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In this note we will solve two interconnected problems from the MathLinks discus-
sion
http://www.mathlinks.ro/Forum/viewtopic.php?t=67939

We start with a theorem:
Theorem 1. Let ¢ be a complex number, and let 1 = 2cos . Let k > 1

be an integer, and let x5, x3, ..., xx be k — 1 complex numbers. Then, the
chain of equations

1 1 1
rN=—+Ty=—+2T3=..= + zy, (1)
T T2 T
(if & = 1, then this chain of equations has to be regarded as the zero

assertion, i. e. as the assertion which is always true) holds if and only if
sin ((m +1) ¢)

every m € {1,2,...,k} satisfies the equation z,, = - . Here,
sin (my)
i 1
in the case when sin (my) = 0, the equation z,, = o ((m 1) is to be
sin (my)

understood as follows:

e If ¢ is an integer multiple of 7, then sin (my) = sin((m + 1) ¢) = 0, and the
i 1 i 1
i ((m +1)e) has to be understood as lim i ((m + )w)

sin (my) Y—¢  sin(my)

number

e If ¢ is not an integer multiple of m and we have sin (me) = 0, then sin ((m + 1) ) #

sin ((m + 1
0, and the equation z,, = in ((m +1) ) is considered wrong.

sin (my)

Proof of Theorem 1. In our following proof, we will only consider the case when ¢
is not an integer multiple of 7, because we will not need the case when ¢ is a multiple
of 7 in our later applications of Theorem 1. Besides, our following proof can be easily
modified to work for the case of ¢ being a multiple of 7 as well (this modification is
left to the reader).

We will establish Theorem 1 by induction over k:

For k£ = 1, we have to prove that the zero assertion holds if and only if z; =
sin((1+1) )

sin (1)

equation xy; =

. Well, since the zero assertion always holds, we have to prove that the

sin((14+1)¢)

- always holds. This is rather easy:
sin (1)

2sinpcosp  sin(2p)  sin((141)¢)
sing  sinp  sin(lp)

T1=2cosp =



Thus, Theorem 1 is proven for k = 1.
Now we come to the induction step. Let n > 1 be an integer. Assume that Theorem
1 holds for £ = n. This means that:

(*) If z9, x5, ..., &, are n — 1 complex numbers, then the chain of equations
1 1 1
TH=—+Tyg=—+T3=..= + z, (2)
X To Tp—1

sin ((m + 1) ¢) .

sin (my)
We have to prove that Theorem 1 also holds for £ = n 4+ 1. This means that we

have to prove that:

holds if and only if every m € {1,2,...,n} satisfies the equation x,, =

(**) If o, x3, ..., Tpn, Tpy1 are n complex numbers, then the chain of equations
1 1 1 1
TI=—+Ty=—+T3=..= +z,=—+x11 (3)
T 1) Tp—1 T

sin ((m+1) )
sin (my)

holds if and only if every m € {1,2,...,n,n + 1} satisfies the equation x,,, =

So let’s prove (**). This requires verifying two assertions:

Assertion 1: If (3) holds, then every m € {1,2,...,n,n + 1} satisfies the equation
_sin((m+1)p)

" sin(mep)

i 1
Assertion 2: If every m € {1,2,...,n,n + 1} satisfies the equation z,, = sin ((m + 1) ¢) 7

sin (mep)
then (3) holds.
Before we step to the proofs of these assertions, we show that

~ sin(ny) sin ((n +2) ¢)
" sin((n+ 1) ) * sin((n+1)¢) W

X

This is because

sin (ny) sin ((n+2) ) _ sin(ng) +sin ((n +2) ¢)
sin((n+1)p)  sin((n+1)p) sin ((n+1) ¢)
_sin((nt+1)p—¢)+sin((n+1)p+ )

sin((n+1) )

(sin((n+ 1)) cosp —cos((n+ 1) p)sing) + (sin ((n + 1) ¢) cos ¢ + cos ((n + 1) @) sin p)

B sin ((n+ 1) 9)
since sin((n+ 1) —¢) =sin((n+ 1) p)cosp — cos ((n + 1) ) sin p
and sin((n+1)p+¢) =sin((n+ 1) p)cosp +cos((n+1)p)sine
by the addition formulas

_ 2sin ((n+ 1) ¢) cos ¢
sin((n+1) ¢)

=2cosp = 1.

Now, let’s prove Assertion 1: We assume that (3) holds. We have to prove that
sin ((m+1) )

sin (m)
(2), we can conclude from (*) that every m € {1,2,...,n} satisfies the equation z,, =

every m € {1,2,...,n,n + 1} satisfies z,, = . In fact, since (3) yields

2



sin ((m+1) ¢)
sin (mep)

. It remains to prove this equation for m = n + 1; in other words, it

sin ((n +2) ¢)

sin((n +1) 9)
sin ((m + 1) )

remains to prove that x,.1 = . In order to prove this, we note that the

equation z,, =

, which holds for every m € {1,2,...,n}, particularly

sin (myp)
i 1 1 ' 1
yields z,, = w Hence, — = s1n(—ngo) Now, (3) yields x; = — +
sin (ne) T, sin((n+1)y) Ty
sin (ny)

Tni1, SO that x; = + x,11. Comparing this with (4), we obtain z,; =

sin ((n+ 1) ¢)
sin ((n 4 2) @)
i (n+ 1))

Now we will show Assertion 2. To this end, we assume that every m € {1,2,...,n,n+ 1}

i 1
satisfies the equation x,, = s ((m 1 gp), and we want to show that (3) holds.
sin (mep)

We have assumed that every m € {1,2,...,n,n+ 1} satisfies the equation z,, =
sin((m+1) )
sin (mp)
Hence, according to (*), the equation (2) must hold. Now, we are going to prove the

, ged.. Thus, Assertion 1 is proven.

Thus, in particular, every m € {1,2,...,n} satisfies this equation.

equation ¥y = — + Tpy1.
x

sin ((m +1) @)

Since x,, = - holds for every m € {1,2,...,n,n + 1}, we have z,, =
sin (my)
i 1 i 2
W—"‘)@) and x,.1 = w The former of these two equations yields
sin (ny) sin ((n+ 1) ¢)
1 sin (nep)

e ot 1) o) Thus, the equation (4) results in

sin (n sin ((n + 2 1
oy = n(e)  sin( )90):_+xn+1_
sin((n+1)p)  sin((n+1)¢)  w,
N B
-

1
Thus, the equation ;1 = — + 2,41 is proven. Combining this equation with (2), we
x

get (3), and this completes ‘the proof of Assertion 2.

As both Assertions 1 and 2 are now verified, the induction step is done, so that the
proof of Theorem 1 is complete.

The first consequence of Theorem 1 will be:

Theorem 2. Let n > 1 be an integer, and let xy, x3, ..., x,, be n nonzero
complex numbers such that

1 1 1 1
T1=—+1y=—+1x3=..= + T, =—. (5)
I o) Tn—1 Tn

Then, there exists some integer j € {1,2,...,n + 1} such that z; = 2 cos 2
n



sin ((m+ 1) 7 )

n+ 2

n (n25s)
sin [ m
n—+ 2

Proof of Theorem 2. We need two auxiliary assertions:

Assertion 3: We have zq # 2.

Assertion 4: We have z1 # —2.

Proof of Assertion 3. Assume the contrary. Then, x; = 2. Now, we can prove

and z,, = for every m € {1,2,...,n}.

1
by induction over m that x,, = 14+ — for every m € {1,2,...,n}. (In fact: For
m
1
m = 1, we have to show that z; = 1 + T what rewrites as z; = 2 and this was our
1
assumption. Now, assume that x,, = 1 + — holds for some m € {1,2,....,.n —1}. We
m

1
want to prove that z,,.; = 1+ ] holds as well. Well, the equation (5) yields
m

1 1
x1 = — + Tyy1, so that z,,,1 = 21 — —. Since 1 = 2 and z,,, = 1+ —, we thus have
1 2
Tmy1 = 2 — T = mt2 + ———. Hence, the induction proof is complete.)
14— m—+1 m-+1
m

1
Now, since we have shown that z,, = 1 + — holds for every m € {1,2,...,n}, we have

1 1 1
x, = 14— in particular. But (5) yields x; = —, so that 1 = x;-z,, = 2- (1 + —) , what
n T n

n
is obviously wrong since 2- [ 1 + — ) > 2-1 > 1. Hence, we obtain a contradiction, and
n

thus our assumption that Assertion 3 doesn’t hold was wrong. This proves Assertion
3.

The proof of Assertion 4 is similar (this time we have to show that if x; = —2, then

1
Ty = — (1 + —) for every m € {1,2,...,n}).
m

Now, since the function cos : C — C is surjective, there must exist a complex
x x x
number ¢ such that “L = cos . Here, if “L s real and satisfies —1 < == < 1,

then we take this ¢ such that ¢ is real and satisfies ¢ € [0, 7] (this is possible since
cos : [0, 7] — [—1,1] is surjective).
Assertions 3 and 4 state that x; # 2 and x; # —2. Hence, % # 1 and % # —1.

Since % = cos p, this yields cosp # 1 and cosp # —1, and thus ¢ is not an integer

multiple of 7.
Define another complex number z,,11 by 2,41 = 0. Then, (5) rewrites as
1 1 1 1

rp=—+4Ty=—+413=..= + 2, = — + Tpi1. (6)
X o) Tp—1 Iy

x
Since ?1 = cos p, we have x1 = 2cosp, so that we can apply Theorem 1 to the n

complex numbers xq, T3, ..., y+1, and from the chain of equations (6) we conclude
sin ((m +1) ¢)

that every m € {1,2,...,n + 1} satisfies x,, = -
sin (my)




' 2
W—+m. Since x,11 = 0, we thus must have
sin ((n+1) ¢)

= 0. This yields sin ((n+2)p) = 0. Thus, (n+2)p is an integer

Thus, in particular, x,.; =
sin ((n + 2) ¢)
sin((n+1) ) ‘
multiple of 7. Let j € Z be such that (n+2)yp = jm. Then, ¢ = n]—j—r? Thus,
' sin((m+1) ¢)

r1 = 2cosep becomes 1 = 2cos T , and z,, = - becomes z,, =
n+2 sin (mep)
. Jm
1
sin ((m—l— )n—i—Q)

. It remains to show that j € {1,2,....,n+ 1}.

sin [ m
n-+ 2

T
Now, 5 = COS Y = COS

T
n must be real and satisfy —1 < ?1 < 1 (since cosines of
n

real angles are real and lie between —1 and 1). Therefore, according to the definition
of ¢, we have ¢ € [0,7]. Since ¢ is not a multiple of 7, this becomes ¢ € ]0,7][.

Since ¢ = %, this yields j € |0,n + 2[. Since j is an integer, this results in j €
n

{1,2,...,n+ 1} . Hence, Theorem 2 is proven.
The first problem from the MathLinks thread asks us to show:

Theorem 3. Let n > 1 be an integer, and let zq, x5, ..., x, be n positive
real numbers such that

1 1 1 1

T1=—+To=—+2T3=..= +x, =—
T o) Tp—1 Tn
sin ((m +1) T )
T n—+2

Then, 1 = 2cos—— and z,, = for every m €

n+2 . 7

sin [ m
( n -+ 2>

{1,2,...,n}.

Proof of Theorem 3. According to Theorem 2, there exists some integer j €

T
sin [ (m+1) J
n+2
and x,, = - for every
n+ . g
sin [ m
n+2

{1,2,...,n + 1} such that z; = 2cos

m € {1,2,...,n}. For every m € {1,2,...,n,n + 1} , we thus have
. Jm m-l Jm
_ 1) —— 1) ——
1sm<(s—|— )n—|—2) sl_[lsm((s—l— )n—|—2)
H xs - .ﬂ' - m—1 7T
s=1 s=1  gin (s J ) I] sin (s J )
n

m—1

3

+2 s=1 n+2
ﬁsin S Jm sin [ m Jm sin [ m J7
T om—1 ; - . - : .
. Jm . Jm LT
1 sin (Sn—i—Q) sin (1n+2) smn+2



m—1

Since the reals x1, 3, ..., z,,_1 are all positive, their product [] z is positive, and this
s=1
. Jm . Jm
sin mn+2 _— sin mn+2
yields that i is positive (since [] zs = — ). But since j €
sin s=1 sin J
n+2 ) n+2

{1,2,...,n + 1}, the number sin ]:2 is positive (since 0 < 7r2 < 1), and thus it fol-
n

n

lows that sin (m il
n

2) is positive. Since this holds for every m € {1,2,...,n,n + 1},
this means that the numbers sin m%) are positive for all m € {1,2,....,n,n + 1} .
n

Since j € {1,2,....,n+ 1}, this yields j = 1 . Hence, z; = 2cos becomes

n +

gan+n ”') $n0m+n T )

n—+ 2 n—+ 2
becomes x,, =

: Jm : @
sin ( m sin ( m
n+2 n+ 2
This proves Theorem 3.

A converse of Theorem 3 is:
Theorem 4. Let n > 1 be an integer, and define n reals x, xo, ..., x, by

m
: n_"_
Sln((m+ )n—1—2>
(i)
sin { m
n -+ 2

X9, ..., T, are positive. Besides, 1 = 2 cos
n

T
r1 = 2cos ——, and x,, =
n 4+ 2

Ty = for every m € {1,2,...,n}. Then, the reals x,

5 and the reals z1, zo, ...,

L Proof. Assume the contrary - that is, assume that j > 2.

J_|7_T2 form € {1,2,..,n,n+ 1} is 1

Jjrmo g
n+2 n+2

Then, the smallest of the angles m < 7 (since
n

j <mn+2), and the largest one is

] 2
(n+1) nj:2 >(n+1) n:2 (since j > 2)
2
2t S
n+2 n+2

Thus, some but not all of the numbers m € {1,2,....,n,n+ 1} satisfy m% > m. Let p be the
n

smallest m € {1,2,...,n,n + 1} satisfying mnji_’g > 7. Then, Mnji:? >, but (u—1) T

n+2
Hence,
g jm jm n+2)7 ) ) jm
= —1 2 and -1)—
s n+2—|—(,u )n+2< —— +7 (since j <n+2and (u )n+2<ﬂ')
= 2m,
what, together with 'un]iI? > m, yields 7 < ’un]i:-? < 27w. Thus, sin (M71]+7T2) < 0. But this

ks
contradicts to the fact that sin (m%) is positive for all m € {1,2,...,n,n + 1} . Hence, we get a
n

contradiction, so that our assumption that j > 2 was wrong. Hence, j must be 1.



x,, satisfy the equation (5).
Proof of Theorem /. At first, it is clear that the reals zy, xs, ..., x,, are pos-

itive, because, for every m € {1,2,...,n}, we have sin ((m+ 1) % > 0 and
n

<mand 0 < m
n -+ n

sin (mnsz) > 0 (since 0 < (m+ 1)
. m
sin ((m+1)n+2)

> 0.

n ()
sin [ m
n-+ 2

T
The equation z; = 2 cos
4 ! n+2

Tm —

is pretty obvious:

. ™ . ™
sin ((1 +1) ) sin (2 ) 9sin m COS T
T = = ] T = . T = COS?.
sin (1 T sin sin n
n+ 2 n-+ 2 n-+ 2

Remains to prove the equation (5). In order to do this, define a real x,.; = 0.
Then,

T
i 2
0 sin 7 sm((n—i— )n—|—2)
sin | (n+1) T sin  (n+1) T sin | (n+1) T
n -+ 2 n-+ 2 n -+ 2

sin ((m+ 1) n:2)

sin | m

Hence, the equation z,, = holds not only for every m € {1,2,...,n},

n -+ 2
but also for m = n + 1. Thus, altogether, it holds for every m € {1,2,...,n,n + 1} .
So we have proved that every m € {1,2,...,n,n + 1} satisfies the equation x,, =

sin <(m +1) HLH) |

. T
S | m
n+2

k=n+1), we have

Consequently, according to Theorem 1 (for ¢ = and

s
+2

1 1 1 1
L1=—4+Tog=—+2x3=..= + Ty = — + Tpt1.
T o) Tp—1 Tn

Using 1 = 0, this simplifies to (5). Thus, Theorem 4 is proven.
Now we are ready to solve the second MathLinks problem:

Theorem 5. Let n > 1 be an integer, and let 1, o, ..., ¥, be n positive
reals. Then,

. 1 1 1 1 T
min§ Y, — + Y2, — T Y3, ..y + Yn, — ¢ < 2c0S ) (7)
U1 Y2 Yn—1 Yn n + 2




Proof of Theorem 5. We will prove Theorem 5 by contradiction: Assume that (7)
is not valid. Then,

) 1 1 1 1 s
min < yi, — + Yo, — + Y3, ..., + Yp, — ¢ > 2cos : (8)
n Y2 n—1 Yn n -+ 2
sin ((m +1) 12)
n
Define n reals 1, xo, ..., z, by z,, = foreverym € {1,2,...,n}.
T
sin [ m
( n 4+ 2)

Then, according to Theorem 4, the reals zi, x5, ..., x,, are positive. Besides, x; =

2 cos o and the reals z, x, ..., x, satisfy the equation (5).

n
Now we will prove that y; > z; for every j € {1,2,...,n}. This we will prove
by induction over j: For j = 1, we have to show that y; > x;. This, in view of
T
x1 = 2cos 5 becomes y; > 2cos 5 what follows from (8). Thus, y; > x; is
n n

proven for 57 = 1.
Now, for the induction step, we assume that y; > x; is proven for some j €
{1,2,...,n —1}. We want to show that we also have y;1; > z,41.

1
In fact, according to (5), we have 21 = — 4,41, what, because of z; = 2cos ——

T, n+2
s 1 i 1 1 .
comes down to 2 cos = — + 4. Since y; > x;, we have — > —, so this yields
n+2 oz T Y
Deos > L On the other hand, (8) yields — + y;11 > 2cos —— . Th
cos — 4+ x;41. On the other han ields — ; cos . Thus
ntr2 oy, j+1 , y v; Yi+1 n+2 ’

— + Yj41 > — + 241, and thus y;j41 > x4, is proven. This completes the induction
Yj Yj
proof of y; > x; for every j € {1,2,...,n}.

1 1
This, in particular, yields y, > z,, so that — > —. On the other hand, after (8),

Tn  Yn
1 1
we have o, > 2cos nj—Q' But 2 cos nj—Q = z1, and (5) yields z; = o Thus, we get
the following chain of inequalities:
1 1
— > — > 2cos = = —.
Tn Yn n+ 2 Tn

This chain is impossible to hold. Therefore we get a contradiction, so that our assump-
tion was wrong, and Theorem 5 is proven.



