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In this note we will solve two interconnected problems from the MathLinks discus-
sion

http://www.mathlinks.ro/Forum/viewtopic.php?t=67939

We start with a theorem:

Theorem 1. Let ϕ be a complex number, and let x1 = 2 cosϕ. Let k ≥ 1
be an integer, and let x2, x3, ..., xk be k − 1 complex numbers. Then, the
chain of equations

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xk−1

+ xk (1)

(if k = 1, then this chain of equations has to be regarded as the zero
assertion, i. e. as the assertion which is always true) holds if and only if

every m ∈ {1, 2, ..., k} satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
. Here,

in the case when sin (mϕ) = 0, the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
is to be

understood as follows:

• If ϕ is an integer multiple of π, then sin (mϕ) = sin ((m+ 1)ϕ) = 0, and the

number
sin ((m+ 1)ϕ)

sin (mϕ)
has to be understood as lim

ψ→ϕ

sin ((m+ 1)ψ)

sin (mψ)
.

• If ϕ is not an integer multiple of π and we have sin (mϕ) = 0, then sin ((m+ 1)ϕ) 6=

0, and the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
is considered wrong.

Proof of Theorem 1. In our following proof, we will only consider the case when ϕ
is not an integer multiple of π, because we will not need the case when ϕ is a multiple
of π in our later applications of Theorem 1. Besides, our following proof can be easily
modified to work for the case of ϕ being a multiple of π as well (this modification is
left to the reader).

We will establish Theorem 1 by induction over k:
For k = 1, we have to prove that the zero assertion holds if and only if x1 =

sin ((1 + 1)ϕ)

sin (1ϕ)
. Well, since the zero assertion always holds, we have to prove that the

equation x1 =
sin ((1 + 1)ϕ)

sin (1ϕ)
always holds. This is rather easy:

x1 = 2 cosϕ =
2 sinϕ cosϕ

sinϕ
=

sin (2ϕ)

sinϕ
=

sin ((1 + 1)ϕ)

sin (1ϕ)
.
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Thus, Theorem 1 is proven for k = 1.
Now we come to the induction step. Let n ≥ 1 be an integer. Assume that Theorem

1 holds for k = n. This means that:
(*) If x2, x3, ..., xn are n− 1 complex numbers, then the chain of equations

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn (2)

holds if and only if every m ∈ {1, 2, ..., n} satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
.

We have to prove that Theorem 1 also holds for k = n + 1. This means that we
have to prove that:

(**) If x2, x3, ..., xn, xn+1 are n complex numbers, then the chain of equations

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn =
1

xn
+ xn+1 (3)

holds if and only if everym ∈ {1, 2, ..., n, n+ 1} satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
.

So let’s prove (**). This requires verifying two assertions:
Assertion 1: If (3) holds, then every m ∈ {1, 2, ..., n, n+ 1} satisfies the equation

xm =
sin ((m+ 1)ϕ)

sin (mϕ)
.

Assertion 2: If everym ∈ {1, 2, ..., n, n+ 1} satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
,

then (3) holds.
Before we step to the proofs of these assertions, we show that

x1 =
sin (nϕ)

sin ((n+ 1)ϕ)
+

sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
. (4)

This is because

sin (nϕ)

sin ((n+ 1)ϕ)
+

sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
=

sin (nϕ) + sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)

=
sin ((n+ 1)ϕ− ϕ) + sin ((n+ 1)ϕ+ ϕ)

sin ((n+ 1)ϕ)

=
(sin ((n+ 1)ϕ) cosϕ− cos ((n+ 1)ϕ) sinϕ) + (sin ((n+ 1)ϕ) cosϕ+ cos ((n+ 1)ϕ) sinϕ)

sin ((n+ 1)ϕ) since sin ((n+ 1)ϕ− ϕ) = sin ((n+ 1)ϕ) cosϕ− cos ((n+ 1)ϕ) sinϕ
and sin ((n+ 1)ϕ+ ϕ) = sin ((n+ 1)ϕ) cosϕ+ cos ((n+ 1)ϕ) sinϕ

by the addition formulas


=

2 sin ((n+ 1)ϕ) cosϕ

sin ((n+ 1)ϕ)
= 2 cosϕ = x1.

Now, let’s prove Assertion 1: We assume that (3) holds. We have to prove that

every m ∈ {1, 2, ..., n, n+ 1} satisfies xm =
sin ((m+ 1)ϕ)

sin (mϕ)
. In fact, since (3) yields

(2), we can conclude from (*) that every m ∈ {1, 2, ..., n} satisfies the equation xm =
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sin ((m+ 1)ϕ)

sin (mϕ)
. It remains to prove this equation for m = n + 1; in other words, it

remains to prove that xn+1 =
sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
. In order to prove this, we note that the

equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
, which holds for every m ∈ {1, 2, ..., n} , particularly

yields xn =
sin ((n+ 1)ϕ)

sin (nϕ)
. Hence,

1

xn
=

sin (nϕ)

sin ((n+ 1)ϕ)
. Now, (3) yields x1 =

1

xn
+

xn+1, so that x1 =
sin (nϕ)

sin ((n+ 1)ϕ)
+ xn+1. Comparing this with (4), we obtain xn+1 =

sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
, qed.. Thus, Assertion 1 is proven.

Now we will show Assertion 2. To this end, we assume that everym ∈ {1, 2, ..., n, n+ 1}

satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
, and we want to show that (3) holds.

We have assumed that every m ∈ {1, 2, ..., n, n+ 1} satisfies the equation xm =
sin ((m+ 1)ϕ)

sin (mϕ)
. Thus, in particular, every m ∈ {1, 2, ..., n} satisfies this equation.

Hence, according to (*), the equation (2) must hold. Now, we are going to prove the

equation x1 =
1

xn
+ xn+1.

Since xm =
sin ((m+ 1)ϕ)

sin (mϕ)
holds for every m ∈ {1, 2, ..., n, n+ 1} , we have xn =

sin ((n+ 1)ϕ)

sin (nϕ)
and xn+1 =

sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
. The former of these two equations yields

1

xn
=

sin (nϕ)

sin ((n+ 1)ϕ)
. Thus, the equation (4) results in

x1 =
sin (nϕ)

sin ((n+ 1)ϕ)︸ ︷︷ ︸
=

1

xn

+
sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)︸ ︷︷ ︸
=xn+1

=
1

xn
+ xn+1.

Thus, the equation x1 =
1

xn
+ xn+1 is proven. Combining this equation with (2), we

get (3), and this completes the proof of Assertion 2.
As both Assertions 1 and 2 are now verified, the induction step is done, so that the

proof of Theorem 1 is complete.
The first consequence of Theorem 1 will be:

Theorem 2. Let n ≥ 1 be an integer, and let x1, x2, ..., xn be n nonzero
complex numbers such that

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn =
1

xn
. (5)

Then, there exists some integer j ∈ {1, 2, ..., n+ 1} such that x1 = 2 cos
jπ

n+ 2
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and xm =

sin

(
(m+ 1)

jπ

n+ 2

)
sin

(
m

jπ

n+ 2

) for every m ∈ {1, 2, ..., n} .

Proof of Theorem 2. We need two auxiliary assertions:
Assertion 3: We have x1 6= 2.
Assertion 4: We have x1 6= −2.
Proof of Assertion 3. Assume the contrary. Then, x1 = 2. Now, we can prove

by induction over m that xm = 1 +
1

m
for every m ∈ {1, 2, ..., n} . (In fact: For

m = 1, we have to show that x1 = 1 +
1

1
, what rewrites as x1 = 2 and this was our

assumption. Now, assume that xm = 1 +
1

m
holds for some m ∈ {1, 2, ..., n− 1} . We

want to prove that xm+1 = 1 +
1

m+ 1
holds as well. Well, the equation (5) yields

x1 =
1

xm
+xm+1, so that xm+1 = x1−

1

xm
. Since x1 = 2 and xm = 1+

1

m
, we thus have

xm+1 = 2 − 1

1 +
1

m

=
m+ 2

m+ 1
= 1 +

1

m+ 1
. Hence, the induction proof is complete.)

Now, since we have shown that xm = 1 +
1

m
holds for every m ∈ {1, 2, ..., n} , we have

xn = 1+
1

n
in particular. But (5) yields x1 =

1

xn
, so that 1 = x1·xn = 2·

(
1 +

1

n

)
, what

is obviously wrong since 2 ·
(

1 +
1

n

)
> 2 ·1 > 1. Hence, we obtain a contradiction, and

thus our assumption that Assertion 3 doesn’t hold was wrong. This proves Assertion
3.

The proof of Assertion 4 is similar (this time we have to show that if x1 = −2, then

xm = −
(

1 +
1

m

)
for every m ∈ {1, 2, ..., n}).

Now, since the function cos : C → C is surjective, there must exist a complex

number ϕ such that
x1

2
= cosϕ. Here, if

x1

2
is real and satisfies −1 ≤ x1

2
≤ 1,

then we take this ϕ such that ϕ is real and satisfies ϕ ∈ [0, π] (this is possible since
cos : [0, π] → [−1, 1] is surjective).

Assertions 3 and 4 state that x1 6= 2 and x1 6= −2. Hence,
x1

2
6= 1 and

x1

2
6= −1.

Since
x1

2
= cosϕ, this yields cosϕ 6= 1 and cosϕ 6= −1, and thus ϕ is not an integer

multiple of π.
Define another complex number xn+1 by xn+1 = 0. Then, (5) rewrites as

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn =
1

xn
+ xn+1. (6)

Since
x1

2
= cosϕ, we have x1 = 2 cosϕ, so that we can apply Theorem 1 to the n

complex numbers x2, x3, ..., xn+1, and from the chain of equations (6) we conclude

that every m ∈ {1, 2, ..., n+ 1} satisfies xm =
sin ((m+ 1)ϕ)

sin (mϕ)
.
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Thus, in particular, xn+1 =
sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
. Since xn+1 = 0, we thus must have

sin ((n+ 2)ϕ)

sin ((n+ 1)ϕ)
= 0. This yields sin ((n+ 2)ϕ) = 0. Thus, (n+ 2)ϕ is an integer

multiple of π. Let j ∈ Z be such that (n+ 2)ϕ = jπ. Then, ϕ =
jπ

n+ 2
. Thus,

x1 = 2 cosϕ becomes x1 = 2 cos
jπ

n+ 2
, and xm =

sin ((m+ 1)ϕ)

sin (mϕ)
becomes xm =

sin

(
(m+ 1)

jπ

n+ 2

)
sin

(
m

jπ

n+ 2

) . It remains to show that j ∈ {1, 2, ..., n+ 1} .

Now,
x1

2
= cosϕ = cos

jπ

n+ 2
must be real and satisfy −1 ≤ x1

2
≤ 1 (since cosines of

real angles are real and lie between −1 and 1). Therefore, according to the definition
of ϕ, we have ϕ ∈ [0, π] . Since ϕ is not a multiple of π, this becomes ϕ ∈ ]0, π[ .

Since ϕ =
jπ

n+ 2
, this yields j ∈ ]0, n+ 2[ . Since j is an integer, this results in j ∈

{1, 2, ..., n+ 1} . Hence, Theorem 2 is proven.
The first problem from the MathLinks thread asks us to show:

Theorem 3. Let n ≥ 1 be an integer, and let x1, x2, ..., xn be n positive
real numbers such that

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn =
1

xn
.

Then, x1 = 2 cos
π

n+ 2
and xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) for every m ∈

{1, 2, ..., n} .

Proof of Theorem 3. According to Theorem 2, there exists some integer j ∈

{1, 2, ..., n+ 1} such that x1 = 2 cos
jπ

n+ 2
and xm =

sin

(
(m+ 1)

jπ

n+ 2

)
sin

(
m

jπ

n+ 2

) for every

m ∈ {1, 2, ..., n} . For every m ∈ {1, 2, ..., n, n+ 1} , we thus have

m−1∏
s=1

xs =
m−1∏
s=1

sin

(
(s+ 1)

jπ

n+ 2

)
sin

(
s
jπ

n+ 2

) =

m−1∏
s=1

sin

(
(s+ 1)

jπ

n+ 2

)
m−1∏
s=1

sin

(
s
jπ

n+ 2

)

=

m∏
s=2

sin

(
s
jπ

n+ 2

)
m−1∏
s=1

sin

(
s
jπ

n+ 2

) =

sin

(
m

jπ

n+ 2

)
sin

(
1
jπ

n+ 2

) =

sin

(
m

jπ

n+ 2

)
sin

jπ

n+ 2

.
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Since the reals x1, x2, ..., xm−1 are all positive, their product
m−1∏
s=1

xs is positive, and this

yields that

sin

(
m

jπ

n+ 2

)
sin

jπ

n+ 2

is positive (since
m−1∏
s=1

xs =

sin

(
m

jπ

n+ 2

)
sin

jπ

n+ 2

). But since j ∈

{1, 2, ..., n+ 1} , the number sin
jπ

n+ 2
is positive (since 0 <

jπ

n+ 2
< π), and thus it fol-

lows that sin

(
m

jπ

n+ 2

)
is positive. Since this holds for every m ∈ {1, 2, ..., n, n+ 1} ,

this means that the numbers sin

(
m

jπ

n+ 2

)
are positive for all m ∈ {1, 2, ..., n, n+ 1} .

Since j ∈ {1, 2, ..., n+ 1} , this yields j = 1 1. Hence, x1 = 2 cos
jπ

n+ 2
becomes

x1 = 2 cos
π

n+ 2
, and xm =

sin

(
(m+ 1)

jπ

n+ 2

)
sin

(
m

jπ

n+ 2

) becomes xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) .

This proves Theorem 3.
A converse of Theorem 3 is:

Theorem 4. Let n ≥ 1 be an integer, and define n reals x1, x2, ..., xn by

xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) for every m ∈ {1, 2, ..., n} . Then, the reals x1,

x2, ..., xn are positive. Besides, x1 = 2 cos
π

n+ 2
, and the reals x1, x2, ...,

1Proof. Assume the contrary - that is, assume that j ≥ 2.

Then, the smallest of the angles m
jπ

n + 2
for m ∈ {1, 2, ..., n, n + 1} is 1

jπ

n + 2
=

jπ

n + 2
< π (since

j < n + 2), and the largest one is

(n + 1)
jπ

n + 2
≥ (n + 1)

2π

n + 2
(since j ≥ 2)

=
2 (n + 1)

n + 2
π = π +

n

n + 2
π ≥ π.

Thus, some but not all of the numbers m ∈ {1, 2, ..., n, n + 1} satisfy m
jπ

n + 2
≥ π. Let µ be the

smallest m ∈ {1, 2, ..., n, n + 1} satisfying m
jπ

n + 2
≥ π. Then, µ

jπ

n + 2
≥ π, but (µ− 1)

jπ

n + 2
< π.

Hence,

µ
jπ

n + 2
=

jπ

n + 2
+ (µ− 1)

jπ

n + 2
<

(n + 2) π

n + 2
+ π (since j < n + 2 and (µ− 1)

jπ

n + 2
< π)

= 2π,

what, together with µ
jπ

n + 2
≥ π, yields π ≤ µ

jπ

n + 2
< 2π. Thus, sin

(
µ

jπ

n + 2

)
≤ 0. But this

contradicts to the fact that sin
(

m
jπ

n + 2

)
is positive for all m ∈ {1, 2, ..., n, n + 1} . Hence, we get a

contradiction, so that our assumption that j ≥ 2 was wrong. Hence, j must be 1.

6



xn satisfy the equation (5).

Proof of Theorem 4. At first, it is clear that the reals x1, x2, ..., xn are pos-

itive, because, for every m ∈ {1, 2, ..., n} , we have sin

(
(m+ 1)

π

n+ 2

)
> 0 and

sin

(
m

π

n+ 2

)
> 0 (since 0 < (m+ 1)

π

n+ 2
< π and 0 < m

π

n+ 2
< π) and thus

xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) > 0.

The equation x1 = 2 cos
π

n+ 2
is pretty obvious:

x1 =

sin

(
(1 + 1)

π

n+ 2

)
sin

(
1

π

n+ 2

) =

sin

(
2

π

n+ 2

)
sin

π

n+ 2

=
2 sin

π

n+ 2
cos

π

n+ 2

sin
π

n+ 2

= 2 cos
π

n+ 2
.

Remains to prove the equation (5). In order to do this, define a real xn+1 = 0.
Then,

xn+1 = 0 =
0

sin

(
(n+ 1)

π

n+ 2

) =
sin π

sin

(
(n+ 1)

π

n+ 2

) =

sin

(
(n+ 2)

π

n+ 2

)
sin

(
(n+ 1)

π

n+ 2

) .

Hence, the equation xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) holds not only for everym ∈ {1, 2, ..., n} ,

but also for m = n+ 1. Thus, altogether, it holds for every m ∈ {1, 2, ..., n, n+ 1} .
So we have proved that every m ∈ {1, 2, ..., n, n+ 1} satisfies the equation xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) . Consequently, according to Theorem 1 (for ϕ =
π

n+ 2
and

k = n+ 1), we have

x1 =
1

x1

+ x2 =
1

x2

+ x3 = ... =
1

xn−1

+ xn =
1

xn
+ xn+1.

Using xn+1 = 0, this simplifies to (5). Thus, Theorem 4 is proven.
Now we are ready to solve the second MathLinks problem:

Theorem 5. Let n ≥ 1 be an integer, and let y1, y2, ..., yn be n positive
reals. Then,

min

{
y1,

1

y1

+ y2,
1

y2

+ y3, ...,
1

yn−1

+ yn,
1

yn

}
≤ 2 cos

π

n+ 2
. (7)
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Proof of Theorem 5. We will prove Theorem 5 by contradiction: Assume that (7)
is not valid. Then,

min

{
y1,

1

y1

+ y2,
1

y2

+ y3, ...,
1

yn−1

+ yn,
1

yn

}
> 2 cos

π

n+ 2
. (8)

Define n reals x1, x2, ..., xn by xm =

sin

(
(m+ 1)

π

n+ 2

)
sin

(
m

π

n+ 2

) for everym ∈ {1, 2, ..., n} .

Then, according to Theorem 4, the reals x1, x2, ..., xn are positive. Besides, x1 =

2 cos
π

n+ 2
, and the reals x1, x2, ..., xn satisfy the equation (5).

Now we will prove that yj > xj for every j ∈ {1, 2, ..., n} . This we will prove
by induction over j: For j = 1, we have to show that y1 > x1. This, in view of

x1 = 2 cos
π

n+ 2
, becomes y1 > 2 cos

π

n+ 2
, what follows from (8). Thus, yj > xj is

proven for j = 1.
Now, for the induction step, we assume that yj > xj is proven for some j ∈

{1, 2, ..., n− 1} . We want to show that we also have yj+1 > xj+1.

In fact, according to (5), we have x1 =
1

xj
+xj+1, what, because of x1 = 2 cos

π

n+ 2
,

comes down to 2 cos
π

n+ 2
=

1

xj
+ xj+1. Since yj > xj, we have

1

xj
>

1

yj
, so this yields

2 cos
π

n+ 2
>

1

yj
+ xj+1. On the other hand, (8) yields

1

yj
+ yj+1 > 2 cos

π

n+ 2
. Thus,

1

yj
+ yj+1 >

1

yj
+ xj+1, and thus yj+1 > xj+1 is proven. This completes the induction

proof of yj > xj for every j ∈ {1, 2, ..., n} .
This, in particular, yields yn > xn, so that

1

xn
>

1

yn
. On the other hand, after (8),

we have
1

yn
> 2 cos

π

n+ 2
. But 2 cos

π

n+ 2
= x1, and (5) yields x1 =

1

xn
. Thus, we get

the following chain of inequalities:

1

xn
>

1

yn
> 2 cos

π

n+ 2
= x1 =

1

xn
.

This chain is impossible to hold. Therefore we get a contradiction, so that our assump-
tion was wrong, and Theorem 5 is proven.
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