (−t0)+(t0 − u) is n ·1-integral over A (by Theorem 5 (b) below,
applied to x = −t0, y = t0 − u and m = 1). In other words, −u is n-integral over A.
On the other hand, −1 is 1-integral over A (trivially). Thus, (−1) ·(−u) is n ·1-integral
over A (by Theorem 5 (c) below, applied to x = −1, y = −u and m = 1). In other
words, u is (α + β)-integral over A (since (−1) · (−u) = u and n · 1 = n = α+β). This
proves Corollary 3.

We will provide a second proof of Corollary 3 in Part 5.

Theorem 4. Let A and B be two rings such that A ⊆ B. Let v ∈ B and
u ∈ B. Let m ∈ N and n ∈ N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have A [v] = 〈v0, v1, ..., vm−1〉A
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over A [v], we have (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v] (this is the
Assertion D of Theorem 1, stated for A [v] in lieu of A).

Let S = {0, 1, ..., n− 1} × {0, 1, ...,m− 1}.
Let x ∈ (A [v]) [u]. Then, there exist n elements b0, b1, ..., bn−1 of A [v] such that x =

n−1∑
i=0

biu
i (since x ∈ (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v]). But for each i ∈ {0, 1, ..., n− 1},

there exist m elements ai,0, ai,1, ..., ai,m−1 of A such that bi =
m−1∑
j=0

ai,jv
j (because
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bi ∈ A [v] = 〈v0, v1, ..., vm−1〉A). Thus,

x =
n−1∑
i=0

bi︸︷︷︸
=
m−1∑
j=0

ai,jvj

ui =
n−1∑
i=0

m−1∑
j=0

ai,jv
jui =

∑
(i,j)∈{0,1,...,n−1}×{0,1,...,m−1}

ai,jv
jui =

∑
(i,j)∈S

ai,jv
jui

∈
〈
vjui | (i, j) ∈ S

〉
A

(since ai,j ∈ A for every (i, j) ∈ S)

So we have proved that x ∈ 〈vjui | (i, j) ∈ S〉A for every x ∈ (A [v]) [u]. Thus,
(A [v]) [u] ⊆ 〈vjui | (i, j) ∈ S〉A. Conversely, 〈vjui | (i, j) ∈ S〉A ⊆ (A [v]) [u] (this
is trivial). Hence, (A [v]) [u] = 〈vjui | (i, j) ∈ S〉A. Thus, the A-module (A [v]) [u] is
nm-generated (since |S| = nm).

Let U = (A [v]) [u]. Then, the A-module U is nm-generated. Besides, U is an
A-submodule of B, and we have 1 ∈ U and uU ⊆ U . Thus, the element u of B satisfies
the Assertion C of Theorem 1 with n replaced by nm. Hence, u ∈ B satisfies the four
equivalent assertions A, B, C and D of Theorem 1, all with n replaced by nm. Thus,
u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A ⊆ B.

(a) Let a ∈ A. Then, a is 1-integral over A.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-
integral over A, and that y is n-integral over A. Then, x+ y is nm-integral
over A.

(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, xy is nm-integral
over A.

Proof of Theorem 5. (a) There exists a monic polynomial P ∈ A [X] with degP = 1
and P (a) = 0 (namely, the polynomial P ∈ A [X] defined by P (X) = X − a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).

(b) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
degP = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with degP = n,

there exists a polynomial P̃ ∈ A [X] with deg P̃ < n and P (X) = Xn + P̃ (X).
Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = P (X − x). Then, degQ =

degP (since shifting the polynomial P by the constant x does not change its degree), so
that degQ = deg = P . Furthermore, from Q (X) = P (X − x), we obtain Q (x+ y) =
P ((x+ y)− x) = P (y) = 0. Also, the polynomial Q is monic (since it is a translate
of the monic polynomial P ).

Hence, there exists a monic polynomial Q ∈ (A [x]) [X] with degQ = n and
Q (x+ y) = 0. Thus, x + y is n-integral over A [x]. Thus, Theorem 4 (applied to
v = x and u = x+ y) yields that x+ y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
degP = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with degP = n,

there exist elements a0, a1, ..., an−1 of A such that P (X) = Xn +
n−1∑
k=0

akX
k. Thus,

P (y) = yn +
n−1∑
k=0

aky
k.
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Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = Xn +
n−1∑
k=0

xn−kakX
k. Then,

Q (xy) = (xy)n︸ ︷︷ ︸
=xnyn

+
n−1∑
k=0

xn−k ak (xy)k︸ ︷︷ ︸
=akx

kyk

=xkaky
k

= xnyn +
n−1∑
k=0

xn−kxk︸ ︷︷ ︸
=xn

aky
k

= xnyn +
n−1∑
k=0

xnaky
k = xn

yn +
n−1∑
k=0

aky
k

︸ ︷︷ ︸
=P (y)=0

 = 0.

Also, the polynomial Q ∈ (A [x]) [X] is monic and degQ = n (since Q (X) = Xn +
n−1∑
k=0

xn−kakX
k). Thus, there exists a monic polynomial Q ∈ (A [x]) [X] with degQ = n

and Q (xy) = 0. Thus, xy is n-integral over A [x]. Hence, Theorem 4 (applied to v = x
and u = xy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A ⊆ B. Let n ∈ N+

and m ∈ N. Let v ∈ B. Let b0, b1, ..., bn−1 be n elements of A, and let

u =
n−1∑
i=0

biv
i. Assume that vu is m-integral over A. Then, u is nm-integral

over A.

Proof of Corollary 6. Define n+ 1 elements a0, a1, ..., an of A [vu] by

ai =

{
−vu, if i = 0;
bi−1, if i > 0

for every i ∈ {0, 1, ..., n} .

Then, a0 = −vu. Let k = 1. Then,

n∑
i=0

aiv
i = a0︸︷︷︸

=−vu

v0︸︷︷︸
=1

+
n∑
i=1

ai︸︷︷︸
=bi−1,
since
i>0

vi︸︷︷︸
=vi−1v

= −vu+
n∑
i=1

bi−1v
i−1v = −vu+

n−1∑
i=0

biv
i

︸ ︷︷ ︸
=u

v

(here, we substituted i for i− 1 in the sum)

= −vu+ uv = 0.

Now, A [vu] and B are two rings such that A [vu] ⊆ B. The n+ 1 elements a0, a1,

..., an of A [vu] satisfy
n∑
i=0

aiv
i = 0. We have k = 1 ∈ {0, 1, ..., n} .

Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that
n−k∑
i=0

ai+kv
i is

n-integral over A [vu]. But

n−k∑
i=0

ai+kv
i =

n−1∑
i=0

ai+1︸︷︷︸
=b(i+1)−1,

since i+1>0

vi =
n−1∑
i=0

b(i+1)−1v
i =

n−1∑
i=0

biv
i = u.
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Hence, u is n-integral over A [vu]. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary
6.

2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let (Iρ)ρ∈N be a sequence of ideals of A. Then,

(Iρ)ρ∈N is called an ideal semifiltration of A if and only if it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Definition 7. Let A and B be two rings such that A ⊆ B. Then, we identify
the polynomial ring A [Y ] with a subring of the polynomial ring B [Y ] (in fact, every

element of A [Y ] has the form
m∑
i=0

aiY
i for some m ∈ N and (a0, a1, ..., am) ∈ Am+1, and

thus can be seen as an element of B [Y ] by regarding ai as an element of B for every
i ∈ {0, 1, ...,m}).

Definition 8. Let A be a ring, and let (Iρ)ρ∈N be an ideal semifiltration of A. Con-

sider the polynomial ring A [Y ]. Let A
[
(Iρ)ρ∈N ∗ Y

]
denote the A-submodule

∑
i∈N

IiY
i

of the A-algebra A [Y ]. Then,

A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i

=

{∑
i∈N

aiY
i | (ai ∈ Ii for all i ∈ N) , and (only finitely many i ∈ N satisfy ai 6= 0)

}
= {P ∈ A [Y ] | the i-th coefficient of the polynomial P lies in Ii for every i ∈ N} .

It is very easy to see that 1 ∈ A
[
(Iρ)ρ∈N ∗ Y

]
(due to 1 ∈ A = I0) and that the

A-submodule A
[
(Iρ)ρ∈N ∗ Y

]
of A [Y ] is closed under multiplication (here we need to

use IiIj ⊆ Ii+j). Hence, A
[
(Iρ)ρ∈N ∗ Y

]
is an A-subalgebra of the A-algebra A [Y ].

This A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
is called the Rees algebra of the ideal semifiltration

(Iρ)ρ∈N.

Note that A = I0 yields A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
.

Definition 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be an ideal
semifiltration of A. Let n ∈ N. Let u ∈ B.

We say that the element u of B is n-integral over
(
A, (Iρ)ρ∈N

)
if there exists some

(a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

11



We start with a theorem which reduces the question of n-integrality over
(
A, (Iρ)ρ∈N

)
to that of n-integrality over a ring2:

Theorem 7. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let n ∈ N. Let u ∈ B.

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8.

Then, the element u of B is n-integral over
(
A, (Iρ)ρ∈N

)
if and only if

the element uY of the polynomial ring B [Y ] is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
. (Here, A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ] because A

[
(Iρ)ρ∈N ∗ Y

]
⊆

A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in Definition
7).

Proof of Theorem 7. =⇒: Assume that u is n-integral over
(
A, (Iρ)ρ∈N

)
. Then, by

Definition 9, there exists some (a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Then, there exists a monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with degP = n

and P (uY ) = 0 (viz., the polynomial P (X) =
n∑
k=0

akY
n−kXk). Hence, uY is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves the =⇒ direction of Theorem 7.

⇐=: Assume that uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Then, there exists a

monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with degP = n and P (uY ) = 0.

Since P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] satisfies degP = n, there exists (p0, p1, ..., pn) ∈(

A
[
(Iρ)ρ∈N ∗ Y

])n+1

such that P (X) =
n∑
k=0

pkX
k. Besides, pn = 1, since P is monic

and degP = n.

For every k ∈ {0, 1, ..., n}, we have pk ∈ A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i, and thus, there

exists a sequence (pk,i)i∈N ∈ A
N such that pk =

∑
i∈N

pk,iY
i, such that pk,i ∈ Ii for every

i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0. Thus, P (X) =
n∑
k=0

pkX
k

becomes P (X) =
n∑
k=0

∑
i∈N

pk,iY
iXk (since pk =

∑
i∈N

pk,iY
i). Hence,

P (uY ) =
n∑
k=0

∑
i∈N

pk,iY
i (uY )k =

n∑
k=0

∑
i∈N

pk,iY
i+kuk.

2Theorem 7 is inspired by Proposition 5.2.1 in [2].
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Therefore, P (uY ) = 0 becomes
n∑
k=0

∑
i∈N

pk,iY
i+kuk = 0. In other words, the polynomial

n∑
k=0

∑
i∈N

pk,iY
i+kuk ∈ B [Y ] equals 0. Hence, its coefficient before Y n equals 0 as well.

But its coefficient before Y n is
n∑
k=0

pk,n−ku
k, so we get

n∑
k=0

pk,n−ku
k = 0.

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1

in A [Y ] , and thus pn,0 = 1.
Define an (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 by ak = pk,n−k for every k ∈ {0, 1, ..., n} .

Then, an = pn,0 = 1. Besides,
n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k = 0. Finally, ak = pk,n−k ∈ In−k

(since pk,i ∈ Ii for every i ∈ N) for every k ∈ {0, 1, ..., n}. In other words, ai ∈ In−i for
every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9, the element u is n-integral over
(
A, (Iρ)ρ∈N

)
. This proves the

⇐= direction of Theorem 7.
The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-

tions:

Theorem 8. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

(a) Let u ∈ A. Then, u is 1-integral over
(
A, (Iρ)ρ∈N

)
if and only if u ∈ I1.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Iρ)ρ∈N

)
.

Then, x+ y is nm-integral over
(
A, (Iρ)ρ∈N

)
.

(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over A. Then, xy is

nm-integral over
(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 8. (a) Very obvious.

(b) Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). Also, Theorem 7 (applied to

y instead of u) yields that yY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral
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over
(
A, (Iρ)ρ∈N

)
). Hence, Theorem 5 (b) (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] , xY and

yY instead of A, B, x and y, respectively) yields that xY + yY is nm-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY + yY = (x+ y)Y , this means that (x+ y)Y is nm-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied to x+ y and nm instead of u and n)

yields that x+ y is nm-integral over
(
A, (Iρ)ρ∈N

)
. This proves Theorem 8 (b).

(c) First, a trivial observation:
Lemma I: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Let n ∈ N. If v is n-integral over A, then v is n-integral over A′.
Now let us prove Theorem 8 (c).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). On the other hand, Lemma

I (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
, B′ = B [Y ] and v = y) yields that y is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral over A, and A ⊆ A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Hence, Theorem 5 (c) (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and xY instead of A, B and x,

respectively) yields that xY ·y is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY ·y = xyY ,

this means that xyY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied

to xy and nm instead of u and n) yields that xy is nm-integral over
(
A, (Iρ)ρ∈N

)
. This

proves Theorem 8 (c).
The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

Let v ∈ B and u ∈ B. Let m ∈ N and n ∈ N.

(a) Then, (IρA [v])ρ∈N is an ideal semifiltration of A [v]. 3

(b) Assume that v is m-integral over A, and that u is n-integral over(
A [v] , (IρA [v])ρ∈N

)
. Then, u is nm-integral over

(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 9. (a) This is evident. More generally (and still evidently):
Lemma J : Let A and A′ be two rings such that A ⊆ A′. Let (Iρ)ρ∈N be an ideal

semifiltration of A. Then, (IρA
′)ρ∈N is an ideal semifiltration of A′.

(b) Again, we are going to use a rather trivial fact (for a proof, see [4]):
Lemma K: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Then, A′ · A [v] = A′ [v].

3Here and in the following, whenever A and B are two rings such that A ⊆ B, whenever v is
an element of B, and whenever I is an ideal of A, you should read the term IA [v] as I (A [v]), not
as (IA) [v]. For instance, you should read the term IρA [v] (in Theorem 9 (a)) as Iρ (A [v]), not as
(IρA) [v].
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Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A [Y ]

and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ], and (as ex-

plained in Definition 7) we can identify the polynomial ring A [Y ] with a subring of

(A [v]) [Y ] (since A ⊆ A [v]). Hence, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ]. On the other hand,

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ].

Now, we will show that (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v].

In fact, Definition 8 yields

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
∑
i∈N

IiA [v] · Y i =
∑
i∈N

IiY
i · A [v] = A

[
(Iρ)ρ∈N ∗ Y

]
· A [v](

since
∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

])
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]

(by Lemma K (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
and B′ = (A [v]) [Y ])).

Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y ]

with a subring of B [Y ] (since A [v] ⊆ B). Thus, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ] yields

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ].

Besides, Lemma I (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and m instead of A′, B′ and

n) yields that v is m-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-integral over A, and

A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Now, Theorem 7 (applied to A [v] and (IρA [v])ρ∈N instead of A and (Iρ)ρ∈N) yields

that uY is n-integral over (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
(since u is n-integral over

(
A [v] , (IρA [v])ρ∈N

)
).

Since (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v], this means that uY is n-integral

over
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]. Now, Theorem 4 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and uY

instead of A, B and u) yields that uY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-

integral over A
[
(Iρ)ρ∈N ∗ Y

]
, and uY is n-integral over

(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]). Thus,

Theorem 7 (applied to nm instead of n) yields that u is nm-integral over
(
A, (Iρ)ρ∈N

)
.

This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.

(a) Then, (A)ρ∈N is an ideal semifiltration of A.

(b) Let (Iρ)ρ∈N and (Jρ)ρ∈N be two ideal semifiltrations ofA. Then, (IρJρ)ρ∈N
is an ideal semifiltration of A.
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The proof of this is just basic axiom checking (see [4] for details).
Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A. Let n ∈ N. Let u ∈ B.

We know that (IρJρ)ρ∈N is an ideal semifiltration of A (according to Theo-
rem 10 (b)).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

By Lemma J (applied to A[I] and (Jτ )τ∈N instead of A′ and (Iρ)ρ∈N), the

sequence
(
JτA[I]

)
τ∈N is an ideal semifiltration of A[I] (since A ⊆ A[I] and

since (Jτ )τ∈N = (Jρ)ρ∈N is an ideal semifiltration of A).

Then, the element u of B is n-integral over
(
A, (IρJρ)ρ∈N

)
if and only if the

element uY of the polynomial ringB [Y ] is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
.

(Here, A[I] ⊆ B [Y ] because A[I] = A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider

A [Y ] as a subring of B [Y ] as explained in Definition 7.)

Proof of Theorem 11. In order to verify Theorem 11, we have to prove the =⇒ and
⇐= statements.

=⇒: Assume that u is n-integral over
(
A, (IρJρ)ρ∈N

)
. Then, by Definition 9 (ap-

plied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈ An+1 such
that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Note that akY
n−k ∈ A[I] for every k ∈ {0, 1, ..., n} (because ak ∈ In−kJn−k ⊆ In−k

(since In−k is an ideal of A)). Thus, we can define an (n+ 1)-tuple (b0, b1, ..., bn) ∈(
A[I]

)n+1
by bk = akY

n−k for every k ∈ {0, 1, ..., n}. This (n+ 1)-tuple satisfies

n∑
k=0

bk · (uY )k = 0, bn = 1, and bi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n}

(as can be easily checked). Hence, by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N ,

uY and (b0, b1, ..., bn) instead of A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), the element uY

is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves the =⇒ direction of Theorem 11.

⇐=: Assume that uY is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Then, by Definition 9

(applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY and (p0, p1, ..., pn) instead of A, B, (Iρ)ρ∈N , u

and (a0, a1, ..., an)), there exists some (p0, p1, ..., pn) ∈
(
A[I]

)n+1
such that

n∑
k=0

pk ·(uY )k = 0, pn = 1, and pi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .
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For every k ∈ {0, 1, ..., n}, we have

pk ∈ Jn−kA[I] = Jn−k
∑
i∈N

IiY
i

(
since A[I] = A

[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i

)
=
∑
i∈N

Jn−kIiY
i =

∑
i∈N

IiJn−kY
i,

and thus, there exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that

pk,i ∈ IiJn−k for every i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0.
Thus,

n∑
k=0

pk · (uY )k =
n∑
k=0

∑
i∈N

pk,iY
i · (uY )k︸ ︷︷ ︸

=ukY k

=Y kuk

(
since pk =

∑
i∈N

pk,iY
i

)

=
n∑
k=0

∑
i∈N

pk,iY
i+kuk.

Hence,
n∑
k=0

pk ·(uY )k = 0 becomes
n∑
k=0

∑
i∈N

pk,iY
i+kuk = 0. In other words, the polynomial

n∑
k=0

∑
i∈N

pk,iY
i+kuk ∈ B [Y ] equals 0. Hence, its coefficient before Y n equals 0 as well.

But its coefficient before Y n is
n∑
k=0

pk,n−ku
k. Hence, we obtain

n∑
k=0

pk,n−ku
k = 0.

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1

in A [Y ] , and thus pn,0 = 1.
Define an (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 by ak = pk,n−k for every k ∈ {0, 1, ..., n} .

Then, an = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k = 0.

Finally, ak = pk,n−k ∈ In−kJn−k (since pk,i ∈ IiJn−k for every i ∈ N) for every k ∈
{0, 1, ..., n}. In other words, ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9 (applied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), the element u is n-

integral over
(
A, (IρJρ)ρ∈N

)
. This proves the ⇐= direction of Theorem 11, and thus

Theorem 11 is shown.
The reason why Theorem 11 generalizes Theorem 7 is the following triviality, men-

tioned here for the pure sake of completeness:
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Theorem 12. Let A and B be two rings such that A ⊆ B. Let n ∈ N.
Let u ∈ B.

We know that (A)ρ∈N is an ideal semifiltration of A (according to Theorem
10 (a)).

Then, the element u of B is n-integral over
(
A, (A)ρ∈N

)
if and only if u is

n-integral over A.

Finally, let us generalize Theorem 8 (c):

Theorem 13. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A.

Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-integral

over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Jρ)ρ∈N

)
. Then, xy is

nm-integral over
(
A, (IρJρ)ρ∈N

)
.

Proof of Theorem 13. First, a trivial observation:
Lemma I ′: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let (Iρ)ρ∈N be

an ideal semifiltration of A. Let v ∈ B′. Let n ∈ N. If v is n-integral over
(
A, (Iρ)ρ∈N

)
,

then v is n-integral over
(
A′, (IρA

′)ρ∈N

)
. (Note that (IρA

′)ρ∈N is an ideal semifiltration

of A′, according to Lemma J .)

This is obvious upon unraveling the definitions of “n-integral over
(
A, (Iρ)ρ∈N

)
”

and of “n-integral over
(
A′, (IρA

′)ρ∈N

)
”.

Now let us prove Theorem 13.
We have (Jρ)ρ∈N = (Jτ )τ∈N. Hence, y is n-integral over

(
A, (Jτ )τ∈N

)
(since y is

n-integral over
(
A, (Jρ)ρ∈N

)
).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We will

abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I]. We have A[I] ⊆ B [Y ], because A[I] =

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in

Definition 7.
Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). In other words, xY is

m-integral over A[I] (since A
[
(Iρ)ρ∈N ∗ Y

]
= A[I]).

On the other hand, Lemma I ′ (applied to A[I], B [Y ], (Jτ )τ∈N and y instead of

A′, B′, (Iρ)ρ∈N and v) yields that y is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is

n-integral over
(
A, (Jτ )τ∈N

)
, and A ⊆ A[I] ⊆ B [Y ]).

Hence, Theorem 8 (c) (applied to A[I], B [Y ],
(
JτA[I]

)
τ∈N, y, xY , m and n instead

of A, B, (Iρ)ρ∈N, x, y, n and m respectively) yields that y · xY is mn-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
, and xY is m-integral

over A[I]). Since y · xY = xyY and mn = nm, this means that xyY is nm-integral
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over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Hence, Theorem 11 (applied to xy and nm instead of u and

n) yields that xy is nm-integral over
(
A, (IρJρ)ρ∈N

)
. This proves Theorem 13.

4. Accelerating ideal semifiltrations

We start this section with an obvious observation:

Theorem 14. Let A be a ring. Let (Iρ)ρ∈N be an ideal semifiltration of A.
Let λ ∈ N. Then, (Iλρ)ρ∈N is an ideal semifiltration of A.

I refer to (Iλρ)ρ∈N as the λ-acceleration of the ideal semifiltration (Iρ)ρ∈N.
Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized

once more:

Theorem 15. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A. Let n ∈ N. Let u ∈ B. Let
λ ∈ N.

We know that (Iλρ)ρ∈N is an ideal semifiltration of A (according to Theorem
14).

Hence, (IλρJρ)ρ∈N is an ideal semifiltration of A (according to Theorem 10
(b), applied to (Iλρ)ρ∈N instead of (Iρ)ρ∈N).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

By Lemma J (applied to A[I] and (Jτ )τ∈N instead of A′ and (Iρ)ρ∈N), the

sequence
(
JτA[I]

)
τ∈N is an ideal semifiltration of A[I] (since A ⊆ A[I] and

since (Jτ )τ∈N = (Jρ)ρ∈N is an ideal semifiltration of A).

Then, the element u of B is n-integral over
(
A, (IλρJρ)ρ∈N

)
if and only if the

element uY λ of the polynomial ringB [Y ] is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
.

(Here, A[I] ⊆ B [Y ] because A[I] = A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider

A [Y ] as a subring of B [Y ] as explained in Definition 7.)

Proof of Theorem 15. First, note that∑
`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
= A[I].

In order to verify Theorem 15, we have to prove the =⇒ and ⇐= statements.

=⇒: Assume that u is n-integral over
(
A, (IλρJρ)ρ∈N

)
. Then, by Definition 9 (ap-

plied to (IλρJρ)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈ An+1 such
that
n∑
k=0

aku
k = 0, an = 1, and ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n} .
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Note that akY
λ(n−k) ∈ A[I] for every k ∈ {0, 1, ..., n} (because ak ∈ Iλ(n−k)Jn−k ⊆

Iλ(n−k) (since Iλ(n−k) is an ideal of A) and thus akY
λ(n−k) ∈ Iλ(n−k)Y

λ(n−k) ⊆
∑
i∈N

IiY
i =

A[I]). Thus, we can find an (n+ 1)-tuple (b0, b1, ..., bn) ∈
(
A[I]

)n+1
satisfying

n∑
k=0

bk ·
(
uY λ

)k
= 0, bn = 1, and bi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

4 Hence, by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY

λ and (b0, b1, ..., bn)

instead of A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), the element uY λ is n-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves the =⇒ direction of Theorem 15.

⇐=: Assume that uY λ is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Then, by Definition 9

(applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY

λ and (p0, p1, ..., pn) instead of A, B, (Iρ)ρ∈N ,

u and (a0, a1, ..., an)), there exists some (p0, p1, ..., pn) ∈
(
A[I]

)n+1
such that

n∑
k=0

pk ·
(
uY λ

)k
= 0, pn = 1, and pi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

For every k ∈ {0, 1, ..., n}, we have

pk ∈ Jn−kA[I] = Jn−k
∑
i∈N

IiY
i

(
since A[I] =

∑
i∈N

IiY
i

)
=
∑
i∈N

Jn−kIiY
i =

∑
i∈N

IiJn−kY
i,

and thus, there exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that

pk,i ∈ IiJn−k for every i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0.
Thus,

n∑
k=0

pk ·
(
uY λ

)k
=

n∑
k=0

∑
i∈N

pk,i Y
i ·
(
uY λ

)k︸ ︷︷ ︸
=ukY i+λk

(
since pk =

∑
i∈N

pk,iY
i

)

=
n∑
k=0

∑
i∈N

pk,iu
kY i+λk.

Hence,
n∑
k=0

pk ·
(
uY λ

)k
= 0 becomes

n∑
k=0

∑
i∈N

pk,iu
kY i+λk = 0. In other words, the poly-

nomial
n∑
k=0

∑
i∈N

pk,iu
k︸ ︷︷ ︸

∈B

Y i+λk ∈ B [Y ] equals 0. Hence, its coefficient before Y λn equals 0

as well. But its coefficient before Y λn is
n∑
k=0

pk,λ(n−k)u
k. Hence,

n∑
k=0

pk,λ(n−k)u
k equals 0.

4Namely, the (n+ 1)-tuple (b0, b1, ..., bn) ∈
(
A[I]

)n+1
defined by(

bk = akY
λ(n−k) for every k ∈ {0, 1, ..., n}

)
satisfies this. The proof is very easy (see [4] for

details).
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Note that

∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.

Define an (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 by ak = pk,λ(n−k) for every k ∈
{0, 1, ..., n} . Then, an = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,λ(n−k)u
k = 0.

Finally, ak = pk,λ(n−k) ∈ Iλ(n−k)Jn−k (since pk,i ∈ IiJn−k for every i ∈ N) for every
k ∈ {0, 1, ..., n}. In other words, ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9 (applied to (IλρJρ)ρ∈N instead of (Iρ)ρ∈N), the element u is n-

integral over
(
A, (IλρJρ)ρ∈N

)
. This proves the ⇐= direction of Theorem 15, and thus

completes the proof.
A particular case of Theorem 15:

Theorem 16. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let n ∈ N. Let u ∈ B. Let λ ∈ N.

We know that (Iλρ)ρ∈N is an ideal semifiltration of A (according to Theorem
14).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8.

Then, the element u of B is n-integral over
(
A, (Iλρ)ρ∈N

)
if and only if

the element uY λ of the polynomial ring B [Y ] is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
. (Here, A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ] because A

[
(Iρ)ρ∈N ∗ Y

]
⊆

A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in Definition
7).

Proof of Theorem 16. Theorem 10 (a) states that (A)ρ∈N is an ideal semifiltration
of A.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

We have the following five equivalences:
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• The element u of B is n-integral over
(
A, (Iλρ)ρ∈N

)
if and only if the element u

of B is n-integral over
(
A, (IλρA)ρ∈N

)
(since Iλρ = IλρA).

• The element u of B is n-integral over
(
A, (IλρA)ρ∈N

)
if and only if the element

uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
AA[I]

)
τ∈N

)
(according

to Theorem 15, applied to (A)ρ∈N instead of (Jρ)ρ∈N).

• The element uY λ of the polynomial ringB [Y ] is n-integral over
(
A[I],

(
AA[I]

)
τ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-integral over(
A[I],

(
A[I]

)
ρ∈N

)
(since

AA[I]︸ ︷︷ ︸
=A[I]


τ∈N

=
(
A[I]

)
τ∈N =

(
A[I]

)
ρ∈N).

• The element uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
A[I]

)
ρ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-integral over A[I]

(by Theorem 12, applied to A[I], B [Y ] and uY λ instead of A, B and u).

• The element uY λ of the polynomial ring B [Y ] is n-integral over A[I] if and only

if the element uY λ of the polynomial ring B [Y ] is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since A[I] = A

[
(Iρ)ρ∈N ∗ Y

]
).

Combining these five equivalences, we obtain that the element u of B is n-integral

over
(
A, (Iλρ)ρ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-

integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Theorem 16.

Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
be an ideal semifiltration of A. Let n ∈ N+. Let v ∈ B. Let a0, a1, ...,

an be n + 1 elements of A such that
n∑
i=0

aiv
i = 0 and ai ∈ In−i for every

i ∈ {0, 1, ..., n}.
Let k ∈ {0, 1, ..., n}. We know that

(
I(n−k)ρ

)
ρ∈N is an ideal semifiltration of

A (according to Theorem 14, applied to λ = n− k).

Then,
n−k∑
i=0

ai+kv
i is n-integral over

(
A,
(
I(n−k)ρ

)
ρ∈N

)
.

Proof of Theorem 17. Consider the polynomial ring A [Y ] and its A-subalgebra

A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ], because

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in

Definition 7.
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As usual, note that∑
`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
.

In the ring B [Y ], we have

n∑
i=0

aiY
n−i (vY )i︸ ︷︷ ︸

=viY i=Y ivi

=
n∑
i=0

ai Y
n−iY i︸ ︷︷ ︸
=Y n

vi = Y n

n∑
i=0

aiv
i

︸ ︷︷ ︸
=0

= 0.

Besides, aiY
n−i ∈ A

[
(Iρ)ρ∈N ∗ Y

]
for every i ∈ {0, 1, ..., n} (since ai︸︷︷︸

∈In−i

Y n−i ∈ In−iY n−i ⊆

∑̀
∈N
I`Y

` = A
[
(Iρ)ρ∈N ∗ Y

]
). Hence, Theorem 2 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] , vY

and aiY
n−i instead of A, B, v and ai) yields that

n−k∑
i=0

ai+kY
n−(i+k) (vY )i is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. Since

n−k∑
i=0

ai+kY
n−(i+k) (vY )i︸ ︷︷ ︸

=viY i=Y ivi

=
n−k∑
i=0

ai+k Y n−(i+k)Y i︸ ︷︷ ︸
=Y (n−(i+k))+i=Y n−k

vi =
n−k∑
i=0

ai+kv
i · Y n−k,

this means that
n−k∑
i=0

ai+kv
i · Y n−k is n-integral over A

[
(Iρ)ρ∈N ∗ Y

]
.

But Theorem 16 (applied to u =
n−k∑
i=0

ai+kv
i and λ = n− k) yields that

n−k∑
i=0

ai+kv
i is

n-integral over
(
A,
(
I(n−k)ρ

)
ρ∈N

)
if and only if

n−k∑
i=0

ai+kv
i · Y n−k is n-integral over the

ring A
[
(Iρ)ρ∈N ∗ Y

]
. Since we know that

n−k∑
i=0

ai+kv
i · Y n−k is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
, this yields that

n−k∑
i=0

ai+kv
i is n-integral over

(
A,
(
I(n−k)ρ

)
ρ∈N

)
. This

proves Theorem 17.

5. Generalizing a lemma by Lombardi

Now, we are going to generalize Theorem 2 from [3] (which is the main result of
[3])5. First, a very technical lemma:

Lemma 18. Let A and B be two rings such that A ⊆ B. Let x ∈ B.
Let m ∈ N and n ∈ N. Let u ∈ B. Let µ ∈ N and ν ∈ N be such that
µ+ ν ∈ N+. Assume that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

(3)

5Caveat: The notion “integral over (A, J) ” defined in [3] has nothing to do with our notion
“n-integral over

(
A, (In)n∈N

)
”.
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and that

umxµ ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
x0, x1, ..., xµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A
.

(4)
Then, u is (nµ+mν)-integral over A.

The proof of this lemma is not difficult but rather elaborate. For a completely
detailed writeup of this proof, see [4]. Here let me give the skeleton of the proof of
Lemma 18. Let

S = ({0, 1, ..., n− 1} × {0, 1, ..., µ− 1})∪({0, 1, ...,m− 1} × {µ, µ+ 1, ..., µ+ ν − 1}) .

Clearly, |S| = nµ+mν and

j < µ+ ν for every (i, j) ∈ S. (5)

Let U be the A-submodule 〈uixj | (i, j) ∈ S〉A of B. Then, U is an (nµ+mν)-
generated A-module (since |S| = nµ+mν). Besides, clearly,

uixj ∈ U for every (i, j) ∈ S. (6)

Now, we will show that

every i ∈ N and j ∈ N satisfying j < µ+ ν satisfy uixj ∈ U. (7)

The proof of (7) can be done either by double induction (over i and over j) or by
the minimal principle. The induction proof has the advantage that it is completely
constructive, but it is clumsy (I give this induction proof in [4]). So, for the sake of
brevity, the proof I am going to give here is by the minimal principle:

For the sake of contradiction, we assume that (7) is not true. Then, let (I, J) be
the lexicographically smallest pair (i, j) ∈ N2 satisfying j < µ + ν but not satisfying
uixj ∈ U . Then, J < µ + ν but uIxJ /∈ U , and since (I, J) is the lexicographically
smallest such pair, we have

uIxj ∈ U for every j ∈ N such that j < J (8)

and
uixj ∈ U for every i ∈ N and j ∈ N such that i < I and j < µ+ ν. (9)

Now, (8) rewrites as 〈
uI
〉
A
·
〈
x0, x1, ..., xJ−1

〉
A
⊆ U, (10)

and (9) rewrites as 〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A
⊆ U. (11)

Also note that J < µ+ ν yields J ≤ µ+ ν − 1 (since J and µ+ ν are integers).
We distinguish between the following four cases (it is clear that at least one of them

must hold):
Case 1: We have I ≥ m ∧ J ≥ µ.
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Case 2: We have I < m ∧ J ≥ µ.
Case 3: We have I ≥ n ∧ J < µ.
Case 4: We have I < n ∧ J < µ.
In Case 1, we have I −m ≥ 0 (since I ≥ m) and J − µ ≥ 0 (since J ≥ µ), thus

uI︸︷︷︸
=uI−mum

xJ︸︷︷︸
=xµxJ−µ

= uI−m umxµ︸ ︷︷ ︸
∈〈u0,u1,...,um−1〉

A
·〈x0,x1,...,xµ〉

A
+〈u0,u1,...,um〉

A
·〈x0,x1,...,xµ−1〉

A
(by (4))

xJ−µ

∈ uI−m
(〈
u0, u1, ..., um−1

〉
A
·
〈
x0, x1, ..., xµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A

)
xJ−µ

= uI−m
〈
u0, u1, ..., um−1

〉
A︸ ︷︷ ︸

⊆〈u0,u1,...,uI−1〉A

·
〈
x0, x1, ..., xµ

〉
A
xJ−µ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ+ν−1〉A (since J≤µ+ν−1)

+ uI−m
〈
u0, u1, ..., um

〉
A︸ ︷︷ ︸

⊆〈u0,u1,...,uI〉
A

·
〈
x0, x1, ..., xµ−1

〉
A
xJ−µ︸ ︷︷ ︸

⊆〈x0,x1,...,xJ−1〉
A

⊆
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A︸ ︷︷ ︸

⊆U by (11)

+
〈
u0, u1, ..., uI

〉
A︸ ︷︷ ︸

=〈u0,u1,...,uI−1〉A+〈uI〉A

·
〈
x0, x1, ..., xJ−1

〉
A

⊆ U +
(〈
u0, u1, ..., uI−1

〉
A

+
〈
uI
〉
A

)
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

=〈u0,u1,...,uI−1〉A·〈x0,x1,...,xJ−1〉A+〈uI〉A·〈x0,x1,...,xJ−1〉A

= U +
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

⊆〈x0,x1,...,xµ+ν−1〉
A

(since

J−1≤J≤µ+ν−1)

+
〈
uI
〉
A
·
〈
x0, x1, ..., xJ−1

〉
A

⊆ U +
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A︸ ︷︷ ︸

⊆U by (11)

+
〈
uI
〉
A
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

⊆U by (10)

⊆ U + U + U ⊆ U (since U is an A-module) .

Thus, we have proved that uIxJ ∈ U holds in Case 1.
In Case 2, we have (I, J) ∈ S and thus uIxJ ∈ U (by (6), applied to I and J instead

of i and j). Thus, we have proved that uIxJ ∈ U holds in Case 2.
In Case 3, we have I − n ≥ 0 (since I ≥ n) and J + ν ≤ µ + ν − 1 (since J < µ

yields J + ν < µ+ ν, and since J + ν and µ+ ν are integers), thus

uI︸︷︷︸
=uI−nun

xJ

= uI−n un︸︷︷︸
∈〈u0,u1,...,un−1〉

A
·〈x0,x1,...,xν〉

A
(by (3))

xJ ∈ uI−n
〈
u0, u1, ..., un−1

〉
A︸ ︷︷ ︸

⊆〈u0,u1,...,uI−1〉
A

·
〈
x0, x1, ..., xν

〉
A
xJ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ+ν−1〉
A

(since

J+ν≤µ+ν−1)

⊆
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A
⊆ U (by (11)) .

Thus, we have proved that uIxJ ∈ U holds in Case 3.
In Case 4, we have (I, J) ∈ S and thus uIxJ ∈ U (by (6), applied to I and J instead

of i and j). Thus, we have proved that uIxJ ∈ U holds in Case 4.

25



Therefore, we have proved that uIxJ ∈ U holds in each of the four cases 1, 2, 3
and 4. Hence, uIxJ ∈ U always holds, contradicting uIxJ /∈ U . This contradiction
completes the proof of (7).

Now that (7) is proven, we can easily conclude that uU ⊆ U . Furthermore, applying
(7) to i = 0 and j = 0 readily yields 1 ∈ U . Altogether, U is an (nµ+mν)-generated
A-submodule of B such that 1 ∈ U and uU ⊆ U . Thus, u ∈ B satisfies Assertion C
of Theorem 1 with n replaced by nµ+mν. Hence, u ∈ B satisfies the four equivalent
assertions A, B, C and D of Theorem 1 with n replaced by nµ+mν. Consequently, u
is (nµ+mν)-integral over A. This proves Lemma 18.

We record a weaker variant of Lemma 18:

Lemma 19. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B be such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Let µ ∈ N
and ν ∈ N be such that µ+ ν ∈ N+. Assume that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

(12)

and that

um ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A
.

(13)
Then, u is (nµ+mν)-integral over A.

Proof of Lemma 19. (Again, the same proof with more details can be found in [4].)
We have 〈

y0, y1, ..., yµ
〉
A
xµ ⊆

〈
x0, x1, ..., xµ

〉
A
, (14)

since every i ∈ {0, 1, ..., µ} satisfies

yi xµ︸︷︷︸
=xµ−ixi

= yixµ−ixi = xiyi︸︷︷︸
=(xy)i∈A,
since xy∈A

xµ−i ∈
〈
xµ−i

〉
A

(15)

⊆
〈
x0, x1, ..., xµ

〉
A
.

Besides, 〈
y1, y2, ..., yµ

〉
A
xµ ⊆

〈
x0, x1, ..., xµ−1

〉
A
, (16)

since every i ∈ {1, 2, ..., µ} satisfies

yixµ ∈
〈
xµ−i

〉
A

(by (15))

⊆
〈
x0, x1, ..., xµ−1

〉
A
.

Now, (13) yields

umxµ ∈
(〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

)
xµ

=
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A
xµ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ〉
A

(by (14))

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A
xµ︸ ︷︷ ︸

⊆〈x0,x1,...,xµ−1〉
A

(by (16))

⊆
〈
u0, u1, ..., um−1

〉
A
·
〈
x0, x1, ..., xµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A
.
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In other words, (4) holds. Also, (3) holds (because (12) holds, and because (3) is the
same as (12)). Thus, Lemma 18 yields that u is (nµ+mν)-integral over A. This proves
Lemma 19.

Something trivial now:

Lemma 20. Let A and B be two rings such that A ⊆ B. Let x ∈ B. Let
n ∈ N. Let u ∈ B. Assume that u is n-integral over A [x]. Then, there
exists some ν ∈ N such that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A
.

The proof of Lemma 20 (again, axiomatized in [4]) goes as follows: Since u is n-
integral over A [x], there exists a monic polynomial P ∈ (A [x]) [X] with degP = n and
P (u) = 0. Denoting the coefficients of this polynomial P by α0, α1, ..., αn (where αn =

1), the equation P (u) = 0 becomes un = −
n−1∑
i=0

αiu
i. Note that αi ∈ A [x] for all i. Now,

there exists some ν ∈ N such that αi ∈ 〈x0, x1, ..., xν〉A for every i ∈ {0, 1, ..., n− 1}

(because for each i ∈ {0, 1, ..., n− 1}, we have αi ∈ A [x] =
∞⋃
ν=0

〈x0, x1, ..., xν〉A, so that

αi ∈ 〈x0, x1, ..., xνi〉A for some νi ∈ N; now take ν = max {ν0, ν1, ..., νn−1}). This ν then
satisfies

un = −
n−1∑
i=0

αiu
i = −

n−1∑
i=0

ui︸︷︷︸
∈〈u0,u1,...,un−1〉A

αi︸︷︷︸
∈〈x0,x1,...,xν〉A

∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A
,

and Lemma 20 is proven.
A consequence of Lemmata 19 and 20 is the following theorem:

Theorem 21. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B be such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Assume
that u is n-integral over A [x], and that u is m-integral over A [y]. Then,
there exists some λ ∈ N such that u is λ-integral over A.

Proof of Theorem 21. Since u is n-integral over A [x], Lemma 20 yields that there
exists some ν ∈ N such that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A
.

In other words, (12) holds.
Since u is m-integral over A [y], Lemma 20 (with x, n and ν replaced by y, m and

µ) yields that there exists some µ ∈ N such that

um ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A
. (17)

Hence, (13) holds as well (because (17) is even stronger than (13)).
Since both (12) and (13) hold, Lemma 19 yields that u is (nµ+mν)-integral over A.

Thus, there exists some λ ∈ N such that u is λ-integral over A (namely, λ = nµ+mν).
This proves Theorem 21.

We record a generalization of Theorem 21 (which will turn out to be easily seen
equivalent to Theorem 21):
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Theorem 22. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B. Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u is n-integral over
A [x], and that u is m-integral over A [y]. Then, there exists some λ ∈ N
such that u is λ-integral over A [xy].

Proof of Theorem 22. Obviously, A ⊆ A [xy] yields A [x] ⊆ (A [xy]) [x] and A [y] ⊆
(A [xy]) [y].

Since u is n-integral over A [x], Lemma I (applied to B, (A [xy]) [x], A [x] and u
instead of B′, A′, A and v) yields that u is n-integral over (A [xy]) [x].

Since u is m-integral over A [y], Lemma I (applied to B, (A [xy]) [y], A [y], m and
u instead of B′, A′, A, n and v) yields that u is m-integral over (A [xy]) [y].

Now, Theorem 21 (applied to A [xy] instead of A) yields that there exists some
λ ∈ N such that u is λ-integral over A [xy] (because xy ∈ A [xy], because u is n-
integral over (A [xy]) [x], and because u is m-integral over (A [xy]) [y]). This proves
Theorem 22.

Theorem 22 has a “relative version”:

Theorem 23. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let x ∈ B and y ∈ B.

(a) Then, (IρA [x])ρ∈N is an ideal semifiltration ofA [x]. Besides, (IρA [y])ρ∈N
is an ideal semifiltration of A [y]. Besides, (IρA [xy])ρ∈N is an ideal semifil-
tration of A [xy].

(b) Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u is n-integral over(
A [x] , (IρA [x])ρ∈N

)
, and that u is m-integral over

(
A [y] , (IρA [y])ρ∈N

)
.

Then, there exists some λ ∈ N such that u is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
.

Proof of Theorem 23. (a) Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J
(applied to A [x] instead of A′) yields that (IρA [x])ρ∈N is an ideal semifiltration of A [x].

Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J (applied to A [y] instead of
A′) yields that (IρA [y])ρ∈N is an ideal semifiltration of A [y].

Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J (applied to A [xy] instead of
A′) yields that (IρA [xy])ρ∈N is an ideal semifiltration of A [xy].

Thus, Theorem 23 (a) is proven.
(b) We formulate a lemma:
Lemma N : Let A and B be two rings such that A ⊆ B. Let v ∈ B. Let (Iρ)ρ∈N be

an ideal semifiltration of A. Consider the polynomial ring A [Y ] and its A-subalgebra

A
[
(Iρ)ρ∈N ∗ Y

]
. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ], and (as explained in Definition 7)

we can identify the polynomial ring A [Y ] with a subring of (A [v]) [Y ] (since A ⊆ A [v]).

Hence, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ]. On the other hand, (A [v])

[
(IρA [v])ρ∈N ∗ Y

]
⊆

(A [v]) [Y ].
(a) We have

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v] .
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(b) Let u ∈ B. Let n ∈ N. Then, the element u of B is n-integral over(
A [v] , (IρA [v])ρ∈N

)
if and only if the element uY of the polynomial ring B [Y ] is

n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v].

Proof of Lemma N : (a) We have proven LemmaN (a) during the proof of Theorem
9 (b).

(b) Theorem 7 (applied to A [v] and (IρA [v])ρ∈N instead of A and (Iρ)ρ∈N) yields

that the element u of B is n-integral over
(
A [v] , (IρA [v])ρ∈N

)
if and only if the element

uY of the polynomial ring B [Y ] is n-integral over the ring (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
. In

other words, the element u of B is n-integral over
(
A [v] , (IρA [v])ρ∈N

)
if and only if the

element uY of the polynomial ring B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]

(because Lemma N (a) yields (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]). This

proves Lemma N (b).
Now, let us prove Theorem 23 (b). In fact, for every v ∈ B, we can consider

the polynomial ring (A [v]) [Y ] and its A [v]-subalgebra (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
. We

have (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ], and (as explained in Definition 7) we can

identify the polynomial ring (A [v]) [Y ] with a subring of B [Y ] (since A [v] ⊆ B).

Hence, (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ B [Y ].

Lemma N (b) (applied to x instead of v) yields that the element u of B is n-

integral over
(
A [x] , (IρA [x])ρ∈N

)
if and only if the element uY of the polynomial ring

B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x]. But since the element u of B is

n-integral over
(
A [x] , (IρA [x])ρ∈N

)
, this yields that the element uY of the polynomial

ring B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x].

Lemma N (b) (applied to y and m instead of v and n) yields that the element

u of B is m-integral over
(
A [y] , (IρA [y])ρ∈N

)
if and only if the element uY of the

polynomial ring B [Y ] is m-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y]. But since the

element u of B is m-integral over
(
A [y] , (IρA [y])ρ∈N

)
, this yields that the element uY

of the polynomial ring B [Y ] is m-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y].

Since uY is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x], and since uY is m-integral

over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y], Theorem 22 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and

uY instead of A, B and u) yields that there exists some λ ∈ N such that uY is λ-integral

over
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy].

LemmaN (b) (applied to xy and λ instead of v and n) yields that the element u ofB

is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
if and only if the element uY of the polynomial

ring B [Y ] is λ-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy]. But since the element
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uY of the polynomial ring B [Y ] is λ-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy],

this yields that the element u of B is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
. Thus,

Theorem 23 (b) is proven.
We notice that Corollary 3 can be derived from Lemma 18:
Second proof of Corollary 3. Let n = 1. Let m = 1. We have

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
v0, v1, ..., vα

〉
A

6 and

umvβ ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
v0, v1, ..., vβ−1

〉
A

7. Thus, Lemma 18 (applied to v, β and α instead of x, µ and ν) yields that u is
(nβ +mα)-integral over A. This means that u is (α + β)-integral over A (because
nβ +mα = 1β + 1α = β + α = α + β). This proves Corollary 3 once again.

In how far does this all generalize Theorem 2 from [3]? Actually, Theorem 2 from
[3] can be easily reduced to the case when J = 0 (by passing from the ring A to its
localization A1+J) 8, and in this case it easily follows from Lemma 18.
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6because

un = u1 = u =

α∑
i=0

si︸︷︷︸
∈A

vi ∈
〈
v0, v1, ..., vα

〉
A

= A ·
〈
v0, v1, ..., vα

〉
A

=
〈
u0, u1, ..., un−1

〉
A
·
〈
v0, v1, ..., vα

〉
A

(since A = 〈1〉A =
〈
u0
〉
A

=
〈
u0, u1, ..., un−1

〉
A

, as n = 1)
7because

um︸︷︷︸
=u1=u

vβ = uvβ =

β∑
i=0

tiv
β−i =

β∑
i=0

tβ−iv
β−(β−i) (here we substituted β − i for i in the sum)

=

β∑
i=0

tβ−i︸︷︷︸
∈A

vi ∈
〈
v0, v1, ..., vβ

〉
A

= A ·
〈
v0, v1, ..., vβ

〉
A

=
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

(since A = 〈1〉A =
〈
u0
〉
A

=
〈
u0, u1, ..., um−1

〉
A

, as m = 1) and〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

⊆
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
v0, v1, ..., vβ−1

〉
A

8Remark (added in 2019): I am no longer sure about this statement. So I don’t know whether
Lemma 18 really generalizes Theorem 2 from [3].
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