Two problems on complex cosines

Darij Grinberg

version 18 March 2011

In this note we will solve two interconnected problems from the MathLinks discussion
http://www.mathlinks.ro/Forum/viewtopic.php?t=67939

We start with a theorem:
Theorem 1. Let φ be a complex number, and let $x_{1}=2 \cos \varphi$. Let $k \geq 1$ be an integer, and let $x_{2}, x_{3}, \ldots, x_{k}$ be $k-1$ complex numbers. Then, the chain of equations

$$
\begin{equation*}
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{k-1}}+x_{k} \tag{1}
\end{equation*}
$$

(if $k=1$, then this chain of equations has to be regarded as the zero assertion, i. e. as the assertion which is always true) holds if and only if every $m \in\{1,2, \ldots, k\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$. Here, in the case when $\sin (m \varphi)=0$, the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$ is to be understood as follows:

- If φ is an integer multiple of π, then $\sin (m \varphi)=\sin ((m+1) \varphi)=0$, and the number $\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$ has to be understood as $\lim _{\psi \rightarrow \varphi} \frac{\sin ((m+1) \psi)}{\sin (m \psi)}$.
- If φ is not an integer multiple of π and we have $\sin (m \varphi)=0$, then $\sin ((m+1) \varphi) \neq$ 0 , and the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$ is considered wrong.

Proof of Theorem 1. In our following proof, we will only consider the case when φ is not an integer multiple of π, because we will not need the case when φ is a multiple of π in our later applications of Theorem 1. Besides, our following proof can be easily modified to work for the case of φ being a multiple of π as well (this modification is left to the reader).

We will establish Theorem 1 by induction over k :
For $k=1$, we have to prove that the zero assertion holds if and only if $x_{1}=$ $\frac{\sin ((1+1) \varphi)}{\sin (1 \varphi)}$. Well, since the zero assertion always holds, we have to prove that the equation $x_{1}=\frac{\sin ((1+1) \varphi)}{\sin (1 \varphi)}$ always holds. This is rather easy:

$$
x_{1}=2 \cos \varphi=\frac{2 \sin \varphi \cos \varphi}{\sin \varphi}=\frac{\sin (2 \varphi)}{\sin \varphi}=\frac{\sin ((1+1) \varphi)}{\sin (1 \varphi)} .
$$

Thus, Theorem 1 is proven for $k=1$.
Now we come to the induction step. Let $n \geq 1$ be an integer. Assume that Theorem 1 holds for $k=n$. This means that:
$\left.{ }^{*}\right)$ If $x_{2}, x_{3}, \ldots, x_{n}$ are $n-1$ complex numbers, then the chain of equations

$$
\begin{equation*}
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n} \tag{2}
\end{equation*}
$$

holds if and only if every $m \in\{1,2, \ldots, n\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$.
We have to prove that Theorem 1 also holds for $k=n+1$. This means that we have to prove that:
$\left(^{* *}\right)$ If $x_{2}, x_{3}, \ldots, x_{n}, x_{n+1}$ are n complex numbers, then the chain of equations

$$
\begin{equation*}
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n}=\frac{1}{x_{n}}+x_{n+1} \tag{3}
\end{equation*}
$$

holds if and only if every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$.
So let's prove $\left(^{* *}\right)$. This requires verifying two assertions:
Assertion 1: If (3) holds, then every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$.

Assertion 2: If every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$, then (3) holds.

Before we step to the proofs of these assertions, we show that

$$
\begin{equation*}
x_{1}=\frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}+\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)} \tag{4}
\end{equation*}
$$

This is because

$$
\begin{aligned}
& \frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}+\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}=\frac{\sin (n \varphi)+\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)} \\
& =\frac{\sin ((n+1) \varphi-\varphi)+\sin ((n+1) \varphi+\varphi)}{\sin ((n+1) \varphi)} \\
& =\frac{(\sin ((n+1) \varphi) \cos \varphi-\cos ((n+1) \varphi) \sin \varphi)+(\sin ((n+1) \varphi) \cos \varphi+\cos ((n+1) \varphi) \sin \varphi)}{\sin ((n+1) \varphi)}
\end{aligned}
$$

$$
\binom{\text { since } \sin ((n+1) \varphi-\varphi)=\sin ((n+1) \varphi) \cos \varphi-\cos ((n+1) \varphi) \sin \varphi}{\text { and } \sin ((n+1) \varphi+\varphi)=\sin ((n+1) \varphi) \cos \varphi+\cos ((n+1) \varphi) \sin \varphi}
$$

$$
=\frac{2 \sin ((n+1) \varphi) \cos \varphi}{\sin ((n+1) \varphi)}=2 \cos \varphi=x_{1} .
$$

Now, let's prove Assertion 1: We assume that (3) holds. We have to prove that every $m \in\{1,2, \ldots, n, n+1\}$ satisfies $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$. In fact, since (3) yields (2), we can conclude from $\left(^{*}\right)$ that every $m \in\{1,2, \ldots, n\}$ satisfies the equation $x_{m}=$
$\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$. It remains to prove this equation for $m=n+1$; in other words, it remains to prove that $x_{n+1}=\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}$. In order to prove this, we note that the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$, which holds for every $m \in\{1,2, \ldots, n\}$, particularly yields $x_{n}=\frac{\sin ((n+1) \varphi)}{\sin (n \varphi)}$. Hence, $\frac{1}{x_{n}}=\frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}$. Now, (3) yields $x_{1}=\frac{1}{x_{n}}+$ x_{n+1}, so that $x_{1}=\frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}+x_{n+1}$. Comparing this with (4), we obtain $x_{n+1}=$ $\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}$, qed.. Thus, Assertion 1 is proven.

Now we will show Assertion 2. To this end, we assume that every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$, and we want to show that (3) holds.

We have assumed that every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=$ $\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$. Thus, in particular, every $m \in\{1,2, \ldots, n\}$ satisfies this equation. Hence, according to $\left(^{*}\right)$, the equation (2) must hold. Now, we are going to prove the equation $x_{1}=\frac{1}{x_{n}}+x_{n+1}$.

Since $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$ holds for every $m \in\{1,2, \ldots, n, n+1\}$, we have $x_{n}=$ $\frac{\sin ((n+1) \varphi)}{\sin (n \varphi)}$ and $x_{n+1}=\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}$. The former of these two equations yields $\frac{1}{x_{n}}=\frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}$. Thus, the equation (4) results in

$$
x_{1}=\underbrace{\frac{\sin (n \varphi)}{\sin ((n+1) \varphi)}}_{=\frac{1}{x_{n}}}+\underbrace{\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}}_{=x_{n+1}}=\frac{1}{x_{n}}+x_{n+1}
$$

Thus, the equation $x_{1}=\frac{1}{x_{n}}+x_{n+1}$ is proven. Combining this equation with (2), we get (3), and this completes the proof of Assertion 2.

As both Assertions 1 and 2 are now verified, the induction step is done, so that the proof of Theorem 1 is complete.

The first consequence of Theorem 1 will be:
Theorem 2. Let $n \geq 1$ be an integer, and let $x_{1}, x_{2}, \ldots, x_{n}$ be n nonzero complex numbers such that

$$
\begin{equation*}
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n}=\frac{1}{x_{n}} . \tag{5}
\end{equation*}
$$

Then, there exists some integer $j \in\{1,2, \ldots, n+1\}$ such that $x_{1}=2 \cos \frac{j \pi}{n+2}$

$$
\text { and } x_{m}=\frac{\sin \left((m+1) \frac{j \pi}{n+2}\right)}{\sin \left(m \frac{j \pi}{n+2}\right)} \text { for every } m \in\{1,2, \ldots, n\}
$$

Proof of Theorem 2. We need two auxiliary assertions:
Assertion 3: We have $x_{1} \neq 2$.
Assertion 4: We have $x_{1} \neq-2$.
Proof of Assertion 3. Assume the contrary. Then, $x_{1}=2$. Now, we can prove by induction over m that $x_{m}=1+\frac{1}{m}$ for every $m \in\{1,2, \ldots, n\}$. (In fact: For $m=1$, we have to show that $x_{1}=1+\frac{1}{1}$, what rewrites as $x_{1}=2$ and this was our assumption. Now, assume that $x_{m}=1+\frac{1}{m}$ holds for some $m \in\{1,2, \ldots, n-1\}$. We want to prove that $x_{m+1}=1+\frac{1}{m+1}$ holds as well. Well, the equation (5) yields $x_{1}=\frac{1}{x_{m}}+x_{m+1}$, so that $x_{m+1}=x_{1}-\frac{1}{x_{m}}$. Since $x_{1}=2$ and $x_{m}=1+\frac{1}{m}$, we thus have $x_{m+1}=2-\frac{1}{1+\frac{1}{m}}=\frac{m+2}{m+1}=1+\frac{1}{m+1}$. Hence, the induction proof is complete.) Now, since we have shown that $x_{m}=1+\frac{1}{m}$ holds for every $m \in\{1,2, \ldots, n\}$, we have $x_{n}=1+\frac{1}{n}$ in particular. But (5) yields $x_{1}=\frac{1}{x_{n}}$, so that $1=x_{1} \cdot x_{n}=2 \cdot\left(1+\frac{1}{n}\right)$, what is obviously wrong since $2 \cdot\left(1+\frac{1}{n}\right)>2 \cdot 1>1$. Hence, we obtain a contradiction, and thus our assumption that Assertion 3 doesn't hold was wrong. This proves Assertion 3.

The proof of Assertion 4 is similar (this time we have to show that if $x_{1}=-2$, then $x_{m}=-\left(1+\frac{1}{m}\right)$ for every $\left.m \in\{1,2, \ldots, n\}\right)$.

Now, since the function $\cos : \mathbb{C} \rightarrow \mathbb{C}$ is surjective, there must exist a complex number φ such that $\frac{x_{1}}{2}=\cos \varphi$. Here, if $\frac{x_{1}}{2}$ is real and satisfies $-1 \leq \frac{x_{1}}{2} \leq 1$, then we take this φ such that φ is real and satisfies $\varphi \in[0, \pi]$ (this is possible since $\cos :[0, \pi] \rightarrow[-1,1]$ is surjective).

Assertions 3 and 4 state that $x_{1} \neq 2$ and $x_{1} \neq-2$. Hence, $\frac{x_{1}}{2} \neq 1$ and $\frac{x_{1}}{2} \neq-1$. Since $\frac{x_{1}}{2}=\cos \varphi$, this yields $\cos \varphi \neq 1$ and $\cos \varphi \neq-1$, and thus φ is not an integer multiple of π.

Define another complex number x_{n+1} by $x_{n+1}=0$. Then, (5) rewrites as

$$
\begin{equation*}
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n}=\frac{1}{x_{n}}+x_{n+1} . \tag{6}
\end{equation*}
$$

Since $\frac{x_{1}}{2}=\cos \varphi$, we have $x_{1}=2 \cos \varphi$, so that we can apply Theorem 1 to the n complex numbers $x_{2}, x_{3}, \ldots, x_{n+1}$, and from the chain of equations (6) we conclude that every $m \in\{1,2, \ldots, n+1\}$ satisfies $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$.

Thus, in particular, $x_{n+1}=\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}$. Since $x_{n+1}=0$, we thus must have $\frac{\sin ((n+2) \varphi)}{\sin ((n+1) \varphi)}=0$. This yields $\sin ((n+2) \varphi)=0$. Thus, $(n+2) \varphi$ is an integer multiple of π. Let $j \in \mathbb{Z}$ be such that $(n+2) \varphi=j \pi$. Then, $\varphi=\frac{j \pi}{n+2}$. Thus, $x_{1}=2 \cos \varphi$ becomes $x_{1}=2 \cos \frac{j \pi}{n+2}$, and $x_{m}=\frac{\sin ((m+1) \varphi)}{\sin (m \varphi)}$ becomes $x_{m}=$ $\sin \left((m+1) \frac{j \pi}{n+2}\right)$
$\sin \left(m \frac{j \pi}{n+2}\right)$
Now, $\frac{x_{1}}{2}=\cos \varphi=\cos \frac{j \pi}{n+2}$ must be real and satisfy $-1 \leq \frac{x_{1}}{2} \leq 1$ (since cosines of real angles are real and lie between -1 and 1). Therefore, according to the definition of φ, we have $\varphi \in[0, \pi]$. Since φ is not a multiple of π, this becomes $\varphi \in] 0, \pi[$. Since $\varphi=\frac{j \pi}{n+2}$, this yields $\left.j \in\right] 0, n+2[$. Since j is an integer, this results in $j \in$ $\{1,2, \ldots, n+1\}$. Hence, Theorem 2 is proven.

The first problem from the MathLinks thread asks us to show:
Theorem 3. Let $n \geq 1$ be an integer, and let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive real numbers such that

$$
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n}=\frac{1}{x_{n}} .
$$

Then, $x_{1}=2 \cos \frac{\pi}{n+2}$ and $x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)}$ for every $m \in$ $\{1,2, \ldots, n\}$.

Proof of Theorem 3. According to Theorem 2, there exists some integer $j \in$ $\{1,2, \ldots, n+1\}$ such that $x_{1}=2 \cos \frac{j \pi}{n+2}$ and $x_{m}=\frac{\sin \left((m+1) \frac{j \pi}{n+2}\right)}{\sin \left(m \frac{j \pi}{n+2}\right)}$ for every $m \in\{1,2, \ldots, n\}$. For every $m \in\{1,2, \ldots, n, n+1\}$, we thus have

$$
\begin{aligned}
\prod_{s=1}^{m-1} x_{s} & =\prod_{s=1}^{m-1} \frac{\sin \left((s+1) \frac{j \pi}{n+2}\right)}{\sin \left(s \frac{j \pi}{n+2}\right)}=\frac{\prod_{s=1}^{m-1} \sin \left((s+1) \frac{j \pi}{n+2}\right)}{\prod_{s=1}^{m-1} \sin \left(s \frac{j \pi}{n+2}\right)} \\
& =\frac{\prod_{s=2}^{m} \sin \left(s \frac{j \pi}{n+2}\right)}{\prod_{s=1}^{m-1} \sin \left(s \frac{j \pi}{n+2}\right)}=\frac{\sin \left(m \frac{j \pi}{n+2}\right)}{\sin \left(1 \frac{j \pi}{n+2}\right)}=\frac{\sin \left(m \frac{j \pi}{n+2}\right)}{\sin \frac{j \pi}{n+2}} .
\end{aligned}
$$

Since the reals $x_{1}, x_{2}, \ldots, x_{m-1}$ are all positive, their product $\prod_{s=1}^{m-1} x_{s}$ is positive, and this yields that $\frac{\sin \left(m \frac{j \pi}{n+2}\right)}{\sin \frac{j \pi}{n+2}}$ is positive (since $\left.\prod_{s=1}^{m-1} x_{s}=\frac{\sin \left(m \frac{j \pi}{n+2}\right)}{\sin \frac{j \pi}{n+2}}\right)$. But since $j \in$ $\{1,2, \ldots, n+1\}$, the number $\sin \frac{j \pi}{n+2}$ is positive (since $0<\frac{j \pi}{n+2}<\pi$), and thus it follows that $\sin \left(m \frac{j \pi}{n+2}\right)$ is positive. Since this holds for every $m \in\{1,2, \ldots, n, n+1\}$, this means that the numbers $\sin \left(m \frac{j \pi}{n+2}\right)$ are positive for all $m \in\{1,2, \ldots, n, n+1\}$. Since $j \in\{1,2, \ldots, n+1\}$, this yields $j=1 \quad{ }^{1}$. Hence, $x_{1}=2 \cos \frac{j \pi}{n+2}$ becomes $x_{1}=2 \cos \frac{\pi}{n+2}$, and $x_{m}=\frac{\sin \left((m+1) \frac{j \pi}{n+2}\right)}{\sin \left(m \frac{j \pi}{n+2}\right)}$ becomes $x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)}$.
This proves Theorem 3.
A converse of Theorem 3 is:
Theorem 4. Let $n \geq 1$ be an integer, and define n reals $x_{1}, x_{2}, \ldots, x_{n}$ by

$$
x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)} \text { for every } m \in\{1,2, \ldots, n\} . \text { Then, the reals } x_{1}
$$

$$
x_{2}, \ldots, x_{n} \text { are positive. Besides, } x_{1}=2 \cos \frac{\pi}{n+2} \text {, and the reals } x_{1}, x_{2}, \ldots,
$$

${ }^{1}$ Proof. Assume the contrary - that is, assume that $j \geq 2$.
Then, the smallest of the angles $m \frac{j \pi}{n+2}$ for $m \in\{1,2, \ldots, n, n+1\}$ is $1 \frac{j \pi}{n+2}=\frac{j \pi}{n+2}<\pi$ (since $j<n+2$), and the largest one is

$$
\begin{aligned}
(n+1) \frac{j \pi}{n+2} & \geq(n+1) \frac{2 \pi}{n+2} \quad(\text { since } j \geq 2) \\
& =\frac{2(n+1)}{n+2} \pi=\pi+\frac{n}{n+2} \pi \geq \pi
\end{aligned}
$$

Thus, some but not all of the numbers $m \in\{1,2, \ldots, n, n+1\}$ satisfy $m \frac{j \pi}{n+2} \geq \pi$. Let μ be the smallest $m \in\{1,2, \ldots, n, n+1\}$ satisfying $m \frac{j \pi}{n+2} \geq \pi$. Then, $\mu \frac{j \pi}{n+2} \geq \pi$, but $(\mu-1) \frac{j \pi}{n+2}<\pi$. Hence,

$$
\begin{aligned}
\mu \frac{j \pi}{n+2} & =\frac{j \pi}{n+2}+(\mu-1) \frac{j \pi}{n+2}<\frac{(n+2) \pi}{n+2}+\pi \quad\left(\text { since } j<n+2 \text { and }(\mu-1) \frac{j \pi}{n+2}<\pi\right) \\
& =2 \pi
\end{aligned}
$$

what, together with $\mu \frac{j \pi}{n+2} \geq \pi$, yields $\pi \leq \mu \frac{j \pi}{n+2}<2 \pi$. Thus, $\sin \left(\mu \frac{j \pi}{n+2}\right) \leq 0$. But this contradicts to the fact that $\sin \left(m \frac{j \pi}{n+2}\right)$ is positive for all $m \in\{1,2, \ldots, n, n+1\}$. Hence, we get a contradiction, so that our assumption that $j \geq 2$ was wrong. Hence, j must be 1 .
x_{n} satisfy the equation (5).
Proof of Theorem 4. At first, it is clear that the reals $x_{1}, x_{2}, \ldots, x_{n}$ are positive, because, for every $m \in\{1,2, \ldots, n\}$, we have $\sin \left((m+1) \frac{\pi}{n+2}\right)>0$ and $\sin \left(m \frac{\pi}{n+2}\right)>0\left(\right.$ since $0<(m+1) \frac{\pi}{n+2}<\pi$ and $\left.0<m \frac{\pi}{n+2}<\pi\right)$ and thus $x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)}>0$.

The equation $x_{1}=2 \cos \frac{\pi}{n+2}$ is pretty obvious:

$$
x_{1}=\frac{\sin \left((1+1) \frac{\pi}{n+2}\right)}{\sin \left(1 \frac{\pi}{n+2}\right)}=\frac{\sin \left(2 \frac{\pi}{n+2}\right)}{\sin \frac{\pi}{n+2}}=\frac{2 \sin \frac{\pi}{n+2} \cos \frac{\pi}{n+2}}{\sin \frac{\pi}{n+2}}=2 \cos \frac{\pi}{n+2} .
$$

Remains to prove the equation (5). In order to do this, define a real $x_{n+1}=0$. Then,

$$
x_{n+1}=0=\frac{0}{\sin \left((n+1) \frac{\pi}{n+2}\right)}=\frac{\sin \pi}{\sin \left((n+1) \frac{\pi}{n+2}\right)}=\frac{\sin \left((n+2) \frac{\pi}{n+2}\right)}{\sin \left((n+1) \frac{\pi}{n+2}\right)}
$$

Hence, the equation $x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)}$ holds not only for every $m \in\{1,2, \ldots, n\}$,
but also for $m=n+1$. Thus, altogether, it holds for every $m \in\{1,2, \ldots, n, n+1\}$.
So we have proved that every $m \in\{1,2, \ldots, n, n+1\}$ satisfies the equation $x_{m}=$ $\sin \left((m+1) \frac{\pi}{n+2}\right)$
$\sin \left(m \frac{\pi}{n+2}\right)$. Consequently, according to Theorem 1 (for $\varphi=\frac{\pi}{n+2}$ and $k=n+1$), we have

$$
x_{1}=\frac{1}{x_{1}}+x_{2}=\frac{1}{x_{2}}+x_{3}=\ldots=\frac{1}{x_{n-1}}+x_{n}=\frac{1}{x_{n}}+x_{n+1} .
$$

Using $x_{n+1}=0$, this simplifies to (5). Thus, Theorem 4 is proven.
Now we are ready to solve the second MathLinks problem:
Theorem 5. Let $n \geq 1$ be an integer, and let $y_{1}, y_{2}, \ldots, y_{n}$ be n positive reals. Then,

$$
\begin{equation*}
\min \left\{y_{1}, \frac{1}{y_{1}}+y_{2}, \frac{1}{y_{2}}+y_{3}, \ldots, \frac{1}{y_{n-1}}+y_{n}, \frac{1}{y_{n}}\right\} \leq 2 \cos \frac{\pi}{n+2} \tag{7}
\end{equation*}
$$

Proof of Theorem 5. We will prove Theorem 5 by contradiction: Assume that (7) is not valid. Then,

$$
\begin{equation*}
\min \left\{y_{1}, \frac{1}{y_{1}}+y_{2}, \frac{1}{y_{2}}+y_{3}, \ldots, \frac{1}{y_{n-1}}+y_{n}, \frac{1}{y_{n}}\right\}>2 \cos \frac{\pi}{n+2} \tag{8}
\end{equation*}
$$

Define n reals $x_{1}, x_{2}, \ldots, x_{n}$ by $x_{m}=\frac{\sin \left((m+1) \frac{\pi}{n+2}\right)}{\sin \left(m \frac{\pi}{n+2}\right)}$ for every $m \in\{1,2, \ldots, n\}$. Then, according to Theorem 4, the reals $x_{1}, x_{2}, \ldots, x_{n}$ are positive. Besides, $x_{1}=$ $2 \cos \frac{\pi}{n+2}$, and the reals $x_{1}, x_{2}, \ldots, x_{n}$ satisfy the equation (5).

Now we will prove that $y_{j}>x_{j}$ for every $j \in\{1,2, \ldots, n\}$. This we will prove by induction over j : For $j=1$, we have to show that $y_{1}>x_{1}$. This, in view of $x_{1}=2 \cos \frac{\pi}{n+2}$, becomes $y_{1}>2 \cos \frac{\pi}{n+2}$, what follows from (8). Thus, $y_{j}>x_{j}$ is proven for $j=1$.

Now, for the induction step, we assume that $y_{j}>x_{j}$ is proven for some $j \in$ $\{1,2, \ldots, n-1\}$. We want to show that we also have $y_{j+1}>x_{j+1}$.

In fact, according to (5), we have $x_{1}=\frac{1}{x_{j}}+x_{j+1}$, what, because of $x_{1}=2 \cos \frac{\pi}{n+2}$, comes down to $2 \cos \frac{\pi}{n+2}=\frac{1}{x_{j}}+x_{j+1}$. Since $y_{j}>x_{j}$, we have $\frac{1}{x_{j}}>\frac{1}{y_{j}}$, so this yields $2 \cos \frac{\pi}{n+2}>\frac{1}{y_{j}}+x_{j+1}$. On the other hand, (8) yields $\frac{1}{y_{j}}+y_{j+1}>2 \cos \frac{\pi}{n+2}$. Thus, $\frac{1}{y_{j}}+y_{j+1}>\frac{1}{y_{j}}+x_{j+1}$, and thus $y_{j+1}>x_{j+1}$ is proven. This completes the induction proof of $y_{j}>x_{j}$ for every $j \in\{1,2, \ldots, n\}$.

This, in particular, yields $y_{n}>x_{n}$, so that $\frac{1}{x_{n}}>\frac{1}{y_{n}}$. On the other hand, after (8), we have $\frac{1}{y_{n}}>2 \cos \frac{\pi}{n+2}$. But $2 \cos \frac{\pi}{n+2}=x_{1}$, and (5) yields $x_{1}=\frac{1}{x_{n}}$. Thus, we get the following chain of inequalities:

$$
\frac{1}{x_{n}}>\frac{1}{y_{n}}>2 \cos \frac{\pi}{n+2}=x_{1}=\frac{1}{x_{n}}
$$

This chain is impossible to hold. Therefore we get a contradiction, so that our assumption was wrong, and Theorem 5 is proven.

