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This note is based on a problem from the IMO longlist 1976 proposed by Great
Britain (GBR 2 in [1]). When I �rst saw that problem, I spent a longer time solving it,
and the solution obtained was rather nonstandard for an olympiad geometry problem.
Before we state the problem, four conventions are appropriate:

� The point of intersection of two lines g and h will be denoted by g \ h in the
following.

� The parallel to a line g through a point P will be denoted by para (P ; g) :

� We will use directed lengths (also known as signed lengths). Hereby, the directed
length of a segment PQ will be denoted by PQ (of course, this directed length
is only de�ned if the line through the points P and Q is directed, but we can
work with ratios of directed lengths on non-directed lines as well). The usual,
non-directed distance between two points P and Q will be denoted by PQ:

� We work in the projective plane with the Euclidean structure on its Euclidean
component. This means that we work as one usually works in Euclidean geometry,
but a formulation of the kind "the three lines concur at one point" will also include
the case that these three lines concur at one in�nite point, i. e. are all parallel
to each other. We will consider such cases as limiting cases, i. e. we won�t pay
particular attention to them even if they require a modi�cation of our arguments.

Now we are ready to formulate the assertion of the IMO longlist problem (Fig. 1):

Theorem 1. Let ABC and A0B0C 0 be two triangles on a plane. Denote

X = BC \B0C 0; Y = CA \ C 0A0; Z = AB \ A0B0;
X 0 = para (A; BC) \ para (A0; B0C 0) ; Y 0 = para (B; CA) \ para (B0; C 0A0) ;
Z 0 = para (C; AB) \ para (C 0; A0B0) :

Then, the lines XX 0; Y Y 0; ZZ 0 concur at one point.
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Fig. 1

The solution is based on the following fact (Fig. 2):

Theorem 2, the Gergonne-Euler theorem. Let ABC be a triangle,
and P a point in its plane. The lines AP; BP; CP intersect the lines BC;
CA; AB at the points A1; B1; C1: Then,

PA1

AA1
+
PB1

BB1
+
PC1

CC1
= 1:

Remark. The assertion of this theorem can be equivalently stated in the form
AP

AA1
+
BP

BB1
+
CP

CC1
= 2 as well as in the form

AP

PA1
� BP
PB1

� CP
PC1

=
AP

PA1
+
BP

PB1
+
CP

PC1
+2:

Proving the equivalence is a simple calculation exercise.
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Proof of Theorem 2. (See Fig. 3.) Without loss of generality, we consider only the
case when the point P lies inside the triangle ABC: Let Hb and Pb be the orthogonal
projections of the points B and P on the line CA: Then, BHb ? CA and PPb ? CA
together yield BHb k PPb; and thus, by Thales, we have

PB1
BB1

=
PPb
BHb

:
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Now we denote by jP1P2P3j the (non-directed) area of an arbitrary triangle P1P2P3:
Since the area of a triangle equals

1

2
� sidelength � corresponding altitude, we have

jABCj = 1

2
� CA � BHb (since triangle ABC has CA as a side and BHb as the cor-

responding altitude) and jCPAj = 1

2
� CA � PPb (since triangle CPA has CA as a

side and PPb as the corresponding altitude). Thus,
jCPAj
jABCj =

1

2
� CA � PPb

1

2
� CA �BHb

=
PPb
BHb

:

Comparing this to
PB1
BB1

=
PPb
BHb

; we get
PB1
BB1

=
jCPAj
jABCj : Similarly,

PC1
CC1

=
jAPBj
jABCj
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and
PA1
AA1

=
jBPCj
jABCj : Hence,

PA1
AA1

+
PB1
BB1

+
PC1
CC1

=
jBPCj
jABCj+

jCPAj
jABCj+

jAPBj
jABCj =

jBPCj+ jCPAj+ jAPBj
jABCj =

jABCj
jABCj = 1:

Now,
PA1
AA1

=
PA1

AA1
;
PB1
BB1

=
PB1

BB1
and

PC1
CC1

=
PC1

CC1
(since P lies inside triangle ABC),

and thus this becomes
PA1

AA1
+
PB1

BB1
+
PC1

CC1
= 1: This proves Theorem 2.

A

B

C

C'

A'

B'

Y'

Y

P

B'1

B1

Q'

Q

Fig. 4

Next we establish a lemma (see Fig. 4 for Lemma 3 b)):

Lemma 3. In the con�guration of Theorem 1, let P be an arbitrary point
in the plane. The lines AP; BP; CP intersect the lines BC; CA; AB at the
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points A1; B1; C1: The lines A0P; B0P; C 0P intersect the lines B0C 0; C 0A0;
A0B0 at the points A01; B

0
1; C

0
1: Then:

a) The point P lies on the line XX 0 if and only if
PA1

AA1
=
PA01
A0A01

:

b) The point P lies on the line Y Y 0 if and only if
PB1

BB1
=
PB01
B0B01

:

c) The point P lies on the line ZZ 0 if and only if
PC1

CC1
=
PC 01
C 0C 01

:

Proof of Lemma 3. (See Fig. 4.) Let Q = PY 0 \ CA and Q0 = PY 0 \ C 0A0: Since

Y 0 2 para (B; CA) ; we have BY 0 k CA; and thus, by Thales, PB1
BB1

=
PQ

Y 0Q
: Since

Y 0 2 para (B0; C 0A0) ; we have B0Y 0 k C 0A0; and thus, by Thales, PB
0
1

B0B01
=
PQ0

Y 0Q0
:

Now, we construct a chain of obviously equivalent assertions:
(The point P lies on the line Y Y 0)
() (The line PY 0 passes through the point Y )
() (The line PY 0 passes through the point CA \ C 0A0)
() (The line PY 0 intersects the lines CA and C 0A0 at the same point)
() (PY 0 \ CA = PY 0 \ C 0A0)() (Q = Q0)

()
�
PQ

Y 0Q
=
PQ0

Y 0Q0

�
()

 
PB1

BB1
=
PB01
B0B01

!
;

where the last equivalence is due to
PB1

BB1
=
PQ

Y 0Q
and

PB01
B0B01

=
PQ0

Y 0Q0
: This chain

proves Lemma 3 b). Lemma 3 a) and c) are proven in an analogous way, and thus the
proof of Lemma 3 is complete.
Combining the above, we now complete the proof of Theorem 1: Denote by P

the point of intersection of the lines XX 0 and Y Y 0: Let A1; B1; C1 be the points of
intersection of the lines AP; BP; CP with the lines BC; CA; AB; respectively. Let
A01; B

0
1; C

0
1 be the points of intersection of the lines A

0P; B0P; C 0P with the lines B0C 0;
C 0A0; A0B0; respectively.

Since P lies on XX 0; Lemma 3 a) yields
PA1

AA1
=
PA01
A0A01

: Since P lies on Y Y 0; Lemma

3 b) yields
PB1

BB1
=
PB01
B0B01

: Now, Theorem 2, applied to the triangle ABC and the point

P (with the lines AP; BP; CP intersecting the lines BC; CA; AB at A1; B1; C1),

yields
PA1

AA1
+
PB1

BB1
+
PC1

CC1
= 1: Using

PA1

AA1
=
PA01
A0A01

and
PB1

BB1
=
PB01
B0B01

; this transforms

into
PA01
A0A01

+
PB01
B0B01

+
PC1

CC1
= 1:

On the other hand, Theorem 2, applied to the triangle A0B0C 0 and the point P
(with the lines A0P; B0P; C 0P intersecting the lines B0C 0; C 0A0; A0B0 at A01; B

0
1; C

0
1),
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yields
PA01
A0A01

+
PB01
B0B01

+
PC 01
C 0C 01

= 1: Comparing this with
PA01
A0A01

+
PB01
B0B01

+
PC1

CC1
= 1; we

get
PC1

CC1
=
PC 01
C 0C 01

: According to Lemma 3 c), this shows that P lies on ZZ 0:

Thus, the lines XX 0; Y Y 0 and ZZ 0 concur at one point - namely, at the point P:
This proves Theorem 1.
We note in passing that Theorem 1 can be proven in a di¤erent way as well:
There exists an a¢ ne transformation of the plane which maps the points A; B; C

to the points A0; B0; C 0: If this transformation has a �xed point, then it can be shown
that this �xed point lies on the lines XX 0; Y Y 0; ZZ 0: If this transformation has no
�xed points, then one can see that the lines XX 0; Y Y 0; ZZ 0 are all parallel to each
other. The details of this proof are left to the reader.
As a further application of the Gergonne-Euler theorem, we can show (see Fig. 2

again):

Theorem 4, the van Aubel theorem. Let ABC be a triangle, and let
P be a point in its plane. The lines AP; BP; CP intersect the lines BC;
CA; AB at the points A1; B1; C1: Then,

AP

PA1
=
AC1

C1B
+
AB1

B1C
; (1)

BP

PB1
=
BA1

A1C
+
BC1

C1A
; (2)

CP

PC1
=
CB1

B1A
+
CA1

A1B
: (3)

This result is classical and easy to prove using the Thales theorem and auxiliary
points. Here we will derive it from Theorem 2:
Consider the triangle PBC and the point A in its plane. The lines PA; BA; CA

intersect the lines BC; CP; PB at the points A1; C1; B1: Thus, the equation (1) of
Theorem 2 yields

AA1

PA1
+
AC1

BC1
+
AB1

CB1
= 1; so that

AA1

PA1
� 1 = �

�
AC1

BC1
+
AB1

CB1

�
:

But
AA1

PA1
� 1 = AA1 � PA1

PA1
=
AP

PA1
and

�
�
AC1

BC1
+
AB1

CB1

�
=

�
�AC1
BC1

�
+

�
�AB1
CB1

�
=
AC1

C1B
+
AB1

B1C
:

Hence, this becomes
AP

PA1
=
AC1

C1B
+
AB1

B1C
: This proves (4), and similarly (5) and (6)

can be established.
We have thus deduced Theorem 4 from Theorem 2. Similarly, by the way, we could

have deduced Theorem 2 from Theorem 4 as well.
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